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Abstract

The Scientific Registry of Transplant Recipients (SRTR) system has become a rich resource for 

understanding the complex mechanisms of graft failure after kidney transplant, a crucial step for 

allocating organs effectively and implementing appropriate care. As transplant centers that treated 

patients might strongly confound graft failures, Cox models stratified by centers can eliminate 

their confounding effects. Also, since recipient age is a proven non-modifiable risk factor, a 

common practice is to fit models separately by recipient age groups. The moderate sample sizes, 

relative to the number of covariates, in some age groups may lead to biased maximum stratified 

partial likelihood estimates and unreliable confidence intervals even when samples still outnumber 

covariates. To draw reliable inference on a comprehensive list of risk factors measured from both 

donors and recipients in SRTR, we propose a de-biased lasso approach via quadratic programming 

for fitting stratified Cox models. We establish asymptotic properties and verify via simulations 

that our method produces consistent estimates and confidence intervals with nominal coverage 

probabilities. Accounting for nearly 100 confounders in SRTR, the de-biased method detects that 

the graft failure hazard nonlinearly increases with donor’s age among all recipient age groups, 

and that organs from older donors more adversely impact the younger recipients. Our method 

also delineates the associations between graft failure and many risk factors such as recipients’ 

primary diagnoses (e.g. polycystic disease, glomerular disease, and diabetes) and donor-recipient 

mismatches for human leukocyte antigen loci across recipient age groups. These results may 

inform the refinement of donor-recipient matching criteria for stakeholders.
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SUPPLEMENTARY MATERIAL
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1. Introduction.

For patients with end-stage renal disease, one of the most lethal and prevalent diseases 

in the U.S. (Saran et al., 2020), successful renal transplantation is effective for improving 

quality of life and prolonging survival (Wolfe et al., 1999; Kostro et al., 2016; Ju et al., 

2019). The success of kidney transplantation hinges upon various factors related to the 

quality of transplant operations, the quality of donated kidneys, and the physical conditions 

of recipients (Rodger, 2012; Legendre, Canaud and Martinez, 2014), and it is crucial to 

evaluate and understand how these risk factors impact on renal graft failure in order to 

increase the chance of success (Hamidi et al., 2016; Legendre, Canaud and Martinez, 

2014). With the scarcity of organs and an increasing number of waitlisted candidates 

(Bastani, 2015), the results can inform more efficient strategies for kidney allocation 

(Rao and Ojo, 2009; Smith et al., 2012) as well as evidence-based post-transplant care 

(Baker et al., 2017). Therefore, how to quantify the impacts of important factors associated 

with prognosis, particularly renal graft failure, remains to be a central question in kidney 

transplantation. The Scientific Registry of Transplant Recipients (SRTR) system, a federally 

funded organization that keeps records of transplant information from recipients and donors, 

has become a rich resource for studying post-kidney transplantation prognosis (Dickinson et 

al., 2008).

Leveraging the SRTR data, one can develop a valid tool for characterizing the influences 

of risk factors on graft failure, a key step towards post-transplant prognosis. Most 

previous studies, which focused only on a small number of factors, i.e. kidney diagnosis, 

recipient age, recipient race, recipient gender, number of human leukocyte antigen (HLA) 

mismatches, donor age, donor race, donor gender, serum creatinine level and cold ischemia 

time (Alexander, Bennett and Breen, 1994), might have pre-excluded other important 

factors and not fully captured the complex mechanisms governing graft failure. The 

SRTR data contain comprehensive information on recipients and donors, such as recipient 

primary insurance and employment, procedure type, infection of multiple viruses, history of 

transplant, transfusion and drug abuse, and pre-transplant comorbidities. The data provide 

a unique opportunity for assessing the associations between graft failure and an extended 

list of variables simultaneously, which may reduce confounding (Wang, 2011). Specifically, 

since donor age is a major criterion for donor-recipient matching (Kasiske and Snyder, 2002; 

Rao et al., 2009; Veroux et al., 2012), the data enable us to examine its effect on graft failure 

by adjusting for confounders, including pre-existing comorbidities.

There are several statistical challenges. On the one hand, as recipients received care in 

various transplant centers, the center-specific effects may confound the covariate effects 

of interest. This motivates us to consider Cox models stratified by transplant centers, a 

commonly used model in the relevant context without the need to explicitly model the 

potentially time-varying center effects (He et al., 2021). On the other hand, recipient age 

is a strong risk factor and there may exist complicated interactions between recipients’ age 

and other characteristics (Keith et al., 2004). For ease of interpretation and by convention 

(Morales et al., 2012; Faravardeh et al., 2013), we have opted to divide our analyzable 

patient population (the adult recipients with kidneys transplanted during 2000 and 2001) 

into [18,45], (45,60] and 60+ years old groups (Table 1), and fit models separately for 
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these three groups. Allowing model parameters to be age group-specific, we have avoided 

parametrically modeling the interactions between recipient age and the other risk factors. 

When the number of covariates is relatively large (94 in our data) compared to, though 

still less than, the sample size (for example, 1448 patients with 1013 events in the 60+ 

years old recipient group), the conventional maximum stratified partial likelihood estimation 

(MSPLE) may yield untrustworthy point estimates, confidence intervals and hypothesis 

testing results, as illustrated in our simulations.

For proper inferences, we consider an asymptotic framework with a diverging number 

of covariates, wherein the number of covariates, though smaller than the sample size, 

can increase with the sample size (He and Shao, 2000; Wang, 2011). Lasso provides a 

very popular tool for simultaneous variable selection and estimation with high-dimensional 

covariates (Tibshirani, 1997). For unstratified Cox models, Huang et al. (2013) and Kong 

and Nan (2014) presented the oracle inequalities for the lasso estimator. However, with 

penalization, lasso estimates are biased towards zero (van de Geer et al., 2014), and they do 

not possess regular limiting distributions even under linear regression with a fixed number 

of covariates (Fu and Knight, 2000). Conditional inference based on the selected model is 

invalid, either, due to the failure to account for uncertainty in model selection. Hence, lasso 

cannot be directly applied to draw statistical inference. There is literature on inference for 

unstratified Cox proportional hazards models under the related asymptotic framework. For 

example, Fang, Ning and Liu (2017) proposed decorrelated score tests for a low-dimensional 

component in the regression parameters, and Kong et al. (2021), Yu, Bradic and Samworth 

(2021) and Xia, Nan and Li (2022) proposed to correct asymptotic biases of the lasso 

estimator following the framework of van de Geer et al. (2014), Zhang and Zhang (2014) 

and Javanmard and Montanari (2014) that were originated from high-dimensional linear 

or generalized linear models. For Cox models, all of these methods, except Xia, Nan and 

Li (2022) which considered the “large n, diverging p” scenario, assumed sparsity on the 

inverse information matrix. This sparse matrix assumption, however, may not hold for 

models beyond linear regression, leading to insufficient bias correction and under-covered 

confidence intervals. Moreover, as these methods were not designed for modeling stratified 

data, they are not directly applicable to the analysis of the SRTR data. To our knowledge, the 

current literature lacks inferential methods with theoretical rigor for stratified Cox models 

with a diverging number of covariates.

