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Abstract

Language games are tools to model some aspects of the social
aspects of language and communication. Our approach aims
to cover the ground between the elementary naming game and
the complex models for social use, for the growth of possibly
redundant community and personal lexicons. It uses weighted
lists of words for the personal lexicon, probabilistic choice as
a selection mechanism and lateral inhibition as the weight up-
date scheme. The results demonstrate that the model is a gen-
eralization of the elementary naming game, and it provides a
good picture of how big a lexicon agents use for the task, how
this size can be controlled using the model parameters and a
possible way of explaining how synonymy is kept under con-
trol.

Keywords: emergence; stochastic naming game; synonymy;
language game; semiotic dynamics

Introduction
Language is a social phenomenon. Although there are uses
to language that are not social, and there are modes of so-
cial interaction other than language use, a very clear and
salient function of language is collaboration and communi-
cation among individuals in a population. However, com-
putational studies on language until mid-90s had been more
focused on modelling the individual capacities in language
acquisition and performance, and did not provide much in-
sight into what language might look like from the viewpoint
of a population of language users.

A new generation of research addresses this problem by
investigating language as it is produced, used and propagated
in a community of language users. A fruitful approach has
been to see language as a complex adaptive system. What
this basically implies is that only at the population level can
we adequately characterize language use, and only by tak-
ing into account that language is constantly reshaped by its
users. How an individual uses language and how the popu-
lation generally uses language can and do affect one another.
In short, the claim is that some features of language do not
stem directly from linguistic or cognitive capacity but from a
society of interacting agents. One such feature is the lexicon
and its emergence as a common vocabulary of a community.

This new branch of research proved to be quite fertile and
produced a large body of work. One path of this research
is exemplified by Kirby, who approaches language as “the re-
sult of an interaction between three complex adaptive systems
that operate on different timescales: the timescale of biolog-
ical evolution (phylogeny), the timescale of individual learn-
ing (ontogeny) and the timescale of language change (glos-
sogeny)” (Kirby, 2002).

Another avenue is that of Steels, who also sees language as
a complex adaptive system (Steels, 2000). His work started
as an investigation of semiotic dynamics in simple language
games played among artificial autonomous agents, and even-
tually led to an elaborate construction grammar formalism
called Fluid Construction Grammar (FCG) for simulating a
population of language users who bootstrap their own lan-
guage (Steels & De Beule, 2006).

Steels’s original models were kept elementary to make
them easier to analyze. FCG, however, is quite comprehen-
sive. We feel that there is much to be discovered at vari-
ous levels of complexity, from the trivial, original “naming
games” to the full-blown grammatical complexity of FCG.
For example, one feature, the negotiation for names of ob-
jects, remains simple: if two agents agree on a name, they
agree to adopt that one and discard the alternatives, there-
fore their lexicons are nonredundant if and when conver-
gence arises. Since complex adaptive systems are very un-
predictable in terms of how things might change if we change
the structure of interactions, we think it is important that we
explore much of the degrees of freedom as we can, trying to
characterize the emerging structures and phenomena at each
level of complexity added.

In that spirit this paper presents an investigation of a nam-
ing game among artificial agents with a slightly more com-
plex, weight-based lexicon scheme rather than the original,
and a consequent probabilistic word selection scheme. Our
focus here is on the tension between lexicon growth and syn-
onymy in the population.The paper first describes the original
naming game. Our extension is described next. Our experi-
ments and results are then presented.

The Original Naming Game
The naming game focuses on vocabulary formation and
agreement in a population. The agents try to bootstrap a vo-
cabulary of (proper) nouns that they associate with the objects
they try to name (De Vylder & Tuyls, 2006). It is assumed
that the agents already know how to send and receive signals,
and possess the motivation to do so. It is further assumed that
the objects are uniquely identifiable by all agents, so feature
sets as in the discrimination game are not employed.1 The fi-
nal assumption is that the agents have an independent channel
of communication (such as pointing) through which they can
reveal their word-object pairings to each other.

