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Abstract

Modeling and Analysis of Oligonucleotide Microarray Data for Pathogen Detection

by

Kevin Shane McLoughlin

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Terence P. Speed, Chair

Microarrays have emerged during the past decade as a viable platform for detection of DNA
from microorganisms in clinical and environmental samples. These microbial detection arrays
occupy a middle ground between low cost, narrowly focused assays such as multiplex PCR
and more expensive, broad-spectrum technologies like high-throughput sequencing. The
Pathogen Bioinformatics Group at Lawrence Livermore National Laboratory is one of several
teams that are actively working to develop arrays for clinical diagnostics, biologic product
safety testing, environmental monitoring and biodefense applications.

Statistical algorithms that can analyze data from microbial detection arrays and pro-
vide easily interpretable results are absolutely required in order for these efforts to succeed.
Several researchers have developed methods to determine what organisms are present in a
microbial detection array sample. The algorithms developed so far operate mainly within a
hypothesis testing framework, and are not motivated by a physical model of the process by
which microbial DNA hybridizes to DNA probes on the array. Therefore, they only provide
probabilities for the absolute presence or absence of an organism, and lack the ability to infer
the abundances of the microbes in the sample. They also have limited capacity to handle
samples containing complex mixtures of microorganisms.

This dissertation describes an approach to developing a quantitative algorithm for mi-
crobial detection array data analysis, capable of both identifying the organisms present in a
sample and inferring their concentrations. After reviewing the most promising array designs
and analysis algorithms that have been developed to date, I present a physical model for
predicting probe signals on an array given a set of target organisms present in a sample and
their concentrations. I describe the experiments that were performed to fit the key param-
eters in this model. Finally, I present an approach to solving the inverse problem, in which
the probe signals are observed and used to infer the targets present and their concentrations.
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Chapter 1

Introduction: Application of
microarrays to microbial detection

This dissertation describes statistical models and algorithms I developed to analyze data from
DNA microarrays for the purpose of microbial detection. In this chapter, I aim to provide
the background material required to understand the goals and challenges of analyzing data
from these arrays, and to summarize previous work on microbial detection array design
and analysis. I will start by discussing the main technologies used to detect nucleic acids
from bacteria, viruses and other microbes. I will then present an overview of microarray
technology, and describe the approaches to array design used by several teams, including my
colleagues at Lawrence Livermore National Laboratory (LLNL). I will compare the merits of
these design approaches, focusing on those that are relevant for understanding the analysis
problems. Finally, I will discuss the methods developed by other researchers to analyze
detection arrays, and present the case for developing better methods.

1.1 Background: Microbial detection and discovery

Infectious diseases pose a growing threat to public health, due to increased rates of popula-
tion growth, international trade and air travel, climate change, bacterial antibiotic resistance,
and a wide range of other factors. In addition, global conflicts over the past decade have
raised concerns that pathogenic agents might be released deliberately by terrorist organiza-
tions or other entities. Public and private funding agencies have responded to these concerns
by investing heavily in the development of new assays for microbial surveillance and discov-
ery. The majority of these new methods involve direct detection of microbial nucleic acids.
Ideally, these methods should be effective both as detection assays (for identification of
known microbes) and as discovery techniques (for revealing the presence of novel, previously
uncharacterized organisms).

Most currently available methods for microbial detection and discovery using nucleic
acid samples are based on one of three technologies. In order of increasing cost, these are
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the polymerase chain reaction (PCR) [Mullis 86], oligonucleotide microarrays [Schena 95],
and DNA sequencing [Sanger 77]. These platforms have different strengths and weaknesses.
While sequencing provides the most in-depth, unbiased information, and is able to reveal
completely novel organisms, it is at present still too costly and time-consuming for routine
use - particularly when the resources required for data processing and analysis are taken into
account. Although multiplex sequencing of bar-coded samples reduces the cost per sample, it
also decreases the coverage and thus the sensitivity of the analysis; this may be an issue when
the organism of interest has low abundance and the sample has not been treated beforehand
to remove host and/or background DNA.

At the other end of the cost spectrum, PCR assays are very fast and sensitive, but have
limited capacity for multiplexing [Bej 90, Vandenvelde 90]. When an assay is required to test
for the presence of several organisms simultaneously, many PCR reactions may be needed,
erasing any cost benefit. They are also highly specific; this is an advantage for detecting a
microbe whose sequence is precisely known, but a great disadvantage for discovery of novel
species, or for detecting variant strains of a known species.

Microarrays occupy a middle ground with respect to cost, processing time, sensitivity,
specificity, and ability to detect novel organisms. The high-density arrays available today
are able to test for the presence of thousands of different organisms simultaneously, at a cost
less than US$100 per sample. Arrays can be designed with a combination of high-specificity
probes and probes designed against conserved regions, so that they can be used in both
detection and discovery modes. While most array designs select probes from fully sequenced
genomes in GenBank and other databases, cross-hybridization between probes and similar
but non-identical sequences allows detection of novel species, provided that they are closely
related to those that were used for probe design. A limitation of microarrays is that, except
for so-called universal arrays, probe designs must be updated periodically to include the ever-
increasing number of microbial genome sequences being added to GenBank. Nevertheless,
for many applications, microarrays offer an ideal balance of capabilities for broad-spectrum
microbial surveillance.

1.2 Microbial detection microarrays

1.2.1 Microarray overview

A microarray is a miniaturized device containing short (25- to 70-mer) single stranded DNA
oligonucleotide probes (or “oligos”) attached to a solid substrate, as shown in Figure 1.1.
The probes are designed to have sequences complementary to segments of one or more
target organism genomes. Oligos may be spotted onto the array by mechanical deposition
[Schena 95], or synthesized in situ either by spraying nucleotides from an inkjet printer head
[Hughes 01] or through a series of photocatalyzed reactions [Pease 94]. Probes are arranged
in a rectangular grid in which each spot or “feature” contains 105 to 107 copies of the same
oligo. The density of features on the array varies between platforms, from 20,000 spots per
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Figure 1.1: Cartoon schematic of a microarray, showing single-stranded DNA oligo probes
attached to substrate, with fluorescently labeled target DNA strands bound to selected oligos.
Image credit: Sabrina Fletcher, LLNL.

slide for a typical spotted array, to several million for platforms such as NimbleGen and
Affymetrix that use photocatalytically synthesized oligos. Arrays may be subdivided with a
gasket into subarrays, allowing multiple samples to be tested on one slide. Replicate features,
scattered randomly across the array, may be used to allow correction for scratches and other
localized artifacts. On some arrays, negative control probes with random sequences are
included, to provide threshold intensity measurements for background noise correction.

To perform a microbial detection array analysis, total nucleic acids are first extracted
from the sample. If the targets of interest include viruses with RNA genomes, a reverse
transcription step is used to convert viral RNA to cDNA. The DNA is amplified if its initial
concentration is too low; the DNA strands are then fragmented and fluorescently labeled.
The labeled DNA is incubated on the array surface for several hours, allowing enough time
for the DNA fragments to hybridize to complementary or nearly complementary probes, if
they exist on the array. The array is then washed to remove unbound DNA and scanned
to produce a file of fluorescence intensities for each feature. In the resulting image, bright
features will correspond to probes that are complementary to the DNA in the sample.

1.2.2 Microbial detection array designs

Several groups have applied microarray technology to microbial detection. Their approaches
may be distinguished according to the range of organisms targeted, the probe design strategy,
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and the array platform used. Each group has also developed analysis algorithms targeting
its own array platform, which I will discuss in Section 1.3.

ViroChip

The first microarray designed for detection of a wide range of microbes was the ViroChip
[Wang 02]. The initial version of the ViroChip contained 1,600 probes derived from the 140
complete viral genomes available in GenBank when the array was designed. Later versions
of the array were developed to cover a wider range of viruses as additional genomes were
published [Wang 03]. The most recent version covers all viruses that had been sequenced
through December 2010, and contains over 60,000 probes. Early versions of the ViroChip
were fabricated by mechanically spotting synthesized oligonucleotides on a glass slide; the
more recent versions are produced using Agilent inkjet technology [Chen 11]. The oligos are
70-mers, usually selected to match sequences common to a taxonomic family, but not found
in other families. For some families, oligos were instead selected at the genus level. Since
the probes were designed against conserved sequences, the ViroChip can be used to identify
novel viruses within the same family as a known, sequenced virus. This capability was used
to characterize the virus responsible for the 2003 SARS outbreak as a novel coronavirus
[Ksiazek 03].

The advantages of the ViroChip platform include its ability to detect novel viruses within
a known family. Its disadvantages are its lack of coverage of bacteria and other microbes,
and the relatively small number of probes covering each virus.

Resequencing pathogen microarrays

Another approach to pathogen detection uses resequencing microarrays [Lin 06, Malanoski 06].
These arrays contain short probes (25- or 29-mers) tiled along selected genes of the target
pathogen species. Four probes are designed for each location in a target gene: one with a
perfect match base at the central position of the probe, and one for each of the 3 alternative
bases. Hybridization and analysis of these arrays yields a sequence for each target gene
homolog present in the sample; the sequence is then matched to a species and strain by
comparison against a sequence database, using BLAST [Altschul 90].

The prototype Respiratory Pathogen Microarray (RPM v1.1) was manufactured as a
custom Affymetrix array. It contained probes for several common human respiratory viruses
and bacteria, including influenza, adenovirus, coronavirus, and rhinoviruses, together with
bacteria such as Bordetella pertussis and Streptococcus pneumoniae. More recent designs
based on this approach, such as the resequencing pathogen microarray for tropical and
emerging infectious agents (RPM-TEI v1.0) [Leski 09], contain probes for a wider variety of
pathogens and known toxin genes, focusing on the category A, B and C select agents defined
by the US Centers for Disease Control (CDC).

The use of short oligonucleotide probes, with a large number of oligos per target gene,
gives the RPM arrays very high specificity for strain-level identification of target organisms.
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The disadvantages of the RPM approach are its lower sensitivity (due in part to the use of
short oligos), the limited range of organisms that can be covered on a single array (because
of the large number of probes required for each target), and its lack of ability to detect novel
organisms.

Universal detection array

A sequence-independent “universal” microarray was described in [Belosludtsev 04]. Rather
than selecting oligos from sequenced microbial genomes, the authors created an array con-
taining 14,283 unique 12-mer and 13-mer probes with randomly generated sequences. Probes
were excluded from the array design if they differed from previously selected probes at fewer
than four positions (for 12-mers) or five (for 13-mers). The authors further refined the probe
list by building prototype arrays, and excluding from further analysis probes that did not
give reproducible signals when data from replicate hybridizations were compared. Oligos
were synthesized on arrays using a photocatalytic process, similar to that used on the Nim-
bleGen platform. Hybridizations were performed at low temperatures (23◦ C) to compensate
for the extremely short probe length.

By hybridizing genomic DNA from several bacterial species, the authors demonstrated
that their array produced reproducible patterns of probe intensities (or “signatures”) that
distinguished between one species and another. Probe intensities were not correlated either
with occurrences of the oligo sequence in the target bacterial genome or with predicted free
energies of hybridization. Thus, identification of an unknown target using this array relies
on comparison of the observed intensity pattern to a compendium of signatures acquired
by hybridizing known targets to the array. The unique advantage of the universal array
approach is that the probes are not specific to genomes that have already been sequenced,
so that the array design does not need to be updated as new genomes become available.
The principal disadvantage is the lack of any means of predicting signatures for organisms
of known sequence; these must be obtained experimentally for every species of interest. The
large number of experiments required makes this approach impractical for broad-spectrum
detection, especially for agents that must be handled using Biosafety Level 3 (BSL-3) and
BSL-4 procedures.

GreeneChip

The “GreeneChip” arrays represent a broader-spectrum approach to microbial detection
[Palacios 07, Quan 07]. These are high-density oligonucleotide arrays, fabricated using the
Agilent inkjet system. GreeneChipVr version 1.0 contains 9,477 probes for viruses infect-
ing vertebrates. GreeneChipPm v1.0 is a panmicrobial array design, containing all of the
GreeneChipVr probes, together with probes for several thousand pathogenic bacteria, fungi
and protozoa, comprising a total of 29,495 60-mer oligos. Viral probes were designed to
target a minimum of three genomic regions for each family or genus of virus. Typically,
one highly conserved region was chosen, along with two or more variable regions. Probe
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sequences were selected so that every vertebrate virus in the ICTV database (International
Committee on Taxonomy of Viruses) or in GenBank was represented by at least one probe
with five or fewer mismatches. Bacterial, fungal and protozoan probes were selected by a
similar strategy, except that the target sequences were only chosen from the 16S ribosomal
RNA (rRNA) genes of bacteria and 18S rRNAs of fungi and protozoa.

When they were tested with virus-infected cell cultures and clinical samples from virally
infected patients, the GreeneChip arrays correctly identified the virus at the species level.
Performance with bacterial samples was poorer, due to the choice of 16S rRNA as the target
gene; probes for these targets tended to cross-hybridize across taxa, so that some bacteria
could only be identified at family or class resolution. The sensitivity of these arrays was
comparable to that of the ViroChip series, due to the use of long (60-mer) oligos.

Lawrence Livermore Microbial Detection Array

The most comprehensive microbial detection arrays reported to date were designed by our
team at Lawrence Livermore National Laboratory [Gardner 10, Jaing 08]. Initial versions
of the Lawrence Livermore Microbial Detection Array (LLMDA) contained target probes
for all bacteria and viruses (pathogenic and otherwise) for which full genome sequences were
available. More recent versions also include probes for pathogenic fungi and protozoa. Probe
lengths on a single array vary between 50 and 65 nucleotides (nt) and are adjusted so that all
probes on the array have roughly equivalent affinities for their complementary target DNA
molecules.

As on the GreeneChip, probes are selected from target genomes by one of two strategies.
“Discovery” probes match genome regions that are unique to a taxonomic family or sub-
family, but are shared by the species within that group. By targeting sequences that evolve
more slowly within families, the discovery probes are optimized for detection of novel species
within a known family. “Census” probes target highly variable regions that are unique to
an individual species or strain. They are optimized for forensic use, to identify the specific
strain of organism in a sample as precisely as possible.

The LLMDA designs were originally deployed using NimbleGen technology and are cur-
rently being migrated to the Agilent platform. Similar to Affymetrix, NimbleGen uses a
photocatalytic process to synthesize oligos in situ on the array surface; unlike Affymetrix,
it employs a digital micromirror device, rather than a set of photolithographic masks, to
produce the light pattern that catalyzes the addition of nucleotides within each feature.
Compared to spotted oligo or Agilent inkjet arrays, NimbleGen achieves higher probe densi-
ties, with up to 2.1 million features per array. Even at the lower densities offered by Agilent,
the LLMDA has the capacity to target each sequenced microbial genome using between 10
and 50 or more distinct probes, depending on the array format and the types of microbes tar-
geted. The probes targeting each genome element include oligos with mismatches as well as
perfect matches; since 50- to 65-mer oligos bind sufficiently well even with some mismatches,
a probe is included if it aligns to the target with at least 85% identity over the length of the
probe, and with a 29 nt perfect match subsequence. On LLMDA version 5, an average of 130
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probes satisfy the representation criteria for each target genome element, and over 67,000
targets from almost 6,000 microbial species are covered by the 360,000 LLMDA probes. A
major difference between the LLMDA and other microbial arrays is that bacterial probes
may be selected from anywhere in the genome, rather than only from 16S rRNA genes; thus,
many bacteria can be identified at the strain level.

The LLMDA was shown to correctly identify a variety of previously characterized vi-
ral and bacterial cultures with high sensitivity and specificity [Gardner 10], and also con-
firmed sequencing-based detection of porcine circovirus DNA in a pediatric rotavirus vaccine
[Victoria 10]. Recently, LLNL collaborated with the Statens Serum Institut in Denmark
to develop a diagnostic platform using unbiased random amplification and the LLMDA to
identify viral pathogens in clinical samples. [Erlandsson 11]. This work demonstrated the
potential of the microarray technique for broad spectrum pathogen detection in human sam-
ples. It also showed that the LLMDA could detect both DNA and RNA viruses as well
as bacteria and plasmids present in the same sample, and in many cases can differentiate
different subtypes of the same viral species.

The advantages of the LLMDA over other array platforms are its broad coverage of
bacteria and viruses, as well as of eukaryotic pathogens, with large numbers of probes per
target sequence. It shares with other reference sequence based array designs a disadvantage
relative to “universal” arrays: the array design must be updated periodically to include
probes for new genomes deposited in GenBank.

1.3 Analysis of detection arrays

1.3.1 General problems of detection array analysis

Much of the initial work on microarray data analysis focused on the use of these arrays to
measure gene expression [Smyth 03]; that is, to infer changes in messenger RNA (mRNA)
concentration in cells or tissues, resulting from changing experimental conditions, by hy-
bridizing labeled copies of mRNAs to arrays containing probes for specific gene transcripts.
Algorithms for expression data analysis had to deal with the fact that, in most experiments,
the true mRNA concentrations were unknown. Therefore, most work on expression anal-
ysis was aimed at background correction [Kooperberg 02], normalization [Bolstad 03], and
estimation of concentration ratios (fold changes) between different conditions [Irizarry 03].

Detection array analysis offers the opportunity to understand microarray behavior in
much greater detail, because the samples analyzed are produced from genomic DNA. Se-
quences are known for many microbial genomes, and standard laboratory techniques exist
to measure the concentration of DNA in a sample. Therefore, one can design experiments
in which sample DNA molecules with known degrees of complementarity to probe sequences
are present, at a wide range of known concentrations. The wealth of information available
in these experiments makes it possible to develop detection algorithms based on models,
in which the probe signal given the presence of a target organism at some concentration is
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predicted from the probe and target genome sequences. After fitting model parameters from
experiments with known samples, one can solve the inverse problem to find the targets that
best explain the observed array data for an unknown sample.

Nevertheless, detection arrays present many of the same analysis issues as other types
of microarrays. Probe signals must be corrected for background fluorescence of the glass
array substrate [Kooperberg 02], and have additional noise contributions due to transient
hybridizations with noncomplementary or partially matching DNA molecules [Zhang 03].
Probe and target DNAs may form hairpins or other secondary structures that prevent hy-
bridization between expected partners [Ratushna 05, Gibas 10], or enhance hybridization
between unexpected probe-target pairs. Chemical saturation, in which most or all of the
oligos in a probe feature are bound by target DNAs, creates a nonlinear relationship be-
tween target concentration and probe intensity [Burden 04]. Another source of nonlinearity
is optical saturation [Dodd 04], which occurs when the scanner converts the analog probe
intensity to a 16-bit digital value; all intensities greater than some threshold are converted
to the maximum value (65535). If the scanner photomultiplier tube (PMT) gain is set too
high, a substantial amount of information about the true probe intensities may be lost.

1.3.2 The GreeneLAMP algorithm

Many current algorithms for detection array analysis follow purely empirical approaches,
without trying to model the physical processes underlying hybridization, washing and scan-
ning. The algorithm developed for GreeneChip analysis, “log-transformed analysis of mi-
croarrays using p-values” (GreeneLAMP) [Palacios 07], is one such approach to the species
identification problem. The GreeneLAMP algorithm makes several key assumptions about
array experiments:

• Probe intensities are log-normally distributed.

• Probe intensities represent independent measurements of target genome concentra-
tions.

• The number of probes for any species having positive signals is limited, on the order
of 100 or fewer.

When pairs of probe sequences are 95% or more identical, the independence assumption is
clearly violated. In this case probes are clustered into equivalence groups and their signals
are pooled, in a manner not specified by the authors. Probes are associated with target taxa
using BLAST; the score threshold for association is also not specified by the authors, and
the algorithm does not differentiate between probes with strong and weak similarity.

