
UC San Diego
UC San Diego Previously Published Works

Title
Multi-Modal Data and Model Reduction for Enabling Edge Fusion in Connected Vehicle 
Environments

Permalink
https://escholarship.org/uc/item/1jc3b6jc

Journal
IEEE Transactions on Vehicular Technology, 73(8)

ISSN
0018-9545

Authors
Thornton, Samuel
Dey, Sujit

Publication Date
2024

DOI
10.1109/tvt.2024.3378182
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1jc3b6jc
https://escholarship.org
http://www.cdlib.org/


IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 8, AUGUST 2024 11979

Multi-Modal Data and Model Reduction for Enabling
Edge Fusion in Connected Vehicle Environments

Samuel Thornton , Graduate Student Member, IEEE, and Sujit Dey , Fellow, IEEE

Abstract—The emergence of edge computing in Intelligent
Transportation Systems (ITS) has shown promise in enabling real-
time sensor fusion applications. In this paper, we explore how to
utilize edge computing to aid in collaborative vehicular perception,
an emerging topic within ITS which involves vehicles sharing sensor
data with one another to extend each vehicle’s perception beyond
what its individual sensors can see. However, achieving real time
collaborative perception is a challenge even with the utilization of
edge computing; due to the large amount of multi-modal sensor
data produced by modern intelligent vehicles, the amount of data
transmitted over wireless channels and the complexity of computa-
tional tasks will need to be managed dynamically based on the wire-
less network conditions and available computing resources. As such
we propose REFO, a Real-time Edge Fusion Optimization method
that combines task partitioning with data reduction and model
compression to maximize sensor fusion accuracy while adhering to
Quality of Service (QoS) requirements. We define a performance
metric termed effective mean average precision (EmAP), which
incorporates both QoS and fusion accuracy, and show that our
proposed neural network based REFO action decision framework
can outperform the best comparison models by approximately
10% in terms of EmAP over 18 test combinations of network and
computing conditions.

Index Terms—Connected vehicles, data reduction, model
compression, task partitioning, machine learning.

I. INTRODUCTION

THE intelligence of vehicles on the road today is evolving at
a rapid pace. Production vehicles are being released with

more sensors and computing power with each passing year that
enable the vehicle to sense its mechanical performance as well
as the presence and activity of objects inside the cabin and in
the surrounding environment. In recent years, external sensing
has become an important topic due to increased public interest
in vehicular safety and autonomous driving. The Advanced
Driver Assistance System (ADAS), which gives alerts to the
driver about surrounding or upcoming hazards, is now standard
in newly produced vehicles. The ADAS is entirely reliant on
the vehicle’s external sensors which can include instruments
such as RGB cameras, depth cameras, lidar, radar, or ultrasonic
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sensors. While the ADAS does provide important safety benefits,
these systems are still far from perfect and are prone to errors.
Additionally, environmental conditions such as bad weather or
objects occluding sensors on the vehicle can affect the ability of
the ADAS to accurately perceive its surroundings.

One approach to minimize the perception errors experienced
by a vehicle’s ADAS is to have multiple vehicles share their
sensor data with each other [1], [2]. In this way, a more complete
perception of an area can be achieved; gaps in coverage from
one vehicle may be filled in by another and objects that were
seen by multiple vehicles can have their perception improved.
The emergence of edge-based communications can provide a
suitable infrastructure for facilitating this sensor sharing, but
creating this cooperative perception in real time is challenging.
Having to aggregate all of the sensor data from each vehicle in
a particular area, apply the sensor fusion algorithms, and send
the information back to each vehicle quickly enough to satisfy a
Quality of Service (QoS) requirement is difficult considering the
size of the sensor data and challenges experienced with wireless
vehicular networking.

To deal with the dynamic nature of vehicular environments,
new methods must be developed in order to meet the latency de-
mands of these real-time systems. While emerging 5 G networks
can be utilized to bring new levels of wireless communication
to vehicles, there are always going to be situations encountered
in vehicular environments that can affect the vehicles ability
to communicate; driving through a tunnel or simply being sur-
rounded by large objects/buildings can have a significant effect
on the amount of data that the vehicle can transmit and receive.
As such, the type and amount of data that should be transmitted
along with the corresponding fusion models must be adjusted
dynamically so that the QoS of this edge fusion system can
be maintained while maximizing the sensor fusion accuracy.
To address these issues we created REFO, a Real-time Edge
Fusion Optimization method. The focus of this work is not
on creating new methods for improving the accuracy of object
detection/association or related vehicular sensor fusion tasks, but
rather to use a variety of existing data extraction, classification,
and fusion techniques to explore the feasibility of real-time edge
fusion in real-world environments. The REFO methodology
we propose provides a model for facilitating vehicular data
exchange over the edge that provides the computational tools
and decision making algorithms for executing the end-to-end
collaborative sensor fusion process. The testing results of our
proposed method demonstrates successful performance over 18
different combinations of network and computing conditions
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while our proposed action decision framework outperforms the
best comparison models by approximately 10% over all test
cases. More specifically, the research contributions of this paper
are as follows:
� We present REFO, a method for dynamically reducing the

amount of data and computational inference experienced in
wireless edge-based vehicular sensor fusion in connected
vehicle environments.

� We propose an ensemble fusion model which contains all
the perception and fusion abilities needed for collaborative
perception and has the capacity to be actively compressed
and partitioned based on the current networking, comput-
ing, and traffic conditions.

� We have created an action decision framework to determine
the optimal data reduction, model compression, and task
offloading actions that should be chosen to satisfy a given
QoS requirement while maximizing perception accuracy.

� We have developed a Deep Neural Network (DNN) based
latency prediction model to estimate whether the latency
requirements will be met for a given set of conditions.

The remainder of this paper will be organized as follows:
Section II will be a review of related works in the area of
vehicular edge computing, specifically in other works that in-
volve external sensing, task partitioning, data reduction, and
model compression. In Section III, this edge fusion problem is
examined in more detail and an overview of the REFO method is
presented as well as our problem formulation and latency model.
In Section IV, we discuss our methodology for generating and
executing actions decisions which includes the action decision
framework and ensemble fusion model as well as an overview
of the different offloading levels. In Section V, we describe our
research setup and present the results of our action decision
framework on both cellular vehicle-to-everything (C-V2X) and
5 G cellular test sets as well as comparing the performance to
related models. Finally, we conclude the paper and discuss our
plans for future work in Section VI.

