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Abstract

Electron-phonon interactions play an important role in understanding the properties of many

materials, and give rise to the non-trivial correlation effects, explaining the emergence of a variety

of ordered phases. This dissertation presents a Hybrid Quantum Monte Carlo (HQMC) method

for simulating quantum electron-phonon models. The details of this approach are explained within

the context of applying it to the widely studied Holstein model. We show that by achieving

a computational cost that scales near linearly with lattice size, HQMC enables the simulation

of system sizes a full order of magnitude larger than previously possible. Moreover, by using

intelligently constructed global updates that significantly reduce autocorrelation times, we are able

to simulate models with phonon frequencies in the adiabatic limit that are physically relevant to

real materials. We then study the emergence of Charge Density Wave (CDW) order in several

distinct Holstein models. The first includes electron hoppings (kinetic energies), which are different

in the x and y directions, describing a lattice to which strain has been applied. We also extend

previous investigations of CDW order in the square Holstein model to a cubic lattice, providing the

first determination of the critical temperature in three dimensions.
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CHAPTER 1

Introduction

Accounting for the effect of interactions between particles is essential when attempting to

understand material properties. Interactions give rise to correlated behaviors and are responsible

for the emergence of collective, ordered states. The Coulomb interaction between electrons, for

instance, not only plays an essential role in determining the electronic and structural properties

of many solid state systems, but also in the types of charge and spin order that can occur. A

quantum mechanical treatment of the interacting degrees of freedom in solids, as described by the

many particle Schrödinger equation, is frequently required to explain the varied ordered phases

observed in real materials.

Electron-phonon interactions, the interplay between electrons and the vibrations of nuclei in

a solid, also underlie many important physical phenomena, altering the effects of Coulombic in-

teractions, and giving rise to metal-insulator transitions, superconductivity, and charge-ordered

states. From the simplest perspective, the nuclei in a crystalline solid provide a rigid periodic

potential in which the electrons move, thereby determining the dependence of the electron energy

on momentum. The nuclei are, however, not completely static. Vibrations about their equilibrium

positions contribute to the specific heat and heat transport, and reduce sharp diffraction spots in

neutron scattering [5, 6, 7, 8]. Electrons can also excite and absorb energy associated with these

vibrations. In this way, electron-phonon interactions have a profound effect on the ‘dressed’ motion

of electrons, and therefore the electronic properties of materials as well.

While we can write down a general many-body Hamiltonian that describes both electron-

electron and electron-phonon interactions in solid state systems, an exact analytic solution for

the corresponding Schrödinger equation does not exist. As a result, approximate analytic meth-

ods, frequently based on various perturbative expansions and mean field theory, have proven an

indispensable tool in advancing our understandings of interaction effects in real materials. How-

ever, analytic methods must be applied judiciously, with an understanding of when and how their
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predictions break down. Mean field theories tend to exaggerate the effect of interactions in low

dimensional systems and those with small coordination numbers. On the other hand, perturba-

tive methods will frequently converge to the incorrect physics when the perturbing Hamiltonian

becomes sufficiently large or when attempting to describe systems at or near a phase transition.

A complementary approach is to identify the most important interactions in a system, while

simultaneously integrating out the high energy degrees of freedom, in order to arrive at an effective

low energy model that lends itself to a model Hamiltonian description [9, 10]. Perhaps the most

prominent example in condensed matter physics is the Hubbard model, which describes a system

of itinerant electrons on a lattice with an additional on-site repulsive interaction [11]. Despite the

model’s relative simplicity, it still exhibits many of the emergent phenomena observed in real mate-

rials, including antiferromagnetic order, Mott insulating behavior, and, potentially, unconventional

superconductivity [12,13,14].

If the Hubbard Hamiltonian is the simplest description for interacting electrons on a lattice, then

the Holstein Hamiltonian is the simplest model for describing electron-phonon interactions [15]. In

real materials the phonon energy has a non-trivial dependence on momentum, resulting in complex

multi-band dispersion relationships. The electron-phonon coupling is also expected to depend on

the electron and phonon momentum. The Holstein model, however, makes several simplifying

assumptions, one of which being that both the phonon energy and electron-phonon coupling are

independent of momentum. It further assumes that the motion of each ion is independent of its

neighbors, and may be represented by a Quantum Harmonic Oscillator (QHO) residing on each

site in the lattice.

Even with its many simplifying assumptions, the Holstein model still hosts complex ordered

phases and non-trivial correlation effects. For instance, the half-filled Holstein model has been found

to have finite temperature phase transition to Charge Density Wave (CDW) order on a variety of

bipartite lattices, where pairs of up and down spin electrons preferentially localize on one of the

two sub-lattices [1,3,4,16,17,18,19,20]. In the case of a square lattice, doping away from half-

filling, adding next-nearest neighbor hopping or introducing disorder in the on-site energy have all

been shown to result in the CDW order being supplanted by superconductivity [21,22,23,24,25].

Additionally, superconductivity has been observed in frustrated Holstein models as well [26].
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Qualitatively similar physics has been observed in real materials where electron-phonon inter-

actions are thought to play a prominent role in describing the low energy physics. For instance,

the formation of CDW order in transition metal dichalcogenides (TMDs) and the onset high tem-

perature superconductivity in the bismuthates Bi1−xKxBiO3 (BKBO) are thought to be driven by

large effective electron-phonon couplings [27,28,29,30,31,32,33]. While these complex systems

typically cannot be directly mapped onto an effective Holstein model, the fact that the Holstein

model is able to reproduce ordered phases analogous to those observed in real materials where

electron-phonon interactions play a prominent role certainly indicates that the model is worthy of

study.

Despite the relative simplicity of the Holstein and Hubbard models, an exact analytic solution

is rarely available, and approximate methods remain an important tool. However, if the system is

sufficiently small, it is possible to numerically solve for the states and corresponding energies of the

system using the Exact Diagonalization (ED) method [34]. With the complete state information

generated by ED, it is in principle possible to calculate the expectation value for any observable in

both the finite and zero temperature limits. Unfortunately, evaluating a numerically exact solution

when treating a fully quantum mechanical interaction results in a computational cost that scales

exponentially with the size of the system. This has limited ED to only being applied to systems of

a few tens of particles.

As a result, significant time and effort has been spent developing a class of stochastic simula-

tions referred to as Quantum Monte Carlo (QMC) methods. The QMC approach fully captures the

physics of quantum mechanical interactions, while also scaling as a power law in the number of par-

ticles rather than exponentially. For instance, the Blankenbecler Scalapino Sugar (BSS) auxiliary

field Determinant Quantum Monte Carlo (DQMC) method has been applied with great success

to simulating Hubbard model, allowing researchers to probe the low energy physics and emergent

ordered phases that occur [35,36]. Unfortunately, these investigations have been severely limited

by the sign problem, whereby the Fermionic determinant goes negative, preventing the Monte Carlo

weights that occur in DQMC from being directly interpreted as unnormalized probabilities [37].

Reweighting methods allow for the simulation of Hubbard models with a sign problem, but result
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in a computational cost that, like ED, also scales exponentially with both the inverse temperature

and lattice size [38,39].

Fortunately, DQMC simulations of the Holstein model avoid the sign problem entirely, even

when doped away from half-filling, due to the electron-phonon interaction being symmetric with

respect to spin [40]. Even so, with a computational cost that scales as the cube of the system size,

DQMC has been limited to simulating lattices of no more than a few hundred sites. Additionally,

the local updating scheme employed in DQMC suffers from long decorrelation times, especially

in the adiabatic limit where the phonon frequency is smaller than the hopping amplitude. This

has prevented DQMC from being able to simulate physically relevant phonon frequencies when

compared to real materials.

This thesis presents a Hybrid Quantum Monte Carlo (HQMC) method for simulating general

electron-phonon models that has a computational cost that scales near-linearly with system size

[41, 42, 43, 44, 45]. We apply the HQMC method to the Holstein model, showing it enables the

simulation of systems an order of magnitude larger than previously possible. Moreover, it is capable

of simulating systems with much smaller phonon frequencies, allowing for a more direct comparisons

to real materials. Having described the details of HQMC, this thesis next presents results for

two studies looking at the emergence of CDW order in Holstein models. The first looks at how

strain, represented by an anisotropic hopping amplitude, affects charge order in the square Holstein

model [17]. Next we look at CDW order in the cubic Holstein model, determining the critical

temperature for the first time [18]. Related work I have undertaken as a Ph.D. student, which is

nearing completion and not described here, concerns HQMC studies of a model in which phonons

couple to the fermionic hopping, appropriate to describing the physics of CDW transitions in the

bismuthates, and the development of a method to tune chemical potentials in grand canonical

simulations.

4



k+ q, σ

k, σ

igk,q

−q

k+ q, σ

k, σ

igk,q

q

Figure 1.1. Vertex diagrams for electron-phonon interaction depicting both the
phonon emission (left) and absorption (right) processes.

1.1. The Holstein Hamiltonian

In this section the Holstein model is introduced and discussed. However, we begin by defining

a more general electron-phonon Hamiltonian

Ĥ =

electron kinetic energy︷ ︸︸ ︷∑
k,σ

(
εk − µ

)
ĉ†k,σ ĉk,σ +

bare phonon energy︷ ︸︸ ︷∑
q

ωq

(
b̂†qb̂q +

1

2

)
+

electron-phonon interaction︷ ︸︸ ︷
1√
N

∑
k,q

gk,q ĉ
†
k+q,σ ĉk,σ

(
b̂q + b̂†−q

)
,(1.1)

where N is the system size. The operators b̂†q

(
b̂q

)
and ĉ†k,σ

(
ĉk,σ

)
are the creation (annihilation)

operators for a phonon with momentum q and electron with momentum k and spin σ respectively

[7]. For the sake of brevity, the Hamiltonian in Eq. (1.1) has been limited to a single-band electron

dispersion relation εk with chemical potential µ, and a single phonon branch with momentum-

dependent frequency ωq. However, this definition can be generalized to systems with multi-band

electron and phonon dispersion relationships. Finally, the electron-phonon interaction strength is

controlled by gk,q, where the interaction term describes the momentum k of an electron changing

by an amount q as a result of a single phonon either being absorbed or emitted. Fig. 1.1 shows the

corresponding vertex diagrams for both processes.

While the Hamiltonian in Eq. (1.1) allows for a more complicated functional form for the

electron-phonon interaction than the Holstein model, it is still not entirely general. The bare phonon

energy assumes the fluctuations in the position of ions composing a solid are well described by small

harmonic motions. Therefore, it is derived by expanding the ion-ion interaction in the ion position

about the equilibrium configuration and truncating at second order, with the material specific
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information contained in the resulting ωq. The electron-phonon interaction term, with a momentum

dependent coupling gk,q, is derived by taking the electron-ion interaction, and again expanding

about the equilibrium ion configuration. However, this time the resulting Taylor expansion is

truncated at first order. A more detailed discussion of the complete procedure required to derive

Eq. (1.1) can be found in many introductory condensed matter physics and many-body theory

textbooks [5,7,8,23].

It is also useful to define an effective dimensionless electron-phonon interaction strength

(1.2) λeff = NFS

〈〈
g2
k−k′

ωk−k′

〉〉
FS

,

where 〈〈·〉〉FS denotes an average over the Fermi Surface, and NFS is the density of states at the

Fermi Surface [7]. It is possible to approximately calculate λeff using ab initio methods like the

GW method and density functional theory (DFT) [31,46]. The electron-phonon coupling can also

be measured using angle-resolved photoemission (ARPES) experiments, where an estimate can

be extracted based on the observed renormalization of the measured spectral function [47]. In

Resonant Inelastic X-ray Scattering (RIXS) experiments it is also possible to measure the electron-

phonon coupling strength [48,49]. This is done by relating λeff to the measured half-life of excited

core electron-hole pairs generated by the high energy incident X-ray light.

The Holstein Hamiltonian may now be introduced as a limit of Eq. (1.1) in which the phonon fre-

quency and electron-phonon coupling are momentum independent constants. The Holstein Hamil-

tonian in momentum space is therefore

(1.3) Ĥ =

Ĥel︷ ︸︸ ︷∑
k,σ

(
εk − µ

)
ĉ†k,σ ĉk,σ +

Ĥph︷ ︸︸ ︷
ω0

∑
q

(
b̂†qb̂q +

1

2

)
+

Ĥel-ph︷ ︸︸ ︷
g√
N

∑
k,q

ĉ†k+q,σ ĉk,σ

(
b̂q + b̂†−q

)
,

where Ĥel is the electron kinetic energy, Ĥph describes a dispersionless optical phonon mode with

frequency ω0, and Ĥel-ph is the electron-phonon interaction characterized by a coupling constant g.

Thus, when compared to Eq. (1.1) the only differences are ωq 7→ ω0 and gk,q 7→ g. By transforming

the electron and phonon creation (annihilation) operators from momentum to position space using

6



the definitions

ĉr,σ =
1√
N

∑
k

e−ik·rĉk,σ ĉ†k,σ =
1√
N

∑
k

eik·rĉ†r,σ(1.4)

b̂r =
1√
N

∑
k

e−ik·rb̂k b̂†k =
1√
N

∑
k

eik·rb̂†r,(1.5)

the Holstein Hamiltonian in position space is

(1.6) Ĥ =

Ĥel︷ ︸︸ ︷
−t

∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + h.c.

)
− µ

∑
i,σ

n̂i,σ +

Ĥph︷ ︸︸ ︷
ω0

∑
i

(
b̂†i b̂i +

1

2

)
+

Ĥel-ph︷ ︸︸ ︷
g
∑
i,σ

(
b̂†i + b̂i

)
n̂i,σ,

where i and j specify sites in a lattice. The number operator n̂i,σ = ĉ†i,σ ĉi,σ gives the density of

electrons on site i with spin σ. In Ĥel the sum over 〈i, j〉 indicates a sum over all nearest-neighbors

pairs in the lattice, with hopping amplitude t between them.

Next, by defining phonon position and momentum operators

X̂i =

√
1

2ω0

(
b̂†i + b̂i

)
(1.7)

P̂i =i

√
ω0

2

(
b̂†i − b̂i

)
,(1.8)

we may express the Holstein model as

(1.9) Ĥ =

Ĥel︷ ︸︸ ︷
−t

∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + h.c.

)
− µ

∑
i,σ

n̂i,σ +

Ĥph︷ ︸︸ ︷
1

2
ω2

0

∑
i

X̂2
i +

1

2

∑
i

P̂ 2
i +

Ĥel-ph︷ ︸︸ ︷
λ
∑
i,σ

X̂in̂i,σ,

where λ =
√

2ω0 g. In order to make the continued discussion of the Holstein Hamiltonian more

concrete, we will consider the model within the context of an isotropic square lattice with only

nearest neighbor hopping. The non-interacting electronic dispersion relation is then given by εk =

−2t (cos (kx) + cos (ky)), with a corresponding bandwidth W = 8t. We also introduce the constant

λD = λ2

ω2
0W

= 2g2

ω0W
, which is a simplified version of dimensionless electron-phonon coupling λeff ,

where NFS is approximated by 2
W . Finally, as written in Eq. (1.9), the chemical potential for

half-filling is µ = − λ2

ω2
0
.
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At half-filling, a particle-hole transformation, which leaves the Hamiltonian invariant up to an

overall constant, can be applied by taking ĉl,σ 7→ (−1)l d̂†l,σ and ĉ†l,σ 7→ (−1)l d̂l,σ. The factor of

(−1)l appearing in the transformation takes on the value +1 for one sublattice, and 0 for the other.

However, it is also necessary to simultaneously apply an additional transformation X̂i 7→ − λ
ω2

0
−X̂i.

This symmetry additionally ensures that the expectation value for the phonon position in a half-

filled Holstein model is 〈X〉 = − λ
ω2

0
. However, the transformation to X̂ can be simplified by using

a modified definition for Ĥel-ph in the Holstein Hamiltonian

(1.10) Ĥ =

Ĥel︷ ︸︸ ︷
−t

∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + h.c.

)
− µ

∑
i,σ

n̂i,σ +

Ĥph︷ ︸︸ ︷
1

2
ω2

0

∑
i

X̂2
i +

1

2

∑
i

P̂ 2
i +

Ĥel-ph︷ ︸︸ ︷
λ
∑
i,σ

X̂i

(
n̂i,σ −

1

2

)
,

where the chemical potential corresponding to half-filling is now µ = 0. In this case, a particle-hole

transformation instead requires X̂i 7→ −X̂i, implying that 〈X〉 = 0. Moving forward we will assume

this form for the Holstein Hamiltonian.

Owing to the spatially local nature of both the phonon mode and electron-phonon interaction,

the Holstein Hamiltonian has been used as model for both describing and studying small polaron

physics, especially in the dilute single-electron limit. A polaron is a “dressed” electron surrounded

by a fluctuating cloud of phonons, with a resulting effective mass m∗ that is greater than that of a

bare electron m. At weak coupling m∗ increases gradually with interaction strength λD, whereas

in the strong coupling limit m∗ grows exponentially with λD. At intermediate coupling a crossover

between these two types of limiting behaviors occurs. In general, the transition from the weak to

strong coupling regimes, as determined by the dependence of m∗ on λD, happens more rapidly in

higher dimensions and in the adiabatic limit [50,51,52,53,54,55,56,57].

In addition to polaron physics, electron-phonon interactions can also give rise to an emergent

phonon-mediated attractive interaction interaction between electrons, and this remains true in

the Holstein model. To lowest order, this behavior arises when two electrons with opposite spin

exchange a single phonon, with the diagram for this process shown in Fig. 1.2. In the case of the

Holstein model, where both the coupling constant g and phonon frequency ω0 are independent of
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k, σ

k+ q, σ

k′,−σ

k′ − q,−σ

igk′,qigk,q

q iνn

Figure 1.2. Diagram for a pair of electrons with opposite spin exchanging a single
phonon.

momentum, the corresponding retarded interaction between electrons is

V 0
eff (iνn) =

2ω0 g
2

(iνn)2 − ω2
0

,(1.11)

where νn = 2πn
β

(
ωn = 2π(n+1)

β

)
, with n ∈ Z, are the bosonic (fermionic) Matsubara frequencies

[7,8,24].

This phonon exchange process is most important when trying to describe the behavior of elec-

trons on or near the Fermi surface. In this case we expect close to zero energy is transferred between

a pair of electrons when a phonon is exchanged, which corresponds to iνn → 0. Therefore, in most

situations where the phonon-mediated electron-electron interaction plays an important role, the

effective interaction is well parameterized by

(1.12) Ueff = V 0
eff (0) = −2g2

ω0
= −λ

2

ω2
0

,

where Ueff < 0 implies an attractive interaction between electrons [7]. It is maybe unsurprising then

that in the anti-adiabatic limit (ω0 →∞), the Holstein model maps onto the attractive Hubbard

model with interaction strength U = Ueff [22,58,59,60]. An alternative approach for arriving at

and understanding Ueff can be found in Sec. A.2, which discusses the single-site Holstein model in

the adiabatic limit.

The effective attractive interaction between electrons gives rise to both the finite-temperature

phase transition to checkerboard CDW order in the half-filled square Holstein model, and the

emergence of superconductivity (SC) upon doping. In the half-filled case, as the temperature,
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is lowered small bipolarons begin to form, characterized by the occurrence of doubly occupied

sites. At the CDW transition temperature the bipolarons begin to preferentially localize on a

single sub-lattice, forming checkerboard CDW order. At the same time a gap opens at the Fermi

surface in the spectral function. This CDW phase transition is in the 2D Ising universality class, as

it breaks the two-fold discrete symmetry between the equivalent sub-lattices [1]. Upon doping to

incommensurate densities away from half-filling, the CDW order breaks down, allowing for increased

bipolaron mobility and the emergence of a superconducting ground state [22].