To analyze an array experiment, the GreeneLAMP software first subtracts background
levels from the probe intensities, for probes more than two standard deviations from the
mean. The background levels are derived from matched control samples when they are
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available, and from random 60-mer control probes on the same array otherwise. The soft-
ware then centers the log intensities, divides them by the standard deviation to form Z-scores
and computes tail probabilities (p-values) under the log-normality assumption. It then cat-
egorizes the probes as positive or negative according whether the p-values exceed a fixed
threshold: 0.1 for arrays with matched controls, and 0.023 otherwise.

Finally, individual p-values for positive probes associated with each taxon are combined
using the QFAST algorithm [Bailey 98]. This step depends crucially on the independence
assumption. The product of the n p-values is used as a test statistic; its tail probability
assuming independence of the p-values can be shown to be:

P[
∏
i

pi > p] = 1− p
n∑
k=0

(− log p)k

k!

The candidate taxa are then ranked by this combined p-value.
As mentioned in our discussion of the GreeneChip design, the GreeneLAMP algorithm

was moderately successful in the analysis of viral samples, providing correct identification
at the species level. Since the algorithm has only been applied to GreeneChip data, it is
difficult to assess its performance independently from that of the chip design. The failure
of the GreeneChip platform to precisely identify bacteria can be partially explained by the
cross-reactivity of ribosomal RNA probes. However, an algorithm design that accounted for
the greater affinity of probes for highly similar target sequences might have been able to
overcome the limitations of the array design. A more severe limitation of GreeneLAMP is
its inability to deal with complex mixtures, such as those found in clinical and environmental
samples. Since the output of the algorithm is a single ranked list of taxa, there is no means
to identify a combination of taxa that if present would best explain the observed intensity
data.

1.3.3 The E-Predict algorithm

Another empirically motivated method is the E-Predict algorithm [Urisman 05], which was
developed for analyzing ViroChip arrays. E-Predict computes a “theoretical hybridization
energy profile” for each complete viral genome, by using BLAST to align probes to the
genome sequence, and then computing a predicted hybridization free energy for each probe
with a significant alignment. Free energies, which are related to the affinity for a probe to
bind to a target genome fragment, are computed using a nearest-neighbor stacking energy
method [SantaLucia 04], and are then scaled to produce a vector within the unit hypercube
(using quadratic normalization by default):

∆G
(norm)
ij =

∆G2
ij∑n

i=1 ∆G2
ij

Here n is the number of probes on the array and ∆Gij is the raw free energy for probe i
hybridizing to target j. Probes with no BLAST hit to the target genome are assigned free
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energies equal to zero, so the sum in the denominator need only be computed over probes
with hits to target j.

To identify the target hybridized to an array, E-Predict by default normalizes the probe
intensities yi to have total sum equal to one:

y
(norm)
i =

yi∑n
i=1 yi

Alternative (sum, quadratic, and unit vector) methods may be used to normalize both in-
tensities and free energies. E-Predict then computes a similarity score for the normalized
intensity and free energy vectors for each viral sequence in a candidate target database,
using one of several similarity functions: the dot product, centered or uncentered Pearson
correlation coefficient, Spearman correlation coefficient, or a function based on Euclidean
distance. The target scoring highest is identified as most likely to be present in the sample.

E-Predict associates p-values with scores by comparing them to an empirical probability
distribution derived from 1,009 microarray experiments, which was found to be approxi-
mately log-normal. The authors assume that the underlying null distribution is exactly
log-normal, and estimate its parameters by iteratively trimming the highest score values for
each virus until the remaining log scores show the least deviation from normality, according
to a Shapiro-Wilk test. The mean and variance are computed from the remaining untrimmed
values.

To be useful for analyzing clinical and environmental samples, a detection algorithm
must be able to identify multiple organisms within a sample. This problem is addressed
with an iterative version of E-Predict. After identifying the most likely target as described
above, E-Predict sets the intensities of the probes matching that target to zero, renormalizes
the intensity vector, recomputes the similarity scores for the remaining targets, chooses the
highest scoring target, and computes its p-value. This process can be iterated until no
remaining targets have p-values below a specified threshold.

At first glance, E-Predict appears to be motivated by a thermodynamic model, since it
uses free energies to represent probe-target similarities or affinities. However, the authors
don’t present a physical justification for their choices of normalization and scoring functions;
these were instead chosen because they provided the best separation in between-family com-
parisons and the least separation within families, for a particular test dataset. Therefore, one
might be concerned that the algorithm might not generalize well to a wider range of datasets.
Nevertheless, E-Predict has been successfully applied to identify or characterize viruses in
thousands of ViroChip experiments; notably, it was used in 2003 to identify the infectious
agent of severe acute respiratory syndrome (SARS) as a novel coronavirus [Wang 03].

1.3.4 VIPR

VIPR (Viral Identification using a PRobabilistic algorithm) [Allred 10] is a technique devel-
oped for analysis of viral diagnostic microarrays. It is essentially a näıve Bayes classifier,
based on the assumption that probe intensities follow a log-normal distribution with one of
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two sets of parameters for each probe, according to whether it is predicted to bind the target
in the sample (is “on”) or not (“off”); i.e. the log intensities Yi are distributed as follows:

Yi|on ∼ N(µi,on, σ
2
i,on); Yi|off ∼ N(µi,off , σ

2
i,off)

The binding predictions are obtained by calculating free energies ∆G with a nearest-neighbor
approach, and treating probes with ∆G below a fixed threshold as “on”. To give accurate
results, the VIPR model must be trained using data from positive control arrays to estimate
the parameters of the “on” and “off” intensity distributions for each probe. Priors for the
latent variables in the model (the on/off states) are derived by considering the fraction of
probes Ppred[on] predicted to bind a target T , along with the numbers of targets n(state)
sharing the same state for a given probe, and applying Bayes’ rule:

Pmarg[on] =
P[T |on]Ppred[on]∑

state=on,off P[T |state]Ppred[state]

Pmarg[off] = 1− Pmarg[on]

Here P[T |state] is assumed to be uniform, i.e. equal to 1/n(state).
Given the prior probabilities, the on/off distribution parameters for each probe, and the

observed log intensities yi, VIPR computes posterior probabilities for each probe i:

P[on|Yi = yi] =
P[Yi = yi|on]Pmarg[on]∑

state=on,off P[Yi = yi|state]Pmarg[state]

P[off|Yi = yi] = 1− P[on|Yi = yi]

Finally, VIPR combines these probabilities to calculate a posterior probability for each
target in a list of candidate viruses (assuming conditional independence of the probe states).
Let B(T ) be the set of probes predicted to bind T ; then the probability that T is present is:

L(T ) =
∏

i∈B(T )

P[on|Yi = yi]
∏

i/∈B(T )

P[off|Yi = yi]

When compared to E-Predict and other published algorithms, VIPR had greater ac-
curacy in identifying viruses hybridized to a custom hemorrhagic fever virus array. Like
GreeneLAMP, VIPR is not designed to deal with complex samples, where a mixture of tar-
gets might be present. Also, the requirement that parameters be fitted to data from arrays
hybridized to each candidate target limits its usefulness for broad-spectrum microbial detec-
tion arrays. However, its ability to “learn” from additional training data means that VIPR
may be more accurate than other algorithms when applied to specialized diagnostic arrays,
designed to test for a limited range of species.

1.3.5 DetectIV

DetectIV [Watson 07] is a software package, written in the R language [R D 11], which
provides simple visualization, normalization and significance testing functions for detection
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array data. Unlike most of the methods discussed here, it is not tightly coupled to any
particular array platform, and runs in any computing environment that supports the R
language, including Mac OS X, Unix/Linux and Windows. To normalize probe intensities,
DetectiV divides them by a reference intensity, which may be either the mean of a set
of designated control probes, the global median intensity for the array or the intensity of
the corresponding probe on a reference array; the logarithm of the intensity ratio is then
reported for each probe. Significance testing is performed by selecting groups of probes
sharing common family, species, or other annotations, and computing a one-sample t-test,
with the null hypothesis that the log intensity ratio for each group is zero.

The DetectiV software leaves interpretation of the log ratio and t-test results to the user;
it does not correct p-values for multiple testing, nor does it define any threshold values for
“detection” of a particular species. Typically a user will rank families or species by p-value,
and examine the log intensity ratios for the top n groups to decide which species are most
likely to be present. DetectiV may thus be regarded as a useful package for exploratory data
analysis, rather than a rigorous statistical tool. Nevertheless, the authors found that, when
applied to two ViroChip data sets used in the E-Predict study [Urisman 05], DetectiV gave
better prediction performance than E-Predict.

1.3.6 PhyloDetect

PhyloDetect [Rehrauer 08] is one of the few analysis methods that deals explicitly with the
genomic similarity between taxonomically related organisms, and the consequent tendency
of some probes to cross-hybridize to multiple organisms. Given a “match matrix” M = [mij],
in which mij = 1 if probe i matches target j and 0 if not, PhyloDetect groups targets into a
nested hierarchy, based on the similarity of their column vectors in the match matrix. Targets
that are indistinguishable (because their match vectors are identical) are collapsed. This
grouping is done once for each array design and candidate target set. To analyze an array,
PhyloDetect reduces the probe intensities to binary indicators (e.g., by thresholding against
the median plus two standard deviations of the background intensities), and performs a series
of hypothesis tests, one for each group in the hierarchy. Interestingly, the null hypothesis
in each test is that an organism in the group is present; the alternative is that no organism
in the group is present. The test statistic is based on the number of probes matching the
group that have zero indicators, and a probe-independent false negative rate γ. If there are
n probes matching the group, the probability of observing r or more probe intensities below
the detection threshold is the complement of the cumulative binomial distribution,

P[m ≥ r] =
n∑
k=r

(
n

k

)
γk(1− γ)n−k

This probability is compared against a significance threshold α, and the group is predicted
to be absent (at significance level α) if the probability is below α. The test is repeated for
every group at every level in the hierarchy, and the scores are displayed in a tree structure
format.
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PhyloDetect is designed to work with data for any detection array, provided that one
can construct a match matrix for its probes against a list of candidate targets; in fact, it is
available as a web application provided by the authors. However, this implementation does
not scale well for high-density microarrays and/or large candidate target sets, because the
match matrix must be instantiated as a dense array data structure and transmitted to the
application server, using large amounts of memory and bandwidth. In addition, the false
negative rate parameter must be chosen carefully for each array design. The greatest strength
of PhyloDetect is that its results can be easily interpreted, in the common situation where
the sample contains an organism related but not identical to one or more of the candidate
targets.

1.4 Conclusion: the need for improved analysis

methods

Several promising approaches to microbial detection array design and analysis have been
tested during the past decade. The array platforms vary widely in terms of fabrication cost,
range of organisms targeted, and in sensitivity and specificity of detection. An essential
component of any microbial detection platform is an analysis algorithm that can make sense
of the noisy data produced with current array technology and yield easily interpretable
results. Analysis and visualization software will become especially important as microbial
detection arrays move from the research environment to widespread medical, industrial and
military use. Most of the analysis algorithms described in this review can be adapted to
handle data from a variety of array types, and each algorithm has its unique merits.

All of the analysis methods described above operate within a hypothesis testing frame-
work, providing estimates of probabilities for absolute presence or absence of each candidate
microorganism. Most of the algorithms have limited capacity to deal with samples containing
complex mixtures of microbes, such as soil, water or human microbiome samples. For diag-
nostic and risk assessment purposes, and for the study of complex microbial communities,
it is important to be able to measure not just the presence of particular organisms, but also
their abundances in a sample. In order to assess concentrations of microbial nucleic acids
in clinical and environmental samples, we need to have a physical model of the process by
which microbial DNA hybridizes to oligos on an array and produces a set of probe intensity
measurements.

In Chapter 2, I develop a predictive physical model for the hybridization and measurement
process, and show results from testing it against data generated in our laboratory. In Chapter
3, I apply the model to the inverse problem of assessing the organisms present in a microarray
sample and estimating their abundances.
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Chapter 2

Predictive models of microbial
detection array probe intensities

2.1 Introduction and basic framework

Analysis of detection array data involves solving two types of problems: predicting individual
probe intensities when a sample contains known targets at specified concentrations; and
inferring the targets present in an unknown sample, along with their abundances, from the
probe intensities observed on an array. The prediction problem must be addressed first, and
will be the subject of this chapter; the inference problem will be discussed in Chapter 3.

To solve the prediction problem, I developed physical models for the probe hybridization
and intensity measurement processes. I then fit the model parameters using data from
several experiments, in which samples containing genomic DNA at known concentrations
from organisms with known genome sequences were hybridized to arrays. In this chapter,
I’ll present the predictive modeling approach, and assess its performance in experiments with
known samples.

2.1.1 Physical models of probe-target hybridization

The models I wish to examine are based on an understanding of the hybridization process
by which probes bind to labeled targets, the scanning process that produces light emission
from the fluorescent labels, and the measurement process that yields an intensity value for
each feature on the array. I’ll begin by discussing hybridization models.

On a high-density microarray such as the LLMDA, each feature is a square 15 µm wide
or smaller, containing approximately 500,000 to 1,000,000 oligos. The oligos are distributed
randomly within features, and neighboring oligos are separated by an average distance com-
parable to their length, about 20 nm.

When a sample is hybridized to the array, some fraction θi of the oligos in feature i bind
to labeled target DNA. After a specified hybridization time, the array is washed to remove
unbound target. The fraction of bound oligos θi is assumed to depend on the target DNA
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concentration and some measure of the probe’s affinity for the targets in the sample. The
exact form of the dependence varies according to the physical model, but in general the bound
fraction increases with both concentration and affinity. In a simple two-state equilibrium
model of hybridization of a probe i to a single target species j with concentration cj, the
affinity is a constant Kij and the bound fraction is given by the Langmuir equation:

θi =
Kijcj

1 +Kijcj
(2.1)

In a typical affinity model, the affinity depends on the free energy ∆Gij of hybridization
between probe i and target sequence j, through the Boltzmann-Gibbs relation:

Kij = K0e
−∆Gij/RT (2.2)

where K0 is a constant with units of inverse concentration, T is the temperature and R
the universal gas constant. The free energy in turn depends on the complementarity of the
interacting portions of the probe and target sequences, and on the specific sequence of base
pairs formed by the aligned probe and target.

In actual microarray experiments, there are typically multiple probes capable of binding
a given target DNA, and multiple targets in the sample capable of binding to a given probe,
with varying affinities. For a given probe i that can bind m different targets, the bound
fraction at thermodynamic equilibrium is given by the full form of the Boltzmann-Gibbs
distribution:

θi =

∑m
j=1 cjKij

1 +
∑m

j=1 cjKij

(2.3)

=
K0

∑m
j=1 cj exp(−∆Gij/RT )

1 +K0

∑m
j=1 cj exp(−∆Gij/RT )

(2.4)

Various techniques have been developed to predict the free energies ∆Gij from the in-
teracting sequences. Most of these are variations on the nearest-neighbor (NN) model dis-
cussed in [SantaLucia 04]. In a nearest-neighbor model, the free energy of hybridization for
two aligned DNA sequences is parameterized as a sum of contributions from neighboring
nucleotide pairs in the alignment. These models will be discussed in further detail in sec-
tion 2.5. Most of these free energy parameters were derived experimentally from reactions in
which both the probe and target were in solution. Since in microarrays oligos are anchored
at one end to a planar substrate, the configurations available for target DNA molecules to
bind to probes are more restricted. As I’ll discuss later and as previous authors have found
[Held 03, Hooyberghs 09], the free energies predicted by solution-phase models appear to
be much more negative (by an order of magnitude) than those inferred from microarray
experiments.

However, we cannot automatically assume that the system of probes and targets reaches
thermodynamic equilibrium within typical hybridization times. For example, [Sartor 04]
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found that, in many array experiments, hybridization times up to 66 hours were required to
reach equilibrium, while the typical hybridization time in our laboratory is 17 hours. Thus,
an ideal hybridization model should take reaction kinetics into account. In a two-state kinetic
model, in which only target j is present in the sample, the bound fraction changes according
to the following differential equation [Burden 04]:

dθi(t)

dt
= kaijcj[1− θi(t)]− kdijθi(t) (2.5)

Here kaij and kdij are rate constants for the forward (adsorption) and backward (desorption)
reactions. With initial condition θi(0) = 0, this has the solution

θi(t) =
Kijcj

1 +Kijcj
(1− e−t/τij) (2.6)

where Kij = kaij/k
d
ij and τij = 1

kaijcj+k
d
ij

. By comparing with equation 2.1, we see that the

kinetic model converges to the Langmuir equilibrium model when t is much greater than
the characteristic relaxation time τij. We also see that the rate constants are related to
the equilibrium affinity constant Kij, and thus to each other through the hybridization free
energy. By equation 2.2,

kdij =
kaij
Kij

=
kaij
K0

e∆Gij/RT (2.7)

The major difficulty in applying kinetic models to microarray analysis is that there are
no methods available for predicting the rate constants from the DNA sequences of the reac-
tants, and experimental measurements have been made on only a few of the many possible
sequence pairs. Several experimental studies (reviewed in [Gibas 10]) suggest that, while
both the adsorption and desorption rate constants depend on the probe and target sequence
lengths, the salt concentration and the reaction temperature, only the desorption rate de-
pends strongly on the specific probe and target DNA sequences. Thus, according to these
studies it should be possible to approximately predict hybridization kinetics by treating the
kaij as being the same for probes with mismatches as for probes perfectly matching the target.
The desorption constant kdij is then computed from kaij and from the predicted free energy
using equation 2.7.

The model that emerges from this type of approach is one in which target DNA strands
diffuse among the probe oligos and bind randomly to them for varying lengths of time,
characterized by the corresponding kdij values. Under this model, probes with high affinity
to the target require more time than weakly bound probes to approach their equilibrium
intensities [Dai 02]. This conclusion is supported by experimental evidence from Dai et
al., and is expected because, for a probe with high affinity, a larger fraction of its oligos
must be bound before the rate of target dissociation kdijθi(t) matches the rate of association
cjk

a
ij[1− θi(t)].
More complex kinetic models have been proposed [Gibas 10], involving transitions be-

tween more than two states; for example, a target DNA strand may be folded into a hairpin,
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in which case it must unfold before it can bind to a probe oligo; or the target can bind partially
to a probe oligo and then dissociate rather than hybridizing completely. [Hooyberghs 10]
presents experimental hybridization data that cannot be explained under a two-state model,
and introduces a model with a third state, in which the target is bound to a probe oligo
over part of its length; the bound pair may then dissociate rather than hybridizing com-
pletely. Interestingly, the authors suggest that the nonequilibrium behavior of this model
can be approximated using an equilibrium Langmuir model, with an increased value for the
temperature. This may explain the discrepancy seen in [Held 03] and in our own data, to
be described below, in which the free energies appeared to be much lower than predicted by
the nearest neighbor model.

2.1.2 Scanning and measurement process effects

In a standard microarray scanner, a short-wavelength laser beam sweeps over the array
surface in a raster scan pattern and excites fluorescent molecules, which respond by emitting
photons of longer wavelengths. Some portion of the emitted photons are captured and
analyzed by a detector, as described below. Most of the light is emitted by “labeled” target
DNA molecules, which are produced by synthesizing copies of template DNA in the sample
and attaching them to fluorescent dye molecules (fluorophores), such as cyanine 3 (“Cy3”).
Each target DNA molecule is bound to a single fluorophore, which emits a certain number
of photons according to its quantum efficiency and the number of photons it absorbs from
the laser, which in turn depends on the laser power and the raster scan rate.

In addition, background fluorescence is emitted by the sample medium and the array
substrate, by unbound target DNA remaining after the washing step, and by the probes
themselves.

Thus, the intensity of light emitted by feature i, yi, can be modeled as a sum of back-
ground fluorescence yb, plus a signal proportional to the fraction of oligos θi in the feature
that are bound to labeled target DNA:

yi = yb + γθi (2.8)

where γ is a scale factor, assumed to be the same for all features on the array, but varying
between arrays and scans. On high-density oligonucleotide microarrays, the background
intensity can generally be treated as uniform over the surface of the array, although it may
vary between arrays; it also depends on the emission wavelength, an important consideration
for two-color array experiments.

