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ABSTRACT OF THE DISSERTATION
Nearshore Circulation
by

Falk Feddersen
Doctor of Philosophy in Oceanography
University of California, San Diego, 1999
Professor R. T. Guza, Chair

Nearshore circulation is the mean flow in the region from the shoreline to
about a kilometer offshore. An understanding of nearshore circulation is important
to understanding sediment transport, pollution dispersion, and the distribution of
various marine invertebrates. This thesis addresses the following question. Are the
dynamics of the alongshore current described by a 1-D balance (neglecting along-
shore variations) between wave and wind forcing against bottom stress and lateral
mixing? Observations are used to close integrated momentum balance, suggesting
that a 1-D balance is appropriate. The alongshore bottom stress must be parame-
terized in models. Various parameterizations are examined in detail and it is found
that most nonlinear parameterizations are adequate for modeling purposes. The
alongshore current may also be unstable. For marginally unstable Reynolds num-
bers, the instability of the alongshore current is investigated analytically, and an
amplitude equation for a weakly nonlinear shear wave is derived. The characteris-
tics of a equilibrated shear wave (obtained from a 2-D numerical model) are well
described by the theory. Future work will involve numerical modeling of nearshore

circulation, and a nearshore circulation model I have implemented is described.
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Chapter I

Introduction

The nearshore extends from the beach to roughly a kilometer offshore,
encompassing the region of wave shoaling and the surf zone, the region of wave
breaking. Nearshore circulation, the time-averaged (over many surface gravity
wave periods), includes processes such as alongshore currents, shear instabilities,
rip currents, and undertow. The ultimate scientific goal pursued here is to un-
derstand the dynamics of and successfully model nearshore circulation. However,
nearshore circulation is very complicated. It is three-dimensional, highly nonlinear,
spans a region with order of magnitude depth variation, and depends critically on
wave and turbulence (generated by both wave breaking and the bottom boundary
layer) dynamics. Simplification is necessary to begin understanding nearshore cir-
culation, but must be done in a rational manner, with each simplification tested
and determined valid or invalid. In this thesis, I test some fundamental simplifying
assumptions (chapters 2 and 3) regarding nearshore circulation. In addition, the-
oretical work on the stability of the alongshore current (chapter 4) and numerical
model development (chapter 5) is described. While this stage of my investigation
is complete, much work remains.

A common simplification is to depth-integrate and time-average the three-
dimensional Navier-Stokes equations, reducing the equations to two dimensions.

With the assumptions of (i) constant density, (ii) hydrostatic time-averaged vertical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



balance, and (iii) no rotation, the resulting forced and dissipative shallow water

equations are,

% +V-[(h+7)a] =0 (I.1a)

p(7 + h) (%ﬁ +ﬁ-Vﬁ) =—pg(+R)Vi+r -1~ V.S—V-.F. (L1b)

where U = [iZ, 7] represents the mean (depth and time-averaged) cross-shore and

alongshore velocities, and 7 is the time-averaged sea surface elevation (setup),
and y are the the cross- and alongshore coordinates, h is the water depth (Fig-
ure I.1), and p is the water density. This coordinate system is used throughout
the dissertation. The surface (i.e. wind) and bottom stresses are represented by 7*
and 7°. The momentum flux due to waves is given by the radiation stress tensor
S and that due to turbulence and shear dispersion (interaction of depth-varying
currents) is given by the depth-integrated Reynolds stress tensor F. Two other
common simplifications, convenient for theoretical analysis and numerical model-
ing, are the rigid-lid (87/8t = 0) assumption and % < h allowing 77 + h to be
replaced with h.

Figure I.1: The coordinate system used. Planar beach bathymetry (h = fz) is

shown.
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The equations (I.1) are believed to represent well the depth- and time-
averaged flow, and describe a variety of processes such as edge-waves [Eckart, 1951]
swash motions [Raubenheimer et al., 1995, steady flow [Wu et al., 1985], shear-
instabilities [Allen et al., 1996], and topographically controlled rip currents [Arthur,
1962; Sancho et al., 1995]. Important processes not described include undertow
(depth variation of the mean cross-shore current), instabilities of undertow [e.g. Li
et al., 1998], and the bottom boundary layer crucial to the understanding of bottom
stress and sediment transport.

The radiation and Reynolds stresses can be exactly written as depth-
and time-integrated functions of the wave and turbulent velocities respectively.
However, these quantities are not resolved by (I.1), and are also poorly understood
and difficult to measure. For closure, both a wave and turbulence model are
required to parameterize the two stresses. The radiation stress is often related to
the frequency-directional wave energy spectrum via linear theory, although other
models that incorporate nonlinear or breaking-wave roller effects are also used.
The various models for the depth-averaged Reynolds stresses are usually based on
an eddy-viscosity concept.

The bottom stress depends on the details of both the bottom boundary
layer and the breaking wave generated turbulence which transport momentum to
the bottom. These processes also are not resolved in a 2-D model, therefore an
instantaneous stress dependence that is a quadratic in the instantaneous veloci-
ties is often adopted, in analogy to steady open-channel flow. The time-averaged

alongshore bottom stress 1': is

™ = pey <|djv>, (1.2)

where < - > represents a time average over many wave periods, c; is a nondimen-
sional drag coeflicient, |i| is the magnitude of the total instantaneous horizontal
velocity vector, and v the instantaneous alongshore velocity. Both mean and wave

velocities contribute to the nonlinear term < |i|v>. This quadratic bottom stress

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



representation is not verified because direct measurements of the bottom stress in
the nearshore are lacking.

Parameterizations of radiation, Reynolds, and bottom stresses are tested
implicitly by examining their effect on a more easily measured quantity, the along-
shore current. However, due to the number of free coefficients in the parameteriza-
tions, model-data comparison becomes little more than an exercise in curve fitting.
Constraints on either the parameterizations or the coefficients that go into them
are essential to further understanding of nearshore circulation.

There is great interest in modeling the alongshore current, which trans-
ports sand, causing beach erosion and and blocking of harbor entrances. The
depth-integrated and time-averaged alongshore momentum equation often is sim-
plified further by invoking two assumptions, that the flow is steady (8, = 0), and
that all variables are alongshore homogeneous (8, = 0). Immediate simplification
follows due to the continuity equation (I.1a) which, with the shoreline boundary
condition of no mass flux, implies ¥ = 0 everywhere, decoupling the cross- and
alongshore momentum equations. The cross-shore momentum balance is between
cross-shore (wave or wind) forcing and cross-shore pressure gradients [Longue:-
Higgins and Stewart, 1964]. The alongshore momentum equation schematically

simplifies to
Forcing = Bottom Stress + Mixing,

where the forcing is due to both waves and wind, and can be written more formally

as
dF,
—— =pcy < |g]v> +d—::z' (1.3)

One-dimensional models based on (I.3) have had both success [ Thornton
and Guza, 1986] and failure [ Church and Thornton, 1993] describing the alongshore
current. An outstanding question is whether 1-D models contain the proper dy-

namics of the alongshore current on a natural beach. No beach is truly alongshore
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homogeneous (i.e. 3, # 0), and so processes such as alongshore pressure gradients
may be important in the dynamics of the alongshore current. However, it is hard
to verify (I.3) locally (at a single point) because, as mentioned earlier, it is difficult
to measure the individual terms that comprise (1.3).

Chapter 2 [Feddersen et al., 1998] suggests that 1-D models based on (I.3)
can describe the alongshore current on a natural beach. A cross-shore integrated
(from the shoreline to 8-m water depth) 1-D momentum balance is evaluated using
data from the two-month long Duck94 field experiment. With some judicious
assumptions, it is possible to estimate the cross-shore integrated terms in (I.3).
Other cross-shore integrated momentum balances which separate the dynamics of
the surf zone from the region seaward of the surf zone are also evaluated. There

are several findings:

e The cross-shore integrated momentum balance holds, suggesting that (I.3)

holds locally.

The alongshore bottom stress is represented well by (I.2).

There is significant cross-shore variation of the drag coefficient ¢y, with a

higher c; in the surf zone.

Alongshore wind forcing plays a significant role in the nearshore region.

An alongshore current model cannot use (I.2) to represent the bottom
stress because the wave velocities are not resolved. Therefore, the term < |iZjv >
must also be parameterized. Many parameterizations exist, both linear and nonlin-
ear, which are based on various assumptions. Although it is fairly straightforward,
none of the parameterizations had previously been tested with observations. In
chapter 3 [Feddersen et al., 1999, various parameterizations of < |@|v> are exam-
ined using data from the Duck94 and SandyDuck field experiments. The principal
findings are that:

e Linear parameterizations do not adequately reproduce < |if|v>.
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e The expected value Ef[|i|v] based on assuming the wave velocities are joint-
Gaussian random variables with the observed flow statistics is an excellent

parameterization of < |&Z|v>.

e Various other nonlinear parameterizations (both empirical and non-empirical)

work well.

e The mean alongshore current and the total wave velocity variance are the

most important factors determining < |@|v>.

In the past decade it has been realized that the alongshore current on
natural beaches are often unstable. Low frequency, approximately nondispersive,
alongshore propagating waves with periods of O(100 s) and wavelengths of O(100
m), first observed by Oltman-Shay et al. [1989], are much shorter than the wave-
lengths of edge waves of the same frequency. The motions (called shear waves) are
related to the intensity and direction of the mean alongshore current, and are the
result of a shear-instability [Bowen and Holman, 1989).

The nonlinear evolution of the shear instabilities were studied numerically
by Allen et al. [1996], who found that the shear wave behavior (from equilibrated
shear waves to fully turbulent flow) is a function of an inverse Reynolds number
a. At values greater than a critical value (a > ), the flow is stable. Allen et
al. [1996] did not study the near critical (i.e. at a just below a.) behavior of
shear waves. An issue complicating such study is that numerical effects can alter
the near critical behavior, for example inducing a false stability. In the Allen et
al. [1996] model, finite numerical resolution and biharmonic friction (added for
numerical stability) might significantly distort the solutions near a.. Finite along-
shore domain lengths also prevent potential side-band instabilities and motions on
scales longer than the domain length from developing.

In Chapter 4 [Feddersen, 1998], the theory for weakly nonlinear shear
waves at small a. — a is developed, using perturbation expansion techniques.

At first order, linear stability is recovered. At third order, a complex Ginzburg-
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Landau equation is derived for the shear wave amplitude. Solutions to the complex
Ginzburg-Landau equation can exhibii a wide range of behaviors. For the condi-
tions used in Allen et al. [1996] a side-band stable equilibrated shear wave is found.
The agreement between theory and the model of Allen et al. [1996] confirms that
the numerical model correctly reproduces the near-critical shear wave behavior.

A numerical model of the forced and dissipative shallow water equations
(I.1) is a valuable tool for nearshore research. Investigations can range from ide-
alized process studies (e.g. the dynamics of shear waves [Allen et al., 1996]) to
quantitative comparison with field observations on complex natural bathymetry.
I've developed a numerical model based on (I.1) with the rigid-lid and 7 < h
assumptions, which is similar to the model used by Allen et al. [1996]. Chapter
5 contains a description of the numerical implementation and validation of the
rigid-lid, forced and dissipative shallow water equations.

For the future, there is need for well-tested, accurate, and robust parame-
terizations of both the radiation and Reynolds stress. Little is known about these
terms, for example their magnitude and spatial distribution. In addition, it is, in
my opinion, an open question whether turbulent mixing is dynamically significant
in the surf zone. If it is, what length and time scales are doing this mixing? Is
the mixing due to shear-instabilities (with a longer time scale than surface gravity
waves) or due to breaking wave generated turbulence (with a shorter time scale).
In addition, a better understanding of how the drag coefficient ¢; a depends on
bed roughness, waves, and currents is required for the alongshore bottom stress.
Understanding these processes in a 1-D, alongshore homogeneous context is cru-
cial before moving to 2-D and/or full 3-D modeling. In the immediate future, I
plan to use inverse methods combining the comprehensive Duck94 and SandyDuck
field data and a 1-D model, to develop an increased understanding and better

parameterizations of these processes.
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Chapter 11

Alongshore Momentum Balances

in the Nearshore

II.A Abstract

The one-dimensional, time-averaged (over many wave periods) alongshore
momentum balance between forcing by wind and breaking waves and the bottom
stress is examined with field observations spanning a wide range of conditions on
a barred beach. Near-bottom horizontal currents were measured for 2 months at
15 locations along a cross-shore transect extending 750 m from the shoreline to
8-m water depth. The hourly averaged bottom stress was estimated from observed
currents using a quadratic drag law. The wave radiation stress was estimated in
8-m depth from an array of pressure sensors, and the wind stress was estimated
from an anemometer at the seaward end of a nearby pier. The combined wind
and wave forcing integrated over the entire cross-shore transect is balanced by
the integrated bottom stress. The wind stress contributes about one third of the
forcing over the transect. Analysis of the momentum balances in different cross-
shore regions shows that in the surf zone, wave forcing is much larger than wind
forcing and that the bottom drag coefficient is larger in the surf zone than farther

seaward, consistent with earlier studies.
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II.B Introduction

Alongshore currents in the surf zone have been investigated extensively
within the framework of steady, one-dimensional (1-D) models (Bowen [1969),
Longuet-Higgins [1970], Thornton [1970], and others). If the topography, forc-
ing, and alongshore current are steady and uniform in the alongshore direction,
the time-averaged and vertically averaged alongshore momentum equation reduces

to a 1-D balance between forcing, bottom stress, and mixing,

wid _ 08y _ s OFye

Ty 2 vt o (I1.1)

where z and y are the cross-shore and alongshore coordinates, respectively. The
forcing is the sum of the alongshore wind stress 'r;'i“d, which although often ignored
is sometimes important in the surf zone [Whitford and Thornton, 1993, 1996,
and wave forcing, represented by the cross-shore gradient of the radiation stress
component —S,, [Longuet-Higgins and Stewart, 1964]. Linear theory is used often
to relate Sy, to the frequency-directional wave spectrum E(f, ) [e.g. Battjes, 1972]
or in bulk wave transformation models to the wave height H,,s, mean wave angle
6, and the mean wave frequency f [e.g. Thornton and Guza, 1983]. The mean

alongshore bottom stress is often parameterized as [Longuet-Higgins, 1970]

) = pes <|ilv> (11.2)

where p is the water density, c; is a drag coefficient, || is the magnitude of the total
velocity vector above the bottom boundary layer, v is the alongshore velocity com-
ponent, and <> represents a time average over many wave periods. This quadratic
form for the bottom stress has been used widely in steady channel flows [e.g. Hen-
derson, 1966] but has not been verified directly in the surf zone. Mixing is given
by the cross-shore gradient of the depth-integrated turbulent momentum flux F,.
Although F,, can be written exactly in terms of depth-integrated Reynolds stresses
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and the interaction of depth-varying currents [Svendsen and Putrevu, 1994], there
is no accepted turbulence closure scheme, so F,, is parameterized typically as pro-
portional to the mean alongshore current shear 8v/dz, where 7 is the time-averaged
alongshore current.

The alongshore momentum equation (II.1) with the quadratic bottom
stress (I1.2) is difficult to solve for 7. If a weak mean current and small wave
angle are assumed, the bottom stress can be approximated as a linear function of

U [e.g. Longuet-Higgins, 1970)

‘r!',’ X 0T (IL.3)

where o2 is the cross-shore orbital wave velocity variance. Given this approxima-
tion and parameterized forms for the wave transformation and mixing, solutions
for 7 can be found. However, in the surf zone the linearizing assumptions for
the bottom stress often are violated [Thornton and Guza, 1986], and the general
relationship between < |@|v> and 0,7 is not understood well.

Alongshore currents predicted by (II.1) using a random wave transfor-
mation model for Sy;, a linearized bottom stress (II.3), and neglecting mixing
(0F,;/0z = 0) agree well with mean alongshore currents observed on a nearly plane
beach with a small range of incident wave angles [ Thornton and Guza, 1986]. How-
ever, there are large discrepancies between 1-D model predictions and observations
on a barred beach near Duck, North Carolina acquired during the DELILAH field
experiment [Church and Thornton, 1993; Smith et al., 1993]. The beach at Duck
is complex, with a wide range of wind and wave conditions [Long, 1996] and com-
plicated bathymetry that includes prominent sandbars and sometimes pronounced
alongshore inhomogeneities [Lippmann and Holman, 1990]. During DELILAH a
broad alongshore current often was observed, with a single maximum shoreward of
the crest of the sandbar, whereas 1-D models predict a flow with two narrow jets,

one slightly seaward of the bar crest and one near the shoreline (i.e. in the regions
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where the predicted wave breaking causes large gradients in S;;), with weak flow
in between the jets.

The reasons for this discrepancy are unclear, but possible model deficien-
cies fall into two general classes. First, the 1-D momentum balance (II.1) may
be correct, but the parameterization of wave forcing, bottom stress, or mixing
may be either incorrect or not robust over the wide range of conditions at Duck
(Svendsen [1984], Church and Thomton [1993], Svendsen and Putrevu [1994], Dally
and Broun [1995], Slinn et al. [1998], Garcez Faria et al. [1998], and many oth-
ers). Alternatively, the 1-D momentum balance (II.1) may be missing important
two-dimensional (2-D) terms such as nonlinear advection and alongshore pressure
gradients associated with alongshore depth variations. Model simulations suggest
that these terms may be significant on natural beaches [Putrevu et al., 1995; San-
cho et al., 1995; Reniers et al., 1995].

Here the 1-D momentum balance (II.1) is tested with field observations
(discussed in section 2) collected over a wide range of conditions on the barred
beach near Duck, North Carolina. The alongshore momentum balance, integrated
over the instrumented cross-shore transect, is examined in section 3. This in-
tegrated balance spanning the entire surf zone (as opposed to the local balance
examined by Whitford and Thornton [1996)) is independent of the poorly under-
stood gradients of the turbulent momentum flux F,, and radiation stress S,, ap-
pearing in the local 1-D balance (II.1). The cross-shore integrated total (wind
and wave) forcing is shown to be balanced approximately by the cross-shore inte-
grated bottom stress, using the quadratic friction formulation (I1.2). The closure
of the cross-shore integrated momentum balance suggests that the dynamics of the
alongshore current are on average described by the 1-D momentum balance (II.1).
However, there are cases in which 2-D effects are important, as discussed in section

4. The results are summarized in section 5.
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II.C Observations

The data were collected during September and October of 1994 near Duck,
North Carolina on a barrier island exposed to the Atlantic Ocean. The U.S. Army
Corps of Engineers Field Research Facility (FRF) coordinate system, with z in-
creasing offshore and y increasing in the northerly direction, is used. Directional
properties of sea and swell were estimated from a two-dimensional array of 15
bottom-mounted pressure sensors in 8-m water depth (Figure I1.1), operated by
the FRF [Long, 1996]. Hourly radiation stresses were estimated accurately us-
ing linear theory and a directional-moment-estimation technique that minimizes a
weighted sum of the bias and statistical variability of the estimate [Elgar et al.,
1994]. Errors in the S,, estimates are small compared to uncertainties in other
terms of the integrated momentum balances investigated here. Wind speed and
direction measured 19.5 m above mean sea level at the end of the nearby FRF
pier were used to estimate wind stress (S. Lentz, personal communication, 1995)
using the algorithm of Large and Pond [1981]. No corrections were made for the
possibly significant, but poorly understood, effect of waves on the wind stress
le.g. Rieder et al., 1996]. Observations from a 60-km-long five-element alongshore
array of pressure sensors in 6-m water depth [Alessi et al., 1996] were used to ob-
tain hourly estimates of the alongshore pressure gradient near the shore associated
with shelf-scale barotropic motions (Appendix A).