1.2. A Monte Carlo Primer

This section provides a basic introduction to Monte Carlo (MC) methods. Stated simply, MC

methods are a class of stochastic algorithms for performing function integration that are frequently

used to sample unnormalized probability distributions in an unbiased fashion. The origins of MC

date back nearly seventy years to neutrino diffusion research at Los Alamos National Laboraory

(LANL), and were initially formulated within the context of statistical mechanics, the study of

many-particle Hamiltonian systems in thermal equilibrium with their environment. Given a many-

particle Hamiltonian Ĥ and inverse temperature β, the Boltzmann distribution

(1.13) π (s) =
1

Z

〈
s
∣∣∣e−βĤ ∣∣∣ s〉

is the probability that a system at equilibrium is in a given microstate s, where the partition

function

(1.14) Z =
∑
s

〈
s
∣∣∣e−βĤ ∣∣∣ s〉

is the normalizing constant for the Boltzmann distribution. We are typically interested in deter-

mining the equilibrium properties of a system, which requires calculating expectation values

(1.15) 〈O〉 =
1

Z

∑
s

〈
s
∣∣∣e−βĤÔ∣∣∣ s〉

for various observables Ô.

In the case of classical statistical mechanics, in which the quantum degrees of freedom are re-

placed by classical ones, Ĥ becomes an energy function E (s) , such that the Boltzmann distribution
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and partition function are instead given by

(1.16) π (s) =
1

Z
e−βE(s)

and

(1.17) Z =
∑
s

e−βE(s).

Similarly, the expectation value for an observable is

(1.18) 〈O〉 =
1

Z

∑
s

e−βE(s)O (s) .

Typically, analytic expressions for Eq. (1.17) and Eq. (1.18) are only available for non-interacting

systems.

For interacting systems, where an exact solution is unavailable, MC simulations can be used

to generate unbiased estimate for the expectation value of various physical observables. Exactly

calculating Eq. (1.18) requires evaluating a sum over all possible states s. Unfortunately, this is

infeasible for most interesting problems as the state space is usually too large to explicitly sum

over. MC simulations instead seeks to produce an unbiased sample of the states s according to

an unnormalized target distribution by preferentially sampling the most likely states, a procedure

known as importance sampling [61,62]. For statistical mechanics problems the target distribution

is of course the Boltzmann distribution.

The most widely used MC variant is the Markov Chain Monte Carlo (MCMC) method. In

MCMC simulations a state s is incrementally updated through a Markov process where each new

sampled state only depends on the current state of the system. To ensure a MCMC simulation

converges to a stationary distribution given by the specified target distribution, two conditions need

to be satisfied [63,64,65]:

• The gobal balance equation is satisfied.

• The Markov process must be ergodic.

To make this conversation more concrete, consider a discrete random variable X that can take

on N possible values, each with a probability πi = π (xi). A MCMC simulation uses a Markov
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process to sample a sequence of states x1, . . . , xτ , . . . using conditional probabilities to generate the

sequence that satisfy

(1.19) P (xτ |xτ−1, . . . , x1) = P (xτ |xτ−1) .

Adopting the notation pij = P (xi|xj) for conditional probabilities, each pij value can be viewed as

a matrix element in an N ×N transition probability matrix T subject to the normalizing constraint

that each column sum to unity,
∑

i pij = 1. Matrices of this type are called stochastic matrices.

For the stationary distribution of a Markov process using transition probabilities pij to equal

the target distribution π = (π1, . . . , πi, . . . , πN ), the global balance equation

(1.20) πi =
∑
j

pijπj

must be satisfied. A sufficient, but not necessary, criteria for satisfying the global balance equation

is to instead satisfy the more restrictive detailed balance condition

(1.21)
πi
πj

=
pij
pji

for all possible pairs of states xi and xj . Moving forward, we will restrict ourselves to MCMC

methods that construct Markov chains using transition probabilities that satisfy detailed balance.

The global balance equation defined in Eq. (1.20) may also be expressed as the matrix-vector

equation π = Tπ, which immediately tells us that π is in fact an eigenvector of T with correspond-

ing eigenvalue equal to unity. It is straightforward to show that the eigenvalues εT of any stochastic

matrix T fall within the range 0 < |εT | ≤ 1. Therefore, π is the eigenvector of T with the largest

eigenvalue. In fact, any time a stochastic matrix has only a single eigenvalue equaling unity, the

corresponding eigenvector gives the stationary distribution corresponding to that stochastic matrix.

A stochastic matrix T , and the corresponding Markov process is generates, is guaranteed to satisfy

this condition if it is both aperiodic and irreducible.

A state in a Markov process has a period l if l is the largest integer value that always evenly

divides the number of states it takes a Markove process to return to that same initial state. A

Markov process is aperiodic if every state has a period l = 1, i.e. every state is itself aperiodic.
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Similarly, a Markov process is irreducible if any state can be reached from any other state. A

Markov process, and corresponding transition probability matrix T , is said to be ergodic if it

is both irreducible and aperiodic. Why is it important that a Markov process be ergodic? An

ergodic Markov process is guaranteed to approach a single fixed stationary distribution given any

initial state. Therefore, an MCMC simulation is similarly guaranteed to approach a specific target

distribution as long as the underlying Markov process satisfies detailed balance and is ergodic.

It is then essential that MCMC simulations use transition probabilities that satisfy detailed

balance. The Metropolis-Hastings (MH) algorithm is the most famous and widely used method for

doing so [66,67]. It is useful to break the transition probabilities used in simulation into two pieces

(1.22) pij = aijtij ,

where tij = t (xj → xi) is the probability of proposing an update from state xj to xi, and aij is

the probability of accepting that update once proposed. The MH algorithm says, given the current

state of the system xj , accept an update to a state xi with probability

(1.23) aij = min

(
1,
πi tji
πj tij

)
.

In other words, given xτ = xj , let the next τ + 1 element in sampled MCMC sequence go to

xτ+1 = xi with probability aij . Otherwise leave the state unchanged such that xτ+1 = xj instead.

Remarkably, Eq. (1.23) is only a function of the probability ratio between two states πi/πj ,

which only requires the ability to evaluate π (X) up to a normalizing constant that may remain

unknown. Therefore, the MH algorithm allows MCMC simulations to sample unnormalized prob-

ability distributions. However, while a properly constructed MCMC simulation is guaranteed to

converge to the correct stationary distribution in the limit the simulation runs for an infinitely long

time, the relative efficiency of an MCMC simulation very much depends on how updates are pro-

posed, which is determined by the proposal distribution tij that is used in a simulation. Most often

people choose symmetric proposal distributions tij = tji, in which case the MH decision simplifies

to

(1.24) aij = min

(
1,
πi
πj

)
.
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In the case of classical statistical mechanics simulations where the equilibrium distribution for

states s is given by the Boltzmann distribution, the MH algorithm is frequently written as

(1.25) aij = min
(

1, e−β(E(si)−E(sj))
)
.

This form emphasizes that the acceptance probability for a proposed update is a function of the

change in energy ∆Eij = E (si) − E (sj). If the energy of the system is reduced (∆Eij < 0) the

update is always accepted (aij = 1), but if the energy of the system instead increases (∆Eij > 0)

the update will instead be accepted with a probability aij = e−∆Eij .

In the statistical mechanics context where MCMC simulations correctly sample states according

to the Boltzmann distribution, an expectation value 〈O〉 can be simply estimated as

Ō =
1

N

N∑
i=1

O (si) ,

where N is the number of sampled states. Estimating the error ∆O associated with Ō is a subtle

question given that the sampled states generated by an MCMC simulation are correlated. A widely

used and simple approach to calculating the error is the rebinning or bunching method. In this

method the data is partitioned into a small number of subsets, or bins, and then the average

value for each bin is calculated. The error is then reported as the standard deviation of the mean

with respect to the average value calculated for each bin [61]. In this dissertation error bars are

calculated using the rebinning method with the number of bins set to Nbin = 10.
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CHAPTER 2

The Hybrid Quantum Monte Carlo Method

In this chapter I introduce methodologies for highly scalable quantum Monte Carlo simulations

of electron-phonon models, and report benchmark results for the Holstein model on the square

lattice. The determinant quantum Monte Carlo (DQMC) method is the traditional tool used to

simulate simple electron-phonon models at finite temperatures, but incurs a computational cost

that scales cubically with system size. Alternatively, near-linear scaling with system size can be

achieved with the hybrid Monte Carlo (HMC) method and an integral representation of the Fermion

determinant. Here, I introduce a collection of methodologies that make such simulations even faster.

To combat “stiffness” arising from the bosonic action, I review how Fourier acceleration can be

combined with time-step splitting. To overcome phonon sampling barriers associated with strongly-

bound electron pairs, I design global Monte Carlo updates that approximately respect particle-hole

symmetry. To accelerate the iterative linear solver, I introduce a preconditioner that becomes exact

in the adiabatic limit of infinite phonon mass. Finally, I demonstrate how stochastic measurements

can be accelerated using fast Fourier transforms. These methods are all complementary and,

combined, may produce multiple orders of magnitude speedup, depending on model details.

2.1. Background

As a nonperturbative and controlled approach, quantum Monte Carlo (QMC) methods have

been instrumental in advancing our understanding of interacting solid state systems. In particular,

the broad class of determinant QMC (DQMC) methods have proven highly effective in helping

to characterize various correlated phases that arise as a result of interactions [35]. Perhaps most

notably, DQMC has enabled the study of electron-electron interactions in the repulsive Hubbard

model, where Mott insulator physics, magnetic order, unconventional superconductivity, and vari-

ous additional correlation effects have been observed [12,13,14,36,68]. The sign problem, however,
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has severely limited our ability to simulate systems absent particle-hole or other symmetries, giv-

ing rise to an effective computational cost that scales exponentially with system size and inverse

temperature [37,69,70,71,72,73,74].

Electron-phonon models, on the other hand, are a family of Hamiltonian systems that en-

tirely evade the sign problem, while still playing an important role in describing the effect of

interactions in solid state systems. Electron-phonon interactions are essential in explaining a

host of ordered phases in material systems, such as charge density wave (CDW) order in tran-

sition metal dichalcogenides (TMDs) and high temperature superconductivity in the bismuthates

Bi1−xKxBiO3 (BKBO) [26,27,28,29,30,32,33]. Significant effort has gone towards using DQMC

to study Hamiltonian systems with electron-phonon interactions, in particular the Holstein and

Su-Schrieffer-Heeger (SSH) models [3, 4, 16, 17, 22, 24, 31, 58, 60, 75, 76, 77]. Although absent

the sign problem, DQMC simulations of electron-phonon models can quickly become prohibitively

expensive. Explicit evaluation of the Fermion determinant results in a computational cost that

scales cubically with system size. Moreover, simulations of both the Holstein and SSH models

suffer from significantly longer autocorrelation times than comparable DQMC simulations of the

repulsive Hubbard model. While DQMC simulations of the Holstein model have been successfully

accelerated using self-learning Monte Carlo (SLMC) techniques, these gains are ultimately limited

by the system size scaling of the underlying algorithms [78,79].

Many recent studies of the Holstein and SSH models have used the Langevin method [18,20,80,

81]. The traditional Langevin approach introduces a discretization error associated with the finite

time-step used to integrate the stochastic dynamics. Such error can, in principle, be eliminated

by introducing an accept/reject step for each proposed Langevin update [82, 83]. An alternative

to the Langevin approach is hybrid Monte Carlo (HMC) [43]. Originally developed for lattice

gauge theory simulations, the method now finds applications well beyond physics, where it more

commonly goes by the name Hamiltonian Monte Carlo [84]. Interestingly, the Langevin method

can be viewed as a special case of HMC, for which the Hamiltonian trajectory length consists of

only a single time-step [84]. Longer trajectories with persistent momentum can be advantageous,

however, to reduce autocorrelation times [85].
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As applied to QMC simulations, Langevin and HMC methods offer the promise of near linear-

scaling with system size. The general framework is as follows: The aim is to sample a field x

according to a probability weight that is proportional to a Fermion determinant detM(x). Seek-

ing to avoid explicit calculation of this determinant, one instead uses a stochastic approximation

scheme, which requires application of the Green function matrix M−1(x) to a vector. The matrix

M(x) is highly sparse, and very efficient to apply. Iterative linear solvers, such as conjugate gradient

(CG), are effective if M(x) is reasonably well conditioned, for typical samples x. Good conditioning

is not guaranteed; previous studies of the Hubbard model have found that the condition number

can sometimes grow exponentially (e.g., as a function of inverse temperature), making iterative

solvers impractical [41,42,44]. Fortunately, for models of electron-phonon interactions, the condi-

tion number of M(x) seems to be reasonably well controlled. Although traditional Langevin and

HMC formulations have already been successfully applied to electron-phonon simulation, there are

opportunities for substantial improvement, as we shall demonstrate in this chapter.

In what follows, we will interweave our new algorithmic developments with benchmarks on a

prototypical reference system: the square-lattice Holstein model, which we review in Sec. 2.2. Our

core framework for sampling the phonon field is HMC, which we review in 2.3. This application of

HMC is fairly sophisticated, involving both Fourier acceleration and time-step splitting to handle

the highly disparate time-scales that appear in the bosonic action.

At low temperatures, the sampling of phonons can still be hindered by the formation of tightly-

bound electron pairs. To combat this, we employ global Monte Carlo updates as described in

Sec. 2.4. For example, by reflecting the entire phonon field (x → −x) at a particular site, the

configuration can “tunnel through” a possibly large action barrier. We achieve an improved ac-

ceptance rate for these moves by carefully formulating the effective action maximally to respect

known particle-hole symmetries of the original Hamiltonian. These global updates drastically re-

duce autocorrelation times, and mitigate ergodicity concerns associated with the crossing of nodal

surfaces [41,80], while maintaining excellent scalability of the method.

All components of the simulation can be accelerated by reducing the cost of CG for the linear

solves. In Sec. 2.5 we introduce a novel preconditioner that significantly reduces the required number

of iterations for CG to converge. Specifically, we formulate the preconditioner P (x) to have the
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same structure as M(x), but absent fluctuations in imaginary time. Application of P−1(x) to

a vector can be performed very efficiently through the use of fairly sophisticated mathematical

techniques, which we review in Sec. 2.5.2.

If one is not careful, the cost to perform measurements can easily dwarf the cost to sample the

phonon field. By Wick’s theorem, all electronic measurements can be reduced to products of the

single-particle Green function, and the latter can be sampled from the matrix elements M−1(x).

It is therefore essential to be able to estimate elements of M−1(x) efficiently. For this we use

stochastic techniques that retain the overall near linear-scaling of computational cost with system

size. Section 2.6 describes how fast Fourier transforms (FFTs) can be used to preserve this scaling,

even when averaging correlation functions over all all sites and imaginary-times.

2.2. The Holstein model as a benchmark system

2.2.1. Model definition. The methods presented in this chapter should apply generally to

models of electron-phonon interactions, including the SSH and Holstein models. For concreteness,

we select the latter for our benchmarks [15],

Ĥ = Ĥel + Ĥph + Ĥel-ph(2.1)

Ĥel = −
∑
i,j,σ

tij ĉ
†
i,σ ĉj,σ − µ

∑
i,σ

n̂i,σ(2.2)

Ĥph =
mphω

2
0

2

∑
i

X̂2
i +

1

2mph

∑
i

P̂ 2
i(2.3)

Ĥel-ph = λ
∑
i,σ

X̂i

(
n̂i,σ −

1

2

)
,(2.4)

with the normalization ~ = 1 applied throughout. The first term, Ĥel, models the electron ki-

netic energy via the hopping strengths tij = tji, and controls electron filling through the chemical

potential µ. As usual, ĉ†i,σ
(
ĉi,σ
)

is the fermionic creation (annihilation) operator for an electron

with spin σ, and n̂i,σ = ĉ†i,σ ĉi,σ is the electron number operator. The second term, Ĥph, describes

a dispersionless phonon mode with energy ω0 and mass mph, modeled via the canonical position

and momentum operators X̂i and P̂i respectively. Henceforth the phonon mass is normalized to
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one, mph = 1, and suppressed. The last term, Ĥel-ph, introduces an electron-phonon coupling with

strength λ.

2.2.2. Benchmark parameters. Our methodology applies to models with arbitrary lattice

type, hopping matrix, and electron filling fraction, but we must make some specific choices for

our benchmarks. We select the square lattice Holstein model at half filling (µ = 0). We include

only a nearest neighbor electron hopping with amplitude tij = 1, which defines the basic unit of

energy. For the square lattice, the non-interacting bandwidth is then W = 8. The discretization in

imaginary time, which controls Suzuki-Trotter errors, will be ∆τ = 0.1. Our benchmarks will vary

over the number of lattice sites, N , and the inverse temperature, β. A useful reference energy scale

is the dimensionless electron-phonon coupling, λD = λ2/
(
ω2

0 W
)
. We will consider two coupling

strengths, λD = 0.25 or λD = 0.60, and two phonon frequencies ω0 = 0.1 and ω0 = 1.

For these Holstein systems, the stable phase at low temperatures and half-filling is charge-

density-wave (CDW) order; electrons form a checkerboard pattern, spontaneously breaking the

Z2 symmetry between sublattices. In the case of ω0 = 1.0 and λD = 0.25, the CDW transition

temperature is βcdw ≈ 6 [1,20]. To detect this phase the (π, π) charge structure factor

Scdw =
∑

r

(−1)rx+ry C(r),(2.5)

is measured, where

(2.6) C(r) =
1

N

∑
r′

〈n̂r′+rn̂r′〉 ,

is the real-space density-density correlations in n̂r = n̂r,↑ + n̂r,↓. Here we are using integers

r = (rx, ry) to index sites on the square lattice, assuming periodic boundary conditions. Su-

perconducting order, on the other hand, can be detected using the pair susceptibility

(2.7) Ps =
1

N

∫ 〈
∆̂ (τ) ∆̂† (0)

〉
dτ,

where ∆̂ (τ) =
∑

r ĉr,↓ (τ) ĉr,↑ (τ).

All results reported in this chapter use HMC trajectories comprised of Nt = 100 time-steps

(Sec. 2.3). Except where noted, we will use Fourier acceleration with mass regularization mreg = ω2
0
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(Sec. 2.3.1.1), and time-step splitting with nt = 10 (Sec. 2.3.1.2). We will use a varying number

of thermalization and simulation HMC trial updates, denoted Ntherm and Nsim respectively, with

measurements performed following each simulation update.

2.2.3. Path integral representation. To measure thermodynamic properties, one can for-

mulate a path integral representation of the partition function. Here I work through how the

partition function for the Holstein model,

(2.8) Z = trel-ph e
−βĤ ,

can be formulated as a path integral over phonon fields. The trace is over the combined Fock space

for both electron and phonon operators. The Suzuki-Trotter approximation yields [86]

Z ≈ trel-ph

[
e−

∆τ
2
Ĥel-phe−∆τ(Ĥel+Ĥph)e−

∆τ
2
Ĥel-ph

]Lτ
= trel-ph

[
e−∆τĤel-phe−∆τĤele−∆τĤph

]Lτ
,(2.9)

where β = ∆τ is the discretization in imaginary time. In the second step we used the fact that

Ĥph and Ĥel commute, and the cyclic property of the trace. This approximation is valid to order

O(∆τ2).

The next step is to evaluate the phonon trace in the position basis. This is done by repeatedly

inserting the identity operator
∫
dNx |x〉〈x|, where |x〉 = |x1, x2, . . . xN 〉 denotes an entire real-space

phonon configuration, such that the integral is understood to be over all sites. Using 〈xτ |xτ+1〉 =

δ(xτ − xτ+1), the result is

(2.10) Z ≈ trel

∫
Dx

Lτ−1∏
τ=0

e−∆τĤel-ph(xτ )e−∆τĤel〈xτ |e−∆τĤph |xτ+1〉,

where the differential Dx indicates a path integral over all phonon fields xi,τ . Ĥel-ph(xτ ) denotes

the operator Ĥel-ph with the replacement X̂ 7→ xτ , subject to the periodic boundary condition

xLτ ≡ x0. Next we write
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(2.11) Z ≈ trel

∫
Dx e−SB

Lτ−1∏
τ=0

e−∆τĤel-ph(xτ )e−∆τĤel ,

where

(2.12) e−SB =

Lτ−1∏
τ=0

〈xτ |e−∆τĤph |xτ+1〉.