II. RELATED WORK

A. External Sensing

Advancements in methods for utilizing sensor data to detect
the presence of objects and characteristics of the surrounding
environment have paved the way for the intelligence that ex-
ists inside modern vehicles. The most studied type of external
sensing is that involving RGB cameras and the most common
tasks for sensing using RGB images are image classification,
image segmentation, and object detection. Early methods for
solving these types of problems included transforms [3], [4],
[5], feature descriptors [6], [7], [8], [9], part-based models [10],
[11], and bag-of-words methods [12], [13], but the invention
of AlexNet [14] and subsequent neural network architectures
such as GoogleNet [15] and ResNet [16] have shown new
heights for accuracy in all of these sensing tasks. As such even
more advanced methods for general image classification [17],
object detection [18], and image segmentation [19] have been
developed in the past decade as well as the emergence of task

specific models that are trained for more specific purposes such
as defect detection [20], [21], [22], medical imagery [23], [24],
[25], and satellite imagery [26], [27], [28].

The advancements in external sensing using images has ex-
tended to other sensors as well. Radar is another modality that
has been around for a long time for external sensing purposes.
As with images, previous methods for external sensing with
physics based methods [29], [30] have been largely replaced
by machine learning methods [31], [32], [33], [34]. However,
lidar, a relatively new sensing modality has shown to have
the best achievable performance for 3-D external sensing for a
single sensor and thus there have been many methods proposed
over the past decade for external sensing tasks that use lidar
data as input [35], [36], [37]. A main drawback of using lidar
is the massive amount of data the sensor can produce, which
makes processing and potentially transmitting this type of data
in real-time a challenge.

B. Data Reduction

Data reduction is a topic that has been studied for decades and
for many years was mainly focused on creating new or improved
data compression methods [38]. However, the emergence and
scale of new sensor applications in edge environments has
produced new needs for task specific data reduction solutions.
As such, there have been new works focusing on data reductions
for tasks such as fault detection [39], mobile health [40], and
Internet of Things (IoT) applications [41], [42]. Improvements
in vehicular sensor technology have brought about new levels
of environmental perception for vehicles, but at the cost of
producing large amounts of sensor data every second that can
potentially affect the ability for real-time processing. As such,
there have been several works focused on data reduction for
vehicular sensor data in recent years, particularly relating to
cooperative perception since the multi-source aspect of this
problem creates an even greater need for reducing data. Au-
tocast [43] reduces the amount of point cloud data generated by
lidar sensors by intelligently selecting sections of points clouds
to transmit to surrounding vehicles based on what is going to
be more useful to the receiving vehicle. Coopernaut [44] also
attempts to reduce the amount of point cloud data through the use
of point transformer [45] as well as V2V-Net [46] which use vari-
ational image compression techniques [47] to reduce the size of
encoded point cloud feature maps. However, all of these methods
are based on vehicle-to-vehicle (V2V) communications which
has difficulty with large scale implementations, as opposed to
the vehicle-to-infrastructure (V2I) method of aggregating data
at road side units (RSU), which is already beginning to see
adoption and deployment [48]. EMP [49] does however utilize
V2I links while reducing the amount of point cloud transmission
by selective partitioning of the point cloud. While these methods
do present novel solutions for reducing the point cloud data
produced by lidar and similar sensors, they do not provide a
general data reduction framework that can incorporate other
types of sensor data such as RGB cameras.
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Fig. 1. REFO method overview showing the different data pathways and decision points involved in achieving multi-modal fusion in edge-based connected
vehicle environments. The REFO action decision framework presented in Section IV-A is shown in the red box and generates the REFO action decision which acts
as a control signal for the associated tasks marked with red asterisks. The ensemble fusion model presented in Section IV-B is shown in the green box at the RSU,
but certain elements of this model are also available to execute at the OBU (also shown in green boxes) to allow for task partitioning.

C. Task Partitioning

Beyond simply reducing the amount of data each vehicle
transmits, another way to improve the end-to-end latency in
an edge fusion system is to incorporate computational task
offloading. Since the amount of computing available on vehicles
can vary greatly and in many cases can be quite limited, the
total computational inference time can be reduced by offloading
certain tasks to the edge where more powerful computing exists.
As the topics of collaborative perception and edge computing
have emerged, so have many methods in task partitioning in
vehicular edge computing [50]. Choosing the optimal selection
of which tasks should be executed on the vehicle and which
should be executed on the edges as well as potentially partition-
ing computationally expensive tasks between the vehicle and the
edge can have a large impact on the overall quality of service
of an edge fusion system. As such, many different techniques
have been applied to this problem including game theory [51],
convex optimization [52], load balancing [53], multi-armed
bandits [54], dynamic programming [55], and reinforcement
learning [56], [57].

D. Model Compression

As the paradigm of edge computing continues to evolve, there
have been continual strides to discover new methods for reducing
the inference time as well as the memory and energy consump-
tion of the models that are being executed at the edge as well
as the local devices. Many of these improvements fall under the
umbrella of model compression [58], [59]. The most common
type of model compression is model pruning, such as model
slimming [60] or early exit [61], where a smaller version of the
model with less parameters is utilized, which has less inference
time at the cost of reduced accuracy. Other types of model
compression that exist are parameter quantization [62], low-rank
factorization [63], and knowledge distillation [64]. Some of

these model compression methods have been combined with task
partitioning to provide a suitable solution for task partition point
selection for computational offloading in mobile edge networks.
Edgent [65] combines task partitioning along with DNN early
exit methods to select the optimal DNN size and partitioning
points to adapt to the current channel bandwidth. In [66], a
reinforcement learning (RL) model is created to determine the
offloading decisions that utilizes both task partitioning as well
as a number of model compression methods.

However, to the best of our knowledge, there is no work which
combines simultaneous data reduction and model compression
with task partitioning for creating computational offloading
decisions in mobile edge environments. This work goes beyond
the ones presented in this section by combining data reduction,
model compression, and task partitioning simultaneously which
we propose will lead to more optimal decisions in maximizing
the utility of an edge computing architecture.