Colocated sonar altimeters [Gallagher et al., 1996], pressure sensors, and
bidirectional electromagnetic current meters (sampled at 2 Hz) were deployed on
a cross-shore transect extending 750 m from near the shoreline to 8-m water depth
(Figures I1.1 and II.2). Sonar altimeters measure acoustically the distance from
the altimeter (mounted on a fixed frame) to the bed. Altimeter data were used to
estimate depth profiles on the instrument transect [Gallagher et al., 1998]. Current
meter offset drift was accounted for by regularly rotating the current meters 180 deg

and assuming a stationary mean current during approximately 10-min periods
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Figure II.1: Plan view of the beach at Duck. A solid circle represents a colocated
pressure sensor, current meter, and sonar altimeter. The open circles represent
the Field Research Facility pressure sensor array. Bathymetry from October 20

is contoured in units of meters below mean sea level. Wind speed was measured

about 500 m from the shoreline at alongshore location 500 m.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

vvvvvvvvv

lllllllllllllll

Depth (m)

lllllllllllllllllll]lllllllll[lllllllll]lllllllllllll_r

lllllllllllIlllllllllll]lllllllliIlllll

Distance From Shoreline (m)

Figure I1.2: The cross-shore location of colocated current meters, pressure sen-
sors, and sonar altimeters (triangles); bathymetry observed on August 25 (solid
curve) and October 26 (dashed curve). An additional colocated pressure sensor

and current meter in 8-m water depth, 750 m from the shoreline, is not shown.
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before and after the rotation. Biofouling required repeated cleaning of the current
meter probes. Data from heavily biofouled current meters or with possibly large
offset-drift-induced errors were discarded. Estimated errors in the measured mean
alongshore flows are 0.05 m/s (arising primarily from offset drift) plus 5% of the
true mean flow speed owing to inaccuracy in the current meter gain and orientation.
The most nearshore sensor was often exposed at low tide and therefore inactive.
The 15 current meters were raised or lowered as the bed level changed to maintain
an elevation of 0.4-1.0 m above the seafloor.

Conditions during the experiment are summarized in Figure I1.3. In 8-
m water depth the significant wave height (H,g) ranged between 0.2 and 4.0 m
(Figure I1.3a), and the mean wave angle ranged between +50deg (Figure I1.3b).
The mean (e.g. centroidal) wave frequency ranged between 0.08 and 0.2 Hz (not
shown). The maximum mean alongshore current [v,,.] (in each hour-long record)
ranged from 0.1 to 1.4 m/s (Figure II.3c). The bar crest, originally located 80 m
from the shoreline, migrated 120 m farther offshore (Figure I1.3d and Figure I1.2).
The observed locations of Tmax spanned the entire instrumented region, but were
usually located within 150 m of the shoreline, and shoreward of the bar crest
(Figure I1.3d). The few maxima located well seaward of the bar crest (400 m <
z < 750 m) were weak (|Umax| ~ 0.3 — 0.4 m/s) and approximately correspond
to times of strong buoyancy-driven flows [Rennie, 1998]. The stronger alongshore
currents (|Umax| > 0.8 m/s) were often wave driven (e.g. associated with large S,
in 8-m water depth, Figure I1.4) and occurred near the bar crest. Maxima near
the shoreline were weaker (0.25-0.7 m/s). Many of the larger [Umax| (0.4-0.7 m/s)
near the shoreline occurred in mid to late October after the sandbar migrated
offshore (Figure I1.3d). The alongshore component of the wind ranged between 15
m/s from the north and 10 m/s from the south (not shown). The surf zone width
(estimated as described in Appendix B) ranged from 10 to 750 m. Spring tides
were about 1 m, and the slope of the beach foreshore was about 1/10 (Figure II.2),

so tidal fluctuations in the mean shoreline location were about 10 m. Alongshore
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Figure I1.3: Hourly values of (a) significant wave height Hy;z and (b) mean incident
wave angle [Kuik et al. 1985] in 8-m depth (zero corresponds to normal incidence
and positive angles to waves from the northern quadrant). (c) Absolute value of the
maximum hourly averaged alongshore current |v,.| and (d) cross-shore location
of the bar crest (dashed) and of Umax. The 572 values of |Upax| shown correspond
to hours with at least five active current meters and [Upax| > 0.25 m/s. The few

maxima occurring > 250 m from shore are not shown in Figure 3d.
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barotropic tidal currents in water depths < 8 m were less than roughly 0.03 m/s
(S. Lentz, personal communication, 1996).

Spatially extensive bathymetric surveys (e.g. Figure I1.1) were obtained
several times during the data collection period with the CRAB (Coastal Research
Amphibious Buggy). The orientations of the 1-, 2-, 3-, 4-, and 5-m depth contours
over an alongshore span of 300 m that included the instrumented transect were
determined by least squares fits of each depth contour to a straight line. The orien-
tation angle of a particular depth contour changed over time, and the orientation
of different depth contours varied O(5°) within a given survey. Particular depth
contours sometimes were fit poorly by the surveys, indicating that the bathymetry
was alongshore inhomogeneous (e.g. Figure I1.1). However, mean (averaged over all
depths for a single survey) contour orientations varied by no more than +2° from
the FRF coordinate system. The results in section 3 are not altered significantly
by +2° rotation of the coordinate frame. '

Guza et al. [1986] reported a strong correlation (72 = 0.94) between an
empirical orthogonal function-derived 7p,, and —Syz estimated outside the surf
zone on a nearly plane beach with a smaller range of incident wave angles than
those observed here. The lower correlation between Tmax and —S,; (12 = 0.76)
at Duck (Figure II.4) reflects a greater complexity of bathymetric, wave, and
wind conditions. Wind stress, buoyancy forcing, the effect of alongshore inho-
mogeneities, and flow acceleration all contribute to the scatter between —S,, and
Umax and dominate cases in which —S,; and T, have opposite sign. The over-
all importance of terms other than S,, to the alongshore momentum balance is
unknown.

Wind is sometimes a substantial momentum source in the nearshore [ Whit-
ford and Thornton, 1993] and is included in the momentum balances investigated
here. The sometimes significant effect of wind forcing and the dynamical separa-
tion between the surf zone and the wind-driven region seaward of the surf zone is

illustrated in Figure I1.5 for a case where wind and wave forcing have opposite sign.
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Figure I1.5: (a) Hourly averaged alongshore current 7 versus distance from the
shoreline and (b) depth observed at 1300 eastern standard time September 21.

Arrows pointing toward the bottom of the figure indicate southward flow.

Moderately energetic waves (Hsig =~ 1 m in 8-m water depth) approached from the
south while the 4 m/s wind was from the north. The wind-driven current flowed
toward the south seaward of the bar crest, and a wave-driven current flowed toward
the north shoreward of the bar crest (where wave breaking began). The observed
sign change in 7 highlights the transition from wind- to wave-driven flow. Even
though the alongshore currents were weak, the division between the wind- and
the wave-driven regimes was observable for the entire 48-hour period (September
20-21) when wind and wave forcing had opposite sign, and the location of current
reversal fluctuated as the surf zone width was modulated by tidal changes in water

depth. See Feddersen et al. [1996] for further discussion of case studies.
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II.LD Alongshore Momentum Balances

The depth-integrated and time-averaged alongshore momentum equation

is [e.g. Mei, 1989]

otn+) (5 + 55+ ) = —sath + 31 - Zm _ O

—7y +1ymd — (% + ajfyﬂ) (IL.4)
where % and 7 are the depth- and time-averaged (over many wave cycles) cross-
shore and alongshore velocities, h is the water depth, 7 is the mean free surface
displacement, S,; and S, are components of the radiation stress tensor, F,, and
F,, are components of the depth-integrated turbulent momentum flux tensor, and
7,84 js the alongshore component of the wind stress. The alongshore bottom stress
T!’,’ is represented by a quadratic drag law (I.2). Earth rotation and variation of
the water density p are neglected.

The assumptions of a steady state and no alongshore (y) variation, cou-
pled with the continuity equation and a no mass flux boundary condition at the
shoreline, yield Z = 0. The nonlinear terms and alongshore gradients of S,,, F,,,
and 7 in (I1.4) therefore vanish, and the alongshore momentum equation (II.4)
simplifies to the one-dimensional balance (II.1).

The 1-D momentum balance (II.1) is not verified locally (e.g. at a single
location) because gradients of the radiation stress S,; and the turbulent momentum
flux F,; cannot be estimated well from these observations. However, if Sy and

F,: are known at two cross-shore locations z; and z,, the cross-shore integral of

(IL.1) between z,; and z; can be estimated as

S,
+ £
T2 p

Bzl (ws)

ind
/%T;nn dg — S
z p p

2 - Fyz
= cs <|ilv>dz+ £
z p

1

) z2 £ 31
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Here this integrated balance is tested statistically for several cross-shore regions.
The spatial structure of the alongshore current is not addressed by the analysis.
The first integration region spans the entire 750-m-long transect, from
near the shoreline (z; = 0) to 8-m water depth (z; = zgy,). Pressure array data in
8-m water depth are used to estimate Sy, at zsy,. The turbulent momentum flux
Fy: is assumed negligible in 8-m water depth (Fy;|.,. = 0) because the surf zone
(where mixing is believed strongest) rarely extended to zsy. Assuming that Syz
and Fy; are zero at the shoreline and that c; and 7" are spatially homogeneous,

(IL.5) becomes

wind
Ty Syz
P Tgm — ——

ZT8m
—¢ f <|@lv> dz (IL6)
0

Tam
where the only unknown is ¢;. The integral is estimated from the observations as
described in Appendix C.

Wind (734 zgy /p) and wave (—Syz/plzs.,) forcing terms integrated across
the 750-m region during the 2-month experiment are shown in Figure II.6. The
rms wind forcing is about half the rms wave forcing and thus cannot be neglected.
The wind and wave forcing are visually correlated but occasionally have opposite
signs (e.g. September 20-21, days 19-20, and October 14, day 43, in Figure IL.6).

The integrated total (wind and wave) forcing and bottom stress are highly
correlated (r2 = 0.87), and linear regression gives a best fit ¢y = 0.0015 (£1.2 x
1074, the 95% confidence limits on c;) (Figure IL.7). The linear relationship sug-
gests that the current meter array adequately resolved the cross-shore structure of
the flow, the bottom stress is represented well by (II.2), and the integrated 1-D
momentum balance holds.

The integrated wind forcing is not negligible, but because the wind and
wave forcing terms are correlated (Figure II.6) it is possible that a balance between
integrated wave forcing and bottom stress (i.e. neglecting wind forcing) closes

equally well. However, the correlation between wave forcing and bottom stress

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

o o
o »

|
o
3

Wind and Wave Forcing (m®/s?)

0 10 20 30 40 S0 60
Days from September 1

Figure I1.6: Hourly integrated (from the shoreline to 8-m depth) wave (—Sy:/p|z,..
solid curve) and wind (f; *" (73""4/ p) dz dashed curve) forcing versus time. Positive
corresponds to northward forcing. The means are -0.0085 and -0.0278 m3/s?, and
the standard deviations are 0.1296 and 0.0616 m3/s? for wave and wind forcing,

respectively.
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Figure IL.7: Hourly total forcing (wind and wave, —Sy;/plz,, + [ " (131" /p) dz
solid curve) and bottom stress (c; f; *™<|iélv > dz dashed curve) integrated from
the shoreline to 8-m depth with a best fit ¢; = 0.0015 versus time. Gaps occur
when the bottom stress integral could not be computed because of inactive sensors.

The correlation coefficient squared r? = 0.87.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

(r? = 0.73) is significantly (at the 95% confidence level) lower than the correlation
including wind forcing (r? = 0.87), demonstrating the importance of wind forcing
over this region. The drag coefficient estimate is reduced from c; = 0.0015, when
wind stress is included, to ¢; = 0.0010, when it is neglected.

To investigate possible spatial variation in c;, the instrumented cross-
shore transect was divided into regions within and seaward of the surf zone. With-
out assumptions about the evolution of S,, and introducing friction coefficients ¢ 11
and ¢y, within and seaward of the surf zone, respectively, the momentum balances

in each region are

wind Ty
&y xp — Sez| _ c,lf <|@jv> dz + Frz (I1.7)
P xp 0 p 7
and
wind Z8m
V (gm — ) — 2= Sl _op / <liv>do— B2l aws)
T8m zp Ty p Ty

where z, is the location of the border between the two regions. Adding (I1.7) and
(I1.8) yields a balance over the entire region similar to (II.6) (but with a variable

drag coefficient) given by

Twind S Zp Z8m
Y g — 22| =y / <lilv> dz + /2 f <l@lv>dz  (IL9)
P p Zam 0 Ty

The location of z, is determined from estimated changes in wave energy flux as
described in Appendix B. Only cases with several sensors both within and seaward
of the surf zone are included (Appendix C) in determining, using multiple linear
regression, best fit values for the drag coefficients. For the subset of data used to
find ¢; and cy; the correlation with a varying ¢, (r2 = 0.82) is significantly higher
(at 95% confidence limits) than with a constant c; (r2 = 0.76). The regression
yields cp; = 0.0033 (+6.9 x 10~*) and ¢y, = 0.0010 (£2.3 x 10™4).
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The closure of the integrated-to-8-m-depth momentum balances (II.6) and
(I1.9) suggests that the quadratic form (I1.2) does represent well the mean along-
shore bottom stress. Coz et al. [1996] recently demonstrated in a laboratory surf
zone that the instantaneous cross-shore bottom stress inferred from logarithmic os-
cillating boundary layer theory is related to the instantaneous product |u|u outside
the boundary layer over most phases of a wave cycle. The utility of the quadratic
bottom stress parameterization is thus supported by observations at different tem-
poral and spatial scales.

The surf zone drag coefficient c;; = 0.0033 is similar to the c; values
inferred by Whitford and Thornton [1996] and (for low bed roughness) Garcez
Faria et al. [1998]. The larger inferred c; in the surf zone is consistent with the
hypothesis that breaking-wave-induced turbulence enhances vertical mixing and
thus increases the bottom stress for the same free stream velocity [Church and
Thornton, 1993] and is consistent with the magnitude of ¢, variations observed by
Coz et al. [1996].

Assuming Sy, is conserved seaward of 7, (e.g. Syz|z, = Syzl|zs,) and the
turbulent momentum flux at z, is negligible (e.g. Fyz|z, = 0), the momentum bal-
ances within (I1.7) and seaward (I1.8) of the surf zone can be considered separately.

In the surf zone the balance is between wind and wave forcing and bottom stress

,rwind S
y__ g, — 282
p p

z)
—cn / <|d@v> dz (IL.10)
T8m 0

whereas seaward of z,, the balance is between wind forcing and bottom stress

Twind Z8m
"p (zsm — ) = sz/ <|@lv>dz (IL.11)

To

For the surf zone momentum balance (I1.10) 2 = 0.79, and the best fit
drag coefficient is c;; = 0.0035 (4.1 x 10~*) (Figure I1.8). On average, the wind

forcing is small, roughly 10% of the wave forcing in the surf zone (although in some
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Figure I1.8: Hourly total forcing (wind and wave, —Syz/plze, + [ (7374/p) dz
solid curve) and bottom stress (cs1 f;° < |glv > dz with c;; = 0.0035 dashed

curve) integrated over the surf zone versus time. The correlation coefficient squared

r2 = 0.79.
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cases, the wind stress is important). The similarity between the surf zone drag
coefficients inferred from (I1.10) and (I1.9) suggests that the turbulent momentum
flux across z,, Fyz|,, (neglected in (II.10)) is either uncorrelated with (which seems
unlikely) or is small relative to the surf zone bottom stress.

The momentum balance (II.11) between wind forcing and bottom stress
seaward of the surf zone (r? = 0.36, Figure I1.9) does not close as well as the surf
zone momentum balance (I1.10). If the errors causing the low correlation result
solely from (Gaussian, zero mean) estimation error of the wind forcing or bottom
stress, the drag coefficient would be similar to the one estimated by (I1.9). However,
the drag coefficients are different. The reduced estimate of ¢; = 0.00055 (+2.0 x
1074) from the seaward of the surf zone balance (IL.11) versus c; = 0.0010 (+2.3 x
10~4) from (I1.9) suggests that the balance (I1.11) does not account for sources of
momentum important to the region seaward of the surf zone, which are implicitly
included in (I1.9). For example, S,; may not be conserved seaward of the estimated
Zy. Alternatively, the turbulent momentum flux F,, across z, may be significant
relative to the bottom stress seaward of the surf zone, and thus the surf zone
may be a substantial source of momentum to the region seaward of the surf zone.

The present observations cannot be used to separate these two possible sources of

momentum.
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Figure I1.9: Hourly wind forcing (f*"(7;""¢/p) dz solid curve) and bottom stress
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surf zone versus time. The correlation coefficient squared r? = 0.36.
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II.LE Discussion

Other terms appearing in (II.4), but not in steady 1-D models (II.1),
can be estimated in their integrated form with these data. The integration re-
gion extends to 8-m water depth, usually well seaward of the surf zone, and thus
larger-scale inner shelf dynamics may be important over the instrument transect.
For example, in 30-m water depth on the inner shelf of northern California, the
alongshore barotropic pressure gradient (e.g. —ghd7/8y) is an O(1) term in the
alongshore momentum balance [Lentz, 1994], and varies on alongshore length scales
of O(10-100 km). These gradients were estimated here using observations in 6-m
water depth [Alessi et al., 1996] as described in Appendix A. Assuming 7 << h
and that 37/3y does not vary across the integration region, the cross-shore integral

from shore to 8-m water depth of the pressure gradient is estimated as

—gg /:Bmhda:

This barotropic pressure gradient is not dynamically important over the 750-m-long
transect. It is usually a factor of 3 smaller than the wind forcing and is uncorrelated
with any other dynamical terms. Alongshore baroclinic pressure gradients (not
included in (I1.4)) caused by Chesapeake Bay outflow can be significant on the inner
shelf [Rennie, 1998] and might be important at times in the present momentum
balances but cannot be quantified with this data set.

The integral of the acceleration term in (II.4) was also estimated. Using
the continuity equation and assuming 77 << h and weak vertical variation of the
alongshore current [Garcez Faria et al., 1998], the term (77 + h)37 /8t can be trans-
formed to 9[h¥]/3t. The acceleration, estimated by finite differencing the hourly

T8m
/ hvdz
]

is uncorrelated (r> = —0.0018) with and has one fifth the rms value of the total

transport

forcing. The lack of correlation with forcing suggests that the acceleration esti-

mate is contaminated by noise, but the low rms values imply that the acceleration
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term is usually small. When the forcing changes rapidly (i.e. on September 21
in Figure I1.7) the hourly averaged flow responds within about an hour (e.g. the
current lags the forcing by no more than 1 temporal sample). This rapid response
to large changes in forcing further suggests that the alongshore current is nearly
always in frictional balance and that flow accelerations are negligible.

The statistical analysis in section 3 demonstrates that the 1-D integrated
momentum balance from the shoreline to 8-m water depth (I1.6) closes, indicating
that over the entire instrumented transect the combined wind and wave forcing is
balanced by the bottom stress. The closure does not necessarily imply that the
1-D momentum balance (II.1) holds locally, because 2-D terms in (I1.4) (e.g. non-
linear and alongshore pressure gradient) could be locally strong but change sign
with cross-shore location such that their cross-shore integrals cancel. However,
consistent cancellation seems unlikely to occur over the wide range of bathymetric
and forcing conditions encountered during the 2- month experiment. Therefore the
closure of the integrated momentum balance suggests that 2-D terms are typically
small.

