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Abstract 

Novel Vaccine Immunogens from Rare HIV-1 Controllers that 
Possess Broadly Neutralizing Antibodies 

 
Jennie M. Hutchinson 

 

After over 35 years of research, a prophylactic HIV vaccine remains elusive. 

However, the discovery of potent broadly neutralizing antibodies (bNAbs) in some 

individuals (elite neutralizers) and other individuals that control HIV infection 

without anti-retroviral drugs (controllers) have renewed optimism that an effective 

vaccine may be possible. The production of bNAbs does not correlate with improved 

disease outcomes because they take too long to develop and the virus typically 

outpaces the antibody response. However, passive transfer of bNAbs prior to 

infection is protective in non-human primate models. Thus, a vaccine capable of 

eliciting bNAbs prior to infection may provide protective immunity. The sole target 

of bNAbs is the viral spike, a trimer of envelope glycoproteins (Env). Although it is 

now possible to produce recombinant Envs with epitopes that bind bNAbs, these have 

failed to elicit bNAbs. Epitopes recognized by bNAbs are inherently poor 

immunogens due to the densely packed glycan shield that covers the majority of the 

surface. Previous HIV vaccines were based on Envs without regard for the immune 

response in virus donors. Here, for the first time, we studied Envs from two rare 

individuals that controlled viral load and produced bNAbs. From each individual, 

envs were cloned and used to construct 20 pseudotype viruses. These were then 

screened for neutralization sensitivity against a panel of prototypic monoclonal 
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bNAbs. Comparative sequence analysis revealed two features that may have 

contributed to the robust immune response:  (1) a major reduction (35%) in the 

number of potential N-linked glycosylation sites in gp120 and (2) two extra cysteine 

residues in the V1/V2 region. One env from each individual was expressed and used 

for antibody binding assays and rabbit immunization studies. Antibody responses to 

the novel immunogens were compared to MN rgp120, used in the only clinical trials 

that has shown efficacy in humans. A minimally glycosylated immunogen elicited an 

improved cross-reactive neutralization response compared to other clade B Envs, 

including MN. This work demonstrated that Envs from individuals with the elite 

neutralizer/controller phenotype possess unusual structural features that may have 

enhanced the immune response and represent a new source of HIV vaccine 

immunogens.  
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Introduction 

In 1983, human immunodeficiency virus (HIV) was isolated and identified as the 

pathogen causing acquired immunodeficiency syndrome (AIDS)(Barre-Sinoussi et 

al., 1983). After over 35 years of global prevention and treatment efforts, HIV 

remains a significant public health crisis. Since the start of the pandemic, 75 million 

people have been infected with HIV and 32 million have died from AIDS-related 

illnesses (UNAIDS, 2019a). Like all infectious diseases, HIV/AIDS 

disproportionately impacts the most disadvantaged members of society. Globally, 

AIDS-related illnesses are the leading cause of death in women of reproductive age 

(UNAIDS, 2019a). In the United States, black Americans face an increased burden 

primarily due to socio-economic status and mass incarceration (Shrage, 2016), 

composing 41% of new HIV infections despite representing only 12% of the 

population (CDC, 2018). While black American women tend to have the same, if not 

safer sex practices (Hallfors et al., 2007; Reece et al., 2010), they are twenty-times as 

likely to become infected with HIV than their white counter parts due to social 

injustices (CDC, 2018). Disparities across the continuum of care make a prophylactic 

vaccine the most viable solution for HIV eradication and research efforts should focus 

on the most affected communities (Fauci, 2017). 

 

Challenges to developing an HIV-1 envelope subunit vaccine 

A primary goal of HIV-1 vaccine design is to produce an immunogenic HIV-1 

envelope glycoprotein (Env), the sole target of neutralizing antibodies. This has 
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proved a formidable challenge due to viral adaptations to evade the immune system. 

The HIV virion surface is primarily composed of host-derived plasma membrane with 

a sparse number (7 – 14) of conformationally dynamic viral spikes (Zhu et al., 2006). 

The viral spike is a homotrimer of gp160s (Envs) that have been cleaved by furin into 

non-covalently linked heterodimers of gp120 and gp41 (Seabright et al., 2019). The 

gp41 portion is membrane-bound and also present on the virion surface as gp41 

“stumps,” which act as a decoy for immune recognition (Seabright et al., 2019). 

Similarly, non-functional monomeric gp120 are shed by the virus (Seabright et al., 

2019). The extracellular gp120 is described by five constant regions (C1 – C5) and 

five variable regions (V1 – V5). All published crystal structures of Env show gp120 

with 18 cysteine residues that form 9 disulfide bonds and typically have 25 – 26 N-

linked glycans (Behrens et al., 2016; Lasky et al., 1986; Wei et al., 2003). These host-

produced glycans compose half the mass of gp120 and form a “glycan shield” that is 

poorly immunogenic (Behrens et al., 2016; Lasky et al., 1986; Wei et al., 2003). Env 

glycans are not fully processed due to steric hindrance (Doores et al., 2010) resulting 

in high-mannose glycoforms. Variations in glycoforms and glycan occupancy 

significantly alter antigenic structures (Rudd and Dwek, 1997). 

HIV exhibits unprecedented viral diversity. There are two major types, HIV-1 

and HIV-2, which likely emerged from distinct zoonosis events from chimpanzee 

viruses (CPZ) and simian immunodeficiency virus (SIV), respectively (Korber et al., 

2001). HIV-1 is substantially more prevalent and further divided into groups M, N, 

and O. More than 90% of HIV-infections are from HIV-1 group M, which includes 
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clades A – K and circulating recombinant forms (CRF)(Korber et al., 2001). There is 

wide variability even within one person at a single timepoint, where genetic diversity 

is comparable to global influenza in a given year (Korber et al., 2001). HIV’s 

extraordinary genetic heterogeneity is due to error-prone reverse transcription, fast 

replication, and frequent recombination (Perelson et al., 1996; Preston et al., 1988; 

Zhang et al., 2010). In addition, viral RNA is integrated into the host genome, 

creating a latent reservoir that can reseed infection with ancestral variants. 

 

Antibody response to HIV infection 

HIV infection is initiated by one or a few transmitter/founder viruses (T/F)(Derdeyn 

et al., 2004; Keele et al., 2008). Cell entry requires gp120 binding to the CD4 receptor 

and a co-receptor, either CCR5 and/or, later in disease progression, CXCR4 

(Seabright et al., 2019). Non-neutralizing antibodies targeting gp41 develop 1 – 2 

weeks after infection (Mikell et al., 2011), followed by gp120-specific antibodies that 

often target the V3 loop (Tomaras et al., 2008) and CD4-binding site (Lynch et al., 

2012). These initial non-neutralizing antibodies elicit cell-mediated responses, 

including antibody-dependent cellular cytotoxicity and other antiviral activity (Baum 

et al, 1996). The first neutralizing antibodies that appear are strain-specific and can 

neutralize some, but not all, autologous virus (Wei et al., 2003). The virus evolves 

quickly, escaping the antibody response and driving formation of antibodies 

recognizing new epitopes. There are continual rounds of viral escape and antibody 

maturation, with the virus usually outpacing the immune response (Bhiman et al., 
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2015; Bonsignori et al., 2016; Doria-Rose et al., 2014; Euler et al., 2010; Freund et 

al., 2017; Wu et al., 2010; Zhou et al., 2013). After 1 – 3 years, the virus usually 

undergoes extensive diversification and broadly neutralizing antibodies (bNAbs) 

emerge in ~30% of people (Sather et al., 2009). 

 There are significant challenges to developing bNAbs. Antibodies must 

penetrate or bind to the glycan shield (Doria-Rose et al., 2009; Euler et al., 2010; 

Hraber et al., 2014; van Gils et al., 2009). Production of glycan-targeting antibodies 

requires bypassing a negative selection process designed to prevent auto-reactive 

antibodies (Wardemann et al., 2003). Binding affinity to glycans tends to be lower 

(Cohen, 2015) and bNAbs usually require multivalent interactions (Kong et al., 

2013). The extensive antibody maturation process prior to neutralization breadth can 

result in antibodies with unusual characteristics, including long CDRH3 regions and 

high level of somatic hypermutation (Andrabi et al., 2015; Klein et al., 2013). Despite 

these obstacles, half of individuals produce antibodies with significant cross reactivity 

(Hraber et al., 2014), suggesting that it is possible that a vaccine could elicit bNAbs. 

Less than 1% of individuals are elite neutralizers, defined by having sera with 

highly potent cross-reactive neutralization activity, able to neutralize viruses from a 

least four different clades at an average dilution of 1:300 or greater (Simek et al., 

2009). However, even in these individuals, neutralization breadth does not correlate 

with improved disease outcomes (Bhiman et al., 2015; Bonsignori et al., 2016; Doria-

Rose et al., 2014; Euler et al., 2010; Freund et al., 2017; Piantadosi et al., 2009; Wu et 

al., 2010; Zhou et al., 2013). While bNAbs do not provide protection in natural 
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infection, passive immunization studies in non-human primates have demonstrated 

that bNAbs can provide protective immunity (Baba et al., 2000; Hessell et al., 2010, 

2009; Mascola et al., 2000, 1999; Moldt et al., 2012; Parren et al., 2001; Shibata et 

al., 1999). Thus, a vaccine capable of eliciting potent bNAbs, like those found in elite 

neutralizers, remains a primary goal. 

 

Viral control 

Some individuals control HIV infection and maintain low viral loads, which correlate 

with slow disease progression (Okulicz et al., 2009). There are multiple biological 

mechanisms that contribute to viral control but vary from patient to patient (Lambotte 

et al., 2009; Pereyra et al., 2008). Human leukocyte antigen alleles that encode for the 

major histocompatibility complex proteins account for ~15% of individuals with low 

viral load (Fellay et al., 2009) through improved presentation of immunogenic 

structures and interactions with natural killer cells (Tomescu et al., 2012). Cell-

mediated responses also play a significant role, primarily through CD8+ T cell 

responses (Leitman et al., 2017b; Pereyra et al., 2014) and antibody-mediated cellular 

cytotoxicity (Ackerman et al., 2016; Baum et al., 1996; Johansson et al., 2011; 

Lambotte et al., 2009; Madhavi et al., 2017). Virological factors can lead to viral 

control, such as infection with attenuated strains (Lassen et al., 2009; Pereyra et al., 

2008). Ongoing research efforts seek to further elucidate pathways to viral control, 

the closest manifestation of natural immunity. 
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Current strategies for developing HIV envelope subunit vaccine 

To date, vaccine candidates have failed to consistently elicit the production of bNAbs 

and multiple strategies are being explored to enhance immunogenicity (Andrabi et al., 

2018; Gilbert et al., 2010; Kwong and Mascola, 2018; Lian et al., 2005; Mascola et 

al., 1996; Montefiori et al., 2012). Extensive research has led to the production of 

trimeric Envs with antigenic structures capable of binding to all major classes of 

bNAbs, i.e., those that target V2-glycans, V3-glycans, CD4-binding site, membrane 

proximal external region (MPER), and gp120-gp41 interface (Julien et al., 2013a; Sok 

and Burton, 2018). However, these trimeric Envs have so far failed to consistently 

elicit bNAbs in immunization studies. Sequential immunizations strategies are being 

employed to improve immunogenicity and direct the neutralization response to sites 

of vulnerability. One strategy is based on longitudinal studies examining the co-

evolution of Envs and antibody maturation pathway of bNAbs, where immunogens 

are designed to mimic viral evolution in an attempt to recapitulate the corresponding 

bNAb ontogeny (de Taeye et al., 2016). An alternative strategy is to use 

deglycosylated Env trimers, which have been shown to increase immunogenicity, 

followed by boosts with Envs containing additional glycans (Dubrovskaya et al., 

2019). Another approach is using properly folded and glycosylated Env scaffolds in 

order to focus the antibody response to neutralizing epitopes and limit responses to 

non-neutralizing immunodominate regions (Chung et al., 2012; Hoffenberg et al., 

2013; Morales et al., 2014a, 2016; Ofek et al., 2010, 2010; Yu et al., 2012). 



 7 

Here, we explore a new source of potentially immunogenic Envs, those 

isolated from ART-naïve viral controllers that produce bNAbs. The majority of Envs 

that have been studied were derived from individuals without regard for disease 

phenotype in the virus donor. Envs isolated from elite neutralizers may share 

immunogenic features that induced the production of potent bNAbs but antigen 

selection is challenging due to viral diversification. To overcome this, we looked for 

elite neutralizers that maintained viral control, reasoning that the smaller viral 

population with less Env diversity may result in the identification of Envs that are 

more closely related to those that induced bNAbs. In addition, Envs from viral 

controllers may have other immunogenic features that contributed to antiviral 

activity. However, it was unclear if we could obtain samples from ART-naïve 

individuals with the elite neutralizer/controller phenotype. ART-naïve samples are 

increasingly rare because the current standard of care includes ART shortly after 

diagnosis. Also, it has previously been reported that viral controllers have less 

neutralization breadth (Doria-Rose et al., 2010). Identification of individuals with the 

elite neutralizer/controller phenotype required extensive screening for neutralization 

breadth in 136 archival samples from ART-naïve viral controllers in the SCOPE and 

WIHS longitudinal studies. For the first time, we have characterized Envs from 

individuals with the elite neutralizer/controller phenotype and found structural 

features that may have contributed to their robust immune response. These studies 

demonstrate that Envs isolated from the elite neutralizer/controller phenotype are a 

promising new source for HIV immunogens. 
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Chapter 1:  SCOPE cohort study 

 

Unusual Cysteine Content in V1 Region of gp120 From an Elite Suppressor That 

Produces Broadly Neutralizing Antibodies 

 

Published in Frontiers Immunology, 15 May 2019 

 

Authors:  Jennie M. Hutchinson1, Kathryn A. Mesa1, David L. Alexander1, Bin Yu1, 

Sara M. O’Rouke1, Kay L. Limoli2, Terri Wrin2, Steven G. Deeks3, and Phillip W. 

Berman1 

 

Affiliations:  1Department of Biomolecular Engineering, University of California, 

Santa Cruz, Santa Cruz, CA, United States, 2Monogram Biosciences, South San 

Francisco, CA, United States, 3Department of Medicine, University of California, San 

Francisco, San Francisco, CA, United States 
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Abstract 

Although it is now possible to produce recombinant HIV envelope glycoproteins 

(Envs) with epitopes recognized by the 5–6 major classes of broadly neutralizing 

antibodies (bNAbs), these have failed to consistently stimulate the formation of 

bNAbs in immunized animals or humans. In an effort to identify new immunogens 

better able to elicit bNAbs, we are studying Envs derived from rare individuals who 

possess bNAbs and are able to control their infection without the need for anti-

retroviral drugs (elite supressors or ES), hypothesizing that in at least some people the 

antibodies may mediate durable virus control. Because virus evolution in people with 

the ES only phenotype was reported to be limited, we reasoned the Env proteins 

recovered from these individuals may more closely resemble the Envs that gave rise 

to bNAbs compared to the highly diverse viruses isolated from normal progressors. 

Using a phenotypic assay, we screened 25 controllers and identified two for more 

detailed investigation. In this study, we examined 20 clade B proviral sequences 

isolated from an African American woman, who had the rare bNAb/ES phenotype. 

Phylogenetic analysis of proviral envelope sequences demonstrated low genetic 

diversity. Envelope proteins were unusual in that most possessed two extra cysteines 

within an elongated V1 region. In this report, we examine the impact of the extra 

cysteines on the binding to bNAbs, virus infectivity, and sensitivity to neutralization. 

These data suggest structural motifs in V1 can affect infectivity, and that rare viruses 

may be prevented from developing escape. 
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Introduction 

Despite the widespread availability of anti-retroviral drugs, recent studies suggest that 

an HIV vaccine will still be required to control and eliminate the spread of this virus 

(Fauci, 2017; Medlock et al., 2017). Over the last decade, evidence has accumulated 

from passive immunization studies to suggest that a vaccine that elicits broadly 

neutralizing antibodies (bNAbs) to the HIV envelope glycoprotein (Env), prior to 

infection, can provide protective immunity against HIV (Barouch et al., 2013; 

Bournazos et al., 2014; Caskey et al., 2015; Jacobson et al., 1993; Klein et al., 2014; 

Ledgerwood et al., 2015; Shingai et al., 2014, 2013; Stiegler et al., 2002). Although 

considerable progress has been made in developing immunogens, such as properly 

folded trimeric Envs (Derking et al., 2015; Georgiev et al., 2015; Julien et al., 2013a; 

McLellan et al., 2011; Pejchal et al., 2011; Sanders et al., 2015; Sok et al., 2014; 

Yang et al., 2018) that accurately replicate the antigenic structures of the 5–6 major 

epitopes recognized by bNAbs (Kwong and Mascola, 2012; van Gils and Sanders, 

2013; Walker et al., 2010), none have been effective in eliciting protective 

neutralizing antibodies (Andrabi et al., 2018; Gilbert et al., 2010; Kwong and 

Mascola, 2018; Lian et al., 2005; Mascola et al., 1996; Montefiori et al., 2012). Thus, 

while the immunogens developed to date possess the proper antigenic structure, the 

epitopes themselves appear to be poorly immunogenic, and we have not yet replicated 

the immunogenic structure required to elicit bNAbs. 