Again using a symmetric operator splitting,

(2.13) e−∆τĤph ≈ e−∆τ
ω2

0
4
X̂2
e−∆τ 1

2
P̂ 2
e−∆τ

ω2
0
4
X̂2
,

we find

(2.14) 〈xτ |e−∆τĤph |xτ+1〉 ≈ e−
∆τω2

0
4 (x2

τ+x2
τ+1)〈xτ |e−∆τ 1

2
P̂ 2 |xτ+1〉

which is locally valid to O(∆τ3). In this notation, we are treating xτ and P̂ as N -component

vectors. The second factor can be evaluated by inserting a complete set of momentum states,

〈xτ |e−∆τ 1
2
P̂ 2 |xτ+1〉 =

∫
dNp〈xτ |p〉e−∆τ 1

2
p2〈p|xτ+1〉

=

∫
dNpe−

∆τ
2
p2+ip·(xτ+1−xτ )

∝ e−
∆τ
2

(
xτ+1−xτ

∆τ

)2

.(2.15)

Combining Eqs. (2.11)–(2.15), and recalling that xLτ = x0, we arrive at the “bosonic action” for

the phonons,

(2.16) SB ≈ ∆τ

N∑
i=1

Lτ−1∑
τ=0

[
1

2
ω2

0x
2
i,τ +

(xi,τ+1 − xi,τ )2

2∆τ2

]
+ const.

This approximation is valid to order O(∆τ2) because we have chained the approximation in

Eq. (2.14) order 1/∆τ times.

With some algebraic rearrangement, the partition function in Eq. (2.11) may be written
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Z ≈
∫
Dx e−(SB−∆τλ

∑
i,τ xi,τ) trel

Lτ−1∏
τ=0

∏
σ=↑,↓

e−∆τV̂τ,σe−∆τK̂σ ,

where

V̂τ,σ =
∑
i

(λxi,τ − µ) n̂i,σ(2.17)

K̂σ = −
∑
ij

tij ĉ
†
i,σ ĉj,σ,(2.18)

are purely quadratic in the Fermions, making it possible to evaluate the remaining electron trace.

Since the two spin sectors are not coupled, the result is [35]

trel

Lτ−1∏
τ=0

∏
σ=↑,↓

e−∆τV̂τ,σe−∆τK̂σ = (detM)2 .

where M is a NLτ ×NLτ matrix, conveniently expressed in block form,

(2.19) M (x) =



I B0

−B1 I

−B2
. . .

. . .
. . .

−BLτ−1 I


.

I is the N ×N identity matrix, and

Bτ = e−∆τVτ e−∆τK .

The Vτ and K are matrix counterparts the Fock-space operators of Eqs. (2.17) and (2.18), with

elements

(Vτ )ij = δij (λxi,τ − µ) , Kij = −tij .

Putting together the pieces, the partition function may be approximated,

(2.20) Z ≈
∫
Dx e−(SB−∆τλ

∑
i,τ xi,τ) (detM)2 ,
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which is valid up to an error of order O
(
∆τ2

)
.

Recall the inverse temperature β has been discretized into Lτ intervals of imaginary time, with

∆τ = β/Lτ . The integral is over all sites i and imaginary times τ in the real phonon field xi,τ . The

“bosonic action”

(2.21) SB =
∆τ

2

N∑
i=1

Lτ−1∑
τ=0

[
ω2

0x
2
i,τ +

(
xi,τ+1 − xi,τ

∆τ

)2
]
,

describes dispersionless phonon modes, but can be readily generalized to include anharmonic terms

and phonon dispersion [1,87]. The “Fermion determinant” involves the NLτ ×NLτ matrix,

(2.22) M =



I B0

−B1 I

−B2
. . .

. . .
. . .

−BLτ−1 I


,

comprised of N ×N blocks. The off-diagonal blocks are

Bτ = e−∆τVτ e−∆τK ,(2.23)

where the matrices

(2.24) (Vτ )ij = δij (λxi,τ − µ) , Kij = −tij ,

describe the electron-phonon coupling and the electron hopping, respectively. In this real-space

basis, e−∆τVτ is exactly diagonal, whereas e−∆τK = I−∆τK+. . . is highly sparse up to corrections

of order ∆τ2. Note that one could alternatively formulate

(2.25) detM = det(I +BLτ−1 . . . B1B0),

but we do not pursue that approach here as it involves a smaller, but dense matrix.
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An innovation in this work is to rewrite the partition function as

(2.26) Z ≈
∫
Dx e−SB [det (MΛ)]2 ,

where Λ is any matrix that satisfies

(2.27) det Λ2 = e∆τλ
∑
i,τ xi,τ .

Although Eqs. (2.20) and (2.26) are mathematically equivalent, this reformulation will have im-

portant consequences in Secs. 2.2.4 and 2.4. The factor e∆τλ
∑
i,τ xi,τ originates from our choice to

include the −λ∑i X̂i/2 term in Eq. (2.4), which effectively shifts X̂i by a constant.

There are many possible choices for Λ. We select

(2.28) Λ(i,τ),(i′,τ ′) = δi,i′δτ+1,τ ′
(
2δτ ′,0 − 1

)
e+ ∆τλ

2
xi,τ ′ ,

with inverse

(2.29) Λ−1
(i,τ),(i′,τ ′) = δi,i′δτ,τ ′+1 (2δτ,0 − 1) e−

∆τλ
2
xi,τ ,

where the index τ = 0, 1, . . . Lτ − 1 is understood to be periodic in Lτ .

To collect equilibrium statistics, one samples the phonon field xi,τ , taking the positive-definite

integrand in Eq. (2.26) to be the probability weight. Sampling xi,τ is typically the dominant cost

of a QMC code. Direct evaluation of the matrix determinant would appear to require O(N3)

computational operations. As we will next discuss in Sec. 2.2.4, the cost to sample the phonon field

can be reduced to approximately linear scaling with system size N .

Samples of xi,τ provide estimates of the time-dependent Green function via the matrix elements

M−1
(i,τ)(j,τ ′). The efficient calculation of observables is the subject of Sec. 2.6.

Note that a similar path integral formulation can be derived for the SSH model. There, however,

the phonon position operators X̂i modulate the electron hopping term, which results in the matrices

Kτ depending on the phonon fields xi,τ [41,75,76,77,80,88].
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2.2.4. Sampling the phonon field at approximately linear scaling cost. Given a non-

singular matrix A of dimension D, its determinant can be formulated as an integral,

(2.30) |detA| = (2π)−D/2
∫
DΦ e−

1
2

ΦT (ATA)
−1

Φ,

where each component of the vector φ is understood to be integrated over the entire real line.

We take

(2.31) A = MΛ,

which has dimension D = NLτ and is an implicit function of the phonon field x. The partition

function becomes

(2.32) Z ≈ (2π)NLτ
∫
DΦ↑DΦ↓Dx e−S(x,Φσ).

In place of the matrix determinants, there is now a “fermionic” contribution to the action,

(2.33) S(x,Φσ) = SB(x) + SF(x,Φσ),

with

SF (x,Φσ) =
1

2

∑
σ

ΦT
σ

(
ATA

)−1
Φσ

=
1

2

∑
σ

∣∣A−TΦσ

∣∣2 .(2.34)

Now we must sample the two auxiliary fields Φ{↑,↓} in addition to the phonon field x, according

to the joint distribution P (x,Φσ) ∝ exp(−S). With the Gibbs sampling method, one alternately

updates x and Φσ according to the conditional distributions P (x|Φσ) and P (Φσ|x) respectively.

Holding x fixed, observe that

(2.35) P (Φσ|x) ∝ e−SF = e−
1
2

∑
σ |Rσ |

2

,

where the vector Rσ is standard Gaussian distributed, and relates to Φσ via

(2.36) Φσ = ATRσ.
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Therefore, to sample Φσ at fixed x, one may first sample Gaussian Rσ, and then apply Eq. (2.36).

Sampling x at fixed Φσ is the harder part. In the Metropolis Monte Carlo approach, one

proposes an update x→ x′ and accepts it with probability,

(2.37) P (x→ x′) = min
(
1, e−∆S

)
,

where

(2.38) ∆S = S(x′,Φσ)− S(x,Φσ).

Sophisticated methods for proposing updates include HMC (Sec. 2.3) and reflection/swap updates

(Sec. 2.4).

Calculating the acceptance probability requires evaluating the change in action,

(2.39) ∆S = ∆SB + ∆SF.

The bosonic part can be readily calculated from Eq. (2.21). The fermionic part is given by

Eq. (2.34),

∆SF = SF(x′,Φσ)− SF(x,Φσ).(2.40)

Recall that each Rσ is sampled as a random Gaussian vector, and each Φσ = ATRσ is calculated

at the initial x. It follows that SF (x,Φσ) = 1
2

∑
σ |Rσ|2 is x-independent. It remains to calculate

(2.41) SF(x′,Φσ) =
1

2

∑
σ

ΦT
σΨσ,

where

Ψσ =
(
ATA

)−1
Φσ

= Λ−1
(
MTM

)−1
Λ−TΦσ,(2.42)

and the matrices M and Λ are understood to be evaluated at the new phonon field, x′. The vector

b = Λ−TΦσ, for each σ, can be readily calculated using Eq. (2.29).
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To solve iteratively for the vector

(2.43) v =
(
MTM

)−1
b,

one can use the conjugate gradient (CG) method [89]. After n iterations, CG optimally approx-

imates vn ≈ v from within the nth Krylov space, i.e. the vector space spanned by basis vectors(
MTM

)j
b for j = 0, 1, . . . n. Finally, SF can be evaluated by noting that ΦT

σΨσ = bT v.

CG requires repeated multiplication by MTM . Applying M and MT to a vector is very efficient

due to the block sparsity structure in Eq. (2.22). The off-diagonal blocks Bτ inside M involve the

exponential of the tight-binding hopping matrix K. To apply efficiently e−∆τK to a vector, one

may approximately factorize this exponential as a chain of sparse operators using the minimal split

checkerboard (MSCKB) method [90], which remains valid up to errors of order O
(
∆τ2

)
[91]. This

allows us to apply Bτ to a vector of like dimension at a cost that scales linearly with system size

N .

The rate of CG convergence is determined by the condition number of MTM, i.e., the ratio of

largest to smallest eigenvalues (as a function of the fluctuating phonon field). In previous QMC

studies on the Hubbard model, the analogous condition number was found to increase rapidly

with inverse temperature and system size at moderate coupling [42]. Fortunately, for electron-

phonon models at moderate coupling, λD, and ω0 . t, the iteration count, and by extension the

condition number, increases more slowly with β and N [41]. This is reflected by the Holstein model

benchmarks in this chapter. Furthermore, the required number of CG iterations can be significantly

reduced by using a carefully designed preconditioning matrix, as we will describe in Sec. 2.5.

2.3. HMC sampling of the phonon field

Hybrid Monte Carlo (HMC) was original developed in the lattice gauge theory community [43],

and has since proven broadly useful for statistical sampling of continuous variables [84]. In partic-

ular, it is a powerful method for sampling the phonon field x in electron-phonon models [41,45].
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In HMC a fictitious momentum pi,τ is introduced that is dynamically conjugate to xi,τ . Specif-

ically, a Hamiltonian

(2.44) H(x, p) = S (x) +
pTM−1p

2
,

is defined that can be interpreted as the sum of “potential” and “kinetic” energies. The dynamical

mass M can be any positive-definite matrix, independent of x and p. Recall that the action S(x)

is implicitly dependent on the auxiliary field Φσ; we omit this dependence because Φσ is treated as

fixed for purposes of sampling x.

The corresponding Hamiltonian equations of motion are

ṗ = −∂H
∂x

=− ∂S

∂x
(2.45)

ẋ =
∂H

∂p
=M−1p.(2.46)

The dynamics is time-reversible, energy conserving, and symplectic (phase space volume conserv-

ing). These properties make it well suited for proposing updates to the phonon field. We use a

variant of HMC consisting of the following three steps:

Step (1) of HMC samples p from the equilibrium Boltzmann distribution, proportional to

exp(−pTM−1p/2). This is achieved by sampling components Ri,τ from a standard Gaussian dis-

tribution, and then setting

(2.47) p =
√
MR.

Step (2) of HMC integrates the Hamiltonian dynamics for Nt leapfrog integration time-steps,

each with the form

pt+1/2 = pt −
∆t

2

∂S

∂xt
(2.48)

xt+1 = xt + ∆tM−1pt+1/2(2.49)

pt+1 = pt+1/2 −
∆t

2

∂S

∂xt+1
,(2.50)
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where ∆t denotes the integration step size. Note that when performing leapfrog integration steps

sequentially, only a single evaluation of ∂S/∂x must be performed per time-step. This is because the

final half-step momentum update pt+1/2 → pt+1 can be merged with the initial one from the next

time-step, pt′ → pt′+1/2, where t′ = t+1. The leapfrog integration scheme is exactly time-reversible

and symplectic. One integration step is accurate to O(∆t3) and, in the absence of numerical

instability, total energy is conserved to order O(∆t2) for arbitrarily long trajectories [92, 93, 94].

For this chapter we will fix Nt = 100, but for certain classes of models, significant reductions in

decorrelation time are possible by using longer trajectories [85].

Step (3) of HMC is to accept (or reject) the dynamically evolved configuration x′ according

to the Metropolis probability, Eq. (2.37). HMC exactly satisfies detailed balance, and the proof

depends crucially on the leapfrog integrator being time-reversible and symplectic [43, 84]. An

acceptance rate of order one can be maintained by taking the timestep to scale only very weakly

with system size (∆t ∼ N−1/4) [95]. Higher order symplectic integrators are also possible, and

come even closer to allowing constant ∆t, independent of system size [92].

Numerical integration requires evaluation of the fictitious force −∂S/∂x at each time-step.

Specifically, one must calculate

(2.51)
∂S

∂xi,τ
=

∂SB

∂xi,τ
+
∂SF

∂xi,τ
.

The bosonic part is

(2.52)
∂SB

∂xi,τ
= ∆τ

(
ω2

0xi,τ −
xi,τ+1 − 2xi,τ + xi,τ−1

∆2
τ

)
.

For the fermionic part, we must calculate

(2.53)
∂SF

∂xi,τ
=

1

2

∑
σ

ΦT
σ

∂(ATA)−1

∂x
Φσ,

where Φσ is fixed throughout the dynamical trajectory. Using the general matrix identity dC−1 =

−C−1(dC)C−1, we find

(2.54)
∂SF

∂xi,τ
= −

∑
σ

ΨT
σA

T ∂A

∂xi,τ
Ψσ,
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where Ψσ =
(
ATA

)−1
Φσ implicitly depends on and changes with x during a dynamical trajectory,

unlike Φσ. As with the calculation of ∆SF in Eq. (2.39), the numerically expensive task is to

calculate Ψσ =
(
ATA

)−1
Φσ, for which we use the CG algorithm.

Given Ψσ, we must also apply the highly sparse matrix

(2.55)
∂Ax
∂xi,τ

=
∂M

∂xi,τ
Λ +M

∂Λ

∂xi,τ
,

for each index (i, τ) of the phonon field. Differentiating Λ in Eq. (2.28) is straightforward. The

derivative of M in Eq. (2.22) with respect to xi,τ involves only a single nonzero N×N block matrix.

In the Holstein model, we use

(2.56)
∂Bτ ′

∂xi,τ
= δτ,τ ′

(
∂

∂xi,τ
e−∆τVτ

)
e−∆τK ,

where Vτ is diagonal, so that its exponential is easy to construct and differentiate.

The situation is a bit more complicated for the SSH model, where the xi,τ -dependence appears

inside the SSH hopping matrix Kτ , which is not diagonal. In this case, we may exploit the checker-

board factorization [90] of e−∆τKτ , and use the product rule to differentiate each of the sparse

matrix factors one-by-one. If implemented carefully, the cost to evaluate all NLτ forces −∂S/∂xi,τ
remains of the same order as the cost to evaluate the scalar S. That this is generically possible

follows from the concepts of reverse-mode automatic differentiation [96].

2.3.1. Resolving disparate time-scales in the bosonic action. One of the challenges

encountered when simulating electron-phonon models is that the bosonic action gives rise to a

large disparity of time-scales in the Hamiltonian dynamics. Here we will present two established

approaches for unifying these dynamical time scales.

The bosonic part of the Hamiltonian dynamics decouples in the Fourier basis. To see this, we

will employ the discrete Fourier transform in imaginary time,

f̂ω =
1√
Lτ

Lτ−1∑
τ=0

e−
2πi
Lτ

ωτfτ .(2.57)

30



where the integer index ω is effectively periodic mod Lτ . The Fourier transform may be represented

by an Lτ × Lτ unitary matrix,

(2.58) Fω,τ =
1√
Lτ
e−

2πi
Lτ

ωτ ,

such that f̂ = Ff .

Taking the Fourier transform of fi,τ = −∂SB/∂xi,τ , defined in Eq. (2.52), yields

(2.59) f̂i,ω = −Q̃ω,ωx̂i,ω,

where x̂ = Fx and

(2.60) Q̃ω,ω = ∆τ

[
ω2

0 +
2

∆τ2

(
1− cos

2πω

Lτ

)]
.

We may interpret Q̃ω,ω as the elements of a diagonal matrix Q̃ in the Fourier basis. In the original

basis,

(2.61) Q = F−1Q̃F ,

and the bosonic forces are

(2.62) f = −∂SB/∂x = −Qx.

The diagonal element Q̃ω,ω gives the force acting on the Fourier mode x̂ω. The extreme cases

are ω = ±Lτ/2 and ω = 0, for which Q̃ω,ω/∆τ takes the values ω2
0 + 4/∆τ2 and ω2

0 respectively.

The ratio of force magnitudes for the fastest and slowest dynamical modes is then

(2.63) 1 +
4

ω2
0∆τ2

� 1,

which diverges in the continuum limit, ∆τ → 0. Typically ∆τ is of order 0.1, and the physically

relevant phonon frequencies are order ω0 ∼ 0.1.

Numerical integration of the Hamiltonian dynamics will be limited to small time-steps to resolve

the dynamics of the fast modes, ω ∼ ±Lτ/2. Unfortunately, this means that a very large number
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of time steps Nt ∝ O
(
4/ω2

0∆τ2
)

is required to reach the dynamical time-scale in which the slow

modes, ω ∼ 0, can meaningfully evolve.

2.3.1.1. Dynamical mass matrix. Here we describe the method of Fourier acceleration, by which

a careful selection of the dynamical mass matrixM can counteract the widely varying bosonic force

scales appearing in Eq. (2.60) [20,97].

The Hamiltonian dynamics of Eqs. (2.45) and (2.46) may be written ẍ = −M−1∂S/∂x. The

characteristic scaling for fermionic forces is

(2.64) ∂SF/∂x ∼ ∆τ.

This is expected because ∆τ enters into SF only through the scaled phonon field, yi,τ ≡ ∆τxi,τ .

The chain rule ∂SF/∂x = (∂SF/∂y) (∂y/∂x) then suggests linear scaling in ∆τ .

Per Eq. (2.60), the bosonic forces also typically scale like ∆τ when ω is small. However, for the

large Fourier modes ω ∼ ±Lτ/2, we find instead

(2.65) ∂SB/∂x ∼ ∆τ−1,

which will typically dominate other contributions to the total force. One may therefore consider

the idealized limit of a purely bosonic action, S(x) = SB(x), which is approximately valid for the

large ω modes. Using Eq. (2.62), the dynamics for purely bosonic forces is

(2.66) ẍ = −M−1Qx (S = SB),

If we were to select M = Q/ω2
0, then the dynamics would become ¨̂x = −ω2

0x̂, which describes a

system of non-interacting harmonic oscillators, all sharing the same period, 2π/ω0. This would be

the ideal choice of M if the assumption S = SB were perfect.

The true action S is not purely bosonic, and it can be advantageous to introduce a regularization

mreg that weakens the effect ofM when acting on small ω. We define diagonal matrix elements [20],

(2.67) M̃ω,ω = ∆τ

m2
reg + ω2

0 + 2
∆τ2

(
1− cos 2πω

Lτ

)
m2

reg + ω2
0

 ,
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as the Fourier representation of the dynamical mass matrix,

(2.68) M = F−1M̃F .