There are cases when the flow appears to be dominated by 2-D effects such
as alongshore pressure gradients. For example, on October 16 (Figure I1.10) the
waves were energetic (Hgz = 3 m in 8-m water depth) but nearly normally incident
(mean wave angle of 2°), so —S,,; in 8-m water depth was small (—0.023 m?/s?).
Wave breaking extended to 8-m water depth and was most intense about 150-200
m from shore (Figure I1.10a), well offshore of the strongest currents (Tmax = —0.49
m/s near the shoreline, Figure I1.10b). In contrast to the observations, 1-D models
predict weak currents everywhere (|7| < 0.05 m/s) for the small wave angles ob-
served. Time-elapsed video images (R.A. Holman, personal communication, 1996)
suggest the presence of strong alongshore depth variations, and the poststorm
(October 18) bathymetry was two-dimensional with a large gap in the sandbar
(e.g. Figure II.1). The observed alongshore current may have been feeding a rip

current visually observed during the storm (E.B. Thornton, personal communica-
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tion, 1997). In addition, numerical model results with bathymetry similar to that
measured on October 18 demonstrate that 2-D effects can be important to the
local alongshore momentum balance [Sancho et al., 1995].

ILF Summary

The 1-D alongshore momentum balance, with a quadratic parameteriza-
tion of the bottom stress, integrated from the shoreline to 8-m water depth closes
(r? = 0.87) over a wide range of conditions. The closure suggests that the quadratic
form (II.2) represents well the alongshore bottom stress and that on average the
dynamics of the alongshore current are described by the 1-D momentum balance
(IL.1). Including the wind forcing statistically improves the integrated-to-8-m-
depth momentum balance, demonstrating the importance of wind to nearshore
circulation.

A spatially variable drag coefficient statistically improves the integrated-
to-8-m-depth momentum balance. The surf zone drag coefficients inferred here
are similar to those obtained by Whitford and Thornton [1996] and (for low bed
roughness) Garcez Faria et al. [1998]. The cross-shore variation of c¢; (0.0033
and 0.0010 within and seaward of the surf zone, respectively) may be associated
with increased turbulence from breaking waves inside the surf zone [Church and
Thornton, 1993] or cross-shore variations in time-averaged bed roughness [Garcez
Faria et al., 1998]. The cross-shore variation of c; also is consistent with laboratory
studies [Coz et al., 1996].

In the surf zone, wind and wave forcing are balanced by the bottom stress.
The wind forcing is statistically unimportant within the surf zone relative to the
wave forcing but is an O(1) term seaward of the surf zone. The seaward of the surf
zone momentum balance between wind forcing and bottom stress does not close
as well (r2 = 0.36) as the surf zone momentum balance (r2 = 0.79). Momentum

balances on the inner shelf at Duck will be considered in detail elsewhere.
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II.G Appendix A: Barotropic Pressure Gradient Estimates

The hourly averaged bottom pressure data acquired with a five-element,
60-km-long array in 6-m water depth centered at the FRF pier [Alessi et al., 1996]
was converted to sea surface elevation and demeaned with the 2-month average
of each instrument. For each hour, the mean of the five sensors (a spatial mean)
was removed, suppressing the large tidal signal with zero phase lag. An empiri-
cal orthogonal function decomposition was used to extract the dominant nonzero
gradient mode of sea surface elevation from the remaining signal. The first eigen-
function contains 89% percent of the variance and represents a linear tilt in sea
surface elevation. The gradient of this first eigenfunction multiplied by its temporal
amplitude yields estimates of hourly alongshore sea surface gradients dn/dy.

II.LH Appendix B: Surf Zone Width (z;) Estimates

At each pressure sensor along the cross-shore transect the linear energy
flux integrated from 0.04 to 0.3 Hz was calculated for each hour assuming shore-
normal wave propagation. According to linear theory, on parallel depth contours
the energy flux is conserved seaward of z,, where wave breaking begins. How-
ever, measurement errors, inadequacies of linear theory, reflected wave energy,
directional spreading, and irregular bathymetry cause considerable scatter in the
energy flux estimates. Therefore a heuristic algorithm based on a combination
of the decrease in energy flux relative to 8-m water depth, the local energy flux
gradient, and time-elapsed video images (R.A. Holman, personal communication,
1996) was used to approximately define the location of the seaward edge of the
surf zone z;,. Results that depend on z, are insensitive to moving all estimates of
Zp one sensor closer to shore but, in some cases, vary substantially when the z;

estimates are moved one sensor farther seaward.
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II.I Appendix C: Cross-Shore Integration Method

Hourly cross-shore integrals such as
z2 z?2
/ hvdz / <lidlv>dz
z z)
where z, and z, represent cross-shore instrument locations, were estimated using
the trapezoid rule between active sensors. When an instrument at the endpoint
(i.e. at z = z; or z = z,) was inactive, the integral was not computed, with
one exception. If the starting point for the integration was the shoreline and the
shallowest instrument was inactive, its value was set equal to that of the next
offshore sensor. The transect-wide integral to 8-m water depth was estimated
for 1176 of the 1440 hour-long records collected during the 2-month experiment.
Integrals over the surf zone or the seaward of the surf zone region were estimated
only when the outer edge of the surf zone z, was < 230 m from the shoreline,
to ensure sufficient coverage for the seaward of the surf zone integral. Tle above
criteria were satisfied within the surf zone for 858 hours and outside the surf zone
for 686 hours. A different current meter (displaced 40 m in the horizontal) was
used for the integrations to zsy after October 13, when the 8-m water depth sensor
failed. The results are insensitive to which current meter was used when both were
active. The degrees of freedom for computing confidence intervals were calculated
by dividing the number of hours in the balance by the integral timescale (the time
period over which observations are independent [Davis, 1976]). This timescale

ranged from 12 to 15 hours, depending on the balance.
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Chapter I11

Alongshore Bottom Stress

Parameterizations

III.A Abstract

The time-averaged alongshore bottom stress is an important component of
nearshore circulation models. In a widely accepted formulation, the bottom stress
is proportional to < |@|v >, the time average of the product of the instantaneous
velocity magnitude || and the instantaneous alongshore velocity component v.
Both mean and fluctuating (owing to random, directionally spread waves) velocities
contribute to < |Z|lv >. However, direct estimation of < [i#]v > requires a more
detailed specification of the velocity field than is usually available, so the term
< |@|v> is parameterized. Here, direct estimates of < |iJv > based on time series
of near-bottom currents observed between the shoreline and 8-m water depth are
used to test the accuracy of < |@|v> parameterizations.

Common < |iZ|v > parameterizations that are linear in the mean along-
shore current underestimate < |@|v > by roughly a factor of 2-3 for moderately
strong alongshore currents, resulting in overestimation of a drag coefficient deter-
mined by fitting modeled (with a linearized bottom stress) to observed alongshore

currents. A parameterization based a joint-Gaussian velocity field with the ob-

40
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served velocity statistics gives excellent agreement with the directly estimated
< |[@Jlv >. The joint-Gaussian parameterization allows analytic investigation of
the statistical properties of the velocity field that govern < |@lv >. Except for
the weakest flows, < |i|v > depends strongly on the mean alongshore current and
the total velocity variance, but depends only weakly on the mean wave angle,
wave directional spread, and mean cross-shore current. Several other nonlinear
parameterizations of < |Z]v > are shown to be more accurate than the linear pa-

rameterizations, and are adequate for many modeling purposes.

III.B Introduction

The time-averaged alongshore bottom stress 'r!',’ plays a crucial role in the
dynamics of mean alongshore currents in the nearshore. A commonly used stress
formulation is [Longuet-Higgins, 1970; Grant and Madsen, 1979; Battjes, 1988;
Garcez-Faria et al., 1998; Feddersen et al., 1998, and many others]

'r: = pcy <|@lv>, (I1IL.1)

where < - > represents a time average over many wave periods, p is the water den-
sity, and c; is a nondimensional drag coefficient. The total instantaneous horizontal
velocity vector |Z] and the instantaneous alongshore velocity v are evaluated near
the seafloor, but above the bottom boundary layer. Mean and fluctuating velocity
components contribute to the nonlinear term < |@jv>.

Although widely accepted as valid, the stress form (III.1) usually is pa-
rameterized in nearshore circulation models because estimation of < |@|v > requires
detailed specification of the fluctuating velocity field over a broad range of time
scales (e.g. sea, swell, infragravity, and shear waves). Analogous stress parameter-
izations are necessary in other oceanographic contexts, including mean flow in the
presence of tidal currents [Bowden, 1953] and large scale ocean circulation [Rooth,

1972].
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Here, the accuracy of several linear and nonlinear parameterizations of
< |glv > widely used in nearshore circulation models (reviewed in section 2) is
tested with an extensive field data set described in section 3. The < |#|v > term
is calculated directly from the observed velocity time series and compared with
parameterizations based on the velocity statistics estimated from the observations.
The dependence of ¢, on the flow environment and bottom roughness [e.g. Grant
and Madsen, 1979; Garcez-Faria et al., 1998] is not investigated here.

As discussed in section 4, parameterizations linear in the mean along-
shore current often are inaccurate because the underlying assumptions (e.g. weak-
currents) are violated. Estimates of < |@Z|lv > based on the assumption of an
isotropic Gaussian velocity field [ Wright and Thompson, 1983] are generalized to a
joint-Gaussian velocity field corresponding to arbitrary wave-directional distribu-
tions. Although this accurate parameterization requires a more detailed specifica-
tion of velocity field statistics than is generally available, it enables identification
of the nondimensional variables controlling < |#]v >, providing a basis for further
simplification. Several existing nonlinear parameterizations and special cases of the
joint-Gaussian parameterization are found to be accurate. The mean alongshore
current and total velocity variance are the components critical to parameterizing
< |t]v > accurately. The consequences of neglecting infragravity (< 0.05 Hz) ve-
locity fluctuations in (II1.1) and of using different parameterizations of (III.1) in a
simple alongshore current model are discussed in section 5. Results are summarized

in section 6.

III.C Bottom Stress Parameterizations

The weak-current, small-angle parameterization of < |i#|v > is linear in
the mean alongshore current, and therefore often is used in models of surf zone

circulation [e.g. Wu et al., 1985; Ozkan-Haller and Kirby, 1999]. The cross-shore u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

and alongshore v velocities are decomposed into mean and fluctuating components

with variances o2 and o2, respectively. The total velocity variance 02 = o2 + o2.
Assuming %@ = 0, and applying the weak-current (|7] < or) and small-angle (o, <

7) approximations yields
<l|l@glv>=<|u|>7 (I11.2)

For monochromatic and unidirectional waves with period T (radian frequency w)
and wave velocity amplitude uqy propagating at small angle # relative to normal

incidence,
u' = ug cos(f) cos(wt) , v' = ugsin(f) cos(wt),

(II1.2) yields [Longuet-Higgins, 1970; Thornton, 1970]
2v2

<l@v>=< [u| > T = ugT- = / |cos(wt)|dt = 2uet = Y 20p5.  (IIL3)
T Jr T T
Thornton and Guza [1986] extended (III.2) to unidirectional waves with a nar-

row frequency spectrum and Rayleigh distributed uqy [Longuet-Higgins, 1952] with
probability density function

P(ug) = 2 exp (-2 (IIL4)
YT 62 P 20%2) )

Using (II1.4) in (IIL.2) yields
’ — "1 = *° 1 — 2 — —
<l|>7=E[u|]v= uoP(ug)dug - = [ |cos(wt)|dtT = \/ = oD = 0.798 o
0 T T ™
(111.5)

where E[] is the expected value. Note that (IIL.5) can also be derived from the

less restrictive assumption that the wave orbital velocities are Gaussian distributed

[Longuet-Higgins, 1952], i.e.

[ o]
T u'? 2
<ll>7= / u (——) du’ = \/:a 7.
—00
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Other weak-current linearized forms for < |i|v> follow from different assumptions
about the fluctuating velocity field. For example, Liu and Dalrymple [1978] relaxed

the small angle assumption used in (III.3) and showed (for monochromatic waves)

that
<|g@lv>= ¥arﬁ (1 +sin29). (I11.6)

Wave obliquity thus increases < |@|v> relative to small-angles (II1.3).
Rayleigh friction,

<l|g@lv>= yv (I11.7)

where u is a constant dimensional drag coefficient, has been used in models of surf
zone alongshore currents [ Bowen, 1969], shear waves [e.g. Dodd et al., 1992; Allen et
al., 1996; Slinn et al., 1998; Feddersen, 1998], and shelf circulation [e.g. Lentz and
Winant, 1986]. Rayleigh friction follows from assuming a constant o7 in (IIL5).
Liu and Dalrymple [1978] parameterized < |@|v > for strong currents

(I7l/or > 1) and monochromatic unidirectional waves with arbitrary 8. For @ = 0,

=\ +2
<|@lv>= |v|v + WZ(I + sin? 6) (111.8)

where sgn(7) is the sign of 7. Ebersole and Dalrymple [1980] introduced a general
formulation for linear, unidirectional, monochromatic waves. With @ = 0, the

result (known hereinafter as ED80) is
<|glv>= 71; / [ud cos®(wt) + 2Tug sin(f) cos(wt) + 7] Y2 (5 + ug sin(6) cos(wt)] dt.
T
(11L.9)

Thornton and Guza [1986] extended ED80 to a narrow frequency spectrum. Eval-
uating (II1.9) for each orbital wave velocity amplitude uo yields |Z|v(ug), and the
expected value over the Rayleigh distributed u, is (known hereinafter as TG86)

<|dlv>= Ef[@o(uo)] = / [0 (uo) - P(uo)du (IL.10)
0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

where P(ug) is the Rayleigh probability density function (III.4). Both ED80 and
TG86 are nonlinear in 7 and must be integrated numerically.

On a planar beach with maximum observed alongshore current T, =~
0.6 m/s, Thornton and Guza [1986] showed that 1-D model solutions with the
linear (III.5) and the nonlinear TG86 (II1.10) parameterizations (@ = 0) both
approximately reproduce the observed cross-shore variation of 7(z). However, the
best-fit values of the drag coefficient ¢; with TG86 was 0.6-0.8 of the c; using
(IIL5). Thornton and Guza [1986] suggest the c; values differed because |7]/or
was O(1), violating the weak-current assumption underlying (II1.5). On a barred
beach with Tmax = 1.5 m/s, T(z) solutions with both (III.5) and TG86 differs
substantially, even using c; values that yield the same modeled Ty [Church and
Thornton, 1993|. In this case, the weak-current assumption likely was violated
more severely than the cases with weaker Uy, considered by Thornton and Guza
[1986]. These differences suggest that the weak-current linearized parameterization
(ITL5) is inaccurate. Although weak currents and small angles are not assumed in
ED80 and TG86, the mean cross-shore current and directional spreading of waves
are neglected, and the errors due to these assumptions are not understood well.

Wright and Thompson [1983] investigated the accuracy of the linearized
parameterization in the special case of an isotropic (o, = 0, = or/v?2), uncorre-

lated Gaussian fluctuating velocity field, where
<|@lv>= E[|ijv] = f/ (u? + v + 200 + ) V3(T + o) P(', v')du'dv’,
—o0
(ITL.11)

with the probability density function

1
P, v) = 2ro2

u

1
exp [—i’a_ﬁ(u’z + v'z)] .

Although < |ii|v > is a function of two parameters, T and or, the ratio <|@|v> /oro
is a function of only |7|/or. Integrating (II1.11) numerically, Wright and Thompson
[1983] showed that for 0 < [7]/or < 1, < |&|v > /orT is relatively constant and
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varies by 23% from its weak-current value of 0.75,/7 = 1.33. Note that the small-
angle random wave weak-current limit is 0.798. Wright and Thompson [1983]
showed that the ratio < |@|v> /or7 for an isotropic, uncorrelated Gaussian velocity
field is represented well (maximum error of 2%) for all values of [7]/or by an
empirical form (known hereinafter as WT83)

<lglv> _ o 211/2
e [@® + (/or)?] (I11.12)
with a = 1.33. WT83 has the correct weak-current limit for an isotropic wave

field, and the strong-current limit (|v]/or — o0)
<|d@jo>= |77 + %azsgn(ﬁ)a% (IIL13)

has the same form as the strong-current parameterization for monochromatic uni-
directional waves (II1.8) [Liu and Dalrymple, 1978].

Naturally occurring wave-induced velocity fields are neither unidirectional
nor isotropic. The formulation of Wright and Thompson [1983] is generalized here
to include velocity fluctuations with arbitrary directional-distributions by assuming

u and v are joint-Gaussian distributed random variables

E||@v] = // (u? + v®)Y2u P(u, v)dudv. (I11.14)

—00
The joint probability density function P(u,v), given in Appendix A, is a function
of @, 7, oy, 0y, and the correlation coeflicient p,,,,
_ <uv'>
- Ou0y

Puv

The velocity moments o,, 0y, and p,, are related to the mean angle  and spread
0y for a directionally distributed wave field [Kuik et al., 1988; Herbers et al., 1999].
A unidirectional wave field corresponds to 07 = 0, |p,,| = 1, and tan(|0]) = 0y /04,
an isotropic wave field corresponds to py, = 0 and 0, = 0, and a wave field spread

symmetrically about normal incidence (5 = 0) corresponds to py, = 0, 0, # 0, and

2
2 g,

oy = .
" g2 402
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v (m/s) or (m/s) |Bl/or Bj/or ov/ow Puw O(°) 0e(°)

Mean 0.03 0.35 033 -0.1 041 -0.11 -47 194
Std. Dev. 0.22 0.17 030 017 009 019 105 3.6
Max 1.74 0.96 279 147 121 085 445 517
Min -1.60 0.05 000 -18 021 -092 -443 99

Table III.1: Statistics of the velocity field and the associated wave directional

properties. Positive u and v correspond to onshore and southerly flow, respectively.

In general, (III.14) must be evaluated numerically (Appendix A). Spe-
cial cases depend on fewer variables and are easier to evaluate. When |[p,,| = 1
(i.e. 9 = 0, a unidirectional assumption similar to TG86), the double integral in
(II1.14) collapses to a single integral (II1.21). For the case of small angles (o, = 0)
and 7 = 0, a closed form solution exists (Appendix C, known hereinafter as SA).

Estimates of E[|i|v]/orv based on (III.14) are a function of four nondi-
mensional parameters (U/or, @/or, 0,/04, puw). Weak-currents (|v]/or) and
G/or = 0 result in < |@jv > /017 = a(0,/04, puy) (I11.4), a function of two pa-
rameters (equivalent to 8 and op). For unidirectional waves (|pyy] = 1), the closed
form expression (III.5) shows that the increase in < |i#|v> /orv = a(s,/0.) owing
to wave obliquity is 1 +sin® 6, similar to the dependence for monochromatic waves

(IIL6).

III.D Field Observations

Field observations were collected near Duck, N.C. on a barrier island
exposed to the Atlantic Ocean during the Duck94 (September-October 1994 [Elgar
et al., 1997; Gallagher et al., 1998; Garcez-Faria et al., 1998; Feddersen et al.,
1998; Thornton et al., 1998; Herbers et al., 1999; and elsewhere]) and SandyDuck
(August-November 1997 [Elgar et al., 1999]) field experiments. Data used here
were acquired from 13 current meters deployed on a cross-shore transect extending
750-m from near the shoreline to 8-m water depth during Duck94, and from a 2-D

array of 26 current meters spanning 350 m in the cross-shore and 200 m in the
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Figure III.1: Locations of the 13 Duck94 (x) and 26 SandyDuck (o) current meters
used in this study. The U. S. Army Corps of Engineers Field Research Facility
(FRF') coordinate system is used. Bathymetry from October 2, 1997 is contoured

in units of meters below mean sea level.
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alongshore during SandyDuck (Figure I11.1). The current meters were raised or
lowered as the bed level changed to maintain an elevation between approximately
0.4 to 1.0 m above the seafloor. The sensors closest to shore often were exposed at
low tide and therefore inactive. Over all the sensors, the significant wave height
ranged from approximately 0.2 to 4 m, the peak wave period from 5 to 12 seconds,
and the wave directional properties are given in Table IIL.1.