A number of different strategies are being pursued to improve recombinant 

Env immunogenicity. One approach involves immunization with properly folded and 
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glycosylated fragments of Env proteins (Chung et al., 2012; Hoffenberg et al., 2013; 

Morales et al., 2014a, 2016; Yu et al., 2012) in hopes of selectively stimulating the 

formation of bNAbs, while precluding the possibility of stimulating antibodies to 

immunodominant non-neutralizing epitopes. A second approach to this problem has 

been to employ guided immunization strategies, using a prime-boost series that 

reconstruct the ontogeny of bNAb evolution (Andrabi et al., 2018; Bonsignori et al., 

2016; Escolano et al., 2016; Gao et al., 2014; Kwong and Mascola, 2018; Liao et al., 

2013; Pancera et al., 2017). A third approach considers the possibility that Envs 

recovered from rare individuals with high levels of bNAbs, termed elite neutralizers 

(ENs), may be more effective in eliciting bNAbs than Envs from normal progressors 

that failed to produce bNAbs. However, the task of antigen selection from ENs is 

complicated by the fact that bNAbs are typically detected 2 years or more after 

infection (Gray et al., 2011; Landais et al., 2016). By this time, Env sequences have 

diversified considerably and most circulating plasma viruses are enriched for 

neutralization resistant variants (Albert et al., 1990; Wei et al., 2003). Thus, finding 

the precursor envelope sequences likely to have elicited bNAbs in an EN is a 

formidable challenge. 

Here, we consider whether Env proteins closely resembling those that 

stimulated the formation of bNAbs can be recovered from rare individuals where 

virus evolution has been restricted or slowed, but still possess bNAbs. Previous 

studies have reported that virus evolution is considerably limited in individuals 

termed elite suppressors (ES) that are defined by their ability to limit virus replication 
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without the need for antiretroviral drugs (Bailey et al., 2006; Bello et al., 2007, 2004; 

Casado et al., 2010; Lassen et al., 2009; Roy et al., 2017; Sandonís et al., 2009; 

Scutari et al., 2018; Smith et al., 2013; Wang et al., 2003). Less than 1% of HIV-

positive individuals possess the ES phenotype, meaning their viral load is less than 

detectable levels, i.e., <50 or <75 RNA copies/ml, for more than a year without anti-

retroviral treatment (Okulicz et al., 2009). The ability to control viral load correlates 

with improved disease outcomes but the mechanism remains unclear. ESs exhibit 

heterogeneous immune responses but virus-specific CD8+ T cell responses appear to 

be a dominant feature (Lassen et al., 2009; Leitman et al., 2017a, 2017b; Pereyra et 

al., 2014, 2008; Walker and Yu, 2013). ESs typically have viral populations with both 

limited genetic diversity and lower replication rates than normal progressors, 

including ENs (Bailey et al., 2006; Bello et al., 2007, 2004; Casado et al., 2010; 

Lassen et al., 2009; Roy et al., 2017; Sandonís et al., 2009; Scutari et al., 2018; Smith 

et al., 2013; Wang et al., 2003). In addition, HIV in ESs may be constrained due to 

their fitness landscape, where mutational escape is limited due to the high fitness cost 

of mutations (Bailey et al., 2006; Brumme et al., 2011; Fernàndez et al., 2007; Lassen 

et al., 2009; Lobritz et al., 2011; Miura et al., 2009; Mwimanzi et al., 2013; Zaunders 

et al., 2011). Although most ESs fail to produce bNAbs, rare individuals possess 

bNAbs with neutralization breadth and exhibit the ES phenotype (bNAbs/ES 

phenotype). The restrictions on virus evolution in these individuals raised the 

possibility that Envs from individuals with the bNAb/ES phenotype may be more 

closely related to those that elicited the production of bNAbs than normal progressors 
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with the EN phenotype. Therefore, we wondered if Env proteins from ESs that 

produce bNAbs might be enriched for unusual structural features, possibly related to 

epitope stabilization, antigen processing, or antigen presentation, that may have 

enhance immunogenicity leading to the formation of bNAbs. Here, we describe the 

recovery of 20 functional proviral sequences isolated from an individual who is an 

elite suppressor (viral load <75 HIV RNA copies/ml for over 4 years) and possesses 

bNAbs. We show that the majority of these sequences possess an unusual number of 

cysteines that may form an additional disulfide bond. 

 

Materials and Methods 

Clinical Specimens 

Twenty-nine blinded archival plasma specimens (0.5–2.0 ml) from anti-retroviral 

therapy (ART) naïve men and women were obtained from the SCOPE study cohort 

(University of California, San Francisco, San Francisco, CA). Twenty-five of the 

specimens were from individuals previously identified as elite supressors (<75 HIV 

RNA copies/ml for 12+ months without ART). Four specimens were from normal 

progressors. Specimens were collected according to an Institutional Review Board 

(IRB) approved protocol for which study participants provided written consent and 

were seen at regular intervals. At each visit, subjects took a confidential 

questionnaire, were invited to participate in a medical exam for additional studies, 

and a blood sample was taken. After screening plasma for virus neutralizing 

antibodies (described below) an archival contemporaneous sample of non-viable 
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PBMCs was obtained from an individual (designated as “EN3”) with the dual ES and 

broadly neutralizing antibody phenotype for sequence analysis. 

Samples from a separate cohort, which included patient “EN1,” were collected 

by a physician under an Institutional Review Board (IRB) approved protocol from 

volunteers attending a regional center for recruitment in the San Francisco Bay Area. 

Inclusion criteria stipulated HIV-positive men and women 18–65 years of age, HIV 

ELISA or Western Blot positive for at least 1 year prior to screening, and who have 

never received anti-retroviral therapy (including post-exposure prophylaxis). An 

initial 10 mL of blood was collected into two EDTA tubes and plasma were aliquoted 

into cryovials and tested for bNAbs (described below). Four individuals with high 

titers of bNAbs were asked to participate in a 500 mL blood draw in a clinical setting. 

The blood was processed by a commercial laboratory using standard techniques and 

the PBMCs and plasma were separated, aliquoted, and cryopreserved under 

conditions that preserved plasma virus RNA and cell associated provirus DNA. The 

specimens were stored at −80°C until further analysis. 

 

Screen for Neutralization Breadth 

Plasma samples were tested for virus neutralizing activity at Monogram Biosciences 

(South San Francisco, CA) in a standard pseudotype virus neutralization assay 

(PhenoSense®) using a panel of either 22 or 26 international isolates widely used in 

HIV vaccine research. Briefly, pseudotype viruses were prepared by cotransfecting 

HEK293 cells (American Type Culture Collection [ATCC], Manassas, VA) with an 
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Env expression vector and an Env-deficient HIV-1 genomic vector carrying a 

luciferase reporter gene. Serial dilutions of mAbs or plasmas/sera were incubated 

with pseudotype viruses for 1 h prior to addition of U87 cells expressing CD4, CCR5, 

and/or CXCR4. The Z23 serum was used at an initial dilution of 1/100 and was 

included as an internal control in all experiments. Neutralization data are reported as 

50% inhibitory dilutions (ID50s) for serum or plasma calculated from 5 point serum 

dilution curves. The virus controls included pseudoviruses prepared from the 

neutralization-sensitive HIV-1 isolate NL4-3 and the less neutralization-sensitive 

primary isolate JRCSF. The negative-control virus consisted of pseudotype viruses 

prepared from the envelope of the amphotropic murine leukemia virus (aMLV). HIV-

1 neutralization titers were considered significant only if they were >3 times higher 

than the aMLV titers. The neutralization assays were performed according to good 

laboratory practice (GLP) and using protocols approved under Clinical Laboratory 

Improvement Amendments (CLIA). Each assay included acceptability criteria to 

ensure that inter-assay variation between ID50s, measured with reference standards, 

fell within 2.5-fold 95% of the time (Petropoulos et al., 2000). 

 

Recovery of Env Sequences and Tropism Assay 

An attempt was made to recover virus sequences from plasma and PBMCs from EN3. 

Due to the low copy number, the PhenoSense® assay system of Monogram 

Biosciences was unable to recover full-length functional clones of HIV envelope 

genes from plasma. However, full-length functional clones of HIV envelope genes 
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were recovered from provirus DNA in PBMCs. A unique feature of Monogram 

Biosciences' assay system is a selection step for functional Envs that eliminates 

defective and noninfectious envelope sequences common in proviral specimens. Viral 

tropism was determined using the Trofile® DNA assay system from Monogram 

Biosciences. The DNA sequences of the resulting clones were determined by Sanger 

chain termination sequencing and analyzed for genetic clade using the Recombinant 

Identification Program (RIP) HIV clade assignment tool (Siepel et al., 1995). 

 

Phylogenetic Analyses 

The gp160 sequences were aligned in Geneious v5.6.7 (Kearse et al., 2012) using the 

MUSCLE algorithm (Edgar, 2004). The sequence of the JRCSF isolate of HIV was 

designated as the outgroup. The evolutionary history was inferred by using the 

Maximum Likelihood method based on the General Time Reversible model (Nei and 

Kumar, 2000). The tree with the highest log likelihood (−8098.9704) is shown. The 

percentage of trees in which the associated taxa clustered together is shown next to 

the branches. Initial tree(s) for the heuristic search were obtained automatically by 

applying the Neighbor-Joining method to a matrix of pairwise distances estimated 

using the Maximum Composite Likelihood (MCL) approach. A discrete Gamma 

distribution was used to model evolutionary rate differences among sites [5 categories 

(+G, parameter = 0.3273)]. The tree is drawn to scale, with branch lengths measured 

in the number of substitutions per site. The analysis involved 32 proviral nucleotide 

sequences (20 from EN3, 11 from EN1, an elite neutralizer with normal progression, 
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and JRCSF). All positions with <95% site coverage were eliminated. That is, fewer 

than 5% alignment gaps, missing data, and ambiguous bases were allowed at any 

position. There were a total of 2505 positions in the final dataset. Evolutionary 

analyses were conducted in MEGA6 (Tamura et al., 2013). 

 

Expression of Recombinant gp120 

Codon-optimized gene sequences were used for the expression of gp120. Synthetic 

gp120 genes (Invitrogen Inc., Waltham, MA) were inserted into an in-house plasmid 

expression vector (pCF1) containing a CMV promoter using standard techniques. 

PCR site-directed mutagenesis was performed to create variants of gp120 using a 

standard protocol for Gibson Assembly (New England Biolabs, Inc, Ipswich, MA). 

Recombinant plasmid sequences were confirmed by Sanger sequencing (University 

of California Sequencing Facility, Berkeley, CA). DNA was extracted and purified 

with a maxiprep kit (Qiagen, Redwood City, CA). For gp120 expression studies, 

envelope genes were transiently transfected into a HEK293 cell variant lacking the 

enzyme N-acetylglucosaminyltransferase I (HEK293S GnTI-, ATCC® CRL-

3022TM)(Morales et al., 2014a). The cells were transfected using polyethylenimine, 

grown in serum free cell culture medium (FreeStyle TM 293F; Invitrogen, Inc., 

Waltham, MA), and harvested after 5 days of growth. The gp120 proteins were 

expressed as fusion proteins that possessed an N-terminal flag epitope of 27 amino 

acids from herpes simplex virus 1 glycoprotein D (gD-1) as described previously 

(Berman et al., 1999; Rerks-Ngarm et al., 2009). 
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Immunoblots 

Growth conditioned cell culture supernatants with and without 25 mM DTT were 

analyzed for identity and molecular mass on 8–12% NuPage SDS-PAGE gel in MES 

running buffer and transferred to a PDVF membrane using standard protocol for iBlot 

(ThermoFisher Scientific, Waltham, MA). Membrane was blocked in 5% milk 

overnight on shaker at room temperature then washed 3 times with phosphate buffer 

saline with 0.01% Tween 20 (PBST; Sigma-Aldrich, St. Louis, MO) for 10 min. 

Membrane was probed with 5 µg/ml rabbit polyclonal anti-rgp120 antibody from 

previous immunization study (PB94)(Berman et al., 1999) in 5% milk for 2 h on 

shaker at room temperature, washed, then probed with 1:5,000 dilution of HRP-

conjugated anti-rabbit secondary antibody (Jackson ImmunoResearch, West Grove, 

PA) in 5% milk for 2 h on shaker at room temperature and washed again. Antibody 

was detected using WesternBright reagents (Advansta, Menlo Park, CA) and 

visualized using an Innotech FluoChem2 system (Genetic Technologies Grover, 

MO). 

 

Antibody Binding Assays 

A fluorescent immunoassay (FIA) was used to measure antibody binding. Briefly, 96 

well plates (Greiner, Bio-One, USA) were coated with 60 µl per well of 2 µg/ml of 

mouse anti-gD antibody (34.1) in phosphate buffer saline (PBS) overnight. Plates 

were blocked by adding 100 µl per well of 1% bovine serum albumin (BSA) in PBS 

on a shaker for 2 h at room temperature. Plates were then washed four times with 100 
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µl per well of PBST. Sixty microliter of supernatant was added and incubated 

overnight at 4°C then washed again. Serial 1:3 dilutions of monoclonal human 

antibody in PBS were added to each well and incubated for 90 min on a rocker at 

room temperature then washed again. Plates were then probed with 100 µl per well of 

Alexa Fluor 488 goat anti-human IgG secondary antibody (ThermoFisher Scientific, 

Waltham, MA) at a 1:5,000 dilution in 1% BSA PBS for 90 min on a rocker at room 

temperature then washed again. Antibodies were detected by adding 50 µl per well of 

PBS and visualizing at 495 nm. FIA was performed in triplicate. 

 

Virus Neutralization Assays 

Envelope gene sequences recovered from provirus clones were chemically 

synthesized de novo. Synthetic wild type (WT) non-codon-optimized gp160 gene 

sequences (Invitrogen Inc., Waltham, MA) were inserted into an in-house plasmid 

expression vector (pCF1) containing a CMV promoter using standard techniques. 

PCR site-directed mutagenesis was performed to create variants of gp160 using a 

standard protocol for Gibson Assembly (New England Biolabs, Inc, Ipswich, MA). 

Recombinant plasmid sequences were confirmed by Sanger sequencing (University 

of California Sequencing Facility, Berkeley, CA). DNA was extracted and purified 

with a maxiprep kit (Qiagen, Redwood City, CA). The plasmids were transferred to 

Monogram Biosciences (South San Francisco, CA) for testing in a pseudotype virus 

neutralization assay (PhenoSense®). The pseudotype viruses were tested for 

sensitivity and resistance to neutralization by antibodies in autologous 
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contemporaneous plasma, as well as a panel of broadly neutralizing antibodies 

provided by the NIH AIDS Reagent Program, Polymun Scientific (Vienna, Austria), 

and Dr. Dennis Burton (Scripps Clinic and Research Institute, La Jolla, CA). The 

neutralizing antibody titer (IC50) for monoclonal antibodies is defined as the 

concentration of purified mAb (µg/L) that produces a 50% reduction in target cell 

infection. 

 

Results 

Identification of a Treatment-Naïve Elite Suppressor With Neutralization 

Breadth 

Twenty-nine plasma specimens from ART-naïve individuals were obtained from the 

SCOPE Study cohort (University of California, San Francisco) and screened for 

neutralization breadth with a panel of 22 international virus isolates from five 

different genetic clades (Table 1.1). Twenty-five of the plasma specimens were from 

individuals previously identified as elite supressors (ESs) and four specimens were 

from normal progressors. One specimen from a normal progressor (Z23) from a 

different cohort previously identified as possessing broad and potent neutralizing 

antibodies was used as a positive control. The panel included 5 viruses reported by 

Simek et al. (Simek et al., 2009) previously used to screen for elite neutralizers. Two 

specimens isolated from elite suppressors, EN2 and EN3, were effective in 

neutralizing 17 or 18 of the 22 viruses in the panel (respectively). Based on this result 

and the availability of clinical specimens, we selected one individual (EN3) for 
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further study. EN3 is an African American woman who was 47 years old and HCV 

negative at the time of collection. Clinical data showed EN3 possessed < 75 HIV 

RNA copies/ml for over 4 years. Plasma from EN3 was tested against an expanded 

panel of viruses and was capable of neutralizing 69% of viruses tested from clades A, 

B, C, D, and AE, with some ID50 titers above 300 (Table 1.2). 
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Table 1.1. Screening of 25 Elite Suppressors and 4 Normal Progressors for 
Neutralization Breadth. 
 