The emitted photons are detected by a photomultiplier tube (PMT), producing an analog
electrical signal, which is then mapped to an unsigned 16-bit integer by an analog-to-digital
(A/D) converter. The signal produced by the PMT increases exponentially with the voltage
v applied across electrodes within the tube, according to the equation

S = S0v
αnd (2.9)
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where nd is the number of electrode stages (dynodes) in the PMT, and α is a constant
determined by the material of the dynodes, ranging between 0.7 and 0.8 [Hamamatsu 06].
For example, in a 10-stage PMT with α = 0.7, the increase in gain produced by raising the
voltage from 650 to 750 is (750/650)7, or about 2.73-fold. Experimenters typically adjust the
PMT gain so that the measured signals span the full dynamic range of the A/D converter,
while keeping the proportion of optically saturated pixels (discussed below) within acceptable
limits.

The PMT output is affected by various sources of noise, the greater part of which is
multiplicative; higher intensities are accompanied by proportionately larger measurement
errors. Generally these errors can be fit reasonably well to a log-normal distribution, so that
log-transforming the data removes the dependency of the variance on the intensity.

Usually, the scanner produces an image with finer resolution than the spacing between
features, so that each feature is represented by between 9 and 64 pixels. Image processing
software is then used to align the feature grid to the image and aggregate the individual
pixel intensities into a combined intensity for each feature. It is possible that one or more
pixels in a feature will have intensities that reach or exceed the maximum value that can
be processed by the A/D converter. When this happens, the A/D converter outputs its
maximum value (216−1 = 65, 535), and the pixel is said to be optically saturated. Note that,
because of the multiplicative noise component, only a subset of pixels in a feature may be
saturated, so that the feature intensity computed by averaging over all pixels may be reduced
by saturation effects even when it is well below 65,535. Since optical saturation leads to loss
of information, experimenters generally try to minimize the fraction of saturated pixels.

2.2 Characteristics of microbial detection array data

At LLNL, our group has designed and tested a wide range of microarrays based on the Nim-
bleGen platform, including several versions of the Lawrence Livermore Microbial Detection
Array (LLMDA) [Gardner 10], genome tiling arrays for bacterial SNP detection, genotyp-
ing arrays for known SNPs in bacteria and viruses, and functional gene arrays for assessing
virulence gene presence in bacterial genomes [Jaing 08]. In nearly all our experiments, the
sample consisted of genomic DNA from one or more species of microorganisms.

In order to assess the performance of our arrays, we ran a number of experiments with
each array design in which we hybridized a sample of an organism of known genome sequence
to the array. These experiments provided an excellent opportunity to develop and refine
models of the hybridization and measurement processes and to fit parameters to the models.
In the remainder of this chapter, I’ll discuss the results of some of these experiments.
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2.2.1 Probe types in the Lawrence Livermore Microbial
Detection Array

In order to develop useful predictive models for LLMDA probe intensities, it is helpful to
understand the strategy used to design probes, and the types of relationships that may result
between probe and target sequences. With this in mind, we can then begin to interpret the
observed distribution of intensities in a single-target experiment, for probes having each type
of relationship to the known target.

On the LLMDA, each microbial genome is targeted by 10 to 50 probes, of length between
50 and 65 nt. These probes are either perfect matches to some targeted sequence, or have
a small number of mismatches; in the latter case they are required to have a perfect match
subsequence of length 29 or greater, and an overall 85% or greater nucleotide identity to the
target [Gardner 10]. In addition, each target has a variable number of probes with weaker
similarity. Often these probes are perfect or near-perfect matches to some related target in
the same family. Due to the length of the probes used in the LLMDA, some of these weakly
similar probes are able to bind to the target, though with a lower affinity than the perfect
match probes.

For a given target, we can thus distinguish four classes of probes: target-specific probes
meeting the aforementioned design criteria; weakly similar probes, having BLAST hits to
the target but not meeting the criteria; nonspecific probes, lacking hits to the target; and
negative control probes with randomly generated sequences.

2.2.2 Probe intensity distributions

To characterize the performance of each of these probe types, we performed several experi-
ments in which known quantities of DNA from a single viral isolate of known sequence were
hybridized to the LLMDA. The log2 intensity distributions for probes belonging to each of
the four classes were then plotted, using the standard Gaussian kernel density estimator
implemented in the R density() function. Figure 2.1 shows a typical example of one of
these plots, for an array hybridized to DNA from a known respiratory syncytial virus (RSV)
isolate. Since the sample consists of genomic DNA from one virus strain, the complemen-
tary target sequences for each probe are present in roughly the same concentration. Thus,
the variability in intensities for different probes is due entirely to differences in probe-target
affinities.

Several typical characteristics of LLMDA data are notable in this plot. First, the distri-
bution of target-specific probe intensities is clustered near the maximum possible intensity
(216 − 1). This occurs because the LLMDA probes are designed with high affinity to their
targets, so that probe features tend to be chemically saturated whenever their targets are
present at sufficient concentration. In addition, the array was scanned at a high PMT gain
setting, so that many probes are affected by optical saturation.

Second, the probes with weak similarity to the target have intensities spanning a wide
range. The majority of them are at the low end of the scale, together with the nonspecific and
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Figure 2.1: Log intensity distributions for four classes of probes on an LLMDA array for
respiratory syncytial virus

control probes; however, the upper end of their distribution overlaps with that of the target
specific probes, indicating that weak similarity is sometimes enough to produce substantial
cross-hybridization.

Third, the distribution for nonspecific probes closely resembles that of the negative con-
trol probes. The resemblance is seen more clearly in Figure 2.2, in which I have plotted
corresponding quantiles of the nonspecific and control probe intensities against one another.
This validates my use of the control probe distribution as a reference standard in experiments
where the target is unknown, to assess the respective chances that a probe signal arose from
target-specific or from nonspecific hybridization.

Finally, the log intensity distributions of nonspecific and control probes have heavy tails
on the right side. In fact, by plotting the density estimates on a log scale, as shown in
Figure 2.3, the intensities are seen to follow power-law behavior in both tails, with log-normal
behavior close to the mode. This pattern is reminiscent of the double Pareto-lognormal
distribution [Reed 03], which has been used recently to describe a variety of data types such
as incomes, particle sizes and stock prices.
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Figure 2.2: Quantile-quantile plot of log intensities for nonspecific and negative control
probes on the RSV array

2.3 Adjusting intensities for measurement process

effects

As I detailed in section 2.1.2, the process of scanning an array to measure fluorescence
intensities produces measurements that are biased by the effects of scanner saturation, back-
ground fluorescence, and variations in PMT gain settings. In this section, I’ll describe the
procedures I developed to compensate for these biases.

2.3.1 Optical saturation correction

Pixels are optically saturated when their intensities exceed the maximum value that can be
registered by the scanner’s analog-to-digital converter. Generally, our technicians perform
scans at the highest PMT gain they can use without having the proportion of saturated pixels
exceed 0.05 percent across the whole array. Some scanners automatically iterate through
a number of gain settings to find the optimal level. Unfortunately, optical saturation at
any level introduces bias into the data, whereby average intensities of features containing
saturated pixels are under-estimated. The 5 µm Axon 4000B scanner used for our older array
experiments represents each feature with only 9 pixels; so even a small number of saturated
pixels has a strong effect on the aggregate feature intensity. Our current Roche MS-200
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Figure 2.3: Nonspecific probe log intensity distribution from RSV array, with density esti-
mates plotted on log scale to show power law behavior in tails

scanner, with 2 µm resolution, generates 49 pixels per feature and thus is less affected by
small numbers of saturated pixels. However, its autogain software often saturates a large
fraction of the pixels, so manual adjustment to a much lower setting is frequently required.

The effect of optical saturation on probe intensity measurements is illustrated by Fig-
ure 2.4, which shows log intensity distributions from two scans of the same array performed
at different PMT gain settings. The array was hybridized to a sample containing DNA from
6 different targets, denoted Tm, Ba, Bt, Ft, Av, and Vv, each at a different concentration.
Separate density curves are plotted for probes sensitive to each target. The saturation at
the higher gain setting is manifested by the compressed distribution of intensities for the
most concentrated targets (Ba and Bt). For both targets, most probes have log2 intensities
between 15 and 16 (the maximum), despite Bt being present at four times the concentration
of Ba. At the lower gain setting, the intensities are spread over a much wider range, reflecting
the varying affinities of the probes for their targets and the higher concentration of Bt. Thus,
optical saturation results in loss of information about probe affinities and concentrations of
sample components.

The best approach to deal with optical saturation is to avoid it, by making sure that
arrays are not scanned at too high a gain setting. If saturation is discovered early enough
(within a few days or weeks of hybridization) and the arrays are preserved, they can be
rescanned at lower gain without too much loss of signal. When this is not an option (e.g.,
when analyzing legacy data), we must compensate for saturation during data analysis.
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Figure 2.4: Intensity distributions for probes against six organisms present in different con-
centrations, in two scans of the same array, at 50% gain setting (left) and 20% gain (right).
Density curves are colored according to the organism targeted by the probes.

To adjust for the effects of optical saturation, I implemented a method to compute a
maximum likelihood estimate of the true mean feature intensity and its standard deviation.
For any feature, I model the individual true pixel intensities xi as following a normal dis-
tribution, Xi ∼ N(µ, σ2); by examining Q-Q/normal plots of pixel intensities for features
without saturated pixels, I found the normal to be a reasonable approximation of the true
distribution. Given the maximum scanner reading ymax = 216 − 1, the observed intensity
is yi = min(ymax, xi). The problem then reduces to estimating the parameters of a normal
distribution from a set of measurements that are right censored at a known threshold. A
more general version of this problem was solved over 60 years ago [Cohen 50]; the derivation
below is specialized to the particular case at hand.

Because individual pixel intensities are not available from the NimbleScan array process-
ing software, I wrote code to extract them from the TIFF image produced by the scanner,
after aligning a feature grid to the image using the NimbleScan “auto-align” command. The
intensities were used to generate a table listing, for each feature, the number of saturated
pixels nsat and the mean ȳ and standard deviation s of all pixel intensities.

As it turns out, these are sufficient statistics for the maximum likelihood estimator.
Suppose first that we are given the pixel intensities {yi, i = 1...n} for a feature. The likelihood
function given these data is:

L(µ, σ) ∝
∏

i:yi<ymax

1

σ
e−

(yi−µ)
2

2σ2

∏
i:yi=ymax

(
1− Φ(

ymax − µ
σ

)

)
(2.10)

so that the log likelihood is:

logL(µ, σ) = −(n− nsat) log σ −
∑

i:yi<ymax

(yi − µ)2

2σ2
+ nsat log

(
Φ(
µ− ymax

σ
)

)
(2.11)
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Here Φ(x) is the normal CDF, satisfying Φ(−x) = 1− Φ(x). We can transform this into an
expression involving the sufficient statistics instead of the pixel intensities:

logL(µ, σ) + (n− nsat) log σ − nsat log

(
Φ(
µ− ymax

σ
)

)
= −

∑
i:yi<ymax

(yi − µ)2

2σ2

= − 1

2σ2

∑
i:yi<ymax

(y2
i − 2µyi + µ2)

= − 1

2σ2

[
nȳ2 − nsaty2

max − 2µ(nȳ − nsatymax) + (n− nsat)µ2
]

= − 1

2σ2

[
n(ȳ2 − ȳ2 + ȳ2 − 2µȳ + µ2)− nsat(y2

max − 2µymax + µ2)
]

= − 1

2σ2

[
n(ȳ2 − ȳ2) + n(ȳ − µ)2 − nsat(µ− ymax)2

]
= − 1

2σ2

[
(n− 1)s2 + n(ȳ − µ)2 − nsat(µ− ymax)2

]
so that

logL(µ, σ) = − 1

2σ2

[
(n− 1)s2 + n(ȳ − µ)2 − nsat(µ− ymax)2

]
− (n− nsat) log σ + nsat log

(
Φ(
µ− ymax

σ
)

)

To adjust feature intensities for optical saturation, I used numerical optimization to maximize
the log likelihood with respect to µ and σ; the adjusted intensity is then µ̂MLE. Note that,
when nsat = 0, logL(µ, σ) reduces to the standard log likelihood for a normal distribution,
with maximum likelihood estimates µ̂ = ȳ and σ̂ = s; i.e. no adjustment is required in this
case.

One weakness of the maximum likelihood approach is that, when all pixels in a feature
are saturated, the MLE grows to infinity and no correction can be performed. An alternative
method would involve defining a prior distribution for the feature intensities and computing
a maximum a posteriori estimate, given the measured pixel intensities and the number of
saturated pixels. Since completely saturated features occur rarely in our data, I have not
yet pursued this Bayesian approach; instead, I simply exclude these features from further
analysis.

2.3.2 Background correction

In order to apply the linear model for probe intensities described by equation 2.8, we need
a way to estimate the background signal yb. The background is due to several components:
autofluorescence of the array substrate, DNA probes, and sample medium; streaks and
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bubbles; unhybridized target DNA left over from incomplete washing; the dark current
of the photomultiplier tube; bleedover from adjacent features; and offsets added by the
scanner circuitry. My definition of background does not include signal components due
to “nonspecific hybridization”, since nonspecific hybridization is simply hybridization of
probe oligos to target DNA with little sequence similarity, which is already described by the
hybridization model.

Background estimates can either be global for an entire array, localized to subregions, or
targeted to individual features. While more localized estimates can capture nonuniformities
in array hybridization or washing, they are also more liable to add noise to the corrected
intensity estimate. For my analyses, I have corrected intensities using a global background
estimate for each array.

The first step of my background correction procedure is to identify “empty cells” on the
array, i.e. cells in between features, that don’t contain any oligos for target DNA to bind
to. On typical NimbleGen arrays, the features are arranged in a checkerboard pattern, with
every other cell empty, as seen in Figure 2.5. The figure shows a close-up of of one of our
array scans, centered on a cluster of bright fiducial spots (used for aligning the feature grid),
in which the checkerboard pattern is apparent. Several dimmer features are also visible,
while features designed against targets not present in the sample are dark. Empty cells are
identified by examining the array design file, which gives the positions of features in the grid,
and choosing the adjacent positions on each row.

Secondly, I exclude from the list of empty cells any which are adjacent to a feature with
mean intensity over a fixed threshold (10,000 units, in my current implementation). I do
this in order to eliminate from my background estimate contributions from bleedover, which
can be seen in Figure 2.5 as the grey pixels extending leftward from the top and bottom
of the upper left fiducial, and rightward from its center. Bled-over pixels are often seen
adjacent to very bright features, and are caused by the slow decay of fluorescence after the
scanning laser excites a region that is saturated with fluorophores. When this happens, the
PMT continues to pick up photons from the feature even after the laser has moved on to the
adjacent empty cell. Bled-over pixels appear on alternate sides of a bright feature, because
the laser alternates directions as it scans successive rows of pixels.

Finally, I use the intensities measured in empty cells to estimate the background distribu-
tion for the array, and correct the feature intensities to remove the background contribution.
To avoid negative signal estimates (which are physically meaningless, and prevent us from
log-transforming the data), we need to do more than simply subtract the average background
intensity from the observed feature intensity. Instead, I adapted the “normexp” background
correction algorithm [Ritchie 07, Silver 09], which was in turn adapted from the first step
of the RMA algorithm [Irizarry 03, Bolstad 04]. In this algorithm, the observed intensity
is modeled as the sum of an exponentially distributed signal component and a normally
distributed background component, truncated at zero: Y = S + B, with S ∼ Exp(λ) and
B = max(0, X), where X ∼ N(µ, σ2). The corrected signal is estimated as the conditional
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Figure 2.5: Section of an array image from NimbleScan, showing scan bleedover and checker-
board arrangement of features

expectation of S given the observed intensity y:

E [S|Y = y] = a+ σ
φ( a

σ
)− φ(y−a

σ
)

Φ( a
σ
) + Φ(y−a

σ
)− 1

(2.12)

where a = y − µ − λσ2, and φ() and Φ() are respectively the standard normal density and
CDF functions.

To correct microarray data with the normexp method, one must estimate three array-
specific parameters: the µ and σ parameters for the normal component, and the rate pa-
rameter λ for the exponential component. The standard version of the normexp algorithm,
implemented in the R limma package, subtracts the local background intensity from the
foreground intensity measured for each feature, and fits the three parameters to the differ-
ence using a maximum likelihood procedure. Assuming that the empty cell intensities more
accurately reflect the true background contribution, I instead estimated µ̂ and σ̂ directly
from the mean and standard deviation of the empty cell intensities. Following the example
of the RMA algorithm, I then fitted the rate parameter λ to the n> feature intensities that
exceed the mean background estimate, using maximum likelihood:

1

λ̂
=

1

n>

∑
i:yi>µ̂

(yi − µ̂) (2.13)
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One problem with estimating the parameters of the background distribution using the
empty cell intensities is that they don’t reflect the contribution from autofluorescence of the
DNA probes. I estimated the DNA autofluorescence component by examining an array that
our technician scanned at a high gain setting without hybridizing a sample or performing
any other processing on it beforehand. When I compared distributions of intensities, I found
that cells containing DNA probes had intensities on average about 10% higher than empty
cells.

To incorporate the DNA autofluorescence effect into the background correction algorithm,
I used the negative control probe intensities rather than empty cell intensities to estimate
the parameters of the normal-exponential distribution. Since the negative control intensities
include both background effects and nonspecific hybridization effects, I used the maximum
likelihood method implemented in the limma package to estimate the three parameters µ, σ
and λ simultaneously, and then estimated the true signal for the target probes according
to equation 2.12. This method performed well, and has the advantage of being easier to
implement, since it does not require extracting the empty cell intensities from the TIFF
image file.

2.3.3 Normalization for scanner PMT gain

Gene expression microarray data is typically normalized after background correction, to
remove systematic variations of probe intensities between different arrays used in an exper-
iment, and to give a similar intensity distribution across all arrays. Normalization based on
statistical properties of the data, such as the quantile normalization method commonly used
with RMA [Irizarry 03], is usually not appropriate for detection arrays, because there is no
reason to expect different samples to produce the same numbers of bright probes. Therefore,
we would prefer a normalization method based on a model of the scanning process.

The largest source of systematic variation in our data is the PMT gain setting used during
scanning. As mentioned previously, our technicians typically adjust the PMT voltage to the
highest value that doesn’t produce an excess of saturated pixels, so that the output signal
covers the full dynamic range of the A/D converter. It has been observed [Bengtsson 04] that
the intensity values reported by the scanner are the sum of two components: an amplified
input signal, whose gain increases with the PMT voltage; and an offset that depends on the
scanned emission wavelength, but is independent of the PMT gain and is largely constant for
a given scanner. Note that, since the offset does not increase with PMT gain, it is distinct
from the signal produced by background fluorescence and other optical artifacts.

To estimate the gain and offset effects for the older Axon 4000B scanner used in our lab,
I followed a procedure suggested by H. Bengtsson (personal communication). (A similar
process could be applied to the Roche NimbleGen MS-200 scanner, for which the PMT gain
setting is reported as a percentage of some arbitrary value rather than a voltage.) I used part
of a short-hybridization dataset, to be described in more detail in section 2.4.1, generated
from samples containing different concentrations of Enterococcus faecalis genomic DNA. The
samples were hybridized for either 5 or 60 minutes to arrays containing probes for E. faecalis
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Figure 2.6: Scatter plot of pairwise comparisons of probe intensities from scans of the same
array at three different PMT settings

and 3 other bacteria. Each of the 16 arrays was scanned three times, at PMT voltages 650,
700 and 750. One array was removed from the dataset because one of its scanned images
missed a corner of the array, leaving 45 scans of 15 arrays in the dataset.