Current meter data acquired at 2 Hz were processed into hourly-averaged
estimates of v, %, oy, 0y, < |@|v>, and p,, resulting in 70,099 estimates of each
variable, 15,072 from Duck94 and 55,027 from SandyDuck. The estimated hourly
statistics contain contributions from shear and infragravity waves, as well as from
sea and swell. Statistics of 7, or, |T|/or, T/oT, 0y/0u, puu (Table IIL.1) show
that the assumption of weak-currents (|v|/or < 1), small-angles (0,/0, < 1),
negligible %, and unidirectional waves (|p,,] = 1) used in parameterizations of

< |@lv > often are violated.

IIILE Parameterizations

II1.LE.1 Linear Parameterization

A linearized parameterization, based on the weak-current and small-angle

parameterization (III.5),
<|glv>=aorv (II1.15)

where a is a best-fit coefficient, does not describe accurately the observed rela-
tionship between < |Z|v > and or¥ (Figure I11.2a). There is considerable scatter
in the observed < [@]v > for |or7] > 0.2 m?/s?, and a systematic nonlinear trend
(e.g- <|@lv > increases nonlinearly for the largest values of or7). The Rayleigh
friction parameterization (III.7) is even less accurate (Figure II1.2b), with pro-
nounced systematic deviations and a lower skill than (III.15). With moderately
strong flows the errors for both parameterizations (with best-fit slopes) are roughly

a factor of two.
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<|djv> (m?/s?)

<l@v> (m?/s?)

Figure II1.2: (a) Observed < |@Z|v> versus orv. The solid line is the least-squares
best-fit (slope a = 1.62 and skill r2 = 0.94). (b) Observed < |i|v> versus . The
solid line is the least-squares best-fit (slope = 0.99 m/s and skill 72 = 0.88). Each
panel has 70,099 data points.
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Figure II1.3: Observed < |&|v> /orT versus [U]|/or. (a) All data points in the region
0 < (< |d|v> /orv) < 4. (b) The subset of data where | < |Z|v >| > 0.2 m?/s?
(7857 data points).
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The ratio < |i|v > /orT (constant if (II1.15) were correct) depends sys-
tematically on |v|/or (Figure IIL.3). For values of |0|/or > 0.5, < |@|v > [orT
increases approximately linearly with |7|/or, consistent with the expectation that
< |@|v >~ 5|7 for strong currents. The linear relationship between < |i|v > /o077
and |7|/or is clearer when cases with | < |iZ]v > | < 0.2 m?/s? are excluded (Fig-
ure II1.3b). For small values of |5|/or (i.e. < 0.5), where the weak-current ap-
proximation (II1.15) might be expected to be valid, < |@|v> /o077 is scattered over
a wide range, and many values of < |i@|v > /orT are offscale in Figure III.3a. As
shown below, much of this scatter reflects terms involving the mean cross-shore
flow u and directional spread that are neglected in the weak-current, small-angle
parameterization, but are important when 7 is small. Although the relative errors
in (III.15) for small |5|/o are often large (Figure II1.3a), the absolute error is small
(Figure III.2a) because < |@|v> usually is small when [v|/or — 0 (Figure IIL.3b).

II1.LE.2 Joint-Gaussian Parameterization

The joint-Gaussian expected-value parameterization (III.14) is accurate,
as demonstrated by the close correspondence between observed < |i]v > values
obtained directly from the velocity time series and E[|@|v] using observed values
of @, v, gy, 0,, and p,, (Figure II.4a). Although < |&|v> /E[|@|v] is still scattered
for small |7]/o7, the scatter is reduced relative to the linearized parameterization
(compare Figure II1.4b with Figure II1.3a). One possible cause for the remaining
scatter for low [7|/o7 in Figure II1.4b is the sensitivity of E[|&|v]/orv for small
[0]/or to a non-zero skewness (Appendix B). The velocity skewness usually is non-
zero in the surf zone due to nonlinearities in the wave field [Guza and Thornton,
1985).

Based on the agreement between E[|@|v] and < |@|v >, E[|i]v] is used
below as a proxy for < |i@|v > in the surf zone. The dependence of E[|i@|v]/orv
on v/or, U/or, 0,/04, and py, are used to explain the distribution of data in

Figure II1.3. The observed ranges of these quantities at Duck (Table III.1) are
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Figure II1.4: (a) Observed < |i@|v> versus the expected value E[|i|v] assuming a
joint-Gaussian velocity field with observed means, variances, and p,,. The slope

is 1.00, and the skill is 72 = 1.00. (b) The ratio < |i|v> /E[|@]v] versus |7]|/or.
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used to guide the parameter space considered, and likely are representative of
other nearshore environments as well.

The dependence of E[|d|v]/or? on o,/0,, with T = 0 and py, = 0, is
shown in Figure II1.5a. For |5|/or > 0.5 no data points in Figure II1.3a lie below
the 0,/0, = 0 curve. The range of < |é|v> /or¥ with varying o, /0, decreases with
larger [9|/or. The values of E[|@|v]/or7U are relatively insensitive to variations of
|Puv| when T@/or = 0 (Figure III.5b), and slightly more sensitive to variations of
u/or when p,, = 0 (Figure IIL.5¢c). In contrast, when %/or # 0 and p,, # 0,
E[|@|v]/or7 is spread over a wide range of values for small |v]/or (Figure III.5d),
and the envelope of the these curves bracket the observed distribution of < |@|v>
/orv in Figure IIL.3a. As [7|/or — 0, E[|d]v]/or? — oo because < |@]v > does
not necessarily vanish when 7 = 0, but @ # 0 and p,, # 0 (II1.6). As the magnitude
of @/or increases, the spreading of E[|@|v]/or¥ in Figure II1.5d persits for larger
|7]/or. However, even for the extreme observed value (Table II1.1) @/or = 1, this
effect becomes important only for [v]/or < 0.75 (not shown). From Figure III.3a,

the observed spreading occurs largely for |7|/or < 0.5.

III.E.3 Nonlinear Parameterizations

The ED80, TG86, and |p,y| = 1 E[|@|v] parameterizations all with 7 = 0
(as commonly is assumed in 1-D alongshore current modeling) have high skills
(r? > 0.98) and best-fit slopes close to unity (Table II.2 and Figure II1.6) re-
gardless of wave angle definition. With @ = 0, all three parameterizations are
functions of three parameters (7, or, and 8). In ED80 and TG86, up = V207 is
used. The wave angle 4 is set to either (a) the zero spread (i.e. p,, = £1) wave
angle tan |@| = 0,/0,, (b) the Kuik et al. [1988] mean wave angle (always closer to
normal incidence than (a)), or (c) # = 0. Examining the effect of different wave an-
gles is equivalent to varying 0, /0. These parameterizations do differ from the full
joint-Gaussian E[|i@|v] as [o]/or — 0 (compare Figure III.7a with Figure II1.7b-d)

where the bias and standard deviations in the ratio of the observed to parameter-
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Figure II1.5: The joint-Gaussian based E[|&|v]/or7 versus [9|/or. (a) /oy = 0,
Puv = 0, and o0, /0, = 0.0 (solid), 0.35 (dotted), 0.7 (dashed), and 1.0 (dash-dot).
(b) @ =0, 0,/0, = 0.41 (the observed mean value), and |p,,| = 0.9 (dash-dot),
0.45 (dashed), and 0 (solid). (c) o,/0, = 0.41, py, = 0, and |u|/or = 1.0 (solid),
0.5 (dashed), and 0 (dash-dot). (d) o,/0, = 0.41, p,, = 0.5, and u/or = —0.6
(dashed), -0.3 (dotted), 0.3 (dash-dot), and 0.6 (solid). Note the axes scales of (a)
and (c) are different than (b) and (d).
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E[|@lv] small-angle (m/s)
Figure II1.6: Observed < |i@|v> versus the closed form small-angle parameterization

(II1.2) with the observed 7 and or. The best-fit slope is 1.06 and the skill 72 = 0.98.

Plots for all the nonlinear parameterizations (sections 4.3 and 4.4) are similar.

ized < |@|v > increase. The bias is greater with # = 0 than with tan |8| = 0,/0,
(compare Figure I11.7c with Figure II1.7b), which reflects the importance of o, /0,
for small |9]/07. Including %@ (not shown) only marginally improves the parame-
terizations for small |7|/or and the best-fit slopes are only slightly closer to unity

than with @ = 0 (Table IIL2).

TGS86 | ED80 | |pu.| =1 El|@]v]
(a) tan|8| = o,/0, | 1.008 | 1.013 0.979
(b) 8 = Kuik 1.037 | 1.044 0.983
(c)9=0 1.042 | 1.050 | 1.059 (SA)

Table II1.2: Best-fit slopes between the observed < |@|v > and the TG86, EDS80,
and the E[|id|v] with |pyy| = 1 (II1.21) parameterizations (all with Z = 0) using
three different wave angles. The Kuik et al. [1988] angle is a principal axes angle
calculated from the velocity covariance matrix. The # = 0 entry for the |py,| = 1
E[|d|v] is the SA (IIL.2) parameterization (Figure II1.6). For all parameterizations
the skill 72 > 0.98.
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(a) Efl@f] . (b) TG86:tan(|g]) = 7, /0,
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Figure III.7: Means (o) and standard deviations (vertical bars) of the ratio of the
observed to the parameterized <|@|v>. (a) The joint-Gaussian E[|@|v], (b) TG86
with tan(|0]) = o,/04, (c) TG86 with & = 0, and (d) closed form small-angle
(111.2).
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mean standard deviation maximum minimum
a(0y/0u, Puw) 1.02 0.05 1.38 0.88
a(oy/oy) 0.92 0.04 1.27 0.83

Table IIL.3: Statistics of a(oy/0y, puv) (II1.4) and a(oy,/0,) (II1.5) based on the
observed o,/0, and py,.

III.LE.4 Empirical Nonlinear Parameterizations

Empirical parameterizations, hybrids of the weak-current and strong-
current forms are suggested by the distribution of < |@|v > /or¥ in Figures II1.3
and II1.5. The formulations have algebraic forms, convenient for theoretical and

numerical analysis. The Wright and Thompson [1983] empirical form (III1.12)
. —[.2 = 211/2
<|@lv>= o077 [a?® + (|5|/or)?] /5

is examined with three weak-current limits for a. The first a(o, /0y, puy) is based on
a joint-Gaussian wave field and @ = 0 (II1.4), and is evaluated numerically using the
observed o,/0, and p,,. The a(o,/0y, puy) values typically lie (Table I11.3) between
the small-angle 0.798 and isotropic 1.33 limits. The WT83 parameterization with
a(0y/0u, puv) has best-fit slope 1.02, high skill (r> = 0.99), and low bias for small
values of |v|/or (Figure II[.8a). This parameterization performs almost as well
as the joint-Gaussian based E[|i|v] for all values of [U|/or (compare Figure II1.8a
with Figure II1.7a).

An a(o,/o,) based on a unidirectional random wave field has a closed
form expression (II1.5) that typically has smaller values than the more general
a(0y /0y, puv) (Table II1.3). This is reflected in the increased bias in the ratio of
the observed to parameterized < |i#|v > for small |v|/or (compare Figure II1.8b with
Figure II1.8a). However, the best-fit slope is 1.05, the skill is high (r2 = 0.99), and
the bias and scatter are no larger than the more complicated parameterizations
in Figure II1.7b-d. Owing to the limited range of both a (Table II1.3), a best-
fit constant @ = 1.16 (which is within the range of weak-current derived a in

Table II1.3) can be used in WT83 (III.12), with high skill (r2 = 0.99), and only
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Figure II1.8: Means (o) and standard deviations (vertical bars) of the ratio of

the observed to the parameterized < |i|v >. (a) WT83 with the weak-current

a(0y/0u, puv), (b) WT83 with the weak-current unidirectional wave a(c,/dy), (c)

WT83 with the best-fit constant @ = 1.16, and (d) SL with best-fit constants
= 0.66 and a, = 0.87.
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slightly increased bias for small values of |7|/or (Figure ITI.8c).
A second empirical form, the straight-line parameterization (known here-
inafter as SL)

< |i@lv>= a1077 + a,|7|7. (ITI.16)

is suggested by the linear relationship between < |&@|v > /or% and [7|/or in Fig-
ure II1.3b. The best-fit coefficients (a; = 0.66 and a; = 0.87) are found by fitting
(II1.16) to the observed < |é|lv>. The straight-line parameterization reproduces
< |@]v > with high skill (2 = 0.98). Although the best-fit SL parameterization
has the largest bias and standard deviations for small [3|/o7 (Figure I11.8d), the
errors for |T|/or > 0.5 are similar to the other nonlinear parameterizations consid-
ered, and (III.16) allows for direct solution in 1-D alongshore current models that
balance wave (and wind) forcing against bottom stress.

These nonlinear < |@|v > parameterizations, based on different assump-
tions of the flow field have larger errors (Figure IIL.7b-e and Figure IIL.8) than
the joint-Gaussian based E[|@|v] (Figure III.7a), but may reproduce < |@|v> ad-
equately (Figure II1.6) for many modeling applications. The critical elements in
parameterizing < |@]v > accurately are T and or. For small [7]/or other factors
(e-g. 0y/0u, B/0T, puv, velocity skewness) are also important. The choice of pa-
rameterization for a particular application depends on the desired tradeoff between

complexity and accuracy.

III.F Discussion

The < |@]v > parameterizations examined above use the observed total
velocity variance o2 that includes variability on time scales of sea-swell (0.05-
0.3 Hz) and infragravity and shear waves (< 0.05 Hz). In alongshore current
models, or often is inferred from a wave-transformation model [e.g. Thornton
and Guza, 1983; Church and Thornton, 1993; Lippmann et al., 1996; and many

others] that only includes sea and swell, and excludes lower frequency motions. The
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relationship between o7y, (the sea-swell bandpassed o7) and or is investigated here
to determine the effect of neglecting infragravity and shear waves in the < |ijv >
parameterizations.

During SandyDuck, multiple sensors were deployed at different cross-shore
locations (Figure III.1). At each of these cross-shore locations, bandpassed o2 and
o; were calculated over the sea-swell frequency band and summed to give 02,,,. The
infragravity contribution to o7 is largest near the shoreline, where the relationship
between o7 and o7y, has a best-fit slope of 0.83 and 72 = 0.94 (e.g. on average
infragravity and shear waves contribute 17% to or near the shoreline). Farther
offshore, the infragravity contribution decreases, and the best-fit slopes between

or and o7, are closer to unity (0.93-0.96) and there is less scatter (r2 = 0.98).

1.5 T T T T T
= { : ' § ? :
TS Iz : s s
= I
I S S t el o o]
A : : :
2 :
TS :
% ?
0. ~ i
50 0.5 1 1.5 2 2.5 3

[vl/or
Figure II1.9: The means and standard deviations of the ratio < |i@|v > /E.[|i|v]
versus [U|/or. The observed < |&|v> is used, and E.[|@]v] is based on the observed
u, U, and p,,, but with 80% of the observed o, and o,. The corresponding result

using the observed o, and o, is shown in Figure III.7a.

The effect of using a reduced or (or,) in the joint-Gaussian parameteri-
zation (E,[|Z|v]) is examined in Figure III.9 by reducing o, and o, (and therefore
or) to 80% of their original values (a typical near-shoreline reduction). For small
[vl/or, the <|&|v> /E,[|d@]v] binned means are about 1/0.8 = 1.25 (e.g. or/o7,),
as expected from a weak-current linearization proportional to o7v. For larger

[9|/or, the < |@|v > /E,[|#|v] ratio approaches unity, as expected because both
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<|@lv> and E.[|i|v] ~ [5|v for large |T|/or. Thus, the maximum average under-
prediction of < [i@|v >, by the factor or,/or, occurs for small |5|/or. Based on
the best-fit slopes between or and OTbp, USINE O1hp results in an average stress
error of less than 10% seaward of the shallowest sensor location, and average er-
rors as large as 20% at the shallowest locations, comparable with the mean errors
introduced with the nonlinear parameterizations discussed in section 4.3 (compare
Figure I11.7b-d with Figure IIL.9).

Simple alongshore current models balance the alongshore wave forcing
(e.g. gradients in the wave radiation stress) with the alongshore bottom stress 'r!‘,’.
Alongshore current solutions on a barred bathymetry are shown in Figure II1.10

for four (best-fit) < |Z|v> parameterizations given by

( 1.62 077 weak — current linearized (/71.15)

T J 0.997 Rayleigh (I11.7)
pcr | oro[1.162 + (3/or)]V? WTS3 (II1.12)
0.66077 +0.87[5[v  SL (I11.16),

with c; constant in the cross-shore. Alongshore current solutions for the first two
(linear) models are proportional to c;l, whereas the WT83 and SL parameteriza-
tion have a single solution that scales between 7 ~ c;l/ 2 (for stronger forcing) and
v~ c;l (for weaker forcing). Therefore 7 solutions with the SL and WT83 are less
sensitive to c; changes than are solutions with the linear parameterizations.
Garcez-Faria et al. [1998] report a range of drag coefficients ¢; = 0.001 to
¢y = 0.01 based on calculating 7'!',’ using observed vertical profiles of 7 and bottom
boundary layer theory [Grant and Madsen, 1979]. For c; = 0.01 (Figure II1.10a),
the maximum |3|/or = 0.6, and the magnitude and structure of the four ¥ solutions
are similar. The small difference between WT83 and SL is consistent with the
[l/er ~ 0.5 trends in Figure II1.8c-d. For ¢; = 0.001 (Figure III1.10b), the
current is strong (the WT83 and SL maximum [7|/or = 2.3), and the weak-
current (II1.15) and Rayleigh (II1.7) parameterization give Tmax = 2.9 m/s and

Umax = 3.6 m/s respectively, much larger than the 7., = 1.8 m/s predicted using
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Figure II1.10: Alongshore current solutions versus distance from the shoreline
with four parameterizations for the bottom stress: weak-current (III.15) (solid),
Rayleigh (dotted), WT83 (dash-dot), and SL (dashed). Solutions are shown for
different values of the drag coefficient ¢;. (a) ¢; = 0.01, (b) ¢; = 0.001, and (c)
with ¢; adjusted to yield the same Tyax as SL with ¢; = 0.001. The ¢; values
for the weak-current, Rayleigh, WT83, and SL parameterizations are 1.66, 2.04,
1.03, and 1.00 (all x10~3) respectively. The flow is forced by waves (offshore
H\s = 1 m, § = 10°, and peak period T = 10 s) that are transformed using
Church and Thornton [1993] over the barred bathymetry shown in (d).
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WT83 or SL. Similar differences between linear and nonlinear parameterizations
are apparent in Church and Thornton [1993, Figures 8, 10, and 11], although
different ¢, values are used for each parameterization. To avoid the unrealistically
large velocities predicted with linearized < |i|v > parameterizations, c; typically is
adjusted to match the magnitude of the observed flow. A factor of two adjustment
of ¢s in the linear parameterizations is needed to match the Tpa, predicted by SL
with ¢y = 0.001, whereas the c; adjustment is only 3% for WT83 (Figure II1.10c).
Inferring c¢; values by fitting models using linearized bottom stresses to data can

be misleading.

ITII.G Conclusions

The weak-current (II1.15) and the Rayleigh (III.7) parameterizations of
the alongshore bottom stress are inaccurate for the wide range of conditions ob-
served between the shoreline and 8-m water depth (Figure I11.2). The weak-current
parameterization has significant bias and scatter at larger < |i|v > (Figure III.2a).
The observed distribution of <|&|v> /or7 is highly scattered at small |7|/or, and
depends linearly on |v|/or at larger values of [v|/or (Figure II1.3) consistent with
<|d@|lv>~ |7|7.

An expected-value E[|@]v] based on a joint-Gaussian distributed velocity
field accurately parameterizes < |@lv > (Figure I1I.4). The observed distribution
of < |ilv > /orv (Figure II1.3a) is reproduced by varying the parameters (v/or,
U/or, 0y/0u, Puy, Appendix B) that govern E[|@|v]/orT (Figure IIL.5).

