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June 7, 2014

Abstract

We provide evidence suggesting that the cross-sectional distributions

of U.S. consumption and consumption growth obey the power law in both

the upper and lower tails, with exponents approximately equal to 4. Con-

sequently, high order moments are unlikely to exist, and the GMM es-

timation of Euler equations that employ cross-sectional moments may

be inconsistent. Through bootstrap studies, we find that the power law

appears to generate spurious non-rejection of heterogeneous-agent asset

pricing models in explaining the equity premium. Dividing households

into age groups, we propose an estimation approach which appears less

susceptible to fat tail issues.

1 Introduction

There are many studies that use household level consumption data and historical
financial asset returns to test the Euler equations of heterogeneous-agentmodels.
Because micro consumption data contain measurement error and households
participate in surveys for only short periods of time, this literature typically
“aggregates” the Euler equations before estimating and testing. Consider the
following example. Assume that households have identical additive constant

relative risk aversion (CRRA) preferences E0

∑∞
t=0

βt c
1−γ
t

1−γ
, where 0 < β < 1 is

the discount factor and γ > 0 is the relative risk aversion coefficient. Assuming
interior solutions, the Euler equation

c−γ
it = E

[
βc−γ

i,t+1Rt+1

∣∣Fit

]
(1.1)

∗We benefited from comments by Donald Andrews, Tim Armstrong, Brendan Beare, Xi-
aohong Chen, David Childers, John Geanakoplos, Tony Smith, and seminar participants at
Australian School of Business, UCSD, Yale, and the 17th International Conference on Macroe-
conomic Analysis and International Finance at the University of Crete. We thank two anony-
mous referees and the editor (Monika Piazzesi) for comments and suggestions that significantly
improved the paper. AAT acknowledges the financial support from the Cowles Foundation,
the Nakajima Foundation, and Yale University. KW acknowledges financial support from the
Cowles Foundation and Yale University.
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holds, where Rt+1 is the gross return of any asset and Fit denotes the informa-
tion set of household i at time t. Let Ft be the information set that contains
only aggregate variables—in this example asset returns—and let Et denote the
expectation conditional on Ft. Taking the cross-sectional expectation, applying
the law of iterated expectations on the Euler equation (1.1), and assuming that
the cross-sectional moment Et[c

−γ
it ] is finite, we obtain the moment condition

Et

[
Et[c

−γ
it ]− β Et+1[c

−γ
i,t+1]Rt+1

]
= 0.

Using the sample analogs, we can form the criterion

(
1

T

T∑

t=1

(
1

I

I∑

i=1

c−γ
it − βRt+1

1

I

I∑

i=1

c−γ
i,t+1

))2

and minimize it to estimate the parameters (β, γ) by the generalized method
of moments (GMM). This estimation method is consistent if the cross-sectional

moment Et[c
−γ
it ] is finite. But do the cross-sectional moments exist? If not,

how should we estimate and test the model? If Et[c
−γ
it ] does not exist, will the

data reject the model, or might the moment condition be prone to over-fitting?
These are the questions that we address in this paper.

This paper has three contributions. First, we document that the cross-
sectional distributions of U.S. consumption and consumption growth data ex-
hibit fat tails. More precisely, consumption and consumption growth seem to
obey the power law in both the upper and lower tails with exponents approx-
imately equal to 4. If these power laws hold, the cross-sectional moments of
consumption Et[c

η
it] and consumption growth Et[(cit/ci,t−1)

η] do not exist when
|η| is large (that is, when η is well above or below zero), and the GMM estimation
of the aggregated Euler equation is inconsistent.

Second, using a heterogeneous-agent consumption based asset pricing model
as a laboratory and performing robustness checks such as dropping outliers and
studying bootstrap samples, we find that the fat tails may cause spurious non-
rejection of models.

Third, with the aim of mitigating the fat tail problem, we propose an al-
ternative method for estimating and testing Euler equations. The intuition for
our approach is the following. Because the Euler equation aggregation works
for any conditioning variable, if we can find a variable such that the conditional
consumption distribution does not have fat tails, then we can perform consistent
GMM. In particular, we exploit the fact that the consumption distribution is
approximately lognormal within age cohorts (Battistin et al., 2009) (within age
group lognormality is also an implication of our theoretical model). Dividing
the households into age cohorts, we form moment conditions corresponding to
each age group and estimate and test an overidentified model. We find that this
“age cohort GMM” appears to mitigate spurious non-rejection.
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2 Literature and why fat tails matter for esti-

mating and testing Euler equations

2.1 Euler equation aggregations

Consider the Euler equation

c−γ
it = E

[
βc−γ

i,t+1Rt+1

∣∣Fit

]
, (2.1)

which is the same as (1.1). In order to estimate and test these Euler equations
using micro consumption data, one must overcome two potential problems: mea-
surement error in household-level consumption and panel shortness (individual
households participate for only short periods of time). To handle these issues,
the empirical literature on testing heterogeneous-agent asset pricing models “av-
erages” across households to mitigate measurement error and create a long time
series. This literature has provided several approaches to aggregating the Euler
equations.

The first approach is to average the marginal rate of substitution as in
Brav et al. (2002) and Cogley (2002), which are based on the theoretical model
of Constantinides and Duffie (1996). Dividing (2.1) by c−γ

it , conditioning on
aggregate variables Ft, and applying the law of iterated expectations, we obtain

1 = Et

[
β(ci,t+1/cit)

−γRt+1

]
= Et

[
β Et+1[(ci,t+1/cit)

−γ ]Rt+1

]
.