Since the Cy3 dye used with these arrays is not appreciably photobleached by the first
and second scans under normal operating conditions, we can assume that the light signal xi
entering the PMT from feature i is the same for each scan. I fit the following affine model
to the measured signals for the scan at PMT voltage v ∈ {650, 700, 750} :

yiv = a+ bvxi + εiv (2.14)

Here a is the offset, bv is a slope parameter representing the effect of the PMT gain, and εiv
is a noise term. To make the model parameters identifiable, I fixed b650 = 1, so that b700 and
b750 are ratios of the gain at voltage 700 or 750 to the gain at 650 V.

I fit the remaining parameters to the data with iteratively reweighted principal compo-
nent analysis (IWPCA), using the fitIWPCA() function from the R package aroma.light

[Bengtsson 08]. Only features with no optically saturated pixels in any scan were used to fit
the parameters.

Figure 2.6 shows overlaid pairwise scatter plots of the probe intensities from the three
scans of an example array, together with the fitted lines transformed to (yi, yj) coordinates
for each pair of scans (i, j). The parameters were fit separately for each array, and are shown
in Table 2.1. We see that the gain ratio estimates are very close for all 15 arrays. The
slope and offset values that deviate most from the medians are found for the arrays with
the smallest DNA concentrations and hybridization times, which have narrower ranges of
intensity values and thus provide less reliable fits.

From equation 2.9 with b650 = 1, we obtain the following expression for the PMT gain
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DNA (µg) Hyb time (min) Replicate a b700 b750

1 5 1 146.7 1.79 3.24
1 60 1 81.8 1.67 2.74
1 60 2 60.0 1.69 2.76
2 5 1 103.9 1.74 2.99
2 5 2 86.2 1.71 2.91
2 60 1 73.1 1.70 2.81
2 60 2 37.7 1.70 2.75
5 5 1 79.0 1.74 2.93
5 5 2 51.0 1.72 2.83
5 60 1 61.0 1.68 2.77
5 60 2 50.4 1.69 2.82
10 5 1 63.6 1.71 2.87
10 5 2 58.9 1.70 2.81
10 60 1 44.9 1.66 2.68
10 60 2 44.5 1.71 2.77

Median 61.0 1.70 2.81
MAD 20.9 0.02 0.08

Table 2.1: Fitted scanner offset and PMT scaling values for 15 arrays

ratio:
bv =

( v

650

)αnd
(2.15)

Inverting this using the median slope estimates for b700 and b750 gives similar values for the
exponent αnd, 7.16 and 7.22 respectively. Therefore, I conclude that the affine model given
by equation 2.14, with bv given by equation 2.15, can be used to correct probe intensities for
different PMT voltage settings, once the parameters a and αnd have been determined for a
particular scanner.

In subsequent analyses of data sets in which arrays are scanned with different PMT gains,
I normalized the probe intensities to a common PMT setting of 650 V, using the median
fitted values for the offset a and the gain ratio exponent η = αnd, by combining equations
2.14 and 2.15:

y(norm) = a+
( v

650

)η
(y − a) (2.16)

2.4 Kinetics of probe hybridization

I now wish to address the concerns raised in section 2.1.1 about whether equilibrium ther-
modynamic models are adequate to describe probe-target hybridization, given the typical
array incubation times used in our laboratory. These issues are related to other questions we
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sought to answer while studying the LLMDA’s potential as a rapid diagnostic tool: what is
the minimal hybridization time that can still yield accurate results; and can we compensate
for short reaction times by increasing the sample concentration? To explore these issues in
detail, I decided to fit the rate parameters kai and kdi for a representative set of probes and
determine their characteristic equilibrium times, given typical DNA concentrations in the
hybridization reaction.

2.4.1 Hybridization kinetics dataset description

The dataset used to fit the rate parameters contained one set of scans from the short-
hybridization E. faecalis experiment mentioned in section 2.3.3, together with data from 3
arrays run earlier with longer hybridization times (4, 8, and 16 hours). Probe intensities
from all arrays were corrected for optical saturation and background-adjusted, using the
procedures discussed earlier. Because the long- and short-hybridization arrays were scanned
at different PMT settings (600 and 650 V, respectively), the long-hybridization probe in-
tensities were adjusted using the affine normalization technique described in section 2.3.3.
Each probe sequence was tiled in 5 replicate features; however, I excluded intensities from
features in which all pixels were saturated on the array. The resulting dataset contained
median corrected intensities for n = 491 probes with sequences taken from the E. faecalis
genome. The experimental covariates for this dataset are shown in Table 2.2.

DNA quantity (ug) Hyb time (min) PMT Replicates
1 5 650 1
1 60 650 2
2 5 650 2
2 60 650 2
5 5 650 2
5 60 650 2

10 5 650 2
10 60 650 2
4 240 600 1
4 480 600 1
4 960 600 1
4 1200 600 1

Table 2.2: Covariates for E. faecalis hybridization experiments

2.4.2 Fitting the rate parameters

The intensity data from this series of experiments was used to fit the parameters of the two-
state kinetic model described by equations 2.6 and 2.8. Let yijr denote the corrected intensity
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of replicate feature r for probe sequence i on array j. Given these data and the covariates
for the arrays (the DNA concentration cj and hybridization time tj), the 2n+ 1 parameters
to be estimated are the intensity scale factor γ (from equation 2.8) and the probe-specific
adsorption and desorption rate constants kai and kdi , for i = 1, ...n. Since the target sequence
is the same for all arrays in this dataset, the rate constants are also the same, and thus don’t
require an array index.

I fit the parameters by minimizing the L2 loss:

W =
∑
i,j,r

(log yijr − log(γθij))
2 (2.17)

where

θij =
kai cj

kai cj + kdi
(1− e−tj/τij) (2.18)

and τij = 1
kai cj+k

d
i

is the characteristic time for relaxation to equilibrium. To avoid fitting zero

or negative values for the parameters, which would be physically meaningless, I minimized
W with respect to the log-transformed parameters λai = log kai , λ

d
i = log kdi , and φ = log γ.

Since φ is a linear parameter, I performed minimization in two stages. First, I estimated
the nonlinear parameters λai and λdi , i = 1, ...n using the R nonlinear least squares function
nls(), with φ fixed. Secondly, I estimated φ by solving ∂W

∂φ
= 0 for φ, using the estimates of

λai and λdi to compute θ̂ij. If N is the total number of intensity data points, the estimate is:

φ̂ =
1

N

∑
i,j,r

(
log yijr − log(θ̂ij)

)
(2.19)

I tried a number of heuristics for choosing the initial λai and λdi values passed to the
nls() function. For about half of the probes, nls() failed to converge within 1000 iterations,
regardless of the initial values chosen. To find out what characteristics of the data make it
so difficult to minimize the loss function for certain probes, I decided to examine the loss
function surface for a set of simulated probe intensities generated from known rate parameter
values. By characterizing the topography of the loss function, I expected also to find a better
method for selecting initial values.

2.4.3 Loss functions for simulated probes

In order to simulate intensity values as realistically as possible, I used as inputs the same
combinations of concentration and hybridization time covariates as were found in the real
data. I generated input rate constants kai and kdi as random values from log-uniform distri-
butions, and fixed the scale factor γ at 60, 000. I fed these inputs into equations 2.18 and
2.8 to produce raw intensity values. I noted that the average sample variance of log intensi-
ties for replicate probes on the same arrays was about 0.04; therefore, to simulate random
measurement errors, I added noise distributed as N(0, 0.04) to the raw log intensities.
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With the simulated intensities as input, I then plotted contours of the loss function W
given by equation 2.17 for each simulated probe over a range of kai and kdi parameters. All
probes from both real and simulated data had loss function surfaces with similar shapes;
examples for two simulated probes are shown in Figure 2.7. The surface is characterized by
a deep valley, which runs parallel to the kdi axis for small values of kdi , and then bends to
follow a path with unit slope for larger kdi values. The bottom of the valley is nearly flat in
regions far from the bend, and then dips to its minimum value near the bend. The bend
occurs near the true (input) values of kai and kdi , which are shown as green triangles in the
figure.

To understand the topography of the loss function surface, we need to look at the limiting
behavior of equation 2.18, which can be rewritten:

θij = kai cjτij(1− e−tj/τij) (2.20)

with τij = 1/(kai cj + kdi ). When kdi << kai cj for all concentrations cj represented in the
dataset, the relaxation time τij ≈ 1/(kai cj). As kdi → 0, the bound fraction on array

j converges to a maximum value θ
(max)
ij = 1 − e−k

a
i cjtj , which depends on kai only. Thus,

when kdi << kai cj for all arrays, reducing kdi further has little effect on the predicted probe
intensities, and thus, on the value of the loss function.

At the opposite extreme, where kdi >> kai cj for all arrays, the relaxation time is dominated

by the effect of the desorption rate, i.e. τij ≈ 1/kdi . In this limit, θij ≈ kai cj
kdi

(1 − e−kdi tj). In

the further limit where kdi >> 1/tj for all arrays, the exponential vanishes and the bound
fraction further simplifies to θij ≈ kai cj/k

d
i , so that

log θij ≈ log kai + log cj − log kdi (2.21)

Thus, along a line of unit slope for which log kai − log kdi is constant, log θij and array j’s
contribution to the loss function are also constant. This behavior produces the segment of
the valley having unit slope.

The characteristic shape of the loss function surface suggests a better method for selecting
initial parameter values for the nonlinear least squares optimization procedure. The idea is
to find initial kai and kdi values near the bend in the valley. I first initialized the scale factor
γ to 1.25ymax, where ymax was the maximum intensity observed across all arrays. Next, I
chose an initial value for kai , by fixing kdi = 0 and minimizing W with respect to kai . This
kai value corresponds to the bottom of the part of the valley that runs parallel to the kdi
axis. Finally, I choose a value for kdi that was consistent with the intensity at the longest
hybridization time (tmax = 16 hours), given the initial kai value and the assumption that
most probes are near their equilibrium intensity by this time. Solving equations 2.18 and
2.8 for kdi gives k

d(init)
i = cmk

a(init)
i (γ/yim − 1), where m is the index of the array with the

longest hybridization time.
Using these initial values, I fitted γ, kai and kdi values to the simulated data using nls(),

and plotted the input and fitted rate constants against one another. The fitted value for
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Figure 2.7: Loss W for simulated data for two probes having same kai and different kdi values,
as function of kai and kdi .
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γ was 80,216, somewhat higher than the input value 60,000. The results for the other
parameters are shown in Figure 2.8. In each of the panels, both input and fitted variables
are plotted on log scales, and an identity line is drawn to facilitate comparisons. In the upper
left panel, we see that the fitting procedure does an excellent job of recovering the input kai
values, except that they are scaled downward by a factor that reflects the overestimation of
γ. At upper right, we see that the fitted values of kdi are close to the originals when kdi is
large, but deviate widely for small values; in particular, many kdi values are underestimated
by one or two orders of magnitude. These deviations result in incorrect estimates for the
affinity constants Kij and relaxation times τij derived from the rate parameters, as shown
in the bottom two panels of figure 2.8.

To clarify why nls() fails to converge for small values of the true kdi , I plotted the loss
W as a function of kdi , along a line passing through the fitted value of kai for two simulated
probes, as shown in Figure 2.9. Data for the first probe was generated using a large kdi value
(10−1.5), while the second probe had a small kdi (10−3.5). Since the minimum value of the
loss for the second probe is not much different from its limit as kdi → 0, iterative procedures
for finding the minimum tend to become trapped at small kdi values, where the gradient of
the loss function is nearly zero. This is the proximate cause for our difficulty in fitting kdi
for the second probe.

To see why the loss function behaves differently for probes 1 and 2, I plotted the contribu-
tions to the loss from individual arrays for the two simulated probes. For both probes, much
of the loss contribution at the true (input) parameter values comes from the arrays with the
longest hybridization times. Examples for the array with a 16 hour hybridization are shown
in Figure 2.10. The lines drawn over the contour plots show the boundaries between various
regions of interest. The most important difference between simulated probes 1 and 2 is in
the relaxation times for the input kai and kdi values, at the concentrations used in the dataset.
For probe 1 these are all in the neighborhood of 31 minutes, so that the simulated dataset
includes hybridization times tj >> τij as well as times below τij. For probe 2, τij ranges
from 1581 to 2874 minutes for the concentrations seen in the dataset. Since the longest
hybridization time represented in the data is 960 minutes, most of the data points represent
values far from equilibrium, with tj << τij.

2.4.4 Penalized least squares approach to parameter fitting

To deal with the problems in fitting the rate parameters of the hybridization kinetics model,
I used a simple penalized least squares procedure (abbreviated “pLS”, not to be confused
with partial least squares, or PLS).

The first step in the procedure is to attempt to fit the log transformed parameters φ =
log γ, λai = log kai and λdi = log kdi using nls() , as before. When applied to the real E. faecalis
dataset, nls() converged for 351 of the 491 probes. I then used the fitted λai and λdi values
for these probes to construct a bivariate normal “prior” for a penalized likelihood fit. I
estimated the mean vector µ and covariance matrix Σ using the CovSest() function in the
R package rrcov, which has various functions for robust covariance estimation.
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Figure 2.10: Loss function contributions from one array for two simulated probes, as contours
for combinations of kai and kdi , and as function of kdi for the input kai .

With this “prior” in hand, the penalized likelihood is

L(γ, λ, σ,Σ) ∝
n∏
i=1

exp

[
− 1

2σ2
i

∑
j,r

(log yijr − log γ − log θij)
2 − 1

2
(λi − µ)TΣ−1(λi − µ)

]
(2.22)

where λi = (λai , λ
d
i )
T . I used one of two methods to estimate the per-probe variance σ2

i in
the above equation. For probes where nls() converged successfully, I estimated σ2

i from the
residual sum of squares of the nls() fit:

σ̂2
i =

1

ni − 2

∑
j,r

(log yijr − log γ − log θ(k̂ai , k̂
d
i , cj, tj))

2 (2.23)

When nls() failed to converge, I used the median of the σ̂2
i estimates over the probes where
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it did converge.
Since there are no cross terms in the penalized log likelihood, we can maximize it by

separately minimizing the term for each probe. I did so using the conjugate gradient method
implemented in the R optim() function. As before, I set γ initially to the value fitted
by nls(); after fitting the λai and λdi parameters, I computed a new maximum likelihood
estimate for γ with the other parameters fixed.

The results from fitting the penalized model against real data are shown in Figure 2.11.
The penalized fit values are plotted in different colors, depending on whether the correspond-
ing nls() fit converged. For comparison, the original parameters fit by nls() are shown as
green squares. The penalized method successfully fit rate parameters for all 491 probes. Not
surprisingly, penalization shrinks many of the fitted values toward their mean.

We see that the log kai and log kdi values are highly correlated (r = 0.87 for the values fit
by nls() , and 0.93 for the penalized fit). At first blush this might suggest that the kai and
kdi parameters aren’t separately identifiable. However, this distribution is consistent with a
limited range of values for the affinity constant Ki = kai /k

d
i , as we’ll see later.

To test the performance of the pLS fitting procedure against data from known parameters,
I generated simulated intensity data for a set of 500 probes, with kai and kdi values sampled
from a bivariate normal distribution. The parameters of the distribution were the same
µa, µd, σa, σd and ρ values obtained from the robust covariance fit to the kai and kdi values
from nls() , except that I doubled σa and σd to get a broader range of rate constants. I
generated intensities according to the model of Equation 2.18, using the same combinations
of concentration and time covariates as in the real data, and the same number of replicates for
each probe. The noise values εijr were sampled from a N(0, σ2) distribution with σ = 0.53,
which was the average residual standard error from the nls() fits to the real data.

I followed the same procedure to analyze the simulated data as I had with the real
data. In this case, while nls() converged for only 241 of the 500 simulated probes, the pLS
method converged for all of them. Figures 2.12 and 2.13 show the fitted kai and kdi values
plotted against the input values used to generate the data. As before, blue and red points
indicate probes for which nls() converged or did not. When the change in the fitted value
exceeds 0.1, the value fit by nls() is marked with a green square, and a cyan arrow shows
its difference from the value fit by pLS. A red dashed line indicates the identity mapping.

We see that pLS does an excellent job of recovering the original log kai values, even when
nls() fails to converge. When nls() does converge, pLS produces nearly the same value
as the nls() fit. As we saw before, the kdi parameters are harder to fit with our dataset,
because the experiment design is unbalanced. Nevertheless, pLS fits kdi values reasonably
close to the inputs for all the probes where nls() failed, and (in most cases) improves the
fit for the ones for which nls() converged.
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Figure 2.12: Penalized fit values for log kai vs simulated inputs
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Figure 2.13: Penalized fit values for log kdi vs simulated inputs
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2.4.5 Implications of kinetics results for use of equilibrium
models

The original goal motivating my study of kinetics was to determine whether the relaxation
times for typical probe-target hybridization reactions are short enough to justify the use of
equilibrium models of hybridization. From Equation 2.18, we can see that, during array
hybridization, a probe’s intensity increases over time according to a factor φij(t) = (1 −
exp(−t/τij)), which approaches 1 at equilibrium. Here τij = 1/(kai cj + kdi ) is a characteristic
time, which decreases with increasing DNA concentration, representing the time at which
the intensity reaches (1−e−1) = 63% of its equilibrium level. Figure 2.14 shows two different
ways of looking at the distribution of τij values, for a typical experiment in which 4 µg of
DNA is hybridized to the array. The left panel shows a density curve, based on the τij values
computed from the fitted kai and kdi parameters. The vertical dashed lines on this plot mark
the hybridization times used for this dataset. The median τij is about 5.4 hours, and nearly
all probes (485/491) have characteristic times below the 17 hour hybridization time typically
used in our lab.

The right hand panel of Figure 2.14 shows density curves for the predicted equilibrium
fraction φij(t), with 4 µg DNA, at each hybridization time. Although most probes are well
below their equilibrium intensities at 5 minutes or 1 hour, after 16 hours over 80% of probes
are above 80% of their equilibrium levels, and no probes are below half their equilibrium
intensities. Therefore, predictions based on equilibrium models should result in acceptable
results for most probes, for the hybridization times typically used in our lab.

I calculated equilibrium affinity constants Ki = kai /k
d
i from the rate constants estimated

with pLS, and plotted their distribution, as shown in Figure 2.15. We see that the range
of affinities is quite narrow, spanning a factor of 3 between the lowest and highest values
(excepting two outliers). This explains the apparent correlation between the estimates of
kai and kdi that I noted in Figure 2.11. The narrow range of affinities is not surprising for
this dataset, because all the probes examined here were designed to be perfect matches to
parts of the target genome, with lengths varied in order to achieve roughly equal melting
temperatures. In the next section, I will estimate affinities directly for a more diverse set of
probe/target combinations.

2.5 Equilibrium models of microarray hybridization

As mentioned earlier, affinity constants for pairs of DNA strands hybridizing in solution de-
pend on free energies, which can be predicted using programs such as UNAFold [Markham 08].
These programs are based on frameworks called “nearest-neighbor” (NN) models. NN mod-
els are based on experiments showing that the stability of the bond between nucleotides
depends not only on the pair of nucleotides forming the bond, but also on the adjacent pairs
of nucleotides (the nearest neighbors). The dependency is due to stacking interactions be-
tween the neighboring base pairs. In this section, I will discuss the construction of NN models
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Figure 2.14: Left: Distribution of τij computed from rate constants fit by pLS, assuming 4
µg DNA in sample. Right: Distributions of equilibrium intensity fractions with 4 µg DNA,
at each time point.

and the problems encountered in applying them to microarrays. I will also describe how I
used data sets generated in our laboratory to fit the parameters for a position-dependent
NN model, that can predict free energies for microarray probes and targets.