III. SIMULTANEOUS DATA REDUCTION, MODEL COMPRESSION,
AND TASK PARTITIONING

While collaborative perception can bring about new levels
of safety and awareness for intelligent vehicles, accomplishing
this sensor fusion task in connected vehicle environments can
be difficult. Some factors that contribute to this difficulty are the
highly variable and dynamic nature of vehicular communica-
tions and the limited amount of computational power available
on vehicles. Additionally, the raw amount of sensor data pro-
duced by vehicular sensors can be quite large, even from just a
single RGB camera. As such, a system to dynamically reduce
the amount of data that each vehicle is transmitting based on
network conditions is needed in order for the data sharing to take
place in real time. However, data reduction alone may not always
be enough to satisfy a given end-to-end latency requirement;
many of the most accurate sensor fusion models also have high
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execution latency and may not be suitable for all situations. To
this end, multiple different sensor fusion models that vary in
complexity can be used. In this way, more lightweight models
can be chosen in poor conditions where the total inference time
must be reduced in order to satisfy the latency requirement.
To provide even more optimal solutions, model compression
can also be utilized in order to increase the granularity of the
decision space; each machine learning model that is used in
this end-to-end sensor fusion task can have their parameters
dynamically adjusted to decrease the size and corresponding
latency of the chosen fusion model which creates more available
options in the trade off between latency and accuracy. The final
knob in this optimization problem is task partitioning; since in
most cases the amount of computing available at the edge is
more powerful than that of the vehicle’s, partitioning the tasks
that need to be executed through computational offloading can
reduce the end-to-end latency of the system.

A. Method Overview

A visual overview of the REFO method we have created to
accomplish this edge fusion task is shown in Fig. 1. In this
method, it is assumed that each vehicle has an on-board unit
(OBU) that can communicate with the RSU at the edge to fuse
its sensor data with other nearby vehicles; both the RSU and the
OBU are assumed to have computational capacity as well. In
this system, how much computation occurs at the OBU versus
at the RSU is dependent on the REFO action decision which
will determine which tasks to execute at the RSU and which
to execute at the OBU. Data reduction can be utilized in the
form of choosing not to send certain sensor data modalities
as well as choosing to compress the sensor data that has been
selected for transmission. Multiple object detection methods as
well as feature extractors and their associated fusion classifiers
exist in the ensemble fusion model and these components can
be compressed as chosen by the action decision framework.

Each component of REFO provides a trade-off space for this
optimization problem that makes having to simultaneously se-
lect the offloading level, fusion models, and amount data/model
compression a challenging task. Choosing to do less computa-
tional offloading and execute more tasks at the OBU increases
total computational inference time but reduces the wireless
transmission latency. Choosing a more lightweight object de-
tector and feature extractor and/or utilizing model compression
also reduces the computational inference time but at the cost
of overall fusion accuracy and any data reduction will reduce
the transmission latency at the cost of fusion accuracy. It is
necessary to design a system that is able to intelligently balance
these distinct trade-offs simultaneous to make the optimal action
decisions for the current situation.

B. Problem Formulation

In this work, we aim to show that collaborative perception can
be achieved in real-time even with limited channel throughput
and computing power available. Our goal is to create a method
to choose the set of actions given information about the current
state of the environment so that accuracy is maximized while

ensuring that service is maintained at all times. The choice of
what actions (a) to take affects both the accuracy and latency
with the latency value also being affected by the current state (s),
so we will define two functions which produce the associated
accuracy and latency values as follows:

fAP (t)(a) = AP (t) (1)

fLE2E(t)(s, a) = LE2E(t) (2)

To formalize what should be considered real-time in collabo-
rative perception, successful service delivery (D) for REFO can
be expressed as:

D(t) =

{
1, if LE2E(t) < τ.

0, otherwise
(3)

Essentially, this is defining an end-to-end latency threshold τ
which will act as the QoS requirement. As such, the overall QoS
for this system at some point in time t = N is defined as:

QoS =
1
N

N∑
t=1

D(t) (4)

This metric represents the percentage of time that the actions
chosen by the REFO action decision framework were able to
achieve real-time collaborative perception.

Vehicular sensor fusion tasks are centered on creating de-
tections of objects in the vehicle’s surroundings or creating
temporal/spatial associations between objects. As such, standard
detection theory metrics such as precision and recall, which
represent ratios of true positive (TP) detections/associations to
false positives (FP) or false negatives (FN), will be used to assess
the accuracy. Specifically, precision (P) is defined by:

P =
TP

TP + FP
(5)

and recall (R) is defined by:

R =
TP

TP + FN
(6)

However, these sensor fusion models are parameterized by
an output threshold that lets the user adjust how sensitive the
model should be; high output thresholds will produce higher
precision but lower recall and vice versa. Average precision
(AP), which is the area below the precision-recall curve, is the
most widely used metric for evaluating the performance of this
type of sensor fusion model since all thresholds are represented
in the precision-recall curve. More formally stated, AP is defined
as:

AP =

K∑
i=1

(Ri −Ri−1)Pi (7)

for all possible K output thresholds. For this REFO task, we
will define mean average precision (mAP) in the context of this
problem as the moving average of chosen actions associated
sensor fusion AP:

mAP =
1
N

N∑
t=1

AP (t) (8)
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To evaluate end-to-end performance, a constrained optimiza-
tion problem is defined to express the conditions that are trying
to be met. The goal in this work is to choose the actions that
maximize the sensor fusion accuracy while ensuring QoS is
being met and as such the optimization problem is defined as
follows:

max
a

mAP (9a)

s.t. QoS = 1 (9b)

Considering this optimization problem, a new metric can be
defined which we have termed effective mean average precision
(EmAP) that simplifies this optimization using the fact that
QoS ∈ [0, 1] and thus can be used as an indicator function and
multiplied with the objective function to produce an equivalent
optimization:

EmAP = QoS ×mAP (10)

This metric accurately reflects what needs to be optimized
considering that the goal is to produce the most accurate percep-
tion possible while still ensuring the QoS requirement is met.
The chosen actions cannot just maximize the fusion accuracy as
the loss in QoS due to the high latency of the most accurate fusion
models will prevent any acceptable EmAP values. Similarly,
always choosing very lightweight machine learning models will
lead to good QoS, but poor fusion accuracy which will carry into
poor EmAP performance. To perform well, the action decision
framework must be designed or trained to choose the best
performing fusion model for the current conditions while also
putting a very strong bias on ensuring that the latency threshold is
not exceeded. As such, the objective of the REFO action decision
framework will be to maximize the EmAP.