The joint-Gaussian parameterization Ef|i|v] requires a more detailed spec-
ification of the velocity field than usually is available. Other nonlinear parameter-
izations, Ebersole and Dalrymple [1980], Thornton and Guza [1986], and special
cases of Ef|i|v] (II1.21 and III.2), approximately reproduce < |&|v > (Table III.2
and Figure II1.6) regardless of the wave angle definition and whether or not the
observed % is included. The empirical WT83 (II1.12) and the straight-line pa-
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rameterization (II1.16) also reproduce < |d@jv >. The most important factors in
parameterizing < |@|v > are T and or. At small |7|/or, other factors (e.g. o,/0,,
u, and p,,,) are important and the parameterizations differ (Figures II1.7 and IIL8).

Neglecting velocity fluctuations in the infragravity frequency band (<
0.05 Hz) on average reduces or by about 20% close to the shoreline, resulting in
average errors in the joint-Gaussian values of Ef[|Z|v] (Figure II1.9) comparable
with the average errors of the nonlinear parameterizations of section 4.3 (Fig-
ure III.7c-d). Errors from neglecting infragravity velocity fluctuations decrease
farther offshore. Alongshore current solutions with linear parameterizations of the
bottom stress are more sensitive to variations in ¢; than are solutions using non-
linear parameterizations. Inferring c; by fitting model solutions using the linear

parameterizations to observations can be misleading.

III.LH Appendix A. Evaluation of E[|i]|v]

Assuming a joint-Gaussian probability density function for v and v, the

expected value of E[|@]v] is

Ef|dv] = - ) /‘]9 vVuz +v2ux

21040y (1 —

20, _ V2 _ — M1 — 7 20, _ 77)2

exp [_ o,(u —7) 2puvaugv£u u)(v —7) + oz (v — V) ] dudv. (I11.17)
2auav(1 - ptzw)

Writing the velocities in terms of mean and fluctuating components (i.e. © = T+u')

gives

Ellal] = th(cuﬁ _/ Vi 02+ (@ 92 (v +7)

exp (—% TC;,,‘u) du'dv’ (111.18)
where u = [u'v']7, and the velocity covariance matrix C,, is
2
c,=| 7+ P (I11.19)
PuOuOy  OF
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The symmetric, positive semi-definite matrix C;! exists (because the observed

[Puv| # 1 and o, # 0) and has an eigenvalue decomposition
Cyl =LA-'LT

where L is the orthonormal eigenvector matrix, and A = diag();) is the eigenvalue
matrix. Transforming into stretched principal axes such that x = A~/2LTu/v/2,

where x = [z y|7, so that

xTx = % TCc lu

and defining K = v2LAY2, it follows that u = Kx, and dudv = det(K)dzdy,

where det(K) = 2/ A\ ..
The term vu? + v2v in (II1.17) is written with the change of variable as

(K = k.'j)

9(z,y) = [(K}) +Kk2)z% + 2(kukiz + kak)zy + (K2, + k3,)y°
+ 2(knz + ki12y)u + 2(ka1x + kaoy)T + w+ ﬂz] vz (karxz + kooy + 7).

Defining v = 70,0,1/(1 — p2)/(M1A2), the integral (II1.17) becomes
E[ldlv] = %// 9(z,y) exp[—(z? + y*)]dzdy. (I11.20)

Equation (III.20) was integrated numerically using a n = 24 point quadrature
scheme for both = and y appropriate for integrals of the form (II1.20) [Abramowitz

and Stegun, 1968],
- 1 n n
El|ldjv] =~ - Zzwijg(zia Y;)
7 i=1l j=1
where z; and y; are the zeros of the Hermite polynomials H,(z) and H,(y), and

w;; are the weights
222=2nintr

- "4H725—1($i)H2—1(yj) ’

w,-j
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This scheme is both accurate and efficient. A n = 12 point quadrature
scheme also could be used in a circulation model. For the case where T = 0
and o, = 0 the numerical integration agrees well with the closed form solution
(Appendix C) for the small-angle parameterization. Small errors in the numerical
integration as ¥/o, — 0 with @ = 0 are expected because the function vu? has a
discontinuous derivative at u = 0. The quadrature scheme is most accurate with
functions that are continuous and have continuous derivatives.

If the wave spread oy is assumed zero (i.e. p,, = *1) as in TG86 and

ED80, then the double integral in (II1.17) is transformed into a single integral

\/z_:FaT /_ °° [(ufr cos(8) +T)? + (upsin(8) + 7)%] />
12

(ur' sin(8) + 7) exp [- %Ta_;] duly (I11.21)

that is readily calculated with an analogous quadrature scheme.

Efja}v]

Although < |@|u > is not related obviously to the time-averaged cross-
shore bottom stress because of the strong depth variation in %, it is interesting
to examine whether the relationship between < |@|u > and E[|@|u] is as robust
as that between < [@|v > and Ef}ii]v] (Figure IIL.4). The joint-Gaussian E[|@|u],
integrated numerically with the scheme described above, is compared with < |@ju>
in Figure III.11. The skill between < |Z|u > and E[|@|u] is high (2> = 0.95), but
is lower than that between < |@Z|v > and E[|d]v]. The reduced range of observed
< |#@]u> and increased scatter at small values of < |ifju> relative to < |ilv> both

contribute to the lower skill.

III.I Appendix B. Weak-current Approximations
For a joint-Gaussian velocity field, the ratio < |i@|v> /o7 is

B - st [ (2 ()

u? 2p,,u't du d'v
exp - — puv +
21— p?w) o2 Ouly 02 )| o, Oy
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Figure III.11: Observed < |#|u > versus E[|@|u]. The skill 72 = 0.95 and
N =70,099. The scale is the same as in Figure III.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

With z = v'/or and y = v'/or, and using 02 = 02 + 02, it follows that

E«[r%ﬂ = 2vr(1— )/f\/” (y”’ ) (v5+1)

exp[ (1+—}) +2puuTy (—l+—=) +y? (1+—})] dodL)

2(1 - ptzw)

which is a function of four nondimensional quantities, v/or, @/or, 0y/0y, and py,.

Denoting the expected value with the brackets operator, (III.1) is

(V) (o 2) 0% e0) o

For weak-currents (i.e. small 7/or and %/or), Taylor expanding the square-root

in (II1.2), and keeping up to linear terms in the mean current gives

El|alv] _ < 2 , . 2\1/2 [ z u v v or
orv - (1‘ +v7) 1+($2+y2)0’1'+($2+y2)0’1' (yﬁ +1) )

The joint-Gaussian expected value of odd functions is zero so

<(?2——y§)_1/—2> or <m> 2= (y(z? +y2)1/2) T o

Note that if the underlying probablity density function has a non-zero skewness,
then < y(z2 + y?)'/2 ># 0, and as |v|/or — 0, E[|@|v]/or0 — *oo.

For weak-currents and a joint-Gaussian velocity field,

E[I“l"] 21/2 y? Ty u/or
- (z® +¢°) t @ T @A Erjor ) (I1L.3)

With the common alongshore current modeling assumption % = 0, (III.3) reduces

to a function of o,/0, and pyy,

Elj@|v] _ < z? + 2y >, (IIL4)

orv (z2 + y2)1/2

which can be integrated using techniques described in Appendix A. The value of

the isotropic case (o0,/0, = 1 and p,, = 0) considered by Wright and Thompson

[1983], is recovered from (III.4)

Efjilv]
orv

= -r(1/2) ‘/_
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where I is the gamma function. When |p,,| = 1, (II.4) yields a closed form

= \/; [1 * 1—%] = \/3 [1 +sin?6]. (IL5)

The correction for wave obliquity is the same as for unidirectional monochromatic
waves (II1.6) [Liu and Dalrymple, 1978].

Allowing @/or # 0 with |py,| = 1 gives a closed form expression for the
third term in (II1.3)

<(zz :32)1/2> ZZ: = \/55811(%1:) (Uu ::)-l Z;Z: \/55811( w)a.,a., 7

(III.6)

solution,

For @ # 0, as 7 — 0 the ratio E[|@|v]/o77 — too depending on the signs of p,,,

%, and ¥. When p,, =0,

Ty 0
(z2+y2)V2/

and % does not enter into the weak-current forms.

III.J Appendix C. Small-Angle Parameterization

The small-angle (SA) parameterization follows from (III1.17) with ihe as-
sumption that alongshore velocities are negligible (o, =0) and @ = 0,

oo 2
/ Vu? + 72 - exp (—2—1;?) du'. (IIL.1)
T

- v
Eliahl = oor
—00

Changing variables so that r? = u'?/(202) and b = 72/(402) yields

Ef|@lv]} = \/gaTﬁ X / V12 + 2b - exp(—r?)dr = \/ga'pﬁ - bexp(b) [Ko(b) + K, (b))

(IIL.2)
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where K, and K| are the modified Bessel functions of the second kind. As [7]/o7 —
0,b5— 0, exp(b) ~ 1+ b, Ko(b) ~ —Inb, and K,(b) ~ b™!, so to leading order

E[|@|v] ~ \/gaTﬁ -b(1+b)(b' —Inb) ~ \/garﬁ,

recovering the weak-current limit. As [7|/or — 00, b — oo,

Ko(b), K1(b) ~ /7/2b~1/2 exp(—b)

B(i@l] ~ | 2017 2[5 57 = foly

recovering the strong-current limit.

so to leading order
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Chapter IV

Weakly Nonlinear Shear Waves

IV.A Abstract

Alongshore propagating low frequency O(0.01 Hz) waves related to the
direction and intensity of the alongshore current were first observed in the surf
zone by Oltman-Shay et al. [1989]. Based on a linear stability analysis, Bowen
and Holman [1989] demonstrated that a shear instability of the alongshore current
gives rise to alongshore propagating shear (vorticity) waves. The fully nonlinear
dynamics of finite amplitude shear waves, investigated numerically by Allen et al.
[1996], depend on ¢, the nondimensional ratio of frictional to nonlinear terms, es-
sentially an inverse Reynolds number. A wide range of shear wave environments
are reported as a function of a, from equilibrated waves at larger a to fully tur-
bulent flow at smaller . When a is above the critical level a., the system is
stable. In this paper, a weakly nonlinear theory, applicable to a just below a, is
developed. The amplitude of the instability is governed by a complex Ginzburg-
Landau equation. For the same beach slope and base-state alongshore current
used in Allen et al. [1996], a equilibrated shear wave is found analytically. The
finite amplitude behavior of the analytic shear wave, including a forced second
harmonic, correction to the mean alongshore current, and amplitude dispersion,

agree well with the numerical results of Allen et al. [1996]. Limitations in their
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numerical model prevent the development of a side-band instability. The stability
of the equilibrated shear wave is demonstrated analytically. The analytical results
confirm that the Allen et al. [1996] model correctly reproduces many important

features of weakly nonlinear shear waves.

IV.B Introduction

Low frequency approximately nondispersive alongshore propagating waves
with periods of O(100 s) and wavelengths of O(100 m) were first observed on a
barred beach by Oltman-Shay et al. [1989]. The wavelengths of these motions
are much shorter than the wavelengths of edge waves of the same frequency, and
are related to the intensity and direction of the mean alongshore current. In
a companion paper, Bowen and Holman [1989] used linear stability theory, an
idealized topography, and an idealized alongshore current to demonstrate that
a shear instability of the alongshore current leads to growing, nearly nondisper-
sive shear waves propagating in the direction of the alongshore current. Dodd
et al., [1992] included a linearized bottom stress, realistic barred-beach profile,
and alongshore currents, found good agreement between wavelengths and frequen-
cies of the most unstable linear mode and the energetic regions of the observed
frequency-wavenumber spectra of velocity. However, neither linear stability anal-
yses nor frequency-wavenumber spectra address the finite amplitude behavior of
shear waves.

The finite amplitude behavior of shear waves was investigated numeri-
cally by Allen et al. [1996, hereafter ANH96)]. Using the rigid-lid shallow-water
equations on a planar beach with an idealized alongshore forcing and a linearized
bottom stress, ANH96 found that the nonlinearity of the flow can be character-
ized by a nondimensional parameter a (Q in ANH96), the ratio of frictional to
nonlinear terms, essentially an inverse Reynolds number. For values of a below

the critical value for an instability a., a wide range of behaviors is reported, rang-
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ing from steady equilibrated waves at larger values of a to irregular eddies and
transient rips at smaller values of «. In ANH96, shear wave energy propagates
nondispersively for all values of a. It is not known whether natural shear wave
environments are similar to those at larger or smaller a reported by ANH96.

ANHO96 did not study the near critical (i.e. at a just below a.) behavior
of shear waves. An issue complicating such study is that numerical effects can
alter the near critical behavior. For example, Hyman et al. [1986] found that
inadequate numerical accuracy could induce a false stability in simulations of the
Kuramoto-Sivashinsky equation. In the ANH96 model, finite numerical resolution
and biharmonic friction (added for numerical stability) might significantly distort
the solutions near a.. Note also that finite alongshore domain lengths prevent
potential side-band instabilities and motions on scales longer than the domain
length from developing.

In this paper analytic shear wave solutions are found for near critical

conditions when the departure from stability, given by €

=22 (IV.1)
Qe

is small that largely confirm the results of ANH96. Preliminary work on the fi-

nite amplitude weakly nonlinear theory has been reported by Dodd and Thornton
[1992]. Recently Shrira et al. [1997] demonstrated that, for weak bottom friction
(o < 1), resonant triads composed of growing waves experience an explosive insta-
bility. Here we follow the approach of Stewartson and Stuart, [1971], who solved
for the finite amplitude behavior of instabilities of plane Poiseulle low. An equa-
tion for the perturbation potential vorticity is derived in terms of the perturbation
streamfunction ¢, and expanded in powers of €. At O(¢) [e.g. Bowen & Holman,
1989; Dodd et al., 1992; and others], the eigenvalue problem for 1 at a particular o
and alongshore wavenumber k yields growing or decaying alongshore propagating
wave solutions for the streamfunction. There is a critical pair (a., k) such that one

eigenvalue has zero imaginary component whose eigenfunction is a neutrally stable
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wave, and the rest have negative imaginary components whose eigenfunctions are
decaying solutions. The frequency of the neutrally stable mode is by definition
the primary frequency. At O(e?) phenomena typical of weakly nonlinear waves
are found: a correction to the mean flow and a forced wave (second harmonic) at
twice the primary frequency and wavenumber. At O(e3) the complex Ginzburg-
Landau equation for the amplitude of the disturbance is derived. This equation
has solutions that can exhibit a wide variety of behaviors ranging from a simple
steady wave to chaotic solutions [Manneuville, 1990]. For the same choice of beach
slope and alongshore forcing as ANH96, the real part of the Landau coefficient
is negative, indicating that the instability is supercritical and that equilibrated
finite amplitude solutions are possible at O(e3). Time-periodic solutions for the
amplitude of the disturbance are side-band stable, and amplitude dispersion, a
frequency shift of the equilibrated wave related to ¢, is found.

Analytic solutions are compared to numerical solutions using the model of
ANH96 at « near a,. Equilibrated finite amplitude waves are found in the ANH96
solutions, and exhibit characteristic features of weakly nonlinear systems, such
as spectral peaks at integer frequencies of the primary frequency and amplitude
dispersion. Numerical effects that affect the near critical behavior of the shear
instability also complicate comparison with the analytic model, particularly since
a. for the ANH96 model is different from the analytic model. Nevertheless, the
cross-shore structures of the ANH96 model primary wave, the second harmonic,
and the mean flow correction are in excellent agreement with theory. Although
differences in the a. and therefore the e of the two models prevent quantitative
comparison of shear wave amplitudes, the ANH96 model shear wave amplitudes
and amplitude dispersion are in reasonable agreement with the analytic model.
The overall level of agreement between the analytic and ANH96 model verifies
that the ANH96 model correctly reproduces the qualitative behavior of weakly

nonlinear shear waves.

The remainder of this paper is organized as follows: The weakly nonlinear
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theory for a planar beach and arbitrary background alongshore current is developed
in section 2. The numerical method and solutions for the finite amplitude shear
waves are described in section 3. Comparisons to ANH96 are given in section 4.

Section 5 contains a discussion and conclusion.

IV.C Theory

Including forcing and linear bottom friction, the rigid-lid shallow water
equations (continuity, cross-, and alongshore momentum) representing the depth-

and time-averaged flow in the nearshore are

(hu); + (hv)y =0 (IV.2a)
Ug + UUg + Vuy = —gn; — vu/h (IV.2b)
Ve + uvz +vvy = —gn, + F — vu/h (IV.2¢)

where z and y are the cross- and alongshore coordinates respectively (Figure IV.1),
u and v are the cross- and alongshore velocities, 7 is the sea surface elevation, v is
a constant friction coefficient, and g represents gravity. This system of equations
(IV.2) is the same as in ANH96 except that biharmonic friction terms included in
ANH96 to dampen numerical instabilities are not required here. The bathymetry
contours are planar (h(z) = Bz) and the shoreline is at £ = 0. Following ANH96,
the forcing F(z) from breaking, obliquely-incident, surface-gravity waves is for
simplicity alongshore directed and does not vary in the alongshore direction. The
bottom stress terms (e.g. vv/h) are an idealized representation of the bulk effects
of bottom stress in the surf zone. This representation has the advantage that it
is simple analytically, and has been used in the linear stability problem [Dodd et
al., 1992; Falques and Iranzo, 1994] and by ANH96. Although other bottom stress
representations which take orbital wave velocities into account are probably more

realistic in the surf zone [e.g. Thornton and Guza, 1986}, the simple bottom stress
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representation is appropriate for both numerical model based [e.g. ANH96] and
theory-based process studies of shear waves, and allows comparison of the present

results to ANH96.

Figure IV.1: The coordinate system used. z is the cross-shore coordinate and y is

the alongshore coordinate.

If the alongshore current is steady and independent of y (i.e. v = V(z)),
it then follows from the continuity equation and the boundary condition of no
mass flux into the shoreline (hu = 0 at z = 0) that u vanishes everywhere. The
base-state alongshore current whose stability will be investigated is then given by
a balance between forcing and bottom friction,

Fh _ Ffz

V@) =T7==

The shallow water equations are nondimensionalized with the following scalings
(ANH96):

u=Uv v=Uv
z=Li y=Ly

L
=Tt = =¢
t Ut
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gn = N7/
h = h,h = BLz'
_Uu ,_Uu ,
F= hoF_,BLF

where the primed quantities are nondimensional. The choice for the length scale
L is typically the distance from the shoreline to the maximum in the alongshore
current. Previous linear stability analyses [e.g. Putrevu and Svendsen, 1992] have
found that that the ratio of L to the wavelength of the fastest growing wave is
O(1). The velocity scale U chosen is the maximum of the base-state alongshore
current V(z). The choice for the time scale T'= L/U is based on the observation
(Oltman-Shay et al., 1989; Dodd et al., 1992] and linear stability result [e.g. Bowen
and Holman, 1989; Putrevu and Svendsen, 1992] that the shear wave phase speed
is 0.5-0.7 of the maximum alongshore current. Falques and Iranzo (1994) have
found that the rigid-lid approximation used here is excellent for the linear stability
problem when the maximum of the Froude number Fr = V(z)//gh(z), is 0.14,
and still quite reasonable for values as large as Fry,a, = 0.63. The affect of the rigid-
lid approximation on finite amplitude shear waves was investigated numerically by
Ozkan and Kirby (1995) whose results were quantitatively consistent with those of
ANH96 with a Frp,, = 0.154.