We propose a de-biased lasso approach for Cox models stratified by transplant centers, 

which solves a series of quadratic programming problems to estimate the inverse 

information matrix, and corrects the biases from the lasso estimator for valid statistical 

inference. Our asymptotic results enable us to draw inference on any linear combinations 

of model parameters, including the low-dimensional targets in Fang, Ning and Liu (2017) 

and Kong et al. (2021) as special cases and fundamentally deviating from the stepwise 

regression adopted by Rao et al. (2009). When the number of covariates is relatively large 

compared to the sample size, our approach yields less biased estimates and more properly 

covered confidence intervals than MSPLE as well as the methods of Fang, Ning and Liu 

(2017); Kong et al. (2021); Yu, Bradic and Samworth (2021) adapted to the stratified 
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setting. Therefore, it is well-suited for analyzing the SRTR data, especially among the oldest 

recipient group that has the smallest sample size.

Applications of our method to the SRTR data have generated reliable estimation and 

inference results for the effects of an expanded list of donor and recipient factors. We 

find that receiving kidneys from older donors is associated with an increased hazard of graft 

failure after adjusting for many confounding factors, and that the dependence on donors’ age 

is non-linear. The results may inform more comprehensive assessments of post-transplant 

prognosis and kidney allocation.

The article is organized as follows. We introduce the proposed de-biased lasso approach in 

Section 2 and establish the asymptotic results in Section 3, which form the basis of inference 

for the SRTR data. We conduct simulations in Section 4 and demonstrate that our method 

outperforms MSPLE in bias correction and confidence interval coverage. In Section 5, we 

analyze the SRTR data by using the proposed de-biased approach. Finally, we provide a few 

concluding remarks in Section 6j, the detailed list of covariates considered in the analysis of 

SRTR data in Appendix A, and regularity conditions in Appendix B. Technical details and 

proofs are deferred to the Supplementary Material.

2. De-biased lasso for stratified Cox models via quadratic programming.

We apply stratified Cox models to evaluate the impacts of risk factors on post-transplant 

graft failure using the SRTR data. For each recipient age group defined in the first row of 

Table 1, let K be the total number of transplant centers, and nk be the number of recipients 

in the k-th transplant center, k = 1, ⋯, K. With i indexing recipients within the k-th transplant 

center, let Tki denote the graft failure free survival time, i.e. the time from transplantation to 

graft failure or death, whichever comes first [a common endpoint in transplantation (Kasiske 

et al., 2011)], Xki be a p-dimensional covariate vector, and Cki be the censoring time. We 

assume random censoring, that is, Tki and Cki are independent given Xki. In the SRTR data, 

p = 94 and Xki includes risk factors from both donors and recipients, such as gender, ABO 

blood type, history of diabetes and duration, angina/coronary artery disease, symptomatic 

peripheral vascular disease, drug treated systemic hypertension, drug treated COPD, and 

mismatch for each HLA locus between donors and recipients; see a full list of covariates in 

Appendix A. Let δki = 1 Tki ≤ Cki  be the event indicator and Y ki = min Tki, Cki  be the observed 

time. With a center-specific baseline hazard function λ0k t , a stratified Cox model for Tki

stipulates that its conditional hazard at t given Xki is

λki t ∣ Xki = λ0k t exp Xki
T β0 ,

where β0 = β1
0, …, βp

0 T ∈ ℝp is the vector of common regression coefficients across all 

centers. It is reasonable to assume that the true regression coefficients β0 are the same across 

strata (Kalbfleisch and Prentice, 2002), while the center effects, though not of primary 

interest here, are accounted for via different baseline hazards λ0k t ’s.
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2.1. Estimation method.

The MSPLE of β minimizes the following negative log stratified partial likelihood function

ℓ β = − 1
N ∑

k = 1

K
∑
i = 1

nk

βTXki − log 1
nk

∑
j = 1

nk

1 Y kj ≥ Y ki exp βTXkj δki, (2.1)

where N = ∑k = 1
K nk. In SRTR, the number of risk factors, though smaller than the sample 

size, is fairly large. In this case, our numerical examination shows that MSPLEs are biased 

and their confidence intervals do not yield nominal coverage. We consider a de-biased 

approach that has been shown to yield valid inference in linear regression (van de Geer et 

al., 2014; Zhang and Zhang, 2014; Javanmard and Montanari, 2014). Here we assume that 

p < N but grows with N, which falls into the “large N, diverging p” framework. We extend 

the debiased lasso to accommodate stratified Cox models.

For a vector x = x1, …, xp
T ∈ ℝp, define x ⊗ 0 = 1, x ⊗ 1 = x and x ⊗ 2 = xxT . Let ℓ̇ β  and 

ℓ̈ β  be the first and the second order derivatives of ℓ β  with respect to β, i.e.

ℓ̇ β = − 1
N k = 1

K

i = 1

nk

Xki − μ1k Y ki; β
μ0k Y ki; β δki,

ℓ̈ (β) = 1
N ∑

k = 1

K
∑

i = 1

nk μ2k Y ki; β
μ0k Y ki; β − μ1k Y ki; β

μ0k Y ki; β
⊗ 2

δki,

where μrk(t; β) = nk
−1∑j = 1

nk 1 Y kj ≥ t Xkj
⊗ rexp Xkj

T β , r = 0, 1, 2. The lasso estimate, β, minimizes 

the penalized negative log stratified partial likelihood,

β = argminβ ∈ ℝp ℓ (β) + λ β 1 , (2.2)

where λ > 0 is a tuning parameter that encourages sparse solutions. Here, 

∥ x ∥q = ∑j = 1
p xj

q 1/q
 is the ℓq-norm for x ∈ ℝp, q ≥ 1.