Thus ignoring the discount factor β, the −γ-th cross-sectional moment of con-
sumption growth between time t and t+ 1,

mIMRS
t+1 = Et+1[(ci,t+1/cit)

−γ ],

is a valid stochastic discount factor (SDF), where IMRS stands for “intertem-
poral marginal rate of substitution”. For estimation, we can use the sample
analog

m̂IMRS
t+1 =

1

I

I∑

i=1

(
ci,t+1

cit

)−γ

.

The second approach is to average the Euler equation (2.1) directly, as in
Balduzzi and Yao (2007). Taking the expectation of (2.1) with respect to Ft

and applying the law of iterated expectations, we obtain

Et[c
−γ
it ] = Et[βc

−γ
i,t+1Rt+1] = Et

[
β Et+1[c

−γ
i,t+1]Rt+1

]
.

Dividing both sides by Et[c
−γ
it ], we obtain

1 = Et

[
β
Et+1[c

−γ
i,t+1

]

Et[c
−γ
it ]

Rt+1

]
.

Therefore ignoring β,

mMU
t+1 =

Et+1[c
−γ
i,t+1

]

Et[c
−γ
it ]
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is also a valid stochastic discount factor, where MU stands for “marginal util-
ity”. Balduzzi and Yao (2007) argue that the MU SDF is less susceptible to
measurement error. For estimation, we can use the sample analog

m̂MU
t+1 =

1

I

∑I
i=1

c−γ
i,t+1

1

I

∑I

i=1
c−γ
it

.

Kocherlakota and Pistaferri (2009) take a somewhat different approach. In-
stead of the Euler equation (2.1), they start from the inverse Euler equation,
which holds in a private information setting when agents use insurance compa-
nies to achieve constrained Pareto optimal allocation. By a similar argument as
in deriving the MU SDF, they obtain

mPIPO
t+1 =

Et[c
γ
it]

Et+1[c
γ
i,t+1]

and use the sample analog

m̂PIPO
t+1 =

1

I

∑I

i=1
cγit

1

I

∑I
i=1

cγi,t+1

for estimation. PIPO stands for “private information with Pareto optimality”.
As we will see in Section 2.3, the validity of the IMRS, MU, and PIPO

stochastic discount factors relies on the existence of the cross-sectional moments
Et[(cit/c

−γ
i,t−1)], Et[c

−γ
it ], and Et[c

γ
it], respectively. However, none of the above

studies explicitly discusses the presence or implications of fat tails in the cross-
sectional distribution of consumption or consumption growth.1

2.2 Empirical results

All of the above papers use household-level consumption data (Consumption
Expenditure Survey, CEX) to empirically analyze and test the heterogeneous-
agent, incomplete market approach.

Brav et al. (2002) and Cogley (2002) employ linearized versions of the sample
analog of the IMRS stochastic discount factor. While the representative agent
approach (Hansen and Singleton, 1983) considers only aggregate consumption
(the cross-sectional mean of the consumption distribution), these papers try
the cross-sectional mean, variance, and skewness of the consumption growth
distribution. Brav et al. (2002) find that the IMRS SDF explains the equity
premium for γ ≈ 3.5, but Cogley (2002) finds that the equity premium is not
explained for γ < 15. Vissing-Jørgensen (2002) follows a similar approach, but
her focus is the estimation of the elasticity of intertemporal substitution and
not the equity premium.

Balduzzi and Yao (2007) replicate the result of Brav et al. (2002) at the
quarterly frequency but show that the IMRS SDF fails for monthly consump-
tion growth. The main point of Balduzzi and Yao (2007) is that the MU SDF
zeroes the pricing error (sample average of the moment condition errors) at

1Kocherlakota (1997) discusses the possibility of fat tails in aggregate consumption growth
in the context of a representative agent model.
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γ ≈ 10 when they include only households with at least $2,000 of financial as-
sets. Also, assuming the consumption distribution is lognormal, they show that
the MU SDF is a closed-form function of the change in mean and variance of
the consumption distribution. This “BY” SDF performs similarly to MU.

While the above papers use CEX data from the early 1980s through the mid
1990s, Kocherlakota and Pistaferri (2009) analyze the longer sample from 1980
to 2004 and incorporate data from U.K. and Italy to perform overidentifying
tests. In this longer sample, they reject the MU SDF even when restricting
analysis to households that meet various asset thresholds. Their main result
is that the PIPO SDF zeroes the pricing error at γ ≈ 5. Also, imposing a
common relative risk aversion γ across U.S., U.K., and Italy, overidentifying
tests reject the representative agent (RA) and MU stochastic discount factors
but not PIPO.

Table 1 below summarizes the literature of testing the heterogeneous-agent,
incomplete market models. In summary, the literature had (i) generated mixed
support for IMRS, (ii) confirmed MU (with less data) and then rejected it (with
more recent data), and (iii) provided positive evidence for PIPO. See also Miller
(1999) for a review of an earlier literature on the estimation of Euler equations
with micro consumption data and Ludvigson (2013) for a more recent survey.

Table 1. Estimation of relative risk aversion γ and tests of stochastic discount factors in the
literature. X (X) indicates support for (rejection of) an SDF. The number next to X is the
estimate of γ when not rejected. Q (M) indicates quarterly (monthly) consumption growth.