1Note that it is perfectly possible to combine the two games, as
done by Steels (2003).
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Formally, the game involves a set of objects O =
{o1, ...,om}, and a set of agents A = {α1, ...,αn}. Each agent
a j possesses a lexicon La j = {Ea j ,1, ...,Ea j ,k} where k ≤ m,
and each entry in the lexicon consists of a list of words associ-
ated with the object oi, Ea j ,i = {wi,1, ...,wi,q}. All agents also
possess a function that maps from the global set of objects to
the agent’s repertoire of words (φa : O 7→ Ea j ).

2 Therefore,
an agent is characterized only by its lexicon. A game consists
of these steps:

1. Two agents are chosen, one as the hearer (αh) and one as
the speaker (αs).

2. The speaker chooses an object (oi) to refer to, and points to
it (i.e. makes his choice explicit without using the system
we try to bootstrap)

3. The speaker chooses a word in the lexicon for the object
(φ(oi)), or creates one if necessary.

4. The hearer tries to decode the word into the object being
referred to (wk, j ∈ Eh,k), and uses the indepedent channel
to signal this to the other (e.g. points to it).

5. The speaker agent assesses if the response complies with
its lexicon, and makes the hearer aware of this assessment.
Agents update their lexicons accordingly.3

6. If all agents have identical lexicons, the game stops.

Each game results in success (∃wi,n | wi,n = φs(oi);wi,n ∈
Eh,k) or failure (6 ∃wi,n | wi,n = φs(oi);wi,n ∈ Eh,k). Upon suc-
cess, both agents purge their entries for that object of all but
the successful word. Otherwise, the hearer adds the new word
to its entry of the object, or creates one if necessary. There
is no intermediary between a word exchange being success-
ful and a word dominating an agent’s lexical inventory for an
object; it operates on an all-or-nothing basis.

The Stochastic Naming Game
The current proposal has four key differences from the origi-
nal model:

1. Lexical entries: The lexical entries in the original model
are simple lists of words. The proposed model implements
lexical entries as weighted lists of words, updated upon in-
teractions. This allows a graded behaviour in which words
are preferred, and constitutes a more realistic situation in
which convergence should be achieved, compared to plain
lists.

More formally, for each agent αi, an additional value func-
tion θαi is added to retrieve the weight:

θαi : wk,q 7→ R
2The function φa returns Ea which is a list of all the words used

for an object from the perspective on agent a, and not the most suc-
cessful word.

3Note that this assessment does not require global knowledge;
it is a local decision determined solely by agent’s lexicon and its
assessment of the interaction with another agent.

Basically, this is just a lookup for the weight associated
with the word in an agent’s lexicon. By adding this, the
characterization of an agent is a tuple of the lexicon and
αi, instead of only the lexicon as in the original game:

αi :< Lαi ,θαi >

2. Word selection: The word selection scheme in the orig-
inal model simply picks a word from the set of words
present in the lexicon. It does not specify how to pick the
word. Although there are some suggestions for schemes
that optimize convergence (Baronchelli, DallAsta, Barrat,
& Loreto, 2005), there is no set practice. The proposed
model has a specific scheme that makes a weighted, prob-
abilistic choice of the word to use at each round. This in-
troduces a number of advantages. First, it introduces some
noise by not guaranteeing the leading word to be chosen at
every round. Some level of noise is often beneficial to con-
vergence in dynamical systems. Second, it is a more realis-
tic scheme, especially when top words have similar scores.
Third, it makes the system more fault tolerant by mini-
mizing the impact of successful rounds caused by words
that are ultimately going to fail and of unsuccessful rounds
caused by words that are ultimately going to succeed.