As β is typically biased, we can obtain the de-biased lasso estimator by a Taylor expansion 

of ℓ̇ β0  around β. To proceed, let M be a p × p matrix and Mj its jth row. Pre-multiplying Mj

on both sides of the Taylor expansion and collecting terms, we have the following equality 

for the jth component of β:

βj − βj
0 + −Mj ℓ̇ (β)

Ij

+ −MjΔ
IIj

+ Mj ℓ̈ (β) − ej
T β − β0

IIIj

= − Mj ℓ̇ β0 , (2.3)

where the remainder Δ ∈ ℝp in IIj can be shown asymptotically negligible given the 

convergence rate of the lasso estimator β, and so is IIIj if Mj ℓ̈ (β) − ej
T converges to zero 
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with certain rate that will be discussed later in Section 3. Hence, the de-biased lasso 

estimator corrects the bias of βj with a one-step update of

bj = βj − Θj ℓ̇ (β), (2.4)

which replaces Mj in (2.3) with the j-th row of Θ, an estimate of the inverse information 

matrix Θβ0, and −Θj ℓ̇ (β) is the bias correction term to βj. Here, Θβ0 is the inverse of the 

population version of Σ given in the following (2.6); see the explicit definition of Θβ0

underneath (3.1). Denote by b = (b1, …, bp)
T  the vector of the de-biased lasso estimates, and, 

for compactness, write (2.4) in a matrix form

b = β − Θ ℓ̇ (β) . (2.5)

Unlike β, the de-biased estimator b in (2.5) is no longer sparse. Motivated by Javanmard and 

Montanari (2014) on high-dimensional inference in linear regression, we propose to obtain 

Θ by solving a series of quadratic programming problems. First, we compute

Σ = 1
N ∑

k = 1

K
∑
i = 1

nk

δki Xki − ηk(Y ki; β ) ⊗ 2, (2.6)

where ηk t; β = μ1k t; β /μ0k t; β  is the vector of weighted average covariates. We use Σ, in lieu 

of ℓ̈ (β), for ease of proving theoretical properties. Indeed, as shown in the Supplementary 

Material, ∥ Σ − ℓ̈ (β) ∥∞

p
0 with a desirable rate under the conditions in Section 3. Next, 

for each j = 1, …, p, we solve a quadratic programming problem

min
m ∈ ℝp

mTΣm: ∥ Σm − ej ∥ ∞ ≤ γ ,
(2.7)

where γ > 0 is a tuning parameter that is different from the lasso tuning parameter λ, ej

is a unit directional vector with only the jth element being one, and ∥ ⋅ ∥∞ is the matrix 

max norm, i.e. ∥ A ∥∞ = maxi, j Aij  for a real matrix A. Denote by m j  the column vector of 

solution to (2.7). We obtain a p × p matrix Θ = m 1 , …, m p T
.

The constraint ∥ Σm − ej ∥ ∞ ≤ γ in (2.7) controls deviations of the de-biased estimates from 

the lasso estimates. In an extreme case of γ = 1, an admissible solution is m = 0, and 

therefore there is no bias correction in the de-biased estimator; in another extreme case of 

γ = 0, m j  is the jth column of Σ−1. We implement (2.7) by using R solve.QP(), which can 

be programmed in parallel for large p. We name the method de-biased lasso via quadratic 
programming (hereafter, DBL-QP).

2.2. Tuning parameter selection.

For the DBL-QP method, the lasso tuning parameter λ can be selected via 5-fold cross-

validation as in Simon et al. (2011). The selection of γ is crucial as, for example, Figure 1 

Xia et al. Page 6

Ann Appl Stat. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reveals that γ should be selected within a specific range (shaded in figures) to achieve the 

most desirable bias correction and confidence interval coverage probability. It also shows 

the large bias and poor coverage resulting from MSPLE. Inappropriate tuning can yield 

even more biased estimates with poorer coverage than MSPLE. Results of lasso and oracle 

estimates are also provided as references, where oracle estimates are obtained from the 

reduced model that only contains truly nonzero coefficients.

Intuitively, γ should be chosen near zero, resulting in a de-biased estimator with estimates of 

large coefficients close to oracle estimates. We do not recommend evaluating crossvalidation 

criteria by plugging in the de-biased estimates because of accumulative estimation errors. 

We opt for a hard-thresholding approach that more effectively removes noise from the 

de-biased estimates: we retain the de-biased lasso estimate for βj
0 only if the null hypothesis 

βj
0 = 0 is rejected; otherwise, we set it to zero (shown in Algorithm 1). The set A in Step 2.2 

of Algorithm 1 is expected to estimate well the set of truly associated variables. Specifically, 

we set A to be the index set of variables whose Wald statistic N bj /Θjj
1/2 > zα/ 2p , where zα/ 2p

is the upper α/ 2p -th quantile of the standard normal distribution. The cutoff is determined 

by Theorem 3.1 and Bonferroni correction for multiple testing. When implementing cross-

validation, we can either take stratum as the sampling unit and randomly split strata, or 

randomly split observations within each stratum, to form training and testing subsets. We 

find the former improves stability of tuning parameter selection when there are a number of 

small-sized strata.

Algorithm 1

Selection of the tuning parameter 7 using cross-validation

Step 1 Pre-determine a grid of points for γ in [0,1], denoted as γ g , g = 1, ⋯, G, and set each cvg = 0.

Step 2 Randomly assign the K strata into M folds, leaving one fold for testing and the others for training. Set q = 1.

 Step 2.1 While q ≤ M, use the qth training set to compute the de-biased lasso estimator with γ g , g = 1, ⋯, G, 

denoted as b gq
, and define the active set A gq

.

 Step 2.2 Define the thresholded de-biased lasso estimator btℎres
gq = b gq ⋅ 1(j ∈ A gq ), i.e. setting components of 

b(gq) outside the active set A(gq) to 0.

 Step 2.3 Compute the negative log partial likelihood on the qth testing set ℓ q (btℎres
gq ).

 Step 2.4 Set cvg cvg + N q ℓ q (b̂tℎres
gq ), for g = 1, ⋯, G, where N q  is the total number of observations in 

the qth testing set.

 Step 2.5 Set q q + 1 and go to Step 2.1.

Step 3 Let g = arg ming cvg. The final output tuning parameter value is γ g .

3. Valid statistical inference based on the de-biased lasso estimator.

This section presents asymptotic results, which lay the groundwork for using the de-biased 

lasso estimator described in Section 2 to infer on the risk factors of graft failure in the SRTR 

analysis. The pertaining large sample framework posits that the number of strata K is fixed, 

the smallest stratum size nmin = min1 ≤ k ≤ K nk ∞, and nk/N rk > 0 as nmin ∞, k = 1, ⋯, K. 
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This framework conforms to the real world setting of our concern, where the number of 

transplant centers nationwide is finite, and the number of patients or transplant events in 

each center increases over the years. We provide regularity conditions and their discussion in 

Appendix B, and present all the proofs in the Supplementary Material.

Let μrk t; β = E 1 Y k1 ≥ t Xk1
⊗ rexp Xk1

T β  be the limit of μrk t; β , r = 0, 1, 2, k = 1, ⋯, K. 