For small frequencies ω (or infinite regularization mreg) the mass matrix is approximately con-

stant, M ≈ ∆τ consistent with the scaling of fermionic forces, Eq. (2.64). For large frequencies,

ω ∼ Lτ/2, however, a finite regularization mreg is irrelevant, and we find M ≈ Q/ω2
0. Comparing

with Eq. (2.66), the high-frequency modes are found to behave like harmonic oscillators with an

ω-independent force-scale that is again consistent with Eq. (2.64).

The effectiveness of Fourier acceleration depends on the degree to which a clean separation of

scales can be found. Typically ∆τ will be sufficiently small such that there is a range of Fourier

modes for which SB is the dominant contribution to the action S.

Our convention for the dynamical mass matrixM deviates somewhat from previous work [20].

The present convention aims to decouple the integration time-step ∆t from the discretization in

imaginary time ∆τ , such that the two parameters may be varied independently. In other words,

one “unit of integration time” should produce an approximately fixed amount of decorrelation in

the phonon field, independent of ∆τ .

Figure 2.1 compares the equilibration process for two simulations of a Holstein model in the

CDW phase, one using mreg = ω0 and ∆t = 1 × 10−2 shown in blue, the other using mreg = ∞
and ∆t = 7.05× 10−4, shown in red. These ∆t have been selected such that the highest frequency

dynamical mode ω = Lτ/2 evolves on the same time-scales in both simulations.

Panel 2.1(a) shows the time history of sampled densities 〈n〉 for each simulation. While the

measured densities in the simulation using mreg = ω0 almost immediately begin fluctuating about

〈n〉 = 1, in simulations using mreg = ∞ the density only gradually approaches half-filling. The

discrepancy between the two simulations is even more obvious when we look at the time series

for Scdw shown in panel 2.1(b). While the simulation using mreg = ω0 rapidly equilibrates to

CDW order in roughly ∼ 150 updates, the mreg =∞ simulation shows no perceptible indication of

thermalization towards CDW order.
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Figure 2.1. Panel (a) displays the time history for the density 〈n〉. Panel (b)
displays the time history for the structure factor Scdw. Compares results for two
simulations started from the same initial configuration that use different dynamical
mass matricesM. The time-steps ∆t are chosen so that the highest frequency mode
in both simulations evolves on the same effective time-scale.

2.3.1.2. Time-step splitting. A complementary strategy to handle the disparate time-scales as-

sociated with the bosonic action is time-step splitting [84,98]. Typically, ∂SB/∂x is much less ex-

pensive to evaluate than ∂SF/∂x. One may modify the leapfrog integration method of Eqs. (2.48)–

(2.50) to use multiple, smaller integration timesteps ∆t′ = ∆t/nt using the bosonic force alone.

After taking nt of these sub-time-steps, a full time-step ∆t is performed using the fermionic force

alone. The final leapfrog integrator is shown in Algorithm 1, and can be derived by a symmetric

operator splitting procedure. Like the original leapfrog algorithm, it is exactly time-reversible and

symplectic.
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Figure 2.2. HMC acceptance rate versus nt for ω0 = 1, λD = 0.25, β = 4 and
L = 16. The acceptance rate rapidly grows from zero and saturates to constant
value with nt ≥ 4. For this test we disabled Fourier acceleration, effectively taking
mreg =∞ such that M = ∆τ .

Figure 2.2 demonstrates the practical benefit of time-step splitting by showing how the HMC

acceptance probability varies with the number nt of sub-time-steps. To isolate the impact of time-

step splitting, we disabled Fourier acceleration by effectively setting mreg = ∞. The measured

acceptance rate is zero until nt ≥ 4, at which point it rapidly saturates to a value of ∼ 95% once

nt ≥ 5. This result illustrates a sharp stability limit: When nt < 4, the corresponding value of ∆t′

is too large to resolve the fastest Fourier modes, x̂ω=L/2, which causes a dynamical instability and

uncontrolled error. When nt increases beyond a certain point, the corresponding values of ∆t′ are

sufficiently small such that the SB driven dynamics becomes stable.

2.3.2. Summary of an HMC update. The pseudocode for one HMC trial update is shown

in Algorithm 1.

We remark that although methods of Fourier acceleration and time-step splitting aim to solve

a similar problem, they employ different mechanisms. The dynamical mass matrixM of Eq. (2.68)

was derived by analyzing a non-interacting system, and effectively slows down the dynamics of high-

frequency Fourier modes. It is effective for handling Fourier modes for which the force contribution

from SB dominates. In contrast, time-step splitting works by focusing more computational effort

on integrating the bosonic forces, and allows the high frequency modes to evolve on their natural,
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Algorithm 1 Time-step Splitting HMC Update

Record initial state: xi
Directly sample auxiliary field: Φσ := AT (xi)Rσ
Directly sample momentum: pi :=

√
MR

Calculate initial energy: Hi := H(xi, pi)
for t ∈ 1 . . . Nt do

p := p− ∆t
2
∂SF
∂x

for t′ ∈ 1 . . . nt do
p := p− ∆t′

2
∂SB
∂x

x := x+ ∆t′M−1p
p := p− ∆t′

2
∂SB
∂x

end for
p := p− ∆t

2
∂SF
∂x

end for
Calculate final energy: Hf := H(xf , pf )

Acceptance probability: P := min
(

1, e−(Hf−Hi)
)

Sample r uniform in (0, 1)
if r < P then

Accept final phonon field configuration xf
else

Revert to initial phonon field configuration xi
end if

faster time-scale. If the cost to calculate ∂SB/∂x were truly negligible (relative to ∂SF/∂x) then

we could take nt sufficiently large to completely resolve the highest frequency dynamical modes

arising from SB, and Fourier acceleration could be disabled (mreg → ∞). Empirically, we find a

combination of the two methods to be most effective. As such, for the rest of our benchmarks we

perform HMC updates with ∆t = ω−1
0 /100, Nt = 100, nt = 10 and mreg = ω0.

2.4. Reflection and Swap Updates

Simulations of Holstein models can suffer from long autocorrelation times as a result of the

effective phonon mediated electron-electron attraction. The strength of this attractive interaction

between electrons is well parameterized by Ueff =
[
−λ2/ω2

0 = −λDW
]
< 0 [24]. This effect be-

comes pronounced at large λD, giving rise to “heavy” bipolaron physics [58,99]. In this case it is

energetically favorable for the system to have either 0 or 2 electrons on a site, corresponding the

phonon position X̂ being displaced in the positive or negative directions respectively (cf. Eq. (2.4)).

The energy penalty at X̂ = 0 roughly corresponds to the unfavorable condition of a single electron
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residing on the site, and is approximately proportion to Ueff/2. In the context of QMC, we aim

to sample fluctuations in the phonon field xi,τ , with the action S(x) exhibiting a strong repulsion

around xi,τ = 0. When λD is large, this action barrier effectively traps the sign of the phonon field

at each site i.

To overcome this effective trapping, one may employ additional types of Monte Carlo updates.

We consider reflection updates to flip the phonon field xi → −xi on a single site i (at all imaginary

times), and swap updates to exchange the phonon field (xi, xj) → (xj , xi) of neighboring sites.

Similar updates have previously been shown to be effective in DQMC simulations of Hubbard and

Holstein models [100,101]. A subtle difficulty arises, however, when attempting to use such global

moves in the context of fixed auxiliary fields Φσ (cf. Sec. 2.2.4). Here we demonstrate how the

introduction of the Λ matrix in the path integral formulation of Eq. (2.26) dramatically increases

the acceptance rates for these global moves.

To build intuition, we consider the single-site limit (tij = 0) of the Holstein model at half filling

(µ = 0), which satisfies an exact particle-hole symmetry. In this limit a particle-hole transformation

is realized by

(2.69) X̂ → −X̂, ĉ→ ĉ†.

This transforms n̂→ 1− n̂, yet leaves the Hamiltonian Ĥ in Eq. (2.1) invariant.

In a traditional DQMC code, the phonon field would be sampled according to the weight

exp (−SDQMC) appearing in Eq. (2.26), where

(2.70) SDQMC = SB − 2 ln
(
eβλx̄/2 detM

)
and x̄ =

∑
τ xτ/Lτ . In the single site limit, Bτ in Eq. (2.23) becomes a scalar, and we can evaluate

Eq. (2.25) analytically,

(2.71) detM = 1 + e−∆τ
∑Lτ
τ=0 Vτ = 1 + e−β(λx̄−µ).

Taking µ = 0, it follows

(2.72) SDQMC = SB − 2 ln cosh(βλx̄/2),
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Figure 2.3. (a) SDQMC(x̄) for the single-site Holstein model at half-filling (tij = 0,

ω0 = 1, λ =
√

2, µ = 0), plotted as a function of the phonon field x̄ with imaginary-
time fluctuations suppressed. (b) Change in action under the proposed move x0 → x̄,
where x0 = λ/ω2

0. Bold blue and red lines represent the average over 100 vectors
Φσ, sampled according to Eq. (2.36) with x̄ = x0. With imaginary-time fluctuations
suppressed, ∆S is exactly symmetric, whereas ∆S′ is not.

up to an irrelevant constant shift.

Let us momentarily ignore fluctuations in imaginary time, which is justifiable at small ω0. By

replacing xτ → x̄, the bosonic action becomes SB → βω2
0x̄

2/2. Figure 2.3(a) plots SDQMC(x̄) in the

absence of phonon fluctuations. As the inverse temperature β increases, a double-well structure

emerges, and the action barrier at x̄ = 0 poses a practical problem for sampling. Equation (2.72)

ensures the exact symmetry SDQMC(x) = SDQMC(−x), even in the presence of imaginary-time

fluctuations.
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Curiously, the x ↔ −x symmetry is missing from the action of Eq. (2.33) that we actually

use for sampling the phonons. Specifically, S(x,Φσ) 6= S(−x,Φσ) at fixed Φσ. As a practical

consequence, the proposal of a global update x → −x at fixed Φσ may lead to very low Monte

Carlo acceptance rates, Eq. (2.37), unless the action is carefully constructed.

To demonstrate how Monte Carlo acceptance rates can suffer, we consider two Φσ-dependent

actions, S and S′. The first we have already defined in Eq. (2.33),

(2.73) S = SB +
1

2

∑
σ

∣∣A−TΦσ

∣∣2 ,
where A = MΛ. The second follows from Eq. (2.20), and would, more traditionally, be used for

the Holstein model,

(2.74) S′ = SB − βλx̄+
1

2

∑
σ

∣∣M−TΦσ

∣∣2 .
Both actions are statistically valid—integration over the auxiliary fields yields the correct distribu-

tion for x,

(2.75)

∫
DΦσe

−S ∝
∫
DΦσe

−S′ ∝ e−SDQMC .

However, the two actions produce very different acceptance rates for global Monte Carlo moves.

Figure 2.3(b) demonstrates this by plotting ∆S and ∆S′ for a proposed update x0 → x̄, with

imaginary-time fluctuations suppressed. For concreteness we selected the initial condition x0 =

λ/ω2
0, but the choice does not qualitatively affect our conclusions. Each thin curve is plotted using

a different randomly sampled Φσ, drawn from the exponential distributions exp [−S(x0,Φσ)] or

exp [−S′(x0,Φσ)] in the case of ∆S (red) or ∆S′ (blue) respectively.

From Fig. 2.3(b), it is apparent that the action S has the symmetry

(2.76) ∆S(x̄) = ∆S(−x̄).

This is an exact result for the single-site, adiabatic limit of the Holstein model (see Sec. 2.4.1). The

action S′, however, has a very different qualitative behavior. Here, the proposed update x0 → −x0

imposes a very large action cost ∆S′ for nearly all auxiliary field samples, Φσ.
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Figure 2.4. Equilibration of observables with ω0 = 0.1, λD = 0.6, β = 9 and
L = 16. With R signifying the number of reflection updates following each HMC
update, we see that they significantly reduce decorrelation times. Swap updates (S)
can also help, but do not fully resolve ergodicity issues in 〈n〉.

The qualitative difference between ∆S and ∆S′ has a profound effect on the Metropolis ac-

ceptance rate, Eq. (2.37), for phonon reflections x → −x. We quantify this through numerical

experiments using the single-site Holstein model at half filling, with moderate parameters ω0 = 1,

λ = 2, and β = 4. If we used the full action SDQMC, the proposed move x → −x would have a

100% acceptance probability, which follows from particle-hole symmetry. If the naive action S′ is

used, the Metropolis acceptance rate for a reflection update is only ∼ 2%, when averaged over equi-

librium samples of Φσ. If the action S is used instead, which approximately restores particle-hole

symmetry in the sense of Eq. (2.76), the acceptance rate for reflection updates goes up to ∼ 68%

when averaged over Φσ. We will continue to use the action S throughout the rest of this chapter.

Additionally, unlike in DQMC where calculating ∆SDQMC has a cost that scales cubically with

system size, the procedure outlined above, that instead requires evaluating ∆S, maintains the near

linearly with system size.

The use of reflection and swap updates provides tremendous speed-ups in practical studies of

the Holstein model going beyond the single-site limit. Figure 2.4 shows the equilibration process

for a Holstein model on a N = 162 square lattice. We used a relatively large coupling λD = 0.6,
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such that on-site action barriers are large. At inverse temperature β = 9, the system is in a robust

CDW phase. We ran the same simulation twice using two different random seeds, shown in the

left and right columns. With µ = 0, we know the system is at half-filling, 〈n〉 = 1.0. However, in

practice this correct filling fraction is only reliably observed when reflection updates are enabled.

For Scdw, both reflection and swap updates help reduce decorrelation times. In practice, using some

combination of reflection and swap updates makes sense, with reflection updates being crucial for

the system to properly converge to the correct filling.

In addition to reducing decorrelation times, reflection and swap updates also help ameliorate

a formal ergodicity breaking concern [41, 80, 91]. If the phonon configuration x only smoothly

evolves under the Hamiltonian dynamics (Sec. 2.3) then it would be formally impossible to cross

the surface where detM = 0, for which the action (SDQMC or S) diverges. To be sure that we are

sampling the entire space of phonon configurations, for which detM may change sign, it may be

important to employ discontinuous Monte Carlo updates that allow for jumps across nodal surfaces.

The reflection and swap updates proposed in this section are therefore a good complement to pure

HMC sampling for this reason as well.

2.4.1. Statistical symmetry of the action. Here we demonstrate how the particle-hole

symmetry of the single-site Holstein model at half-filling emerges in the action S(x,Φσ) of Eq. (2.33),

provided that imaginary-time fluctuations can be ignored.

Consider the change in action

(2.77) ∆S(x) = S(x)− S(x0),

for a move x0 → x. For particle-hole symmetry to be respected, we should find

(2.78) ∆S(x)
?
= ∆S(−x),

such that MC proposals x0 → x and x0 → −x would be accepted with equal probability. This

condition is equivalent to vanishing

(2.79) δS = S(−x)− S(x).
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Observe that the starting configuration x0 is irrelevant. Let us now investigate the condition δS = 0.

The bosonic action SB(x) defined in Eq. (2.21) is symmetric at half filling, but symmetry

breaking may arise from the fermonic action SF(x,Φσ) defined in Eq. (2.34). The result is,

(2.80) δS =
1

2

∑
σ

ΦT
σ

(
D−1
−x −D−1

x

)
Φσ,

where

(2.81) Dx = ATxAx,

and the auxiliary field Φσ is arbitrary. If Dx = D−x, then δS = 0, and the particle-hole symmetry

of Eq. (2.78) would be satisfied.

We now show that Dx indeed satisfies this symmetry in the special case of the adiabatic limit

of the single-site Holstein model at half-filling (µ = 0). Without the hopping matrix K, the block

matrices Bτ = e−∆τλxτ become effectively scalar. In the absence of imaginary-time fluctuations, we

replace Bτ → B̄ = e−∆τλx̄. Next, we explicitly calculate AT = ΛTMT using Eqs. (2.22) and (2.28),

(2.82) ATx̄ =



B̄1/2 B̄−1/2

−B̄−1/2 B̄1/2

−B̄−1/2 . . .

. . .
. . .

−B̄−1/2 B̄1/2


.

The subscript x̄ emphasizes our neglect of imaginary-time fluctuations. It follows,

(2.83) Dx̄ =



B̄ + B̄−1 −1 1

−1 B̄ + B̄−1 . . .

−1
. . .

. . .
. . . −1

1 −1 B̄ + B̄−1


,
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The transformation x̄→ −x̄ corresponds to B̄ → B̄−1. We conclude Dx̄ = D−x̄, as claimed, which

implies particle-hole symmetry of the action, Eq. (2.78). The result is exact in the adiabatic limit

(infinite phonon mass mph), for which imaginary-time fluctuations can be ignored.

2.5. Preconditioning

Each iteration of HMC requires solving the linear system in Eq. (2.43),

(2.84) MTMv = b,

for the unknown v. The required number of CG iterations to reach a fixed level of accuracy

scales approximately like the condition number of M (equivalently, the square root of the condition

number of MTM).

Convergence can be accelerated if a good preconditioner P is available. One can solve for u in

(2.85) P−TMTMP−1u = P−T b

and then determine v = P−1u. This is advantageous if MP−1 has a smaller condition number than

M , and if P−1 can be efficiently to applied to a vector. In practice, each iteration of preconditioned

CG requires one matrix-vector multiplication using MTM , and one using (P TP )−1 [89].

A good preconditioner frequently benefits from problem-specific insight. For the Holstein model

we make use of the fact that the τ -fluctuations in the phonon fields are damped due to the con-

tribution to the total action S from the bosonic action SB. It follows that the imaginary-time

fluctuations of the block matrices Bτ should be relatively small. Inspired by this, we propose a

preconditioner P that retains the sparsity structure of M , but with fluctuations in τ effectively

“averaged out.” Specifically, we define

(2.86) P =



I B̄

−B̄ I

−B̄ I

. . .

−B̄ I


,
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where

(2.87) B̄ =
1

Lτ

Lτ−1∑
τ=0

Bτ = e−∆τV̄ e−∆τK

and V̄ is defined to satisfy

(2.88) e−∆τV̄ =
1

Lτ

Lτ−1∑
τ=0

e−∆τVτ .

To first order in ∆τ this preconditioner P can be interpreted as describing a semi-classical system for

which imaginary-time fluctuations are suppressed. We emphasize, however, that our goal remains

to solve the full Holstein model without any approximation. Our intention in introducing P is to

utilize the physical smallness of the imaginary-time fluctuations as a starting point for accelerating

Holstein model simulations. An important, but non-obvious, property of this preconditioner is that

the matrix-vector product P−1v can be evaluated very efficiently, as we will demonstrate.

The matrix P becomes exactly block diagonal after an appropriate Fourier transformation in

the imaginary time τ index. Defining this Fourier transformation, however, is somewhat subtle.

The block structure of M in Eq. (2.22) treats τ = 0 as a special case. To make all of Bτ appear

symmetrically, we introduce a unitary matrix,

(2.89) Θτ,τ ′ = δτ,τ ′e
−πiτ/Lτ .

Observe that the matrix ΘMΘ† has the same sparsity structure as M , but a factor of −e−πi/L

appears in front of each Bτ , and the block B0 is no longer a special case.

Next we may employ the discrete Fourier transformation defined in Eq. (2.58),

(2.90) Fω,τ =
1√
Lτ
e−

2πi
Lτ

τω.

Using this combined change of basis, M becomes

(2.91) M̃ = UMU†,
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where

(2.92) U = FΘ,

is unitary, with matrix elements given by

Uω,τ =
1√
Lτ
e−

2πi
Lτ

τ(ω+1/2).

By construction, the indices τ and ω range from 0 to Lτ − 1. It is interesting to observe, however,

that the natural extension of τ would obey antisymmetric boundary condition (Uω,τ+Lτ = −Uω,τ ),

and ω can then be interpreted as indexing Matsubara frequencies.

Explicit calculation gives the N ×N blocks of M̃ as

(2.93) M̃ω,ω′ = δω,ω′I − e−iφω′ B̂ω−ω′

where

φω =
2π

Lτ

(
ω +

1

2

)
(2.94)

B̂ω =
1

Lτ

Lτ−1∑
τ=0

e−
2πi
Lτ

τωBτ .(2.95)

We emphasize that M̃ is an exact representation of M , but in a different basis. This change

of basis can be used to motivate our preconditioner. When the fluctuations in imaginary time are

small, M̃ is dominated by its diagonal blocks,

M̃ω,ω =I − e−iφωB̄.(2.96)

We can define the preconditioner to be block diagonal in the Fourier basis,

(2.97) P̃ = diag(M̃).