2.5.1 Parameterization of nearest-neighbor free energies

Using data from an extensive set of DNA melting experiments, SantaLucia et al. found that
the free energy associated with a DNA duplex could be parameterized as a sum of contribu-
tions from its component dimer pairs [SantaLucia 04]. For example, the hybridization free
energy of the trimer pair GGC/CCG contains contributions from the dimer pairs GG/CC
(-1.8 kcal/mol) and GC/CG (-2.2 kcal/mol), for a total of -4.0 kcal/mol. Note that the pair
GC/CG contributes more than the pair GG/CC, even though they involve the same number
of G-C bonds. Thus, estimates based on dimer pair contributions are much more accurate
than values based solely on the GC content.

Programs like UNAFold perform a typical NN model free energy calculation by extracting
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Figure 2.15: Distribution of affinities fit by penalized least squares

dimer pairs di from each position of the aligned probe and target sequences. For the dimer
pairs in which at least one of the two pairs of aligned bases is a perfect match, it adds the
corresponding free energy contributions gd tabulated in [SantaLucia 04]. Next, the program
identifies stretches of two or more mismatched bases in the alignment, which generate internal
loops in the hybridized duplex. For each of these, the software adds a corresponding ∆G
penalty term, also tabulated in [SantaLucia 04], according to the length of the loop (defined
as one plus the number of adjacent mismatched bases). Finally, it adds a constant initiation
term for each duplex.

Figure 2.16 shows the terms that are summed to calculate the free energy for an example
probe-target duplex. It also shows the reverse complement of the target sequence (labeled
“(RC)”) to facilitate comparison with the probe sequence. The bases with mismatches and
the corresponding dimer pair terms are highlighted in a different color.

To summarize, the parameters of a nearest-neighbor model are the free energy contri-
butions for each unique dimer pair having one or zero mismatched bases; the loop penalty
terms for each length of internal loop to be considered; and the initial offset parameter. The
contributions for a dimer pair and its reverse complement are assumed to be identical. As a
result, there are 10 unique gd parameters for perfect match dimer pairs, and 48 gd parameters
for dimer pairs with single mismatches. If we allow for internal loops with lengths between 3
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Probe: 5’-GTGATTGATACGTTTG-3’ 

Target:3’-CACTAGCTTCGGAAAC-5’ 

(RC):  GTGATCGTAGCGTTTG 

(initiation) 1.97

GT GT PM -1.45

TG TG PM -1.46

GA GA PM -1.31

AT AT PM -0.87

TT TC MM 0.34

TG CG MM -0.47

GA GA PM -1.31

AT AA MM 0.69

TA AG Internal loop 3.20

AC GC MM 0.47

CG CC MM -0.11

GT CT MM -0.13

TT TT PM -0.99

Total: -1.45 kcal/mol

probe dimer target 

dimer

match type delta-delta 

G

Figure 2.16: Example nearest-neighbor model free energy calculation for a short probe-target
DNA duplex

and 10, and include the initial offset term, this basic “position-independent nearest-neighbor”
(PINN) model has 67 parameters in all.

The UNAFold program uses this PINN model, together with the tabulated gd parameters,
to compute a first-order estimate of the free energy for a probe-target DNA duplex. It then
refines its estimate by determining the most stable secondary structures of the duplex and
accounting for their effects on the free energy. This refinement is usually not required in the
context of microarrays, because the secondary structure is constrained by the anchoring of
the probe oligo to the array surface and steric hindrance by neighboring oligos.

2.5.2 Discrepancies between solution-phase and microarray free
energies

As I indicated in section 2.1.1, solution-phase free energy predictions are about a factor of
10 more negative than those inferred from microarray experiments. Part of the discrepancy
can be resolved by fitting new values for the dimer pair free energy contributions gd, to
account for the differences in configurational entropy and diffusion kinetics that are unique
to microarray probes. This will be the topic of section 2.5.6 below.

Another source of variation is a relative lack of interaction between the target DNA and
the tethered 3’ end of the probe oligo; more generally, the contribution of a dimer pair
to the probe affinity depends on its position within the probe. We explored this effect by
designing an array with perfect match (PM) probes for four bacterial genomes. For selected
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Figure 2.17: Effect of single mismatches on probe intensities as a function of position

probes, a set of mismatch (MM) probes was also included, with mismatched bases placed
at different positions along the length of the probe. After hybridizing samples from each of
the four target bacteria to the array, I compared intensities between each MM probe and its
corresponding PM probe. The results of the comparison are plotted in Figure 2.17. It shows
that mismatches have the strongest effect on probe intensity when they occur 15 bases, or
one fourth of the way, from the free end of the probe, and have little or no effect when they
occur near the tethered end of the probe.

These data suggest that, to construct a predictive model for free energies of microarray
probes, we should assign different weights to the contributions from dimer pairs according to
their position along the length of the probe. This idea was originally suggested in [Zhang 03],
and the corresponding model is called a position-dependent nearest-neighbor (PDNN) model.
Methods for fitting the position effect in a PDNN model are described in section 2.5.7.

2.5.3 Tiling array dataset for fitting free energy parameters

To fit parameters for the free energy contributions and position effects, I used a dataset which
was part of an experiment to identify single-nucleotide polymorphisms (SNPs) associated
with antibiotic resistance in bacteria. The data came from two sets of tiling arrays, in which
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Figure 2.18: Layout of tiling array probes relative to target genomes

probes were selected as 32-to-40 base pair segments of a reference genome sequence; either
Francisella tularensis strain LVS, or Bacillus anthracis strain Sterne. The segments were
chosen so that they overlapped by about 1/7 of their length, as shown in Figure 2.18; as a
result, each position in the reference genome was covered by between 3 and 7 probes.

To calibrate the arrays, we performed two-color hybridizations in which we labeled the
reference strain with a red or green fluorophore and another “mutant” strain of the same
species with a green or red fluorophore. We used mutant strains for which we had high-
quality genome sequences, so that we knew the positions of hundreds or thousands of isolated
single-base mutations relative to the reference sequence. Since each mutation position was
overlapped by multiple probes, I was able to separately assess the effects of the bases involved
in the mutation and the effect of the position within the probe. The five calibration arrays
yielded a total of 177,816 pairs of intensities from probes overlapping known mutations.

2.5.4 The three-state Langmuir model

To fit the free energy parameters to a two-color microarray dataset, we must use a version
of the Langmuir model that can handle the two different sets of labeled targets. Under this
model, a probe oligo can be in one of three states: unbound, bound to one target, or bound
to the other target.

Recall that, for probe i on array a, I model the probe intensity for channel (dye) j as

yiaj = baj + γajθiaj

where baj is the background, γaj is an array- and channel-specific scale factor, and θiaj is the
fraction of oligos in the probe bound to a target labeled with dye j. For the sake of brevity,
I’ll use the index j or the combined index a, j henceforth to indicate the target labeled with
dye j on array a; the meaning should be clear from the context. The bound fraction θiaj is
given by the modified Langmuir equation,

θiaj =
yiaj − baj

γaj
=

Kijcaj
1 +Ki1ca1 +Ki2ca2

(2.24)

where caj is the molar concentration of target j and Kij is the affinity constant. Kij can
be expressed in terms of the free energy for probe i binding target j, ∆Giaj, along with a
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constant parameter K0:
Kij = K0e

−∆Giaj/RT (2.25)

2.5.5 Applying the Langmuir model to log ratio data

In one set of experiments with whole genome tiling arrays, the two targets hybridized to
each array are a reference strain and a “mutant” strain of the same species, both with
known genome sequences. On each array, one target was labeled with Cy3 and the other
with Cy5. The probes are overlapping subsequences of the reference genome, so that each
has a perfect match somewhere within the genome sequence, and each position in the genome
is covered by between 2 and 7 probes. The mutant genomes each contain between 400 and
8000 isolated SNPs relative to the reference genome. Thus, there are two classes of probes
for each array: those with a perfect match in both genomes, and those overlapping a single
mismatch in the mutant genome. We will call these PM and MM probes, respectively. (Note
that these terms have different meanings than for Affymetrix arrays, in which “PM” and
“MM” denote different probes for the same subsequence. Here, both PM and MM probes
have perfect matches in the reference genome.)

Let Mia = log(yia1 − ba1)/(yia2 − ba2) be the usual log ratio of background-corrected
intensities, where indices 1 and 2 refer to the mutant and reference targets, respectively.
Under the 3-state Langmuir model, the log ratio reduces to a nice linear expression:

Mia = log
γa1θia1

γa2θia2

= log
γa1

γa2

+ log
Ki1ca1

Ki2ca2

= log
γa1

γa2

+ log
ca1

ca2

+ log
e−∆Gia1/RT

e−dgit/RT

= log
γa1

γa2

+ log
ca1

ca2

+
1

RT
(∆Gia2 −∆Gia1)

In these experiments, the two targets were always different strains of the same species, with
nearly identical genome sizes, applied at the same mass concentration. Thus, the molar
concentrations were almost identical, so the log(ca1/ca2) term can be dropped, leaving us
with the following expression for the log intensity ratio:

Mia = log
γa1

γa2

+
1

RT
(∆Gia2 −∆Gia1) (2.26)
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2.5.6 Fitting free energy contributions under the
position-independent nearest-neighbor model

As I showed with an earlier, smaller data set, the effect on the affinity of a mismatch between
the probe and target sequences depends on the position of the mismatch within the probe.
At some point we need to estimate this position effect, but we have other parameters to
estimate first. To make things simpler, we’ll fit a position-independent model using only
data points in which the mismatch falls within the middle 17 bases of the probe. Our past
results suggest that the position effect is nearly constant within this range.

Under a position-independent nearest-neighbor (PINN) model of probe affinities, the free
energy for probe i hybridizing to target j is a sum of contributions from the set of dimer
pairs D(i, j) in the alignment of the probe and target:

∆Giaj =
∑

d∈D(i,j)

gd

For a MM probe, the difference in free energies between the mutant and reference targets
results from replacing two perfect match dimer pairs with two mismatch pairs (unless the
mismatch falls at the beginning or end of the probe; I exclude such cases from the subsequent
analysis):

∆∆Gia = ∆Gia1 −∆Gia2 = gmmia1 + gmmia2 − gpmia1 − gpmia2 (2.27)

where mmiak and pmiak denote the MM dimer pairs created and the PM pairs destroyed by
the presence of the mismatch. Combining equations 2.26 and 2.27, I model the log intensity
ratio by

Mia = log
γa1

γa2

− 1

RT
(gmmia1 + gmmia2 − gpmia1 − gpmia2) + εia (2.28)

with an error term εia ∼ N(0, σ2).
I fit the parameters of the model in two stages. First, I use the log ratio data for PM

probes, for which ∆∆Gia = 0, to estimate the ratio of the scale factors in the two channels
of each array:

̂
log

γa1

γa2

=
1

nPM(a)

∑
i∈PM(a)

Mia (2.29)

The PM probe data can also be used to estimate the noise parameters σ2
a:

σ̂2
a =

1

nPM(a) − 1

∑
i∈PM(a)

(
Mia −

̂
log

γa1

γa2

)2

(2.30)

Secondly, I write equation 2.28 in matrix form and solve the resulting linear model. Let
µia = Mia− log γa1

γa2
, and let µ be the vector of µia values for nMM (MM probe, array) tuples.

Let X be an nMM × 58 matrix, whose columns correspond to the 58 possible dimer pairs;
Xkd is the number of dimer pairs of type d added (if positive) or removed (if not) in the
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(MM probe, array) tuple represented by the combined index k. Finally, let g be the vector
of free energy contributions for the 58 dimer pairs. Then our model becomes

µ = Xg + ε (2.31)

We plug in our estimates of l̂og γa1
γa2

to estimate µ. Since X is known, we can solve equation
2.31 by ordinary least squares to determine the dimer pair free energy parameters gd.

There is only one problem with the above strategy, which is that X is rank deficient. It
is not obvious how a matrix with 166,000 columns and 58 rows could be so. The reason this
happens is that X contains only 192 unique row vectors, corresponding to the 64 possible
base triplets centered at each SNP, combined with 3 possibilities for the mismatch base.
Furthermore, the 192 row vectors can all be generated by linear combinations of 51 basis
vectors. Therefore, X has rank 51, though it has 58 columns, and equation 2.31 has an
infinite number of solutions.

I tried two approaches to select a single solution for g. One was QR decomposition with
pivoting, using the R qr.coef() function. For an (n×p) design matrix X of rank r, qr.coef
simply zeros the last p− r coefficients; I arranged the columns of the X matrix so that these
last p− r dimer pairs were the ones for which SantaLucia’s gd estimates were closest to zero.

The other approach was to choose the minimum norm solution, i.e. the one that min-
imizes ‖ g ‖2 while also minimizing ‖ Xµ − g ‖2. This can be found by computing
the singular value decomposition X = UDV T , with U and V orthonormal and D =
diag(d1, d2, . . . dr, 0, 0, . . . 0). If W is the matrix consisting of the first r columns of U , and
Λ = diag(d1, d2, . . . dr), it can be shown [Golub 89] that the minimum norm solution is
gmin = V Λ−1W Tµ.

Figures 2.19 and 2.20 compare the solutions resulting from these two approaches. Al-
though the parameter estimates are similar for most dimer pairs, we see significant differences
for a few of them, including the perfect match pairs GT/GT and GC/GC. We can obtain
more definitive estimates by fitting the nonlinear model (equation (2.24)) to the raw log
intensity data (rather than log ratios), using either the QR or the minimum norm solution
as initial values. Before we proceed to that step, however, we need to deal with the position
effect.

2.5.7 Fitting the position effect

In Zhang’s position-dependent nearest-neighbor (PDNN) model [Zhang 03], the free energy
of probe i binding to target j on array a is a weighted sum of the dimer pair contributions
at each position:

∆Giaj =

ni∑
l=1

wlgd(l,i,j) (2.32)

where ni is the number of dimers in probe i, d(l, i, j) is the dimer pair at position l and wl
is the weight factor. In this model, probes are assumed to be 25-mers, and a separate wl
parameter is fitted for each of the 24 positions.
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Figure 2.19: Comparison of fitted gd free energy parameters by dimer pair, using QR de-
composition with pivoting vs minimum norm solution
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Figure 2.20: Comparison of gd free energy parameters fitted using QR and minimum norm
strategies to SantaLucia solution-phase parameters
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This approach does not work well for the long, variable-length oligos used on our Nim-
bleGen arrays, since it requires too many parameters to be fitted. Instead, I decided to
fit weighted sums of cubic B-spline basis functions, evaluated at the fractional positions
tl = l/Li, where Li is the length of the probe. Each basis function fk(t) is associated with
a knot position κk, k = 1, . . . ν, with 0 ≤ κk ≤ 1. The number of knots ν can be selected
as the minimum value needed to get a reasonable fit. This greatly reduces the number of
parameters in the model. The general form for the position effect is then a function

φ(t) =
ν∑
k=1

wkfk(t) (2.33)

I considered two methods for incorporating the position effect into my models. The
simpler approach is to add φ(t) to the expression for the response variable, and fit the
weights wk to the residuals from fitting the position-independent model. For log ratio data,
the only position value that is important is tia, the location of the SNP within probe i on
array a. We add the position effect by modifying equation (2.31):

M − log
γ1

γ2

−Xg = Fw + ε (2.34)

where F is an n×ν B-spline basis matrix with Fiak = fk(tia), w is a vector of ν weight values
to be fitted, ia is a combined index for the probe and array together, γ1 and γ2 are vectors
containing the appropriate γaj values for the mutant and reference strain arrays in each row,
and the error term ε ∼ N(0, σ2

ε ). To fit the weights, I equate the left side of equation (2.34)
to the vector of residuals R from the position-independent fit, and use ridge regression to
find w that minimizes a penalized spline objective function:

ψ(w, α) =
1

σ2
ε

‖ R ‖2 +
α

σ2
ε

‖ w ‖2 (2.35)

In equation (2.35), α is a penalty parameter which we adjust to avoid overfitting, using a
generalized cross-validation (GCV) method [Ruppert 03]. I implemented a Demmler-Reinsch
orthogonalization algorithm described by Ruppert et al. which automatically and rapidly
tests many candidate values to find the optimum α and the corresponding weights. Fig-
ure 2.21 shows the fitted position effect φ(t) for a penalized spline function with 13 knots
and the optimum penalty parameter α = 225. Although an additive position effect improves
the fit to the log intensity ratio data for MM probes, it makes more intuitive sense to ap-
ply a multiplicative effect to the free energy contributions from each position in the probe.
Otherwise, the model predicts a position-dependent change in intensity for PM probes, for
which the change in free energy ∆∆G = 0. A multiplicative position effect function is also
closer in spirit to the PDNN model proposed by Zhang. We can construct such a function
by fitting splines to the ratio of the free energy change inferred from log intensity ratios to
the free energy changes predicted by the PINN model. We rewrite equation (2.28)

Mia = log
γa1

γa2

− 1

RT
∆∆Giaφ(tia) + εia (2.36)
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Figure 2.21: Fitted additive position effect function for log ratio data, using a B-spline basis
with 13 knots

to get

φ(tia) = −RT
Mia − log γa1

γa2

∆∆Gia

+ ε′ (2.37)

I fit a penalized spline to the right hand site of equation (2.37), plugging in the observed Mia

values and the fitted or predicted values for γa1, γa2, and ∆∆Gia from the PINN analysis.
The results (with 13 knots) are shown in Figures 2.22 and 2.23. Figure 2.22 shows the
fitted function together with the input data; Figure 2.23 shows the function by itself, on
a different y-axis scale. Although the input data is extremely noisy, there are more than
enough points to yield an estimate for the “average” position effect. One may question the
value of including an effect that is so small compared to the noise in the data. The value
will become clearer when we proceed to the next step, which is to predict probe intensities
(rather than log ratios).

2.5.8 Fitting free energy parameters and predicting intensities
under the position-dependent nearest-neighbor model

We now have initial estimates for all the parameters needed to predict intensities under the
PDNN model: background and scale factors for each channel on each array, spline weights for
the position effect, and the 58 dimer pair free energy parameters gd. Since the gd parameters
were estimated from a rank deficient system of equations and without accounting for the



54

0.0 0.2 0.4 0.6 0.8

−6
−4

−2
0

2
4

6
8

Position

R
es
po
ns
e

Figure 2.22: Smoothed scatterplot of ratio of inferred to predicted free energy changes from
log ratio data, and penalized spline fit for multiplicative position effect with 13 knots
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Figure 2.24: Predicted log intensities plotted against observed values, and residuals vs pre-
dicted intensities, based on initial ∆G parameters estimated from log ratio data

position effect, I expected that the estimates could be improved further by refitting the full
PDNN model to the log intensities, rather than log intensity ratios between reference and
mutant targets. Before doing so, I plotted the intensities and residuals predicted from the
existing parameters against the observed data, as shown in Figure 2.24, to provide a baseline
for later comparison.

Because the PDNN model for intensities is nonlinear, and much more complex than the
model for log ratios, I only refitted the ∆G contributions gd for the 10 perfect match dimer
pairs, rather than all 58 gd parameters. I ran optim()with the conjugate gradient method
for 200 iterations, and plotted the RSS against the iteration count to assess convergence,
as shown in Figure 2.25. After the first 150 iterations, there was very little additional
improvement in the residuals. Figure 2.26 compares the refitted PM dimer gd parameters to
their initial values. The overall effect of refitting is to decrease gd for dimers containing G’s
or C’s, and to increase it for those with A’s and T’s only.

Figure 2.27 shows plots of predicted vs observed log intensities and residuals vs predicted
values, based on the refitted parameters. The main difference from the predicted intensi-
ties shown in Figure 2.24 is that the range of predicted values is broader under the new
parameters, and thus closer to that of the observed values.