Then the limit of the weighted covariate process for ηk t; β = μ1k t; β /μ0k t; β  becomes 

ηk0 t; β = μ1k t; β /μ0k t; β . Let

Σβ0, k = E[ Xki − ηk0 Y ki; β0 ⊗ 2δki]

be the information matrix for the k-th stratum, k = 1, ⋯, K. The overall information matrix 

across all strata then becomes the weighted average of the stratum-specific information 

matrices,

Σβ0 = ∑
k = 1

K
rkΣβ0, k . (3.1)

The inverse information matrix is Θβ0 = Σβ0
−1, which is to be approximated by Θ obtained in 

Section 2.1.

The following theorem establishes the asymptotic normality of any linear combination of 

the estimated regression parameters, cTb for some loading vector c ∈ ℝp, obtained by the 

proposed DBL-QP method. For an m × r matrix A = aij , define the ℓ1-induced matrix norm 

∥ A ∥1,1 = max1 ≤ j ≤ r ∑i = 1
m aij . For two positive sequences an  and bn , we write an ≍ bn if 

there exist two constants C and C′ such that 0 < C ≤ an/bn ≤ C′ < ∞. Let s0 be the number of 

nonzero elements of β0.

Theorem 3.1.

Assume that the tuning parameters λ and γ satisfy λ ≍ log p /nmin and 

γ ≍ ∥ Θβ0 ∥ 1,1 max1 ≤ k ≤ K nk/N − rk + s0λ , and that ∥ Θβ0 ∥ 1,1
2 max1 ≤ k ≤ K ∣ nk/N − rk ∣ + s0λ

p log p 0
 as 

nmin ∞. Under Assumptions B.1–B.5 given in Appendix B, for any 

c ∈ ℝp such that ∥ c ∥2 = 1, ∥ c ∥1 ≤ a* with a* < ∞ being an absolute positive constant, and 

cTΘβ∘c −1 = O(1), we have

NcT(b − β0)

(cTΘc)
1
2

D
N 0, 1 .

Note that, instead of listing it as a regularity condition in Appendix B, we assume 

{cTΘβ0c}−1 = O(1) in the above theorem because the vector c is also defined here. A similar 

condition is assumed in van de Geer et al. (2014) [Theorem 3.3 (vi)] which is weaker 
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than uniformly bounding the maximum eigenvalue of Σβ0. The hypothesis testing with 

H0: cTβ0 − a0 = 0 versus H1: cTβ0 − a0 ≠ 0 for some constants c ∈ ℝp and a0 entails various 

applications. For example, by setting a0 = 0 and c to be a basis vector with only one element 

being 1 and all the others 0 , we can draw inference on any covariate in the presence of 

all the other covariates. In particular, we will draw inference on the pairwise differences 

in graft failure risk among donor age groups, e.g. between (10, 20] and (20, 30] (the 

reference level) years old, and among patients with different primary kidney diagnoses 

(diabetes is the reference level); see Section 5. Given an appropriately chosen c and with 

T = N(cTb − a0)/(cTΘc)1/2
, we construct a two-sided test function

ϕ T =
1 if T > zα

2

0 if T ≤ zα
2

,

where zα/2 is the upper α/2 -th quantile of the standard normal distribution. Corollary 3.2 

provides the asymptotic type I error and power of the test ϕ T , and Corollary 3.3 formalizes 

the construction of level α confidence intervals for cTβ0 which ensures the nominal coverage 

probability asymptotically.

Corollary 3.2.

Under the conditions specified in Theorem 3.1, P ϕ T = 1 ∣ H0 α as 

nmin ∞ . Moreover, under H1:a0 − cTβ0 ≠ 0, P ϕ T = 1 ∣ H1 1.

Corollary 3.3.

Suppose that the conditions in Theorem 3.1 hold. Construct the random confidence 

interval ℛ(α) = cTb − zα/2(cTΘc/N)1/2, cTb + zα/2(cTΘc/N)1/2
. Then P cTβ0 ∈ ℛ α 1 − α as 

nmin ∞, where the probability is taken under the true β0.

Our asymptotic results facilitate simultaneous inference on multiple contrasts in the context 

of post-transplant renal graft failure. For example, an important question to address is 

whether donor age is associated with graft failure. With categorized donor age in our data 

analysis, simultaneous comparisons among the seven categories, e.g. ≤ 10,(10,20],(20,30],

(30,40],(40,50],(50,60] and 60+, naturally form multiple null contrasts. These contrasts can 

be formulated by Jβ0, where J is an m × p matrix, and m represents the number of linear 

combinations or contrasts. The following theorem and corollary summarize the results for 

inference on multiple contrasts, Jβ0. See an application of the asymptotic results to the 

SRTR data with m, p = 6,94  in Section 5.

Theorem 3.4.

Suppose that J is an m × p matrix with rank(J) = m, ∥ J ∥∞, ∞ = O(1) and JΘβ0JT F , where 

F  is a nonrandom m × m positive definite matrix. Assume that the tuning parameters 

λ and γ satisfy λ ≍ log p /nmin and γ ≍ ∥ Θβ0 ∥1,1 max1 ≤ k ≤ K ∣ nk/N − rk ∣ + s0λ , and that 
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∥ Θβ0 ∥1,1
2 max1 ≤ k ≤ K nk/N − rk + s0λ p log p 0 as nmin ∞. Under Assumptions B.1–B.3, 

B.5 and B.6 given in Appendix B, we have

NJ(b − β0)
D

Nm 0, F .

Here, ∥ A ∥∞, ∞ = max1 ≤ i ≤ m ∑j = 1
r aij  is the ℓ∞-induced matrix norm for an m × r matrix 

A = aij . The theorem implies the following corollary, which constructs test statistics and 

multi-dimensional confidence regions with proper asymptotic type I error rates and nominal 

coverage probabilities.

Corollary 3.5.

Suppose the conditions in Theorem 3.4 hold. For an m × p matrix J as specified in Theorem 

3.4, and under H0:Jβ0 = a0 ∈ ℝm,

T′ = N(Jb − a0)TF−1(Jb − a0)
D

χm
2 ,

where F = JΘJT . Moreover, for an 

α ∈ (0, 1), define the random set ℛ′(α) = {a ∈ ℝm:N(Jb − a)TF−1(Jb − a) < χm, α
2 }, where χm, α

2  is 

the upper α-th quantile of χm
2. Then P Jβ0 ∈ ℛ′ α 1 − α as 

nmin ∞, where the probability is taken under the true β0.