Paper Sample IMRS MU PIPO
Brav et al. (2002) 1982–1996 X3.5
Cogley (2002) 1980–1994 X

Balduzzi and Yao (2007) 1982–1995
Q : X5
M : X

X10

Kocherlakota and Pistaferri (2009) 1980–2004 X X5

2.3 Why fat tails matter

Why might fat tails in the consumption distribution create problems for GMM
estimation?

First, consider the IMRS SDF. The relevant moment condition is

E
[
Et[(cit/ci,t−1)

−γ ](Rs
t −Rb

t)
]
= 0,

where Rs
t is the stock return, and Rb

t is the bond return (so Rs
t −Rb

t is the excess
return on stocks). GMM estimation of γ proceeds by forming the criterion

J IMRS
T,{It}

(γ) =

(
1

T

T∑

t=1

1

It

It∑

i=1

(cit/ci,t−1)
−γ(Rs

t −Rb
t)

)2

(2.2)

and minimizing it, where It is the number of households observed at time t.
Assume that the cross-sectional moment Et[(cit/ci,t−1)

−γ ] is finite only for γ ∈
[γ
¯
, γ̄]. Since for γ /∈ [γ

¯
, γ̄] the sample moment 1

It

∑It
i=1

(cit/ci,t−1)
−γ tends to

infinity as the number of households It tends to infinity, the GMM criterion (2.2)
admits a large sample limit only if γ ∈ [γ

¯
, γ̄] and diverges to infinity otherwise.
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Therefore unless the true value γ0 is in this range, we cannot estimate it by
GMM.

Next consider the MU SDF. The relevant moment condition is

E

[
Et[c

−γ
it ]

Et−1[c
−γ
i,t−1

]
(Rs

t −Rb
t)

]
= 0

and the GMM criterion is

JMU
T,{It}

(γ) =


 1

T

T∑

t=1

1

It

∑It
i=1

c−γ
it

1

It−1

∑It−1

i=1
c−γ
i,t−1

(Rs
t −Rb

t)




2

. (2.3)

Assume that the cross-sectional moment Et[c
−γ
it ] is finite only for γ ∈ [γ

¯
, γ̄].

Since for γ /∈ [γ
¯
, γ̄] we have 1

It

∑It
i=1

c−γ
it / 1

It−1

∑It−1

i=1
c−γ
i,t−1

→ ∞/∞ as the num-

ber of households It−1 and It tend to infinity, the large sample limit of the
GMM criterion (2.3) may not be well defined. One may still hope to find num-

bers Nt−1 and Nt such that Nt−1/Nt = It−1/It and
1

Nt

∑It
i=1

c−γ
it converges to

a finite value, yielding a well defined GMM criterion. However, the following
theorem provides a negative answer.

Theorem 2.1 (Feller (1946)). Let X1, X2, . . . be i.i.d. with E[|X1|] = ∞ and

let Sn = X1 + · · · + Xn. Let an be a sequence of positive numbers with an/n
weakly increasing. Then lim supn→∞ |Sn| /an = 0 or ∞ almost surely according

as
∑∞

n=1
P (|X1| ≥ an) < ∞ or = ∞.

Interpreting c−γ
it as Xn and Nt as an in this theorem, it follows that the large

sample limit of the GMM criterion will contain terms such as 0/0, 0/∞, ∞/0,
and ∞/∞. Therefore if a finite limit exists, it must be zero. This argument
shows that even if the true value γ0 belongs to the moment existence range [γ

¯
, γ̄],

it is not identified because values in the nonexistence range γ /∈ [γ
¯
, γ̄] may set

the GMM criterion to zero in the large sample limit. The same argument applies
to PIPO.

In summary, if the cross-sectional moments of consumption or consumption
growth do not exist, the large sample limit of the GMM criterion may not be
well defined. Even if it is well defined it may be zero for γ /∈ [γ

¯
, γ̄] distinct from

the true value γ0. Therefore standard GMM estimation is in general inconsistent
unless (i) the true value γ0 belongs to the moment existence range [γ

¯
, γ̄], and

(ii) when estimating γ we restrict the search to the moment existence range
[γ
¯
, γ̄]. This situation is quite problematic because the true value may not belong

to the moment existence range, and even if it does, a priori we do not know the
moment existence range. Additionally, GMM in this context may be prone to
type II errors in which the model is incorrect but γ /∈ [γ

¯
, γ̄] sets the criterion to

zero.

3 Double power law in consumption

In this section we introduce the notion of the double power law and show both
theoretically and empirically that the cross-sectional distribution of consump-
tion exhibits fat tails.
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3.1 Definition

A nonnegative random variable X obeys the power law (in the upper tail) with
exponent α > 0 if

lim
x→∞

xαP (X > x) > 0

exists (Pareto, 1896; Mandelbrot, 1960; Gabaix, 2009). Recently, many eco-
nomic variables have been shown to obey the power law also in the lower tail,
meaning that

lim
x→0

x−βP (X < x) > 0

exists for some exponent β > 0. Such phenomena have been found in city
size (Giesen et al., 2010) and income (Toda, 2012). In this paper we say that
X obeys the double power law if the power law holds in both the upper and
the lower tails. If X obeys the double power law with exponents (α, β), then Xη

obeys the double power law with exponents (α/η, β/η) if η > 0 and (−β/η,−α/η)
if η < 0. For example if η > 0 we have

P (Xη > x) = P (X > x
1

η ) ∼ x−α
η

as x → ∞, and other cases are similar. In this case the η-th moment E[Xη]
exists if and only if −β < η < α.