For any method that is used to generate action decisions, it
is assumed that a selection choice will be provided for each
time step. In certain situations, such as when the wireless link
is completely lost, there may be no possible action decision that
will allow the collaborative perception system to execute in the
required latency; in these cases, the data point will be discarded
in performance evaluation as to not punish models for exceeding
the latency requirement when doing so is entirely unavoidable.

C. Latency Model

We model the end-to-end latency (LE2E) experienced by the
following equation:

LE2E = LOBU + LUL + LRSU + LDL (11)

(All terms used in (11) are explained in Table I). This equation
presents all the different terms that sum up to create the total end-
to-end latency. Both LUL and LDL use a simple channel delay
model of transmission data size divided by channel throughput,
but the values for LOBU and LRSU are dependent on which
actions are selected and must be measured; the values presented
in this section and remainder of the paper are specific to our
hardware and choices of object detector, sensor fusion model,
and compression algorithms.

A visual diagram of how these latency accumulate to complete
this end-to-end fusion process can be seen in Fig. 2. For each

TABLE I
SUMMARY OF KEY NOTATIONS WITH DESCRIPTIONS

Fig. 2. Time series diagram showing the different components that make up
the total end-to-end latency for a each time step in REFO.

time step, the process begins with each vehicle producing its
sensor data for that time step including any sensor encoding
needed. At the same time at the RSU, the current channel state
information is measured to determine the instantaneous channel
throughput and the action decision process is executed immedi-
ately followed by transmitting the action selection to each of the
nearby participating vehicles. By the time each vehicle receives
the action decision, the sensor data is ready to be processed and
any corresponding computation occurs. The output data for the
corresponding offloading level chosen is then transmitted from
each vehicle to the RSU; once all the participating vehicle’s data
has been received at the RSU, the remaining computation tasks
for the sensor fusion can take place before finally broadcasting
the fused results back to the vehicle’s OBUs to be ingested by
the ADAS.

The biggest challenge encountered in this REFO process is
dealing with the uncertainty in latency prediction. While certain
processes like sensor encoding and image compression have low
variance in their execution latency, the latency experienced by
wireless data transmission depends on the amount of data to
be transmitted and amount of throughput available while the
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Fig. 3. Block diagram of REFO showing the flow of data that occurs in
each time step. The REFO action decision framework stores the previous state
information to use a feature, as represented by the return arrow at the top of the
corresponding block.

computation latency depends on how much input data is present
and which models are chosen. The challenge is that at the start of
each time step, only limited information is available: the current
channel throughput and the previous time step’s information
about the total number of participating vehicles and total objects
detected. Knowing the current channel throughput is useful for
determining how long it will take to broadcast the action decision
to all vehicles in the area of the RSU, but the channel conditions
will likely have changed by the time the vehicles transmit their
chosen data to the RSU making it necessary to make predictions
about the future channel throughput at each time step. Similarly,
with only knowing information about the previous time step’s
data and not how many total vehicles will successfully transmit
data to the RSU this time step and how many objects will be
detected makes additional predictions necessary, though it is
expected that these values will not shift dramatically between
successive frames. This was a main factor in choosing a machine
learning approach to this problem, since machine learning mod-
els have the ability to detect patterns and make predictions based
on these sorts of uncertainties and should outperform dynamic
programming or numerical optimization based methods.

IV. METHODOLOGY

In this section, we present our methodology for generating
and executing action decisions in REFO. We will first introduce
our selections for offloading levels before describing the action
decision framework, which uses information about the current
conditions to predict the optimal action decision for each time
step. The later part of this section will discuss our proposed
ensemble fusion model; the ensemble fusion model contains all
perception and fusion abilities needed for collaborative percep-
tion and can also be dynamically compressed and partitioned.
Each action selected by the action decision framework corre-
sponds to a particular execution configuration of the ensemble
fusion model. A block diagram showing the data flow for REFO
is seen in Fig. 3. This figure shows a more simplified view of the
data flow in REFO that doesn’t include all possible data paths
that occur between the RSU and OBU for the ensemble fusion
model as shown in Fig. 1, while still displaying the process by
which state measurements and sensor data are transformed into
sensor fusion results.

For this work, we are only considering the use of RGB
cameras, depth sensors, and positional trackers as our sensor

Fig. 4. Block diagram showing the three different offloading strategies that
are considered in this work: (a) Full, (b) Major, and (c) Minor. These offloading
levels determine how the different layers of the ensemble fusion model get
partitioned between the OBU and RSU.

modalities and the chosen sensor fusion task is object detection
association. As such, our implementation of the action decision
framework and ensemble fusion model will reflect these choices.
However, any set of sensor modalities could be used as input
if the corresponding sensor fusion task can be partitioned into
subtasks for the associated ensemble fusion model. Both the
action decision framework and the ensemble fusion model are
integral components of our REFO method and will be discussed
in detail for the remainder of this section. However, before
beginning this discussion we must first define the different levels
of offloading that we are utilizing.

A. Task Partitioning - Offloading Selection

In this work, there are three levels of computational offloading
that will be considered:
� Minor Offloading - All object detection and feature ex-

traction is done at the OBU. Only the fusion classifier and
REFO action decision framework are executed at the RSU.

� Major Offloading - All object detection is done at the
OBU. Execution of feature extraction, fusion classifier, and
REFO action decision framework occurs at the RSU.

� Full Offloading - All computation is done at the RSU.
The differences between these three offloading levels can also

be seen in Fig. 4. Here we can see the effect this offloading
decision has on the amount of data being transmitted. The
amount of data transmitted over the wireless channel decreases
from Full Offloading to Major Offloading and decreases even
more significantly from Major Offloading to Minor Offloading.
The trade-off here is that the amount of time that is spent on
computational inference is inversely proportional to the amount
of data transmitted since more of the computational tasks are
occurring at the OBU, which is assumed to be much less pow-
erful than that of the RSU. As such, the amount of sensor data
generated by the vehicle and the wireless throughput will have
the largest factors on which level of offloading should be chosen.
The offloading level for each time step will be decided by the
action decision framework, which will be described in the next
subsection.

