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Abstract

Motivation

Combining a 16S rRNA (16S) gene database with metagenomic shotgun 
sequences promises unbiased identification of known and novel microbes.

Results

To achieve this, we herein report reference-based ribosome assembly 
(RAMBL), a computational pipeline, which integrates taxonomic tree search 
and Dirichlet process clustering to reconstruct full-length 16S gene 
sequences from metagenomic sequencing data with high accuracy. By 
benchmarking against the synthetic and real shotgun sequences, we 
demonstrated that full-length 16S gene assemblies of RAMBL were a good 
proxy for known and putative microbes, including Candidate Phyla Radiation.
We found that 30–40% of bacteria genera in the terrestrial and intestinal 
biomes have no closely related genome sequences. We also observed that 
RAMBL was able to generate a more accurate determination of 
environmental microbial diversity and yield better disease classification, 
suggesting that full-length 16S gene assemblies are a powerful alternative to
marker gene set and 16S short reads. RAMBL first realizes the access to full-
length 16S gene sequences in the near-terabase-scale metagenomic shotgun
sequences, which markedly improve metagenomic data analysis and 
interpretation.

Availability and Implementation

RAMBL is available at https://github.com/homopolymer/RAMBL for academic 
use.

1 Introduction



Microbial ecology relies on 16S rRNA amplicon sequencing and whole 
metagenomic shotgun sequencing to explore the taxonomic and 
phylogenetic composition of previously unknown environmental samples 
(Franzosa et al., 2015). Accurate determination of microbial taxa and 
compositional abundance from amplicon sequencing data is challenging 
(Zhou et al., 2015). This can, in part, be attributed to the fact that PCR 
primers used for 16S rRNA amplicon sequencing are biased toward certain 
kinds of microbes and thus cannot fully capture divergent 16S rRNA gene 
sequences, especially the Candidate Phyla Radiation (CPR) members and 
uncharacterized archaea that comprise approximately 10% of environmental
microbes (Eloe-Fadrosh et al., 2016). In addition, the hyper-variable regions 
(V1–V9) of 16S rRNA gene evolve at distinct divergence rates (Chakravorty 
et al., 2007). As a result, amplicon sequences of different hypervariable 
regions could not reach a consistent characterization of taxonomic 
composition for a microbial community.

On the other hand, whole metagenomic shotgun sequencing suffers no 
primer bias and possesses a full characterization for microbial community. It 
requires reference genome sequences and relies on phylogenetic marker 
gene set(s) to profile and annotate microbial taxa. For instance, mOTU 
established a core set of 40 marker genes extracted from 3496 prokaryotic 
reference genome sequences for taxonomy identification (Sunagawa et al., 
2013). MetaPhlan2 started from the genome sequences contributed by the 
early capillary sequencing and latest metagenomic shotgun sequencing 
efforts to construct a clade-specific marker gene set, containing one million 
genes, on average 184 genes per species, for identifying 7500 species 
(Truong et al., 2015). The more the characterized prokaryotic genome 
sequences grow, the more archaea and bacteria the metagenomic shotgun 
sequences could identify. The number of prokaryotic reference genome 
sequences has been increased by 10-fold in the past few years. However, 
since metagenomic shotgun sequencing projects (such as the Human 
Microbiome Project, HMP (The HMP Consortium, 2012) and the Metagenomics
of the Human Intestinal Tract, MetaHit (Qin et al., 2010)) were mostly 
devoted to cataloging the microbes colonized in human body, the speed of 
characterizing environmental microbes lags far behind that of characterizing 
human associated microbes in terms of genome sequences. Moreover, more 
than 99% of microbes, including most underrepresented and uncultivated 
bacteria, such as CPR members (Sunagawa et al., 2015), still have no closely
related reference genome sequences (Sharon and Banfield, 2013). The bias 
and incompleteness of the reference genome sequence database limit full 
characterization of taxonomic diversity of microbial communities.

Over the past few decades, millions of 16S rRNA gene sequences have been 
collected by amplicon sequencing (DeSantis et al., 2006) and in silico gene 
prediction (Cole et al., 2014; Pruesse et al., 2007). An existing strategy for 
taxonomic profiling involves identifying 16S rRNA sequence reads from 
shotgun sequencing data and then using them to query a 16S rRNA database



for taxonomic identification, e.g. Parallel-Meta (Su et al., 2014). However, 
since most metagenomic studies adopt Illumina sequencers for data 
generation, short reads from 100 to 250 bp cannot differentiate many 
homologous gene sequences. Therefore, when combined with sequencing 
errors, short reads could produce an incorrect and biased estimation of 
taxonomic composition.

Full-length 16S rRNA gene sequences, about 1.5 kb, can delineate a full 
spectrum of bacteria and archaea (Singer et al., 2016). Unfortunately, 
current sequencing platforms produce reads that are too short (Illumina), 
have low quality (PacBio), or have low throughput (Sanger). As a result, high-
throughput sequencing of full-length 16S rRNA genes remains unavailable. A 
worthy alternative is the direct assembly of full-length 16S rRNA gene 
sequences from shotgun sequencing data. EMIRGE (Miller et al., 2011) and 
Reago (Yuan et al., 2015), representing reference-based and de novo 
assembly approaches, respectively, have previously attempted this task. 
EMIRGE assigned sequencing reads to the closest known reference 
sequences, and reconstructed 16S rRNA gene sequences of a community 
using a single nucleotide polymorphism (SNP) map and an iterative 
inference-and-realignment algorithm. The specificity of EMIRGE depends on 
the accurate assignment of sequencing reads to the ab origine 16S rRNA 
gene reference sequences. However, error-prone short reads and 
homologous 16S rRNA gene sequences make this task a grand challenge. 
Reago employed a hidden Markov model (HMM) profile (Nawrocki et al., 
2009) trained for small subunit ribosomal genes to extract 16S rRNA gene 
reads, and utilized overlap graph to assemble full-length 16S rRNA gene 
sequences. De novo assembly can discover new 16S rRNA gene sequences, 
but cannot differentiate similar strain sequences. In addition, de novo 
assembly algorithms tend to show bias toward high-abundance strains and 
miss low-abundance strains, restricting the sensitivity.