Transforming back to the original basis,

(2.98) P = U†P̃U ,
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establishes the equivalence of Eqs.(2.86) and (2.97).

To apply the preconditioner to a vector v, we must evaluate

(2.99) P−1v = U†P̃−1Uv

The action of U and U† can be efficiently implemented using a fast Fourier transform (FFT).

Because P̃ is block diagonal, its inverse is also block diagonal,

(2.100) P̃−1
ω,ω′ = δω,ω′M̃

−1
ω,ω.

Therefore, applying P̃−1 to a (N × Lτ )-dimensional vector v̂ = Uv is equivalent to applying each of

the M̃−1
ω,ω blocks to the corresponding N -dimensional sub-vector v̂ω. In Sec. 2.5.2 we describe how

the kernel polyomial (KP) method [102] can be used to carry out efficiently these matrix-vector

multiplications. The key idea is to approximate each of M̃−1
ω,ω using a numerically stable Chebyshev

series expansion in powers of the matrix B̄.

2.5.1. Preconditioner Speed Up. Here we present results that demonstrate the utility of

our preconditioner P , while also providing insight into the scaling of HMC with both system size

N and inverse temperature β. The overwhelming computational cost in HMC is repeatedly solving

the linear system Eq. (2.43) for varying realizations of the phonon field xi,τ . If the number of CG

iterations required to find a solution is independent of N , then the total simulation cost would scale

near linearly with N .

In all cases, we terminate the CG iterations when the relative magnitude of the residual error,

(2.101) ε =
∣∣b−MTMv

∣∣ / |b|
becomes less than a threshold value εmax. When calculating ∆SF in Eq. (2.39) to either accept or

reject a Monte Carlo update, we use εmax = 10−10. When calculating ∂SF/∂x in Eq. (2.54) we use

εmax = 10−5.

We benchmark using Holstein models of various systems sizes at two phonon frequencies ω0 =

0.1 and ω0 = 1.0, both with dimensionless coupling λD = 0.25. Figure 2.5 shows the average

iteration count as a function of the number of lattice sites, N . For all temperatures and lattice sizes,
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Figure 2.5. Average CG iteration count as a function of system size N for λD =
0.25. Comparing the left and right columns, the preconditioner significantly reduces
the iteration count.

the ω0 = 0.1 simulations require fewer CG iterations than comparable ω0 = 1.0 simulations. In the

latter case, condition number ofM is observed to be larger. For ω0 = 0.1 without the preconditioner,

the iteration count only weakly depends on system size. However, with the preconditioner the

iteration count become nearly independent of system size, and is decreased by more than a factor
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Figure 2.6. Scdw and average CG iteration count as functions of β for λD = 0.25
and N = 162. For both ω0 = 0.1 and ω0 = 1.0, the system goes through a CDW
transition as the temperature is lowered. In the case of ω = 1.0 the known transition
temperature is approximately βcdw ≈ 6.

of 20. For ω0 = 1.0, the growth of CG iteration count as a function of system size remains sub-

linear. Introducing the preconditioner does not change the qualitative structure of this dependence,

but still reduces the iteration count by more than a factor of 5 in all cases.

We also see that the iteration count appears to increase with β, a behavior that is more clearly

explored in Fig. 2.6. For both ω0 = 0.1 and ω0 = 1.0, we observe a sharp jump in the order

parameter Scdw as the temperature is lowered, indicating that both systems order into a CDW

phase. In the lower panel we see the average iteration count versus β. Both with and without

the preconditioner, in the case of ω0 = 1.0 the iteration count increases monotonically with β.

Simulations with ω0 = 0.1 have two qualitatively different behaviors: with preconditioning, the
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iteration count is relatively flat, but without preconditioning, the iteration count has a local maxima

near where we would estimate the transition temperature to be based on Scdw.

The preconditioner significantly reduces the average iteration count for both ω0 = 0.1 and

1, but the benefits are more pronounced for smaller ω0, where imaginary time fluctuations are

smaller. In the adiabatic limit, corresponding to the phonon mass going to infinity (mph →∞),

the fluctuations in τ would vanish, and the preconditioner would become perfect. The adiabatic

limit can equivalently be arrived at by sending the phonon frequency to zero (ω → 0) while holding

λD fixed.

The practical benefit of preconditioning depends strongly on the numerical cost CP to apply

the preconditioner P−1 to a vector. The natural reference scale is CM , the cost to apply the

unpreconditioned matrix M to a vector. In our implementation, we measure (CP +CM )/CM ≈ 4,

approximately independent of model details (see Sec. 2.5.2.5 for a theoretical analysis). At ω0 = 0.1,

preconditioning reduces the iteration count by about a factor of 20, yielding an effective speedup

of order 20/4 = 5.

2.5.2. Preconditioner implementation. In Sec. 2.5 we described a preconditioner

(2.102) P = U†P̃U ,

that is block diagonal in the Fourier space representation, P̃ . The N ×N diagonal blocks have the

form

(2.103) M̃ω,ω = I − e−iφωB̄,

where

(2.104) φω =
2π

Lτ

(
ω +

1

2

)
, B̄ = e−∆τV̄ e−∆τK ,

and both V̄ and K are Hermitian matrices. Applying P−1 to a vector requires repeated application

of the N × N matrices M̃−1
ω,ω, for all indices ω = 0, 1, . . . Lτ − 1. Here we describe how the kernel

polynomial method (KPM) [102] may be used to perform these matrix-vector products efficiently.

This approach systematically approximates each matrix M̃−1
ω,ω in polynomials of B̄.
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A first observation is that the matrices e−∆τV̄ and e−∆τK in their exact forms are positive

definite and Hermitian. From this, we can guarantee that all eigenvalues of B̄ are real [103]. The

checkerboard approximation to e−∆τK slightly violates Hermiticity, but even in this case, we have

observed that the eigenvalues of B̄ remain exactly real in the context of our QMC simulations.

A second observation is that the eigenvalues b̄ of B̄ are bounded

(2.105) b̄min ≤ b̄ ≤ b̄max

near 1, otherwise ∆τ would not be sufficiently small for the Suzuki-Trotter expansion to be mean-

ingful. In the Holstein model, K will typically have a much larger spectral magnitude than V̄ , so

we can get the correct scaling with the approximation B̄ ≈ e−∆τK . On the square lattice with

hopping t = 1, the extreme eigenvalues of K are ±4. Given our choice of ∆τ = 0.1, the extreme

eigenvalues will be of order exp(±∆τ4), namely, b̄min ≈ 0.7 and b̄max ≈ 1.6.

It will be convenient to define a rescaled matrix,

(2.106) A = 2(B̄ − b̄min)/∆b̄− 1,

with ∆b̄ = b̄max−b̄min. The eigenvalues y of A satisfy −1 ≤ y ≤ 1. This will allow us to approximate

(2.107) M̃−1
ω,ω =

(
1− e−iφωB̄

)−1
= fω(A),

using Chebyshev polynomials in A. We may view

fω(y) =
(

1− e−iφω b̄
)−1

,(2.108)

as a scalar function that acts on the eigenvalues y of A, which are related to the eigenvalues b̄ of B̄

via

(2.109) y = 2(b̄− b̄min)/∆b̄− 1.
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2.5.2.1. Chebyshev polynomial approximation. An arbitrary scalar function f(y) may be ex-

panded in the basis of Chebyshev polynomials,

(2.110) f(y) =
∞∑
m=0

cmTm(y),

valid for −1 ≤ y ≤ 1. In this domain, the Chebyshev polynomials can be written Tm(y) =

cos (m arccos y), such that the coefficients cm may be interpreted as the cosine transform of f in

the variable θ = arccos(y).

The Chebyshev polynomials satisfy an orthogonality relation,

(2.111)

∫ +1

−1
w(y)Tm(y)Tm′(y)dy = qmδm,m′ ,

where

w(y) =
(
1− y2

)−1/2

qm =
π

2
(1 + δm,0) .

The expansion coefficients are then given by

(2.112) cm =
1

qm

∫ +1

−1
w(y)Tm(y)f(y)dy.

Usually a closed form solution for cm is not available, but one can use Chebyshev-Gauss quadrature

to obtain a good approximation

(2.113) cm ≈
π

qmNQ

NQ−1∑
n=0

cos(mθn)f(cos θn),

where NQ is the number of quadrature points, and θn = π
(
n+ 1

2

)
/NQ are the abscissas. A fast

Fourier transform can be used to calculate all coefficients cm efficiently [102].

The utility of the expansion in Eq. (2.110) is that we can obtain a good approximation by

truncating

(2.114) f(y) ≈
NP−1∑
m=0

gmcmTm(y),
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Figure 2.7. Chebyshev polynomial approximation of fω = (1 − e−iφω b̄)−1 on a
given interval b̄min ≤ b̄ ≤ b̄max. To resolve the sharp features in fω for small angles
φω, the polynomial order should scale like NP ∼ φ−1

ω .

at an appropriate polynomial order NP. Here one has the option to introduce damping factors gm

associated with a kernel. The damping factors should be close to 1 for m� NP and may decay to

0 as m→ NP. An appropriately selected kernel guarantees uniform convergence of the Chebyshev

series, avoiding numerical artifacts such as Gibbs oscillations. In our application, we are working

with the smooth functions in Eq. (2.108), and we will simply set gm = 1.

For a given polynomial order NP, we find it sufficient to use NQ = 2NP quadrature points to

approximate the expansion coefficients cm in Eq. (2.113).
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2.5.2.2. Selecting the polynomial order. Figure 2.7 illustrates Chebyshev approximation of the

real and imaginary parts of fω = (1− e−iφω b̄)−1 for various polynomial orders NP. Angles φω near

zero give rise to sharper features in fω, which require a larger polynomial order NP to resolve.

We will use the convention that the angle

(2.115) φω = 2π(ω + 1/2)/Lτ

is between 0 and π. This effectively restricts our attention to 0 ≤ ω < Lτ/2, which is possible due

to the symmetry fLτ−ω−1(b̄) = f∗ω(b̄).

In practice, we can achieve a good polynomial approximation using the heuristic

(2.116) NP =
⌊
∆b̄
(
a1φ

−1
ω + a2

)⌋
,

where coefficients a1 and a2 are both of order 1 and independent of system details (temperature,

etc.). Note that the polynomial order NP scales linearly with the range ∆b̄ = b̄max − b̄min over

which an approximation is required. Observe that the polynomial order NP decays rapidly when

ω moves away from zero, such that the typical value of NP is of order 1.

2.5.2.3. Using KPM to evaluate matrix-vector products. We wish to apply the matrix

(2.117) M̃−1
ω,ω = (I − e−iφωB̄)−1 = fω(A),

to a vector, where A is a rescaling of B̄ as defined in Eq. (2.106). Using the truncated Chebyshev

expansion, we may approximate

(2.118) M̃−1
ω,ω ≈

NP−1∑
m=0

cmTm(A),

The expansion order Np and scalar coefficients cm, given in Eq. (2.112), implicitly depend on φω,

b̄min, and b̄max.

A key result from KPM is that the task of evaluating the matrix-vector product,

(2.119) M̃−1
ω,ωu ≈

NP−1∑
m=0

cmTm(A)u =

NP−1∑
m=0

cmαm,
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does not require explicit construction of the dense matrix M̃−1
ω,ω. Instead, we will iteratively calculate

the vectors

(2.120) αm = Tm(A)u.

The Chebyshev polynomials satisfy a two-term recurrence relation,

(2.121) Tm+1(A) = 2ATm(A)− Tm−1(A).

Multiplying by u on the right yields an explicit scheme for computing αm,

(2.122) αm+1 = 2Aαm − αm−1,

beginning with

(2.123) α0 = u, α1 = Au.

As the vectors αm become available, they are accumulated into the right-hand side of Eq. (2.119),

eventually giving the desired matrix-vector product.

2.5.2.4. A full recipe for the preconditioner. Here we summarize all steps needed to efficiently

apply the preconditioner in Eq. (2.102). Our task is to evaluate the matrix-vector product,

P−1v = U†P̃−1Uv.(2.124)

The unitary matrix U is defined in Eq. (2.92) and can be efficiently applied with an FFT. The

matrix P̃ is zero except for its diagonal blocks, which are given by

(2.125) M̃ω,ω = I − e−iφωB̄.

The main challenge is to apply the N ×N matrix M̃−1
ω,ω to a vector, which must be done for each

index ω.

The matrix B̄ = e−∆τV̄ e−∆τK has real eigenvalues clustered around 1. If we can find numbers

b̄min and b̄max that assuredly bound all eigenvalues of B̄, then we may approximate

54



(2.126) M̃−1
ω,ω ≈

NP−1∑
m=0

cmTm(A),

where A is a rescaling of B̄ defined in Eq. (2.106). The coefficients cm defined in Eq. (2.112)

implicitly depend on φω, b̄min, and b̄max, via the definition of fω(y) in Eq. (2.108).

To estimate b̄max, we may use the Arnoldi iteration, repeatedly applying the matrix B̄ to an

initial random vector. This method produces an upper Hessenberg matrix, which serves as a low-

rank approximation to B̄. After about 20 iterations, the largest eigenvalue of this Hessenberg

matrix (increased by 5%, to be safe) provides a suitable estimate of b̄max. For numerical stability

reasons, we estimate b̄min by applying the Arnoldi iteration to B̄−1 = e∆τKe∆τV̄ , estimating its

maximum eigenvalue and then taking the inverse. This is possible because, just like for B̄, we are

able to efficiently apply B̄−1 to a vector.

Given the approximation in Eq. 2.126, we can efficiently calculate

(2.127) M̃−1
ω,ωu ≈

NP−1∑
m=0

cmαm,

where the vectors αm = Tm(A)u are iteratively calculated using the Chebyshev recurrence in

Eq. (2.122).

The appropriate polynomial order NP depends on the index ω. A reasonable choice is

(2.128) NP =
⌊
∆b̄
(
φ−1
ω + 1

)⌋
,

where b·c denotes the floor function, and ∆b̄ = b̄max − b̄min.

2.5.2.5. Scaling of costs. The calculation of the matrix-vector product in Eq. (2.127) requires

NP − 1 matrix-vector multiplications involving B̄. Note that the polynomial order NP depends on

ω via Eq. (2.128). Since the indices ω and L−ω− 1 are effectively equivalent, we restrict attention

to 0 ≤ ω < Lτ/2. We can sum over all such ω values to count the total number of required
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matrix-vector multiplications

Nmat-vec = 2

Lτ/2−1∑
ω=0

[NP(ω)− 1]

= 2

Lτ/2−1∑
ω=0

⌊
∆b̄
(
a1φ

−1
ω + a2

)⌋
− Lτ .(2.129)

The factor of 2 accounts for the skipped indices, Lτ/2 ≤ ω < Lτ . Removing the floor function is

justified when

(2.130) φ−1
ω =

Lτ
2π(ω + 1/2)

is large (i.e. small ω), and in general produces an upper bound,

Nmat-vec ≤ 2∆b̄

a1

Lτ/2−1∑
ω=0

φ−1
ω + a2Lτ/2

− Lτ .(2.131)

We can explicitly evaluate the sum,

(2.132)

Lτ/2−1∑
ω=0

(ω + 1/2)−1 = ln 4 + γ + ψ(Lτ/2 + 1/2),

where γ = 0.577 . . . is the Euler-Mascheroni constant and ψ(x) = lnx + O(x−1) is the digamma

function. To a good approximation, the upper bound is

Nmat-vec . Lτ∆b̄
[a1

π
(γ + ln 2Lτ ) + a2

]
− Lτ .(2.133)

Typically a1 = a2 = 1 and ∆b̄ ≈ 1. For, say, Lτ = 200 (corresponding to inverse temperature

β = 20 at ∆τ = 0.1), the bound of Eq. (2.133) gives,

(2.134) Nmat-vec/Lτ . 2.1,

whereas direct numerical evaluation of the sum yields Nmat-vec/Lτ = 1.6. We infer that the bound

of Eq. (2.133) is in general a fairly tight one.

Note that Lτ applications of the matrix B̄ = e−∆τV̄ e−∆τK is equivalent to the work required

to apply the matrix M in Eq. (2.22). It follows that the task of applying the preconditioner in the
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Fourier basis, P̃−1, is about two times more expensive than applying M . To apply P−1 = U†PU ,

we additionally require two FFTs. For the benchmarks performed in this chapter, we measured

numerically that the total cost to apply P−1 is about times greater than the cost to apply M .

2.6. Stochastic Measurements with FFT acceleration

In a traditional determinant QMC code, measurements of the Green function are obtained by

explicit construction of the matrix M−1. However, this can be avoided using stochastic techniques

that can estimate individual matrix elements. We review these methods, and then demonstrate

how to average Green function elements over all space and imaginary times using FFT-accelerated

convolutions. Finally, we will introduce a strategy to reduce the relatively large stochastic errors

that appear when forming stochastic estimates of multiple-point correlation functions.

2.6.1. Measurements in QMC. A fundamental observable in QMC simulation is the time-

ordered, single-particle Green function,

(2.135) Gi,j (τ) =


〈ĉi(τ)ĉ†j(0)〉, 0 ≤ τ < β

−〈ĉ†j(0)ĉi(τ)〉, −β ≤ τ < 0

.

where ĉi(τ) ≡ eτH ĉie
−τH denotes evolution in continuous imaginary time τ . Multi-point correla-

tion functions can be expressed as sums of products of single-particle Green functions via Wick’s

theorem [63,104]. Given an equilibrium sample of the phonon field, the matrix G = M−1 provides

an unbiased estimate of the Green function,

(2.136) Gi,j (τ) ≈ G(i,l),(j,l′),

where τ = ∆τ · (l − l′) satisfies −β < τ < β. In what follows we will revert to using the symbol

τ = 0, 1 . . . , (Lτ − 1) as a matrix index instead of a continuous imaginary time.

2.6.2. Stochastic approximation of the Green function. In a traditional determinant

QMC code, one would explicitly calculate the full matrix G = M−1 at a cost that scales cubically

in system size. To reduce this cost, we instead employ the unbiased stochastic estimator

(2.137) G ≈ (Gξ)ξT ,
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for a random vector ξ with components that satisfy 〈ξi〉 = 0 and 〈ξiξj〉 = δi,j . For example, each

component ξi may be sampled from a Gaussian distribution, or uniformly from {±1}.
The bold symbol i represents a combined site and imaginary-time index, (i, τ).

Equation (2.137) may be viewed as a generalization the Hutchinson trace estimator TrG ≈ ξ†Gξ
[105]. Various strategies are possible to reduce the stochastic error [106,107].

The vector v = Gξ can be calculated iteratively at a cost that scales near-linearly with system

size. For example, one may solve the linear system MTMv = MT ξ using CG with preconditioning

(cf. Sec. 2.5).

Once Gξ is known, individual matrix elements can be efficiently approximated,

(2.138) Gi,j ≈ (Gξ)i ξj .

For products of Green functions elements, we may use,

(2.139) Gi,jGk,l ≈ (Gξ)i ξj
(
Gξ′
)
k
ξ′l.

This product of estimators remains an unbiased estimator provided that the random vectors ξ and

ξ′ are mutually independent.

2.6.3. Averaging over space and imaginary time using FFTs. To improve the quality

of statistical estimates, it is frequently desirable to average Green function elements over all space

and imaginary-time,

(2.140) G∆ ≈
1

N
∑
i

Gext
(i+∆),i,

whereN = NLτ . The symbol ∆ indicates a displacement in both position and imaginary-time. The

matrix Gext will be defined below as an extension of G that accounts for antiperiodicity of imaginary

time. Using direct summation, the total cost to calculate G∆ for every possible displacement ∆

would scale like O
(
N 2
)
. However, we will describe a method using FFTs that reduces the cost to

approximately O (N lnN ).