Dropping the primes, the resulting nondimensional equations are

(uz)z + (vz)y =0 (IV.3a)
U + UUz + VUy = —Y7); — Qu/T (IV.3b)
vy + uvz + vy = =y, + a(F —v/z) (IV.3c)

where v = N/U? is the ratio of pressure forces to nonlinearity, and a = v/8U is
the ratio of frictional and nonlinear terms, an inverse Reynolds number, analogous
to the parameter @ of ANH96. The nondimensional base-state alongshore current

is V(z) = zF(z).
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Consider a perturbation of u and v about the base-state alongshore current

V(z). The nondimensional perturbation equations become
(uz)z + (vz)y =0

ug +uuz + (v+ V)uy, = —yn; — au/z
ve+u(vz + V) + (v + V)y, = —yn, — av/z.

Taking the curl of the perturbation momentum equations, dividing by the water

depth and substituting the continuity equation yields a perturbation potential

D=2 (), + ()]

D & 7] 7/
—+u—;+(V+v)5§.

vorticity equation

where

Dt a9
The perturbation potential vorticity is ¢ = {/z, the perturbation vorticity is ¢ =
Uz — uy, and the background potential vorticity is @ = V. /z. In terms of the
perturbation transport streamfunction 3, where v, = zv and ¢, = —zu, the

potential vorticity becomes

q=$i2(V2¢—¢z/I),

and the potential vorticity equation is

D |1
Dt

() a
The boundary conditions of no cross-shore mass flux at both the shoreline and far
offshore make ¢ constant at z = 0 and oo. The perturbation is assumed not to
induce any net alongshore transport so v is the same constant (set for convenience

to ¢ = 0) at £ = 0 and oo. Fully expanded in terms of ¥ and multiplied by z2,
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(IV.4) becomes

(Vi = /)= b (VP — 29[z — e/ + 302/3%) — 2Q.4,
L)V~ Yafe) = -2 (V- 2/z). (V)

T

+ (v +
This equation and the boundary conditions on 1 govern the evolution of shear

instabilities on a planar sloping bottom with a given base-state alongshore current.

Substituting a perturbation expansion of 1,
V=€ + P+ P+, (IV.6)
into (IV.5) and collecting terms of O(¢) yields

L] = (VP — ¥12/3)e — 2Qeth1y + V(V1y — Yiay/T)
+ % (V24 — 2¢12/z) = 0. (IV.7)

This equation determines the linear stability of the flow. A alongshore propagating

wave solution for ¥,
P = ¢1(z) explik(y — ct)] + c.c.,

is substituted into (IV.7) where k is a alongshore wavenumber and c.c. denotes
the complex conjugate. In general, c is complex. The real part c, is the phase
speed and is related to the frequency of the wave by w = kc¢,. The imaginary part
¢; is related to the linear growth rate of the wave as o = kc¢;. Collecting terms

proportional to exp(ik(y — ct)] yields [Dodd et al., 1992; ANH96]

(V - % — c) (D122 — D1z/T — k%)) = Qo001 — -]%q)l, (IV.8)

with boundary conditions ¢,(0) = ¢;(00) = 0. For a particular paired value
of k and a, an infinite set of paired eigenvalues ¢ and eigenfunctions ¢,(z) are
solutions of (IV.8). To proceed with the weakly nonlinear analysis, the critical

a = a is sought such that there is only one wavenumber, & = k. for which a single
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eigenvalue is purely real, while all others have negative imaginary parts. At all
other wavenumbers the solutions decay (¢; < 0). At (a., k), ¢1(z) represents the

single neutral mode corresponding to the critical eigenvalue. A dispersion relation

is defined at a,
we(k) +io.(k) = kc (Iv.9)

where c is the critical eigenvalue. A few properties of this dispersion relation are

- weke) _ Boe(ke) _
oc(k:) =0 55 =% w = 0 (IV.10)

where ¢, is the group velocity. After finding o, and k., the finite amplitude shear
wave behavior for small values of ¢ is found by setting & = a,(1 — €?) so that the
perturbation grows slowly. The evolution of the instability is determined at O(e?)
and O(e3).

At O(e?), the following scalings are introduced [Stewartson and Stuart,
1971; Craik, 1989]

T=€t, Y =¢e(y—c,yt) (IV.11)

where 7 is a slow time, and Y is a stretched alongshore coordinate moving with
the group velocity, c,. The differential operators for time and the alongshore

coordinate are replaced by
8y — 8, — ecyBy + €20, 0y, — 0, + €ly. (Iv.12)
Again the perturbation streamfunction ¢ is expanded in powers of ¢ (IV.6), and

Y1, Y2, and Y3 have the following forms

Y = A(T,Y )¢ (z) exp[ik.(y — ct)] + c.c. (IV.13)
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Yy = AA* G (z) + Ay oy (z) exp(ikc(y — ct)) + A26$D (z) exp[Rike(y — ct)] + c.c.
(IV.14)

|A|2A¢(1)(:r) explik.(y — ct)] +cc. +--- (IV.15)

where k. is the critical wavenumber, c is the phase speed of the neutral wave at
(ae, k), and A(7,Y) is the amplitude of the shear wave which may have slow vari-
ations in the alongshore and in time. The term proportional to ¢§°) (z) represents
the correction to the mean transport, and that proportional to ¢§2) (z) the forced
harmonic at twice the primary frequency (second harmonic). |

Applying the scalings for time and alongshore coordinate (IV.12) to the
full perturbation equation (IV.5) with @ = a.(1 — €®) and collecting terms of O(e)

and O(¢€?) gives

Lc[’wl] = 07

and

& (Vz'(f)lx - 2V2w1/x - d’lzz/x + 31!11:/1‘2)

_ 1111: (V2¢1y ¢1zy/x) + cy(vzwl —t1z/Z)y

- V("/)lzz + 31y — Y12/T)y + 2Q: Y1y
- 27{’1th 2% wlyY (IVIG)

Lc [¢2]

where the linear operator L.[¢] is the operator L[] defined in (IV.7) with a = a..
Substituting (IV.13) for ¥, and (IV.14) for v, into (IV.16) and collecting terms
proportional to AA* yields

(0)
Lojgg"] = ( o = 2"%) = ‘—'“—(¢1¢1m Srzez] + G161z — Srozdis)

k
3 ~ 18iea) + ke ($idt. — b126Y) (IV.17)
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with the boundary conditions ¢£°) =0 at r = 0 and £ = oo. The linear operator

Ly is L, (with n = 0) where

io,

Ln[¢] = inkc (V - nk.c:z: - c) (¢zz - ¢z/$ - (nkc)2¢) - inkch::¢ - g’;‘¢t
(IV.18)

and 7 is an integer. The O(€?) terms proportional to Ay exp[ik.(y — ct)] give

L1[¢gl)] = Cg(¢l:::l: - ¢1:l:/1' - k§¢l) - V(¢1zz - ¢lz/$ - 3k3¢1)
+ (zQ, ~ 2k2c — 2“‘—”“—) b1 (IV.19)

T

In general, ¢gl) is resonantly forced since the homogeneous problem, L,[p] = 0, is
satisfied with the stated choice of a., k., and c. The solvability condition for ¢§1)
requires that c, satisfy

o _ I8 [V(b1sz — br1a/z — 3K21) — (2Q. — 2k%c — 2ke) ¢y ] dx v20)
’ j;)w ¢I(¢lzz - ¢1z/1‘ - k§¢1)dz )

where ¢!(z) is the adjoint function of ¢1(z) and is defined in Appendix A. The
¢y found by (IV.20) should be equal to that found from the dispersion relation-
ship (IV.10), providing a useful check of both the algebra and the numerical
computations. With ¢, (IV.19) can be solved for ¢§1) subject to boundary con-
ditions qbgl)(a:) = 0at r = 0 and £ = co. The O(€?) terms proportional to
A? exp[2ik.(y — ct)] are

LafP] = " ($16eas — broias) + ot (~3¢dras + 24267 + 41,)

v 2 g00) (v.21)

3
where L, is the operator L, in (IV.18) with n = 2. With the boundary conditions,
§2) =0 at z =0 and z = oo, (IV.19) can be solved for ¢§2) ().
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The equation for the amplitude A(7,Y) of the instability is determined
from O(e®) terms in (IV.5) with @ = a,(1 — €?),

Lisl = (V4 = 22), 4 Ze(wry, - Pz)_ Cey oy
~ (Dvve + W) + 3Qutay + 6o(Bngry + Yaaay + Yy — L)
~ V(@Ury + Yazay + Sy — "’2;—"
b Py, B 3%)
. ww b oay,, B P, 3¢1,)
+ ﬁ(zwmy - 4'”;”") - "”2‘<V2¢1y - Vi)
_ v Pz (G2, — L2) s B (Yreay + By — 22X, (v.22)

The equation for A(7,Y) is derived by substituting (IV.13) for 1, and (IV.14) for
%2, and invoking the solvability condition for 3. The terms in the right hand side
of (IV.22) proportional to exp[ik.(y — ct)] are multiplied by the adjoint function ¢!
and integrated in the cross-shore direction. The left hand side is identically zero
(IV.38) and setting the right-hand side to zero yields a complex Ginzburg-Landau

equation for the amplitude of the instability

A, =0A+ 6Ayy + ulAIzA (IV23)

where o is the growth rate of the disturbance, § is a dispersion term, and x is the
Landau coefficient which can limit the growth of the disturbance. These coefficients
are all complex in general. First x, which is given by the terms proportional to
A explik.(y — ct)] on the right hand side of (IV.22), is defined

K= / ¢{(¢sz - ¢lz/x - k§¢1)dx (IV24)
0
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The growth rate is given by the terms proportional to Aexplik.(y — ct)] on the
right hand side of (IV.22),

oK =/ ¢1 % (S1zz — 2012/ — ki¢) dz. (IV.25)
The terms proportional to Ayy exp[ik.(y — ct)] on the right hand side of (IV.22)
define 4,
§-Kk= /o ” ¢! Sdz. (IV.26)
where

o, . ., Q
S = (—f + ikc(c +2¢4 — 3V)) o + (:BQz - 21kc;° — k2(2c+ ¢4 — 3V)) gl)
V —-¢
+ 24 + (¢ — V)inr-

The terms on the right hand side of (IV.22) proportional to |A}|?A exp[ik.(y — ct)]

define the complex Landau constant p,
o0
pk= / ¢\ Tdz, (IV.27)
0
where
ke . . .
r = ?[%@&2’“—«»1 e — 201,00 + 205,05 — 2012005 + Giro i
+ k230105 + 661, ‘2’+2¢1¢‘°>)]
lk - .
o = (60165 + 361080, + 61,08 ~ 601,07 + 201:0L) — 4kZ0161)
+ 2 (opuo) — 361682 +667,45)

The complex Ginzburg-Landau equation (IV.23) can exhibit a rich be-
havior of solutions depending on the values of its coefficients [Manneuville, 1990].
When the real part of the Landau coefficient is negative, finite amplitude solutions

can be found of the form

A(7,Y) = Bexpli(AY — Qr)] (IV.28)
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where B is a complex constant. The simplest solution is when A = 0, and

2 _ _Re(a')
|B|I* = Re(z) (Iv.29)
Q = - [Im(a) + |B|21m(u)] . (IV.30)

This solution is side-band stable [Benjamin and Feir, 1967; Stuart and DiPrima,
1978) if

Im(p)Im(8)

Re(a)Re(d) +1>0. (Iv.31)

IV.D Calculations for ANH96 base-state conditions
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Figure IV.2: The base state nondimensional longshore current V(z) (IV.33a) and
potential vorticity Q(z) (IV.33b).

The beach slope (8 = 0.05) and forcing of ANH96 will be used for the

weakly nonlinear calculations. The ANH96 base-state dimensional alongshore ve-
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as a; Qg
w(k) 0.01286947973804 0.49060016442166 0.84216041525188
o(k) -0.08832279314348 0 1.89323 x 107!

Table IV.1: The quadratic coefficients for the growth rate and frequency, w.(k) +
ioc(k) = az2(k — kc)? + a;(k — k.) + ao where k. = 1.36326254916

locity is
3
V(z) = C,z% exp (-——) (IV.32)

where

C, = 2.4046099 - 10-4m—1_; , 6=103.02m
so that the maximum in V is 1 m/s and occurs at £ = 90 m. Therefore the
chosen velocity scale is U = 1 m/s. The length scale becomes L = 90 m. The ratio
L?/8* = 2/3, and the time scale is T = 90 s. The inverse Reynolds number for these
scaling choices is @ = 20v. The maximum Froude number is Frpy.x = 0.154, close to
the value of 0.14 found to satisfy the rigid-lid approximation for the linear stability
problem [Falques and Iranzo, 1994]. The nondimensional base-state alongshore

velocity V' (z) and potential vorticity Q(z) become

V(z) = V,z%exp (—2—;3-) , Vo= C"UL2 = exp(2/3) (IV.33a)
Q(z) = 2V,(1 — z¥) exp (—272:3) , (IV.33b)

and are shown in Figure IV.2. The potential vorticity has a minimum, which
satisfies the Rayleigh condition for inviscid instability.

ANH96 used a dimensional domain extending from z = 0 to z = 1000 m
and from y = 0 to y = 450 m, corresponding to a nondimensional domain extending
to £ = 11.111 and y = 5. Because the solution is expected to decay exponentially

offshore (Appendix B) a smaller nondimensional domain extending to z = 7.5 is
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Figure IV.3: Real and imaginary parts of (a) the eigenvalues of (IV.8) at a, =
0.201189 and k. = 1.363262549. (b) The spectrum enlarged to show the region
—0.030 < ¢; < 0.005.

used here. A second order finite difference scheme is used with N —1 grid points so
0z = 7.5/N. In order to accurately do the weakly nonlinear analysis, ., k., ¢, and
the eigenfunctions must be precisely known. Therefore, ¢ and ¢, are extrapolated
from calculations in extended precision (32 significant digits) on grids with N —1,
2N -1, and 4N - 1 points, giving an accuracy of O(6zf). To find o, and the
dispersion relationship, (IV.8) was solved on the three grids using N = 2500 (6z =
0.003) by inverse iteration, which is highly efficient for large tridiagonal systems
[Golub and Van Loan, 1996]. From the solutions on the three grids, ¢ and ¢; are
extrapolated giving errors of O(6z%) = 10~'®. A search was performed in (a, k)
space to find the pair of values (ac,k;) where one eigenvalue has a zero imaginary
component, and all the others have negative imaginary components. For the given
beach slope and background velocity, the critical values are a. = 0.20118961242
and k. = 1.36326254916. The eigenvalue spectrum is shown in Figure IV.3a. The
critical eigenvalue is well separated from the other eigenvalues (Figure IV.3b).
The adjoint eigenvalue spectrum at a. and k. from (IV.39) is calculated in the

same manner and, as expected, is identical to the eigenvalue spectrum of (IV.8).
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The numerical value of the maximum nondimensional growth rate at a. is very
close to zero (o.(k:) = kcci = 2 x 1071, corresponding to a dimensional growth
time scale of 10° years). The points on the dispersion relation (IV.9) near k. are
well fit by a parabola (Figure IV.4, the coefficients of the parabola are given in
Table IV.1) indicating that a Taylor series expansion of the dispersion relationship
near k. is valid. Based on the coefficients in Table IV.1, the phase speed at the
critical wavenumber is ¢ = 0.6177536497 and by (IV.10) the group velocity is
¢, = 0.4906001644.

Once the critical frictional parameter and wavenumber are known, ¢; is
calculated from (IV.8) using a. and k. with the same numerical scheme on much
denser grids where N = 10000 (dz = 7.5 x 10~*). Denser grids are used because
third derivatives must be accurately calculated to find the coefficients of the com-
plex Ginzburg-Landau equation. The real and imaginary parts of the normalized
and extrapolated ¢; are shown in Figure IV.5a. The adjoint function ¢{, shown
in Figure IV.5b, is calculated in a similar manner. The group velocity c, calcu-
lated from (IV.20), where the derivatives of ¢, and the integrals are extrapolated,
yields a value of ¢, = 0.4906001572 — i0.35 x 1078. This agrees with the value
from the dispersion relationship (IV.10) to 10~® in both the real and imaginary
(0)
2

parts, serving as a check of the numerical computations. The functions ¢, ’ and

¢§2) (Figure IV.5¢c and Figure IV.5e) are calculated from (IV.17) and (IV.21) on
grids identical to those used for ¢, with a standard tridiagonal matrix solver, and
extrapolated. The function ¢§1) is found by solving (IV.19) with a singular value
decomposition of the L; matrix with N = 999 grid points. There is one well iso-
lated zero (10~!3) singular value, and the forward and adjoint null vectors of the
L, matrix are proportional to ¢; and ¢!. The solution for ¢§” (Figure IV.5d) is
constructed by suppressing the homogeneous solution to L;. The derivatives of ¢,
¢§°), gl), ¢£2) and the integrals in (IV.24, IV.25, IV.27) are extrapolated to derive
the coefficients of the complex Ginzburg-Landau equation (IV.23), summarized in

Table IV.2. The value of 4 can also be calculated [Stewartson and Stuart, 1971]
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o 0.123746 — i0.014047
&  0.088330 + i0.012854
i —321.73054 + i407.93056
|B] 0.019611

Q —0.142853

Table IV.2: Coefficients for the complex Ginzburg-Landau equation and solution

values.

from the linear dispersion relationship (Figure IV.4 and the dispersion relation

coefficients in Table IV.1) by

_1320’,; 4 ilazwc
2 0k? 2 0k?

4=

These two estimates of § agree to three significant digits. The accuracy of the
agreement between the two is much smaller than that between the two estimates
of ¢, (from (IV.10) and (IV.20)), because 4 is calculated from (IV.26) where ¢§1)(:1:)
is found on a much coarser grid than for example ¢, (z).

The real part of the Landau coefficient is negative so in this case the
instability is supercritical, and finite amplitude equilibration is possible. A solution
for the amplitude of the shear wave is sought that has the form (IV.28) with A = 0.
The values of B (IV.29) and €2 (IV.30) are given in Table IV.2. The values of u
and 4 are such that this solution for A(7,Y’) is side-band stable (IV.31) for the
stated choice of beach slope and base-state alongshore current. For other choices
of beach slope and base-state alongshore currents, the instability could be either

subcritical or side-band unstable.
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Figure IV.4: The critical dispersion curve for w.(k) + io.(k) = kc near the critical
wavenumber k. The circles represent calculated values. The solid lines are the
best fit parabolas from the coefficients of Table IV.1. The upper panel and lower

panel are the curves for o.(k) and w.(k) respectively.
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IV.E Analytic and numerical model comparison

Due to numerical limitations, the near critical behavior of the ANH96
may be distorted. Therefore, analytic and ANH96 numerical results will be com-
pared for the same nondimensional beach profile (h = z) and base-state alongshore
current (IV.33a) at two values of & = 0.18 and 0.17. There are differences between
the two models. The ANH96 model is a second order finite-difference model of es-
sentially the equations (IV.2), but also includes weak biharmonic friction (—v, V*u
and —»,V*v added to the right hand side of (IV.2b) and (IV.2c)) to suppress nu-
merical instabilities. Boundary conditions of no flow into the shoreline and offshore
boundary are used. Additional boundary conditions (uzz = vz = vz = 0) are
required at the shoreline and offshore boundary in the ANH96 model due to the
fourth order derivatives in the biharmonic friction terms. The finite difference rep-
resentation for biharmonic friction and the associated boundary conditions may
influence the development of the instability. ANH96 use a numerical resolution
with N = 200 grid points in z, M = 90 points in y, and a nondimensional grid-
spacing 0z = dy = 0.044. The finite numerical resolution of ANH96 may also mask
the near critical behavior [e.g. Hyman et al., 1986).