Therefore, we developed a new computational pipeline termed reference-
based ribosome assembly (RAMBL) with markedly improved sensitivity and 
specificity for 16S rRNA gene assembly. Using synthetic and real benchmark 
datasets, we showed that RAMBL was able to reconstruct both known and 
novel full-length 16S rRNA gene sequences from a complex microbial 
community, which yield a better estimate of taxonomic composition than 
marker gene set and 16S rRNA short reads. In addition, RAMBL can identify 
both high-abundance and low-abundance microbes, such as CPR members, 
with high quality. RAMBL displayed a unique capacity for comprehensive 
characterization of microbial diversity.

2 Methods

2.1 Overview of RAMBL

Genetic heterogeneity is a predominant factor that declines the accuracy of 
16S gene sequence reconstruction. At one side, heterogeneous sequences in
a microbiota lower the sensitivity of 16S gene assembly. At the other side, 



sequence homology can lead to falsely detect microbes that are not present 
in the microbiota. To resolve this issue, we proposed a divide-and-conquer 
approach (Fig. 1a) following the anticipation that reduces genetic 
heterogeneity as far as possible and avoids eliciting false discoveries in the 
meantime. Briefly, at the beginning, we separate the entire data into many 
subgroups at high rank with the aid of a well-established taxonomic tree. The
underlying assumption is that taxonomic annotation is correct at high rank. 
Short reads of a subgroup are assumed to be originated from the same taxon
or similar taxa. The subgroups are called as the seeds. To enhance signal 
intensity for the detection of the seeds, RAMBL merges short reads across 
multiple samples. Next, for each subgroup, we devise a Bayesian non-
parametric model to statistically reconstruct the full-length sequences of 
similar 16S genes. Technical details are addressed in the following.

FIGURE 1 The metagenomic 16S assembly pipeline. (a) RAMBL consists of two components: taxonomic 
tree search and Dirichlet process clustering. (b) Clade hit analysis for the 10× × dataset of Mock1. 
Blue and green bars represent the number of clade hits by short reads before and after the taxonomic 
tree search, respectively. The taxonomic tree search significantly decreases the number of clade hits. 
P-values of Student’s t-test for comparison at all taxonomic ranks are less than 0.001. (c) The 
taxonomic tree search sums up the abundance and coverage signals, which are shown as red curves 
next to the nodes. (d) Dirichlet process clustering infers the posterior distribution of the strains. The 
strains with proportional ratio above threshold t are reported. (e) The procedure of abundance 
estimation for the 16S contigs

2.2 Taxonomic tree search and data division

The taxonomic tree search aims to cluster short reads according to their 
origins. We observe that each short read can be mapped to different 16S 
rRNA gene sequences. The 10× × Mock1 dataset is an example of this (Fig. 
1b). Although short reads are noticeably dispersed at the genus rank, we 
observe that the number of clade-hits per read gradually decreases as we 
move up taxonomic ranks (Fig. 1b). This phenomenon leads to a hypothesis 
that dispersed mapping of short reads could be grouped together if a proper 
high-rank taxonomic clade was specified. Therefore, we devised a taxonomic
tree search algorithm to identify proper clades for the purpose of partitioning
reads into subsets.



The taxonomic tree search starts from leaf nodes of a taxonomic tree, e.g. 
the 16S reference sequences of GreenGenes (DeSantis et al., 2006) (v13.8). 
The leaf nodes represent 16S rRNA gene reference sequences. Given the 
read mapping files, we calculate the depth of a reference sequence as the 
average number of reads observed at a position, and the coverage as the 
fraction of reference sequences covered by at least one read.

Then, as the algorithm walks up to the root of the taxonomic tree, we sum up
the abundance and coverage signals at each taxonomic level (Fig. 1c). The 
abundance of an internal node is calculated as the sum of the abundances of
its offspring nodes. The union of the covered regions of the offspring nodes is
used to define the coverage of the internal node. When an internal node is 
abundant, i.e. depth ≥≥1××, and its sequence is fully covered, i.e. coverage 
≥≥0.9, we call the subtree under the internal node as a candidate clade. A 
candidate clade is represented by a subset of short reads of the same 
taxonomic origin. Short reads of the clades that do not satisfy the coverage 
and abundance criteria are re-assigned to the closest candidate clades using 
Bowtie2 (Langmead and Salzberg, 2012).

2.3 The construction of alignment graph

We proposed a data structure named alignment graph to store the short 
reads as well as their alignments for a subgroup. Alignment graph is an 
extension of the partial order graph (POG) that was originally proposed to 
delineate the skeleton of a MSA (Lee et al., 2002). Unlike POG that discards 
the alignments, alignment graph retains the alignment information. Thus, 
alignment graph is not only to represent the graph skeleton that guides the 
generation of all the possible strain sequences, but also to permit the fast 
establishment of all the MSAs against all the possible strain sequences. In 
the following, we first describe the procedure of graph construction, and later
introduces how to generate the possible strain sequences and establish the 
strain-specific MSA in linear time.

We used the following procedures to construct an alignment graph for a 
subgroup.