4. Simulation study.

We conduct simulations to examine the finite sample performance of the proposed 

DBL-QP approach in correcting estimation biases and maintaining nominal coverage 

probabilities of confidence intervals. For comparisons, we also perform MSPLE, the 

oracle estimation, and the three inference methods [“Nodewise” for Kong et al. (2021), 

“CLIME” for Yu, Bradic and Samworth (2021), and “Decor” for Fang, Ning and Liu 

(2017)] that are adapted to stratified Cox models. The following scenarios pertain to four 

combinations of K, nk, p , where K, nk and p are the number of strata, stratum-specific 

sample size and the number of covariates, respectively. Specifically, Scenarios 1–3 refer 

to K, nk, p = 10, 100, 10 , 10, 100, 100 , and (5, 200, 100), respectively. In Scenario 4, 

K = 40, p = 100, nk’s are simulated from a Poisson distribution with mean 40 and then fixed 

in all of the replications. This scenario mimics the situation of the recipient group aged over 

60, the smallest group in the SRTR data.

Covariates Xki are simulated from Np 0, Σx  and truncated at ±3, where Σx has an AR(1) 

structure with the i, j -th entry being 0.5 i − j . The true regression parameters β0 are sparse. 

Its first element β1
0 varies from 0 to 2 by an increment of 0.2, four additional elements are 

assigned values of 1, 1, 0.3 and 0.3 with their positions randomly generated and then fixed 

for all of the simulations, and all other elements are zero. The underlying survival times Tki

are simulated from an exponential distribution with hazard λ t ∣ Xki = λ0kexp Xki
T β0 , where 
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λ0k are generated from Uniform(0.5,1) and then fixed throughout. As in Fang, Ning and Liu 

(2017) and Fan and Li (2002), the censoring times Cki’s are simulated independently from 

an exponential distribution with hazard λc t ∣ Xki = 0.2λ0kexp Xki
T β0 , resulting in an overall 

censoring rate around 20%.

For the lasso estimator, we use 5-fold within-stratum cross-validation to select λ. In 

Scenarios 1–3 with small numbers of strata, each stratum serves as a cross-validation fold 

for the selection of γ; in Scenario 4 with 40 strata, we perform 10-fold cross-validation as 

described in Algorithm 1 and randomly assign 4 strata to each fold. For each parameter 

configuration, we simulate 100 datasets, based on which we compare estimation biases of β1
0, 

95% confidence interval coverage probabilities, model-based standard errors, and empirical 

standard errors across the six methods.

Figure 2 shows that, in Scenario 1 that features a small number of covariates p = 10 , all 

six methods perform well and similarly; in Scenarios 2–4 with a relatively large number 

of covariates p = 100 , which is close to the number of covariates in the real data we will 

analyze, our proposed DBL-QP estimator well corrects the biases of the lasso estimates and 

maintains good confidence interval coverage (excluding the practically impossible “Oracle” 

estimator), but MSPLE, Nodewise, Decor and CLIME all present larger biases compared to 

DBL-QP as β1
0 increases from 0 to 2. CLIME, Nodewise and MSPLE have worse confidence 

interval coverage in general. As de-biased lasso methods, CLIME and Nodewise produce 

much smaller model-based standard error estimates, which also contribute to their poor 

covarage probabilities. This is likely due to that both methods (CLIME and Nodewise) 

use penalized estimators for inverse information matrix estimation, and such penalization 

induces biases towards zero.

To recapitulate, the proposed DBL-QP provides less biased estimates and better confidence 

interval coverage than the conventional MSPLE and three other competitors (Nodewise, 

Decor and CLIME adapted to the stratified setup) when the sample size is moderate relative 

to the number of covariates, although all methods give almost identical results when p is 

rather small. Hence, when p < N, our proposed DBL-QP approach is at least as good as all 

the other methods, and should be recommended for use.

5. Analysis of the SRTR kidney transplant data.

The SRTR data set features 94 covariates from both donors and recipients, and the 

number of covariates is seen as relatively large for some recipient groups. With its reliable 

performance as demonstrated in simulations, we apply our DBL-QP approach to analyze the 

SRTR data, while using MSPLE as a benchmark. The outcome is graft failure free survival, 

the time from transplant to graft failure or death, whichever comes first. Our primary goal is 

to investigate the joint associations of these covariates with graft failure for three recipient 

groups defined in Table 1 separately. By simultaneously considering all available donor and 

recipient covariates, we aim to account for confounding and provide asymptotically valid 

inference for the covariate effects, which differs from post hoc inference that only focuses 

on a smaller set of covariates selected by stepwise selection. The effect of donor age, in 
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the presence of other risk factors, is worth investigating, as the debatable “one-size-fit-all” 

practice of donor-recipient age matching unfortunately is not suited for the benefit of 

transplantation (Keith et al., 2004; Veroux et al., 2012; Dayoub et al., 2018).

5.1. Data details.

Included in our analysis are 9,195 recipients who received kidney-only transplants from 

deceased donors, had no prior solid organ transplants, and were at least 18 years old at the 

time of transplantation during 2000 and 2001. We focus on those with these same cohort 

years in order to eliminate the cohort effect. Moreover, this group of patients had longer 

follow-up than those from the later cohort years. See Appendix A for a full list of included 

variables in the analysis. In the three receipts’ age groups, respectively, the sample sizes 

are 3388, 4359 and 1448, the censoring rates are 53.1%, 46.5% and 30.0%, the median 

numbers of patients within each transplant center are 32, 31 and 27, and the restricted 

mean survival times by 13 years are 9.1, 8.6 and 7.1 years. To select the tuning parameters, 

we implement 5-fold cross-validation by randomly selecting one fifth of transplant centers 

without replacement as testing data and the rest as training data.

5.2. Results.

We begin with examining the overall effect of donors’ age on graft failure and testing the 

null hypothesis that, within each recipient group and after adjusting for the other risk factors, 

all the donor age groups, i.e. ≤ 10,(10,20],(20,30],(30,40],(40,50],(50,60] and 60+, have the 

same risk of graft failure. Based on Theorem 3.4 and Corollary 3.5, with m, p = 6, 94 , we 

perform tests for the null contrasts, and the obtained statistics significantly reject the null 

hypotheses for all three recipient groups (within recipients aged 18–45: χ2 = 40.4, df = 6, 

p-value=3.9 × 10−7; recipients aged 45–60: χ2 = 34.5, df = 6, p-value=5.3 × 10−6; recipients 

aged over 60: χ2 = 14.2, df = 6, p-value=2.8 × 10−2). Indeed, Figure 3, which depicts the 

risk-adjusted effect of donors’ age across the three recipient age groups, shows a general 

trend of increasing hazards for those receiving kidneys from older donors, likely due to renal 

aging. The estimates and confidence intervals obtained by our proposed DBL-QP differ from 

those obtained by MSPLE, and the differences are the most obvious in the 60+ year recipient 

group, which has the smallest sample size. As presented in our simulations, MSPLE may 

produce biased estimates with improper confidence intervals, especially when the sample 

size is relatively small.