Patient samples exhibiting control of virus replication without anti-retroviral therapy 
were obtained from the SCOPE cohort (University of California, San Francisco) and 
were screened using Monogram Biosciences’ PhenoSense® neutralization assay for 
breadth against a panel of 22 internationally recognized viruses. Each assay included 
acceptability criteria to ensure that inter-assay variation between IC50s, measured 
with reference standards, fell within 2.5-fold 95% of the time. The neutralizing 
antibody titer (IC50) is defined as the reciprocal of the plasma dilution that produces 
a 50% inhibition in target cell infection. Values in grey represent neutralization titers 
that are at least three times greater than those observed against the negative control 
(aMLV).  The clade B NL4-3 and JRCSF viruses were included as CXCR4- and 
CCR5-dependent positive controls, respectively. Z23 is a reference serum possessing 
broadly neutralizing antibodies. 
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Table 1.2. Expanded pseudovirus panel to define neutralization breadth in elite 
suppressor (EN3). 
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Phylogenetic Analysis of an Elite Suppressor and a Normal Progressor 

Illustrates Significant Difference in Genetic Variation 

Phylogenetic analysis compared proviral sequences isolated from the elite suppressor, 

EN3, and a normal progressor, EN1, which both possessed broadly neutralizing 

antibodies. These were analyzed with MEGA6 to generate a maximum likelihood tree 

using the General Time Reversible (Tamura et al., 2013) model with 1,000 bootstrap 

replicates. EN3 sequences had less intra-patient genetic variation compared to 

proviral sequences from EN1, who showed similar neutralization breadth (Fig 1.1). 

EN3 had 126 (4.8%) sites with polymorphisms whereas EN1 had 396 (14.8%) sites 

with polymorphisms. The result conformed to previous observations, reporting less 

genetic variation and slower viral evolution in an elite suppressor (EN3) compared to 

a normal progressor (EN1). 
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Fig 1.1. Phylogenetic analysis of proviral sequences isolated from an elite 
suppressor (EN3) and a normal progressor (EN1) that both possess bNAbs. 
Proviral sequences were recovered from two individuals (EN1 and EN3) using the 
Monogram PhenoSense® assay system. Evolutionary analyses were conducted in 
MEGA6 using a Maximum Likelihood method with 1000 bootstrap replicates and a 
discrete Gamma distribution to model evolutionary rate. The tree is drawn to scale, 
with branch lengths measured in the number of substitutions per site. Sequences used 
in mutagenesis studies, EN3d071 and EN3c059, are shown with a black rectangle. 
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Characterization of Proviral gp160 Sequences Isolated From EN3 

The physical characteristics of the gp160 sequences were analyzed for amino acid 

length, the number of cysteines, and location of potential N-linked glycosylation sites 

in each region (Table 1.3). Sequences were compared to the Los Alamos National 

Laboratory database (“HIV sequence database main page,” n.d.) filtered for clade B 

subtype envelope sequences, with one sequence per individual. EN3 had a 

significantly longer V1 region (37–39 amino acids; Kruskal-Wallis test, p < 0.0001) 

and rare cysteines in the V1 hypervariable region (3–4 cysteines; Kruskal-Wallis 

test, p < 0.0001) compared to the dataset from LANL (average V1 length is 27 amino 

acids; average number of cysteines in V1 is 2). When the recovered sequences were 

aligned (Fig 1.2), all of the sequences with the exception of clone d071 possessed two 

additional N-linked glycosylation sites and two extra cysteines (Cys) in the V1 

region. The extra Cys residues occurred at fixed locations (C134+1 and C136 using 

HXB2 numbering), resulting in a total of 20 Cys in the gp120 fragment compared to 

the normal 18 Cys typically found in the major (M) class of HIV envelope sequences. 

The EN3d071 Env possessed a Cys at position 134+1, like all of the other viruses 

from this individual, but had the polymorphism C136R, which is adjacent to a 15 

amino acid insertion between HXB2 positions 134 and 135 (Fig 1.2). 
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Table 1.3. Physical characteristics of 20 functional proviral sequences isolated 
from EN3. 
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Fig 1.2. V1/V2 regions of proviral sequences isolated from an elite suppressor 
(EN3). 
(A) Alignment of functional proviral sequences isolated from an elite suppressor 
(EN3). V1 region is defined as amino acids 131–157 and V2 region is defined as 
amino acids 158–196 using sequence numbering relative to HXB2 reference standard. 
Arrows above the alignment show the location of four beta strands described in 
McLellan et al. (McLellan et al., 2011). Black rectangles show the location of 
canonical cysteines in the V1/V2 region. Green rectangles show aberrant cysteines in 
functional sequences isolated from EN3. Blue rectangles show potential N-linked 
glycosylation sites that are part of the 13 or 15 amino acid insertion in V1. Residues 
circled in red were targeted in mutagenesis experiments. (B) Primary structure of 
EN3d071 wild type (WT) and mutants. Single point mutations of EN3d07 WT were 
introduced to create three different mutants of Env (EN3d071 C136A with no extra 
cysteines in V1, EN3d071 R(134+1)C with two extra cysteines in V1, and K170E 
with one extra cysteine in V1). Non-canonical cysteines are shown in red. K170E 
mutation is shown in blue. (C) Homology models of gp120s EN3d071 wild type 
(WT) and mutants. Homology models of EN3d071 C136A (18 cysteines), EN3d071 
WT (19 cysteines), EN3d071 R(134+1)C (20 cysteines), and EN3d071 K170E (19 
cysteines) were built using Modeller v9.21 with 5fykG template. V1 regions are 
shown in cyan. V2 regions are shown in gray. Cysteines located in the V1 region are 
shown in yellow. Polymorphisms are labeled with A136 shown in green, R(134+1) 
shown in orange, K170 shown in purple, and E170 shown in magenta. 
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Sensitivity to Neutralization by Polyclonal Antibodies in Autologous Plasma and 

Broadly Neutralizing Monoclonal Antibodies (bN-mAbs) 

Pseudotype viruses representing the 20 envelope clones from EN3 were constructed 

and tested for sensitivity to neutralization by contemporaneous autologous plasma 

and by a panel of prototypic bN-mAbs (Table 1.4). We observed that all viruses were 

sensitive to neutralization by autologous plasma (range 1:322–1:53,788) with a mean 

neutralization titer of 1:3,376. However, one clone, EN3c059, was exceedingly 

sensitive to neutralization by autologous plasma with a neutralization titer of 

1:53,788. We observed that this clone was also particularly sensitive to neutralization 

by the positive control Z23. 

  



 32 

Table 1.4. EN3 pseudotype virus neutralization titers from autologous sera and a 
panel of bN-mAbs. 
 

 

 

When we examined the sensitivity of the EN3 viruses to prototypic bN-mAbs, 

we found that all but clone EN3d071 were resistant to neutralization by the PG9 and 

PG16 broadly neutralizing monoclonal antibodies (bN-mAbs) known to bind to 

glycan-dependent epitopes in the V1/V2 domain (McLellan et al., 2011). When we 

examined the sensitivity of these Envs to bN-mAbs that recognized glycan-dependent 

epitopes at the base of the V3 domain (Pejchal et al., 2011), we found that all of the 

clones were sensitive to neutralization by the PGT128 bN-mAb but all of the clones 

were resistant to neutralization by the PGT121 bN-mAb. We found that 18 of 20 

clones were sensitive to neutralization by the VRC01 bN-mAb specific for the CD4-
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binding site, and the PGT145 bN-mAb that recognizes a trimer-specific epitope 

involving the V1/V2 domain. In addition, 15 of 20 clones were sensitive to 

neutralization by the 4E10 bN-mAb specific for the membrane proximal external 

domain (MPER). Finally, 5 of 20 clones were sensitive to the 35022 bN-mAb specific 

to the gp120 and gp41 interface. 

 

Effect of Extra Cysteine Residues and Polymorphisms at Positions 130 or 170 on 

Sensitivity to Neutralization by bN-mAbs 

Because the EN3d071 clone was the only envelope with 19 Cys residues and the only 

virus that was sensitive to neutralization by the PG9 and PG16 bN-mAbs, we carried 

out mutagenesis studies to examine the effect of 18, 19, and 20 Cys residues on virus 

infectivity and sensitivity to neutralization. In addition to lacking C(134+1), 

EN3d071 is the only sequence that had a lysine (K) at position 170 where the other 19 

sequences had a glutamic acid (E) at this position (Fig 1.2). Previous studies have 

suggested that K170 can be important for PG9 binding (Doria-Rose et al., 2012). To 

examine potential effects of the aberrant V1 cysteines and K170, we used site-

directed mutagenesis to create three variants of EN3d071 gp160. These included: (1) 

the EN3d071 C136A variant with 18 cysteines in gp120, (2) the EN3d071 R(134+1)C 

with 20 cysteines in gp120, and (3) the EN3d071 K170E variant with 19 cysteines in 

gp120 (Fig 1.2). The wild type and mutated gp160 genes were then used to create 

pseudoviruses and tested for sensitivity to neutralization by a panel of bN-mAbs, 

including PG9, and autologous sera. 
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When expressed as pseudoviruses, we found that the wild type (WT) 

EN3d071 Env (19 Cys in gp120) and the EN3d071 C136A variant (18 Cys in gp120) 

retained infectivity and both possessed the CCR5 chemokine receptor (R5) tropic 

phenotype (Table 1.5). In contrast, the R(134+1)C variant (20 Cys in gp120) that 

contained two non-canonical cysteines was non-infectious. When the 19 Cys variant 

possessing the K170E variant was examined, we observed that it had reduced 

infectivity but still retained the R5 receptor phenotype. 

 

Table 1.5. Infectivity of wild type and mutant EN3d071 pseudoviruses. 

 

 

We next examined the sensitivity to neutralization by autologous plasma, and 

the panel of bN-mAbs directed to different epitopes (Table 1.6). The loss of the 

cysteine in EN3d071 C136A may have increased resistance to neutralization by 

VRC01 but the difference in IC50 values is within the margin of error. The K170E 

mutation caused resistance to neutralization by PG9 and PG16 and surprisingly 

increased sensitivity to 4E10. Neutralization sensitivity to the PGT145, PGT128, 

35022 bN-mAbs, and autologous plasma was preserved in all testable variants. 
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Table 1.6. EN3 wild type and mutant pseudoviruses sensitivity to neutralization 
by bN-mAbs and autologous sera. 

 

 

 

The EN3c059 clone was highly sensitive to neutralization by 

contemporaneous autologous sera (ID50 above 53000) and differed by only 3 point 

mutations, E32Q, N130D, and A533V from the EN3 consensus sequence. We 

wondered if the N130D polymorphism, which eliminates a potential N-linked 

glycosylation site, could account for the increased neutralization sensitivity of this 

variant. We used site-directed mutagenesis to express EN3c059 WT and a variant 

with the D130N mutation (EN3c059 D130N) and tested for sensitivity to 

neutralization by a panel of bN-mAbs and autologous sera. Surprisingly, we found 

that the D130N polymorphism did not affect sensitivity to neutralization by 

contemporaneous autologous sera (Table 1.6). 
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Effect of Extra Cysteine Residues and K170E on bN-mAb Binding to gp120 

Additional studies were carried out to characterize bN-mAb binding to recombinant 

gp120s derived from EN3 envelope proteins. Because multiple bN-mAbs recognize 

epitopes that are dependent on mannose-5 (Man5) for binding, the Envs were 

expressed in HEK293 cells lacking N-acteylglucosaminyl transferase 1 (HEK293S 

GnTI- cells). The absence of N-acetylglucosaminyl transferase 1 disrupts the 

glycosylation pathway, resulting in the production of monomeric gp120s that contain 

a high mannose (Man5) glycan found on native HIV virions. The recombinant 

proteins predominately migrated as monomeric proteins and were not degraded by 

proteolysis often observed for Envs from clade B viruses (Fig 1.3). The EN3d071 

R(134+1)C variant expressed well even though the pseudotype viruses made with this 

envelope were not infectious. 
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Fig 1.3. HEK293 GnTI- expression of recombinant gp120 EN3d071 WT and 
mutants. 
Recombinant gp120 sequences EN3d071 C136A (18 cysteines), EN3d071 WT (19 
cysteines), EN3d071 R(134+1)C (20 cysteines), and EN3d071 K170E (19 cysteines) 
were transiently transfected in HEK293 GnTI- cells. HEK293 GnTI- cells lack N-
acetylglucosaminyltransferase 1, disrupting the glycosylation pathway and resulting 
in Man5 glycans which have a smaller molecular weight. Supernatant with and 
without 25 mM DTT was run on SDS-PAGE gel, transferred to a PDVF membrane, 
and probed with purified rabbit polyclonal anti-gp120 antibodies (PB94) from a 
previous immunization study. EN3d071 WT and mutants showed similar expression 
levels with a small amount of aggregation detected in unreduced samples. 
 

A fluorescence immunoassay (FIA) was used to characterize the binding of a 

panel of bN-mAbs to immunoaffinity purified variants of the EN3d071 Env protein. 

We found that the envelopes with 18, 19, and 20 cysteines all bound to PG9, 

PGT128, and VRC01 and did not bind to PGT121 (Fig 1.4). They also did not bind to 

PG16, which was expected because the gp120s were monomeric and lacked the 

hybrid complex glycans required for PG16 binding (McLellan et al., 2011). Thus, all 

three proteins possessed the epitopes recognized by the PG9, PGT128, and VRC01 

bN-mAbs but lacked the epitopes recognized by the PG16 and PGT121 bN-mAbs. 



 38 

EN3 K170E had a similar binding profile but did not bind to PG9. This provides 

additional evidence that the inability of PG9 to neutralize 19 of the 20 Envs recovered 

from EN3 appear to be attributable the E170K polymorphism in the V2 region rather 

than the extra pair of Cys residues in the V1 region. 
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Fig 1.4. bN-mAb binding to recombinant gp120 EN3d071 WT and mutants by 
fluorescent immunoassay. 
Recombinant gp120 sequences EN3d071 C136A (18 cysteines), EN3d071 WT (19 
cysteines), EN3d071 R(134+1)C (20 cysteines), and EN3d071 K170E (19 cysteines) 
were produced with an N-terminal gD tag and captured onto microtiter plates with a 
mouse monoclonal anti-gD antibody. The captured proteins were then incubated with 
a panel of broadly neutralizing monoclonal antibodies that included PG9, PGT121, 
PGT128, and VRC01. After washing, the wells were incubated with Alexa Fluor 488 
labeled goat anti-human IgG (ThermoFisher Scientific, Waltham, MA) and washed as 
described in Materials and Methods. 
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Discussion 

In this paper, we have analyzed proviral Env sequences from a rare elite suppressor 

(EN3) with the bNAb/ES phenotype. As reported in previous studies (Bailey et al., 

2006; Bello et al., 2007, 2004; Casado et al., 2010; Lassen et al., 2009; Roy et al., 

2017; Sandonís et al., 2009; Scutari et al., 2018; Smith et al., 2013; Wang et al., 

2003), we found that proviral sequences from EN3 were highly homogeneous 

compared to proviral sequences recovered from a normal progressor. This result 

supports the idea that virus evolution is slower in ENs due to a reduced rate of virus 

replication. Because of this slow rate of virus evolution, we reasoned that it might be 

easier to recover Envs more closely related to those that elicited bNAb from 

individuals with the bNAb/ES phenotype than from normal progressors that exhibit 

much higher levels of proviral Env sequence diversity. Moreover, we postulated that 

analysis of sequences from individuals with bNAb/ES phenotype might provide clues 

regarding structural features that enhance for the formation of bNAbs compared to 

Envs from normal progressors that exhibit higher levels of virus diversification. The 

possibility that HIV has evolved structural features to modulate the immunogenicity 

of epitopes recognized by bNAbs is well supported by the unusually high degree of 

N-linked glycosylation resulting in a “glycan shield” (Wei et al., 2003), indels 

(insertions and deletions) in variable regions (Pinter et al., 2004), and the observation 

that cleavage sites for antigen processing enzymes occur in close proximity to 

epitopes recognized by bNAbs (Yu et al., 2010). 
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In the present study, we found that Envs sequences recovered from EN3 were 

highly homogenous (99.1% pairwise identity) and 19 of 20 sequences displayed an 

unusual insertion in the V1 region that added a pair of extra cysteine residues, which 

may form an extra disulfide bond, and two additional N-linked glycosylation sites. 

The V1 region has long been known to be highly immunogenic and has previously 

been termed the “global regulator” of neutralization sensitivity (Pinter et al., 2004). It 

is the first target of autologous neutralizing antibodies (Granados-Gonzalez et al., 

2009; Rong et al., 2009, 2007; Walker et al., 2010). Evolution of glycosylation sites 

in the V1 region is thought to be a key factor in driving the evolution of bNAbs that 

normally occurs 2 years or more post infection (Chackerian et al., 1997; Frost et al., 

2005; Moore et al., 2009; Rong et al., 2007; Sagar et al., 2006; Wei et al., 2003). 

Additionally, the V1 region is located at the apex of the virus spike and is in close 

proximity to several epitopes recognized by bNAbs (McLellan et al., 2011; Simek et 

al., 2009; Walker et al., 2009). Based on these observations, the three changes we 

have documented in the V1 region are all features of the type expected to affect either 

the antigenic structure or the immunogenicity of the Env protein. 