First, all the reads that are assigned to the subgroup by the data division 
step are mapped onto the representative reference sequence of the 
subgroup. The reference sequence of a taxon of the subgroup is selected as 
the representative if it harnesses the most reads. An aligned read is 
represented by a 3-tuple as shown in Figure 2a. The first element of the 3-
tuple indicates the start position of the alignment on the representative 
reference sequence. The second element of the 3-tuple is a CIGAR string (Li 
et al., 2009) that indicates how the read is aligned to the representative 
exactly. The third element of the 3-tuple is the part of the read sequence 
that is aligned to the representative.



FIGURE 2 Flows to build an alignment graph. (a) Input data include a reference gene sequence and the
aligned reads. Each read is represented as a 3-tuple, indicating the position where the alignment starts
on the gene reference, the CIGAR letter that claims how the read is aligned, and the read sequence. 
(b) The first step is to build a non-compact alignment graph, where a path represents an aligned read 
or the reference gene sequence. The path on the bottom represents the reference gene sequence. The
deletion is explicitly represented as ‘=’. (c) The second step is to adjust the gap alignment. A 
progressive MSA method is utilized to re-compute the alignment of the sequences C, CC and CCT, 
which are inserted between the reference letters G and T. We explicitly add the letter ‘-’ into the paths 
that represent the reference gene sequence and the reads that have no insertions at this gap position. 
Instead of discarding the alignments, we use a level-wise data structure to store the read letters that 
cover a graph position. (d) The third step is to remove the redundant nodes and edges to obtain a 
compact graph representation. In a forward-and-backward manner, it first walks through the graph 
from left to right, one level by one level and merges the nodes at a level that have the same letter and
the same preceding node. Next, it reverses the direction, walks through the graph from right to left, 
one level by one level and repeats the node-merging process.

Second, we create an initial graph using the representative reference 
sequence, where there is only one path and each node on the path 



represents a letter of the representative reference sequence. The path on 
the bottom line of Figure 2b represents the representative reference 
sequence. After that, we consider the aligned reads one by one. We scan an 
aligned read from left to right. We add a node for each letter of the aligned 
read to the graph. Eventually, this will result in a redundant and non-
compact graph, where there are multiple nodes in one position that equally 
represents the same alignment event, like the letter ‘C’ in the first three 
lines in Figure 2b. We call this graph as the non-compact graph. On the 
resultant graph, we explicitly represent the deletion nodes in the graph using
the letter ‘=’. Other nodes are called as non-deletion nodes.

Third, we adjust the gap alignment. The mapping program that does not 
implement a full version of dynamic programming and considers the 
alignment of short reads one by one cannot result in a consistent alignment 
for the reads that encounter the insertions and/or deletions (indels). In 
addition, the random indels that happen during sequencing will confuse the 
alignment of a gap. As the example in Figure 2b, there are three inserted 
sequences between the letters G and T on the representative sequence, 
which are C, CC and CCT. Their alignments are inconsistent. Thus, we pursuit
to establish a consistent alignment for the gap. For the insertion, we apply 
the progressive MSA algorithm to re-align the inserted sequences. A 
consistent alignment for the sequences inserted between the reference 
letters G and T is shown in Figure 2c. After the adjustment of the insertion, 
we re-calculate the graph level for all the non-deletion nodes. Next, we 
adjust the deletion by simply adding a new deletion to replace the old one. 
The number of nodes on the new deletion equals to the difference between 
the level orders of the deletion-starting and deletion-ending nodes. To keep a
consistent graph representation, we explicitly represent the insertions on the
representative reference sequence.

Although the graph is non-compact, the nodes of the graph can be indexed 
using a horizontal–vertical coordinator. The horizontal axis indicates the 
graph level, which is a counterpart of the level counting on a tree. 
Particularly, the first column is level 1, the second column is level 2 and so 
on. The vertical axis indicates the order of the variants at a graph level. For 
example, the letter ‘G’ at the graph level 3 has a horizontal–vertical 
coordinate of (3,0), where zero indicates that it is a reference allele, and the 
letter ‘C’ on the top of ‘G’ has a horizontal-vertical coordinate of (3,1).

We introduce an auxiliary data structure Reads[l] to store the aligned reads 
at the level l by collecting the reads covering the level ll.

Finally, we use a forward–backward algorithm to reduce the redundant nodes
to obtain a compact graph. In the forward direction, we traverse the graph 
from left to right, visit the nodes one level by one level, and merge the nodes
at a level having the same letter. After that, we repeat this process but 
conduct in the reverse direction. Eventually, a compact graph like the one 
depicted in Figure 2d is obtained.



Alignment graph and the conventional POG are different in two aspects. First,
alignment graph explicitly represents the indels, whereas POG adopts an 
implicit representation for the indels. Second, alignment graph involves an 
external data structure to store the alignment information. POG discards the 
alignments.

2.4 The manipulation of alignment graph

During the probabilistic inference described at next section, we use the 
alignment graph for two purposes. First, we use the alignment graph to 
generate possible strain sequences. Second, we use the alignment graph to 
fast establish a MSA of all reads against a possible strain sequence.

Strain sequence generation. We traverse an alignment graph from left to 
right, and start with a possible strain sequence that accounts for the starting 
node of the graph. By visiting nodes one level by one level, we can extend 
the strain sequence by padding the node letter at the next level, when there 
is no branch. Otherwise, we can expand the set of strain sequences by 
adding new strain sequences where the variant node letters are padded on 
the right end of the strain sequences till the previous level per graph 
branching. Figure 3a depicts all the possible strain sequences at all the 
graph levels of an exemplar alignment graph. Without the aid of alignment 
graph, the enumeration of all the possible strain sequences grows 
exponentially in terms of the number of mutations and indels. The graph-
aided generation of strain sequences substantially reduces the enumeration 
complexity. As shown in Figure 3a, the number of all the possible strains is 
1 × 2×1 × 3×3 × 1 = 18, when all positions are assumed to be mutually 
independent. However, the use of alignment graph declines the number by 
10. This improvement will be noticeable when the graph is complex.