B. Action Decision Framework

In this section, we describe our REFO action decision frame-
work, with an overview of the framework shown in Fig. 5. The
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Fig. 5. Overview of the REFO action decision framework showing how an action is selected given the current state information; input state action combinations
go though action space reduction and latency prediction before the final action decision is selected. The objective of this framework is to choose the action with
the highest EmAP and its performance is largely dependent on the accuracy of the latency prediction model.

action space (a) of the decision consists of three elements: object
detector choice (d), feature extractor choice (e), and offloading
level (o). For each object detector and feature extractor the
model as well as the compression level must be chosen and for
offloading the offloading level as well as the data compression
level must be chosen. Note that since none of the fusion models
used require raw RGB images as input, compression does not
need to be considered in the case of minor offloading. The state
space (s) consists of four elements: current channel throughput
(rtp), RSU mobile edge computing (MEC) capacity (cmec), the
number of participating vehicles in the previous frame (nveh),
and the total number of objects detected by all vehicles in the
previous frame (nobj). For our REFO action decision framework,
state-action pairs are created to form vectors (v):

v =< rtp, cmec, nveh, nobj︸ ︷︷ ︸
state: (s)

, d, e, o︸ ︷︷ ︸
action: (a)

> (12)

which serve as the input and the output. For each time step, the
input for our REFO action decision framework (S) is generated
by combining all possible action space combinations with the
current state:

S = {v1, v2, . . ., vN} (13)

Each vector vi in S has the same state space, but a unique
action space. The first step in our REFO action decision frame-
work is action space reduction, where the number of action
state combinations are reduced by removing vectors from S
that contain actions that have no possibility of being selected
(Fig. 5(a)). There are three types of action space reduction that
are conducted:
� Impossible Combinations - Remove any vi that are not

possible to execute. An example would be the action choice
to send only color histograms as visual features when the
chosen fusion model requires RGB images.

� Nonsense Combinations - Remove any vi that do not make
any sense to include. An example would be the action

choice to send RGB images when the chosen fusion model
only requires color histograms as its visual feature.

� Outliers - Remove any vi that are likely to be outliers. For
example, cases of sending raw RGB images with very poor
channel conditions and medium to high vehicle density
should be discarded.

The remaining state action combinations that remain after
action space reduction (S ′) are used as input for the latency
prediction model fDNN (Fig. 5(b)). A DNN is used as our
latency prediction network which consists of four hidden layers
with ReLU activation and batch normalization between each
and a sigmoid output layer. It is trained for 5 epochs using a
batch size of 512 and the ADAM [67] optimizer. The latency
prediction DNN predicts for each vi

′ in S ′ whether it will meet
the QoS requirement or not. The state action combinations that
the latency prediction model predicts as having a latency less
than the QoS threshold form the set S ′′:

S ′′ = fDNN (S ′) (14)

The final step after applying the latency prediction model is
to choose the action combination from S ′′ that maximizes the
AP (Fig. 5(c)). Since EmAP is the product of QoS and mAP,
the option v∗ that will maximize EmAP from S ′′ should always
contain the actions with the highest associated AP since it is
assumed that S ′′ does not contain any options that would not
meet the QoS latency requirement. More formally stated, since
it is assumed QoS = 1 ∀ v ∈ S ′′ the action decision produced
by our REFO decision framework a∗ is defined as:

a∗ = argmax
a′′

[fAP (a
′′)] (15)

If there is ever a frame where the neural network predicts
that no action will be able to execute within the chosen latency
threshold, the lowest latency action decision is selected.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on February 14,2025 at 22:47:54 UTC from IEEE Xplore.  Restrictions apply. 



11986 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 8, AUGUST 2024

Fig. 6. Ensemble fusion model consists of an object detection (OD), feature extraction (FE), and fusion classification (FC) layer. (a) Shows an example ensemble
fusion model which has N object detectors and M feature extractors, with each of these having the ability to be slimmed by a certain % of model compression
(MC). (b) Shows a decision tree displaying how the different layers will be partitioned based on the offloading level chosen by the action decision framework.

C. Ensemble Fusion Model

Once the REFO action decision framework has selected the
actions for the current time step, this information can be for-
warded to the vehicle’s OBU. The ensemble fusion model is
what embodies all of the trade-offs that are considered in this
problem and where the data reduction, model compression, and
task partitioning are being applied. As seen in Fig. 6(a), there
are three layers to this ensemble fusion model: Object Detection,
Feature Extraction, and Fusion Classification.

The entire ensemble fusion model is located at the RSU,
but the object detection and feature extraction layers will also
be available at each OBU. The object detection and feature
extraction layers are constructed very similarly with each con-
taining numerous models for accomplishing the corresponding
task which vary in complexity with all or some models hav-
ing additional compressed versions of themselves. Using these
compressed models further increases the action decision space
which helps provide more optimal solutions as the additional
granularity allows further refinement in evaluating the trade-offs.
The last layer is the fusion classification layer; here is where the
final sensor fusion takes place and the corresponding classifier
is chosen based on the output of the feature extraction.

The majority of the overhead in this model is contained in
the first two layers of object detection and feature extraction
and as such choosing the proper action for these two layers is
important as the effects of these actions are cascaded through
the entire model. For example, with the object detection layer
we must simultaneously decide which object detector to use,
what amount of model compression is needed if any, as well as
determine whether it should be executed locally at the OBU
or offloaded to execute at the RSU. By choosing the more
heavyweight object detector and utilizing low or no model
compression, more objects are going to be detected on aver-
age; this is good for overall fusion accuracy, but more objects
detected means more data to be transmitted since more region of

Fig. 7. Overview of the data pathways of the action decision framework and
ensemble fusion model and their interaction with each other at the RSU. The
order that data is received/transmitted is shown in red numbers on the right which
corresponds to the process described in Fig. 2.

interest (ROI) images were produced. On the other hand, more
lightweight object detectors and/or moderate to high amounts
of model compression will be more likely to fail to detect some
objects which will reduce the end to end latency significantly,
both in computational inference time but also in transmission
latency due to transmitting less ROI image data, at the cost of
reduced fusion accuracy for the missed objects. There is a similar
trade-off for the feature extraction layer, but instead of more or
less ROI images being produced, it is smaller or larger feature
vectors that are used for the fusion classification.