In principle, 19 of 20 Envs from this individual could form 10 disulfide 

bridges compared to the 9 disulfide bridges found in most gp120 sequences. HIV-1 

gp120 has 18 conserved cysteines that form 9 disulfide bridges present in all 

published crystal structures. Approximately 7% of clade B viruses from newly 

infected individuals also have 20 cysteines (Jobes et al., 2006) and 5.5% of clade B 

viruses have 2 extra cysteines in the variable 1 (V1) region (van den Kerkhof et al., 
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2016). The EN3d071 sequence was unusual in that it possessed only 19 Cys and 

therefore contained an unpaired Cys that could only form 9 disulfide bridges. Free 

Cys residues are unusual in most secreted proteins and often lead to the formation of 

dimers or aggregates. The prevalence of these extra cysteines raised the possibility 

that EN3 envelope proteins might provide a functional advantage perhaps related to 

enhanced virus infectivity, neutralization escape, or increased immunogenicity. 

Additionally, they provided for the possibility of rearrangements of disulfide 

structures. 

Additional N-linked glycosylation sites and insertions in the V1/V2 domain 

are well documented immune escape mechanisms known to prevent the binding of 

bNAbs (Chackerian et al., 1997; Frost et al., 2005; Moore et al., 2009; Rong et al., 

2007; Sagar et al., 2006; Wei et al., 2003). Surprisingly, neither the extra 

glycosylation sites, the 13 amino acid insertion, nor the extra cysteines in the V1 

region affected binding or sensitivity to neutralization by bN-mAbs PG9, PG16, 

PGT121, PGT128, PGT130, 35022, or 4E10. Therefore these changes may have 

evolved to serve another function, perhaps related to virus infectivity or stability. 

When this possibility was considered, it was interesting that the R(134+1)C variant of 

EN3d071, possessing 20 Cys residues, had little or no infectivity compared to the WT 

Env that possessed 19 Cys. All other clones possessing 20 Cys and the C(134+1) 

polymorphism were infectious, indicating epistatic mutations are required to 

compensate for the presence of the additional Cys. Similarly, the K170E variant of 

EN3d071 had reduced infectivity, despite the presence of E170 in all other clones. 
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Thus, epistatic mutations are also required to preserve infectivity for the K170E 

polymorphism. Two of the four point mutations altering amino acids to match the 

consensus sequence reduced infectivity, perhaps indicating the fitness landscape is 

restricted. 

Although we did observe a mutation that improved sensitivity to 

neutralization by PG9 binding, this mutation occurred in only one virus clone and was 

distinct from the insertion in the V1 region found in the 19 other viruses. The 

glutamic acid (E) at position 170 accounts for the resistance to neutralization by the 

PG9 bN-mAb in all of the viruses except EN3d071 that possesses a lysine (Lys) at 

this position. Previous studies reported that the K168E, K169E, and K171E 

polymorphisms disrupt PG9 binding and cause resistance to neutralization by PG9. 

This is likely due to the change in charge on the “C” beta strand in the V2 region, 

which is part of the PG9 epitope (McLellan et al., 2011). It is consistent that K170E, 

located on the “C” beta strand, also disrupts binding and confers resistance to 

neutralization by PG9. 

Based on these studies, the possibility remains that the insertion in the V1 

region, the extra pair of cysteines, and the extra glycosylation sites may have 

contributed to the formation of bNAbs in EN3. It is important to note that the gp160 

sequences studied here are a sample of the virus population taken at a single time 

point and may not include the actual viral sequences that stimulated the production of 

the bN-mAbs in contemporaneous plasma. However, variation within the 20 proviral 

sequences was minimal, supporting previous reports suggesting that viral evolution 



 44 

may be slower in this elite suppressors (Bello et al., 2007, 2004; Casado et al., 2010; 

Okulicz et al., 2009; Pereyra et al., 2008; Roy et al., 2017; Sandonís et al., 2009; 

Scutari et al., 2018; Smith et al., 2013; Wang et al., 2003). These sequences may be 

more similar to their bN-mAb-inducing predecessor than viruses recovered from 

normal progressors, and thus better vaccine candidates. The envelopes described in 

this paper provide the basis for future immunization studies where the immunologic 

potential of individuals possessing the rare bNAb/ES phenotype can be examined in 

greater detail. To this end, efforts are in progress to create trimeric gp140s and DNA 

vectors as well as the monomeric gp120s described in this paper to further define the 

immunogenic properties of these Env proteins. 
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Abstract 

A major goal in HIV vaccine research is to identify envelope glycoproteins (Envs) 

capable of eliciting broadly neutralizing antibodies (bNAbs) similar to those found in 

rare individuals termed elite neutralizers (ENs). To this end, we are studying Envs 

derived from an unusual subgroup of ENs that control viral load without antiretroviral 

therapy (ART). Since Env diversity is often limited in controllers, we reasoned that 

Envs from individuals with the unusual EN/controller phenotype might have retained 

immunogenic features that promoted the induction of bNAbs and other effective 

antiviral immune responses. In a cohort of 53 ART-naïve African American women 

exhibiting varying levels of HIV control, 11 controllers were found to have bNAb 

activity. An EN with viremic control for over 17.5 years was selected for further 

characterization. Plasma virus sequences collected several years after infection coded 

for functional Envs with only 17 potential N-linked glycosylation sites (PNGS) in the 

gp120 sequence compared to the normal 26 PNGS. Pseudovirus and recombinant 

gp120 of a low PNGS Env were prepared to investigate antigenic structure and 

immunogenic potential. This minimally glycosylated immunogen possessed multiple 

epitopes recognized by broadly neutralizing monoclonal antibodies including those 

targeting the V1/V2-domain (PG9 and PG16) and the CD4-binding site (VRC01). 

Monomeric gp120 was administered to rabbits and compared to MN gp120, 

previously used in the RV144 clinical trial. The low PNGS Env elicited an improved 

cross-clade tier-1 neutralizing response with increased binding to linear epitopes in 

the V3 region. Our results suggest that Envs found in this individual may have 
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contributed to the formation of bNAbs by creating glycan holes that exposed regions 

of the Env surface normally occluded by the glycan shield. These studies provide the 

foundation for additional immunologic studies of naturally occurring Envs with 

minimal glycosylation. 

 

Introduction 

The global pandemic of HIV/AIDS continues to be a significant global health crisis 

and remains the leading cause of death among women of reproductive age (15 – 49 

years old)(UNAIDS, 2019b). In the United States, few studies have focused on 

viruses and immune responses in African American women who represent the most 

prevalent high-risk group outside of men who have sex with men (CDC, 2018). While 

HIV transmission can now be prevented with pre-exposure prophylaxis 

(PreP)(Rodger et al., 2019), persistent disparities across the continuum of care make a 

prophylactic vaccine necessary for the eradication of HIV/AIDS and research efforts 

should focus on the most affected communities (Fauci, 2017). Here, we introduce a 

study focused on 53 HIV-positive African American women. 

A primary goal of HIV-1 vaccine design is the development of an 

immunogenic envelope glycoprotein (Env) able to elicit protective immune 

responses, including broadly neutralizing antibodies (bNAbs). This has proved a 

formidable challenge due to the extraordinary diversity of env, which is attributable 

to HIV’s error-prone reverse transcriptase, frequent recombination events, and the 

preservation of viral variants in the host genome (Chun et al., 1997; Preston et al., 
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1988; Zhang et al., 2010). The Env spike mediates attachment and entry into the host 

cell and is a trimer of heterodimers. The env gene is transcribed as a precursor 

protein, envelope glycoprotein 160 (gp160), which is then cleaved into two subunits, 

glycoprotein 41 (gp41) and glycoprotein 120 (gp120)(Moulard and Decroly, 2000). 

The extracellular subunit, gp120, possesses an average of 26 N-linked glycans (Cao et 

al., 2018). The dense packing of host-derived glycans constitutes a glycan shield that 

protects functionally important regions of gp120 from recognition by the humoral 

immune system. Insertions and deletions as well as shifts in the location of 

glycosylation sites provide an additional mechanism of antigenic variation (Behrens 

et al., 2016; Lasky et al., 1986; Wei et al., 2003). Despite these challenges, bNAbs 

eventually develop in a fraction of HIV-positive individuals, often targeting glycans 

at conserved locations which initially evaded immune recognition (Doria-Rose et al., 

2009; Hraber et al., 2014; Julien et al., 2013b; McLellan et al., 2011; Pejchal et al., 

2011; Walker et al., 2009; Zhou et al., 2010). Because bNAbs typically develop two 

years post infection and viral evolution typically outpaces the contemporaneous 

antibody response, the production of bNAbs does not correlate with improved disease 

outcomes (Bhiman et al., 2015; Bonsignori et al., 2016; Doria-Rose et al., 2014; Euler 

et al., 2010; Freund et al., 2017; Wu et al., 2010; Zhou et al., 2013). However, passive 

immunization studies in nonhuman primates have demonstrated that bNAbs can 

provide protection if present prior to infection (Baba et al., 2000; Hessell et al., 2010, 

2009; Mascola et al., 2000, 1999; Moldt et al., 2012; Parren et al., 2001; Shibata et 

al., 1999). 
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 There has been substantial effort to design Envs capable of eliciting the 

production of bNAbs. Native-like trimers have been engineered with antigenic 

structures recognized by the major classes of bNAbs, i.e., those that target V2-

glycans, V3-glycan supersite, CD4-binding site, membrane proximal external region 

(MPER), and gp120-gp41 interface (Julien et al., 2013a; Sok and Burton, 2018). 

However, these trimers have so far failed to consistently elicit the production of 

bNAbs in immunization studies (Landais et al., 2016). From these studies, it is clear 

that while it is now possible to create a variety of recombinant Envs that possess the 

epitopes recognized by bNAbs, these epitopes are poorly immunogenic. This may 

resemble the situation that occurs in natural infection where most people are infected 

with viruses possessing the epitopes recognized by bNAbs but few people actually 

make these antibodies (Simek et al., 2009). 

One current vaccination strategy to improve Env immunogenicity and direct 

the antibody response to sites of vulnerability is to remove and alter the location of 

PNGS (Crooks et al., 2017; Dubrovskaya et al., 2019; Klasse et al., 2018; Li et al., 

2008; Ringe et al., 2019; Zhou et al., 2017). Previous studies have demonstrated that 

the deletion of PNGS can improve immunogenicity (Back et al., 1994; Crooks et al., 

2015; Koch et al., 2003; Li et al., 2008; Liang et al., 2016; McCaffrey et al., 2004; 

Pancera et al., 2014; Wang et al., 2015; Zhou et al., 2017) with one study showing 

ID50s proportional to the exponential surface area of accessible polypeptide (Zhou et 

al., 2017). Neutralizing antibodies often target glycan holes and the introduction of 

PNGS can confer resistance (Crooks et al., 2017; Klasse et al., 2018; Ringe et al., 
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2019; Wagh et al., 2018). Envs have been engineered with PNGS introduced at 

immunodominant regions and removed at other locations in order to re-direct 

neutralizing antibodies to the CD4-binding site (Crooks et al., 2017; Klasse et al., 

2018; Ringe et al., 2019). Based on these studies, deglycosylated Env trimers have 

been used in rabbits to prime the immune system, increasing the initial neutralizing 

antibody response, followed by boosts that introduce PNGS, in an effort to direct 

neutralizing antibodies to sites of vulnerability (Dubrovskaya et al., 2019). This 

mirrors the course of natural infection, where early transmitter/founder (T/F) viruses 

typically have fewer PNGS and viruses evolve additional PNGS over time to escape 

immune selection pressure (Chohan et al., 2005; Dacheux et al., 2004; Derdeyn et al., 

2004; Keele et al., 2008; Liu et al., 2011; Moore et al., 2012). This pattern has also 

been observed in longitudinal studies examining the co-evolution of viral population 

and bNAb maturation, with the introduction of PNGS as a common mode of viral 

escape (LaBranche et al., 2018). Thus, less glycosylation not only increases 

immunogenicity, they may also mimic the T/F phenotype and Envs that engage with 

germline bNAb precursors. 

It is important to note that few of the vaccine immunogens used to date were 

derived from people who made bNAbs, and those that have been made, were derived 

from people who exhibited normal disease progression (Landais et al., 2016). In this 

study, we have begun to characterize Envs from rare individuals who possessed 

bNAbs and developed effective antiviral immune responses. Using these Envs, we 

examine if they have incorporated yet to be defined structural features that affect the 
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formation of effective humoral and cellular immune responses. In principal, such 

features may enhance immune recognition through exposure to regions normally 

shielded from the immune system by glycosylation or conformational masking, 

increase susceptibility or resistant to proteases that mediate antigen processing and 

presentation, or modulate binding to co-receptors such as a4b7 or DC-SIGN that 

facilitate interactions with antigen presenting cells (e.g. follicular dendritic 

cells)(Cicala et al., 2009; Geijtenbeek et al., 2000; Kwong et al., 2002; López et al., 

2000). 

Here, we examine Envs derived from an individual with the rare EN/controller 

phenotype, i.e., produced potent bNAbs (elite neutralizer or EN) and controlled viral 

load in the absence of antiretroviral therapy (ART). This individual was identified in 

the course of a study of 53 HIV-positive African American women who exhibited 

varying levels of viral control without ART. We found that 26% were capable of 

neutralizing pseudoviruses from four out of five clades tested. Of these, one viremic 

controller possessing particularly potent bNAbs, EN6, was selected for additional 

characterization. Envs from this individual possessed two unusual structural features 

that may have contributed to the development of protective antibody responses. The 

plasma viruses were remarkable in that they possessed 35% fewer PNGS than most 

other reported gp120s. Additionally, proviral Env had elongated V1/V2 regions with 

two additional non-conserved cysteine residues, potentially able to form unusual 

disulfide loops. Both plasma and proviral Envs were infectious in pseudotype assays 

and possessed multiple epitopes recognized by bN-mAbs. A minimally glycosylated 
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recombinant gp120 was expressed in a cell line that restricted N-linked glycosylation 

to high-mannose glycoforms and purified protein was used in rabbit immunization 

studies. These studies are consistent with the possibility that Envs from individuals 

with the EN/controller phenotype have unusual structural features that may have 

affected the quality and specificity of the protective immune response. 
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Results 

Identification of five elite neutralizers  

Data provided by the WIHS cohort (Bacon et al., 2005; Barkan, 1998) was used to 

identify HIV-positive, ART-naïve African American women exhibiting some level of 

virus control. Forty-three individuals were selected with periods of virus control in 

longitudinal studies that lasted 3 – 17.5 years (µ = 12 years). These were divided into 

two clinical categories, elite controllers (n = 28) and viremic controllers (n = 15), 

based on viral loads (<100 RNA copies per ml or 100 – 1,000 RNA copies per ml, 

respectively). Additionally, we selected a control group of ten individuals including 

long-term non-progressors (no periods of viral control and >500 CD4+ cells per ml 

for 7+ years; n = 4), and normal progressors (n = 6). From each individual, plasma 

samples from two visits were screened for neutralization potency and breadth against 

a standard panel of five viruses representing international strains routinely used to 

screen for elite neutralizers (Simek et al., 2009)(S1-S4 Tables). Sera from 26% of 

individuals were capable of neutralizing at least four out of five viruses in the initial 

screening panel (two elite controllers, nine viremic controllers, one long-term non-

progressor, and two normal progressors). On average, elite controllers had 

significantly lower neutralization titers and neutralization breadth compared to 

viremic controllers (p = 0.0004, Mann-Whitney U = 454; p < 0.0001, Mann-Whitney 

U = 425.5) and normal progressors (p = 0.0132, Mann-Whitney U = 184; p = 0.0021, 

Mann-Whitney U = 154.5)(Table 2.1). 
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Table 2.1. Neutralization potency and breadth of 53 HIV-positive ART-naïve 
African American women by clinical category. 
Neutralization potency and breadth were determined by neutralization titers at two 
time points assayed against the Simek panel of five pseudotype viruses (Simek et al., 
2009). Neutralization potency was defined as the geometric mean of ID50 titers. 
Neutralization breadth was defined as the arithmetic mean of the percentage of 
pseudoviruses neutralized at each visit. Bold values indicate statistically significant 
differences in neutralization potency and breadth in elite controllers. 
 
 

Plasma from the five individuals with the highest neutralization potency and breadth 

(geometric mean of ID50s > 150 1/dilution; neutralized ≥ 80% of viruses tested) were 

selected for additional characterization. One sample from each individual was 

assayed against an expanded panel of 22 viruses. All five samples were capable of 

neutralizing clade A, B, C, D, and CRF01_AE viruses (Table 2.2A). Of these, plasma 

identified as EN6 had the highest neutralization titers, with an average ID50 > 430 

1/dilution for all five clades and neutralized 100% of viruses tested (Table 2.2B). 
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Table 2.2 Identification of individuals with high levels of neutralizing antibodies 
found in cohort of HIV controllers. 
Bold indicates neutralization titers with at least 50% inhibition and three-fold greater 
than the specificity control (aMLV). (A) Neutralization titers from four viremic 
controllers (VC) and a normal progressor (NP) screened against two panels of 
pseudoviruses. Average titers for positive control viruses (JRCSF and NL4-3) and 
specificity control virus (aMLV) are shown for each panel with corresponding labels. 
The far-right column shows average titers of positive control plasma, Z23. (B) The 
results from both pseudovirus panels are summarized. 
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Unusual features in functional gp160 sequences from a viremic controller with  

elite neutralizing activity (EN6) 

The most potent neutralizer from the cohort, EN6, was selected for further analysis. 