Periodic boundary conditions are used in the alongshore, and the along-
shore domain is slightly longer than the wavelength of the theoretical critical wave,
leading to a smaller wavenumber (k = 1.2566 vs. k. = 1.3632) for the ANH96 crit-
ical wave. Therefore the most unstable wave cannot grow, and an evolution of the
instability to smaller wavenumbers is restricted. ANH96 also ran numerical exper-
iments with a alongshore domain three times the wavelength of the most unstable
mode and stronger nonlinearity (a < 0.12 corresponding to € > 0.6), and reported
a shift toward lower frequencies and wavenumbers as the instability evolved. For
a = 0.15 (e = 0.45), more strongly nonlinear than the values of a investigated
here, steady equilibrated waves with the same frequencies and wavenumber as the

experiments with the smaller domains were reported (Figure 7 of ANH96). How-
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ever, even on the extended alongshore domain, a potential side-band instability of
the shear wave is still suppressed. Due to these limitations of the ANH96 model,
the near critical behavior of shear waves may be modeled incorrectly, and for these
reasons, the a. and hence € for the ANH96 model are not accurately known.

0
10 T T T T T T T

[}
-
o
T

0 0.5 1 1.5 2
Nondimensional radian frequency

Figure IV.6: Nondimensional spectra of u at £ = 1 from ANH96 model with
a = 0.17 (thin line) and 0.18 (bold line).

Before comparing the results of the ANH96 model with the analytic model,
it is first verified that the ANH96 model at . = 0.17 and o, = 0.18 is in a
weakly nonlinear regime. For weakly nonlinear waves, the amplitude at the primary
frequency a, depends linearly on € and the amplitude at the second harmonic a,
depends on 2. Both amplitudes should vanish when € = 0. The a. is found

so that the line going through the (€,a;) and (€2,a2) points have zero y-intercept
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Figure IV.7: (a) The ANH96 model peak amplitude at the primary frequency at
z =1 versus € for a = 0.18 (x) and a = 0.17 (o). The inferred a, = 0.18564. (b)

The amplitude of the second harmonic versus €2. The inferred o, = 0.18741.

(Figure IV.7). The resulting estimates of a. are quite similar, a, = 0.18564 from
the primary frequency and a. = 0.18741 from the second harmonic, confirming
confirms the ANH96 model is in a weakly nonlinear regime. Using o, = 0.18564,
€ = 0.174 for a = 0.18 and € = 0.290 for a = 0.17.

The choice of a, feeds back into the all parts of the solution to the weakly
nonlinear problem, so it is not possible to use the ANH96 derived a, to compare
results from the ANH96 and analytic models. Therefore, the analytic a, = 0.20119
is used to calculate € for comparison purposes, resulting in € = 0.325 for a = 0.18
and € = 0.394 for a = 0.17. As will be shown, this leads to reasonable agreement
between analytic and ANH96 model amplitudes for the shear waves, and very good
agreement for the cross-shore structure of the shear waves.

The spectrum of ANH96 cross-shore velocity at both values of a contains
distinct peaks at integer multiples of the primary frequency (Figure IV.6). The
primary peak in the spectrum at the weakest nonlinearity (a = 0.18) has a dimen-
sional period of 12 minutes. The ANH96 model nondimensional primary frequency

wy = 0.7822 is close to the analytical model value w = 0.8421 at o, and k. from lin-
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ear stability theory (IV.8). The difference in frequencies is largely attributable to
the ANH96 alongshore domain being slightly longer than the critical wavelength.
From (IV.8), the smaller wavenumber forced by the domain size corresponds to a

frequency w = 0.7899, close to the ANH96 primary frequency w; = 0.7822.
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Figure IV.8: The ANH96 derived versus the theoretical change in peak frequency
between a = 0.18 and a = 0.17. Results for the primary frequency (*), second
(o), third (o), and fourth (A) harmonic are shown with a, = 0.20119. The error
bars (+0.003) indicate the frequency resolution of the spectrum. The solid line

represents perfect ANH96 model-theory agreement. The dashed line is the best fit

through the symbols.

The shift to lower frequency in the spectral peaks with decreasing o (Fig-
ure IV.6) is consistent with amplitude dispersion. The equilibrated cross-shore

velocity at the primary frequency and at a fixed alongshore position is

u= —:k (B¢1(.'B)e-i(“°+‘m)t - B*¢; (x)ei(wc+ezn)t) (1v-34)

indicating a finite-amplitude shift of €2Q in the primary frequency, where Q is
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given by (IV.30). At the n*® harmonic (e.g. nw;) the leading order frequency shift
is given by ne2Q). Therefore the difference in spectral peak frequencies at a = 0.18
and a = 0.17 is theoretically nAe3Q2, where Ae? = (0.18 — 0.17)/a.. The ANH96
observed frequency shift for the first four harmonics at the n'® harmonic is n
times the primary frequency shift (Figure IV.8), consistent with O(¢?) amplitude
dispersion. However, the magnitude of the ANH96 observed frequency shift is
about 30% larger than the analytical model frequency shift.

The equilibrated cross-shore velocity of the ANH96 model at a fixed along-

shore position is
u(z, t) = Uy(z)e“! + Uzy(z)e® +cc+ - -- (IV.35)

where w; is the primary wave frequency, and U;(z) and U,(z) are the Fourier
transforms of the ANH96 cross-shore velocities at w; and 2w,. U,(z) and U,(z)

are related to the analytic model by

Uy(z) = ﬁ:‘:‘ﬁﬂ (IV.36a)
2 R*29:1.4(2)*
Uyp(z) = —= B 2ké; " (2) (IV.36b)

z

The functions ¢,(z) and ¢§2)(z) can therefore be inferred from the ANH96 cross-
shore velocity for & = 0.18 and a = 0.17. The magnitudes of |¢;(z)| and |¢§‘” (z)]
are equal to the square root of the spectrum of u (e.g. Figure IV.6) summed over
a small window of frequencies centred on the primary or secondary frequency (to
account for spectral leakage) and multiplied by z/(¢|B|k) or =/(2¢?|B|?k) respec-
tively. The phases of ¢;(z) and ¢§2’ (z) are given within arbitrary constants from
the phases of U, (z) or Ux(z).

Analytic and ANH96 model solutions for ¢,(z) and for ¢§2’ (z) are shown
in Figures IV.9 and IV.10. The magnitudes of the ANH96 derived ¢;(z) are
in approximate agreement with theory (Figure IV.9a) using the € derived from

the analytic a.. However, when normalized to the same maximum magnitude,
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Figure IV.9: (a) |¢1(z)| versus nondimensional cross-shore coordinate, z. (b)
|¢1(z)| normalized (to a maximum magnitude of 1.0) versus z. (c) The phase of
é1(z) versus z. In each panel, theory is a solid line, and ANH96 model ¢,(z) are
inferred with o, = 0.20119, and are shown with a = 0.18 (dash-dot) and a = 0.17
(dashed). The phases are offset so that they are equal at z = 0.582.
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ANH96 model for & = 0.18 (dash-dot) and @ = 0.17 (dashed). The phases are
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the cross-shore structure of both the ANH96 inferred and theoretical [¢;(z)| and
| ¢§2) (z)] are in very good agreement for both values of a (Figure IV.9b and IV.10a).
The cross-shore phase structure is also in excellent agreement (Figure IV.9c and
Figure ['V.10b), except near the shoreline where the differences are evidently due to
the additional boundary conditions applied to the ANH96 model at the shoreline
and the resulting boundary layer from the biharmonic friction. Far offshore (z >
4), the phase for ¢{2(z) is in error because the signal is so weak.

The analytic model predicts a mean second order correction V;(z) to the

alongshore current

21 p12.4(0)
Vi(z) = E.E:L_"’zz_. (IV.37)

The ANH96 correction, defined as the difference between the time mean from the
base-state alongshore current T(z) — V(z), was calculated for both a. The -
normalized theoretical correction to the alongshore current, V. /e = |B|2¢gg) /z
and the ANH96 correction (7 — V')/e? normalized to the same magnitude are also
in very good agreement (Figure IV.11). The differences in the correction near
the shoreline is again due to the additional boundary conditions applied there.
The effect of the mean flow correction is to reduce the offshore velocity shear by

decreasing the velocity at the maximum near £ = 1 and increasing the velocity

further offshore.
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to the mean alongshore current from theory (solid) and ANH96 model for a = 0.18
(dash-dot) and a = 0.17 (dashed).
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IV.F Discussion and Conclusions

Weakly nonlinear shear waves are shown to have characteristics of many
other weakly nonlinear wave systems. A standard perturbation expansion is used
where the small parameter € is the normalized departure of an inverse Reynolds
number a from neutral stability. At O(e) there is a primary wave with wavenumber
k., frequency w,, and cross-shore structure ¢,(z) predicted from linear stability the-
ory [e.g. Bowen and Holman, 1989; Dodd et al. 1992]. At O(€?), a forced wave at
twice the frequency and wavenumber (2w,, 2k.) (second harmonic) and a correction
to the mean alongshore current are found. At O(e®), a complex Ginzburg-Landau
equation (IV.23) is derived for the amplitude of the shear wave. This derivation
is applicable to a alongshore homogeneous planar beach with arbitrary slope and
any prescribed alongshore forcing or base-state alongshore current. For the same
base-state alongshore current (IV.33a) and beach slope used in the numerical study
of ANH96, the instability is supercritical, and the analytic solution is a side-band
stable equilibrated shear wave, with an amplitude-dependent dispersion relation-
ship. Previous work [Dodd et al., 1992; Putrevu and Svendsen, 1992; Slinn et al.,
1998] suggests that the shear instability is enhanced by a barred-beach profile.
The weakly nonlinear analysis can be in principal extended to non-planar beach
profiles, however, the character of the instability may be different than the case
presented here.

The near critical behavior of shear waves in the ANH96 model may be dis-
torted by numerical effects. Biharmonic friction terms added to prevent numerical
instabilities and finite model resolution may alter the character of the instability.
Waves longer than the primary wave number are suppressed due to finite domain
lengths, therefore a potential sideband instability cannot develop. Numerical limi-
tations also complicate comparison of the analytic to the ANH96 numerical model.
However, the ANH96 model at & = 0.17 and o = 0.18 is shown to be in a weakly

nonlinear regime, and the dominant variability is an equilibrated shear wave with
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the frequency, wavenumber, and cross-shore structure predicted by linear stability
theory. The variability at twice the primary frequency is the second harmonic with
the same cross-shore structure as the analytical model. The cross-shore structure
of the correction to the mean flow is also in good agreement. Using the analytic
o, the ANH96 and analytic model shear wave amplitudes are in reasonable agree-
ment, as is the amplitude dispersion. The agreement with the analytical model
and ANH96 confirms that the ANH96 model correctly reproduces the qualitative
behavior of the weakly nonlinear shear waves for this choice of beach slope and
base-state alongshore current.

The numerical modeling of ANH96 and Slinn et al. (1998), and the ob-
servational work of Dodd et al. (1992) suggest a wide range of possible shear
wave environments in natural surf zones, ranging from linearly stable, equilibrated
shear waves, to strongly turbulent eddy-dominated regimes. Determining whether
weakly nonlinear shear waves exist in natural surf zones is beyond the scope of
this study. However, the ANH96 chosen base-state alongshore current (IV.32) and
beach slope (8 = 0.05) from section 3 are not completely unrealistic parameters for
a natural surf zone. With these parameters, the critical inverse Reynolds number
a. = 0.20119 leads to a dimensional critical drag coefficient of v, = 0.01 m/s. In
the idealized bottom stress representation used here, v can be thought to repre-
sent v = cy0, where ¢y is an empirical drag coefficient and o2 is the orbital wave
velocity variance [Dodd et al., 1992; Slinn et al., 1998]. Using a cited range of ¢y
in the surf zone from 0.01 - 0.001 [e.g. Garcez-Faria et al., 1998] and a significant
wave height H,;; = 1 m in 2 m water depth with linear surface gravity wave theory
which gives o, =~ 0.8 m/s, yields a plausible range of v from 0.008 - 0.0008 m/s.
Given the caveats that the bottom stress representations is crude and the forcing
idealized, it appears that the value of v, = 0.01 m/s required for stability in this
hypothetical case is not entirely unrealistic for natural surf zones, and also sug-

gests that a natural surf zone could possibly be in a linearly stable or in a weakly

nonlinear regime.
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Shear wave energy in field data [e.g. Oltman-Shay et al., 1989]; Dodd et al.,
1992], appears as an approximately dispersionless band in frequency-wavenumber
spectra. Beyond this, little is known about the characteristics of shear waves in
natural surf zones. Future analyses and observations may better characterize surf
zone shear wave environments. If shear waves are weakly nonlinear equilibrated
linear modes, this might be elucidated with bispectral analysis [e.g. Elgar and
Guza, 1985] because in the weakly nonlinear limit, the wave at 2w and 2k is
bound to the primary wave at w and k. Future theoretical and observational study
could include investigating possible resonances between modes, either leading to

explosive instabilities [Shira et al., 1997] or a coupled set of amplitude equations.

IV.G Appendix A: The Adjoint Operator

The adjoint operator, L'{ and the adjoint function ¢{ to the linear operator

L, are defined as
/ o1 Ly []dz = [ S L} [#)dz = 0 (IV.38)
0 [1]

with L;[#,] given by (IV.18) with n = 1 and and the boundary conditions, ¢; =0

at £ = 0 and z = oo. Integrating by parts yields:

ol = (v —i% _.) g4t V_c)4 _ _lae (12 2
L [¢1] - (V kcIL' C) ¢lzz+ (2‘/1-‘+ T 2:) ¢lz (xQI kc.'L' (kc +1.2)
1 Vz 1\, 4
+ V(k§+§) ——x——vn—c(kza-ﬁ))qsl:o. (IV.39)

with the boundary conditions ¢! = 0 at z = 0 and cc. The adjoint ¢! is solved at
the critical wavenumber, k. and critical friction parameter, a.. The adjoint oper-

ator L' must and does have the same eigenvalue spectrum as the linear operator

L,.
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IV.H Appendix B: Asymptotics

The asymptotic nature of the linear eigenvalue problem near the beach
(z = 0) is examined where the dimensional water depth, A — 0. The solution
of linear eigenvalue problem should be analytic near the shoreline and match the
prescribed boundary condition, ¢; = 0. The nondimensional velocity used by
ANH96 (IV.33a) and resulting potential vorticity gradient are expanded around
z = 0. The stability equation (IV.8) is rewritten

¢1.1: 2 (Qox3¢1 - k_iz%‘ﬁlz)(‘/az2 —c+ ’,i;%
¢1xz -— -k ¢l - ia 2 ia
z (Vo:z:z—c—E)(Vo:z: —C+E

= A\ (l‘)¢1 + i/\2(z)¢lz + ¢Iz/z

where A;(z) and Az(z) are analytic functions near £ = 0. The origin is a regular
singular point. Expanding in a Frobenius series, the indicial exponents are 0 and
3. The latter gives a nonsingular solution that satisfies the boundary condition,
$1(0) = 0.

The asymptotic behavior as £ — oo is also of interest because the solu-
tion for ¢, should match the boundary condition of ¢;(c0) = 0, in checking the
numerical solution for ¢; and helping to choose the proper numerical domain. As
T — oo, terms that are proportional to V' and @, can be ignored since both have

leading order behavior exp(—2z®/3). The equation becomes

ia 2ia\ ¢z ia) 5,
(c+k—1‘) D1z (C+E) p —(C+kz)k¢1—0,

which has an irregular singular point at z = oco. Substituting ¢, = e5(), standard
asymptotic methods are used to determine that to leading order S ~ —kz+1/2Inz

thus
é1 ~ /% exp(—kz).

Note that this leading order result is independent of both the eigenvalue ¢ and a.
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Chapter V

Numerical Models for Nearshore

Circulation: A progress report

V.A Introduction

Nearshore circulation dynamics can be elucidated by numerical models.
For example, characteristics of finite amplitude shear waves have been studied with
a 2-D nearshore circulation model [e.g. Allen et al., 1996 - hereafter ANH96], and
these model results have been verified by comparison to theory Feddersen [1998 -
Chapter 4]. My future work will involve a 2-D nearshore circulation model. Instead
of using a model developed elsewhere, I began development of my own model, for
reasons utilitarian, pedagogical, and selfish. While further work is required to
make it suitable for general use, the rigid-lid shallow water model is now suitable
for study of shear-instabilities (similar to ANH96). The modeling techniques are
standard for ocean and coastal modeling (e.g. the POM model, Mellor et al. [1996],
ANH96) and are closely related to techniques used for incompressible 2-D flow
[Harlow and Welch, 1965; Gresho and Sani, 1987]. Here, the model implementation

and validation are described.

112
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V.B Governing Equations

The rigid-lid, forced, and dissipative shallow water equations (continuity,

cross- and alongshore momentum) that form the basis of the model are (ANH96),

(hu): + (hv)y, =0 (V.1a)
Uy + g + vuy = —gn: + FO/h — pu/h — vV (V.1b)
vy + uvz + vuy = —gny + F® /h — pu/h — vV (V.1c)

where A is the water depth, £ and y are cross- and alongshore coordinates, u and
v are cross- and alongshore depth- and time-averaged velocities, n is the time-
averaged free surface elevation, and 4 is a Rayleigh drag coefficient. Since the flow
is assumed hydrostatic, 7 and pressure are used interchangeably here. Biharmonic
friction (i.e. ¥V*u) is included to provide damping at high wavenumbers in order

to prevent nonlinear instability, and v is the hyperviscosity.

V.C The Staggered C-Grid and discretization

These equations (V.1) are discretized on a staggered C-Grid [Harlow and
Welch, 1965] with grid spacing Az and Ay (Figure V.1), and cross- and alongshore
model domain sizes L(*) and L®¥). On a C-grid u is defined at (iAz, jAy) (which
includes the shoreline and offshore boundaries) where i = 0,1,... , N® — 1, and
7=0,1,... NW — 1 with N® = L@ /Az + 1 and N® = L® /Ay. The depth
and 7 are defined at the same alongshore locations as u, but staggered half a
cross-shore grid step, that is at (:Az +1/2, jAy), wherei =0,1,... ,N® —2 and
j=0,1,...,N® —1. The alongshore velocity v is staggered alongshore and cross-
shore from u, and defined at (iAz — 1/2, jAy + 1/2) where i = 0,1,... , N®®) and
7 =0,...,N® — 1. There are a total of N©® N®) grid points for u, (N — 1) N®)
grid points for 7 and h, and (N®) + 1)N® grid points for v.
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Figure V.1: The locations of u (e), v (o), and 1 (x) on the C-grid. The depth and
7 points are colocated. The solid line represents a boundary to cross-shore flow.

The relative indexing scheme used is shown.
The following C-grid finite difference operators are defined:

5. = [qs(x + %Az) — é(z — %Az)] Az

¢ = % [45(2: + %Az) + ¢(z — %Az)]

and V?¢ = (62 + 62)¢.
After multiplication of (V.1b) and (V.1c) by h, the discretized versions of
(V.1) are,

6. (R u) + 6, [R*v] =0 (V.2a)
(R*u)y + 6 [h(T*)?] + 6,[R™° (@WT7)] = —gh 6. + F® — pu — vh* V4 (V.2b)

(Rv), + 6, [R™ (@¥7%] + 8,[h(T¥)?] = —gh’8,n + F® — pv — vh'V*.  (V.2c)
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Note that V4u = V?(V2u) in finite-difference form as well. Rotation has been
included as a model option by adding

—fRT®, fR'u™Y

to the left-hand side of (V.2b) and (V.2¢) respectively.

V.D Velocity Boundary Conditions

Alongshore boundary conditions are periodic. The cross-shore velocity

boundary conditions used by ANH96 are
U= Uz = Uy = Vgge =0 at =0, L.

Where do these come from? No flow (u = 0) into the cross-shore boundaries is
clearly physically motivated, however the others seem arbitrary. ANH96 describe
the others as free-slip boundary conditions for biharmonic friction. I believe that
this can be interpreted as follows. Writing the biharmonic friction as a divergence

of a stress tensor (or equivilently a momentum flux)

33u + Bu 3Fu +83u
8z3 " 3zdy? GydzZ T Byd

4-’— -
Vii=¥v 2y , 8% By, By
9z3 ' 8z8y? Bydz? T 8

shows that the boundary conditions require that the off-diagonal terms vanish,
thus imposing zero shear stress (or zero cross-shore flux of alongshore momentum)
at the boundaries. Note that biharmonic friction is not obviously a divergence of a
symmetric stress tensor. Is this problem mathematically well posed? These issues
will be addressed in the future.