3.2 Theory

Why might the cross-sectional consumption distribution obey the double power
law? To explore this possibility, consider an infinite horizon, continuous-time
economy populated by a continuum of agents indexed by i ∈ I = [0, 1]. Each
agent has the same additive CRRA preference

E0

∫ ∞

0

e−ρt c
1−γ
t

1− γ
dt, (3.1)

where ρ > 0 is the time discount rate and γ > 0 is the coefficient of relative
risk aversion. Think of agents as entrepreneurs or dynasties operating private
investment projects (AK technologies). Assume that capital invested in agent
i’s project is subject to uninsurable idiosyncratic risk and evolves according to
the geometric Brownian motion

dkt/kt = µdt+ σdBit,

where kt is capital, µ is the expected growth rate, σ > 0 is the volatility, and
Bit is a standard Brownian motion that is i.i.d. across agents. Assuming that
agents can borrow or lend among each other using risk-free assets in zero net
supply with an equilibrium risk-free rate r, the budget constraint of a typical
agent becomes

dwt = ((µθt + r(1 − θt))wt − ct)dt+ σθtwtdBt, (3.2)

where wt is wealth, ct is consumption, and θt ≥ 0 is the fraction of wealth in-
vested in the technology. The individual decision problem is to maximize utility
(3.1) subject to the budget constraint (3.2). This problem is a classic Merton
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(1971)-type optimal consumption-portfolio problem and therefore has a closed-
form solution. Letting ε = 1/γ be the elasticity of intertemporal substitution,
the solution is

ct
wt

= m := ρε+ (1− ε)

(
r +

(µ− r)2

2γσ2

)
, (3.3a)

θt =
µ− r

γσ2
. (3.3b)

Since by (3.3b) the portfolio choice is the same for every agent, in order to clear
the market for the risk-free asset, we must have 1 − θ = 0 ⇐⇒ r = µ − γσ2.
Substituting r into the optimal consumption rule (3.3a), the marginal propensity

to consume simplifies to m = ρε+(1−ε)(µ− γσ2

2
). Substituting into the budget

constraint (3.2), it follows that individual consumption cit evolves according to
the geometric Brownian motion

dcit/cit = gdt+ σdBit, (3.4)

where the expected growth rate of consumption is g = (µ− ρ)ε− (1− ε)γσ
2

2
.

Equation (3.4) shows that Gibrat (1931)’s law of proportionate growth holds
for individual consumption. Therefore, if agents start with the same capital k0
and are infinitely lived, then the cross-sectional distribution of consumption is
lognormal, where the mean of log consumption at time t is log c0+(g− 1

2
σ2)t, c0

is initial consumption, the term − 1

2
σ2 comes from Ito’s lemma, and the variance

is σ2t.
Now we can derive the double power law in consumption with one twist to

the model. Suppose that agents “die” at a constant Poisson rate δ > 0 and are
reborn with initial capital k0. We can interpret this situation as one in which
entrepreneurs or dynasties go bankrupt at a constant rate and being replaced
by new ones. The interpretation does not matter; what is important is that
there is a mean-reverting force that prevents the distribution from becoming
degenerate. Under the assumption of constant probability of birth/death, the
problem of describing the size distribution of consumption becomes mechanis-
tically equivalent to the model studied by Gabaix (2009). Consequently, the
stationary cross-sectional density of consumption becomes

fdP(x) =

{
αβ
α+β

cα0x
−α−1, (x ≥ c0)

αβ
α+β

c−β
0 xβ−1, (0 ≤ x < c0)

(3.5)

where c0 (the mode if β > 1) is the consumption level corresponding to initial
capital k0 and α, β > 0 are power law exponents of the upper and lower tails
determined such that ζ = −α, β are solutions to the quadratic equation

σ2

2
ζ2 +

(
g − 1

2
σ2

)
ζ − δ = 0. (3.6)

See Equation (20) in Gabaix (2009) for the derivation. The distribution (3.5)
is known as the double Pareto distribution (Reed, 2001) and obeys the double
power law with exponents (α, β).

The intuition for getting a stationary distribution is as follows. By Gibrat’s
law, the cross-sectional distribution of consumption within an age cohort is log-
normal, and the variance increases linearly over time. But because agents die
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and are reborn, there are exponentially fewer agents that live longer. These two
effects balance with each other and generate the double Pareto distribution in
the entire cross-section. We do not claim that this model is realistic, but we point
out that (i) it is theoretically possible that consumption has fat tails, especially
if (the permanent component of) consumption obeys Gibrat’s law, and (ii) con-
sistent with Gibrat’s law, in actual data the consumption distribution within
age cohorts is close to lognormal (Battistin et al., 2009) and the cross-sectional
variance seems to increase linearly over time (Deaton and Paxson, 1994).

3.3 Evidence

In this section we study the tail behavior of the empirical consumption distri-
bution.

3.3.1 Data

We use the same data as the real, seasonally adjusted, quarterly household con-
sumption data used in Kocherlakota and Pistaferri (2009) constructed from the
Consumption Expenditure Survey (CEX). Their data is publicly available at the
JPE website. Since households report the previous three month’s consumption
but are surveyed in different months, we have 291 months of cross-sectional con-
sumption data from December 1979 to February 2004. In one of the estimation
exercises, we split the households into age cohorts. We obtain the age data from
the NBER Consumer Expenditure Survey Family-Level Extracts webpage.2

3.3.2 QQ plot

Figure 1 shows the QQ plot (quantile-quantile plot) of log consumption and
log consumption growth against the standard normal distribution. If the vari-
ables are normally distributed, the points should lie around the 45 degree line.
However, we can see that the points that are roughly two standard deviations
from the mean deviate from the 45 degree line towards more extreme values.
Therefore the QQ plot suggests that the distribution of consumption and con-
sumption growth have fatter tails than lognormal. Although Figure 1 shows the
results only for December 1980, other months look similar.