FIGURE 3 Operation on alignment graph. (a) Alignment graph is to yield the candidate strain 
sequences. The graph-aided enumeration avoids the exponential complexity. (b) Alignment graph is 
also to establish a MSA of all the reads against a candidate strain sequence through the constant-time 
retrieval from the level-wise data structure. All the MSAs of all the candidate strain sequences till the 
level 4 are listed. (c) The Dirichlet process model is to infer the underlying strain sequences that likely 
yield all the reads till the current level, such as red dashed boxes in (b).

Fast MSA establishment. For each possible strain sequence, we can establish
the alignments of all the reads against it in linear time. This is achieved by 



the constant time retrieval of the alignment parts starting from Reads[1] to 
Reads[l] , where l is the current level. Figure 3b depicts the MSAs of all the 
possible strain sequences at the level 4. This avoids the intensive 
computation of new MSAs ab initio.

2.5 Dirichlet process clustering

Dirichlet process clustering is a machine learning method for the automatic 
inference of community composition and does not require prior knowledge 
about the structure of mixture data. It has been widely used in quasi-species 
sequence assembly for viral population sequencing data (Töpfer et al., 2013)
and clonal reconstruction for cancer genomics (Fischer et al., 2014). 
Therefore, we applied this technique to reconstruct 16S gene sequences for 
the taxonomic tree-defined read sets.

Suppose there are N short reads, , within a read set. These reads 

are derived from K different strains,  We devise a full probabilistic 

sequencing model,  for a strain sj. It formulates 
the single nucleotide polymorphisms (SNPs), insertions and deletions 
(indels), which occur during the sequencing of strain sj. The model parameter

 represents the probability that a letter α on si emits an observation β. 

The probability of all emission events of α is equal to 1, 

With the above configuration, we can describe the generation of short reads 
as follows. To generate a short read ri, a strain sj is first drawn from the 
candidate strain set S. The distribution over S is a multinomial probabilistic 

model with parameter π =  The prior distribution over 
parameter π is a Dirichlet distribution, Dirichlet(γ) , γ=(γ1,γ2,…,γK) , where 
γj>0 is the pseudocount of the jth strain sj. Next, the sequencer proceeds 
from the left end to the right end and emits one letter at one position. 
Suppose the strain letter α is at the current position; then the sequencing 

model,  would be specified by drawing from a Dirichlet prior 

distribution,  where   is the pseudocounts of 
the emission events. Given the strain and sequencing model, a letter β on 
read ri is drawn from a multinomial distribution with the probabilistic 

parameters . Taken together, the Dirichlet process generation is 
depicted in Figure 3c and formulated as  



In this framework, the probability of a read ri belonging to a strain sj can be 
explicitly written by, 

where nαβ counts the number of the emission event α→β that occurs during 
the generation of ri.

The joint probability of a read ri belonging to the strain sj  and the parameter 
Θj can be obtained by

By integrating out the parameter Θj, the marginal probability of the strain sj 
generating ri is, 

The posterior probability of Θj, given that ri has been assigned to sj, can be 
explicitly written by 

RAMBL uses Gibbs sampling to estimate π and Θ with the aim of maximizing 
the posterior probability of the strains. In the Gibbs sampling, the conditional
posterior probability of the assignment of a read ri is given by  



where mj is the number of previous reads that has been assigned to the 
strain sj. The update of the parameter Θj is according to the posterior 
probability that described above.

2.6 Progressive inference

Once an alignment graph for a subgroup is built, we scan the graph from left 
to right, and conduct the probabilistic inference one level by one level. We 
call this way that we perform the inference as the progressive Dirichlet 
process.

Specifically, at the beginning, the candidate strain set has only one element 
comprising one letter that represents the starting node of the alignment 
graph under exploitation. The inference at this circumstance is trivial. We 
move on to the next level of the alignment graph. If the graph branches to 
indicate variants, we will involve additional strain sequences to expand the 
candidate set. A new strain sequence is constructed by padding the variant 
letter of a branching node v to the right end of the old strain sequence of the
node u preceding the branch. The weight of the new strain sequence is 

computed using  where γu is the weight of the old strain sequence, 
Nu is the number of reads covering u, and Nv is the number of reads covering
v. The initial K at current level is specified as the K* inferred at the previous 
level. Then, we execute the Dirichlet process clustering to infer the posterior 
probability for the strain sequences until the current level. After the 
inference, a strain is discarded if its posterior probability is found to be less 
than 0.05. In this case, its abundance would be less than 5% within the 
subgroup. The posterior probability of the strains at the current level is used 
as the prior probability at the next level. The procedure proceeds toward the 
right end of the alignment graph. When RAMBL reaches the right end, it 
outputs the reconstructed 16S gene sequences. Two assembled contigs are 
merged if sequence identity is higher than 98%.

2.7 Compositional abundance estimation and taxonomic classification

We align short reads to the 16S contigs in order to calculate compositional 
abundance. The MegaBlast program (Zhang et al., 2000) (v2.2.29) is utilized 
to search for alignments between short reads and 16S contigs. An alignment 
is discarded when its identity is less than 0.95 or the E-value is higher than 
1e−10. After that, each read is assigned to the best-hit contig having the 
lowest E-value. If more than one best-hit contig exists for a read, the read is 
assigned to best-hit contigs with weight equal to the inverse of the number 
of the best-hit contigs. Thus, if L equals contig length and l equals read 
length, then the raw abundance without fixing copy number variation of the 

contig that has n assigned short reads can be defined as 

We use the RDP classifier (Wang et al., 2007) (v2.11) to determine the 
taxonomic identity of a contig. A taxonomic identification is considered 



unreliable and filtered out if the RDP score, i.e. the posterior classification 
probability, is less than 0.6.