Consider a finite, D-dimensional lattice with periodic boundary conditions. For a Bravais

lattice, each site can be labeled by integer coordinates, 0 ≤ nα < Lα. The index i = (n1, . . . , nD, τ)
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Figure 2.8. Left: QMC measurements, employing stochastic Green function esti-
mation with Nrv random vectors. Right: Error for each measured quantity. Simu-
lations were performed using ω = 1, λD = 0.25, β = 6, L = 16, Ntherm = 1000 and
Nsim = 2000.

can then be interpreted as integer coordinates for both space and imaginary-time; the index (i+∆)

can be interpreted as a displacement of all (D+ 1) coordinates. We must be careful, however, with

boundary conditions. The Green function is antiperiodic in imaginary time, Gi,j (τ + β) = −Gi,j (τ).

To encode this antiperiodicity in matrix elements, we define

(2.141) Gext = QGQT =

 G −G
−G G

 ,
where

(2.142) Q =

 I

−I

 .
The extended matrix Gext effectively doubles the range of the imaginary time index, 0 ≤ τ < 2Lτ ,

such that space and imaginary time indices become periodic,

(2.143) nα + Lα ≡ nα, τ + 2Lτ ≡ τ.
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Using Eq. (2.137), we obtain a stochastic approximation for the time averaged Green function

elements,

G∆ ≈
1

N
∑
i

(
QGξξTQT

)
(i+∆),i

=
1

N
∑
i

aibi+∆,(2.144)

involving the vectors

(2.145) a = Qξ =

 ξ

−ξ

 , b = QGξ =

 Gξ

−Gξ

 .
This can be written,

(2.146) G∆ ≈
1

N (a ? b)∆,

where (a ? b)d =
∑

i aibi+d is the circular cross-correlation. Like the convolution operation, it can

be expressed using ordinary multiplication in Fourier space,

(2.147) (a ? b)∆ = F−1{F [a]∗F [b]}∆.

Here, F denotes the (D+1)-dimensional discrete Fourier transform. Therefore G∆ can be efficiently

estimated at nearly linear scaling cost using the FFT algorithm.

In the QMC context, Wick’s theorem ensures that multi-point correlation functions can always

be reduced to products of ordinary Green functions. The latter can be estimated using a product

of independent stochastic approximations, as in Eq. (2.139). Here, again, we can accelerate space

and imaginary-time averages using FFTs. In the case of 4-point measurements, Wick’s theorem

produces three types of Green function products. The first is,

∑
i

Gi+∆,iGi+∆,i ≈
∑
i

(
GξξT

)
i+∆,i

(
Gξ′ξ′T

)
i+∆,i

=
∑
i

[
ξiξ
′
i

] [
(Gξ)i+∆

(
Gξ′
)
i+∆

]
(2.148)
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Figure 2.9. Wall-clock time spent taking measurements tmeas relative to the total
run-time ttotal as a function of Nrv. Simulation parameters are the same as in
Fig. 2.8.

which is again recognized as a cross correlation ?. This can be expressed compactly by introducing

� to denote element-wise multiplication of vectors,

(2.149)
∑
i

Gi+∆,iGi+∆,i ≈
[(
ξ � ξ′

)
?
(
Gξ �Gξ′

)]
∆
,

The other two averages that appear for 4-point measures can be calculated similarly,

∑
i

Gi+∆,i+∆Gi,i ≈
[
(ξ �Gξ) ?

(
ξ′ �Gξ′

)]
∆

(2.150)

∑
i

Gi+∆,iGi,i+∆ ≈
[(
ξ �Gξ′

)
?
(
ξ′ �Gξ

)]
∆
.(2.151)
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2.6.4. Reducing stochastic error in multi-point correlation function estimates. To

reduce the stochastic error in Eq. (2.138), we may average over a set of random vectors {ξ1, . . . ξNrv},

(2.152) Gi,j ≈
1

Nrv

Nrv∑
n=1

(
Gξnξ

†
n

)
i,j
.

A similar strategy could be used to replace Eq. (2.139) with an average over Nrv independent

estimates.

Here, it turns out we can do much better. Given the set {ξ1, . . . ξNrv} of random vectors, we

can average over all
(
Nrv

2

)
= Nrv(Nrv − 1) independent pairs,

(2.153) Gi,jGk,l ≈
(
Nrv

2

)−1 ∑
n6=m

(
Gξnξ

†
n

)
i,j

(
Gξmξ

†
m

)
k,l
.

This improved estimator is an average of unbiased estimators and therefore remains unbiased.

Furthermore, if Nrv is much smaller than the vector dimension N , then these
(
Nrv

2

)
≈ N2

rv estimates

are approximately mutually independent. It follows that the stochastic error in Eq. (2.153) decays

approximately like N−1
rv . This scheme is advantageous because, for moderate Nrv, the dominant

computational cost is calculating the Nrv matrix-vector products {Gξ1, . . . GξNrv}. There remains

the task of evaluating the sum over all pairs n 6= m. For each pair, we must evaluate cross-

correlations as in Eq. (2.147), but the required FFTs are relatively fast.

Figure 2.8 demonstrates how the improved stochastic approximator in Eq. (2.153) can signifi-

cantly reduce error bars for certain observables in QMC simulation. Measurements and correspond-

ing estimated errors are plotted as a function of Nrv. For the observables 〈n〉 and Scdw, the error

appears largely independent Nrv; in these two cases, the dominant source of statistical error seems

to be limited by the effective number of independent phonon configurations sampled.

For the observable Ps, however, we find the error ∆Ps to depend strongly on the quality of the

stochastic estimator, controlled by Nrv. The observed scaling ∆Ps ∼ N−1
rv matches the theoretical

expectation for stochastic error in Eq. (2.153). This indicates that the stochastic measurements

are the primary source of error in Ps.

It is also important to consider the relative computational cost of measurements asNrv increases.

Figure 2.9 plots the time spent making measurements tmeas, relative to the total simulation time
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ttotal, versus Nrv. Even at the maximum value of Nrv = 32 tested, the time spent making measure-

ments is significantly less than half the total run-time. The fact that the tmeas/ttotal grows linearly

at large Nrv indicates that calculating the matrix-vector products {Gξ1, . . . GξNrv} is the dominant

computational cost in the measurement process. The curvature at small Nrv is a result of ttotal

including the overhead time spent equilibrating the system before measurements begin. A practical

limitation on Nrv may be memory usage, since Eq. (2.153) requires that all vectors {ξ1, . . . ξNrv}
and {Gξ1, . . . GξNrv} be stored simultaneously. Although Nrv appears to have little impact on some

observables, it seems reasonable to set Nrv & 10 in most cases, given the negligible computational

costs.

2.7. Discussion

This chapter introduces a set of algorithms that collectively enable highly scalable, finite temper-

ature simulations of electron-phonon models such as the Holstein and SSH models. Traditionally,

such studies would be performed using DQMC, but that approach is limited in two important

respects.

First, with a computational cost that scale cubically with system size, DQMC simulations of

the Holstein model have been restricted to lattices of no more than a few hundred sites. As a result,

DQMC studies of the Holstein model have typically been confined to relatively simple geometries

in one or two dimensions. In the HMC approach explored in this chapter, we replace each Fermion

determinant detM(x) that appears in DQMC with a Gaussian integral over a newly introduced

auxiliary field Φσ (Sec. 2.2.4). This field must be multiplied by the inverse matrix M−1(x); for

this, we use the iterative conjugate gradient (CG) method, with a computational cost that scales

near-linearly with system size. As a result, it becomes possible to simulate lattice sizes a full

order of magnitude larger than is possible with DQMC. We further accelerate these simulations by

introducing a carefully designed preconditioner that approximates the inverse of M(x) by assuming

fluctuations in imaginary time are entirely suppressed (Sec. 2.5). These advances open the door to

studying both more complicated multi-band models in two dimensions, as well as three dimensional

systems.
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Second, DQMC simulations rely on a local updating scheme that results in long autocorrelation

times that increase with decreasing phonon frequency. This has restricted DQMC simulations to

systems where the phonon energy is comparable to the hopping amplitude, ω0 ∼ t. However, in

most real materials the relative phonon energy is much smaller, ω0 � t. We address this limitation

by using HMC to update efficiently the entire phonon field simultaneously. To do so, we employ a

Hamiltonian dynamics with a carefully defined dynamical mass matrix that specifically targets and

slows down the fastest modes (highest frequency in imaginary time) that arise from the bosonic

action SB (Sec. 2.3.1.1). Additionally, we introduce a time-step splitting algorithm (Sec. 2.3.1.2)

that allows us to evolve the bosonic action using a smaller time-step than is used for the fermionic

action SF. As a result, we are able to simulate efficiently electron-phonon models with small phonon

frequencies, which are of greatest physical relevance for real materials.

At moderate to strong electron-phonon coupling, simulations of the Holstein model also suffer

from long autocorrelation times as a result of the phonon-mediated, electron-electron binding. We

introduce two additional types of Monte Carlo updates, termed reflection and swap updates, to

address this issue. While similar types of updates have been employed in DQMC simulations of

the Holstein model, we are able to do so while maintaining near linear scaling with system size.

To preserve this overall scaling, we also employ a stochastic method for measuring correlation

functions. Individual elements of the matrix M−1(x) can be estimated efficiently, and provide

samples of the single-particle Green’s function. It is typically desirable to average over translation

symmetry in both real space and imaginary time when making measurements in order to reduce

the error. A straightforward approach to performing this average results in a computational cost

that scales as O(N2L2
τ ), which would violate our target of near linear-scaling cost. To recover

our desired scaling, we formulated the real space and imaginary time averages as cross-correlations

(with periodic boundaries), which enables their efficient evaluation using FFTs. As a consequence,

measurements come almost “for free,” following the computational work required to sample the

phonon field.

Electron-phonon interactions play an important role in describing emergent behaviors that

occur in certain strongly interacting materials. DQMC studies of simple electron-phonon models,

like the Holstein model, have played an important role in elucidating possible mechanisms for these
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emergent behaviors. However, DQMC simulations have been limited in their ability to simulate

electron-phonon models at large-scales, especially in 3D. The methods outlined in this chapter allow

for the simulation of novel electron-phonon models that can be directly inspired by specific material

systems where electron-phonon interactions are believed to play a prominent role in determining

the low energy physics.
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CHAPTER 3

The Effect of Strain on Charge Density Wave Order in the

Holstein Model

This chapter investigates charge ordering in the Holstein model in the presence of anisotropic

hopping, tx, ty = 1 − δ, 1 + δ, as a model for the effect of strain on charge density wave (CDW)

materials. Using Quantum Monte Carlo simulations, we show that the CDW transition temperature

is relatively insensitive to moderate anisotropy δ . 0.3, but begins to decrease more rapidly at

δ & 0.4. However, the density correlations, as well as the kinetic energies parallel and perpendicular

to the compressional axis, change significantly for moderate δ. Accompanying mean-field theory

calculations show a similar qualitative structure, with the transition temperature relatively constant

at small δ and a more rapid decrease for larger strains. We also obtain the density of states N(ω),

which provides clear signal of the charge ordering transition at large strain, where finite size scaling

of the charge structure factor is extremely difficult because of the small value of the order parameter.

3.1. Background

Studies of the effect of strain in charge density wave (CDW) materials have seen a significant

rise in the past several years [108, 109, 110]. The general interest originates from the ability to

tune a strongly correlated insulating phase, inducing transitions into alternate patterns of charge

order, or into metallic and even superconducting phases. Moreover, by altering the band structure,

the application of strain also provides specific insight into the nature of a native CDW phase, for

instance into the role of Fermi surface nesting [111,112]. Layered transition metal dichalcogenides

(TMDs) are one of the most commonly investigated classes of CDW materials; their transitions

have previously been tuned by varying the thickness or gate potential [113,114,115,116,117,118].

In 2H-NbSe2 the CDW transition temperature Tcdw increases from Tcdw = 33 K in the bulk to

Tcdw = 145 K in a single layer [29]. A similar, albeit much smaller, effect is seen in 1T -TiSe2
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[27, 28]. Strain is therefore useful since it provides an alternate method for modulating CDW

physics. Indeed, exploration of the potential use of strain to adjust optical, magnetic and conductive

properties, especially in TMDs, has been referred to as ‘strain engineering’.

Much of the existing theoretical work in the area has been within first-principles density func-

tional theory (DFT). These studies find that for 1T -TiSe2 the CDW transition temperature can be

enhanced or suppressed with the application of tensile or compressive strain, respectively [109]. In

the latter case, the weakened CDW opens the door for superconductivity (SC). This difference in

effect is linked to the distinct behavior of the band gap upon extension versus compression. For thin

layers of TMDs, the intercalation of chemical compounds between layers, such as Na-intercalated

NbSe2, leads to strain, which has been shown to enhance SC [119]. Initially, the Na intercalation

creates a large electron doping, which contracts the Fermi surface and causes CDW to disappear.

The subsequent application of strain increases the density of states at the Fermi surface and more

than doubles the SC transition temperature.

CDW materials, including the TMDs, generally have complex (e.g. layered) structures. The

charge ordering may not be commensurate with the lattice, and may also differ on the surface and

within the bulk. The application of strain has additional complicating effects, including changes

in the phonon spectrum and of the relative placement of different orbitals (energy bands). In

particular, 1T -VSe2 has a transition from hexagonal to rectangular charge order with strain, which

seems to originate in the softening of certain phonon modes [120]. The aforementioned DFT

investigations have explored many of these details.

An alternate theoretical approach to DFT which lends complimentary insight into CDW physics

is through the solution of simple lattice Hamiltonians. One set of models focuses on intersite

electron-electron interactions V , as described, for example, by the extended Hubbard Hamiltonian

[121,122,123]. Here, charge order arises directly from the minimization of the intersite repulsion

energy V by alternating empty and occupied sites. A more realistic approach for TMDs, however,

would be including electron-phonon interactions, such as those incorporated in the Holstein [15] or

Su-Schrieffer-Heeger [88] models. In these cases, the driving force for CDW formation is a lowering

of the electron kinetic energy through the opening of a gap in the spectrum. This energy lowering

competes with the cost in elastic energy associated with phonon displacements.
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CDW formation on surfaces and in quasi-2D materials have been motivating theoretical studies

of the Holstein model in two dimensions. In addition to the choice of the CDW driving interaction

(electron-electron-like or electron-phonon-like), lattice geometry plays an important role in the

presence of charge ordering. For instance, for the Holstein model in a honeycomb lattice, one may

show that a finite critical electron-phonon coupling is required for CDW [1, 124], while in the

triangular lattice its ground state exhibits SC [26].

In view of these simulation results, here we investigate how charge-charge correlations are

affected by deformations in the lattice, that is, we focus on the effects of strain on charge ordering.

To this end, we investigate the Holstein model on a square lattice using determinant quantum Monte

Carlo (DQMC) simulations, and incorporate the most direct effect of strain, the enhancement of

the orbital overlap integral by compression, through an anisotropy in the hopping in the x and y

directions. We find that although Tcdw is relatively insensitive to anisotropy δ . 0.3, the density

correlations and kinetic energy change significantly even at small strain. It is only at larger anistropy

δ & 0.4 that significant changes in Tcdw are observed.

3.2. A Strained Holstein Model

The Holstein Hamiltonian used for studying the effect of strain on CDW order is

Ĥ =− tx
∑
i,σ

(
ĉ†i,σ ĉi+x̂,σ + ĉ†i+x̂,σ ĉi,σ

)
− ty

∑
i,σ

(
ĉ†i,σ ĉi+ŷ,σ + ĉ†i+ŷ,σ ĉi,σ

)
− µ

∑
i,σ

n̂i,σ

+
1

2

∑
i

P̂ 2
i +

ω2
0

2

∑
i

X̂2
i + λ

∑
i,σ

n̂i,σX̂i .(3.1)

Here ĉ†i,σ(ĉi,σ) are creation (destruction) operators for a fermion of spin σ =↑, ↓ at site i of a

two-dimensional square lattice. Thus, the first term represents an electron kinetic energy (band

structure) with hoppings tx, ty and dispersion εk = −2tx cos kx − 2ty cos ky. X̂i =
√

1
2ω0

(
â†i + âi

)
and P̂i =

√
ω0
2

(
b̂†i − b̂i

)
describe a dispersionless local phonon mode with frequency ω0 and phonon

mass that has been normalized to M = 1, where b̂†i (b̂i) are the creation (destruction) operators for

a phonon on site i. The electron-phonon coupling λ, also sometimes reported in terms of g = λ√
2ω0

,
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connects the electron density n̂i,σ = ĉ†i,σ ĉi,σ for spin σ at site i with the displacement X̂i, where

µ = − λ2

ω2
0

is the chemical potential at half-filling.

At constant volume, compression along one axis is accompanied by an expansion in the orthog-

onal direction. Thus, in what follows, we set tx = t(1− δ) and ty = t(1 + δ), a choice which keeps

tx + ty = 2t, and hence the bandwidth W = 4(tx + ty) constant. This is motivated physically by

the remarks above, but also allows us to separate the effect of hopping anisotropy from changes

which would accompany a simple isotropic reduction or enhancement of W .

Recall the electron-phonon interaction promotes local pairing of electrons. This can easily be

seen by considering the single site (t = 0) limit. Integrating out the phonon degrees of freedom

leads to an effective attraction between the up and down spin fermions Ueff ni,↑ni,↓, with Ueff =

−λ2/ω2
0. Given our chosen convention for the Holstein Hamiltonian in this chapter, the effective

attractive interaction between electrons results in a oscillator displacement 〈X〉 = −λ〈n〉/ω2
0, where

〈n〉 = 〈n↑ + n↓〉 is the density.

At strong coupling, local pairs form due to this on-site attraction. These pairs prefer to organize

their placements spatially. In particular, as the density approaches half-filling, 〈n〉 = 1, on a

bipartite lattice, electron pairs and empty sites alternate on the two sublattices. This CDW pattern

is favored because the energy of neighboring occupied and empty sites is lower by 4t2/Ueff relative

to two adjacent occupied or empty sites. This argument closely parallels the one which motivates

the appearance of antiferromagnetic (AF) order in the large U (Heisenberg) limit of the half-filled

repulsive Hubbard model, where well-formed local moments of up and down spin alternate due to

the J ∼ 4t2/U lowering of the energy relative to parallel spin placement.

There is a further analogy between the Hubbard and Holstein Hamiltonians at weak coupling.

In the Hubbard model at U .W , AF order is associated with Fermi surface nesting and a ‘Slater

insulating’ phase – the opening of an AF gap lowers the electron kinetic energy. Meanwhile,

for U & W one has a Mott insulator in which AF order arises via J . In the Holstein model,

an alternation of phonon displacements opens a CDW gap, with similar effect. It is interesting

that these close analogies exist, in the weak coupling limit, despite the fact that the Holstein

Hamiltonian has a second set of (phonon) degrees of freedom which is absent in the Hubbard

Hamiltonian. Although the Holstein model has no strong coupling Mott phase, one still expects
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Figure 3.1. The mean-field order parameter x1 versus β for four different values
of strain δ at λD = 0.25. The critical transition temperature Tcdw = β−1

c decreases
with increasing strain. See Fig. 3.2.

the CDW ordering temperature Tcdw to decline at large Ueff (large λ). This expectation is not

realized within the analytic Eliashberg treatment, but has been observed in quantum Monte Carlo

(QMC) simulations [2,3].

3.3. Mean-Field Theory

We first solve Eq. (3.1) by making an adiabatic approximation in neglecting the phonon kinetic

energy, and then apply a simple mean-field ansatz by letting X̂i → x0 + (−1)i x1. The value x0

describes a site-independent phonon displacement which is given by − λ
ω2

0
at half-filling, similar to

that described in the preceding section. Meanwhile x1 is the CDW order parameter: a nonzero

value breaks the symmetry between the two (equivalent) sublattices.

Inserting this form into Eq. (3.1), the quadratic Hamiltonian can be diagonalized. From the

resulting electronic energy levels Eα one can compute the free energy as a function of the order

parameter x1,

F =
N

2
ω2

0(x2
0 + x2

1)− T
∑
α,σ

ln
(
1 + e−βEα(x1)

)
(3.2)
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Figure 3.2. The mean-field critical temperature βc/βc0 versus the strain δ for
λD = 0.25 where βC0 = 1.353 in the isotropic δ = 0 case. The inset shows the
mean-field result for the difference in electron density between the two sub-lattices
∆n in the limit that β →∞.