On the other hand, the proposed DBL-QP method may shed new light into the aging effect, 

which seems to be non-linear with respect to donors’ age. First, using the results of Theorem 

3.1 and Corollary 3.3, our tests detect no significant differences in hazards between those 

receiving kidneys from donors aged under 10 or (10,20] and (20,30] (reference level) years 

old, within all the three recipient age groups. Second, significantly increased hazards are 

observed as early as when donors’ age reached 30–40, as compared to the reference level of 

(20,30], in the 18–45 years old recipient group, with an estimated hazard ratio (HR) of 1.16 

(95% CI: 1.01–1.34, p-value=4.1 × 10−2). In contrast, there are no significant differences 

between receiving organs from (30,40] years old donors and the reference level of (20,30], 

among the 45–60 years old recipients (HR= 0.96, 95% CI: 0.85–1.09, p-value=5.1 × 10−1) 

and the 60+ years old recipients (HR=1.07, 95% CI: 0.88–1.30, p-value=5.0 × 10−1). 
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Third, kidneys from 60+ years old donors confer the highest hazards, with the estimated 

risk-adjusted HRs (compared to the reference level (20,30]) being 1.83 (95% CI: 1.48–2.28, 

p-value=4.3 × 10−8), 1.40 (95% CI: 1.21–1.61, p-value=4.1 × 10−6) and 1.37 (95% CI: 1.14–

1.63, p-value=5.2 × 10−4) among the three recipient age groups respectively. This means 

that, compared to the older recipients, recipients of 18–45 years old tend to experience 

a greater hazard of graft failure when receiving kidneys from donors over 60 years old. 

Caution needs to be exercised when allocating kidneys from older donors to young patients 

(Lim et al., 2010; Kaboré et al., 2017; Dayoub et al., 2018).

Our method also delineates the associations of clinical indicators with graft failure, provides 

more reliable inference, and compares the relative strengths across recipient age groups. 

By naively applying lasso, 64, 44 and 27 covariates are selected with non-zero coefficients 

in the 18–45, 45–60, and 60+ years old recipient groups, respectively. In contrast, the 

proposed DBL-QP identifies 22, 22 and 14 significant covariates in these three recipient 

groups, respectively, from rigorous hypothesis tests with size 0.05 based on the asymptotic 

distribution. Figure 4 shows the estimated coefficients and their 95% confidence intervals 

for covariates that are significant at level 0.05 in at least one recipient group. We highlight 

several noteworthy results.

First, recipients’ primary kidney diagnosis plays a critical role in kidney graft failure (Wolfe, 

1991). Compared to recipients with primary diagnosis of diabetes (the reference level), those 

with polycystic kidneys (variable 2 in Figure 4) have a reduced risk of graft failure, with 

highly significant lower HRs of 0.54 (95% CI: 0.42–0.70, p-value=3.6×10−6), 0.65 (95% CI: 

0.57–0.75, p-value=4.4×10−9) and 0.74 (95% CI: 0.60–0.92, p-value=5.3×10−3) for the three 

age groups respectively. Compared to diabetes, primary diagnosis of glomerular disease 

(variable 26 in Figure 4) is significantly associated with a reduced risk of graft failure only 

in the 60+ years old recipient group (HR=0.79, 95% CI: 0.66–0.96, p-value=1.4 × 10−2), and 

primary diagnosis of hypertensive nephrosclerosis (variable 29 in Figure 4) is significantly 

associated with a higher hazard of graft failure only in the 45–60 years old recipient group 

(HR=1.12, 95% CI: 1.01–1.23, p-value=2.5 ×10−2).

Second, since diabetes is the most prevalent among end-stage renal patients (Kovesdy, Park 

and Kalantar-Zadeh, 2010), we code recipients’ diabetic status at transplant as non-diabetic 

(reference level), diabetic for 0–20 years (variable 13 in Figure 4), and 20+ years (variable 3 

in Figure 4). Our stratified analysis reveals that diabetics is a stronger risk factor for young 

recipients aged between 18 and 45 years old than for older recipients, regardless of duration 

of diabetes.

Third, instead of using the total number of mismatches as done in the literature, we consider 

the number of mismatches separately for each HLA locus for more precisely pinpointing 

the effects of mismatching loci. Our results reveal that the HLA-DR mismatches (variable 

9 in Figure 4) are more strongly associated with graft failure than the HLA-A (variable 18 

in Figure 4) and HLA-B mismatches (non-significant in any recipient group), which are 

consistent with a meta-analysis based on 500,000 recipients (Shi et al., 2018).
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Finally, to study the granular impact of recipient age on graft failure (Karim et al., 2014), 

we treat recipient age (divided by 10) as a continuous variable (variable 4 in Figure 4) 

in the model within each recipient age group. Interestingly, we find that increasing age 

is associated with a higher hazard in the two older recipient groups (HR=1.31, 95% CI: 

1.19–1.44, p-value=1.3 × 10−8, for recipients aged 45–60; HR=1.22, 95% CI: 1.07–1.40, 

p-value=3.6 × 10−3, for recipients aged 60+), but with a lower hazard of graft failure in 

the 18–45 recipient age group (HR=0.89, 95% CI: 0.83–0.95, p-value=5.2 × 10−4). This is 

likely because that younger patients generally had poorer adherence to treatment, resulting 

in higher risks of graft loss (Kaboré et al., 2017). The results also reinforce the necessity of 

separating analyses for different recipient age groups.

As a side note, we compare DBL-QP and MSPLE in the estimated coefficients and standard 

errors. Figure 5 shows that in the 45–60 age group with the largest number of subjects, the 

point estimates obtained by the two methods almost coincide with each other, whereas in the 

60+ age group with the smallest sample size, MSPLE tends to have larger absolute estimates 

than the de-biased lasso. Moreover, the standard errors estimated by MSPLE are likely to 

be larger than those by our method across all the age groups. These observations agree with 

the results of our simulations (Scenarios 2–4), which show that MSPLE yields large biases 

in estimated coefficients and standard errors, especially when the sample size is relatively 

small, whereas our proposed DBL-QP method draws more valid inferences by maintaining 

proper type I errors and coverage probabilities.

6. Concluding remarks.

The work is motivated by an urgent call of better understanding the complex mechanisms 

behind post-kidney transplant graft failure. Our modeling framework is Cox models 

stratified by transplant centers, due to their strong confounding effects on graft failure. 