We obtained the copy number of a contig by querying the rrnDB database 
(Klappenbach, 2001) (v4.4.4) through the RDP-defined taxonomic identity. 
Suppose the copy number of a contig is c. We refined the raw abundance by 
dividing the copy number and get the copy number corrected abundance as

 The abundance of a clade was calculated by summing over the 
abundances of the contigs within the clade.

2.8 Data analysis for simulation metagenomes

We used two simulation communities, Mock1 and Mock2, for validation. 
Mock1 consisted of 100 strain sequences (Supplementary Table S1) and 
three datasets of the simulated Illumina paired-end reads. The three 
datasets represented coverages of 10×, 20× and 30×, respectively. Mock2
contained 22 known strain sequences and 2 spiked strain sequences that 
represented unknown microorganisms (Supplementary Table S2).

We used the 10× dataset of Mock1 to analyze the clade hits of short reads. 
We used Bowtie2 (Langmead and Salzberg, 2012) (v2.2.4, with local option) 
to map short reads of the 10× dataset to the 16S reference sequences of 
GreenGenes. We counted the number of clade hits by short reads derived 
from the same strain. After the taxonomic tree search, we remapped short 
reads to the representatives of the candidate clades. We counted the 
number of clade hits again for comparison. The comparison results were 
summarized in Figure 1b and evaluated by Student’s t-test.

To evaluate the recovery of strain sequences, we used Blast to align 16S 
contigs to the mock strain reference sequences. We discarded alignments 
whose sequence identities were below 95%. A strain was considered to be 
recovered if a 16S contig hit the strain with sequence identity above 95%. 
Therefore, we defined the sensitivity of strain recovery as the fraction of the 
mock strain sequences that could be found by 16S contigs. We also defined 
the specificity of strain recovery as the fraction of 16S contigs that could be 
used to recover the mock strain sequences. The F1 measurement,

 was used to summarize the sensitivity and specificity.

To evaluate the recovery of microbial taxa, we used the RDP classifier to 
determine the taxonomic identities of the 16S contigs. Sensitivity was 
determined as the fraction of the mock taxa that could be recovered by the 
16S contigs. Specificity was estimated by the fraction of taxa in the mock 
community defined by the 16S contigs.

2.9 Metagenomic data of soil biomes and Chinese gut

Raw sequencing reads of the 16 soil biomes were downloaded from the MG-
RAST server: hot deserts (4477805.3, 4477872.3 and 4477873.3), cold 



deserts (4477803.3, 4477900.3 to 4477904.3) and green soils (4477804.3, 
4477807.3, 4477874.3 to 4477877.3 and 4477899.3). On average, there 
were 7 042 164 100 bp Illumina reads per sample. It was noted that only first
segments of paired-end reads were available on the MG-RAST server. A total 
of 2 289 307 895 Illumina paired-end reads of the Chinese gut microbiota 
were downloaded from the Short Read Archive (SRA, accession number 
SRA045646) of the NCBI server. Each segment of a paired-end read was 75 
bp at length.

2.10 Data analysis for cross-biome soil metagenomes

We ran RAMBL, EMIRGE, MetaPhlan2 and Parallel-Meta with the default 
parameters. We did not test Reago or mOTU because they failed to process 
the soil metagenomic datasets.

To perform the principal coordinate analysis (PCoA), we ran MUSCLE (Edgar, 
2004) (v3.8.31, using default parameters) to compute the multiple sequence 
alignment (MSA) for the 16S contigs. Next, we input the MSA to FastTree 
(Price et al., 2009) (v2.1.9, using default parameters) and built the 
taxonomic tree for the 16S contigs. Following that, we used the 
beta_diversity.py script (with the -m weighted_unifrac option) of the QIIME 
package (Caporaso et al., 2010) to compute the weighted UniFrac distance 
matrix. With the distance matrix, we used the principal_coordinates.py script
of QIIME to perform PCoA analysis. For MetaPhlan2 and Parallel-Meta, we ran 
beta_diversity.py with the -m bray_curtis option to compute the Bray–Curtis 
distance matrix because these two methods did not provide the 
representative sequences of the identified taxa for taxonomic tree 
construction.

2.11 T2D classification

We used the scikit-learn package (http://scikit-learn.org) to carry out the 
analysis. The support vector machine-recursive feature extraction (SVM-RFE)
method was used to select the discriminative 16S gene assemblies. The 
linear SVM classifier was used for the T2D classification. We partitioned the 
samples into 10 folds to perform the cross validation. Among the partitioned 
samples, 7 folds were used to train the SVM classifier, and 3 folds were used 
to test the classification accuracy. The cross validation procedure was 
replicated 1000 times.

2.12 Computational resource

We conducted all the experiments using one node of the Tsinghua BigData 
cluster, where the CPU is Intel® Xeon® E5-2680 and memory size is 512GB. 
The CPU clocks of RAMBL on the 16S gene reconstruction of the soil and T2D 
microbiome were 18 and 389 min, respectively, using 20 threads.

3 Results

3.1 Improvement of full-length 16S gene assembly



To assess the accuracy of RAMBL, we created a mock community consisting 
of 100 strain sequences (termed Mock1, Supplementary Table S1). The strain
abundance levels were simulated through a stick-breaking process (Paisley 
et al., 2010), producing values ranging from 0.02% to 5.79%. We used a 
simulator called Mason (Holtgrewe, 2010) to generate three Illumina paired-
end datasets with read length of 100 bp, insert size of 300 ± 30 30 bp (mean 
± s.d.) and mean sequencing depths of 10×, 20× and 30× (Supplementary 
Table S1) for evaluation.