The use of the velocity boundary conditions to a C-grid is rather slick, and
may have been a motivation for choosing these boundary conditions. Evaluating
the fourth-order derivatives in the biharmonic operator at z typically requires values
at 7 — 2, so evaluation at ¢ = 1 would require values at i = —1 that do not exist.

However, the biharmonic term in (V.2b) is V2(V2u), and since V?u and u are
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known at the boundary (i = 0), V*u can be evaluated at ¢ = 1 using u = 0 (which
gives 82u = 0) and V?u = §2u = 0 at i = 0. The v 5z = 0 boundary condition is
similarly used to evaluate V%v in (V.2c). A nonlinear term in the y-momentum
equations

—zy
h " avv®

must be evaluated at the boundaries. However, since u = 0 at the boundaries the

depth at the exterior points doesn’t need to be evaluated.

V.E Time Stepping and Numerical Stability

A second-order Adams-Bashforth (hereafter AB2) time stepping scheme

is implemented,
1
u"tl =" + -2~At(3u? —uf ).
The initial time step is just a simple Euler forward step, i.e.
ul = u® + At
Since AB2 is a second order scheme for a first derivative, it has both a physical
and a computational mode. For the simple wave equation
—+c=—=0 (V.3)

the AB2 scheme gives physical and computational mode amplification factors

{Messinger and Arakawa, 1976)

1
A = 1+Zp4+---
I,\l = l + -
2 = 2p ’

respectively, where p = cAt/Az, is a CFL number. The physical mode is therefore
unstable for the wave equation but is apparently tolerable (according to Messinger
and Arakawa [1976]) when a small p is used. For the friction equation

gu = —Ku, (V.4)

ot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

AB2 is stable and the computational mode is damped for small values of kAt. The
dissipative shallow water equations are a mix of both wave and friction equations.

A third-order Adams-Bashforth (hereafter AB3) time stepping scheme,
1
uttl =y + EAt(23u§' — 16up~" + 5up~32),

was also implemented. Durran [1991] shows that the physical mode of the wave
equation (V.3) is damped and that the two computation modes are damped at
p < 0.676. At p < 1, both computation modes are strongly damped and and the

amplification of the physical mode is
3 4 6
[Al=1- 3P + O(p°).

For the friction equation (V.4), AB3 requires kAt < 0.359 to damp computational
modes.

In addition to computational modes for both time-stepping techniques,
there are also Von-Neumann stability limits on the sizes of both the CFL (UAt/Ax)
number and S, = pAt/h in integrating the momentum equations (U is a charac-

teristic velocity scale).

Biharmonic Friction and Stability

Biharmonic friction is included in the model equations to prevent nonlin-
ear generation of motions at wavelengths less than twice the grid spacing (i.e. the
Nyquist wavelength) that are aliased and lead to nonlinear instability. Biharmonic
friction performs scale selective damping [Holland, 1978], dissipating the shortest
scales preferentially, while hopefully not affecting the larger scales (L) of interest.
Therefore, the biharmonic Reynolds number should be large at the scales of in-
terest (Ry; = UL3/v > 1), but small at grid scales R,; = U(Az)3/v < 1 so that
sufficient hyper-viscous damping occurs. For each modeling situation, stability is

obtained by adjusting v depending on the U, L, and Az.
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A Von-Neumann stability condition is associated with biharmonic friction.
For the simple equation

ou du

= —)—
ot ozt
that is 2nd order discretized and with a Euler forward time step, conditional sta-

bility requires that

S, — VAt <
" (At T §
For the 2-D equation
%tli = —vViu

the condition is much more stringent, Sp; < 1/128. The biharmonic friction sta-
bility constraints on S,; for AB2 and AB3 are not certain, but similar restrictions

for both schemes are expected.

V.F The Pressure Equation

The pressure (equivilently 7) adjusts to satisfy the continuity equation
(Gresho and Sani, 1987). An elliptic equation for the pressure follows from requir-

ing that the time derivative of the continuity equation is zero,

%v - (hu) =0 (V.5)

which, with an initial condition ug satisfying V - (hug) = 0, guarantees that con-
tinuity is satisfied for all ¢ > 0. The enforcement of (V.5) is ensured by taking
the divergence of the momentum equations, and using (V.5) to obtain a Poisson

pressure equation:
V- (hVn) = f(z,y) =V - s(z,y), (V.6)

which is solved at each time step to update 7. This technique is common for shal-

low water, primitive equation, and incompressible flow modeling. The discretized
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version of the Poisson pressure equation (V.6) is derived from the discretized SWE
(not directly from the continuous equation - otherwise mass is not conserved) by

using the discrete analogy of the divergence, 4, (V.2b) + &, (V.2c),
Q[Jz(ﬁr@l) + 5y(ﬁy5yﬂ)] = -63["'(7'1:)2] - 2616y[-ﬁzy(ﬁyﬁc)] - 53[’1(51/)2]
—ulbzu+8,v] + [0:F® + 5, FW) — y[6,(h0*u) + &, (R*6*)[V.7)

Before deriving the discrete boundary conditions for 7 required to solve (V.7), the

boundary conditions required for solution in the continuous problem are discussed.

Pressure Equation Boundary Conditions

Boundary conditions for (V.6) must be chosen to allow a solution. Inte-
grating both sides of (V.6) over the domain R and using the divergence theorem

yields
/v—(hvn)dA=f hVn - adl
R 3R

and

/’;f(:z:,y)dA= f;ns-ﬁdl

where 1i is the outward normal on OR, the boundary of R. For a solution to (V.6)
to exist the Neumann boundary conditions (e.g. conditions on the gradient) must

be of the form

hvn-ﬁdz=f s-idl

R 8R

on JR. A satisfactory condition is
hVn -t =s(z,y)-i (V.8)

everywhere on R, where s(z,y) is the boundary normal component of the mo-

mentum equation.
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The boundary conditions in the alongshore direction (y) are periodic and
give no contribution to the boundary integral. The continous cross-shore momen-

tum equation and the the velocity boundary conditions u = u,; = 0 at z = 0, L*

yield
ghn, = FG — hvuyzz.. (VQ)

This boundary condition (V.9) allows for a solution to (V.6), but does not lead
to a unique solution (no Neumann boundary condition will) since 1 equal to a

constant satisfies the homogeneous part of (V.7).

Finite Difference BC Application

Application of the continious boundary conditions (V.9) to the C-grid is
not possible since neither 7; nor u,,,, are defined on the C-grid boundary. The
boundary condition can be applied one grid point in the interior. Applying the

same idea (V.8) for the solvability condition gives the boundary condition,
gh 6.n = —(R"u) — 8- [h(T)?] + =6, [ @7%)] + F® — pu — vh" Vu

to be evaluated at time step n + 1. All the terms on the RHS of the above
equation can be evaluated ezcept u,, and while is technically correct, it is useless
without knowledge of u.. If u, is ignored, the continuity equation is violated
(as I discovered). A usable discrete pressure boundary condition thus cannot be
obtained by analogy to the continous case.

The appropriate discrete pressure boundary condition is instead derived
by enforcing mass conservation at the first interior pressure grid points [ Gresho and
Sani, 1987). If the velocity initial condition is divergence free, then ensuring that
V- (hu;) = 0 near the boundary guarantees mass conservation. Written out at the

near-shoreline boundary (overdot indicates a time derivative, and for notational

convenience A = Az = Ay)
Riuy; — Roiey | Rbyp e — R Gy2i-12
A + X = 0. (V.10)
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The individual terms in (V.10) are (without writing the nonlinear terms)

R = —gﬁz—-——m/z‘j ; Mj2g _ pu;; — vh Vi, + Fl(j)
Ezl‘lo,j = 0
v, /2, +1 — Ty/2,j
h Vi24+172 = -gﬁy ! J+A 24 _ HUL/2 54172 — U-’_lyv4vl/2,j+1/2 + Fl(;,%,j+1/2
. My/2, — T/2,j-1
h V1/25-1/2 = —g_’;y /2 A /271 _ HU1/2,5-1/2 — V-Eyv4vl/2.j—l/2 + Fl(%,j—iﬂ’
and (V.10) gives
3725 — Th/2j
gh* =222 4 68, (R*8ym2g) = Bj(u, v) (V-11)
at the shoreline and
NN-3/2,j — TIN—-1/2,j
gh" =L g8y (R 6y -1/25) = Cy(w,v) (V.12)

at the offshore boundary (N = N@ — 1, the number of cross-shore 7 grid points)
where B; and C; represent all the terms not a function of 7. These pressure

boundary conditions insure mass conservation and guarantee a solution.

Pressure Equation Discretization
The discrete version of the Poisson pressure equation (V.7) is
g

2A2
(hiv1j + hij)Mivrg + (hij + hicy )Mo

[—(4hij + hiz1j + hioyj + hij—1 + Bijy1)mi

+ o+

(hij+1 + hij)Miger + (hij + by j_1)mi 1]
R;; (V.13)

where i = 3/2,... ,N — 3/2, and R;; is given by the RHS of (V.7). The boundary
conditions (V.11) and (V.12), and (V.13) yield a matrix equation

An=1>b

where A is block diagonal. There are two difficulties solving this matrix problem:
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1) The size of the matrix A is HUGE! If the model domain is N x M
points then the matrix A is roughly NM x NM. For a modest domain size of
N = M = 100, A is 10* x 10* which in double precision requires roughly 800
Mb of storage, beyond anything but a supercomputer. There are two classes of
algorithms to solve the matrix equation, direct methods that take advantage of
the special structure of A (FACR), and iterative methods which exploit the sparse
structure of A (Conjugate-Gradient and Multigrid algorithms).

2) The matrix A is singular with one zero eigenvalue. The boundary
conditions specify 7, and not 7, because only pressure gradients matter in the
momentum equations. Therefore, the pressure is indeterminate up to a constant.
A unique solution is chosen by assigning a value of zero to an anchor point (a
single point in the domain or an entire Fourier coefficient). The matrix is reduced
in size by one, and becomes block diagonal with full rank, which can be solved as

described below.

FACR

With FACR (Fourier Transform, Cyclic Reduction), (V.7) and the bound-
ary conditions are Fourier transformed in the alongshore direction. This is only
possible if (V.7) and the boundary conditions are constant coefficient in the along-
shore direction. The resulting tri-diagonal equation at each wavenumber can be
rapidly solved with minimal storage.

The Fourier series of 7 is

NY-1
1 . . 2w .
i = Ny D Miexp (lw.?k)
k=0
where 7;; is the Fourier coefficients, and i = /—1. The Fourier representation of

the pressure equation (V.13) is

saal(h + hi)iirp + [(400s (2mk/NY) = 6) hy — (hoy + his)] e
+  (hi + hip1) s k) = Ri (V.14)
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where the grid spacing in z and y are assumed equal, h;; = h; (since h = h(z)),
and Ry is the Fourier transform of the right hand side of (V.13). The indexing
for n and h is redefined from i = 1,..., N for convenience. The above equation is
applied on points i =2,... ,N — 1.

The near-shoreline pressure boundary condition (V.11) is

hy + hy
Y.

h
(M2 — m ) + gKlg'(nl,j-i-l —2n; + mj-1) = B,

and Fourier transformed yields

hi+ hs .

5 Tkt [2h1 (cos (2nk/NY) — 1) — e = A%By/g. (V.15)

h, +h2] .

The offshore boundary condition is similarly Fourier transformed. At ¢ = 2 and
t = N —1, (V.15) is substituted into (V.14) to eliminate 7, » and x4 from the
equations.

The equations at : = 2 and ¢ = N —1 along with (V.14) at i = 3,... ,N-2
give a tri-diagonal system for each k that can be solved rapidly. There are N — 2
equations in N —2 unknowns. The k = 0 matrix is still rank deficient, because any
constant can be added to the solution, and in this case the N—3 by N —3 submatrix
is solved by setting the anchor point fx_10 = 0. The constraint [ ndzdy = 0 is

satisfied by adjusting #j; ¢ so that [ #j;odz = 0. Inverse Fourier transforming gives

Nik-

Summary of Pressure Solving Algorithm

I found that solving (V.7) for  was the most challenging part of the
developing the model. A summary sketch of the algorithm I used is:

e Set up the rhs of (V.7) and boundary conditions (V.11) and (V.12)
e Fourier transform these in the alongshore direction
e Loop over wavenumber k, from k& = 0 to the Nyquist

e generate the V — 2 by N — 2 tri-diagonal matrix for each k
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e At k = 0, solve the N — 3 by N — 3 submatrix by setting 7jy_10 = 0. At

other wavenumbers solve the N — 2 by N — 2 system.
e Inverse FFT. Use BC to solve for 7, ; and 7nn;

e Remove any mean from 7.

Methods for Arbitrary Bathymetry

When the depth is a function of both the cross- and alongshore coordinate,
the FACR method cannot be used. Although the matrix problem is very large,
it is block diagonal, very sparse, and symmetric. Iterative methods can be used
to solve for 7, in particular conjugate gradient (CG) methods. CG methods can
be combined with multigrid methods [ Wesseling, 1992] for increased speed, but
are slower than FACR. For weak alongshore perturbations in bathymetry, iterative
FACR methods can be used [e.g. Slinn et al., 1999]. These are not yet implemented.

V.G Relaxing the Rigid Lid

Infragravity and swash processes where 97/t is order one are of interest
in the nearshore. Such processes are filtered out with the rigid-lid approximation.
A future project may be to remove the rigid-lid constraint and time-step the mass

conservation equation

gt—” + 6. [(R° +7®)u] + &, [(R° + 7¥)v] = 0.

The onshore and offshore boundary conditions become rather complicated, and
care must be taken not to generate and/or reflect waves at the boundaries. There

are also a host of other numerical instabilities to consider.

V.H Future Model Development

e Allow for Arbitrary Topography with CG/Multigrid solver.
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e Curvilinear Coordinates: The model only works now on rectangular domains.
I would like generalize the coordinate system to curvilinear coordinates so

that the model can be applied to curving shoreline.

e Implement various nonlinear bottom stress parameterizations [Feddersen et

al., 1999 - Chapter 3]

e Allow for wave-current interaction. The wave forcing is now given by a
separate module that does not include refraction due to currents. The wave
module should take into account current refraction and feedback into the
circulation model. There are likely lots of interesting rip-current dynamics

that could be investigated.

V.I Model Tests

Tests of the numerical model are described. The tests range from simple
rotating channel flow, to reproducing numerical studies of shear waves on planar

[ANH96] and barred beaches [Slinn et al., 1999].

V.I.1 Rotating Channel Flow

Numerical and analytic solutions are compared for f-plane rotating chan-
nel flow with constant forcing and depth. The model parameters are L(*) =
1000 km, L® = 2000 km, Az = Ay = 100 km. The Coriolis parameter f =
107*s~!, the depth A = 5000 m, and x = 0.3 m/s. The alongchannel forcing
F® = 1074 m?/s? is spatially homogeneous everywhere, and the cross-channel
forcing is zero. The model is spun up from rest. Linear alongchann‘el and cross-

channel momentum balances are
hv, = F® — uu

and

fv=gn:
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with © = 0. The solution for v is

and the e-folding time-scale h/u =15,000 s. The final steady solution is v =
3.33 x 10~ m/s and 7, = fv/g = 3.3979 x 10~°.

Model Tests: AB2 time-stepping is used with At = 1200 s, and model runs
were 3000 hours. The final equilibrated solutions (v = 3.33 x 10~* m/s and 7, =
3.3979 x 10~%) agree very well with the analytic solutions, as does the spin-up rate,
and the area integrated kinetic and potential energies.

Stability characteristics are investigated by varying both the forcing F®)
and friction u. There are four nondimensional parameters that govern the stability
of the numerical scheme. Since there are no analytic expressions for the maximum
value of the stability parameters, they must be found via numerical experiment.

The results for AB2 time-stepping are

Atv

At 2 _ v(Az)?
SM—(.—A;F<1.2X10 Ry; = ” < 13.

These restrictions are not exact, but are general for use as guidelines for other mod-

eling situations. The limits are slightly more restrictive with AB3 time-stepping,
CFL<02 S, <08x1072

For nearshore modeling, the CFL and S,; numbers are generally the most restrictive

in limiting the size of the time step.

V.I.2 ANH96 Shear Waves Tests

Numerical results of ANH96 are reproduced to verify the model. ANH96

use a cross-shore domain L) = 1000 m and alongshore domains of L®) = 450 m
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and LW = 1350 m, with Az = Ay = 5 m, and v = 10 m*/s. The cross-shore
bathymetry is planar with slope § = 0.05. The same parameters are used here
except for a shorter cross-shore domain L(*) = 750 m. The alongshore forcing is

such that the base-state alongshore current has the form [ANH96]
V(z) = Voz® exp(—2z°/5°%)

where V5 and § are set so that the maximum of V' =1 m/s at £ = 90 m regardless
of the value of . The model is run with At = 0.5 s to give a maximum CFL = 0.1.
The requirement for S, = uAt/h < 0.96 is easily satisfied even near the shoreline
where h is a minimum since g is small. The biharmonic stability parameter S,; =
0.008 which is very close to the maximum value for stability inferred from the earlier
tests (Sp; < 0.012). The grid Reynolds number R,; = 12.5. The model runs use
both AB2 and AB3. The initial-condition is peturbed (as in ANH96) proportional
to the most unstable shear wave streamfunction with maximum magnitude of 1

cm/s.

Single wavelength domain tests: Time series at various values of u (Fig-
ure V.2) at a fixed cross-shore location are very similar to ANH96. The cross-shore

variation of shear wave velocities (for = 0.0085) are also very similar (not shown)

Multiple wavelength domain tests: The alongshore wavelength is extended
to L®) = 1350 m, three times the wavelength of the most unstable mode (450 m).
ANH96 observed transitions to longer wavelengths and lower frequencies as the
shear waves evolved. Instead of applying an initial perturbation to the flow field,

following ANH96 the forcing is peturbed by multiplying F® by

J
1+e€ Z b; cos(2mjy/LW)

=1
where € = 0.01, b; = 1, and J = 3. The perturbation in forcing is not proportional

to the most unstable streamfunction, and other modes are excited in this case.
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Figure V.2: Time series of cross-shore velocities at £ = 90 m at different values of

p. Compare this with Figure 3 of ANH96.
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The time series (Figure V.3) does show the transition to lower frequencies and

wave numbers as observed by ANH96. This is also evident in the evolution of the

vorticity field (Figure V.4).

1=0.001 LY = 1350 m

U (mvs)

Figure V.3: Time series of u at = 90 m, x = 0.001, and L® = 1350 m. Compare
to Figure 7, bottom panel of ANH96.

V.I.3 Slinn Tests

A barred beach result of Slinn et al. [1999] is reproduced. The grid size
is Az = 2 m, the domain size is L® = 512 m and L®¥ = 768 m, At = 0.1 s,
v = 1.25 m*/s giving Sp; = 7.8 x 1073, and u = 0.00546 giving S, = 0.0088 (easily
stable). The maximum v = 0.7 m/s, giving CFL = 0.035 and R;; = 0.11, both also
easily stable. For this small grid size, Sj; is factor limiting the size of the time-step.
The model run on the barred beach bathymetry reproduces the equilibrated shear

wave case by Slinn et al. [1999] (Figure V.5). A 8-hour model run, took 22 hours
of CPU time on a Sun Ultra 60.
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Figure V.5: Vorticity after 8 hours for barred beach bathymetry for the equilibrated
shear wave case 1 = 0.00546. The region offshore of 160 m is not shown. Compare

to Figure 7 first panel of Slinn et al. [1999].
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