To adjust for confounders to the extent possible, we have included an extended list of 94 

covariates from recipients and donors, which has not been done in the literature. A particular 

scientific question to address is the debatable donor-recipient age matching criterion in 

kidney transplantation. Fitting separate models by recipient age enables direct assessments 

of the donor age effects in different recipient age groups, which differs from using donor-

recipient age difference as in Ferrari et al. (2011). Specifically, we have followed a common 

practice of fitting separate models in age groups of 18–45, 45–60 and 60+ years. The 

commonly used MSPLE yielded biased estimates and unreliable inference in some smaller 

age groups, though the samples outnumbered the covariates. In particular, the 60+ years 

recipient group had only 1448 recipients in 43 different transplant centers, and MSPLE 

yielded more dramatic estimates for those donor age effects of over 30 years old (Figure 

3). Our simulation results also confirmed such a problematic phenomenon. Therefore, a 

statistical method that can guarantee reliable estimates and valid inference is much needed 

for delineating the associations of interest with graft failure when the number of covariates is 

relatively large in stratified Cox models.

Inspired by the de-biased lasso method for linear regression (Javanmard and Montanari, 

2014), we have developed a de-biased lasso approach via quadratic programming for 

stratified Cox models. Despite progress made in high-dimensional inference for Cox 
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models, virtually no work has considered stratified settings, theoretically or empirically. 

We have shown that in the “large N, diverging p” scenario, our approach possesses 

desirable asymptotic properties and finite-sample performance, and is more suitable for 

the analysis of the SRTR data than the competing methods illustrated in our simulation 

studies. Computationally, based on a previous work on Cox models without stratification 

(Xia, Nan and Li, 2022), for the estimation of Θβ0, the computational speed using 

<mono_space> solve.QP </mono_space> in R was much faster than that using the R 

packages <mono_space> clime </mono_space> or </mono_space> flare </mono_space> 

adopted by Yu, Bradic and Samworth (2021).

Applications of our method to the SRTR data generated new biological findings. After 

categorizing donors’ age and controlling for other risk factors listed in Appendix A, we find 

that organs from older donors are associated with an increased hazard of graft failure and 

that the dependence on donors’ age is non-linear: within the youngest recipient group (18–

45 years), significant differences from the reference donor age category (20–30 years) were 

detected as early as when donors reached 30–40 years old, whereas significant differences 

were detected only when donors reached 50–60 or 60+ years within the two older recipient 

groups, respectively; in other words, receiving kidneys from older or younger donors, such 

as 60+ versus 20–30 years, presented larger differences than in the other two recipient 

groups. These results, which were not reported in the literature, may provide new empirical 

evidence to aid stake-holders, such as patients, families, physicians and policy makers, in 

decisions on donor-recipient age matching.

A few technical points are noteworthy. First, our work deals with the “large N, diverging 

p” scenario, as embedded in the motivating data, and approximates Θβ0 via quadratic 

programming without positing any sparsity conditions on Θβ0. This distinguishes from the 

related literature (Fang, Ning and Liu, 2017; Yu, Bradic and Samworth, 2021; Kong et al., 

2021) in the “large p, small N” scenario that relies upon sparsity conditions on the numbers 

of non-zero elements in the rows of Θβ0, which are hardly discussed in depth and may not 

hold nor have explicit interpretations for Cox models. For example, when the rows of Θβ0

are not sparse, our dimension requirement for p is less stringent than in Yu, Bradic and 

Samworth (2021), by a factor of log Np . Moreover, when p > N, the several de-biased 

methods aforementioned may not yield reliable inference results, as empirically Θβ0 cannot 

be estimated well, and biases in the lasso estimator are often not sufficiently corrected for in 

this scenario for Cox models. New approaches, such as sample-splitting approaches (Fei and 

Li, 2021) that bypass the estimation of Θβ0, can be consulted.

Second, tuning parameter selection is critical in high-dimensional inference. Our proposed 

method deploys a single tuning parameter γ for de-biasing the estimates of all βj’s. This 

is a computationally feasible and commonly adopted strategy, presenting a satisfactory 

performance in our numerical studies, and can be extended to adapt to the variability of 

individual coefficient estimation. For example, one may consider the following estimation 

procedure for the jth row of Θ along the line of adaptive CLIME (Cai, Liu and Zhou, 2016):
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min
m

{mTΣm:(|Σm − ej|k) ≤ γjk, k = 1, …, p} .

Here, γjk’s are supposed to be adaptively estimated through a carefully designed procedure. 

However, the design of such an appropriate procedure requires complicated theoretical 

analysis in Cox models, unstratified or stratified, to determine the desirable rates of γjk’s, 

among other tasks. Given that such complexity is beyond the scope of this paper, we will not 

pursue this route here in details but will leave it for future research.

Third, though primarily focusing on the associations between the risk factors and survival 

(through Theorem 3.1), the proposed method can be used for patient risk scoring and 

conditional survival probability estimation. For example, the de-biased estimates may be 

plugged into the Breslow’s estimator (Kalbfleisch and Prentice, 2002) for stratum-specific 

baseline hazards. The conditional survival probability estimation may not go beyond the 

time point τ due to censoring.

Lastly, we use Cox models stratified by transplant centers to account for but avoid 

explicitly modeling the center effects. Alternatively, random effects models can be used 

for clustered survival data analysis; for example, Vaida and Xu (2000) generalized the usual 

frailty model to allow multivariate random effects. However, in a random effects model, 

the distribution of random effects needs to be specified, and the coefficients only have 

conditional interpretations, given a cluster. We may pursue this elsewhere.

We have implemented the proposed DBL-QP method with cross-validation in R and Rcpp, 

which is available both in the Supplementary Material and online at https://github.com/luxia-

bios/StratifiedCoxInference/ with simulated examples.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: SRTR DATA

The SRTR dataset analyzed in this article can be accessed by applying through the OPTN 

website https://optn.transplant.hrsa.gov. The interpretation and reporting of the SRTR data 

results are solely the responsibility of the authors and should not be viewed as official 

opinions of the SRTR or the United States Government.

The 94 covariates, including dummy variables, are derived from the following factors. 

Donor factors include: ABO blood type, age, cytomegalovirus antibody, hepatitis C virus 

antibody, cause of death, cardiac arrest since event leading to declaration of death, serum 

creatinine, medication given to donor (DDAVP, dopamine and dobutamine), gender, height, 
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history of cancer, cigarette smoking, history of drug abuse, hypertension, diabetes, inotropic 

support, inotropic agents at time of incision, non-heart beating donor, local or shared organ 

transplant, race, and weight. Recipient factors include: ABO blood type, history of diabetes 

and duration, angina/coronary artery disease, symptomatic peripheral vascular disease, 

drug treated systemic hypertension, drug treated COPD, gender (and previous pregnancies 

for females), sensitization (whether peak and/or current panel-reactive antibodies exceed 

20%), previous malignancy, peptic ulcer disease, symptomatic cerebrovascular disease, 

race, total serum albumin, age at transplant, number of HLA mismatches (A, B and DR), 

cytomegalovirus status, total cold ischemic time, primary kidney diagnoses, pre-transplant 

dialysis and duration, the Epstein–Barr virus serology status, employment status, hepatitis B 

virus status, hepatitis C virus status, height, pre-implantation kidney biopsy, pre-transplant 

blood transfusions, transplant procedure type, warm ischemic time and weight.