Formally, the function φαi is changed to return a word by
a weighted random choice. To this end, we first define a
probability distribution P where:

P(wk,q) =
θαi(wk,q)

∑y θαi(wk,y)
(1)

Subsequently, the word φαi ’s returns can be characterized
as a random variable X with distribution P.

φαi(ok) = X (2)

for which:
X ∼ P;X ∈ Eαi,k (3)

3. Parameters: As a consequence of the update scheme,
there are more parameters in this version of the game than
the original one. In particular, three δ-values (δsuccess,
δfailure and δinhibition) are added for use in updating the lex-
icon, whose precise roles are elaborated in the following
paragraphs. Additionally, two θ-values (θmax and θmin) are
added as the maximum and minimum values for any score
in the lexicon.

4. Update scheme: The agents in the proposed model no
longer discard the competing synonyms (i.e. the other
words in the lexical entry) upon a successful interaction.
Instead, the agents update the weights of their lexical en-
tries for the object upon every interaction.

A function ω is added to each agent which returns a new,
updated weight function after an interaction:

ω : θαi 7→ θ
′
αi
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This function ω adds or subtracts from scores some pre-
defined δsuccess, δfailure and δinhibition, based on lateral inhibi-
tion (Lenaerts, Jansen, Tuyls, & De Vylder, 2005). Upon a
successful interaction with word wk,p, this function returns
a new function θ′αi

and optionally modifies the lexicon of
the agent. The modification is that if the resulting score
for a word is less than a predefined value θmin, that word is
removed from the lexical item for that object. Also, there
is a set limit θmax on how large the weight may grow, at
which point no weight is added. More formally, ω returns
the following upon success:

θ
′
αi
(wk,q) =

{
min(θαi(wk,q)+δsuccess,θmax) i f q = p
θαi(wk,q)−δinhibition i f q 6= p

(4)

where

ω(θαi)(wk,q) = θ
′
αi
(wk,q) (5)

and the following upon failure:

θ
′
αi
(wk,q) =

{
θαi(wk,q)−δ f ailure i f q = p (6)

where

ω(θαi)(wk,q) = θ
′
αi
(wk,q) (7)

It then modifies the lexicon as follows:

L′a = (La/Eαi,k)∪E ′αi,k (8)

where

E ′αi,k = {w|θ
′
αi
(w)≥ θmin;∀w ∈ Eαi,k} (9)

With this scheme, it is possible to mimick the original
model of Steels by using δsuccess, δfailure and δinhibition,values of
10.0, 0.0, 10.0 respectively. Informally, this makes sure that
success always maximizes the weight of a word and always
eliminates other synonyms, and that failure does not have an
impact on the weights. This, in effect, is the behaviour of the
original model.

Methodology
Each parameter set, that is, a tuple of (δsuccess, δfailure,
δinhibition) was considered a unique case, and the simulation
was run 50 times for each case, using 50 agents and 2 ob-
jects.4 The model is considered to have reached convergence
when there is 100% success over a success window of 100
rounds or when it reaches the limit for number of rounds,

4Originally, up to 5 objects were going to be tested but as far
as we could tell from the pilots, this did not provide any interesting
insights that 2 objects did not provide for our intentions. Since more
objects dramatically increased the simulation time and analysis, the
simulations were run using just 2 objects.

which is chosen as 500,000 for this study. This is the product
of the number of agents and the number of objects, making it
very likely that all agents will have taken part in at least one
interaction regarding each object, making the success window
more meaningful. Also, note that our concept of “conver-
gence” is different from what is used in the literature. It does
not mean that all lexicons are identical, it simply means that
all lexicons are “similar enough” for the intended purpose,
“similar enough” defined as above. This way, it is possible
to see if synonyms can exist at the point where the success of
any given communication is almost certain.

The model was run with various δ parameters. The method
of choosing them was fixing a set of ratios in the form
δfailure:δsuccess and δinhibition:δfailure, and then producing the ac-
tual δ values by choosing a value for δsuccess and calculating
the rest using that chosen value.