A more detailed view of the RSU from Fig. 1 is shown in
Fig. 7, displaying the interaction of the action decision frame-
work and ensemble fusion model and the associated process that
occurs at each time step. If major or minor offloading are chosen,
this ensemble fusion model will be partitioned to execute some
layers at the OBU which reduces the amount of data that needs to
be transmitted over the wireless channel at the cost of increased
computational inference time; as such, utilizing higher levels of
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offloading is more useful when the wireless channel conditions
are good. Additionally, if full or major offloading is chosen,
data compression can be applied to the transmitted data. In any
case, using this ensemble fusion model provides a complete
toolkit of knobs that should allow for real-time collaborative
perception in nearly any condition given the presence of RSUs
and participating vehicles.

V. EXPERIMENTAL RESULTS

Now that we have presented our proposed REFO method,
including the action decision framework and ensemble fusion
model, we will show how they perform on real testing data. We
first describe the research setup used to collect this data followed
by a discussion on the action selections that were chosen for
testing and process of evaluating their execution latency. Finally,
the results of our framework on 5 G and C-V2X network traces
as well as a comparison of our model with related methods are
presented to conclude this section.

A. Research Setup

The research setup used for this work is a hybrid between
real-world wireless throughput traces and data recorded in a
digital simulation environment. For the real-world wireless com-
munications data, we use both 5 G and C-V2X communication
standards for vehicles to enable the sensor sharing [68]. We
chose C-V2X as it has one of the highest throughput of all
the current established vehicular communications standards, but
even so the channel throughput can be quite limited. Data was
recorded using C-V2X radios that we have set up on the UCSD
campus; a research vehicle equipped with a Commsignia OBU
kit [69] and a C-V2X OBU car antenna was driven along a
road near the RSU driving 10 mph. The RSU is mounted to a
light pole and consists of Commsignia RSU kit [70] and two
8 m height C-V2X Urban Antennas. Both Commsignia kits
are powered by Qualcomm C-V2X 9150 radio [71] running
3GPP Release 14 C-V2X standard [72]. The throughput that was
achieved using this setup is 0-3 Mbps, which is low compared to
emerging 5 G networks or even current 4 G LTE networks, but
does provide an opportunity to explore collaborative perception
in situations with more limited wireless networking (see our
previous paper for more information about our C-V2X setup
and data recording [73]).

For 5 G networks traces, there are a number of open source
datasets that exist that include 5 G network data in various
situations; [74] presents one such 5 G dataset that includes
5 G network traces from a moving vehicle and two example
traces were chosen for use as test sets: one where 0-30 Mbps of
throughput is achieved (5G-1) and another where the throughput
varied between 0-300 Mbps (5G-2). These two networks traces
along with the C-V2X network trace that we recorded provide
three very different wireless network conditions to demonstrate
the robustness of our proposed system. Visualisations of these
three networks traces can be seen in Fig. 8.

Since we only had access to a single vehicle outfitted with
external sensors and a OBU, we needed to obtain sensor data
for the sensor fusion from another source. We have recorded

Fig. 8. Plots showing the throughput of the three different network traces that
are being used as test scenarios.

Fig. 9. Example images from the virtual dataset used for testing showing:
(a) An overview of the virtual environment, (b) an example of a positive
object detection association and (c) an example of a negative object detection
association.

Fig. 10. MobileNet inference times on Nvidia RTX 1080Ti and Jetson TX2.
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Fig. 11. ResNet-50 inference times on Nvidia RTX 1080Ti and Jetson TX2.

Fig. 12. YOLOv5 inference times on Nvidia RTX 1080Ti.

RGB image data from moving vehicles in the CARLA [75] self
driving simulator that can be used for this purpose [1]. While
the wireless channel conditions of the physical environment are
going to be different than that of the virtual simulation, we are
using the images from CARLA and treating them as if vehicles
in the real world were recording them.

For the proposed REFO method, the sensor fusion task is not
set in stone and instead will be whatever is chosen by the end user.
For this work, we are using object detection association [1] as the
sensor fusion task that the performance evaluation will be based
on. In this task, the goal is to determine all associations between
objects detected by different vehicles to establish which objects
were seen by multiple vehicles and which objects were only
seen by a single vehicle. The final accuracy results, measured
in AP, reveal how accurately the fusion classifier was able to
correctly label these associations; this accuracy is affected by
the choice of object detector, feature extractor, and amount of
data/model reduction. An overview of the virtual environment
that the images were recorded in as well as example associations

Fig. 13. Latency Prediction DNN inference times on Nvidia RTX 1080Ti and
Jetson TX2.

are given in Fig. 9; for each example image pair, if the two
images are of the same vehicle they labeled to be a positive
association, as shown in Fig. 9(b), and if the image pair contains
pictures of different vehicles then it is labeled to be a negative
association, as shown in Fig. 9(c). The virtual data set that we
are using for this work has object association labels for ground
truth provided. For generating ground truth training data for the
DNN within the action decision framework, we test every action
combination using data from the vehicles in the virtual training
data to provide the number of vehicles and objects detected
per frame and sweep over all computing configurations (cc1
& cc2) and wireless throughput values (0-300 mbps) for the
remaining state values. For each data point, if the particular
action combination produces a latency < τ then it is labeled
True (1) and if the latency value ≥ τ then it is labeled False (0);
accordingly multiple different versions of the DNN were trained,
one for each of the chosen values of τ . Generating testing data
is the same process but instead of using a sweep of throughput
values, the data from the wireless traces seen in Fig. 8 is used.

B. Action Selection

For this edge fusion task, we wanted to provide different
trade-off options for each computation task to create a usable
action space so that a machine learning model can learn what the
best options are for different state combinations. YOLOv5 [76]
was chosen as object detector since it is both lightweight and
accurate; additionally there are multiple weights of the YOLOv5
model that have different amounts of parameters which cor-
respond to different levels of object detection accuracy and
execution latency; the 4 weights of YOLOv5 that were chosen
are:

1) YOLOv5s
2) YOLOv5m
3) YOLOv5l
4) YOLOv5x
For features extractors, we wanted to provide similar ac-

curacy/inference trade-offs and as such three different feature
extractors were chosen:

1) ResNet-50 [16]
2) MobileNet [77]
3) Color Histogram Extraction
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Fig. 14. Time series plots for two different combinations of computing configurations, network traces, and latency thresholds: [CC1, C-V2X, 500 ms] (a) and
[CC2, 5G-2, 100 ms] (b). The red lines show the state space for each time step while the green show the action decisions chosen by REFO and blue shows the
resultant latency and accuracy. The horizontal orange line in the latency plot represents the latency threshold (τ ) for that scenario.