3.3.3 Power law exponents

Since the model in Section 3.2 predicts that the tails obey the power law, we
estimate the power law exponent of the upper and lower tails by maximum
likelihood (Hill estimator) and perform the Kolmogorov test for goodness-of-
fit.3

2http://www.nber.org/data/ces_cbo.html
3For this purpose we employ the Matlab files provided by Clauset et al. (2009), which

can be downloaded from http://tuvalu.santafe.edu/~aaronc/powerlaws/. The file plfit.m
estimates the power law exponent by maximum likelihood after choosing an appropriate cutoff
value for the tail, and plpva.m performs the Kolmogorov test of goodness-of-fit by bootstrap
(we choose the bootstrap repetition B = 500). One caveat is that these authors define the
power law exponent by α′ = α + 1, so we need to subtract 1 from the output to convert to
the usual definition. Also, in order to estimate the power law exponent of the lower tail, we
need to input 1/X (the reciprocal of consumption) instead of X.
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Figure 1. Quantile-quantile plot against the normal distribution. December 1980.

Figure 2 shows the maximum likelihood estimates of the power law exponent
of the upper and lower tails α, β for each month. (We plot −β instead of β for
visibility.) According to Figure 2, the power law exponents are around 4 for
both tails and both consumption and consumption growth. The average across
all months is (ᾱ, β̄) = (3.38, 3.65) for consumption and (ᾱ, β̄) = (3.99, 4.03)
for consumption growth. The Kolmogorov test fails to reject the power law in
consumption in 249 months out of 291 (86% of the time) for the upper tail and
in 223 months (77% of the time) for the lower tail. With consumption growth,
the power law is not rejected in 265 months out of 287 months (92% of the time)
for both the upper and lower tails.
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Figure 2. Maximum likelihood estimates of power law exponents.

3.3.4 Testing the existence of moments directly

Although documenting the power law in the cross-sectional consumption dis-
tribution is potentially interesting in its own right, in view of estimating Euler
equations, whether a moment exists or not is more important. Fortunately,
there is a simple bootstrap test for testing the existence of moments directly
(Fedotenkov, 2013), which we explain briefly.

Suppose that the random variable X is nonnegative (consider |X | instead if
X can be negative) and {Xn}∞n=1

are i.i.d. copies of X . If E[Xη] = ∞, then
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the sample moment 1

N

∑N
n=1

Xη
n tends to infinity as N → ∞. Take a number

M(N) such that M → ∞ and M/N → 0 as N → ∞ (so M tends to infinity at
a slower rate than N , say M(N) =

√
N), and let {Ym}∞m=1

be i.i.d. copies of
X . Then for 0 < ξ < 1, the quantity

F = 1

{
1

M

M∑

m=1

Y η
m ≥ ξ

1

N

N∑

n=1

Xη
n

}

tends to zero almost surely asN → ∞, where 1 {·} denotes the indicator function
(so F = 1 if the inequality holds and F = 0 otherwise). This limit holds because

both ξ 1

N

∑N
n=1

Xη
n and 1

M

∑M
m=1

Y η
m tend to infinity, but the former does so at

a faster rate since N ≫ M(N). On the other hand, if E[Xη] is finite, then
by the law of large numbers F tends to 1 almost surely because both sample
means converge to the same population mean, but since 0 < ξ < 1 as N tends
to infinity ξ 1

N

∑N

n=1
Xη

n is almost surely smaller than 1

M

∑M

m=1
Y η
m.

Following this idea, Fedotenkov (2013) constructs a bootstrap test of mo-
ment existence as follows. Let x = (x1, . . . , xN ) be the data. First, we choose
the bootstrap sample size M(N), the parameter ξ, and bootstrap repetition
B (Fedotenkov suggests taking M(N) = ⌊logN⌋, ξ = 0.999, and B = 10, 000).
Second, for each b = 1, . . . , B, we generate a bootstrap sample xb = (xb

1, . . . , x
b
M )

of size M drawn randomly with replacement from the data, and compute

F b = 1

{
1

M

M∑

m=1

(xb
m)η ≥ ξ

1

N

N∑

n=1

xη
n

}
.

Finally, the P value is defined by p = 1

B

∑B

b=1
F b.

Figure 3 shows the upper and lower bounds of the order of moments for
which the existence is not rejected at significance level 0.05. The existence of
moments starts to get rejected at around η = ±3, the same order of magnitude
as the estimated power law exponents. The averages of the upper and lower
bounds across all months are 6.73 and −7.16 for consumption and 6.80, and
−6.83 for consumption growth. These numbers are slightly larger in magnitude
than the estimated power law exponents (around 4).
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Figure 3. Range of moment existence implied by the bootstrap test.
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3.3.5 Tail thickness within age groups

So far we have presented evidence that household consumption and consump-
tion growth have fat tails. Does this finding contradict to Battistin et al. (2009),
who document that consumption is approximately lognormal (for which all mo-
ments exist)? The answer is no, because they look at the consumption dis-
tribution within age cohorts, not the entire cross-section. Since according to
the model in Section 3.2 the double power law emerges from the birth/death
(and consequently the exponential age distribution), we would expect that the
cross-sectional consumption distribution is more lognormal within age cohorts
than in the entire cross-section. To evaluate this conjecture, we perform the
bootstrap test for moment existence for each age cohort, where we define the
age of a household by the age of the oldest head of household.