An env library was generated from EN6 samples, expressed as pseudoviruses, and 

screened for infectivity. Full-length envs from 10 plasma-derived and 10 PBMC-

derived functional pseudoviruses were sequenced. All sequences were confirmed to 

be clade B by the Recombinant Identification Program (RIP) HIV clade assignment 

tool (Siepel et al., 1995). Envs were assayed to determine coreceptor usage; all 10 

proviruses and 3 plasma viruses were R5-tropic, while the remaining 7 plasma viruses 

were dual-tropic. 

The amino acid sequence length, cysteine content, and number of potential N-

linked glycosylation sites (PNGS) were determined for each region of gp160 and 

compared to Los Alamos National Laboratory Clade B reference sequences (Table 

2.3). Strikingly, the V1 regions were highly unusual in both the provirus sequences 

and the plasma virus sequences. All provirus sequences had an unusually long V1 

region containing two non-canonical cysteines, features found in only 7.4% and 6.7% 

of LANL clade B reference sequences, respectively. Proviral sequences had a 15 

amino acid insert that introduced two cysteines and four PNGS, while all plasma 

sequences lacked this insert (Fig 2.1). 

The most unusual finding was observed in plasma virus sequences, which had 

very low numbers of PNGS. The plasma virus sequences had only one PNGS (out of 

an expected four PNGS) in the V1 region at position 156 (Fig 2.1; Table 2.3). Plasma 
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virus also had fewer than average PNGS in C1, C2, C3, and V5 regions, resulting in a 

total of 17 PNGS in gp120 and 23 PNGS in gp160 (Fig 2.1; Table 2.3). Only three of 

the 1,936 (0.0015%) Clade B reference sequences had the same or fewer PNGS in the 

V1 region, gp120, or gp160, demonstrating the minimal number of PNGS in EN6 

plasma virus sequences is an exceptionally rare finding. 

The location of PNGS in plasma virus included key residues targeted by 

potent bN-mAbs in the V1/V2 region (N156 and N160) and the V3 region (N301 and 

N332)(McLellan et al., 2011; Pejchal et al., 2011; Walker et al., 2011; Zhou et al., 

2010). In addition, plasma viruses had PNGS at position 241 and 289, which have 

been engineered into Envs in multiple rabbit and macaque studies (Klasse et al., 

2018; McCoy et al., 2016; Ringe et al., 2019). Glycan holes at positions 241 and 289 

can elicit a strain-specific immunodominant response and introducing PNGS at these 

locations has re-directed the antibody response to sites of vulnerability (Klasse et al., 

2018; McCoy et al., 2016; Ringe et al., 2019). PNGS were absent at residue 360, 

proximal to the CD4-binding site, which has been shown improve immunogenicity 

(Crooks et al., 2017; Dubrovskaya et al., 2019; Zhou et al., 2017).  
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Table 2.3. Physical characteristics of functional proviral and plasma gp160 
sequences isolated from EN6. 
The number of amino acids, potential N-linked glycosylation sites (PNGS), and 
cysteines were counted in each region of functional gp160 sequences isolated from 
EN6 PBMC and plasma samples. Location of PNGS was defined as the location of N 
in NX(S/T) motif (where X is any amino acid except proline). The distribution of 
each measure was compared to clade B sequences from the Los Alamos National 
Laboratory 2017 Filtered Web Alignment. 
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Fig 2.1. Location of potential N-linked glycosylation sites and non-canonical 
cysteines in EN6. 
(A) Schematic shows position of potential N-linked glycosylation sites using aligned 
provirus and plasma virus consensus sequences. Select asparagine locations are 
labeled using HXB2 reference numbering. Variable and constant regions are also 
shown for reference. (B) Alignment of the V1 region of functional provirus and 
plasma virus Envs from EN6 samples. Non-canonical cysteines are highlighted in 
grey and PNGS are shown in black. EN6_226, shown in bold, was expressed and 
used as a rgp120 immunogen in this study. (C) Structure prediction models indicating 
exposed and glycosylated surfaces of gp120 in trimeric Env proteins. Homology 
models of gp120 for provirus and plasma virus consensus sequences were built using 
Modeller v9.21 (Webb and Sali, 2016) with PDB ID 5aco template (Pancera et al., 
2014) and N-linked glycans were added with GLYCAM Web Glycoprotein Builder 
(Woods Group, 2005). Surfaces occupied by N-linked glycans are shown in light 
grey; exposed rgp120 residues are shown in blue; CD4-binding site is shown in 
orange.  
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Sensitivity and resistance to neutralization of EN6-derived Envs by autologous  

plasma and bN-mAbs 

Envs derived from PBMCs and plasma were used in a recombinant pseudovirus assay 

to assess sensitivity and resistance to neutralization by polyclonal antibodies in 

autologous plasma and prototypic bN-mAbs. Both proviral and plasma viral Envs, 

with the notable exceptions of EN6_226 and EN6_031, were resistant to 

neutralization by contemporaneous plasma (Table 2.4; Fig 2.2A). Both the prototypic 

elite neutralizer plasma (Z23) and EN6 sera were unable to neutralize all but one of 

the EN6 proviral Envs with the V1 insert (Table 2.4; proviral). However, the Z23 

plasma differed from the EN6 plasma in that it was effective in neutralizing 9 of 10 

plasma viruses whereas only 2 were weakly neutralized by autologous plasma. This 

result suggests that the shorter V1 domain and the lack of PNGS facilitated 

neutralization by the Z23 plasma. The lack of neutralization by the EN6 plasma 

appears to reflect the evolution of viruses resistant to autologous neutralization as has 

been described previously (Euler et al., 2010; Frost et al., 2005; Richman et al., 

2003).  

When the sensitivity to neutralization by bN-mAbs was examined (Fig 2.2), 

the plasma viruses with the low numbers of PNGS and lacking the V1 insertion were 

markedly more sensitive to neutralization by the PG9, PG16, and VRC01 bN-mAbs 

compared to provirus (Fig 2.2B). Conversely, the provirus sequences were 

significantly more sensitive to neutralization by 2F5 bN-mAb targeting the MPER 

domain in gp41, which correlates with the polymorphism of A667E/G in the 2F5 
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epitope (Ofek et al., 2004). In control experiments, all of the viruses were found to be 

sensitive to the antiviral drug Fuzeon (enfuvirtide). 

Most EN6 Envs were resistant to neutralization by PGT121 and PGT128, 

despite having glycosylation at key residues in the V3 region, N332, N301, and 

IGDIR323-327 (Pejchal et al., 2011). Plasma Envs are likely resistant to neutralization 

by PGT121 and PGT128 due to polymorphism E(321+1)R, which substituted into a 

PGT128-gp120 crystal structure (PDB 5C7K) introduces a charge repulsion and steric 

hindrance with heavy chain residue R100 (Kong et al., 2015). While proviral Envs 

have E(321+1), they also have a 15 amino acid insert and five additional PNGS in the 

V1 region which have been shown to alter binding to PGT121 and PGT128 (Garces 

et al., 2014; Sok et al., 2014). The approach angle of PGT128 allows for better 

accommodation of V1 glycans (Kong et al., 2015; Pejchal et al., 2011). In contrast, 

V1 glycans, such as N137, have been shown to interfere with PGT121 binding 

(Garces et al., 2014). Thus, it is unsurprising that proviral Envs are resistant to 

neutralization by PGT121 but show modest sensitivity to PGT128. 
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Table 2.4. Sensitivity of EN6 Envs to neutralization by polyclonal antibodies in 
autologous plasma and broadly neutralizing monoclonal antibodies. 
Envs recovered from EN6 PBMCs and plasma were used to make pseudoviruses and 
tested for sensitivity to neutralization by autologous plasma and a panel of prototypic 
bN-mAbs. Neutralization titers represent the reciprocal of the plasma dilution (ID50) 
or monoclonal antibody concentration (IC50) with 50% inhibition and three-fold 
greater than the specificity control (aMLV) are shown in bold. A standard reference 
plasma with broadly neutralizing antibodies, Z23, is included as a positive control. 
Controls for each assay are shown at the bottom of the table. Coreceptor usage was 
determined for each Env-recombinant pseudovirus and shown in the second column. 



 66 

*Maximum VRC01 concentration was 10 µg/ml (all other mAbs assayed up to 25 µg/ml) 
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Fig 2.2. Comparison of EN6 provirus and plasma virus sensitivity to 
neutralization by autologous sera and bN-mAbs. 
Comparison of provirus and plasma virus EN6 clones to neutralization by (A) 
autologous plasma (ID50) and (B) bN-mAbs (IC50). Graphs are organized in rows by 
region targeted by bN-mAbs. Mann-Whitney U test showed statistically significant 
differences between proviral and plasma viral titers to PG9 (p < 0.0001; Mann-
Whitney U = 0), PG16 (p < 0.005; Mann-Whitney U = 15), PGT128 (p < 0.0001; 
Mann-Whitney U = 5), VRC01 (p < 0.0001; Mann-Whitney U = 0), and 2F5 (p < 
0.0001; Mann-Whitney U = 0). Blue star symbol shows neutralization titers for Env 
EN6_226, used in immunization study. 
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Selection, expression, and bN-mAb binding to recombinant gp120 from the  

EN6_226 clone 

Of the twenty gp120 sequences identified in the elite neutralizer, EN6, one 

(EN6_226) was selected for expression and immunization studies. This sequence was 

selected because it was sensitive to neutralization by autologous plasma, possessed 

only 17 PNGS, lacked the V1 region insertion with extra cysteine residues, and 

possessed epitopes recognized by multiple bN-mAbs. For these studies, codon-

optimized rgp120 gene expressed with a gD-1 purification tag protein was created 

and expressed in HEK293S GnTI- cells. These cells are deficient in N-

acetylglucosaminyltransferase-1 and produce proteins that lack the N-linked sialic 

acid that inhibits the binding of some bN-mAbs (Byrne et al., 2018; Doran et al., 

2018; Morales et al., 2014b; Reeves et al., 2002). The altered glycosylation pathway 

in HEK293S GnTI- cells yields proteins primarily with mannose-5 glycans, which 

have previously been shown to enhance binding of several potent bN-mAbs, 

including PG9 (Doran et al., 2018; Morales et al., 2014b). 

A fluorescent immunoassay (FIA) described previously (Byrne et al., 2018; 

Doran et al., 2018; Hutchinson et al., 2019; Morales et al., 2014b; O’Rourke et al., 

2019) was used to measure EN6_226 rgp120 binding to bN-mAbs. We found that the 

EN6_226 protein bound to PG9, PGT128, and VRC01, but not PG16 and PGT121 

(Fig 2.3). It was surprising that the EN6_226 rgp120 bound to PGT128 since 

EN6_226-recombinant pseudovirus was resistant to neutralization by PGT128. This 

result suggests PGT128 can bind to monomeric gp120 despite E(321+1)R, the 
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putative cause of neutralization resistance to the EN6_226-recombinant pseudovirus. 

While EN6_226 was sensitive to neutralization by PG16, binding to monomeric 

rgp120 was not expected, as the recombinant protein lacked the complex sialic acid 

containing glycans and quaternary structure thought to be required for binding 

(McLellan et al., 2011). PGT121 binding was also not expected, since EN6_226 was 

resistant to neutralization by PGT121. 

 

 

Fig 2.3. Expression and binding of broadly neutralizing monoclonal antibodies 
to EN6_226 rgp120. 
Recombinant EN6_226 gp120 was produced by transient transfection of HEK293S 
GnTI- cells and used for antibody binding assays. Recombinant gp120 from the A244 
isolate of gp120 was used as a positive control. (A) 12µl of supernatant from 
HEK293S GnTI- cells transfected with EN6_226 rgp120, A244 rgp120 (positive 
control), or “mock” (negative control; no env) were analyzed by SDS-PAGE (4-12% 
gel) with and without DTT reduction, blotted, and probed with a mAb (34.1) targeting 
the N-terminal epitope tag. HEK293S GnTI- expressed protein were enriched for 
mannose-5 glycans and thus smaller than sialic acid-enriched proteins produced in 
other cell lines. EN6_226 rgp120 is smaller than A244 rgp120 due to less 
glycosylation and shorter amino acid length. (B) Purified EN6_226 rpg120 was 
captured with 34.1 mAb (34.1) targeting the N-terminal tag and probed with bN-
mAbs PG9, PG16, PGT121, PGT128, and VRC01 by FIA. Purified rabbit polyclonal 
antibodies raised against MN and A244 rgp120s from a previous immunization study, 
PB94, were included as a positive control. Blank (no antigen) was used as a negative 
control. 
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EN6_226 rgp120 elicits stronger neutralization response in rabbits compared to  

two other clade B rgp120s 

Five rabbits were immunized with EN6_226 rgp120. Post-immunization rabbit sera 

were compared to rabbit sera from similar immunization studies using EN3_071 

rgp120 and MN rgp120. EN3_071 rgp120 was derived from a previously described 

elite controller with bNAb activity and normal glycosylation (Hutchinson et al., 

2019). MN rgp120 was used in the RV144 clinical trials, which elicited protective 

non-neutralizing antibody responses, and serves as a clade B immunogen to improve 

upon (Berman et al., 1999, 1996; Doran et al., 2018). All three immunizations elicited 

rgp120-specific antibody binding with comparable IC50s (S5 Fig). 

EN6_226 rgp120 elicited the production of polyclonal antibodies with the 

strongest neutralization response, capable of neutralizing clade B (MN.3 and 

SF162.LS), clade C (MW965.26), and clade CRF01_AE (TH023.6) pseudoviruses 

(Table 2.5). Compared to the other two immunogens, EN6_226 rgp120-raised 

antibodies neutralized SF162.LS, MW965.26, and TH023.6 at higher titers (Table 

2.5). As expected, MN rgp120-raised antibodies neutralized cognate Env MN.3 with 

the highest titers (Table 2.5). EN3_071 rgp120 did not consistently elicit neutralizing 

antibodies (Table 2.5). The strength of the immune response corresponded to the 

amount of glycan holes on the immunogen, with EN6_226 rgp120 eliciting the 

strongest response. 
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Table 2.5. Neutralization of viruses from clades B, C, and CRF01_AE by rabbit 
antibodies raised against EN6_226, EN3_071, and MN rgp120s. 
Rabbits were immunized with EN6_226, EN3_071, or MN rgp120s. Sera were tested 
against a panel of nine Env-recombinant pseudoviruses in a standard neutralization 
assay using TZM-bl cells. Neutralization antibody titers (ID50s) were calculated as 
the reciprocal dilution conferring 50% inhibition. Reactions with neutralization 
activity are shown in grey. Arithmetic mean of titers was calculated with ID50s below 
detection level as zero. CH01-03 and SVA-MLV were included as positive and 
negative controls, respectively. 
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Pepscanning of antisera to EN6_226 rgp120  

Epitope mapping of polyclonal antibodies raised against EN6_226 or MN rpg120 was 

performed by peptide microarray. Because bNAbs bind to conformation and 

glycosylation-dependent epitopes, these studies do not provide information on 

epitopes recognized by neutralizing antibodies. However, they define the spectrum of 

linear epitopes recognized by non-neutralizing antibodies and how they differ when 

elicited by different immunogens. Antibody binding was measured in a peptide 

microarray assay (Gottardo et al., 2013; Zolla-Pazner et al., 2013) in the laboratory of 

Dr. Georgia Tomaras (Duke Medical School, Durham, NC). This assay measured 

antibody binding to 2,058 peptides from eight consensus sequences and five strains 

representing worldwide gp120 sequences. These studies were undertaken with three 

objectives in mind. First, we wanted to define the strongest epitopes and see if they 

differed between EN6_226 rgp120 from a rare elite controller that possessed broadly 

neutralizing antibodies and MN rgp120, a prototypic lab adapted isolate from a 

normal progressor. Second, we were also interested in comparing the immunogenicity 

of EN6_226 rgp120 that possessed only 17 N-linked glycosylation sites compared to 

MN rgp120 that possessed 20 N-linked glycosylation sites. Third, we wanted to see 

the extent to which antibodies were directed to linear peptides in the vicinity of sites 

of vulnerability defined by neutralizing antibodies to the V1/V2 domain (e.g. PG9), 

the V3 domain (e.g. PGT128) and the CD4-binding site (e.g. VRC01). In particular, 

we were interested in whether non-glycosylated peptides from locations that were 

targeted by glycan-dependent broadly neutralizing antibodies were immunodominant 
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or immunorecessive. The gross summary of the results of these studies are shown in 