The average sequence identity of reconstructed 16S rRNA assemblies for the
10× × simulated dataset was 99.5%, compared to the ground truth 
reference sequences (Supplementary Fig. S1a). These results indicated that 
RAMBL could reconstruct 16S rRNA gene sequences nearly identical to the 
reference sequences which is a significant improvement over that of EMIRGE 
(v0.60, average sequence identity of 98.5%) and Reago (v1.1, average 
sequence identity of 99.1%). In addition, the lengths of the reconstructed 
16S rRNA assemblies by RAMBL were closer to 1.5 kb with median deviation 
of 5 bp (Supplementary Fig. S1b), while those by EMIRGE were shorter, with 
median deviation of −12 bp, and those by Reago were longer, with median 
deviation of 124 bp. For all three simulated datasets, RAMBL outperformed 
the other two methods, as measured by F1F1 (Supplementary Fig. S1c), with 
higher sensitivity and accuracy. RAMBL could also accurately identify low-
abundance taxa. For the 10× dataset, RAMBL could recover all simulated 
phyla, whereas EMIRGE and Reago missed many microbes with abundance 
below 0.01 (Supplementary Fig. S1e). The speed of RAMBL is more than 300 
assemblies per hour (Supplementary Fig. S1d).

3.2 Accurate identification of both known and novel microbes

RAMBL can detect sequences from potentially novel microorganisms. To 
verify this, we created another mock community (termed Mock2, 
Supplementary Table S2) comprised of 22 known microbial genome 
sequences and 2 spike-in (novel) microbial strains, Aminiphilus 
circumscriptus DSM 16581 (GenBank: GCA_000526375.1) and Arsenophonus
endosymbiont str. Hangzhou of Nilaparvata lugens (GenBank: 
GCA_000757905.1). The Illumina paired-end reads were simulated using 
Mason with an even sequencing depth (15×) for the 24 strains. We 
evaluated three 16S rRNA reconstruction methods, including RAMBL, EMIRGE
and Reago, along with two genome query methods, including MetaPhlan2 
(v2.2.0) and mOTU (v1.3), and one 16S rRNA read-based method, Parallel-
Meta (v3.1.0). All programs were run using default parameters.

The 16S rRNA reconstruction methods demonstrated distinct features from 
those of genome query methods (Supplementary Fig. S1f and g). For 
example, both EMIRGE and Reago succeeded in identifying all of the spiked-
in microbes, but failed to identify a number of known microbes; the 
sensitivity of EMIRGE was 71.4%, while that of Reago was 76.2%. On the 
other hand, MetaPhlan2 and mOTU, both genome query methods, recovered 



all the known microbes, but missed the spiked-in microbes. In comparison, 
RAMBL detected all microorganisms correctly and estimated microbial 
abundance accurately with cosine similarity to the ground truth at 97.9% 
(Supplementary Fig. S1g). By assembling 16S rRNA reads to full-length gene 
sequences, we can significantly improve specificity, as demonstrated in 
Supplementary Figure S1g.

3.3 Reanalysis of 16 soil metagenomes

We applied RAMBL to reanalyze the soil metagenomic data collected from 16
spatial locations, from Antarctica to Argentina, representing the typical 
desert and green (nondesert) soil biomes of the Americas (Fierer et al., 
2012). RAMBL assembled 192 16S gene contigs (Supplementary Table S3), 
and most of the contigs (86.5%) were assigned to 104 microbial genera with 
high confidence levels (RDP score > 0.8, Supplementary Fig. S2). Using 
ChimeraSlayer (Haas et al., 2011), we found that two contigs were chimeric 
assemblies, which correspond to a low chimera rate of ∼1%. The assembled 
contigs were highly dissimilar and captured diverse microbial species/strains 
for high-resolution taxonomic profiling (99.7% of intra-genus sequence 
similarities were less than 0.98, Supplementary Fig. S3). RAMBL recovered 
more accurate soil microbiota with the assembled 16S contigs; 12 out of the 
17 phyla found by RAMBL were confirmed by previous 16S amplicon 
sequencing data (Fig. 4a). For comparison, MetaPhlan2 missed half of these 
12 phyla; EMIRGE failed to recover Verrucomicrobia, Planctomycetes and 
Nitrospirae; Parallel-Meta did not detect Thaumarchaeota. RAMBL did not 
report any false positive for the non-CPR phyla, while all other methods 
exhibited high false positive rates (MetaPhlan2 14.3%, EMIRGE 30.8%, 
Parallel-Meta 26.7%). The other five phyla identified by RAMBL were the CPR 
members that were not found by the 16S amplicon sequences 
(Supplementary Fig. S4). Although the CPR phyla were present at low 
abundance, one of them, Armatimonadetes (formerly OP10), exhibited a 
positive correlation with nitrogen content of desert soils (Supplementary Fig. 
S5) and contributed to the separation of desert and green soil biomes 
(Supplementary Fig. 6), which was not reported previously.



FIGURE 4 RAMBL yields better results for the soil metagenomes. (a) Taxonomic profiling results of the 
four methods in comparison with previous 16S amplicon sequencing. (b) The distribution and 
abundance of novel microbes. An extensive number of assembled contigs highlighted in gray (middle 
circle) were not aligned to close representatives in the NCBI database, representing novel microbes. 
Novel microbes were in high abundance (outer circle, highlighted in red), and mainly distributed 
among the desert-associated phyla (inner circle, highlighted in yellow) and green-associated phyla 
(inner circle, highlighted in green). In anticlockwise direction, the desert-associated phyla in 
anticlockwise direction were Actinobacteria, Chloroflexi and Armatimonadetes; the green-associated 
phyla were Acidobacteria, Proteobacteria, Verrucomicrobia, Planctomycetes and Firmicutes. (c) The 
comparison of novel microbes in the abundance between the desert and green soil biomes. (d) The 
comparison of the between-biome distances (weighed UniFrac measurement) based on known 
microbes and all microbes. (e) The principal coordinates analysis (PCoA) plot of RAMBL based on all 
microbes. (f) The PCoA plot of RAMBL based on known microbes. (g–i) The PCoA plots of EMIRGE, 
MetaPhlan2 and Parallel-Meta