The groups are household head age 30 or less, 31 to 40, 41 to 50, 51 to 60,
and 60 or more. The range of moment existence is [−7.6, 10.3] for 30 or less,
[−9.4, 8.9] for 31 to 40, [−10.5, 8.5] for 41 to 50, [−11.8, 8.5] for 51 to 60, and
[−10.2, 6.9] for 61 or more. These ranges are wider than for the entire cross
section.

4 GMM estimation and robustness

In this section we estimate the relative risk aversion coefficient γ using various
asset pricing models and study the robustness of the performance of each model.
In light of the results, we discuss the potential impacts of fat fails on GMM.

4.1 Data

As in Section 3, we use the real, seasonally adjusted consumption data in
Kocherlakota and Pistaferri (2009) constructed from the CEX. Their dataset
has monthly observations from December 1979 to February 2004, but each num-
ber corresponds to a household’s consumption over the previous 3 months. So,
while there are households for each month, no household appears in consecutive
months. Therefore, even though we have a stochastic discount factor (SDF)
and excess return realization for each month, the data for each month reflect a
quarter of information, and the return series are 3 month moving averages. For
example, the sample analog of the MU (marginal utility) SDF is defined by

m̂MU
t (γ) =

1

It

∑It
i=1

c−γ
it

1

It−3

∑It−3

i=1 c−γ
i,t−3

,

where It is the number of households at time t and cit is the consumption of
household i at time t. We have 288 SDF observations for RA (representative
agent), MU (marginal utility), and PIPO (private information with Pareto opti-
mality) and 287 for IMRS (intertemporal marginal rate of substitution; we lose
one quarter for IMRS because household IDs were reset in 1986). In total, we
have 410,788 consumption data points and 270,428 consumption growth data
points. There are fewer consumption growth data points because many house-
holds participate the survey for only one quarter, in which case we have no data
on consumption growth. See Kocherlakota and Pistaferri (2009) for further de-
tails on the construction of real consumption and the U.S. equity premium.
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4.2 GMM estimation

For any stochastic discount factor j ∈ {RA, IMRS,MU,PIPO}, let

gjT (γ) =
1

T

T∑

t=1

m̂j
t (γ)(R

s
t −Rb

t)

be the sample average of the pricing error for the equity premium, where T
is the number of observation for SDF j, Rs

t is the stock market return, and
Rb

t is the Treasury bill rate. The GMM estimator of the relative risk aversion
coefficient γ and the pricing error are

γ̂j = argmin
γ

TgjT (γ)
2,

ej = gjT
(
γ̂j
)
=

1

T

T∑

t=1

m̂j
t

(
γ̂j
) (

Rs
t −Rb

t

)
.

For standard errors, we report both the Newey-West standard errors (with
truncation parameter equal to 4) and bootstrap ones. The Newey-West stan-
dard errors account for the sampling error in the time series but abstract from
uncertainty regarding cross-sectional moments of consumption. The bootstrap
standard errors are based on the stationary bootstrap of Politis and Romano
(1994), which also account for the sampling error in the cross-section as well as
the time series. We sample with replacement from the original data to generate
B bootstrap samples, indexed by b = 1, . . . , B. Each is of length T and has
statistical properties like the original sample. Each bootstrap sample yields risk
aversion estimate γ̂j

b and pricing error ejb. The bootstrap standard error is the

sample standard error of
{
γ̂j
b

}B

b=1
. The explicit procedure for generating each

sample b is as follows:

1. For each t ∈ T = {1, . . . , T}, draw with replacement It observations from

{cit}Iti=1
, yielding

{
cbit
}It
i=1

.

2. Let M be the average block length and set p = 1/M . (We choose M =√
T .) Draw τb1 uniformly from T. For s = 2, . . . , T , with probability

1 − p set τbs = τbs−1 + 1 modulo T (hence τbs = 1 if τbs−1 = T ), and with
probability p draw τbs uniformly from T.

3. The bootstrap sample b consists of all c̃bis, s = 1, . . . , T , where we define
c̃bis = cb

i,τb
s
for i = 1, . . . , Iτb

s
.

The process for bootstrapping consumption growth and asset returns is anal-
ogous. The one caveat concerns the calculation of SDF j ∈ {RA,MU,PIPO}.
Consider MU for example. We use

m̂MU,b
s (γ) =

1

I
τb
s

∑I
τb
s

i=1

(
c̃bis
)−γ

1

I
τb
s−3

∑I
τb
s−3

i=1

(
cb
i,τb

s−3

)−γ
.

That is, the bootstrap time s SDF is formed from actual time τbs and τbs−3 data,
not actual time τbs and τbs−3 data in order to preserve the statistical properties
of the SDF. Below, we use B = 500 bootstrap replications.
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4.3 Results and robustness

4.3.1 Estimation with full sample

The column “Full Sample” in Table 2 shows the estimation results. The first
and second numbers in parentheses are the Newey-West and bootstrap standard
errors, respectively. For RA and PIPO, the bootstrap standard errors (which
account for cross-sectional sampling error) are similar to the Newey-West ones.
This similarity does not hold for MU and IMRS. However, it is not clear how to
interpret these Newey-West numbers, for in each case γ is exactly identified but
the pricing error is away from 0 (as returns are quarterly, 0.019 is essentially
the entire equity premium). Another reason for the large standard errors in
MU and IMRS might be again the fat tails. For example, even if the pricing
error m̂j

t(γ)(R
s
t −Rb

t ) has a finite first moment, it may not have a finite second
moment, in which case we cannot apply the standard asymptotic theory of the
GMM estimator.