There were five values for δsuccess denoted by the set
{1.0,3.0,5.0,8.0,10.0}. For the ratio δfailure:δsuccess, the ra-
tios picked were 0.0:1.0, 0.5:1.0, 1.0:1.0, 1.5:1.0 and 2.0:1.0.
The ratios used for δinhibition:δfailure were 0.0:1.0, 0.5:1.0,
1.0:1.0 and 1.5:1.0. If both δfailure and δinhibition are 0.0 for
a case, it is not possible to calculate δinhibition from the ratio,
so for those cases δinhibition was set to δmin to provide some
negative feedback to the model so that it can converge.

The cases in which δinhibition > 1.25×δ f ailure are excluded
since this corresponds to the vicinity of the original model
and our aim is at exploring different areas of the parameter
space. Only the case represented by the tuple (10.0, 0.0, 10.0)
is included for comparison since it exactly corresponds to the
behaviour of the original model.

The values δmax and δmin were fixed at 10.0 and 0.1, re-
spectively.

Results
The results make it clear that choosing the original model pa-
rameters is not the only viable option for our model. In fact,
of the total of 70 parameter sets, only 16 performed worse
than the original model parameters in terms of time of con-
vergence.

In the following, we will present the results on how model
parameters interact. We are not going to present all the results
because of space considerations. The analysis will be made
both in terms of time of convergence, relative convergence
rate and lexicon size. Relative convergence rate is defined as
the time it takes for the system to converge once the average
size of the lexicons are maximized (this time point of max-
imum lexicon size is represented as tmax in the simulation).
Time of convergence is the total number of rounds from the
start of the simulation to converge. Lexicon size is the total
number of words in an agent’s lexicon.

The results confirm that δinhibition functions as a way to
shrink the lexicon to have a greater relative convergence rate,
that is, to reduce the time it takes for the convergence to be
reached once tmax is reached. The functions of δsuccess and
δfailure are straightforward as positive and negative feedback,
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respectively.

Interaction of δsuccess and δfailure

The interaction of δsuccess and δfailure is easier to explain.
These are directly counteracting forces, and therefore if
δfailure is greater than δsuccess, the system fails to converge save
a few exceptional cases. This is not surprising since the sys-
tem, especially before tmax, mostly learns by failing the ex-
changes therefore learning new words. If the impact of failure
is higher than that of success, then it becomes really difficult
to disseminate some words to all agents so that later they can
converge to that word. Basically, they all get discarded before
their commonality causes them to become successful across
many interactions.

This effect is further compounded by non-zero δinhibition
values, which, upon occasional initial success, acts effec-
tively as a failure penalty for all non-successful words, further
decreasing the number of common words. However, there are
a few cases where models with δsuccess ≤ δfailure actually con-
verge to a common vocabulary. In a closer look, there are two
conditions under which convergence occurs. One is when all
δ values are quite small, so that success can accumulate to
save at least a couple of alternatives for a word from being
discarded. In contrast, larger values mean that one or two
failures guarantee discarding of a word, and the number of
successes have little impact on this since the scores stop in-
creasing once they hit the upper limit of θmax. In other words,
small δ values give the agents some room to keep a greater
amount of interaction history, and therefore they become bet-
ter at evolving their lexicon in tandem with the population
trends.

The other case is where δinhibition = 0. This leaves
only δsuccess and δfailure to battle each other, and occasionally
leaves room for convergence unless δfailure < 1.25× δsuccess
or δfailure > 0.75× θmax. This is equivalent to saying that
δfailure should leave room for at least two failures until a pre-
viously successful word is discarded, i.e. the word is not dis-
carded right away upon failure. Since there is no other mecha-
nism to decrease the weights, this allows some dissemination
with a bit of luck.