By aligning the RAMBL assemblies against representative microbial genomes
in the National Center for Biotechnology Information (NCBI) database, we 
found that 99 16S gene contigs among the assemblies, at an abundance of 
45.7 ± 13.9% (mean ± SD), had no close representatives in the NCBI 
database (sequence identity > 90%), indicating novel microbes. These novel 
contigs were distributed among 15 phyla, excluding Firmicutes and 
Nitrospirae. Among 104 genera that were found, the novel contigs were from
42 genera (40.4%), of which 41 (97.6%) were completely novel, displaying 
no closely related genomes in the NCBI database. As shown in Figure 4a, 



MetaPhlan2 achieved a high false negative rate of 50%; it was attributed to 
that 66.1% of the contigs of the missing phyla were novel, and that the rest 
of the contigs of the missing phyla showed a low sequence identity 
(averagely 92%) to the closest representative microbial genomes 
(Supplementary Table S3).

Among the aforementioned 99 novel contigs, 80 (80.8%) belonged to the 
phyla relevant to the classification of desert and green soil biomes, i.e. 
Acidobacteria and Actinobacteria (Fig. 4b and Supplementary Fig. S6). The 
non-desert-associated novel genera comprised 51.5% of the uncharacterized
microbial community, and they were more abundant than the desert-
associated novel genera (Fig. 4c), demonstrating a high prevalence of 
underexplored microbes in green soil biomes. Many novel microbes in the 
fertile and moist green soil samples, such as the Acidobacteria genera Gp2 
and Gp5 and the Proteobacteria genus Pedomicrobium, had a preference for 
high organic carbon and nitrogen contents (Supplementary Figs S7 and S8). 
But in the dry and unproductive desert soils, novel microbes favored high pH 
levels, including the Actinobacteria genus Iamia and the Chloroflexi genus 
Sphaerobacter (Supplementary Fig. S8). These novel microbes were 
important to the characterization of the inter-biome variability. When only 
known microbes were considered, the sample distance between different 
biomes decreased significantly from 0.367 ± 0.075 (mean ± SD) to 0.296 ± 
0.082 (mean ± SD), as shown in Figure 4d. In particular, the novel microbes 
contributed the most to the separation of the hot and cold desert soil 
samples (Fig. 4e and f). Although the associated ecological functionalities 
remained unknown, novel microbes that were found in the terrestrial 
samples were extensive, and substantially accounted for the underexplored 
environmental diversity.

RAMBL also yields more accurate relative abundance estimations for the 
environmental microbes, which are key to the correct interpretation of 
metagenomic data. The results of ββ-diversity analysis of all 16 soil samples 
based on RAMBL, EMIRGE, MetaPhlan2 and Parallel-Meta were compared, as 
shown in Figure 4e and g–i. The results obtained by RAMBL give better 
separation of the three different biomes than that achieved by the other 
methods. In addition, we observe a higher percentage of explanation of the 
data variations at the first two PCoA components by RAMBL than that by the 
other methods. Accurate abundance estimation, combined with full 
taxonomic profiling, makes RAMBL the most accurate tool for diversity 
estimation and community profiling of environmental samples.

3.4 Reanalysis of 145 human gut metagenomes

We applied RAMBL to characterize the gut microbiota in a Chinese 
population, which consists of 74 healthy individuals and 71 T2D individuals 
(Qin et al., 2012). The 896 diverse 16S gene sequences were reconstructed 
from the metagenomic datasets (with an average intra-genus sequence 
identity of 0.893, Supplementary Fig. S9). The chimera rate was 13.7% 



determined by ChimeraSlayer. Based on these recovered 16S rRNA gene 
sequences, RAMBL revealed an uncharted microbial community in the gut of 
Chinese individuals (Fig. 5a and Supplementary Table S4). The gut 
microbiota was composed of 11 bacterial and archaeal phyla, including 91.3 
± 9.7% (mean ± SD) Firmicutes and Bacteroidetes, and 148 genera (with an 
average RDP score of 0.94, Supplementary Fig. S10). Novel microbes were 
abundant in the Chinese gut (18.7 ± 7.6%, mean ± SD), and represented 49 
genera (33.1%), of which 37 genera (75.5%) had no close related genome 
sequences in NCBI database. We found 27 genera significantly correlated 
with the health and diabetes (Spearman correlation analysis followed by 
Benjamini–Hochberg correction for multiple tests, P-value < 0.05). As shown 
in Figure 5b, 10 genera (37%) were novel, which was defined as the fraction 
of novel contigs within a genus. These novel genera included seven health-
associated genera Oribacterium, Faecalibacterium, Butyricicoccus, 
Prevotella, Lachnospiracea_incertae_sedis, Clostridium XIVa and XIVb and 
three diabetes-associated genera Anaerovibrio, Anaerovorax and 
Erysipelotrichacaea_incertae_sedis. The health-associated novel genera are 
known to supply methane, acetate and butyrate (Vital et al., 2015), which 
play a crucial role in the increasing of insulin sensitivity and the fermentation
of polysaccharide and fatty-acid-producing sugar. These novel genera are 
important for maintaining host health. Two diabetes-associated novel 
genera, Anaerovibrio and Anaerovorax, are putative bacteria fermenting 
glycerol, taurine, glucose and putrescine, which are elevated in diabetic 
individuals. Our finding that Erysipelotrichacaea_incertae_sedis was 
increased in diabetic individuals was also consistent with the previous 
observation of this bacterial genus having close relevance to metabolic 
disorders (Kaakoush, 2015).