APPENDIX B: REGULARITY CONDITIONS

Assumptions B.1–B.5 below ensure that Theorem 3.1 hold.

Assumption B.1.

Covariates are almost surely uniformly bounded, i.e. ∥ Xki ∥∞ ≤ M for some positive constant 

M < ∞ for all k and i.

Assumption B.2.

Xki
T β0 ≤ M1 uniformly for all k and i with some positive constant M1 < ∞ almost surely.

Assumption B.3.

The follow-up time stops at a finite time point τ > 0, with probability π0 = mink P Y ki ≥ τ > 0.

Assumption B.4.

For any t ∈ 0, τ ,

cTΘβ∘

cTΘβ∘c k = 1

K
rk

0

t

μ2k u; β0 −
μ1k u; β0 μ1k u; β0 T

μ0k u; β0 λ0k(u)du Θβ∘c v(t; c)

as n ∞ for some function v t; c > 0 of t that also depends on the choice of c.

Assumption B.5.

There exists a constant ϵ0 > 0 such that λmin(Σβ0) ≥ ϵ0, where λmin ⋅  is the smallest eigenvalue 

of a matrix.
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For inference on multiple linear combinations or contrasts as described in Theorem 3.4, 

Assumption B.4 needs to be replaced with the following Assumption B.6, which is a 

multivariate version of Assumption B.4.

Assumption B.6.

For any ω ∈ ℝm and any t ∈ 0, τ ,

ωTJΘβ0

ωTJΘβ0JTω k = 1

K
rk

0

t

μ2k u; β0 −
μ1k u; β0 μ1k u; β0 T

μ0k u; β0 dΛ0k(u) Θβ0JTω

converges to v′ t; ω, J  as n ∞, for some function v′ t; ω, J > 0 of t, that also depends on 

the choice of ω and x.

It is common in the literature of high-dimensional inference to assume bounded covariates 

as in Assumption B.1. Fang, Ning and Liu (2017) and Kong et al. (2021) also posed 

Assumption B.2 for Cox models, i.e. uniform boundedness on the multiplicative hazard. 

Under Assumption B.1, Assumption B.2 can be implied by the bounded overall signal 

strength ∥ β0 ∥1. Assumption B.3 is a common assumption in survival analysis (Andersen 

and Gill, 1982). Assumption B.4 and its multivariate version, Assumption B.6, ensure the 

convergence of the variation process, which is key in applying the martingale central limit 

theorem. They are less stringent comparing to the boundedness assumption on ∥ Θβ0Xki ∥∞

that is equivalent to the assumptions for statistical inference in van de Geer et al. (2014) 

on high-dimensional generalized linear models and in Fang, Ning and Liu (2017) on high-

dimensional Cox models. The boundedness of the smallest eigenvalue of Σβ0 in Assumption 

B.5 is common in inference for high-dimensional models (van de Geer et al., 2014; Kong 

et al., 2021). Since we focus on random designs, unlike Huang et al. (2013), Yu, Bradic 

and Samworth (2021) and Fang, Ning and Liu (2017), we do not directly assume the 

compatibility condition on ℓ̈ β0 ; instead, we impose Assumption B.5 on the population-

level matrix Σβ0, which leads to the compatibility condition for a given data set with 

probability going to one.
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FIG 1. 
The impact of choices of γ on the averages of biases, empirical coverage probabilities, 

model-based and empirical standard errors, based on 100 simulations with K = 5 strata and 
nk = 200 in each stratum, p = 100 covariates simulated from a multivariate normal distribution 

with mean zero and an AR(1) covariance matrix ρ = 0.5  and truncated at ±3. Survival times 

are simulated with a hazard λ0k exp Xki
T β0 , wℎere λ0k are constants generated from Uniform 

(0.1,0.5), and four nonzero coefficients in β0 take 1, 1, 0.3 and 0.3, respectively. Censoring 
times are independently simulated from Uniform (1,30).

Xia et al. Page 22

Ann Appl Stat. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG 2. 
Estimation bias, 95% coverage, model-based standard error, and empirical standard error for 

β1
0 of six different methods. The horizontal lines in the first two rows are references to 0 for 

bias and 95% for coverage probability, respectively.
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FIG 3. 
Estimated hazard ratios and the corresponding 95% confidence intervals of different donor 

age categories with reference to the (20,30] donor age category, after adjusting for all other 

variables, in three recipient groups.
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FIG 4. 
Estimated regression coefficients in the stratified Cox models using the proposed DBL-QP 

method, and the corresponding 95% confidence intervals, presented by recipient age group. 

The covariates included are significant at level 0.05 in at least one recipient group, after 

adjusting for all other covariates.
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FIG 5. 
Comparison between the coefficient estimates (top) and the model-based standard errors 

(bottom) by the de-biased lasso (DBL-QP) and the maximum stratified partial likelihood 

estimation (MSPLE) in three recipient age groups. The solid and the dashed lines are 

45-degree and zero-value reference lines, respectively; and the dotted lines represent the 

fitted linear regression of the DBL-QP estimates on the MSPLE estimates.
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TABLE 1

Study population characteristics by recipient age group

Recipient age group [18,45] (45,60] 60+

Variable Mean (SD) / Count (%)

# Centers 84(−) 107 (−) 43 (−)

# Patients 3388 (100%) 4359 (100%) 1448 (100%)

# Events 1588 (46.9%) 2334 (53.5%) 1013 (70.0%)

Recipient age 35.7 (7.0) 53.0 (4.2) 66.6 (4.3)

Donor age (years)

 ≤ 10 276 (8.1%) 223 (5.1%) 61 (4.2%)

 (10,20] 580 (17.1%) 611 (14.0%) 137 (9.5%)

 (20,30] 633 (18.7%) 683 (15.7%) 179 (12.4%)

 (30,40] 505 (14.9%) 599 (13.7%) 174(12.0%)

 (40,50] 753 (22.2%) 947 (21.7%) 256 (17.7%)

 (50,60] 498 (14.7%) 893 (20.5%) 318 (22.0%)

 60+ 143 (4.2%) 403 (9.2%) 323 (22.3%)

Recipient gender

 Male 1997 (58.9%) 2671 (61.3%) 913 (63.1%)

 Female 1391 (41.1%) 1688 (38.7%) 535 (36.9%)

Donor gender

 Male 2039 (60.2%) 2563 (58.8%) 803 (55.5%)

 Female 1349 (39.8%) 1796 (41.2%) 645 (44.5%)
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