Minimizing F (x1) determines the presence (x1 > 0) or absence (x1 = 0) of CDW order. Since the

product of the coupling constant λ and the phonon displacement xi provides a staggered chemical

potential at site i, a non-zero value of x1 will result in an alternating electron density, that is, CDW

order.

It is evident that within mean-field theory (MFT) the behavior of the Holstein model is governed

only by the combination λ2/ω2
0 rather than on λ and ω0 individually. This is also the case at t = 0,

but is only approximately true in exact solutions, e.g.within DQMC. Nevertheless, it is convenient

to define the dimensionless coupling constant λD ≡ λ2/(ω2
0 W ) where W = 8t is the fermion

bandwidth, and present results as functions of λD.

Figure 3.1 shows the MFT behavior of x1 as function of the inverse temperature for different

values of δ, given lattice size of L = 150. Note that, as expected, there is a finite-temperature

second-order phase transition, and that the maximum value that x1 approaches at low temperatures

changes significantly with δ. This behavior is also reflected in the inset of Fig. 3.2, showing that

the difference in electron density between the two sublattices ∆n decreases with increasing δ in the
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Figure 3.3. The electron kinetic energies kx and ky are shown as functions of
δ. Division by the energy scales tx and ty isolates the effect of anisotropy on the
hopping.

T → 0 limit. Because of the x↔ y symmetry, we expect Tcdw(−δ) = Tcdw(δ), where the change in

the critical temperature is a monotonically decreasing even function of δ.

Since the CDW phase transition in the Holstein model is at the same universality class of the

2D Ising model, it is worth comparing our MFT results (and subsequent DQMC results) for βc

with those from the 2D anisotropic Ising model, i.e. Jx 6= Jy. Within a mean-field approach for

Jx = 1 − δ and Jy = 1 + δ, one obtains 2βc(Jx + Jy) = 1, giving βc = 1/4 that is completely

independent of δ, in stark contrast to the exact Onsager solution. Unlike the Ising model, the βc

obtained using a mean-field approach for the CDW transition in the Holstein model depends on δ.

This occurs because the density of states at the Fermi surface is modified via the effect of δ on the

band structure.

3.4. Quantum Monte Carlo

3.4.1. Methodology. We analyze the strained Holstein model using DQMC simulations as

opposed to HQMC method introduced in the previous chapter. A detailed discussion of DQMC

is available in several reviews [63, 104]. In order to emphasize the effects of strain, we limit our

analysis to the half-filling case, i.e. 〈niσ〉 = 1
2 , where a commensurate CDW phase is known to exist

72



L = 10 tx = 0.6 ty = 1.4 = 4.0 L = 10 tx = 0.6 ty = 1.4 = 9.0

0.6

0.8

1.0

1.2

1.4

1.6

Figure 3.4. Left Panel: Real space density-density correlations for a moderate
strain of δ = 0.4 at T > Tcdw. Note the enhanced correlations in the ŷ direction
relative to the x̂ direction. Right Panel: Real space density-density correlations for
δ = 0.4 at T < Tcdw. Note that the oscillating checkerboard charge density pattern
now persists across the entire lattice.

below a given critical temperature [2]. The principle limitations of DQMC, as with most Monte

Carlo simulations, are finite lattice sizes and statistical error bars on the observables. One way in

which finite size errors manifest in DQMC is via the discrete set of momentum points {k}. Here

we use antiperiodic boundary conditions for lattices with linear size L = 6, 10 and 14 and periodic

boundary conditions for L = 4, 8 and 12. This ensures that the four k points (±π
2 ,±π

2 ) fall directly

on the Fermi Surface for all lattice sizes, mitigating otherwise substantial finite size effects.

Using DQMC, we are able to access a wide variety of observables, since expectation values of

fermionic operators are straightforwardly expressed in terms of matrix elements of Gσ = M−1
σ and

their products. In what follows, we consider first the kinetic energies in the x and y directions,

kx ≡
〈
− tx

∑
σ

(
ĉ†i,σ ĉi+x̂,σ + ĉ†i+x̂,σ ĉi,σ

) 〉
ky ≡

〈
− ty

∑
σ

(
ĉ†i,σ ĉi+ŷ,σ + ĉ†i+ŷ,σ ĉi,σ

) 〉
(3.3)
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Figure 3.5. CDW structure factor versus hopping anisotropy δ. The low temper-
ature value of the CDW order parameter falls to approximately half of its isotropic
value as δ → 0.4.

and the staggered CDW structure factor

Scdw =
1

N

∑
i,r

(−1)r
〈(
ni↑ + ni↓

) (
ni+r↑ + ni+r↓

)〉
=

1

N

∑
i,r

(−1)rc(r) ,(3.4)

which is the Fourier transform at q = (π, π) of the real space density correlation functions c(r),

and is proportional to the square of the order parameter when extrapolated to the thermodynamic

limit. When making these measurements we use ∆τ = 0.125, which is small enough that the Trotter

errors associated with the discretization of β are smaller than the statistical ones [101].

3.4.2. Equal-Time Correlations. The kinetic energy directly measures the effect of strain

via an anisotropic hopping in the x and y directions. We will also display kx/tx and ky/ty to

isolate the ‘trivial’ factor of the energy scales. Figure 3.3 shows the kinetic energies as functions of

the hopping anisotropy δ. These evolve smoothly with δ, increasing in the y direction, for which

ty = 1 + δ, and decreasing in the x direction, where tx = 1− δ.
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δ 0.1 0.2 0.3 0.4
Lmin 6 8 8 10
Lmax 12 12 14 14

Table 3.1. The range of lattice sizes used in finite size scaling to determine Tcdw

for each value of δ.

The real space density correlations c(r) are given in Fig. 3.4 for a 10×10 lattice at temperatures

both above and below Tcdw for anisotropy δ = 0.4. For T < Tcdw the correlations extend over the

entire lattice in a checkerboard pattern expected for (π, π) ordering. However, in the T > Tcdw

case the correlations extend further in the y direction than the x direction, indicating that charge

ordering forms first in the direction of enhanced hopping.

The CDW structure factor Scdw is sensitive to the development of long-range change order. At

high temperature, density correlation c(r) in the disordered phase is short ranged, and Scdw is of

order unity. On the other hand, in the CDW phase, density correlations extend over the entire

lattice and Scdw ∼ N . This change in behavior is illustrated in Fig. 3.5 for different values of δ.

For the isotropic case (δ = 0) it occurs at an energy scale β ∼ 6/t, but as δ increases, the onset of

CDW order is deferred to lower temperatures.

In DQMC simulations on a finite lattice, translation symmetry is never broken, and as a result

the expectation value of the staggered charge order parameter 〈Mstag〉 = 〈∑i(ni↑ − ni↓)〉 always

vanishes. However, a finite size scaling of the (non-vanishing) Scdw = 1
N 〈M2

stag〉 allows a precise

identification of Tcdw. This task is considerably simplified by the knowledge that the appropriate

universality class is that of the 2D Ising model, since CDW order breaks a two-fold discrete symme-

try on the square lattice [2,3,124]. Results are shown for δ = 0.3 in Fig. 3.6 (b). βc is inferred from

the crossing of L−7/4Scdw for different linear lattice sizes L, and Fig. 3.6 (c) shows the associated

collapse of the of the Scdw data. Fig. 3.6 (d) gives βc for the range 0.0 < δ . 0.4. For δ = 0.0,

βc is taken from Ref. [1], which is consistent with more recent simulations using the Langevin

method to evolve the phonon fields [20]. βc for all δ > 0.0 was obtained by the associated crossing

plots. However, as δ increases we find finite size effects increase and, as a consequence, smaller

lattice sizes could no longer be used in the crossing; the ranges of lattice sizes used to extract the

critical temperature for each δ are shown in the table below. One might naively expect that Tcdw

would scale as t2/Ueff , the energy scale which reflects the difference between a doubly occupied and
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empty site being adjacent relative to two doubly occupied or two empty sites. The kinetic energy

measurement of Fig. 3.3 gives a sense of how this quantity varies in the x direction. At δ = 0.5 it

is lower by a factor of roughly three, so that Tcdw might be expected to be reduced by an order of

magnitude from Tcdw ∼ t/6 in the isotropic case. However, this almost certainly underestimates

Tcdw as it ignores the enhancement of density correlations in the y direction. Nevertheless these

estimates seem consistent with Fig. 3.5, which shows that it is challenging to detect CDW order

δ & 0.5, even at temperatures as low as βt = 24, four times the isotropic βc.

The small structure factors for large strain shown in Fig. 3.5, even at low temperatures, reflect

a significant increase in βc as δ → 1. For β t = 20, Scdw is less than 1/20 of its value for perfect

classical charge order. Some initial insight into this is given by the MFT results, where as β →∞
the greatly reduced value of Scdw at large δ is reflected in the smallness of the MFT order parameter

x1. In the next section, we will present data suggesting that the behavior of N(ω) provides more

definitive evidence of the persistence of the CDW insulating phase even at large strain.

3.4.3. Spectral Function. The spectral function can be obtained from the Green’s function

measurement in DQMC combined with analytic continuation [125] to invert the integral relation

G(k, τ) =

∫
dω
A(k, ω) e−τω

e−βω + 1
.(3.5)

Following the procedure discussed in Ref. [126], one can evaluate the moments

µ1(k) ≡
∫
dω ω A(k, ω)(3.6)

=
(
εk − µ ) + λ 〈X〉

µ2(k) ≡
∫
dω ω2A(k, ω)(3.7)

= (εk − µ)2 + 2λ(εk − µ)〈X〉+ λ2〈X2〉

Here 〈X〉 is the phonon displacement on a spatial site, and is related to the density by 〈X〉 =

−λ〈n〉/ω2
0. At half-filling, 〈n〉 = 1 and µ = Ueff = −λ2/ω2

0 so that µ1(k) = εk. This is the same as

for the noninteracting case, since there A(k, ω) = δ(ω− εk). These analytic values of the moments,

in combination with a measurement of the phonon potential energy, serve as a useful check on
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Figure 3.6. Panel (a): Scdw versus β for δ = 0.3, λD = 0.25 and four differ-
ent lattice size. Panel (b): A finite size scaling where the scaled structure factors
ScdwL

−γ/ν exhibit a crossing as a function of β for different lattice sizes L. We
infer βc = 6.3± 0.1 is slightly increased from the isotropic βc = 6.0. Panel (c): The

full data collapse in which the temperature axis is also scaled by L1/ν
(
T−Tcdw
Tcdw

)
.

Panel (d): βc as a function of δ. The dashed line is a least squares fit to the data.
The value of βc at δ = 0 (triangle) is from Ref. [1].

the analytic continuation. Preliminary tests indicate analytic continuation of the imaginary-time

dependent Greens function obtained from DQMC yields values for the moments in agreement with

the analytic results of Eq. (3.7) to within a few percent.

Figure 3.7 shows the density of states N(ω) for the isotropic lattice. At inverse temperatures

β t = 2, 3, 4, 5 (i.e. lower than βct), N(ω) has a peak at the Fermi level ω = 0. Beginning at the

critical inverse temperature inferred from the finite size scaling of Scdw [1], N(ω) develops a gap,
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Figure 3.7. Density of states for the isotropic lattice for different inverse tempera-
tures βt. The phonon frequency ω0 = t and electron-phonon coupling g = t. Finite
size scaling of Scdw suggests βc t = 6.0±0.1 [1], which is consistent with the β value
at which a full gap opens in N(ω).

which provides another indication of the transition to the insulating CDW phase. Fig. 3.8 shows

that N(ω) remains relatively unchanged under the influence of strain δ = 0.3, consistent with the

robust Scdw of Fig. 3.5 at modest anisotropy. However, at δ = 0.9 the CDW gap has been replaced

by a weak minimum at β t = 8 and is only recovered at β t = 24.

The formation of a gap at δ = 0.9, even though the corresponding Scdw value shown in Fig. 3.5

is small, is strong evidence that a CDW insulating phase persists out to very large δ. It is useful

to consider the two-dimensional Ising model when trying to understand this result. The Onsager

solution gives a non-zero Tc for all Jx/Jy > 0 in the Ising model, a result consistent with the general

expectation that anisotropy in the form of a weak coupling in one direction does not destroy a

finite temperature second order phase transition in dimension d. The rough physical picture is that

correlations will develop in the ‘strongly interacting’ directions out to a length ξ. The coordinated

orientation of degrees of freedom in regions of size ξd−1 then creates a large ‘effective’ coupling

Jeff ∼ ξd−1Jsmall in the weakly interacting direction. As ξ grows, Jeff eventually boosts Jsmall.

This same argument can be applied to the CDW order in the Holstein model, a claim supported

by Fig. 3.4 showing that for T > Tcdw density correlations first form in the direction of enhanced

hopping.
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Figure 3.8. Density of states comparing the isotropic lattice with small (δ = 0.3)
and large (δ = 0.9) anisotropy. For δ = 0.9 the opening of a gap is delayed until
βc t ∼ 20.

3.5. Discussion

In this work we investigated charge ordering in the Holstein model on a square lattice in the

presence of anisotropic hopping, tx, ty = 1− δ, 1 + δ. For δ . 0.3, the transition temperature Tcdw

remains relatively stable, only decreasing significantly for δ & 0.4. However, both the electron

kinetic energies and the structure factor Scdw see significant shifts for small values of δ. The

suppression of Scdw, especially at larger strains, mirrors the smallness of the MFT order parameter

x1 with increasing δ. Despite the smallness of Scdw at low temperatures and large δ, the opening

of a gap in the density of states N(ω) at δ = 0.90 indicates the presence of an insulating CDW

transition even as δ → 1.

While we have focused here exclusively on the effects of anisotropic electron hopping tx 6= ty

on charge correlations and the gap in the Holstein model, it is also possible to examine the role

of changes in the phonon spectra. Indeed, DFT calculations [109] indicate that such changes,

e.g. enhancement of the phonon frequency with compression, are central to the onset of CDW order.

Similarly, it is known from DQMC simulations that Tcdw exhibits a non-monotonic dependence on

λD = λ2/(ω2
0 W ) in the Holstein Hamiltonian [3]. The possibility of direct connection of such model

calculations to materials would require the introduction of a connection of ω0 (and λ) to strain.
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Applications of DQMC to Hamiltonians with repulsive electron-electron interactions are limited

by the sign problem [37, 127]; study of Holstein or Su-Schrieffer-Heeger models with electron-

phonon interactions are much less restricted. As seen here, and in other work [2, 3, 124], low

enough temperatures can be reached to get a complete understanding of the CDW transition,

and even of the possibility of quantum critical points [3, 124] associated with CDW transitions

driven by changes in λD at T = 0. Recent work has further exhibited this flexibility of DQMC by

examining the effects of phonon dispersion on CDW order in the Holstein model [1]. In short, the

freedom from the sign problem opens the door to incorporating additional materials details into

quantum simulations of electron-phonon models and hence to the study of CDW transitions. Such

rich details are much more difficult to include in studies of repulsive electron-electron interactions

like the Hubbard model for which the sign problem is severe.

The density of states N(ω) gives information about the CDW gap. However, the momentum-

resolved spectral function A(k, ω) yields more detailed data concerning the effect of (strain) hopping

anisotropy on the quasiparticle dispersion, and in particular, the possibility that gaps might develop

at distinct temperatures as the momentum k changes. Work to study that possibility is in progress.
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CHAPTER 4

Charge Density Wave Order in the Half-filled Cubic Holstein

Model

Over the past several years, reliable Quantum Monte Carlo results for the charge density wave

transition temperature Tcdw for a variety of half-filled two dimensional Holstein models have become

available for the first time. Exploiting the further development of numerical methodology, here we

present results in three dimensions, which are made possible through the use of Langevin evolution

of the quantum phonon degrees of freedom. In addition to determining Tcdw from the scaling of the

charge correlations, we also examine the nature of charge order at general wave vectors for different

temperatures, couplings, and phonon frequencies, and the behavior of the spectral function and

specific heat.

4.1. Background

Substantial effort has been devoted to developing and using Quantum Monte Carlo (QMC)

techniques to study the physics of interacting electrons. Auxiliary field methods formulated in

real space, like Determinant Quantum Monte Carlo (DQMC) [35, 36, 122, 128], can determine

correlations on clusters of several hundreds of sites. However, unbiased approaches to studying

electron correlations, such as DQMC, can be severely limited by the sign problem [37, 123], un-

less additional constraints are imposed [129]. The Dynamic Cluster Approximation [130] and

Cluster Dynamical Mean Field Theory [131,132] generalize single site Dynamical Mean Field the-

ory [133,134,135,136,137,138] to finer momentum grids and generally have a more benign sign

problem than DQMC, allowing them to access lower temperatures and more complex (e.g. multi-

band) models. Diagrammatic QMC is another relatively new technology which is currently being

developed [139, 140]. Despite the numerical challenges, QMC applied to models with electron-

electron interactions, like the Hubbard model, has resulted in considerable qualitative insight into
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phenomena such as the Mott transition, magnetic order, and, to a somewhat lesser extent, un-

conventional superconductivity (SC) [12] which arise from electron-electron interactions in real

materials [141].

Analogous strong correlation effects can arise in solids due to electron-phonon coupling, includ-

ing SC and charge density wave (CDW) formation; this is the type of interaction we examine in

this chapter. A simple model where such effects can be studied is the Holstein Hamiltonian [15].

Early QMC work in two dimensions near half-filling [16,24,59,60,142,143] examined CDW for-

mation and its competition with SC. A second generation of simulations has considerably improved

the quantitative accuracy of results looking at both finite temperature [2, 17, 144] and quantum

critical point [3, 124] physics in two spatial dimensions on square and honeycomb lattices. Much

of this progress has been possible thanks to newer QMC methods such as continuous time [2] and

self-learning Monte Carlo [78, 79, 144]. However, despite these improvements in effective update

schemes, the cubic scaling with lattice size N of real space QMC methods employed in existing

work has precluded similar studies in three dimensions.

This chapter reports QMC simulations of the half-filled Holstein model on cubic lattices as

large as N = 143 sites. These studies are made possible by employing a linear-scaling QMC

method based on a Langevin evolution of the phonon degrees of freedom [20, 41, 81]. The large

linear sizes that are accessible allow us to perform the finite size scaling needed to extract the CDW

transition temperature Tcdw and also obtain the momentum dependence of the charge structure

factor S(k) to reasonable resolution. We supplement the extraction of Tcdw from Scdw ≡ S(π, π, π)

with calculation of the specific heat and spectral function, and show that, while they provide a less

precise determination of Tcdw, their features are consistent with those obtained from Scdw.

4.2. The Cubic Holstein Model

The Holstein Hamiltonian,

Ĥ =− t
∑
〈i,j〉,σ

(
ĉ†iσ ĉjσ + h.c.

)
− µ

∑
i,σ

n̂i,σ +
1

2

∑
i

P̂ 2
i +

ω2
0

2

∑
i

X̂2
i + λ

∑
i,σ

n̂i,σX̂i ,(4.1)

describes the coupling of electrons, with creation and destruction operators ĉ†iσ, ĉiσ, to dispersionless

phonon degrees of freedom P̂i, X̂i, with the phonon mass normalized to M = 1. The parameter
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Figure 4.1. Panel (a) shows the initial thermalization process for a set of simu-
lations near the critical temperature where the amount regularization m is varied.
All simulations are initialized with a CDW configuration. Panel (b) shows the au-
tocorrelation for each simulation once the system is finished thermalizing. Note
that t in panel (a) is the simulation Langevin time, whereas in panel (b) it is the
autocorrelation time.

t multiplies a near-neighbor hopping (kinetic energy) term. We set t = 1 as our unit of energy,

resulting in an electronic bandwidth for the cubic lattice equal toW = 12. The coupling between the

phonon displacement and electron density on site i is controlled by λ while the chemical potential, µ,

tunes the filling. In this study we focus on half-filling, obtained by setting µ = −λ2/ω2
0, and report

results in terms of a dimensionless electron-phonon coupling constant λD = λ2/(ω2
0W ). Despite its

simplifications, the Holstein model captures many qualitative features of electron-phonon physics,

including polaronic effects in the dilute limit [55, 145, 146], SC and CDW formation, and their

competition [2,3,59,124,147,148,149,150].
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The fermionic degrees of freedom appear only quadratically in the Holstein model, Eq. (4.1).