FIGURE 5 Microbial landscape in the gut of a Chinese population. (a) The abundance distributions of all 
microbes and novel microbes. (b) The correlation analysis between microbial taxa and individual 
health (Spearman correlation and Benjamini–Hochberg multiple testing adjustment, P-value < 0.05). 
Novelty is the proportion of novel microbes (contigs) within a taxon. (c) The AUC scores of RAMBL, 
MetaPhlan2 and Parallel-Meta for T2D classification. The red, blue and green regions indicate the 95% 
confidence intervals

The HMP has identified a list of ‘most wanted’ OTUs that represent novel 
species that have never been sequenced in the western population (Fodor et
al., 2012). We compared 226 novel 16S contigs that were found in the 
Chinese population with the HMP ‘most wanted’ OTU sequences. Out of 119 
‘most wanted’ OTUs, 56 were close to our contigs with sequence identity 
>90% and MegaBlast E-value <1e-30. Near half of the HMP ‘most wanted’ 
taxa did not present in the Chinese population. This implies that the 
unknown microbiomes of different populations are divergent. Our 16S 
contigs can serve as a complement of the HMP ‘most wanted’ taxa list to 
indicate novel species across populations.

Compared with human gut microbial gene catalogs, marker genes and 16S 
rRNA gene short reads, the 16S assemblies were the better biomarkers for 
the T2D classification. Using only 10 discriminative 16S assemblies and a 
trained support vector machine (SVM) classifier, RAMBL achieved the area 
under the receiver operating characteristic curve (AUC) score 0.86 (Fig. 5c), 
higher than the AUC score of 0.81 obtained by the previously reported gene 



catalog-based classification (Qin et al., 2012) that used 50 gene markers and
leave-one-out cross-validation (LOOCV). RAMBL achieved higher accuracy 
with much fewer marker features. We demonstrated that our classification 
was also more accurate than the classifications obtained by MetaPhlan2 and 
Parallel-Meta. As shown in Figure 5c, our classification obtained a relative 
increase of 7% in the AUC score compared to that of the MetaPhlan2 
classification for a wide range of discriminative 16S assemblies and species. 
When 50 or more discriminative 16S gene assemblies were used, our 
classification achieved an AUC score of 0.99. In comparison, the AUC score of
MetaPhlan2 was 0.92–0.93 when the same number of species was selected 
for classification. The best AUC score of Parallel-Meta was 0.796 when 50 
OTUs determined by 16S rRNA short reads were used. These results reveal 
that the 16S assemblies serve as good diagnostic markers for diabetes.

Out of the 50 16S assemblies that well classified the disease status, 14 16S 
assemblies represented the novel microbes. These novel microbes were 
mostly from the phylum Firmicutes, including 1 Blautia microbe, 1 
Clostridium IV microbe, 6 Clostridium XIVa microbes, 1 Clostridium XVIII 
microbe, 1 Faecalibacterium microbe, 1 Flavonifractor microbe, 1 
Lachnospiracea_incertae_sedis microbe and 1 Ruminococcus microbe. A 
novel Bacteroidetes microbe Barnesiella also contributed to the disease 
classification. Except for the Clostridium IV microbe that positively correlated
with the disease, all the other microbes were the health-associated 
microbes. Although it is well known that the health microbiome is more 
divergent than the disease microbiome, we unraveled that the health 
microbiome possesses more novel microbes that play an important role for 
the maintenance of the individual health.

4 Discussion

Identifying a full spectrum of microbes is critical to the interpretation of 
microbial diversity, but remains unachievable for metagenomic shotgun 
sequencing data because over 99% of microbes are uncharacterized in terms
of genome sequences. We offer RAMBL, a scalable pipeline to assemble short
and error-prone 16S rRNA sequencing reads to full-length high-quality 16S 
gene sequences, maximizing taxonomic identification from metagenomic 
shotgun sequences. To the best of our knowledge, RAMBL is the first tool 
that realizes the assembly of full-length 16S rRNA gene sequences for very 
large metagenomic datasets, as demonstrated by the soil and T2D datasets 
that had 11 gigabases and 359 gigabases of shotgun sequencing reads, 
respectively. Our work suggests that full-length 16S gene assemblies are 
superior to marker gene set and 16S short reads, because they can identify 
both known and novel genera, and accurately quantify them to a wide range 
of abundance levels.

We observed that RAMBL generated few chimeric assemblies in the soil (1%) 
and gut (13.7%) datasets. Results of chimera checking indicate full-length 
16S gene assemblies of RAMBL are of high accuracy. In comparison, 91.7% 



of the EMIRGE soil contigs could not be aligned to known 16S rRNA reference
sequences, and thus were invalid for chimera checking. Since both EMIRGE 
and Reago failed to assemble 16S gene sequences for the T2D data, we 
could not determine the chimera rates of them. We attribute the low chimera
rate for the soil data to the fact that the soil biomes harness diverse 
microbes (Fierer and Jackson, 2006). The gut microbiota, in the contrary, is 
abundant of closely related strains (Schloissnig et al., 2013). This implies 
that RAMBL would suffer a higher risk of the chimeric assembly when a 
community harnesses a higher proportion of similar strains. We hope to 
resolve this issue in the future.

Binning of metagenomic contigs is a widely adopted method to identify 
potential novel microbial sequences of a community (Nielsen et al., 2014), 
but in general, the objective is not very clearly defined beyond the binning 
itself. In contrast, full-length 16S gene assemblies provide a crystalline 
depiction of a community, of which uncharacterized and novel genera can be
accurately determined. Overall, full-length 16S gene assemblies open the 
door to the uncharacterized microbial community, and make possible the 
future investigation of genetic and metabolic functionalities of these novel 
microbes.
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