Fig. 15. Results of all of the different action decision models averaged over
the three network traces.

The rationale between choosing these three models was to
choose a high (ResNet-50), medium (MobileNet), and low
(Color Histograms) complexity feature extraction method and
then use model compression to expand the high and medium
models to fill in the gaps in the decision space. We choose

color histograms as our low complexity model to provide very
low computation inference time as well as data size but could
have chosen lightweight multi-layer perceptron (MLP) DNN
models as well as other image descriptors [78], [79] or image
transforms [80], [81] if a larger decision space was needed.

The two deep convolutional neural network (CNN) models
can be compressed in a number of ways, one being model
slimming where a number of the weights/connections within the
neural network are removed to provide a faster executing model
at the cost of fusion accuracy [60]. We consider compression for
both compressing the models as well as compressing the sensor
data being transmitted from the OBU to the RSU in the cases of
Full or Minor offloading. The different compression levels we
are considering for these two tasks are shown below:

1) 0%
2) 25%
3) 50%
4) 75%
The combinations of all object detectors, feature extractors,

data/model compression levels along with the offloading levels
described in Section IV-A form the set of actions a = (d, e, o)
that form the state-action pairs for the vectors v that form the
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TABLE II
ALL POSSIBLE ACTIONS THAT CAN BE SELECTED. :% VALUES REPRESENT THE AMOUNT OF DATA/MODEL COMPRESSION THAT IS UTILIZED FOR THAT SELECTION

TABLE III
DEFINING THE TWO DIFFERENT COMPUTING CONFIGURATIONS THAT WE ARE

USING FOR PERFORMANCE EVALUATION

TABLE IV
YOLOV5 INFERENCE TIMES ON NVIDIA JETSON TX2

input set S of the action decision network. All the individual
actions that are available in the ensemble fusion model that is
being tested can be seen in Table II.

C. Evaluating Execution Latency and Sensor Fusion Accuracy

In order to simulate the latency experienced by the system in
terms of computational processing time, all feature extractors,
object detectors, fusion classifiers and the latency prediction
network were executed and averaged over 1000 inferences in
order to get an accurate estimate for the predicted amount of
computation time for each task. The computation tasks that are
most affected by the increasing in computing power, specifically
the GPU’s floating point operations per second (FLOPS), are
the deep CNNs used for object detection and feature extraction.
As such, the inference time varies significantly depending on
the hardware used. For this work, we are considering three
levels of computing represented by three different devices that
we are executing the chosen models on: NVIDIA Jetson TX2
(1.33 TFLOPS), NVIDIA RTX 1080Ti (11.3 TFLOPS), and
NVIDIA Tesla V100 (130 TFLOPS). With these three devices,
two different computing configurations are defined in Table III
named CC1 and CC2.

The computation inference latency of these deep CNNs is
also affected by the batch size, which in the case of feature
extraction is how many ROI images are produced by the object
detector. This latency trade-off is shown in Figs. 10 and 11,
showing how the execution latency of ResNet-50 and MobileNet
change depending on the hardware used and input batch size.
The same trade-off is seen for object detection in Fig. 12 which
use raw RGB images as input; since the Jetson TX2 is not being
considered as RSU computing hardware, only a object detection
batch size of 1 is needed since the OBU will at most have to
process a single image per time step and these values are shown
in Table IV. Many of the inference times for the Tesla V100
were available from NVIDIA [82] or the creator of the particular
model [83] and any missing values were interpolated.

The choice of hardware does not make as large of a difference
on inference time for the more lightweight tasks like the latency
prediction network. The inference times for different batch sizes
of the REFO action decision framework’s latency prediction

TABLE V
THE DIFFERENT LEVELS OF DATA AND MODEL COMPRESSION THAT ARE

BEING CONSIDERED WITH THE CORRESPONDING AMOUNT OF MAP
REDUCTION THAT IS EXPERIENCED BY THAT PARTICULAR COMBINATION OF

FEATURE EXTRACTOR AND COMPRESSION

network are shown in Fig. 13. In the case of the latency prediction
network, the batch size is equal to the size of S ′ which is the
total number of state action combination that remain after action
space reduction. Even on the NVIDIA Jetson TX2, our latency
prediction DNN only takes about 2 ms with the maximum
possible batch size. Similarly, the fusion classification layer of
the ensemble fusion model takes 2 ms or less on all hardware.

Each combination of object detector, feature extractor, and
compression level produces different accuracy results for this
fusion task; using more heavyweight object detectors and feature
extractors with little to no compression produces better results,
but the effects as more lightweight models and more compres-
sion are chosen is not uniform. This result can be seen in Table V,
which lists the percentage in AP reduction experienced by com-
pression when averaged over all testing configurations. While
this table shows how model compression has a less detrimental
effect on fusion accuracy than compression, their benefits are
quite distinct with the main benefit of data compression being
in reducing transmission latency while model compression is
reducing computational latency.

The more lightweight object detectors actually produce better
fusion accuracy due to fewer objects being detected by the object
detector, but we wanted to make sure that the system is not
rewarded for potentially missing important detections by always
using a more lightweight object detector, so the accuracy results
were weighted according to the number of images each object
detector detected. Since YOLOv5x is the most heavyweight
object detector being considered in this work, we assume this
object detector produces a true set of detections and will penalize
the more lightweight YOLO models according to how many
fewer objects they detected.