Figure 2.4. We found that both immunogens elicited antibodies with the strongest 

binding to multiple linear epitopes in the C1, C2, C4, and V5 regions (Fig 2.4A). Of 

these, both the C4 domain and the V5 domain are known to possess residues 

recognized by monoclonal antibodies that block CD4 binding. The EN6_226 rgp120-

raised antibodies showed significantly stronger binding to peptides in the V3 region 

compared to those raised against MN rgp120 (Fig 2.4A). The V3 domain is known to 

possess contact residues recognized by multiple neutralizing antibodies. The 

enhanced binding to the V3 region may be due to a reduction in glycan shielding 

attributable to the absence of glycosylation sites at residues 295 and 402 in EN6_226 

rgp120, which are present in MN rgp120 (Fig 2.4B). 
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Fig 2.4. Pepscanning to compare linear epitopes targeted by rabbit antibodies 
raised against EN6_226 or MN rgp120s. 
Pepscanning of polyclonal antibodies raised against rgp120 immunogens was 
performed by peptide microarray as described previously (Shen et al., 2015). (A) 
Heatmap shows median magnitude of peptide binding (signal) for rabbit antibodies 
raised against EN6_226 or MN rgp120s. Peptide library was composed of 15-mers 
that overlapped by 12 amino acids for thirteen different gp120 sequences, shown by 
row. Schematic above the heatmap shows peptide locations in gp120, aligned for each 
column. (B) Homology models of rgp120 immunogens were built using Modeller 
v9.21 (Webb and Sali, 2016) with PDB ID 5aco template (Pancera et al., 2014) and 
N-linked glycans were added with GLYCAM Web Glycoprotein Builder (Woods 
Group, 2005). Amino acid rgp120 residues are shown in blue; N-linked glycans are 
shown in light grey. 
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Next, we ranked peptides with the highest antibody binding signals to 

determine immunodominant regions. EN6_226 rgp120-raised antibodies showed the 

strongest binding to clade B peptides in non-neutralizing regions (C1, C2, and C5) 

but the fifth highest response was to a V5 peptide located in the CD4-binding site and 

the seventh and ninth highest responses were to V3 peptides in the PGT128 epitope 

(Table 2.6A). MN rgp120-raised antibodies showed the strongest binding to clade B 

peptides from the CD4-binding site (Table 2.6B). Similar results were observed for 

antibody binding to peptides from all clades (Table 2.7). 
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Strongest antibody binding signals to clade B peptides 
A 

gp120 
region Clade B peptides HXB2 range anti-EN6 sera 

(median signal) 
C1 NNMVEQMHEDIISLW 98 - 112 9.66 
C2 PVVSTQLLLNGSLAE 253 - 267 9.38 
C1 MHEDIISLWDQSLKP 104 - 118 9.12 
C5 SELYKYKVVKIEPLG 481 - 495 8.83 
V5* NTTETFRPGGGDMRD 463 - 477 8.65 
C1 TDPNPQEVVLENVTE 77 - 91 8.43 

V3** YATGDIIGDIRQAHC 318 - 332 8.34 
C1 VEQMHEDIISLWDQS 101 - 115 8.28 

V3** RAFYATGDIIGDIRQ 315 - 329 8.24 
V5 NNNNTTETFRPGGGD 92 - 106 8.01 

 
B 

gp120 
region Clade B peptides HXB2 

range 
anti-MN sera 

(median signal) 
C5* MRDNWRSELYKYKVV 475 - 489 9.74 
C4* QIRCSSNITGLLLTR 442 - 456 9.35 
C5* GGDMRDNWRSELYKY 472 - 486 9.06 
C4* CSSNITGLLLTRDGG 445 - 459 8.97 
C5* ETFRPGGGDMRDNWR 466 - 480 8.75 
C2 PVVSTQLLLNGSLAE 253 - 267 8.22 
C1 NNMVEQMHEDIISLW 98 - 112 8.05 
C5* NWRSELYKYKVVKIE 478 - 492 7.99 
C1 MHEDIISLWDQSLKP 104 - 118 7.96 
C2 STQLLLNGSLAEEEV 256 - 270 7.80 

*CD4-binding site (VRC01 contacts) 
**V3 region (PGT128 contacts) 
 
Table 2.6. Strongest antibody binding signals to clade B peptides. 
Pepscanning of polyclonal antibodies raised against rgp120 immunogens was 
performed by peptide microarray. Peptide locations were compared to previously 
published data to identify sites of interest, including functional regions and bN-mAb 
epitopes. Peptides from sites of interest are shown in bold. (A) Highest median clade 
B peptide binding signals for rabbit antibodies raised against EN6_226 rgp120. (B) 
Highest median clade B peptide binding signals for rabbit antibodies raised against 
MN rgp120. 
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Strongest cross-reactive antibody binding signals to peptides from all major clades 

A 
gp120 
region All peptides HXB2 

range 
anti-EN6 sera 

(median signal) 
C1 NNMVEQMHTDIISLW 98 - 112 9.69 
C1 VEQMHEDIISLWDES 101 - 115 9.68 
C1 NNMVEQMHEDIISLW 98 - 112 9.66 
C5 SELYKYKVVRIEPLG 481 - 495 9.61 

V3** QALYTTRIIGDIRQ 315 - 329 9.51 
V5* TNNETFRPGGGNIKD 463 - 477 9.44 
C5 NELYKYKVVQIEPLG 481 - 495 9.43 
C2 PVVSTQLLLNGSLAE 253 - 267 9.38 
V5* TNNTNNETFRPGGGN 460 - 474 9.31 
C1 NDMVEQMHEDIISLW 98 - 112 9.27 

 
B 

gp120 
region All peptides HXB2 

range 
anti-MN sera 

(median signal) 
C5* MRDNWRSELYKYKVV 475 - 489 9.74 
C4* LIRCSSNITGLLLTR 442 - 456 9.68 
C5* MKDNWRSELYKYKVV 475 - 489 9.67 
C4* NITGILLTRDGGATN 448 - 462 9.66 
C4* EIRCESNITGLLLTR 442 - 456 9.49 
C5* IKDNWRSELYKYKVV 475 - 489 9.40 
C4* QIRCSSNITGLLLTR 442 - 456 9.35 
C4* NITCKSNITGLLLTR 442 - 456 9.34 
C5* GGDMRDNWRSELYKY 472 - 486 9.06 
C4* CSSNITGLLLTRDGG 445 - 459 8.97 

*CD4-binding site (VRC01 contacts) 
**V3 region (PGT128 contacts) 
 
Table 2.7. Strongest cross-reactive antibody binding signals to peptides from all 
major clades. 
Pepscanning of polyclonal antibodies raised against rgp120 immunogens was 
performed by peptide microarray. Peptide locations were compared to previously 
published data to identify sites of interest, including functional regions and bN-mAb 
epitopes. Peptides from sites of interest are shown in bold. (A) Highest median 
peptide binding signals for rabbit antibodies raised against EN6_226 rgp120. (B) 
Highest median peptide binding signals for rabbit antibodies raised against MN 
rgp120.  
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 Since previous studies have shown that neutralizing antibodies are directed to 

glycan holes, we analyzed antibody binding signals to non-glycosylated peptides with 

sequences encoding potential N-linked glycosylation sites. Overall, locations lacking 

PNGS did not consistently show higher antibody responses when compared to the 

other immunogen containing a PNGS at the same location, suggesting that these 

regions are inherently immunorecessive (Table 2.8).  
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Antibody binding to peptides at PNGS locations 

 PNGS Clade B peptides All peptides 
HXB2 # EN6_226 MN EN6 MN EN6 MN 

88   N 1.06 1.22 0.06 1.37 
130   N 3.43 5.84 0.54 5.75 
136   N 0.00 0.00 0.00 0.00 
142   N 0.00 0.14 0.00 0.00 

142+5   N 6.80 0.00 0.00 0.00 
156 N N 2.00 0.00 0.00 0.00 
160 N N 0.00 0.00 0.00 0.00 
186 N N 0.00 4.08 0.00 0.00 
197 N N 0.00 0.00 0.00 0.00 
241 N N 0.00 0.49 0.00 0.00 
262 N N 2.73 3.86 0.58 1.69 
276 N   0.00 1.00 0.00 4.25 
289 N   2.32 0.85 0.00 0.00 
295   N 0.00 0.00 0.00 0.00 
301 N   0.00 0.00 0.00 0.00 
332 N   0.00 0.00 0.00 0.00 
339   N 0.00 0.00 0.00 0.00 
356 N N 0.00 0.35 0.00 0.00 
386 N N 0.00 0.00 0.00 0.00 
397 N N 0.00 0.07 0.00 0.00 
405 N  0.00 0.00 0.00 0.00 
406   N 0.00 0.00 0.00 0.00 
409 N   0.00 0.00 0.00 0.00 
413   N 0.00 0.00 0.00 0.00 
448 N N 2.19 9.35 1.10 8.24 
463 N N 7.64 6.17 7.72 5.92 

 

Table 2.8. Antibody binding to peptides at PNGS locations. 
Pepscanning of polyclonal antibodies raised against rgp120 immunogens was 
performed by peptide microarray. EN6_226 rgp120 and MN rgp120 sequences were 
aligned to HXB2 reference with MUSCLE (Edgar, 2004). All EN6_226 and MN 
rgp120 PNGS locations are listed in columns 2 and 3. Median antibody binding 
signals are shown for peptides containing residues at PNGS locations.  
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Next, we compared antibody binding signals to determine which immunogen 

elicited stronger responses to sites of interest, including the V2 peptide that correlated 

with protection in the RV144 study. MN rgp120-raised antibodies showed stronger 

binding to V2 peptides from each clade and the aggregated of all clades, with the 

exception of clade A (Table 2.9). EN6_226 rgp120-raised antibodies elicited a 

stronger response to the clade A V2 peptide (Table 2.9), which was the only sequence 

in this region that did not correlate with protection (Gottardo et al., 2013). 

 

Antibody binding to V2 peptides (RV144 correlate of protection) 

Source Sequence anti-EN6 sera 
(binding signal) 

anti-MN sera 
(binding signal) 

A.con TELRDKKQKVYSLFY 1.23 0.82 
A244/TH023 TELRDKKQKVHALFY 0.00 0.00 
CRF01.AE/CRF02_AG TELRDKKQKVYALFY 0.79 0.88 
B.con TSIRDKVQKEYALFY 1.37 3.98 
M.con/C.con TEIRDKKQKVYALFY 0.98 0.99 
D.con TEVRDKKKQVYALFY 0.48 0.65 
Aggregate N/A 0.79 0.88 

 
Table 2.9. Antibody binding to V2 peptides (RV144 correlate of protection). 
Pepscanning of polyclonal antibodies raised against rgp120 immunogens was 
performed by peptide microarray. Median binding signals are shown for antibodies 
raised against EN6_226 or MN rgp120s to V2 peptides from each major clade and an 
aggregate of all clades tested. 
 
 

To determine which immunogen elicited a stronger response to sites of 

vulnerability, we compared antibody binding to peptides from the PG9, PGT128, and 

VRC01 epitopes, which target the V1/V2 region, V3 region, and CD4-binding site, 

respectively. EN6_226 rgp120-raised antibodies had higher binding signals to clade B 
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peptides from the V3-targeting PGT128 epitope. Conversely, MN rgp120-raised 

antibodies showed stronger binding to clade B peptides in the V2-targeting PG9 

epitope and CD4-binding site. Binding signal from an aggregate of all clades showed 

the same results. 

 
A 

Antibody binding to sites of vulnerability 
(peptides from clade B consensus sequence) 

Site of 
vulnerability Peptide HXB2 range anti-EN6 sera 

(binding signal) 
anti-MN sera 

(binding signal) 

V2 region 
(PG9 contacts) 

IKNCSFNITTSIRDK 154 - 168 0.00 0.00 
CSFNITTSIRDKVQK 157 - 171 0.00 0.11 
NITTSIRDKVQKEYA 160 - 174 0.00 2.75 

V3 region 
(PGT128 contacts) 

RPNNNTRKSIHIGPG 298 - 312 5.36 0.00 
NNTRKSIHIGPGRAF 301 - 315 5.50 5.61 
RKSIHIGPGRAFYAT 304 - 318 7.00 6.11 
IHIGPGRAFYATGDI 307 - 321 2.50 1.23 
GPGRAFYATGDIIGD 312 - 326 0.00 0.35 
RAFYATGDIIGDIRQ 315 - 329 8.24 0.92 
YATGDIIGDIRQAHC 318 - 332 8.34 0.00 
GDIIGDIRQAHCNIS 321 - 335 6.95 0.00 

CD4-binding site 
(VRC01 contacts) 

SENFTDNAKTIIVQL 274 - 288 0.00 0.00 
FNQSSGGDPEIVMHS 361 - 375 1.28 3.15 
SSGGDPEIVMHSFNC 364 - 378 0.51 1.74 
KQIINMWQEVGKAMY 421 - 435 0.00 0.46 
GLLLTRDGGNNNNTT 451 - 465 0.00 3.44 
ETFRPGGGDMRDNWR 466 - 480 6.63 8.75 
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B 
Cross-reactivity to sites of vulnerability 

(aggregate antibody binding signal from 12 sequences) 

Site of vulnerability HXB2 range anti-EN6 sera 
(binding signal) 

anti-MN sera 
(binding signal) 

V2 region 
(PG9 contact sites) 

154 - 168 0.00 0.00 
157 - 171 0.00 0.00 
160 - 174 0.00 0.00 

V3 region 
(PGT128 contact sites) 

298 - 312 5.36 0.62 
301 - 315 3.68 0.00 
304 - 318 4.80 2.33 
307 - 321 0.00 0.00 
312 - 326 0.00 0.00 
315 - 329 5.70 0.00 
318 - 332 7.07 0.00 
321 - 335 6.61 0.00 

CD4-binding site 
(VRC01 contact sites) 

274 - 288 0.23 0.00 
361 - 375 0.00 5.20 
364 - 378 0.00 1.33 
421 - 435 0.00 0.00 
451 - 465 0.00 3.31 
466 - 480 7.51 8.49 

 
Table 2.10. Antibody binding to sites of vulnerability. 
Pepscanning of polyclonal antibodies raised against rgp120 immunogens was 
performed by peptide microarray. Binding signals are shown for antibodies raised 
against EN6_226 or MN rgp120s. (A) Median antibody binding signals to clade B 
peptides from PG9, PGT128, and VRC01 contact sites. (B) Median antibody binding 
signals to all peptides from PG9, PGT128, and VRC01 contact sites. 
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Discussion 

In these studies, we consider the possibility that Envs from rare individuals who 

produced potent bNAbs and controlled their infection without ART (EN/controller 

phenotype) might possess unusual features that contributed to the formation of 

effective antiviral immune responses. To identify EN/controllers for this study, we 

first screened a cohort of ART-naïve controllers for neutralization breadth. Consistent 

with previous studies, elite controllers as a group exhibited lower neutralization 

potency and breadth compared to viremic controllers in the cohort (Bailey et al., 

2006; Doria-Rose et al., 2010, p., 2009; González et al., 2018; Lambotte et al., 2009; 

Pereyra et al., 2008). Because elite controllers, by definition, possess low or 

undetectable viral loads (<50 HIV RNA copies/ml)(Okulicz et al., 2009), the amount 

of circulating immunogen is usually insufficient to drive the antibody affinity 

maturation process that appears necessary to develop bNAbs (Corti et al., 2010; 

Scheid et al., 2009; Walker et al., 2009, p. 2; Wu et al., 2010; Xiao et al., 2009a, 

2009b). In contrast, viremic controllers (100 – 1,000 HIV RNA copies/ml) have viral 

loads that dip and rise, providing antigenic stimulation that leads to neutralization 

breadth at similar rates to non-controllers (Bailey et al., 2006; Doria-Rose et al., 

2010). From the EN/controllers identified, we further characterized EN6, who 

exhibited elite neutralizing activity (found in <1% of HIV-positive individuals 

(Simek et al., 2009)) and maintained viremic control for over 17.5 years without 

antiretroviral therapy (found in <2% of HIV-positive individuals (Okulicz et al., 

2009)). 
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Our study enabled us to identify two major structural features that may have 

enhanced the protective immune response in EN6. The first was a highly unusual and 

statistically significant decrease in the number of PNGS (17) compared to the normal 

number of PNGS (26) found in most gp120s. A reduction in the number of N-linked 

glycosylation sites would be expected to expand glycan holes, exposing regions of 

protein surface that are normally shielded from the immune system by glycans, and 

increase immunogenicity (Zhou et al., 2017). Notably, the Env retained PNGS at 

conserved sites targeted by several prototypic bN-mAbs, including N156, N160, 

N301, and N332 (Julien et al., 2013b, p. 121; Kong et al., 2015, p. 16; McLellan et 

al., 2011, p. 9; Pejchal et al., 2011). The region of Env with the greatest reduction of 

PNGS was V1, which has been called the “global regulator” of neutralization (Pinter 

et al., 2004). The V1/V2 domain is known to be the initial target for autologous 

neutralizing antibodies as well as bN-mAbs, such as PG9 and PG16 (McLellan et al., 

2011). Additionally, changes in the V1/V2 domain affect CD4 binding to monoclonal 

antibodies that facilitate ADCC, such as A32 (Prévost et al., 2018). 