Interplay of δfailure and δinhibition

The key to the relationship between δfailure and δinhibition is
that they can replace one another with slightly different ef-
fects. δinhibition is a stronger form of δfailure which affects
not only one but almost all (save the successful one for
the round) words associated with an object each round. In
fact, this is why the original model, with the parameter set
(10.0,0.0,10.0), can function without δfailure.

This great impact of δinhibition effectively shrinks the lexi-
con, and this makes the tmax smaller but also reduces the rel-
ative convergence rate. The reason is that at tmax there are
less alternatives that the system may converge to for an ob-
ject. This means that any perturbation in the system, such
as an interaction where the speaker agent prefers a not-to-
be-successful word, needs to be counteracted so that the sys-

tem returns to moving towards the word it originally had been
converging to.

In contrast, a big lexicon at tmax means there are many al-
ternatives, and a disturbance need not be fully counteracted;
the system might just converge to another word-object pair-
ing that is salient in the population. Accordingly, our re-
sults show that a relatively large δfailure combined with a small
δinhibition produces the fastest convergences, with a large lexi-
con at tmax since δinhibition does not get a chance to shrink the
lexicons as much. After that, applications of δinhibition mostly
help convergence to the pairings that will ultimately domi-
nate.

Lexicon Size
Lexicon size can be used as an indicator of game dynamics.
Since it is not a parameter but a quantity that manifests itself
during the game, it is difficult to test. Nonetheless, there are
some clear tendencies that are important.

Figure 1: A log-log plot of time of convergence versus aver-
age lexicon size for all convergent parameter sets.

The first such tendency is between the time of convergence
and average lexicon size at tmax. It turns out that there is a
direct proportion between the logarithm of average lexicon
size and the logarithm of the time of convergence. Roughly,
this means the bigger the lexicon size at tmax, the longer the
convergence takes. This indicates that the time of conver-
gence and relative convergence rate are not necessarily corre-
lated. Although parameter sets that produce bigger lexicons
converge fast after tmax, they also take longer to put together
(i.e. to reach tmax) and therefore do not necessarily represent
the sets that allow convergence in the minimum number of
rounds.

The second tendency is best represented by a plot of rounds
(i.e. the time series) versus average lexicon size (see Figure
2). The plots fork into two fairly distinct groups, and all of
the plots with bigger lexicon size belong to parameter sets in
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Figure 2: A log-log plot of time of convergence versus aver-
age lexicon size for all convergent parameter sets.

which δinhibition ≤ 0.1. This demonstrates that δinhibition has the
function of shrinking the lexicon. In the figure, it is apparent
that for all cases, there is a peak (whose position in time we
call tmax) after which convergence is achieved (which is also
a finding encountered in the original naming game literature).
For very small values of δinhibition, this peak is more or less
identical to the time point at which convergence is achieved.
In other words, δinhibition shrunk the lexicon so little that the
system converged with a larger average lexicon size. In other
words, on average, at least some of the objects have more
than one alternative word associated with them although the
success rate climbed to 100% over a window of 100 rounds.
This may hold an insight into how synonymy may be con-
trolled in human languages.5 In our model, synonymy does
not necessarily hinder mutual communication. In more com-
plex models, if they have analogous tendencies at all, it might
be beneficial for large populations to be able to communicate
very successfully without a full agreement on which object is
referred to by which word.

This also suggests that memory requirement for this task is
not necessarily determined by the amount of memory avail-
able to the agents but by the type of learning a population
adopts (or is born with), and the fact that the task is under-
taken by a population. Even if they had very big memory
capacities (i.e. more than they need to use), part of this ca-
pacity would be redundant because of the decay in weights
of the unsuccessful or non-successful words would get them
discarded from the lexicon.6 However, parameter sets with
small δinhibition (similar to those in the top partition of Figure

5Of course, these are results from a single study with very strict
and narrow boundaries in terms of what it deems possible “lan-
guage”; hence the verb inspiration instead of insight.