D. Performance Evaluation

For the purpose of performance evaluation of our proposed
REFO method, we examine 2 different scenarios of comput-
ing/network/latency threshold combinations to get some per-
spective on how our REFO action decision framework performs
in these situations. The two configurations are:

1) Computing = CC1, Network = C-V2X, τ = 500 ms
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TABLE VI
THE DIFFERENT STATIC BASELINES USED FOR PERFORMANCE EVALUATION

TABLE VII
PERFORMANCE COMPARISON SHOWING THE EMAP RESULTS OF DIFFERENT METHODS TESTED ON VARIOUS CONFIGURATIONS OF WIRELESS NETWORK

CONDITIONS, LATENCY THRESHOLDS, AND COMPUTING CONFIGURATIONS

2) Computing = CC2, Network = 5G-2, τ = 100 ms
In Fig. 14 we have presented two time series plots on

these two configurations which show the state space, actions
selected, and resultant latency and fusion mAP that were
achieved for each time step. For the latency plots, a horizontal
line is also included to show the latency threshold. As seen

in this figure, our model is able to successfully stay below
the latency threshold while actively adapting to the changing
state conditions; the ability to be just below the threshold for
most time steps shows that the system is optimizing the action
selection process well, but of course at the cost of the occasional
missed prediction where the latency threshold was exceeded.
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Each subplot for the pair of plots is temporally aligned so
that the vector v chosen by the action decision framework
can be seen for each time step. For example, at t = 0 in the
[CC2, 5G-2, 100ms] plot in Fig. 14(b) the chosen vector is
v∗ =< 9.426 mbps, CC2, 10, 18, Y OLOV 5x,MobileNet−
75%,Minor > .

One thing that stood out about our model’s action decision
is that it selects minor offloading for every single time step in
both of these situations, which is why a plot with this value is
not represented in Fig. 14. Since the difference in data is so
large between major and minor offloading (transmitting RoI
images versus transmitting feature vectors), there are only a
small percentage of cases where full or major offloading actually
improve the end-to-end latency of the system and as such our
latency prediction model has learned to almost always choose
minor offloading. For major and full offloading to be a more
effective tool in REFO, there would need to be a larger difference
in the computing power between that of the OBU and RSU, as
well as higher levels of wireless throughput than what we are
considering in this work. However, there is a large amount of
adaptation achieved by our model in terms of object detector
and feature extractor choices which allow the model to perform
well in both scenarios even though the network type, computing
configuration, and latency threshold are different.

To further validate the performance of our method, we im-
plemented a number of alternate methods to compare their
performance with that of our model; the full results of these
comparisons can be seen in Table VII and will be discussed
in the remainder of this section. While we presented detailed
results from our method in two different scenarios, we wanted
to ensure that our model would continue to perform well in all
scenarios. As such, we have tested the EmAP of our model over
all permutations of computing configurations [CC1, CC2], la-
tency thresholds [500/250/100/50 ms], and networks conditions
[C-V2X, 5G-1, 5G-2]. This produces 24 different scenarios, but
we excluded the scenario of CC1 and 50/100 ms thresholds since
this computing configuration was too weak for these latency
thresholds. We will be using the same ensemble fusion model for
all methods as well as training/testing data sets for all models that
require training. Since it is just the action decision process that
we are comparing, we will refer to our method as REFO-ADF to
show that we are comparing the REFO performance measured
im EmAP our our action decision framework (ADF) compared
to other methods when used in place of our ADF.

Four static models were created to act as performance base-
lines and are defined in Table VI. The lowest latency action
decision (aL) is the main performance baseline for determining
how successful a model is. This is because the EmAP per-
formance of aL will never change by definition of the EmAP
metric; if there is a situation where even aL will exceed the
latency threshold then no action exists which can satisfy the
QoS for this time step and the data point is discarded for EmAP
calculations. As such, the EmAP for aL will be. 621 for all
cases. Since this level of performance can be achieved by a static
model, the expectation is that models that can successfully adapt
to the changing conditions can provide more optimal levels of
performance. The other rows at the top of each table show the

other three static action selection strategies, whose performance
varies greatly depending on the situation. aH however performs
poorly in most cases; this is due to the fact that full offloading is
used in this strategy which does not work well for situations with
low throughput since all sensor data will be sent to the RSU with
no computation occurring at the OBU except data compression
if selected. aH utilizes full offloading, no compression, and
uses an uncompressed ResNet-50 as the feature extractor so the
only situations where this is possible is when the throughput is
high (> 50 Mbps) such as in 5G-2 (Table VII(c)). Additionally,
a greedy decision method was created that uses the channel
conditions to make a decision about which of the four static
method should be used at each time step.

Two ensemble learning methods are also employed with the
Random Forest [84] and Gradient Boosted Tree [85]. These deci-
sion tree based machine learning methods provide a non-neural
network comparison for our model that does not consume a
massive amount of training time or computing resources; they do
not perform as well as our proposed neural network based model,
but they do provide competitive levels of performance across
the majority of test configurations. In addition the these two
off-the-shelf methods, we also implemented two methods from
related works to examine how well these methods would preform
when tested in our created testing scenarios. One of these is an
adaptive task offloading method (ALTO) [54] and the other is
an AI-enabled edge task partitioning and model compression
algorithm (Edgent) [65]. As seen in the table, our proposed
REFO methodology is able to outperform all comparison models
in terms of the EmAP metric. The ALTO method is based on
the multi-armed bandit algorithm which proved to be effective
for the task partitioning and offloading decisions in vehicular
edge networks, but does not perform so well in choosing what
action to select in REFO; part of the reason for this is because
the actions become more likely to be selected the longer they go
without being selected in the multi-armed bandit, which is not
a good model trait for this particular problem. Edgent performs
well in the easy cases of high throughput, computing and latency
threshold, but falls behind the machine learning based methods
in other cases.

We provide a visual representation of the results from Ta-
ble VII in Fig. 15. This figure shows the results of each method
averaged over the 3 different network conditions providing a
visual summary of the testing results over all 18 test cases. As
is consistent with Table VII, the REFO-ADF line is the highest
on the graph with a sizable margin over the next best method in
all 6 computing/threshold configurations.

VI. CONCLUSION AND FUTURE WORK

In this work we proposed REFO, a method for achieving
multi-source sensor fusion for collaborative perception in a con-
nected vehicle environment even with highly varying wireless
channel and limited computation capacities. We implemented a
REFO action decision framework to determine the best action
decision given information about the current state. We tested our
method on both 5 G and C-V2X network traces and show that
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our REFO action decision framework is able to outperform the
best comparison methods by 9.6% on average.

This work is an important first step in exploring collaborative
perception in connected vehicle environments that we plan on
continuing as part of our smart transportation research.1 While
the fusion models explored in this work only use positional and
RGB image data, we plan to incorporate other models that can
utilize additional sensor modalities such lidar and/or radar data
or even telematics/telemetry data from the vehicle and explore
the challenges of heterogeneous sensor fusion. Additionally, we
want to improve the intelligence of the REFO action decision
framework to incorporate environmental context information
such as the weather or driver state information that can further
improve the performance of the system as well.
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