The second unusual structural feature we observed in this individual was the 

presence of two non-conserved cysteine residues in an elongated V1 region, which is 

found in only 5.5% of clade B Env sequences (van den Kerkhof et al., 2016). While 

the vast majority of HIV Env proteins possess 18 cysteines that form 9 disulfide 

bridges, the proviral sequences from EN6 possessed 20 cysteines. The two additional 

cysteines can potentially form a disulfide loop in a conventional thumb and mitt 

structure or contribute to a wide variety of alternative disulfide bonds by pairing with 
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other cysteine residues that contribute to the normal disulfide structure described by 

Leonard et al (Leonard et al., 1990). In previous studies, we identified Env proteins 

with 20 Cys in subjects that participated in the VAX004 clinical trials (Jobes et al., 

2006). The extra Cys residues frequently occurred as an insertion in the V1 region 

between positions 131 and 144 (Jobes et al., 2006). Aberrant cysteines in the V1 

region were recently found in two elite neutralizers (S6 Table)(van den Kerkhof et al., 

2016) and an elite controller (Silver et al., 2019). Significantly, we also identified 

Envs possessing 20 Cys in another elite controller with broadly neutralizing activity 

(EN3) from the SCOPE cohort (Hutchinson et al., 2019). In these studies, there is 

some evidence that epistatic mutations are required to accommodate the unusual 

cysteines in order to preserve infectivity, suggesting a functional role (Hutchinson et 

al., 2019; Silver et al., 2019; van den Kerkhof et al., 2016). However, it remains 

unclear if cysteines are introduced stochastically, possibly from a duplication event as 

described in van den Kerkhoff et al, 2016, or if they are a result of selection pressure. 

The effect of non-canonical cysteines in V1, separate from length and glycosylation, 

warrants further study. 

Two distinct Env variants were identified in EN6, proviral Envs with long, 

heavily glycosylated V1 regions with additional cysteines and plasma Envs with 

minimal glycosylation and short V1 regions. These two variants may reflect dual 

pressure to mediate immune escape and transmission fitness, respectively. The long, 

heavily glycosylated V1 regions in proviral Envs is a mechanism for early viral 

escape from strain-specific neutralizing antibodies and several known bN-mAbs 



 87 

(Bunnik et al., 2008; Krachmarov et al., 2005, 2006; Liu et al., 2011; Mikell et al., 

2011; O’Rourke et al., 2015; Richman et al., 2003; Rong et al., 2007; Sagar et al., 

2006; van den Kerkhof et al., 2016; van Gils et al., 2011). In contrast, the plasma 

Envs share similar features to the transmitter/founder phenotype, where the short, 

unglycosylated V1 region may improve infectivity at the expense of exposing 

neutralizing epitopes (Chohan et al., 2005; Dacheux et al., 2004; Derdeyn et al., 2004; 

Wu et al., 2006). Indeed, plasma-derived Envs were sensitive to neutralization by V2-

glycan targeting bN-mAbs (PG9 and PG16) and CD4-binding site-targeting bN-mAb 

(VRC01) while the proviral-derived Envs were resistant. 

The primary goal of this study was to identify an Env that may elicit the 

production of bNAbs. Since bNAbs usually do not appear until two years post 

infection (Sather et al., 2009) and with virus rapidly escaping the antibody response, 

contemporaneous Envs are unlikely to have stimulated the production of bNAbs. One 

approach to identify the species likely to have elicited bNAbs is to carry out long 

term longitudinal studies (Doria-Rose et al., 2014; Gray et al., 2011; Landais et al., 

2016) or evolutionary reconstructions (Mesa et al., 2019) to identify species that 

occurred immediately prior to the appearance of bNAbs. Here we describe another 

approach to this problem where we take advantage of sequences from rare individuals 

able to control virus replication and may exhibit lower Env diversity. Analysis of the 

first individual that we studied with the unusual EN/controller phenotype showed a 

low level of Env sequence variation (98.5% sequence identity) and a low number of 

PNGS in gp120 (17 PNGS) from the plasma virus. When expressed, we found that 
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Envs were infectious and elicited antibody responses that appeared to be superior to 

antibody responses elicited by two other clade B Envs, including MN rgp120 used in 

previous vaccine studies. Taken together, our results suggest that further studies of 

the Envs from individuals with the dual EN/controller phenotype are warranted. The 

immunological potential of the Envs we identified here will require comparing the 

immunogenicity of alternate immunogen structures, such as trimeric gp140s (Sanders 

et al., 2015), and alternate immunization strategies, such as prime boosting with virus 

vectors (Hansen et al., 2013) or guided immunization (Haynes et al., 2012). 

 

Materials and methods 

Clinical samples 

Plasma and non-viable peripheral blood mononuclear cell (PBMC) samples were 

provided by the Women’s Interagency HIV Study (WIHS, Baltimore, MD) after 

review and approval of this study. The WIHS is a multicentered longitudinal study of 

HIV-infected women in the United States (Bacon et al., 2005; Barkan, 1998). All 

WIHS participants provided written informed consent, including permission to store 

and use specimens for research. The University of California, San Francisco 

Institutional Review Board approved consent forms and protocols for the Northern 

California location. The initial recruitment interview included self-identification of 

race and sex. After enrollment, participants visited a research site every six months 

for an interview, clinical examination, and blood draws. Blood specimens from each 
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visit were used for laboratory testing, which included viral load and CD4+ cell count, 

and stored in the WIHS repository. 

A subset of 53 HIV-positive ART-naïve African American women was 

selected based on their ability to control viral load and CD4+ cell count for prolonged 

periods without ART. Individuals were categorized into four groups, elite controllers 

(<100 HIV RNA copies/ml for three consecutive visits over >12 months), viremic 

controllers (100 – 1,000 HIV RNA copies/ml for three consecutive visits over >12 

months), long-term nonprogressors (no periods of elite or viremic control and >500 

CD4+ cells/µl for at least 7 years), and normal progressors (no periods of elite or 

viremic control nor 7+ year period with >500 CD4+ cells/µl). From each individual, 

de-identified cryopreserved plasma samples from two visits were selected and 

assayed for neutralization potency and breadth against Env-recombinant viruses. Five 

individuals capable of neutralizing pseudoviruses from at least 4/5 clades were 

selected and specimens (plasma and PBMCs) from the earlier of the two visits were 

used for subsequent analyses. 

 

Neutralization assays 

Initial virus neutralization assays were performed at Monogram Biosciences (South 

San Francisco, CA) with a previously described panel of five viruses useful for 

detecting elite neutralizers (Simek panel)(Frost et al., 2005; Richman et al., 2003; 

Simek et al., 2009). This assay utilized Env-recombinant pseudoviruses generated 

from patient samples or a panel of well-characterized viruses. A second panel of 
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twenty-two pseudoviruses representing all major subtypes of HIV-1 (clades A, B, C, 

D, and AE) was used to characterize the antibodies in plasma from individuals 

possessing bNAbs as indicated by the Simek panel. A panel of broadly neutralizing 

monoclonal antibodies (bN-mAbs) was also assembled that contained bN-mAbs PG9, 

PG16, PGT121, PGT128, and VRC01 that were provided by the NIH AIDS Reagent 

Program, the NIH Vaccine Research Center Polymun Scientific (Vienna, Austria), or 

synthesized in our lab based on published sequences. Neutralization antibody titers 

were calculated as the reciprocal plasma dilution (ID50) or reciprocal mAb 

concentration (IC50) conferring 50% inhibition, as measured by luciferase activity. 

Positive neutralization calls required an ID50 or IC50 that is at least three-fold greater 

than the specificity control, a pseudovirus made with the amphotropic murine 

leukemia virus (aMLV) envelope protein. Pseudoviruses with clade B NL4-3 and 

JRCSF rgp160s were included as CXCR4- and CCR5-dependent positive controls, 

respectively. Broadly neutralizing plasma (Z23) was included in all assays as an 

additional positive control. This assay has been validated and widely used in HIV 

research (Simek et al., 2009; Walker et al., 2011, 2009). 

 Rabbit sera to recombinant Env proteins was tested with a standard TZM-bl 

neutralization protocol and performed on two separate days at Duke University 

(Durham, NC). Positive neutralization calls required 50% inhibition. SVA-MLV was 

used as a specificity control and CH01-31 was used as a positive control. This assay 

has been optimized and validated for accurate result, as previously described 

(Montefiori, 2005; Sarzotti-Kelsoe et al., 2014). 
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Sequencing and coreceptor usage 

Sequencing and coreceptor usage assays were performed at Monogram Biosciences 

(South San Francisco, CA) with a previously described protocol (Whitcomb et al., 

2007). Briefly, env libraries generated from patient plasma or PBMCs were used to 

make pseudoviruses. Pseudoviruses were then grown and screened for infectivity. 

Full-length envs from 10 plasma-derived and 10 PBMC-derived infectious 

pseudoviruses were sequenced. Chemokine receptor usage of the 20 sequenced 

pseudoviruses was determined by inoculating U87 expressing CD4+ and either 

CCR5+ or CXCR4+ and measuring luciferase activity. This coreceptor usage assay 

has been validated in accordance with Clinical Laboratory Improvement 

Amendments (CLIA) regulations. 

 

Datasets and statistical analysis 

Patient-derived gp160s were compared to the Los Alamos National Laboratory HIV 

Sequence Database Filtered web alignment for clade B Env proteins curated in 2017 

(“HIV sequence database main page,” n.d.). Statistical analyses were performed in 

GraphPad Prism 6 (GraphPad Software Inc., La Jolla, CA) using the nonparametric 

Kruskal-Wallis and Mann-Whitney U tests. 
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Expression and purification of recombinant gp120 

Codon-optimized gp120 fusion genes were designed with an N-terminal purification 

tag gD-1, herpes simplex virus 1 glycoprotein D (O’Rourke et al., 2019). Genes were 

synthesized (Invitrogen, Inc., Carlsbad, CA) and inserted into a pCF vector with a 

cytomegalovirus promoter using Gibson Assembly® (New England Biolabs, Inc., 

Ipswich, MA). Recombinant plasmids were verified with Sanger sequencing (UC 

Berkeley, Berkeley, CA), transformed into 5-alpha Competent E. coli cells (New 

England Biolabs, Inc., Ipswich, MA), then purified (QIAGEN, Hilden, Germany). 

HEK293S GnTI- cells (ATCC® CRL-3022™), that lack N-

acetylglucosaminyltransferase-1 (Reeves et al., 2002), were transfected using 

Maxcyte electroporation system HEK293 protocol (MaxCyte STX®, MaxCyte, Inc., 

Gaithersburg, MD). The cells were grown in shake flask cultures (FreeStyle™ 293 

Expression Medium, Invitrogen Inc., Waltham, MA) and harvested five days after 

transfection. Secreted gp120 was purified by immunoaffinity chromatography 

(O’Rourke et al., 2019) followed by size exclusion chromatography (Sephacryl S-

200, GE Healthcare Life Sciences, Marlborough, MA). 

Growth conditioned cell culture supernatants with and without 25mM 

dithiothreitol (DTT) were run on a NuPAGE™ 4-12% Bis-Tris precast gel 

(Invitrogen™, Carlsbad, CA) in MES running buffer (Invitrogen™, Carlsbad, CA). 

Protein was transferred to a polyvinylidene fluoride (PDVF) membrane using 

standard protocol for iBlot (ThermoFisher Scientific, Waltham, MA). Membrane was 

blocked in 5% milk, probed with 0.2 µg/ml mouse anti-gD-1 monoclonal antibody 
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34.1 (lot A16.02, UC Santa Cruz, Santa Cruz, CA)(O’Rourke et al., 2019), then 

1:5,000 dilution of HRP-conjugated anti-mouse secondary antibody (Jackson 

ImmunoResearch, West Grove, PA). Antibody was detected using WesternBright 

reagents (Advansta, Menlo Park, CA) and visualized using Innotech FluoChem2 

system (Genetic Technologies, Grover, MO). 

 

Antibody binding assays 

Antibody binding to rgp120 was assessed using fluorescent immunoassay (FIA). 96 

well black microplates (Greiner Bio-One, Monroe, NC) were coated with 2 µg/ml of 

purified mouse anti-gD-1 mAb 34.1 (lot A69, UC Santa Cruz, Santa Cruz, CA) in 

PBS overnight at 4°C. Plates were blocked with 2.5% BSA in PBS for 4 h on a shaker 

at room temperature. Purified EN6_226 rgp120 at 2 µg/ml in PBST was captured 

overnight on a shaker at room temperature. Primary antibodies were added in 

duplicate serial 1:3 dilutions starting with either undiluted rabbit sera or 10 µg/ml of 

bN-mAbs PG16 (lot 130229, NIH AIDS Reagent Program, Germantown, MD), PG9, 

PGT121, PGT128, VRC01 (lots A62, A9, A32, A27, respectively, UC Santa Cruz, 

Santa Cruz, CA) in PBST and incubated on a shaker at room temperature for 1.5 h. 

Purified rabbit polyclonal antibodies raised against MN and A244 rgp120s from a 

previous immunization study, PB94 (lot A19.3, UC Santa Cruz, Santa Cruz, CA), 

were included as a positive control. Blank (no antigen) or pre-immune rabbit sera 

were used as negative controls. Dilutions of 1:5000 goat anti-human Alexa Flour® 

488-conjugated IgG Fcg polyclonal Ab (lot 137248, Jackson ImmunoResearch 



 94 

Laboratories, Inc, West Grove, PA) or goat anti-rabbit Alexa Flour® 488-conjugated 

IgG (H+L) polyclonal Ab (lot 1981125, Invitrogen, Inc., Carlsbad, CA) were 

incubated on a shaker at room temperature for 1 h. Between each step, plates were 

washed four times in PBST. Plates were visualized using EnVision™ Multilabel Plate 

Reader (PerkinElmer, Inc., Waltham, MA) with FITC 485 excitation and 535 

emission filters. 

 

Rabbit immunization studies 

Rabbit immunization studies were conducted in accordance with the Animal Welfare 

Act at Pocono Rabbit Farm & Laboratory (Canadensis, PA), a facility fully accredited 

by Association for Assessment and Accreditation of Laboratory Animal Care 

International (AAALAC 925) and assured by the National Institute of Health (NIH) 

and Office of Laboratory Animal Welfare (OLAW A3886-01). The Pocono Rabbit 

Farm & Laboratory Institutional Animal Care and Use Committee (IACUC) approved 

the immunization protocol (PRF2A). 

For immunogens rgp120 EN6_226 and EN3_071, five New Zealand White 

rabbits were immunized with 200 µg/dose produced in HEK293S GnTI- cells 

(ATCC® CRL-3022TM), delivered intradermally on days 0, 28, 56, and 140. The 

primary immunization was formulated with Complete Freund’s Adjuvant (CFA) 

while the subsequent three boosts were formulated with Incomplete Freund’s 

Adjuvant (IFA). Bleeds were taken from each rabbit on days 0 (pre-immune), 42, 70, 

and 147. Control rabbit sera to MN rgp120 was produced in two New Zealand White 
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rabbits immunized according to a standard protocol provided by Pocano Labs 

designed to elicit high affinity antibodies (PRF2A). 