γ̂IMRS is close to zero. One explanation is that since the exact IMRS SDF
is the weighted average of the −γ-th power of each household’s consumption
growth, whenever γ is large the SDF will be huge because there are always
households with consumption growth much smaller than 1. Therefore the GMM
criterion may be a huge number when γ is large. In this way, small consumption
growth observations may drive γ toward zero.

Table 2. GMM estimation of relative risk aversion (RRA) γ and pricing errors ej . The first and
second numbers in parentheses are the Newey-West and bootstrap standard errors.

Full Sample Without Outliers
Model RRA (γ) Pricing error RRA (γ) Pricing error

RA
53.26
(29.41)
(20.19)

0.000
53.10
(30.85)
(21.24)

−0.000

IMRS
0.03
(1035)
(0.08)

0.019
0.03
(1297)
(0.21)

0.019

MU
1.52
(5698)
(0.90)

0.019
2.51
(9960)
(1.86)

0.019

PIPO
5.33
(1.42)
(1.98)

0.000
2.23
(8010)
(1.68)

0.019

4.3.2 Estimation without outliers

The column “Without Outliers” in Table 2 shows the estimation results when
we drop a small number of outliers relative to the total number of data points.
Specifically, we drop the top 100 and bottom 100 consumption observations
from the entire sample. For IMRS, we also drop the top 100 and bottom 100
consumption growth observations. As there are 410,788 data points, for con-
sumption levels the points we drop account for less than 0.05% of the entire
sample. Note that these outliers are spread roughly uniformly across the quar-
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ters, so on average we are dropping less than 1 observation point per quarter
since there are 288 quarters.

We see that the results for the RA SDF, which should not be affected by the
nonexistence of higher moments, barely change. We continue to reject MU and
IMRS. PIPO, however, no longer explains the equity premium. Figure 4 below
shows the GMM criterion for PIPO as a function of γ, with and without the
outliers. Just a few outliers generate the trough at 5.33.
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Figure 4. PIPO GMM criterion with and without largest and smallest 100 consumption outliers
out of 410,788.

4.3.3 Examination of bootstrap samples

We also analyze the bootstrap distributions for the pricing error and γ estimate.
Figure 5 displays histograms of ePIPO

b , with and without outliers. We see that
when we bootstrap with all data, there is a mass of pricing errors at 0. Without
outliers, the pricing error bootstrap distribution is centered around ePIPO, as
it should be, with much less mass at zero. Although we do not have an expla-
nation of the appearance and disappearance of the bimodal pricing error, fat
tails may well be the cause. For example, Fiorio et al. (2010) show that the
limit distribution of the t-statistic for the mean can become bimodal when the
underlying distribution has fat tails.

Finally, Figure 6 shows a scatter plot of the bootstrap estimates γ̂j
b and

pricing errors ejb. There is an inverse relationship between the pricing error and
the γ estimate. Indeed, most of the zero pricing errors correspond to γ estimates
in the moment nonexistence range (> 4); when the pricing error is greater than
0.01, the corresponding γ estimate tends to be less than 3.

We take this collection of observations as evidence that the fat tails of the
consumption distribution may aid mechanically in zeroing the pricing error. At
least, such CEX-based asset pricing exercises seem quite sensitive to outliers.4

4Of course, one may argue that the reason why the PIPO model fails to explain the equity
premium without outliers is that the rich plays an important role in asset pricing. However,
this interpretation does not seem plausible because if it were the case the histogram of the
bootstrapped pricing errors (with the entire sample) should be centered around 0, while in
fact it is bimodal as in Figure 5.
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Figure 5. Histogram of bootstrapped PIPO pricing errors with and without largest and smallest
100 consumption outliers out of 410,788.
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Figure 6. Scatter plot of bootstrapped PIPO γ estimates and pricing errors.

5 Potential solution: conditioning on age

How should one estimate and test Euler equations if consumption has fat tails?
Since dropping outliers mitigated the fat tail issue, one may think that trimming
the tails is the solution. However, this practice is problematic since consumption
is an endogenous variable. To see this for the IMRS SDF, observe that the theory
predicts the (unconditional) Euler equation

1 = E[βg−γ
t+1Rt+1] (5.1)

where gt+1 = ct+1/ct is consumption growth. Suppose, for example, that the re-
searcher trims the tails of consumption growth by dropping observations outside
the range [g

¯
, ḡ]. Then the researcher is in fact testing the conditional moment

restriction
1 = E

[
βg−γ

t+1Rt+1

∣∣ g
¯
≤ gt+1 ≤ ḡ

]
, (5.2)

which is different from (5.1). Note that even if the model is correct (i.e., (5.1)
holds), the conditional moment restriction (5.2) is almost always false for generic
thresholds (g

¯
, ḡ).