2.5.9 How much variance remains unexplained?

To get a sense of whether the complexities of the PDNN model were worth the effort involved
to fit it, I compared fitted vs observed log intensities from the tiling array dataset using a
succession of models, and computed the residual variances, as shown in Table 2.3. For this
particular dataset, the PDNN model explains about half of the total variance; it is a modest
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Figure 2.27: Predicted vs observed values, and residuals vs predicted values, of log intensities
calculated using ∆G parameters fitted to the full PDNN model.

improvement over the position-independent model, and a substantial improvement over just
fitting a mean log intensity for each channel on each array.

Model DF RSS Variance StdError
1 None - intercept only 1 487638.07 1.38 1.17
2 Mean effect for array and channel only 10 373691.21 1.06 1.03
3 Position-independent NN model 69 265125.67 0.75 0.87
4 Position-dependent NN model 82 244676.45 0.69 0.83

Table 2.3: Residual sum of squares, variance and SE from the tiling array data, using a
succession of models of increasing complexity

The question then arises, how much more of the variance could be explained by an even
better predictive model? One way to get a sense of the limits is to compare intensities
from the two channels on each two-color array, for probes that are perfect matches to the
genomes of both samples, and compute residual variances. In this case, we expect differences
because of the dye effect, but this should appear as a constant factor for each array, and
thus as an offset in the log intensities. Figure 2.28 shows the logged background-corrected
intensities from the two channels plotted against one another, for 4 of the 5 arrays. I fitted
a line with unit slope and variable intercept to these data, and computed residuals and the
corresponding variances. The results for each array are shown in Table 2.4.

A more realistic estimate for the minimum variance one can achieve can be obtained
by comparing intensities for the same probe on two replicate arrays hybridized to the same
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Figure 2.28: Smoothed scatterplots of background corrected intensities from two channels
on each tiling array
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Array ID Variance StdErr N Scale
1 Schu1 0.06 0.25 320172 0.39
2 Schu2 0.22 0.47 320172 2.23
3 U112 0.12 0.34 226563 0.60
4 Ames1 0.09 0.31 355036 5.59
5 Ames2 0.05 0.22 355036 0.58

Table 2.4: Within-array variances for perfect match probes against both strains on array

strain. The replicates are dye-swapped, so I expected to see scale differences due to both
dye and array effects. Again, these are fitted to a line with unit slope and variable intercept,
as shown in Figure 2.29 and Table 2.5.

We see that the random variations in intensity for the same probe with the same sample
between two arrays can be substantial, amounting to as much as half of the residual variance
seen with the PDNN model. From this I conclude that, although it may be possible to do
better with a more complex predictive model, there are unknown sources of variation in the
intensity measurements that cannot be explained by a model based on probe and target
sequences. In spite of these limitations, the PDNN model should have enough predictive
value to be useful for solving the inverse problem, of inferring target concentrations in a
sample, given a set of microarray probe intensities. This problem will be the subject of the
next chapter.

Strain Variance StdErr N Scale
1 Ft LVS 0.33 0.58 320172 0.35
2 Ft Schu4 0.14 0.38 320172 1.98
3 Ba Sterne 0.23 0.48 355036 3.79
4 Ba Ames 0.25 0.50 355036 0.39

Table 2.5: Between-array variances for perfect match probes
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Figure 2.29: Smooth scatterplot of background corrected intensities from same sample strain
in replicate pairs of tiling arrays
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Chapter 3

Target identification and quantitation
from microbial detection array data

3.1 Introduction

The PDNN model developed in the previous chapter allows us to estimate hybridization
free energies and probe affinities from alignments of probe and target sequences. Using
the affinities, together with the Langmuir equation, we can predict the intensity of a probe
matching part of a target sequence, when a known concentration of target DNA is hybridized
to an array. In this chapter, I’ll use the predictive model to solve an inverse problem: given
the probe intensities from a sample of unknown composition, determine the targets present
and their concentrations. I’ll refer to this as the “identification/quantitation” or “I/Q”
problem.

A straightforward approach to this problem is to define a density function for each probe’s
observed intensity, with parameters dependent on target concentrations; construct a likeli-
hood function based on these densities, and maximize it with respect to the concentrations.
Before attempting this, I needed a way to estimate the array- and scan-specific scale factor γa
relating the fraction of bound oligos in a feature to its intensity. This was best accomplished
using intensities from a set of positive control probes, complementary to DNA spiked in at
a known concentration. To make this work, I had to have accurate affinity estimates for the
positive control probes. Section 3.2 details the process by which I estimated these affinities
and the algorithm for inferring scale factors.

Next, I had to develop a procedure to solve a more restricted quantitation problem:
Assuming the sample hybridized to the array contains target DNA from one or more known
species with dissimilar genome sequences, estimate the set of target concentrations that best
explains the observed probe intensities. This is simpler than the more general I/Q problem,
because each probe is assumed to be capable of binding at most one target. Section 3.3
describes the quantitation algorithm, the design of an experiment to test it, and the results
of the experiment.
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Once these problems were solved, I was able to address the general identification/quantitation
problem, using a latent variable mixture model together with an EM algorithm to maximize
the complete data likelihood with respect to the target concentrations. In section 3.4 I dis-
cuss the latent variable model, derive the equations to be solved at each step of the EM
algorithm, and describe its performance against a test dataset.

3.2 Estimation of scale factors using spike-ins and

positive control probes

Consider a series of arrays to which we hybridize various concentrations ca of DNA from the
same target organism. We model the observed intensity yobsiaj of replicate feature j with probe
sequence i on array a by combining the Langmuir equation 2.1 with an array-specific scale
factor, and including both additive (background) and multiplicative noise components:

yobsiaj = biaj + γa
caKi

1 + caKi

eεiaj (3.1)

Here Ki is the affinity of probe sequence i for the single known target, which we estimate
either from direct measurements, or using the free energy ∆Gi predicted by our PDNN
model and equation 2.2. The multiplicative noise factor is modeled as eεiaj , where εiaj is
normally distributed with zero mean. In the remainder of this chapter, we’ll assume that
the intensities are background-corrected, defining yiaj = yobsiaj − biaj. Our ultimate task is to
infer the concentrations ca, given the intensities yiaj.

The first problem to solve is estimating the scale factor γa for the array, which in the
absence of multiplicative noise would be the background corrected intensity for a chemically
saturated feature. The scale factor varies between array experiments because of differences
in scanner gain settings, efficiency of target labeling, degradation of fluorophores, and other
uncontrolled factors. To estimate the scale factor, we need intensities for a set of reference
probes for which the fraction of bound oligos is known or can be calculated.

3.2.1 Positive control probe design

To facilitate scale factor estimation, I designed a set of 572 positive control probes that were
included in version 5 of the LLMDA. The probes are based on the genome sequence of the
hyperthermophilic bacterium Thermotoga maritima. By spiking Thermotoga DNA into the
hybridization mixture at a known concentration, we can use the intensities of the positive
control probes, along with their known affinities, to estimate the scale factor γa.

Thermotoga DNA is commonly used as a reference control in nucleic acid assays because
it naturally occurs only in deep sea hydrothermal vents, and is phylogenetically distant from
most bacteria found in more temperate environments (such as the human body). Therefore,
it is unlikely to appear in the types of samples we analyze with the LLMDA, and probes
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designed against it are not expected to cross-hybridize with bacteria that do occur in these
samples.

The positive control probes include both perfect match (PM) oligos and mismatch (MM)
sequences derived by replacing one or more PM probe nucleotides with their complements.
The mismatch probes are included to broaden the range of affinities spanned by the positive
control probes. Mismatches are spaced at intervals of 5 base positions to minimize the
unwinding of the probe-target DNA duplexes. Successive mismatches were added in 5’ to 3’
order, starting from the untethered end of the probe. Six replicates of each positive control
sequence are included on the array, enabling estimation of within-array noise.

3.2.2 Affinity estimation for positive control probes: experiment
design and simulations

In order to compute the probe affinities from the free energies ∆Gi estimated using the PDNN
model, we must know the value K0, such that Ki = K0e

−∆Gi/RT is an affinity constant
in inverse concentration units (e.g., inverse picomolar, pM−1). According to our physical
hybridization model, K0 should be constant for all arrays with a given surface oligonucleotide
density. Unfortunately, the estimate obtained from the tiling array experiments described
in section 2.5.3, 4.1× 10−8pM−1, differs from the K0 values obtained from other data, such
as the short hybridization time experiments described in section 2.4.1.

It turns out that, with the tiling array dataset, the parameters K0 and γa for each
array are not identifiable. Since these arrays were almost all run using the same target
concentrations; multiplying K0 by some factor and dividing all the γa by the same factor
has little effect on the predicted intensities.

To resolve this issue, I designed an experiment to measure the affinities directly for the
positive control probes on the LLMDA version 5 array. In this experiment, two replicate
arrays were hybridized to Thermotoga DNA at each of four concentrations: 1, 4, 16 and 32
pM. The goal was to fit scale factors γa and affinity constants Ki to the model described by
equation 3.1, given the measured intensities and the known DNA concentrations ca on these
arrays.

To make the model more tractable, I log-transformed both sides of equation 3.1 after
taking background correction into account, yielding for the intensity yiaj of replicate j of
probe i on array a:

log yiaj = log γa + log ca + logKi − log(1 + caKi) + εiaj (3.2)

where εiaj is a Gaussian noise term. Although this model is partially linear (because of the
term log γa), it is still challenging to fit, especially with noisy data. I eventually succeeded
by using the weighted nonlinear least squares (NLS) algorithm implemented in the R nls()

function to fit the parameters logKi and log γa simultaneously. I weighted observations on
probe i by a factor 1/si, where si was the sample standard deviation of the intensities of the 6
replicates of probe i. I also excluded probes with more than 9 mismatches from the datasets
used for fitting, since these probes had intensities in the same range as the background noise.
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Figure 3.1: Normal quantile-quantile plot of replicate probe log intensity deviations on a
typical LLMDA version 5 array, showing heavy tails of distribution

I tested the weighted NLS procedure with a simulated data set, to see how well it re-
covered the affinities and scale factors used to generate the data. I generated simulated
intensities for the Thermotoga probes based on the model in equation 3.1, using the same
DNA concentrations for each simulated array as in the real experiment, and affinities based
on the free energies predicted by the PDNN model. Simulating the additive and multi-
plicative noise components presented some challenges, as sampling them from normal or
log-normal distributions produced intensities lacking the heavy tail behavior seen in the real
data (as shown in Figure 3.1). I obtained more “realistic” data by sampling background
contributions biaj from the empirical distribution of negative control probe intensities on
one of the real arrays. To simulate multiplicative noise, I computed deviations dij of the
log intensities for the nreps replicate features from the means for each positive control probe
sequence, dij = log yij −

∑
k log yik/nreps, sampled values εiaj from the empirical distribution

of the deviations, and multiplied the simulated intensity by eεiaj .
Figure 3.2 shows the fitted affinities plotted against the input affinity values used to

generate the data, on a log scale. Figure 3.3 plots the fitted scale factors γa against the
simulation inputs. Except for the affinities at the upper extreme of the range, the weighted
NLS procedure did an excellent job of recovering the input values.

To make sure that the good performance of weighted NLS was reproducible, I created
20 simulated datasets, generating probe affinities Ki = K0e

−∆Gi/RT with the same probe
free energies as for the earlier dataset, but varying inputs for the factor K0. I also varied
the input scale factors γa, and sampled the additive and multiplicative noise contributions
independently for each dataset. I fitted affinities and scale factors to each dataset using
weighted NLS as before. For most (17/20) of the datasets, weighted NLS did a good job of
recovering the input values, yielding fitted affinities with median values above 80% of the
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Figure 3.2: Affinities fitted from simulated data vs input affinities used to generate the
data, plotted on log scale. Plot symbol shape and color indicates the number of mismatches
between the probe and target sequences.

input values. The top panel of Figure 3.4 shows the ratios of the fitted values to the inputs
for one such dataset. The fitting procedure performed substantially worse on the three other
datasets, such as the one shown in the lower panel of Figure 3.4, although the median ratio
of fitted to input affinities was still above 50%.

When I compared the different datasets, I saw that the ones for which weighted NLS
didn’t work well were those with the smallest values of the input factor K0, and thus lower
input affinity values. As a crude measure of the performance of the fitting procedure, I
computed the median ratio of fitted to input affinities for each dataset and plotted it against
the input K0 value, as shown in Figure 3.5. The ratio falls off sharply for input logK0 values
below -16, and is close to 1 for logK0 greater than -15.5. These low fitted affinity values
are coupled with overly high estimates for the scale factors γa. This makes some intuitive
sense; when the actual affinities are too low, the probe intensities do not approach the limit
imposed by chemical saturation (i.e., γa), so the dataset provides little information about
the actual saturation level.

The problem is illustrated by Figure 3.6, which compares fitted vs (simulated) observed
intensities, and observed intensity vs fitted free energy, for the same two datasets used to
generate Figure 3.4. The dataset shown in the upper panel has higher overall input affinities,
so that the intensities level off at the lower free energy (higher affinity) values. With the
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data

lower average affinities used for the lower panel, the curvature of the fitted intensity curve
is much smaller, leading to much more variance in the γa estimate, and larger errors in the
affinity estimates.

The results from simulated spike-in experiment data suggest that, when we estimate
affinities using real data, the accuracy of our estimates will depend on the true value of K0.
We may get a sense of whether the true affinities are higher or lower by examining plots of
observed intensities vs free energy, and noting whether the intensities level off as the free
energy becomes more negative.

3.2.3 Affinity estimation for positive control probes: results

After using simulated data to explore the behavior of the affinity fitting algorithm, I was
ready to look at the data from the real Thermotoga spike-in experiment. Each of the arrays
from this experiment was scanned multiple times using a 2 µm resolution Roche/NimbleGen
MS-200 scanner. On the MS-200 scanner, unlike the older Axon 4000B, the PMT gain setting
is expressed as a percentage. One set of scans was run using the autogain setting, resulting
in gain percentages between 300% and 500%; it produced images with many saturated
features. A second set was run at the 100% gain setting. Although no features were fully
saturated in these scans, subsequent analysis showed that the feature intensities for the
higher concentrations were strongly affected by saturated pixels. I only discovered this two
months after the arrays were originally hybridized and scanned; luckily, our technician had
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Figure 3.5: Median ratio of fitted to input affinities from simulated data, as a function of
the input K0 value, for 20 simulated datasets
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Figure 3.6: Fitted vs observed intensities at concentration 16 pM for two simulated datasets
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preserved the arrays. Our technician then ran two additional scans of each array: one
repeated at 100% gain, to compare with the original scan to test whether the arrays had
degraded during storage; and another at 10% gain, to remove any chance of optical saturation
effects. Overall, intensities for the second scan at 100% gain were only slightly lower than
the corresponding scan done two months earlier, so I decided degradation was not a serious
problem. As expected, there were very few saturated pixels in the scans done at 10% gain.

I used the weighted NLS procedure to fit affinities to the intensities from the arrays
scanned at 10% gain. In order to get nls() to converge, I had to use the subset of the
data containing only probes with 7 or fewer mismatches to the target sequence. The upper
panel of Figure 3.7 shows the fitted logKi values plotted against ∆Gi/RT , where ∆Gi is
the free energy predicted by the PDNN model. In the lower panel are plotted the differences
logKi−∆Gi/RT as a function of logKi. The horizontal dashed line drawn in the lower panel
indicates the median difference, which I use as an estimate of logK0. The diagonal line in
the upper panel has unit slope and intercept logK0. The median logKi −∆Gi/RT value is
-16.44, implying an estimate for K0 of e−16.44 = 7.25×10−8, about twice the value estimated
from the tiling array experiments. Unfortunately, this K0 estimate does fall in the range in
which simulations predict that the scale factors tend to be overestimated and the affinities
underestimated, at least for lower values of the spike-in concentration. To obtain better
estimates, we plan to perform additional experiments using higher spike-in concentrations
that would result in stronger saturation effects at the higher affinities.

Examining Figure 3.7, we see there are also systematic errors in the ∆Gi estimates which
depend on the number of mismatches. For probes with one to four mismatches, as the free
energy increases, the measured affinities fall less rapidly than expected; for probes with more
than five mismatches, the affinities fall more rapidly. The true dependence of the affinities
on the mismatch count is shown for a representative sampling of probes in Figure 3.8. While
the PDNN model predicts that the log affinity should decrease approximately linearly with
the number of mismatches, the observed affinities drop off more steeply beginning with the
fifth or sixth mismatch. Since successive mismatches are added at uniform five base intervals
along the length of the probe, the observed nonlinearity may result when the probe-target
duplex does not contain a sufficiently long stretch of perfect matches to stabilize it. These
nonlocal structural effects are not accounted for in simple nearest-neighbor hybridization
models.

It does appear, however, that with the fitted affinities and scale factor parameters, the
Langmuir model fits the real data as well as it does simulated data. Figure 3.9 shows the
observed intensities plotted against the predicted intensities and free energies, for one of the
arrays at concentration 16 pM. At this concentration, the observed and fitted intensities
both exhibit saturation effects for the probes with the most negative free energies, leveling
off rather than continuing to increase linearly. The close fit of the observed intensities to
the predicted intensity curve suggests that the fitted affinities for the positive control probes
are sufficiently accurate to allow us to estimate the array-specific scale factors, provided
Thermotoga DNA is spiked in at a known concentration.

The procedure to estimate the array-specific scale factors can be summarized as follows:
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Figure 3.8: Fitted and predicted affinities for six perfect match Thermotoga probes and the
first seven mismatch probes derived from them, as a function of the number of mismatches
added.

• Background correct the observed probe intensities, producing corrected intensities yiak
for replicate k of probe i on array a.

• Given the corrected intensities for the spike-in probes, the known concentrations ca of
spiked-in Thermotoga DNA, and the measured affinities Ki of the Thermotoga probes,
use weighted least squares to solve the log-transformed Langmuir model (Equation 3.2)
for the array scale factor γa.

3.3 Quantitation of targets known to be present in a

sample

My next step toward addressing the general identification/quantitation problem was to devise
an algorithm for a much simpler quantitation task. To simplify the problem, we assume that
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Figure 3.9: Observed log intensities for positive control probes vs predicted log intensities and
free energies, for an example array with Thermotoga DNA spiked in at 16 pM concentration.
Red points in the right hand panel represent the predicted log intensity values.

the targets present in the sample are known beforehand or have already been identified, and
that the genomes of these targets are sufficiently dissimilar to one another that each probe
on the array can only bind to one target. We are given an estimate of the scale factor γa for
array a, calculated by spiking the sample with Thermotoga DNA at a known concentration
and using the procedure outlined in the previous section. Given the above information, we
are asked to estimate the set of DNA concentrations caj for each target j that best explains
the observed probe intensities on the array.

To address this quantitation task, we can solve Equation 3.2 for the concentrations caj,
this time treating the scale factor γa as a known quantity. Since we haven’t performed an
exhaustive set of dilution series experiments to estimate affinities for every probe/target pair
of potential interest, as we did for the Thermotoga probes, we will have to use the affinities
Kij predicted by PDNN for probe i binding to the target j. We then use weighted nonlinear
least squares to estimate the concentrations caj, using the R nls() function. nls() requires
initial values for the parameters caj, which we calculate as:

c
(init)
aj = median

(
yiak

Kij(γa − yiak)

)
(3.3)

where the median is computed over all i, k such that yiak < γa.
One concern I had with this plan was the imprecision of the PDNN affinity estimates.

While I have accurate estimates for the spike-in probe affinities, we saw in section 3.2.3
that they had both random and systematic deviations from the affinities predicted by the
PDNN model. Therefore, I wanted to know how the quantitation algorithm performs in the
presence of these errors. I addressed this question using simulated data, as described below.
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3.3.1 Testing the quantitation algorithm: experiment design

To test the quantitation algorithm, I designed an experiment in which a series of 12 arrays
were hybridized to mixtures of DNA from 5 different organisms at different concentrations,
following a Latin square layout, along with Thermotoga DNA at a fixed concentration . The
organisms are Bacillus anthracis, Francisella tularensis, Burkholderia thailandensis, human
adenovirus B type 7, and vaccinia virus strain Lister, abbreviated henceforth as Ba, Ft,
Bt, Av and Vv, respectively. I chose these species because the percent GC content of their
genomes spans a wide range, from 31% (Ba) to 68% (Bt), and because we had stocks of
DNA for them in our lab. The current version of the LLMDA has large numbers of probes
for each of these species, ranging from 75 (Ft) to 251 (Ba).