 

Peptide microarray 

Peptide microarray was performed at Duke University (Durham, NC). Serial dilutions 

of rabbit sera starting at 1:50 were tested against 15-mer peptides overlapping by 12 

and covering consensus gp160s for clade A, B, C, D, group M, CRF1, and CRF2 and 

vaccine gp120s 1.A244, 1.TH023, MN, C.1086, C.TV1, and C.ZM651 (library 2738, 

JPT Peptide Technologies, Berlin, Germany). Binding was detected with 1:500 

dilution of goat anti-rabbit IgG Alexa Fluor® 647 polyclonal Ab and visualized with 

InnoScan function XDR (Stevanato Group, Padua, Italy). Microarray data was 

processed using R package pepStat (Imholte et al, 2013) to determine intensity for 

each peptide. For EN6_226, the magnitude of binding (signal) was measured as log2 

(intensity of the post-immunization sample / intensity of the pre-immunization 

sample). For MN, the magnitude of binding was measured as log2 (intensity of the 

post-immunization sample / 50th percentile value). 
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2.S1 Table. Neutralization potency and breadth in 28 elite controllers. 
Cryopreserved, de-identified plasma from 28 elite controllers were obtained and 
tested for the presence of virus neutralizing antibodies using a panel of pseudotype 
viruses. Elite controllers are defined as HIV-positive individuals with <100 HIV 
RNA copies/ml for three consecutive visits over >12 months. For each individual, 
samples from two time points were assayed against pseudoviruses from a standard 
panel of five Envs representing global strains. Assays included positive control Z23, 
plasma containing broadly neutralizing antibodies, and average titers are shown in the 
table. ID50 titers are defined as the reciprocal of the plasma dilution that inhibits 50% 
luciferase activity in U87 cells. Bold values indicate ID50s at least three times greater 
than the negative control (aMLV). 
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2.S2 Table. Neutralization potency and breadth in 15 viremic controllers. 
Cryopreserved, de-identified plasma from 15 viremic controllers were obtained and 
tested for the presence of virus neutralizing antibodies using a panel of pseudotype 
viruses. Viremic controllers are defined as HIV-positive individuals with 100 - 1,000 
HIV RNA copies/ml for three consecutive visits over >12 months. For each 
individual, samples from two time points were assayed against pseudoviruses from a 
standard panel of five Envs representing global strains. Assays included positive 
control Z23, plasma containing broadly neutralizing antibodies, and average titers are 
shown in the table. ID50 titers are defined as the reciprocal of the plasma dilution that 
inhibits 50% luciferase activity in U87 cells. Bold values indicate ID50s at least three 
times greater than the negative control (aMLV). 
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2.S3 Table. Neutralization potency and breadth in 4 long-term nonprogressors.  
Cryopreserved, de-identified plasma from 4 long-term nonprogressors were obtained 
and tested for the presence of virus neutralizing antibodies using a panel of 
pseudotype viruses. Long-term nonprogressors are defined as HIV-positive 
individuals with no periods of elite or viremic control and > 500 CD4+ cells/µl for at 
least 7 years. For each individual, samples from two time points were assayed against 
pseudoviruses from a standard panel of five Envs representing global strains. Assays 
included positive control Z23, plasma containing broadly neutralizing antibodies, and 
average titers are shown in the table. ID50 titers are defined as the reciprocal of the 
plasma dilution that inhibits 50% luciferase activity in U87 cells. Bold values indicate 
ID50s at least three times greater than the negative control (aMLV). 
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2.S4 Table. Neutralization potency and breadth in 6 normal progressors. 
Cryopreserved, de-identified plasma from 5 normal progressors were obtained and 
tested for the presence of virus neutralizing antibodies using a panel of pseudotype 
viruses. Normal progressors are defined as HIV-positive individuals with no periods 
of elite or viremic control nor a 7+ year period with > 500 CD4+ cells/µl. For each 
individual, samples from two time points were assayed against pseudoviruses from a 
standard panel of five Envs representing global strains. Assays included positive 
control Z23, plasma containing broadly neutralizing antibodies, and average titers are 
shown in the table. ID50 titers are defined as the reciprocal of the plasma dilution that 
inhibits 50% luciferase activity in U87 cells. Bold values indicate ID50s at least three 
times greater than the negative control (aMLV). 
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2.S5 Fig. Comparison of rabbit antibody titers elicited by rgp120s from 
controllers (EN6_226 and EN3_071) and MN rgp120. 
Recombinant gp120s (EN6_226 and EN3_071) expressed in HEK293 GnTI- cells 
were purified and used to immunize rabbits. The resulting sera were tested for 
antibody binding to antisera prepared against MN rgp120. Purified EN6_226 rgp120s 
fusion protein was captured with mouse anti-gD-1 mAb (targeted the N-terminal tag). 
Purified rabbit polyclonal antibodies raised against MN and A244 rgp120s from a 
previous immunization study, PB94, were included as a positive control. Pre-immune 
blood sera and no primary antibody served as a negative control. Antibodies raised 
against EN6_226, EN3_071, MN rgp120 or positive control showed similar binding 
to purified EN6_226 rgp120 (IC50s = 3.1µl/ml, 1.3µl/ml, 2.0µl/ml, and 3.0µl/ml, 
respectively). 
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2.S6 Table. Physical characteristics of functional proviral and plasma gp160 
sequences isolated from EN7. 
The number of amino acids, potential N-glycosylation sites (PNGS), and cysteines 
were counted in each region of functional gp160 sequences isolated from EN7 PBMC 
and plasma samples. Location of PNGS was defined as the location of N in NX(S/T) 
motif (where X is any amino acid except proline). The distribution of each measure 
was compared to clade B sequences from the Los Alamos National Laboratory 2017 
Filtered Web Alignment. EN7 functional proviral sequences had an elongated V1 
region with two unusual cysteines. 
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Chapter 3:  Targeted amplicon sequencing – application of Tn5-enabled and 

molecular identifier-guided amplicon assembly (TMIseq) to env V1 – V3 region 

and immunoglobulin heavy chain (IGH) VDJ region. 

 

Adapted from National Institutes of Health grant R01AI113893 report and poster 

presented at National Human Genome Research Institute Meeting, 13 April 2017. 
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Contributors:  Jennie M. Hutchinson1, Charles Cole1, Roger Volden1, Sumedha 

Dharmadhikari1, Camille Scelfo-Dalbey1, Sara M. O’Rourke1, Christopher Vollmers1, 

and Phillip W. Berman1 

 

Affiliations:  1University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 

95060 

 

Contributions:  TMIseq conceptualized by Christopher Vollmers. Library preparation 

protocol developed by Sumedha Dharmadhikari and Camille Scelfo-Dalbey and 

modified for env by Jennie Hutchinson. Assembly pipeline developed by Charles 

Cole and Roger Volden. Samples were provided by Phillip W. Berman. Sara M. 

O’Rourke assisted with processing samples. Data analysis performed and summarized 

by Jennie M. Hutchinson.  



 107 

Introduction 

A new targeted amplicon sequencing method (TMIseq) has been developed that 

overcomes major obstacles for sequencing critical region in the highly diverse env 

and IGH genes. TMIseq improves accuracy and increases read length to >800bp on 

the Illumina platform by using molecular identifiers and a custom Tn5 reaction to 

guide amplicon assembly. Previous methods were limited to shorter reads (~450bp) 

on the Illumina platform or lower accuracy with 454-pyrosequencing (Di Giallonardo 

et al., 2014; Li et al., 2014). The application of TMIseq to immunogenic regions of 

env controls for sampling error that could account for unusual sequence variants, such 

as the extra disulfide bonds described in Chapter 1 and Chapter 2. TMIseq can also be 

used to sequence the IGH VDJ region, including a portion of the C region for 

identification of antibody isotypes. Characterization of antibody repertoires in elite 

neutralizers and/or viral controllers could help elucidate the adaptive immune 

response that leads to the production of bNAbs or improved disease outcomes. Here, 

we present initial results demonstrating TMIseq can successfully be applied to the 

most variable region of env and used to explore antibody repertoires for different 

disease phenotypes. 
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Materials and methods 

Whole blood sample from one HIV-positive elite neutralizer (GSID001), one HIV-

positive non-elite neutralizer (GSID007), and two HIV-negative individuals (Control 

1 and Control 2) were processed by Ficoll gradient (GE Healthcare). Plasma and 

PBMCs were stored at -80°C. Proviral env V1 – V3 region was sequenced from 

GSID007 sample. All four samples were used for antibody repertoire sequencing. 

For proviral sequences, DNA was extracted from PBMCs with QIAamp DNA 

Mini Blood kit using standard QIAcube protocol (Qiagen) and gp160 was pre-

amplified in a 15-cycle PCR reaction with Phusion polymerase (Thermo Fisher 

Scientific). For IGH sequences, RNA was extracted from plasma with QIAamp Viral 

RNA Mini kit and reverse transcribed with SuperScript III (Thermo Fisher 

Scientific). In a 2-cycle PCR reaction, V1 – V3 region or IGH VDJ region was 

amplified with primers containing unique 16-base barcodes and partial Nextera 

sequences. 

PCR products >300bp were purified with Select-a-Size DNA Clean & 

Concentrator (Zymo Research). In a 30-cycle PCR reaction, PCR products were 

amplified with primers that completed the partial Nextera sequences. PCR products 

>300bp were purified with Select-a-Size DNA Clean & Concentrator (Zymo 

Research) and run on 1% agarose gel. 

Tn5 enzymes were loaded with either Nextera A adapters or Nextera B 

adapters. Separate transposase reactions randomly cleaved and tagged double-

stranded DNA with either Nextera A or B adapter overhangs (referred to as “A cut” 
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and “B cut”). Tagmentation products were PCR amplified using Nextera primers. 

Products were purified with DNA Clean & Concentrator (Zymo Research) and run on 

2% EX gel (Life Technologies). DNA ranging from 300bp – 900bp was extracted 

from the gel and purified using QIAquick Gel Extraction kit (Qiagen). Uncut DNA, 

Tn5 A cut, and Tn5 B cut libraries were pooled and sequenced according to standard 

Illumina protocols on an Illumina MiSeq. 

 

Results and discussion 

Proviral TMIseq of gp120 V1 – V3 regions 

Targeted amplicon sequencing can detect the frequency of unusual variants and 

provide information on the evolution of immunologically significant regions, such as 

the V1 – V3 region.  However, high-throughput sequencing introduces PCR errors 

and requires assembly, which are challenging problems to overcome in the highly 

diverse HIV population. Here, we applied TMIseq to improve accuracy over an 

~800bp region. To correct for PCR errors, we attached molecular barcodes (16 

random nucleotides) prior to amplification with out-nested primers (Bhiman et al., 

2015; Cole et al., 2016; Jabara et al., 2011). Unique barcodes attached to each end of 

the DNA template allowed us to correct for recombination, allelic skewing, and 

sequencing errors. Molecular barcodes were also used to assemble Illumina reads 

with a modified version of the protocol described in Cole et al, 2016. While 454 

pyrosequencing reads are long enough to cover the V1 – V3 region without assembly, 

454 pyrosequencing has lower yields, is less sensitive and has a higher false positive 
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rate than Illumina sequencing (Di Giallonardo et al., 2014; Li et al., 2014). To use the 

Illumina platform, we designed three separate library preps. The first library prep 

followed the standard Illumina protocol after adding the molecular barcodes (Figure 

3.1). This yielded high coverage at the ends (but insufficient coverage in the middle) 

and allowed us to match the 5’ and 3’ barcodes that came from each template. The 

other 2 library preps used custom transposase reactions to manipulate Illumina’s 

tagmentation step. Transposase reactions randomly cleaved and tagged double-

stranded DNA with either Illumina Nextera A or Illumina Nextera B adapters, 

resulting in varying lengths of DNA that ensured high coverage over the entire V1 – 

V3 region (Figure 3.2). Uncut DNA, DNA cut and tagged with Nextera A adapters, 

and DNA cut and tagged with Nextera B adapters were pooled and sequenced 

according to standard Illumina protocols on an Illumina MiSeq (Figure 3.3). The 

reads were assembled with custom scripts using the molecular barcodes with high 

coverage throughout the V1 – V3 region (Figure 3.3 and Figure 3.4). 
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Fig 3.1. Amplification of gp120 V1-V3 region for TMIseq. 
DNA was extracted from sample GSID007. V1 – V3 region was PCR amplified with 
unique molecular identifiers, purified, and run on 2% EX gel (Life Technologies). 
 

 

Fig 3.2. Transposase digest of gp120 V1 – V3 region library for TMIseq. 
Tn5 enzymes randomly cleave GSID007 V1 – V3 amplicons. Tagmentation products 
of different sizes were amplified, purified, and run on 2% EX gel (Life 
Technologies). 
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 (A)      (B) 

 

Fig 3.3. Read coverage of gp120 V1 – V3 region. 
Histograms of (A) trimmed raw read coverage and (B) unique identifier (UID) 
coverage mapped to HXB2 reference. 
 
 
 

 

Fig 3.4. Proviral V1 – V3 region TMIseq results. 
Proof of concept study yielded proviral consensus sequence for patient GSID007. V1 
– V3 sequences from plasma (Monog) and proviral (Illum) are shown. 
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Antibody repertoires from an elite neutralizer and HIV-positive individual that 

did not produce bNAbs  

A proof of concept study was conducted on an elite neutralizer and non-elite 

neutralizing normal progressor. Both HIV-positive individuals had a high proportion 

of IgG antibodies compared to controls (Fig 3.5) with significant somatic 

hypermutation (Fig 3.6), an expected result in response to HIV infection. 

Interestingly, the non-elite neutralizing individual showed highly mutated IgD 

antibodies (Fig 3.6). Longer CDRH3s were found in both HIV-positive subjects 

compared to controls (Fig 3.7). Further investigation is needed to characterize the 

antibody repertoires by disease phenotype, which may elucidate features that led to 

neutralization breadth. Current immunization strategies involve a series of 

vaccinations, where some mimic the evolution of the virus in attempt to shape 

antibody maturation (Liao et al., 2013). Characterization of antibody repertoires from 

different disease phenotypes may help resolve whether sustained selection pressure is 

necessary for the development of broadly neutralizing antibodies. 
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Fig 3.5. Proportion of antibody isotypes in the antibody repertoires of an HIV-
positive elite neutralizer and a non-elite neutralizer. 

 

Fig 3.6. Somatic hypermutation in the antibody repertoires of an HIV-positive 
elite neutralizer and a non-elite neutralizer. 

 

Fig 3.7. CDRH3 lengths in the antibody repertoires of an HIV-positive elite 
neutralizer and a non-elite neutralizer. 
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Conclusion 

A primary focus of HIV vaccine research is to engineer immunogenic Env proteins. 

However, properly folded and glycosylated Env trimers have so far failed to elicit 

bNAbs. Envs are inherently poor immunogens and new strategies are needed in order 

to elicit an effective immune response. Here, we use Envs isolated from individuals 

with the elite neutralizer/controller phenotype and found unusual, potentially 

immunogenic structural features that may have contributed to the production of 

bNAbs and viral control. 

We identified individuals with the rarely reported elite neutralizer/controller 

phenotype from the SCOPE and WIHS longitudinal studies. In the WIHS cohort, we 

demonstrated that elite controllers as a group had lower neutralization breadth and 

potency compared to viremic controllers and normal progressors. The low level of 

viremia in elite controllers is less likely to provide sufficient antigenic stimulation to 

produce bNAbs but there was not a linear relationship between neutralization breadth 

and viral load. While elite controllers are less likely to produce bNAbs, we identified 

an elite controller with broadly neutralizing activity from the SCOPE cohort, one of 

the few individuals that have been reported with this phenotype. 

From the 78 individuals screened, two controllers with broadly neutralizing 

activity, EN3 and EN6, were selected for in depth analysis in an effort to identify 

Envs that may recapitulate their immune response. We studied viral controllers in part 

because they may have restricted evolution (Bailey et al., 2006; Bello et al., 2007, 

2004; Casado et al., 2010; Lassen et al., 2009; Roy et al., 2017; Sandonís et al., 2009; 
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Scutari et al., 2018; Smith et al., 2013; Wang et al., 2003) and, therefore, 

contemporaneous Envs may be more closely related to ancestral variants that elicited 

the production of bNAbs. We found low genetic diversity in both EN3 and EN6 Env 

populations (99.1% and 99.6% pairwise identity, respectively), however, longitudinal 

studies and high-throughput sequencing (e.g., TMIseq) are needed to determine if 

evolution was in fact limited. We also reasoned that viral controllers may have 

features that enhance immunogenicity, such as those that contribute to improved 

antigen presentation. Both EN3 and EN6 had Envs with highly unusual features in 

immunodominant regions. 

EN3 and EN6 had proviral Envs with elongated V1 regions containing two 

non-conserved cysteines, a feature found in only 5.5% of clade B viruses (van den 

Kerkhof et al., 2016). Mutagenesis experiments in EN3 demonstrated that mutations 

are necessary to accommodate the cysteine in order to preserve infectivity, suggesting 

a functional role. It appears the additional cysteines may arise from a duplication 

event and provide viral escape from V3-targeting antibodies but further investigation 

is needed. During these studies, we discovered the K170E polymorphism was a mode 

of escape from V2-glycan targeting bN-mAbs, PG9 and PG16. 

Envs isolated from EN6 plasma had a 35% reduction in potential N-linked 

glycosylation sites. The absence of glycans has been associated with the T/F 

phenotype, bNAb-inducing Envs, and increased immunogenicity (Chohan et al., 

2005; Dacheux et al., 2004; Derdeyn et al., 2004; Wu et al., 2006; Zhou et al., 2017). 

These previous findings have led to substantial effort in engineering Envs with fewer 
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glycans, which have improved neutralization response in rabbits and macaques (Koch 

et al., 2003; Li et al., 2008; Liang et al., 2016). Here, we identified a native, 

minimally glycosylated Env that elicited an improved cross-clade neutralization 

response in rabbits when compared to EN3 Env and reference Env, MN. 

Future research can build on this work by using the minimally glycosylated 

EN6 Env in alternate modes of immunization, including trimeric gp140s (Dey et al., 

2018; Sanders et al., 2013; Sliepen et al., 2019) in sequential immunization regimens 

(Dubrovskaya et al., 2019; Jardine et al., 2013; Steichen et al., 2016), and vector 

prime with rgp120 boosts (Barouch and Picker, 2014; Stephenson et al., 2016). The 

early results described in these studies provide evidence that elite 

neutralizer/controllers have unusual structural features that may have enhanced their 

immune response. Furthermore, this work demonstrated that individuals with the elite 

neutralizer/controller phenotype are a promising new source of HIV vaccine 

immunogens. 
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