6Non-successful words are those whose weights are decremented
not because they failed, as unsuccessful words’ are, but because
some other word succeeded and δinhibition was nonzero.

2) can conceivably make use of more memory than available
here. This indicates that δinhibition is a way of controlling the
memory use of the population for the task.

Conclusion
We believe that this line of research is quite relevant to cog-
nitive science and to study of linguistics in general. Although
the communicative capacities of our agents are very limited
in that they do not contain any capabilities for syntax, dis-
course etc., our results are somewhat reminiscent of Elman’s
work on importance of starting with a small working memory
in language acquisition (1993). Our model shows that using
a reasonable δinhibition actually facilitates learning although it
does reduce the amount of memory used for the task. In our
model, it is not even about the availability of more memory;
the memory simply does not need to be larger.

This would not make sense for learning static knowledge
where having as many samples as possible at any point in
time is the goal. But such a finding is arguably not as sur-
prising for learning population-generated knowledge which
may change from one point in time to the other. The memory
constraint comes not from the learners but from the nature of
what is learned, how it changes and the relationship between
the learners and what is learned. The constraint is not on any
given specific lexicon but on the “lexicon of the population”.
In other words, this effect does not really stem from the agents
themselves but from the fact that what they are trying to agree
on is malleable by this very process of negotiation.

It also confirms the previous findings in the semiotic dy-
namics literature that the sudden popularity of a word upon
coinage is an illusion. The conclusion from this literature,
including this study, is that there are often many competing
synonyms for the same concept, and, after a word hits a pop-
ularity threshold, the system falls into a spiral of making the
most popular word even more popular. This is even true in
a model such as ours where there is a net negative feedback,
δfailure, and varying ratios of the strength of other mechanisms
of pressure, unlike other models in the literature. There are
grey areas where words are neither in disuse nor popular, and
they need not become either unused or popular for conver-
gence to occur.

Finally, these simulations can give us an idea about con-
trolling synonymy. Our model does not necessarily have
much pressure towards eliminating synonymy; it just works
by looking at how successful communications are. The only
pressure on synonymy is controlled by δinhibition. Such inhibi-
tion effectively means that success of one word for an object
is the failure of others for that same object. However, un-
like simpler models in the literature, synonymy can be pre-
served while still achieving very high communicative suc-
cess, though only when using low δinhibition values and with
the side effect of having a larger vocabulary to hold the syn-
onyms. The fact that the model also converges with mul-
tiple synonyms for an object both when δinhibition 6= 0 and
δinhibition = 0 demonstrates that this ability to maintain syn-
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onymy is not about the existence but the magnitude of the
pressure towards no synonymy, as exerted by δinhibition.

The main lesson to learn from this is that synonyms are
eliminated only if they seriously hinder communicative suc-
cess, and they are eliminated more or less globally when they
do. It would be more feasible to use synonyms if the agents
had contextual cues as humans do to constrain the search
space, but synonymy can be preserved even without this addi-
tional information. If the ambiguity they bring is manageable
within the task we are trying to achieve with our language
(and these models demonstrate that there really exist such
tasks), they need not be eliminated. This is analogous to the
difference between colloquial text and legislation in terms of
ambiguity, which arguably has something to do with what the
population of language users intend to use the language for.
What we are trying to achieve in such tasks is not necessarily
identical lexicons but communicative success, and what this
means has to be defined on a per-case basis.

Figure 2 shows that we pay the price for synonymy if we
let it loose: it causes either late convergence or no conver-
gence. The natural equivalent of these results are open to dis-
cussion. Our suggestion is that they seem to indicate keeping
it low among a community while not completely eliminating
it seems to be a way of balancing expressivity and commu-
nicative success. If either aspect begins to dominate, it will
be equivalent to widespread synonymy and no synonymy, re-
spectively. The conclusion that these may be counteracting
forces are shown by synonym’s relation to number of itera-
tions, rather than assumed cognitively.
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