The experiment layout is shown in Table 3.1. Two replicate arrays were hybridized
for each sample mixture. Each set of replicates included a sample containing spiked-in
Thermotoga DNA only.

I ran simulations to determine the optimal concentration of Thermotoga DNA to spike
into each sample. The concentration affects the accuracy of the scale factor estimates; one
wants to choose a concentration large enough that the highest affinity probe intensities
are affected by chemical saturation, but not so high that all probes are saturated. The
scale factor estimate, in turn, affects the estimates of the target DNA concentrations. I
ran simulations for several combinations of input values of the log scale factor (log γa) and
spike-in concentration. Spike-in concentrations ranged by powers of 2 from 4 to 512 pM. To
avoid overplotting of the results, I added zero mean Gaussian noise to the input scale factor
and target concentration values before generating simulated data. Each simulated data set
contained 225 arrays in all.

Sample Concentration (pM)
number Ba Bt Ft Av Vv

1 0 0 0 0 0
2 0 2 8 32 128
3 2 8 32 128 0
4 8 32 128 0 2
5 32 128 0 2 8
6 128 0 2 8 32

Table 3.1: Layout for quantitation test experiment, showing concentrations of five known
targets in each sample. Each sample was run on two replicate arrays.

Figure 3.10 shows the scale factors γa fitted to the simulated data plotted against the
input γa used to generate the data, using different plot colors and symbols to indicate the
spike-in DNA concentration. We see that, for concentrations below 8 pM, there were larger
deviations from the input values. Figure 3.11 shows the fitted concentrations plotted against
the input values, for 4 of the 5 targets. Again, the deviations were greatest below 8 pM.
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Table 3.2 shows the RMS deviations of the fitted log concentration values from the input
values, as a function of the spike-in concentration. The smallest average deviation was
obtained with a simulated spike-in concentration of 8 pM.

Spike-in RMS deviation of fitted concentrations from inputs
concentration With input affinities With noisy affinities

2 2.59 3.91
4 1.47 3.15
8 0.95 2.94
16 1.00 2.89
32 1.17 3.10
64 1.21 3.23
128 1.41 3.29
256 1.47 3.45
512 1.46 3.60

Table 3.2: Root mean square deviation of concentrations fitted to 25 simulated array data
sets generated using 9 different concentrations of spiked in Thermotoga DNA. Concentrations
were fitted using either the input affinities or with noise added to the log affinities, to simulate
the effect of errors in the affinity estimates.

To test the effect of errors in the predicted affinities, I generated additional data sets in
which I added zero mean Gaussian noise with SD 1.0 to the logs of the affinities used to
generate the intensities, while continuing to use the unmodified PDNN affinities to fit the
concentrations. The resulting fits are shown for 4 of the targets in Figure 3.12, and the
corresponding RMS deviations are shown in the third column of Table 3.2. The fits were
surprisingly robust to errors in the affinities. The spike-in concentration yielding the most
accurate target concentration estimates, in the presence of these errors, was 16 pM; therefore
I chose this concentration for the spike-ins in the actual experiment.

3.3.2 Testing the quantitation algorithm: results

The six samples for the Latin square test experiment were prepared and hybridized to du-
plicate subarrays of a single 12-plex LLMDA version 5 array. DNA from each target was
labeled, quantitated using a Qubit fluorometer, and then diluted to the required concentra-
tion for each sample. After hybridizing for 40 hours, the array was scanned on our Roche
MS-200 scanner at three gain settings: autogain, 100%, and 50%. I examined the intensity
distributions for the probes matching the six targets used in the samples, and determined
that the highest intensities were affected by optical saturation, even at 50% gain. After the
array was rescanned at 20% gain, I found that saturated pixels were largely absent.

I applied the quantitation algorithm to the intensity data from the scans at 20% gain
to obtain a concentration for each of the five targets. The results for all 12 arrays are
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Figure 3.11: Target concentrations fitted from simulated data vs input concentrations used
to generate data
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Figure 3.12: Target concentrations fitted from simulated data vs input concentrations used
to generate data, when Gaussian noise (with SD 1.0) was added to the log affinities used for
the simulation

summarized in Figure 3.13, which shows log-log plots of the fitted vs actual concentrations.
For targets Ba, Ft, Bt and Av, there is reasonably good correspondence between the fitted
and actual concentrations, although the fitted values increase more slowly that the actual
ones; thus smaller concentrations are overestimated and larger ones are underestimated.
The results from replicate arrays are remarkably close, suggesting that the discrepancies
originate from systematic errors rather than noise in the array hybridization and scanning
processes. For vaccinia virus, the concentrations are underestimated except on the arrays
where the true concentration was 2 pM. Since for all other targets the fitted concentration
increases monotonically with the true concentration, the anomaly at 2 pM is better explained
by an error in the dilution procedure than by issues with the fitting algorithm. The low
estimates for the higher Vv concentrations could have resulted either from overestimating
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the affinities for the Vv probes, or from degradation of our Vv DNA stock by repeated
thawing. Degradation of the DNA could affect its binding to Vv specific probes, without
affecting the fluorometric concentration measurements, since the latter are not sequence
specific.

3.4 Solving the general identification/quantitation

problem

As we saw in the preceding section, our quantitation procedure produces fairly accurate
target concentration estimates when we know that the sample is a mixture of targets be-
longing to a small set, matched by nonoverlapping sets of probes. However, in most real-life
applications of the LLMDA, samples must be tested against a much wider range of targets,
since the targets actually present are not known beforehand. The most recent version of the
LLMDA (v5) contains probes matching over 67,000 target genome segments from multiple
strains of nearly 6,000 microbial species. Many probes are expected to bind to DNA from
different strains of the same species, and even different species within the same family. If
we were to apply the simple quantitation algorithm to array data from an unknown sample,
fitting concentrations for the full set of potential targets, it would erroneously assign nonzero
concentrations to a wide range of closely related targets, only one of which would likely be
present.

Therefore, solving the general identification/quantitation problem requires an algorithm
that can resolve the ambiguity resulting from probes with multiple possible targets. To
address this ambiguity I developed a latent variable model for the general I/Q problem and an
expectation-maximization algorithm for solving it, termed MIQ (for microbial identification
and quantitation, and pronounced “mike”). I tested the MIQ algorithm using the same Latin
square array data set described earlier.

3.4.1 Latent variable model for unknown sample data

When a probe i may potentially bind to one of m different targets, the total fraction of
bound oligos in the associated feature is described by an extended version of the Langmuir
equation, which is duplicated here as equation 3.4:

θi =

∑m
j=1 cjKij

1 +
∑m

j=1 cjKij

(3.4)

As usual, the intensity yik observed for replicate feature k of probe i is modeled as a product
of the bound fraction, an array-specific scale factor γ and by a multiplicative noise factor
eεik , with εik following a N(0, σ2) distribution. (Since we are only analyzing data from one
array at a time, I’ve dropped the array index a from the variables in this discussion.) The
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Figure 3.13: Concentrations fitted to intensities from 12 arrays from Latin square experiment
vs actual concentrations of each target on the respective arrays. Values from replicate arrays
are plotted with different colors and symbols.
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resulting log likelihood takes the form 3.5:

logL(c; y) = − 1

2σ2

n∑
i=1

r∑
k=1

[
log yik − log γ − log

∑m
j=1 cjKij

1 +
∑m

j=1 cjKij

]
(3.5)

with n being the number of probe sequences and r the number of replicate features per probe.
Ideally, we would like to maximize the likelihood with respect to the target concentrations
c = (c1, . . . , cm). Although the actual sums for probe i can be restricted to the few hundred
targets j for which Kij 6= 0, rather than the full set of 67,000 targets in our database,
maximizing the likelihood directly still presents computational challenges, because of the
sum over targets inside the logarithm.

Latent variable models have been applied to similar problems in the analysis of tran-
script quantitation using high-throughput cDNA sequence (“RNA-Seq”) data [Taub 09],
[Roberts 12]. Using these as inspiration, I decided to develop a similar approach for target
identification and quantitation using detection array data. The simplifying assumption in
my approach is that each probe only binds to (at most) one target. This assumption can be
justified by observing that samples rarely contain multiple closely related strains of the same
species, and that probes usually have much greater affinity for one species than another;
thus, in a sample containing a mixture of species, one strain of one species will dominate the
binding to a particular probe.

Under the latent data model, the complete data consist of the observed intensities yik and
a set of unobserved index variables ti ∈ {1, 2, . . . ,m,m + 1} indicating which target probe
i is bound to. The special value ti = m + 1 indicates that the probe is not bound to any
target. We assume that the ti are multinomially distributed with probabilities φij = P[ti = j]
satisfying

∑m+1
j=1 φij = 1, and that the yik and ti are independent. The parameters φij are

analogous to the mixing proportions in a mixture model.
The complete data likelihood under this model can be written as a function of the pa-

rameters c and φ:

L(c, φ; y, t) =
∏
i,k

φi,ti exp

[
− 1

2σ2

(
log yik − log γ − log

Ki,ticti
1 +Ki,ticti

)2
]

(3.6)

If we define uik = log yik − log γ and µij = log
Kijcj

1+Kijcj
, we can express the complete data log

likelihood as:

l(c, φ;u, t) =
∑
i,k

[
log φi,ti −

1

2σ2
(uik − µi,ti)2

]

=
∑
i,k

[
log φi,ti −

µ2
i,ti

2σ2
+
uikµi,ti
σ2

− u2
ik

σ2

]



81

Let δ(i, j) be the function equal to one when i = j and zero otherwise, and rewrite the
complete data log likelihood to make its dependence on the ti more explicit:

l(c, φ;u, t) =
∑
i,k

{
−u

2
ik

σ2
+

m∑
j=1

δ(j, ti)

[
log φij −

µ2
ij

2σ2
+
uikµij
σ2

]}
(3.7)

We can now apply the EM algorithm to maximize the complete data log likelihood with
respect to the parameters c and φ. We first choose initial values for the parameters. To
initialize the concentrations cj, the procedure is similar to the one used in the quantitation
algorithm for known targets (equation 3.3), except that the median of the ratios yik

Kij(γ−yik)
is

only computed over probes i with nonzero affinity Kij for target j. The parameters φij are
set initially to 1/(1 + |Hi|) for targets with nonzero Kij and the special “unbound” target,
where Hi is the set of targets with Kij 6= 0 for probe i.

In the E step, we need to define the conditional expectation of the complete data log
likelihood under the current parameter values φ and c, given the observed data u. At iteration
q, this is:

Q(c, φ; c(q), φ(q)) = Eφ(q),c(q) [l(c, φ;u, t)]

=
∑
i,k

{
−u

2
ik

σ2
+
∑
j∈Hi

Eφ(q),c(q) [δ(j, ti)|u]

[
log φij −

µ2
ij

2σ2
+
uikµij
σ2

]}

=
∑
i,k

{
−u

2
ik

σ2
+
∑
j∈Hi

ρij

[
log φij −

µ2
ij

2σ2
+
uikµij
σ2

]}
(3.8)

where ρij is the “responsibility” of target j for the intensity of probe i:

ρij = Eφ(q),c(q) [δ(j, ti)|u]

= Pφ(q),c(q) [ti = j|Ui = ui]

=
Pφ(q),c(q) [ti = j, Ui1 = ui1, . . . , Uir = uir]

Pφ(q),c(q) [Ui1 = ui1, . . . , Uir = uir]

=
φ

(q)
ij exp

[
− 1

2σ2

∑r
k=1(uik − µ(q)

ij )2
]

∑
l∈Hi φ

(q)
il exp

[
− 1

2σ2

∑r
k=1(uik − µ(q)

il )2
] (3.9)

In the M step, we maximize Q(c, φ; c(q), φ(q)) with respect to c and φ, subject to the
constraint

∑
j φij = 1. Using Lagrange multipliers and setting derivatives equal to zero, we

get:

0 =
∂

∂φij

[
Q(c, φ; c(q), φ(q))− λiφij

]
=
ρij
φij
− λi

⇒ φij = ρij/λi
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The constraint
∑

j φij = 1 then implies λi = 1, so that φ̂ij = ρij is the value that maximizes
the Q function. As for the concentrations, we have

0 =
∂

∂cj
Q(c, φ; c(q), φ(q))

=
∑
i

∂Q(c, φ; c(q), φ(q))

∂µij

∂µij
∂cj

=
∑
i,k

ρij
uik − µij

σ2

∂

∂cj
[logKijcj − log(1 +Kijcj)]

=
∑
i,k

ρij
uik − µij

σ2
Kij

[
1

Kijcj
− 1

1 +Kijcj

]
=

1

σ2cj

∑
i,k

ρij
1 +Kijcj

[
uik − log

Kijcj
1 +Kijcj

]
Thus, the Q function is maximized by ĉj that satisfies Equation 3.10:∑

i,k

ρij
1 +Kij ĉj

[
uik − log

Kij ĉj
1 +Kij ĉj

]
= 0 (3.10)

This equation can be solved numerically using a variety of techniques, such as the safeguarded
polynomial interpolation algorithm implemented in the R uniroot() function.

I implemented the EM algorithm as an R function. The code alternates the E- and
M-steps described above and evaluates the Q function after each iteration. It terminates
when the relative increase in the Q function value falls below a specified threshold, or after
a prespecified number of iterations.

3.4.2 Testing the identification/quantitation algorithm

I tested the MIQ algorithm against the same array dataset used earlier to test the quanti-
tation procedure. I analyzed each sample under the assumption that its constituent targets
were a subset of a particular set of candidates. Because testing against our full candidate set
of 67,000 targets would have been computationally infeasible for my R function implementa-
tion, I used a restricted set of 364 candidate targets that included the eight target sequences
actually present in the array samples, plus up to 20 “decoy” targets randomly selected from
each of the five taxonomic families represented among the sample targets (“present families”)
and 12 additional viral and bacterial families not represented in the samples (“unrepresented
families”). I fit concentrations cj and mixing proportions φij to the intensities from each
array, terminating the EM loop when the increase in the Q function value between two iter-
ations fell below 0.1% of the function value. For most arrays, this convergence criterion was
reached after about 40 EM iterations.
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Figure 3.14 shows the fitted concentrations for the true targets and the decoy targets in
the same families as the true targets, plotted against the true target concentrations. Fitted
values are plotted with different symbols to distinguish the true targets from the decoys,
and between the true target fits for the two replicate arrays at each set of concentrations.
Separate concentrations were estimated for the two chromosomes of Bt and for the chro-
mosome and two plasmids of Ba, which are represented by distinct target sequences. Since
the average copy numbers can vary between the different plasmids and chromosomes in a
bacterial genome, and plasmids in particular can be present in multiple copies, variation
among the estimated concentrations for these genome elements is expected.

The targets with the highest fitted concentrations in each of the five present families are
listed in Table 3.3, together with the actual target concentrations, for one of the two arrays
run against each sample. If we interpret these as predictions of the targets most likely to
be present, then all of the actual targets are correctly predicted to at least the species level,
and in some cases, to the subspecies or strain level. For the Burkholderiaceae, the highest
concentrations were consistently assigned to the two chromosomes of the correct strain B.
thailandensis E264. Among the targets in family Adenoviridae, the correct target had the
largest fitted concentration for four of eight arrays on which it was present; another strain
of the same species (human adenovirus B) had the largest concentration on the other four.
Among the Francisellaceae, several decoys had fitted concentrations larger than that of the
true target. All of these were strains of the same subspecies as that of the true target, F.
tularensis subspecies holarctica. In general, the MIQ algorithm fitted concentrations for the
true targets that were close to those obtained by the quantitation procedure.

As currently implemented, the MIQ algorithm fits nonzero but (usually) small concen-
trations for targets that are absent from the sample, even when they share little sequence
similarity with the targets that are present - as is generally true when the targets belong to
different families. To get a sense of the probability that a target is actually present given its
estimated concentration value, I plotted the distributions of the fitted log2 concentrations for
targets in the 13 unrepresented families. The distributions over all arrays for five example
families are shown in Figure 3.15, along with the combined distribution for all unrepresented
families.

The range of fitted concentrations varies widely between families; although the vast
majority of values fall well below 1 pM, there are certain families in which a handful of
targets are assigned values greater than 1 pM. The overall distribution is somewhat long-
tailed; although the 95th percentile of all fitted values for unrepresented families is 0.9 pM,
there is one target (hepatitis delta virus strain dTk38) with a fitted concentration on one
array over 3000 pM. Most of these high fitted values are probably due to cross-hybridization
between the probes for the target and some component of the sample.

Hepatitis delta virus (HDV) is an unusual case; its genome contains many stretches of
long G homopolymers, which are difficult to avoid in the design of probes against this virus.
Probes with G homopolymers of length 5 or greater often bind nonspecifically to many
targets, a behavior observed by other researchers, but unfortunately not well understood
[Upton 08, Langdon 09]. If we define a “binding rate” for a probe as the fraction of all
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Figure 3.14: Fitted concentrations for candidate targets from Latin square experiment data,
plotted against actual concentrations for the true targets that were present from each fam-
ily. Separate concentrations were fitted for the genome elements of Ba (chromosome and 2
plasmids) and Bt (two chromosomes).
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Family/Target Actual or fitted concentration (pM)
2 3 4 5 6

Adenoviridae
Human adenovirus B type 7 32.00 128.00 0.00 2.00 8.00
Human adenovirus B type 7 28.78 57.02 0.09 6.19 13.60
Human adenovirus B type 11a 15.28 16.63 0.11 8.96 12.88
Simian adenovirus 46 4.22 8.03 0.03 2.38 2.98

Bacillaceae
B. anthracis str. Ames 0.00 2.00 8.00 32.00 128.00
B. anthracis plasmid pXO1 0.01 47.40 143.42 296.55 500.60
B. anthracis plasmid pXO2 0.03 4.04 29.00 112.69 230.51
B. anthracis str. A0174 0.04 28.42 69.63 132.85 209.12
B. anthracis str. Ames chr 0.01 19.44 38.41 67.76 146.79
B. anthracis str. Sterne 0.01 18.61 38.02 68.10 141.28
B. anthracis str. A0442 0.01 11.65 25.95 44.25 54.39

Burkholderiaceae
B. thailandensis E264 2.00 8.00 32.00 128.00 0.00
B. thailandensis E264 chr 1 16.77 42.89 101.32 205.45 0.04
B. thailandensis E264 chr 2 4.95 15.39 31.80 60.79 0.01
B. mallei NCTC 10247 chr 1 1.79 4.81 11.10 35.81 0.03

Francisellaceae
F. tularensis holarctica str. LVS 8.00 32.00 128.00 0.00 2.00
F. tularensis holarctica FSC200 255.37 545.23 635.49 1.30 115.10
F. tularensis holarctica KO971026 70.97 136.25 289.72 0.05 26.37
F. tularensis holarctica OSU18 49.44 101.65 157.87 0.04 19.43
F. tularensis holarctica LVS 38.05 83.24 120.76 0.02 14.43
F. tularensis novicida HHS 21.68 17.84 126.12 0.07 4.95

Poxviridae
Vaccinia virus str. Lister 128.00 0.00 2.00 8.00 32.00
Vaccinia virus str. Acambis 100.23 0.04 48.26 34.60 61.45
Variola virus str. UK 1947 86.09 0.01 29.21 10.81 40.42
Variola virus str. Congo 9 60.17 0.02 16.81 7.39 30.13
Vaccinia virus str. MVA-572 53.05 0.02 18.54 10.21 27.63
Vaccinia virus str. Lister 21.06 0.01 7.82 3.88 9.31

Table 3.3: Actual (bold) and fitted concentrations for top targets in each bacterial or viral
family represented in Latin square dataset, for one replicate array hybridized to each of
samples 2 through 6.
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Figure 3.16: Mean binding rates over 581 LLMDA version 5 arrays for probes containing G
homopolymers, as a function of polymer length.

array experiments in which the probe intensity is above an array-specific threshold (the 99th

percentile of the negative control probe intensities for the array), we see a strong association
between the maximum G polymer length and the binding rate, as shown in Figure 3.16. The
plot shows average binding rates across the first 581 LLMDA version 5 experiments, which
involved a diverse variety of samples. Thus, many probes that were designed against HDV
end up binding nonspecifically with high affinity, leading to frequent false detection of HDV.