One solution is to find an exogenous conditioning variable such that the
conditional consumption distribution does not have fat tails. When we tested
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the consumption double power law conjecture in Section 3.3, for each quarter t
we divided the cross-section into five age cohorts, 30 years or younger, 31 to 40,
41 to 50, 51 to 60, and older than 60. Call these Ht,1, . . . , Ht,5. We found that at
each t, within cohort the consumption distribution is approximately lognormal
(see also Battistin et al. (2009)). At least, more moments exist within cohorts
than for the entire cross-section. Furthermore, in the continuous-time limit we
explore in our model, the within age group distribution is precisely lognormal.
With this pattern in mind, we perform an overidentified GMM exercise that
(i) seems less susceptible to the nonexistent moment issue and (ii) allows for
overidentifying tests of the different models.

Specifically, we exploit the fact that the Euler equation aggregation in Sec-
tion 2.1 that gave us the SDFs also works within a particular age cohort because
age is an exogenous variable. That is, instead of averaging across all agents, we
can average across a particular age group. For example, we can form the Ht,5

(> 60) MU SDF by

m̂MU,5
t (γ) =

1

|Ht,5|

∑
i∈Ht,5

c−γ
it

1

|Ht−3,5|

∑
i∈Ht−3,5

c−γ
i,t−3

,

where |Ht,5| is the number of households in group Ht,5.

For any j ∈ {RA, IMRS,MU,PIPO}, let m̂j
t (γ) = (m̂j,1

t (γ), . . . , m̂j,5
t (γ))′ be

the vector of SDFs and

Gj
T (γ) =

1

T

T∑

t=1

m̂
j
t(γ)(R

s
t −Rb

t)

be the vector of pricing errors. The overidentifed GMM estimator of γ is

γ̂j = argmin
γ

TGj
T (γ)

′WGj
T (γ),

where W is the weighting matrix. (We always use the identity matrix as the
weighting matrix.)

We calculate standard errors via the above bootstrap procedure because the
Newey-West standard errors may be misleading according to the results of Table
2. Furthermore, for each SDF we bootstrap a P value for the null hypothesis
that the pricing error is 0 (that is, that the model is correct). The following is
a description of the calculation of these P values:

1. Dropping the SDF superscript, let GT,b (γ̂b) be the vector of pricing errors
corresponding to bootstrap sample b.

2. For each bootstrap sample b, define

JT,b = T (GT,b (γ̂b)−GT (γ̂))
′
W (GT,b (γ̂b)−GT (γ̂)) .

Also define the minimized sample criterion JT = TGT (γ̂)′ WGT (γ̂).

3. Calculate the P value by p = 1

B

∑B

b=1
1 {JT,b ≥ JT }.

Why should this procedure work? The idea of the bootstrap is that the
empirical distribution of GT,b around GT approximates the distribution of GT
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aroundG∞, which is 0 under the null. It follows that under the null the empirical
distribution of JT,b approximates the distribution of JT . Finally, if the null fails
andGT converges to something different from 0, then JT is not properly centered
and will diverge as T → ∞.

Table 3 presents the age cohort GMM γ estimates and the boostrapped P
values. We see that with the age cohort method, the RA, MU, and PIPO γ
estimates are all between 1 and 3, well within the moment existence range. The
IMRS estimate, as before, is around 0. The standard errors for the former three
SDFs are, respectively, 1.68, 0.63, and 0.88, meaning the risk aversion estimates
of these models are statistically close. Moreoever, the overidentifying tests reject
all of the models we consider at the 1% significance level.

Table 3. Age cohort GMM estimation of relative risk aversion (RRA) γ and P value of overiden-
tifying tests. Numbers in parentheses are bootstrapped standard errors.

Model RRA (γ) P value

RA
2.62
(1.68)

0.00

IMRS
0.04
(0.10)

0.00

MU
1.22
(0.63)

0.00

PIPO
1.88
(0.88)

0.00

The rejection of IMRS and MU is not surprising, since these models do not
zero the pricing error even in the single equation case. The fact that the γ
estimate for RA drops from about 50 to 2 by dividing the population into age
groups suggests that raising aggregate consumption to a high power is problem-
atic. With respect to PIPO, the model rejection and low γ estimate are further
evidence that the power law may interfere with estimation and model selection.
One more piece of evidence is Figure 7, which is a histogram of the average pric-
ing error, (1′GT (γ̂)) /5, across bootstrap samples. As when we drop outliers
(compare to Figure 5), there is no spike at 0.
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Figure 7. Histogram of bootstrapped PIPO pricing errors with age cohort GMM estimation.

While the approximate lognormality within age groups was our original jus-
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tification for age cohort GMM, we conjecture that there is another reason this
procedure helps mitigate spurious non-rejection and inconsistency from fat tails.
As we have argued, sample analogs of nonexistent moments seem to generate
spurious and relatively sharp troughs in GMM criteria. While these troughs ap-
pear in the nonexistence range, their precise location seems random and sample
dependent. Therefore, even if a subset of the moment conditions in age cohort
GMM exhibits such troughs, they may be impossible to exploit when there is
only one unknown parameter (γ): a high γ may zero the pricing error for one
cohort, only to blow up the other pricing errors, which have different or no
spurious troughs. The minimum of the joint criterion must then lie near the
true γ, which uniquely zeroes all moment conditions if the model is true. With
sufficiently many moment conditions, age cohort GMM may be robust to fat
tails even if one cohort still exhibits the power law. As we cannot definitively
rule out fat tails within cohorts, this interpretation improves the reliability of
the results in Table 3. Indeed, with a finite number of cohorts, at least one age
group must exhibit fat tails if the whole distribution does, since the moment
of the whole distribution is the weighted average of those of age groups. This
property is not true, however, when there are an infinite number of cohorts (as
in our continuous-time model).
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