3.4.3 Issues with strain-level target identification

In my formulation of the latent data I/Q model, I made the assumption that a probe matching
multiple related species would have much greater affinity for one target than for another,
so that one target would account for most of the binding to a particular probe. When the
decoy targets in the candidate set all vary in sequence from the true targets at the genome
locations covered by probes, the MIQ algorithm does a good job of assigning large mixture
weights to the correct targets. When the candidate set contains several targets that are
matched with nearly equal affinities by the probes against the true target, the algorithm
tends to distribute the weights equally among the targets similar to the true target. The
result is that the fitted model contains nonzero concentration terms for multiple targets,
making it difficult to identify one target as being uniquely present.

Figure 3.18 illustrates these two cases. The bar plots show the fitted values of the mixing
parameters φij for one array, for the probes against targets Bt (chromosome 2), Ft and Ba.



88

●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●●●
●

●●●

●
●

●

●

●

●
●●●
●●●

●

●●●

●

●
●

●

●

●
●●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●
●●●

●

●

●

●●●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●●
●●

●●●
●

●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●●
●●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●
●

●

●

●●●
●

●

●
●

●

●

●

●
●

●

−12 −8 −6 −4 −2

−1
2

−8
−4

Log affinity for B. anthracis Ames

Lo
g 

af
fin

ity
 fo

r B
. a

nt
hr

ac
is

 S
te

rn
e

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●●●
●

●●●

●

●

●

●

●
●●●
●●●

●

●●●

●

●
●

●

●

●
●●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●
●●●

●

●

●

●●●

●

●

●
●

●

●
●

●
●

●
●

●●

●

●●
●●

●●●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●●
●●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●
●

●

●

●●●
●

●

●
●

●

●

●

●
●

●

−12 −8 −6 −4 −2

−1
2

−8
−4

Log affinity for B. anthracis Ames

Lo
g 

af
fin

ity
 fo

r B
. a

nt
hr

ac
is

 A
01

74

●

●

Figure 3.17: Comparison of affinities Kij for probes matching B. anthracis str. Ames (target
Ba) and decoy strains Sterne and A0174.

The bars indicate the φij values for each probe, with segments colored by target; the dark
blue segment indicates the proportion assigned to the correct target. Bars are ordered from
left to right in decreasing order of probe intensity. In general, a much larger fraction of the
mixture weights are assigned to the correct target for the Bt probes than for Ft or Ba. For
Ft, the mixture weights for most probes are divided fairly evenly between the true target
(F. tularensis LVS) and a number of other strains in the same subspecies of F. tularensis.
The probes for Ba follow a similar pattern as for Ft, with equal weights for multiple strains
of B. anthracis.

When I compared the affinities of the Ba probes for the correct target (B. anthracis
strain Ames) to those for two other targets in the same species that were assigned high
concentrations on the arrays where Ba was present (strains Sterne and A0174), I found they
were nearly identical for 250 of 251 probes matching Sterne, and 243 of 245 probes matching
A0174. (Figure 3.17). These similarities are not seen between Bt and the decoy targets
in family Burkholderiaceae. The differences between these families reflect their different
representation biases in the candidate target set. B. anthracis and F. tularensis are both
species of special interest for biodefense, for which many isolates have been sequenced. They
are also species with relatively little genomic diversity among strains. B. thailandensis is
not pathogenic to humans and is therefore not a select agent for biodefense (although it
is closely related to B. pseudomallei, which is). Few strains of B. thailandensis have been
sequenced, and only one strain in addition to the true target strain E264 was selected for
the candidate target set. The Burkholderiaceae are in general much more genetically diverse
than B. anthracis or F. tularensis, so that the alternative MSMB43 strain of B. thailandensis
was easily distinguished from strain E264.

Thus, when the sample on the array contains targets such as Ba and Ft, with many similar
candidate strains, the maximum likelihood solution to the model given by Equation 3.6 is
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Figure 3.18: Fitted mixing proportions φij for probes against targets Bt (top) Ft (middle),
and Ba (bottom) on array 7 in the Latin square data set. Each bar represents the φij values
for one probe, with segments colored by target: dark blue for the correct target, cyan for the
“unbound” contribution, and shades between yellow and red for decoy targets in the same
family as the true target.

frequently a mixture of related targets at nonzero concentrations. The mixing parameters
φij provide extra degrees of freedom for fitting concentrations to the probe intensity data.
Unfortunately, this means that the “best” solutions can have concentrations for the decoy
targets, especially those with overall lower probe affinities, greater than the fitted and actual
concentrations for the true target. In the absence of mixture weights, as in the scenario
addressed by the quantitation algorithm in Section 3.3, assigning high concentrations to
low affinity targets results in deviations between the predicted and observed intensities,
particularly at the high end. The mixing parameters reduce these discrepancies by giving
the fitting algorithm a means of downweighting them. This is a possible explanation for
the large proportions assigned to the special “unbound” target for the brightest probes (the
light blue segments seen on the left sides of the barplots in Figure 3.18. Although these
solutions fit the data nicely, and give us species-level information about the likely sample
composition, we know that, in most real-life samples, only one of the related strains is likely
to be present. To get strain-level target identification, we need to change the model and/or
the fitting procedure to favor sparser solutions.
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3.4.4 Improving the MIQ algorithm

I considered a number of approaches to improve the strain-level identification performance
of the MIQ algorithm. The most obvious, and the easiest to implement, was to add an L1

penalty to the Q function (the expectation of the complete data likelihood) to be maximized
in the M step, giving preference to solutions with smaller concentrations and fewer nonzero
concentration terms. With the L1 penalty, equation 3.8 for the Q function becomes:

Q(c, φ; c(q), φ(q)) =
∑
i,k

{
−u

2
ik

σ2
+
∑
j∈Hi

ρij

[
log φij −

µ2
ij

2σ2
+
uikµij
σ2

]}
− α

m∑
j=1

|cj| (3.11)

where α is a tuning parameter that controls the strength of the penalization.
I modified the EM algorithm code to maximize the penalized Q function with respect to

the concentrations cj and mixture weights φij, as before, under the constraint cj ≥ 0 ∀j. This
is straightforward, except that the code has to deal with the possibility that Q is maximized
at a boundary where some of the cj are zero. To find the optimal value of the α parameter,
I performed several fits with values of α ranging from 0 to 0.05.

The effect of adding L1 penalties of various strengths on the fitted concentrations for an
example array is shown in Figure 3.19. The L1 penalization strategy was partially successful
in improving the fit to the model. For Ft, it shrank the concentrations assigned to the decoy
strains of F. tularensis subspecies holarctica, while leaving the value for the correct LVS
strain relatively unchanged; although the decoy concentrations were not reduced to zero at
the largest value of α, increasing it further might do so. At α = 0.05, the LVS strain was
already the top hit.

For Ba, the concentrations most affected by the L1 penalty were for the two plasmids
pX01 and pX02; at α = 0.05 their fitted values were much closer to the correct Ba concen-
tration than without penalization. The fitted values for the Ba (B. anthracis strain Ames)
chromosome and the three decoy strains Sterne, A0174 and A0442 were relatively unaffected
by penalization. As we saw in Figure 3.17, nearly all of the Ba probes have identical affini-
ties for the Ames and Sterne strains; not surprisingly, the fitted concentrations were also
nearly identical, so that the Sterne concentration curve is hidden below the curve for Ames
in Figure 3.19.

One problem with the L1 penalization scheme (and perhaps any scheme for improving
sparsity) is that it gives preference to strains represented by draft genome assemblies, in
which all genome elements are grouped into one target sequence, over strains in which the
chromosomes and plasmids are treated as separate targets. Targets A0174 and A0442 are
both draft genomes which incorporate pX01 and pX02 plasmid sequences together with the
chromosome sequence. In this case, the L1 penalty is smaller for a solution that assigns
concentration 3x to strain A0174 than for one that assigns concentration x+ ε (with ε > 0)
to each of the separate chromosome and plasmid targets. This is most likely the reason
why the fitted concentrations for the Ba plasmids decrease with increasing α, while the
concentrations for the draft genome strains stay approximately the same. The only solution
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to this problem is to modify the candidate target database so that draft assemblies and
finished genomes are treated the same: either by grouping genome elements for finished
genomes, or splitting the contigs in draft genomes into separate target sequences for each
chromosome and plasmid.

There are other potential ways to modify the identification/quantitation algorithm to
favor sparse sets of targets, and thus reduce ambiguity in identifying the microbial strains
that are present. One approach is to add an L∞ penalty to the Q function, i.e. a negative
term proportional to the number of targets with nonzero concentrations. Another is to
change the support of the latent index variable ti to exclude the case ti = m+ 1, indicating
that the probe is not bound to any target. This would remove the ability of the MIQ
algorithm to assign large mixture weights for the “unbound” target to high affinity probes
whose observed intensities deviate from the values predicted at some target concentration,
and thereby diminish their negative effect on the Q function value. Finally, we could replace
the EM iterations with a greedy likelihood maximization procedure, which would make
repeated scans through the candidate set to construct an “identified target list”. In each
scan, we would use the quantitation algorithm of Section 3.3 to fit a concentration for each
target in succession. We would then compute the resulting change in the log likelihood
(Equation 3.5) given the observed intensities, the fitted concentration, and the previously
identified targets, and add to the identified list the target yielding the greatest increase, or
terminate the scans if adding further targets would decrease the likelihood. This greedy
algorithm could be combined with the latent data model underlying the MIQ algorithm,
with the restriction that nonzero values for the mixture weights φij could only be assigned
to sequences in the identified target list. All of these approaches will be investigated as I
continue development of the MIQ algorithm.

3.5 Conclusions and future directions

In this dissertation, I have demonstrated methods of using detection microarray data to accu-
rately identify the microbial species present in a sample and produce quantitative estimates
of their abundances. Since my colleagues at Lawrence Livermore and elsewhere continue to
develop and find new applications for these microarrays, further refinements of my identifica-
tion and quantitation methods will be needed to support these applications. In the preceding
section, I proposed some changes to the MIQ algorithm to facilitate target identification at
the strain level. Additional improvements in sensitivity, specificity, and quantitation accu-
racy will require that we resolve some more global issues. I expect to address some of these
in the not too distant future, but some of them will have to be solved by my colleagues or
by outside entities.

One of the most basic requirements for any microbial detection assay, whether based
on microarrays, PCR, or DNA sequencing, is a well-curated reference sequence database
that includes metadata linking the elements (chromosomes, plasmids, and viral segments) of
microbial genomes, and linking genomes to taxonomy. A major effort is currently underway
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Figure 3.19: L1 penalized likelihood fits of candidate target concentrations to intensities on
array 7 in Latin square data set, plotted against the penalty parameter α. Correct targets
are indicated by solid lines, decoys by dashed lines. A horizontal dashed line indicates the
actual concentration of the true target.
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at the National Center for Biotechnology Information (NCBI), with input from the FDA,
to create such a database. This compendium of high quality genome sequences will greatly
enhance our ability to design microarray probes and predict what targets they will bind to.

Another key ingredient for measuring concentrations of microbial DNA is a set of accurate
affinities for the relevant probe-target pairs. In Chapter 2, I developed a scheme for predicting
hybridization free energies and affinities from probe and target sequences using a position-
dependent nearest-neighbor (PDNN) model. I fit the parameters in this model using data
from tiling array experiments that were designed for an entirely different purpose, namely,
validating arrays for SNP discovery. Ideally, the PDNN parameters would be fit to data
from a carefully designed experiment that included a wide range of probe-target mismatch
configurations, with a large number of probes for each target genome sequence, and with
target genomes spanning a wide range of percent GC contents.

I later compared the affinities predicted by the PDNN model to affinities that were
directly measured by hybridizing Thermotoga DNA to arrays at known concentrations. I
observed systematic deviations between the two sets of affinities, which seemed to depend on
the number and placement of mismatches between the probe and target sequences. It would
be useful to perform similar comparisons for additional sets of targets that were hybridized
at known concentrations, to further elucidate the issues with the PDNN model predictions.

In section 3.4.2, I noted that probes containing long G homopolymers frequently bound
nonspecifically to the majority of the samples we tested. The same is true for probes contain-
ing other types of low complexity sequences, such as tandem repeats. The LLMDA contains
several thousand other probes lacking low complexity sequences that have similar nonspecific
binding behavior. We refer to these as “sticky” or “promiscuous” probes. There is a growing
literature, reviewed in [Harrison 13], in which microarray researchers have identified probe
sequence patterns that correlate with promiscuous binding and other anomalous behaviors,
and attempted to explain them by physico-chemical models. This body of work needs to be
incorporated into a predictive model of probe-target hybridization, to augment the PDNN
model.

In conclusion, I believe that microbial detection microarrays have a promising future for a
variety of public health, environmental monitoring, energy, food and drug safety, and medical
applications. Robust analysis algorithms that can produce reliable, easily interpretable,
actionable information from their extremely complex signals will be essential for their success.
The work I’ve presented here is an important step toward making these algorithms possible,
and thus toward the evolution of microarrays from research tools into commonplace devices
for diagnosis and surveillance.
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Adolfo Garćıa-Sastre, Inmaculada Casas, Pilar Perez-Breña, Thomas
Briese & W Ian Lipkin. Detection of respiratory viruses and subtype identi-
fication of influenza A viruses by GreeneChipResp oligonucleotide microar-
ray. Journal of Clinical Microbiology, vol. 45, no. 8, pages 2359–2364,
August 2007.

[R D 11] R Development Core Team. R: A Language and Environment for Statistical
Computing, April 2011.

[Ratushna 05] Vladyslava G Ratushna, Jennifer W Weller & Cynthia J Gibas. Secondary
structure in the target as a confounding factor in synthetic oligomer mi-
croarray design. BMC Genomics, vol. 6, no. 1, page 31, 2005.

[Reed 03] William J Reed & Murray Jorgensen. The Double Pareto-Lognormal Distri-
bution - A New Parametric Model for Size Distributions. Communications
in Statistics - Theory & Methods, vol. 33, pages 1733–1753, 2003.

[Rehrauer 08] Hubert Rehrauer, Susan Schönmann, Leo Eberl & Ralph Schlapbach. Phy-
loDetect: a likelihood-based strategy for detecting microorganisms with di-
agnostic microarrays. Bioinformatics, vol. 24, no. 16, pages i83–9, August
2008.



99

[Ritchie 07] Matthew E Ritchie, Jeremy Silver, Alicia Oshlack, Melissa Holmes, Dileepa
Diyagama, Andrew Holloway & Gordon K Smyth. A comparison of back-
ground correction methods for two-colour microarrays. Bioinformatics,
vol. 23, no. 20, pages 2700–2707, October 2007.

[Roberts 12] Adam Roberts & Lior Pachter. Streaming fragment assignment for real-
time analysis of sequencing experiments. Nature Methods, vol. 10, no. 1,
pages 71–73, January 2012.

[Ruppert 03] D Ruppert, M P Wand & R J Carroll. Semiparametric Regression. Cam-
bridge, 2003.

[Sanger 77] F Sanger, S Nicklen & A R Coulson. DNA sequencing with chain-
terminating inhibitors. Proceedings of the National Academy of Sciences of
the United States of America, vol. 74, no. 12, pages 5463–5467, December
1977.

[SantaLucia 04] John SantaLucia & Donald Hicks. The thermodynamics of DNA structural
motifs. Annual Review of Biophysics and Biomolecular Structure, vol. 33,
pages 415–440, 2004.

[Sartor 04] Maureen Sartor, Jennifer Schwanekamp, Danielle Halbleib, Ismail Mo-
hamed, Saikumar Karyala, Mario Medvedovic & Craig R Tomlinson. Mi-
croarray results improve significantly as hybridization approaches equilib-
rium. BioTechniques, vol. 36, no. 5, pages 790–796, May 2004.

[Schena 95] M Schena, D Shalon, R W Davis & P O Brown. Quantitative monitoring of
gene expression patterns with a complementary DNA microarray. Science,
vol. 270, no. 5235, pages 467–470, October 1995.

[Silver 09] J D Silver, M E Ritchie & G K Smyth. Microarray background correc-
tion: maximum likelihood estimation for the normal-exponential convolu-
tion. Biostatistics, vol. 10, no. 2, pages 352–363, August 2009.

[Smyth 03] Gordon K Smyth, Yee Hwa Yang & Terry Speed. Statistical issues in cDNA
microarray data analysis. Methods in Molecular Biology, vol. 224, pages
111–136, 2003.

[Taub 09] Margaret Taub. Analysis of high-throughput biological data: some statisti-
cal problems in RNA-seq and mouse genotyping. PhD thesis, UC Berkeley,
December 2009.

[Upton 08] Graham Jg Upton, William B Langdon & Andrew P Harrison. G-spots
cause incorrect expression measurement in Affymetrix microarrays. BMC
Genomics, vol. 9, page 613, 2008.



100

[Urisman 05] Anatoly Urisman, Kael F Fischer, Charles Y Chiu, Amy L Kistler,
Shoshannah Beck, David Wang & Joseph L DeRisi. E-Predict: a computa-
tional strategy for species identification based on observed DNA microarray
hybridization patterns. Genome Biology, vol. 6, no. 9, page R78, 2005.

[Vandenvelde 90] C Vandenvelde, M Verstraete & D Van Beers. Fast Multiplex polymerase
chain reaction on boiled clinical samples for rapid viral diagnosis. Journal
of Virological Methods, vol. 30, no. 2, pages 215–227, November 1990.

[Victoria 10] Joseph G Victoria, Chunlin Wang, Morris S Jones, Crystal Jaing, Kevin
McLoughlin, Shea Gardner & Eric L Delwart. Viral nucleic acids in live-
attenuated vaccines: detection of minority variants and an adventitious
virus. Journal of Virology, vol. 84, no. 12, pages 6033–6040, June 2010.

[Wang 02] David Wang, Laurent Coscoy, Maxine Zylberberg, Pedro C Avila, Homer A
Boushey, Don Ganem & Joseph L DeRisi. Microarray-based detection and
genotyping of viral pathogens. Proceedings of the National Academy of
Sciences of the United States of America, vol. 99, no. 24, pages 15687–
15692, November 2002.

[Wang 03] David Wang, Anatoly Urisman, Yu-Tsueng Liu, Michael Springer,
Thomas G Ksiazek, Dean D Erdman, Elaine R Mardis, Matthew Hick-
enbotham, Vincent Magrini, James Eldred, J Phillipe Latreille, Richard K
Wilson, Don Ganem & Joseph L DeRisi. Viral discovery and sequence
recovery using DNA microarrays. PLoS Biology, vol. 1, no. 2, page E2,
November 2003.

[Watson 07] Michael Watson, Juliet Dukes, Abu-Bakr Abu-Median, Donald P King
& Paul Britton. DetectiV: visualization, normalization and significance
testing for pathogen-detection microarray data. Genome Biology, vol. 8,
no. 9, page R190, 2007.

[Zhang 03] Li Zhang, Michael F Miles & Kenneth D Aldape. A model of molecular
interactions on short oligonucleotide microarrays. Nature Biotechnology,
vol. 21, no. 7, pages 818–821, July 2003.