Consequently, the fermions can be “integrated out” resulting in the product of two identical matrix

determinants which are nontrivial functions of the space and imaginary time dependent phonon

field. The product of the two identical determinants is positive; thus there is no sign problem.

Most prior numerical studies of the Holstein model employed DQMC, which explicitly calculates

changes in the determinant as the phonon field is updated. At fixed temperature, DQMC scales

cubically in the number of sites N , and hence as L9, where L is the linear system size in 3D. This

limits DQMC simulations in three dimensions to relatively small L.

Instead, we use a method based on Langevin updates which exhibits nearly linear scaling in N .

Such methods were first formulated for lattice gauge theories [97,151,152]. Attempts to simulate

the Hubbard Hamiltonian with Langevin updates were limited to relatively weak coupling and high

temperature by the ill-conditioned nature of the matrices, due to rapid fluctuations of the sampled

Hubbard-Stratonvich fields in the imaginary time direction [153]. However, in the Holstein model

the sampled phonon fields have an associated kinetic energy cost that moderates these fluctuations,

giving rise to better conditioned matrices.

Here we briefly discuss the key steps in the algorithm and leave the details to Ref. [20]. The

partition function for the Holstein model is first expressed as a path integral in the phonon co-

ordinates, xi,τ , by discretizing the inverse temperature β = Lτ∆τ . After performing the trace

over the fermion coordinates, the phonon action S includes a term ln(detM) where M is a matrix

of dimension NLτ . The phonon field is then evolved in a fictitious Langevin time t with xi,τ (t)

moving under a force ∂S/∂xi,τ (t) and a stochastic noise term. The part of the derivative of S

which involves ln(detM) is evaluated with a stochastic estimator. It is necessary to compute M−1

acting on vectors of length NLτ , which is done using the conjugate gradient (CG) method. An

essential refinement of the algorithm is the application of Fourier Acceleration [97, 151, 152] to

reduce critical slowing down resulting from the slow phonon dynamics in imaginary time.
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Elements of the fermionic Green function are also obtained with a stochastic estimator. Once

evaluated, one can measure all physical observables. We focus here on the charge structure factor,

S(k) ≡
∑

r

c(r) eik·r,

c(r) =
1

N

∑
j

〈nj+rnj 〉,(4.2)

(nj = nj↑ + nj↓), and the specific heat C = d〈E〉/dT . We also obtain the momentum integrated

spectral function A(ω), the analog of the density of states in the presence of interactions, by analytic

continuation of the Green function via the classic maximum entropy method [125, 154]. We use

a flat default model, and, for simplicity, we employ only the “diagonal” statistical errors in G(τ)

rather than the full covariance matrix.

4.3. Langevin Dynamics and Simulation Parameters

The Fourier Accelerated Langevin dynamics evolved by our simulation is given by [20]

(4.3)
dx(t)

dt
= −Q̃

dS
dx(t)

+

√
2Q̃ η(t),

where x(t) are the NLτ phonon degrees of freedom in our 3 + 1 dimensional lattice, S is the total

action, Q̃ is the Fourier Acceleration operator, and η(t) is a vector of stochastic random variables

satisfying 〈ηr,τ (t)〉 = 0 and 〈ηr,τ (t) ηr′,τ ′(t
′)〉 = δr,r′δτ,τ ′δ(t

′ − t). More specifically, Q̃ = F̂−1Q̃F̂,

where F̂ is the Fourier Transform and Q̃ is a diagonal matrix given by

(4.4) Q̃(ωτ ) =
m2

reg + ∆τω2
0 + 4/∆τ

m2
reg + ∆τω2

0 + [2− 2 cos (2πωτ/Lτ ) /∆τ ]
,

where mreg ≥ 0 is a regularization parameter used to tune the degree of Fourier Acceleration [20].

It is evident from this form that lower frequencies (longer imaginary time scales) are updated with a

larger effective Langevin time step with a concomitant speedup of convergence. It is also clear that

the larger the regularization parameter m is, the smaller the acceleration since Q̃(ωτ ) approaches

unity for all frequencies. In the Langevin simulations used to generate the results in this chapter

we evolved the dynamics using a second-order Runge-Kutta discretization method with a time step

of dt = 0.001 and regularization mreg = 0.5 [97]. To see the effect of Fourier Acceleration and
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Figure 4.2. Specific heat C(T ) as a function of temperature T . The low temper-
ature peak corresponds to the onset of charge ordering. Here λD = 0.23, ω0 = 0.60
and the lattice size is N = 83.

the regularization parameter mreg on the dynamics refer to Figure 4.1 where the simulations were

performed near the critical temperature, which is the most difficult for convergence. This figure

shows the immense effect of Fourier Acceleration and the drastic reduction of the autocorrelation

time. In fact, the simulations we performed for this chapter would not be possible without this

acceleration.

4.4. Correlation and Charge Structure Factor

At half-filling on a bipartite lattice the formation of a CDW phase is the fundamental ordering

tendency of the Holstein model. At intermediate temperatures we observe the formation of local

pairs due to the effective on-site attraction Ueff = −λ2/ω2
0, between up and down electrons. At

lower T , the positions of the pairs become correlated, since the lowering of energy by virtual hopping

is maximized by −4t2/Ueff if each pair is surrounded by empty sites. A clear signature of this low

temperature physics is seen in the heat capacity C(T ) as the temperature is lowered, which has a

sharp peak at T ∼ 0.28 corresponding to the CDW phase transition, as shown in Fig. 4.2.
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Figure 4.3. Charge structure factor as a function of momentum for different inverse
temperature β at fixed λD = 0.33 and ω0 = 0.5. As T decreases, a peak develops
at k = (π, π, π). The most rapid growth is for T ∼ 0.37-0.40. Finite size scaling
analysis of the crossings of Scdw in Fig. 4.6, precisely identifies Tc ∼ 0.392± 0.008.

It is also possible to detect the formation of this low temperature CDW phase by studying the

density-density correlation function, and its Fourier transform, the charge structure factor, S(k). In

Fig. 4.3 we show S(k), Eq. (4.2), versus k for different T = β−1 and λD = 0.33 (ω0 = 0.5, λ = 1.0).

We see that, as T is lowered, the peak height at k = (π, π, π) increases by two orders of magnitude.

The value of β for which the height increases most rapidly provides a rough value for the transition

temperature, which can be more precisely determined via finite size scaling (Fig. 4.6).

In real space, the density-density correlation function exhibits a pattern which oscillates in sign

on the two sublattices, consistent with dominant ordering at k = (π, π, π) seen in Fig. 4.3. Above

Tc, the correlations die off exponentially, with a correlation length ξ which grows as T → Tc. In

finite size simulations, ξ will be bounded by the system size L, but one can nevertheless estimate

it via [155],

ξ =
L

2π

√
S(q1)/S(q2)− 1

4− S(q1)/S(q2)
,(4.5)
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Figure 4.4. Correlation length obtained from Eq. (4.5) with ω0 = 0.6, λ =
1.0 (λD = 0.23). Shaded gray bar shows the value of Tc obtained from a finite-
size scaling analysis of the CDW structure factor (Fig. 4.6).

where q1 = (π, π, π − 2π
L ) and q2 = (π, π, π − 4π

L ) are the two closest wave vectors to the ordering

vector k = (π, π, π).

Figure 4.4 shows the ratio ξ/L as a function of temperature for three lattice sizes L = 8, 10, 12.

ξ/L exhibits a characteristic peak, which sharpens with increasing lattice size. In the following

section, we will present data indicating Tcdw = 0.31 which is consistent with the peak in finite

lattice sizes approaching Tc from above in our data as well.

4.5. Mean Field Theory

The failures of Mean Field Theory (MFT) for classical phase transitions are well known- an

overestimation of the tendency to order, e.g. critical temperatures which are substantially greater

than the exact values, and, of course, incorrect scaling exponents when the dimension is less than

the upper critical dimension. For itinerant Fermi systems, MFT has an additional weakness: it is

unable to distinguish the formation temperatures T∗ of local moments (in the case of magnetism)

or doubly occupied sites (in the case of charge density wave order), from the temperatures at which
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these local objects achieve regular long range patterns, i.e. the transition temperature Tc. Thus, for

antiferromagnetism in the half-filled Hubbard model, Tmft
af ∼ U whereas T exact

af ∼ J = 4t2/U . As a

consequence, at large coupling U , Taf is especially poorly captured and indeed has a fundamentally

erroneous dependence on U .

The same is true for the CDW transition in the half-filled 3D Holstein model. Figure 4.5 shows

Tc within MFT. The exact Tc (Fig. 5 of main text) reaches a maximal value of Tc/t ∼ 0.4 for

λD ∼ 0.42. The MFT transition temperature at this λD is overestimated by a factor of about five.

This is a much greater difference than between the transition temperature of charge ordering in

a classical lattice gas, where the MFT Tc is only a factor of Tmft
c /T ex

c = 6.00/4.51 ∼ 4/3 larger

than the exact (Monte Carlo) result. As for the Hubbard model, MFT will not only overestimate

the transition temperature for ordering at half-filling, but will also greatly enlarge the region of

densities about half-filling at which charge order occurs [122].

4.6. Cubic Charge Density Wave Transition

Having seen the essential qualitative effects of the electron-phonon coupling, we now perform

finite size scaling to locate the transition precisely. The three panels of Fig. 4.6 exhibit the steps in

this process. The upper left panel (a) exhibits raw data for Scdw versus inverse temperature β. At

high T (small β) the values of Scdw for different system sizes coincide with each other, because the

charge correlations are short ranged and the additional large distance values in the sum over r in

Eq. (4.2), present as L increases, make no contribution. However, as T decreases (β increases) the

correlation length reaches the lattice size, and values of Scdw now become sensitive to the cut-off

L. As a consequence, a crude estimate of Tcdw can already be made as the temperature at which

the curves begin to separate, i.e. Tcdw ∼ 0.31 (βc ∼ 3.2).

The scaling behavior of Scdw can be understood in the following manner. An order parameter

for CDW order is Ψ = 〈nA − nB〉, where 〈nA〉 and 〈nB〉 is the average density on each sub-lattice.

Therefore, as an order parameter we may expect Ψ to scale as

Ψ ∼ |t|β,(4.6)
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Figure 4.5. Panel (a) shows the order parameter as a function of inverse temper-
ature β for different λD. Panel (b) shows the CDW transition temperature given
by mean-field theory for the cubic Holstein model at half-filling as a function of
dimensionless coupling λD at (with λ = 1 held fixed). Tc increases linearly with λD
at strong coupling, in contrast to the non-monotonic behavior of the QMC results
of Fig. 5 of the main text. At small coupling the MFT becomes difficut to converge,
hence Tc is not shown for λD . 0.1.

where t = (T − Tc)/Tc. We may then infer that the real-space denisty correlations will scale as

c(r) ∼ Ψ2 ∼ |t|2β.(4.7)

Next, given the sum over all possible displacement vector r that appears in the definition of Scdw,

we can say that the structure factor will scale as

Scdw ∼ LDc(r) ∼ LD|t|2β,(4.8)

90



2.8 3.0 3.2 3.4
0

100

200

300

400

500

600

700

800

S c
dw

(a)

2.8 3.0 3.2 3.4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S c
dw

L2
/

D

(b)

6 4 2 0 2 4 6
L1/ (T Tc)/Tc

0

1

2

3

4

S c
dw

L2
/

D

Tcdw = 0.315 ± 0.005
0 = 0.60, = 1.00

D = 0.23

(c)

L=8
L=10
L=12
L=14

Figure 4.6. Finite size scaling analysis of the CDW structure factor. Panel (a)
contains the raw (unscaled) data. Scdw is independent of L for small β where the
correlation length is short. At large β, Scdw grows with L. Panel (b) scales Scdw

only. The result is a crossing plot which yields the critical inverse temperature
βc t = 3.15 ± 0.05. The main panel (c) shows a full scaling plot where the data
collapse in a range of inverse temperatures near the critical point. Holstein model
parameters are ω0 = 0.60, λ = 1.0 so that λD = 0.23.

where the dimension is D = 3 for the cubic Holstein model. At this point we apply the finite-size

scaling hypothesis [156], and say that near the CDW transition temperature the structure factor

will scale with system size as

L2β/ν−DScdw = g
(
tL1/ν

)
,(4.9)

where g(·) is the scaling function.

Therefore, a much more accurate determination of Tcdw is provided by making a crossing plot

(Fig. 4.6c) of L2β/ν−DScdw versus β. Curves for different lattice sizes L should cross at βc = 1/Tcdw.
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Figure 4.7. Phase diagram of the 3D Holstein model on a cubic lattice as a function
of λD, with λ = 1 held fixed. For comparison, critical temperatures on three 2D
lattice geometries, square, honeycomb, and Lieb are also given [2,3,4].

In this analysis we make use of the expected universality class of the transition, the 3D Ising model,

to provide values for the exponents β = 0.326 and ν = 0.63. We conclude Tcdw = 0.315 ± 0.005.

Finally, Fig. 4.6(c) gives the full scaling collapse, using Tcdw from panel (b) and again employing

3D Ising exponents.

Combining plots like those of Fig. 4.6 for different values of λ and ω0 allows us to obtain the

finite temperature phase diagram of the 3D Holstein model, Fig. 4.7, which is the central result

of this chapter. We see that Tc is increased by roughly a factor of two in going from various 2D

geometries (square [2], Lieb [4], and honeycomb [3, 124]) to 3D. This increase is quite similar to

that of going from 2D square (Tc ∼ 2.27) to 3D cubic (Tc ∼ 4.51) for the CDW transition of

classical lattice gas (Ising) model.

4.7. Real Space Density-Density Correlations

The analysis in Sec. 4.6 uses charge structure factor S(k) to extract the CDW transition tem-

perature Tcdw. However, it is also useful to observe the density correlations, since they exhibit the
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Figure 4.8. Density-density correlations versus separation for the half-filled cubic
Holstein model with frequency ω0 = 0.5, electron-phonon coupling λD = 0.33 on
a 123 lattice. Oscillations in c(r) are barely observable at T = 0.400, but clearly
present at T = 0.385.

long range spatial order. Figure 4.8 shows c(r) = 〈nj+r nj 〉 along a trajectory of steadily increasing

separation r = (0, 0, 0) to (6, 0, 0) to (6, 6, 0), and finally, to (6, 6, 6), the last being the maximal

attainable separation on a 123 lattice with periodic boundary conditions. For high temperatures

c(r) = 〈nj+r 〉 〈nj 〉 = 1, its uncorrelated value, once r is beyond a few lattice spacings. In contrast,

a clear pattern of distinct c(r) on the two sublattices is present at low temperatures. Very little

spatial decay is seen in c(r) at low T . The temperature at which this pattern emerges is consistent

with Tc from Fig. 5 of the main text, obtained by finite size scaling of S(k).
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Figure 4.9. Momentum integrated spectral function A(ω). Here ω0 = 0.7, λD =
0.17, and the lattice sizeN = 103. A suppression of A(ω = 0) coincides with reaching
βc ∼ 5. (See Fig. 4.7.) A full gap develops at a somewhat lower temperature. Also
shown, for comparison, is the density of states of non-interacting electrons (λD = 0)
hopping on a cubic lattice.

4.8. Cubic Holstein Model Spectral Function

The preceding results are all obtained with imaginary time-independent Green functions. More

generally, one can consider,

G(k, τ) ≡ 〈c(k, τ)c†(k, 0)〉 =

∫
dωA(k, ω)

e−ωτ

eβω + 1
(4.10)

to determine the spectral function A(k, ω). We use the classic maximum entropy approach for

the analytic continuation, with a flat default model and only the ‘diagonal’ statistical errors in

G(τ) [125,154]. This is the first use of our Langevin approach for dynamical behavior. Figure 4.9

shows A(ω) for several different temperatures at fixed ω0 = 0.7, λD = 0.17. At high temperatures

(β = 3 and 4) the main effect of the electron-phonon interaction is to increase the spectral function

somewhat in the region close to the band edges ω = ±6t. The renormalized bandwidth is remarkably

unchanged from that of free electrons on a cubic lattice, W = 12t. When T reaches the CDW

ordering temperature, β ∼ 5 (see Fig. 4.7) A(ω = 0) develops a pronounced dip. This suppression
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Figure 4.10. Total energy (panel a) and individual components of the energy (pan-
els b,c,d) of the half-filled cubic Holstein model for ω0/t = 0.6 and λD = 0.23. The
phonon potential energy (panel b) is non-monotonic, with a weak minimum at Tcdw.
The electron-phonon energy (panel c) shows the sharpest signature of the CDW
transition. The electron and phonon kinetic energies (panel d) show little evidence
of the transition.

continues to increase until, at β = 8, A(ω = 0) vanishes. This sequence, in which a dip first signals

entry into the CDW phase, is consistent with the trends reported in [17].
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4.9. Energy Components

The inset to Fig. 4.2 of the text gave the temperature evolution of the total energy, with the

main panel showing its derivative, the specific heat C(T ). A sharp peak at low temperature,

T/t ∼ 0.30, signals the CDW transition. Figure 4.10 gives the individual components of the energy.

The phonon potential energy and electron-phonon energies exhibit clear signatures through Tcdw,

with the former having a minimum, and the latter a maximum there. The electron-phonon energy

initially rises as β increases, i.e. contributing negatively to the specific heat, dEelph/dT < 0, and

then abruptly drops beyond βcdw.

4.10. Discussion

We have used a new Langevin QMC method to study the Holstein Hamiltonian on a three-

dimensional cubic lattice. This new approach allows us to access much larger lattice sizes, enabling

us to perform a reliable finite size scaling analysis to determine the CDW transition temperature.

Using this method, we obtained results that, in momentum space, were sufficient to resolve the

width of the charge structure factor peak and the smearing of the Fermi surface by electron-phonon

interactions. The specific heat and spectral function provide useful alternate means to examine the

low temperature properties. Their behavior is consistent with that seen by direct observation of

charge correlations.

While a single band model of interacting electrons does seem to provide a reasonably accurate

representation of cuprate physics [12] (although not that of the iron-pnictides), realistic CDW

materials generally have much richer band structures. Since, at a formal level, additional sites and

additional orbitals are equivalent in real-space QMC simulations, an ability to simulate larger spatial

lattices also opens the door to the study of more complex CDW systems. Of course, the accurate

description of these materials requires not only several electronic bands, but also a refinement of the

description of the phonons and electron-phonon coupling, which are also treated at a very simple

level in the Holstein Hamiltonian. Initial steps to include phonon dispersion have recently been

made [1]. However, refinements to the electron-phonon coupling such as a momentum dependent

λ(q) remain a challenge to simulations because of the phase separation that results in the absence

of electron-electron repulsion [157].
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CHAPTER 5

Conclusion

Electron-phonon interactions frequently give rise to non-trivial correlation effects in real ma-

terials, playing a crucial role in the emergence of varied ordered phases. The principle result

of this dissertation, presented in Chapter 2, is a refined Hybrid Quantum Monte Carlo (HMC)

method for simulating electron-phonon models. The HMC method, and accompanying algorithms,

are benchmarked against the widely studied square Holstein model. Tests show that HMC has a

computational cost that achieves near linear scaling with system size, reflected in the number of

Conjugate Gradient (CG) iterations becoming approximately independent of system size, especially

at phonon frequencies that are physically relevant to real materials. To achieve this, we introduce

a novel preconditioner that works by approximating the inverse of the fermion matrix in the limit

that fluctuations in imaginary time are suppressed. The preconditioner significantly reduces the

number of required CG iterations, effectively reducing simulation time. The preconditioner is also

observed to become more effective as the phonon frequency is reduced and the adiabatic limit is

approached, ω0 → 0, a parameter regime inaccessible to alternate approaches.

A timestep splitting algorithm is introduced to evolve the bosonic action, SB, with a smaller

timestep than the fermionic action, SF , thereby reducing discretization errors and increasing ac-

ceptance rates. This is used alongside a carefully designed dynamical mass matrix that slows down

the highest frequency dynamical modes originating from SB. This allows larger timesteps to be

used to evolve SF , significantly reducing autocorrelation times. Two additional types of Monte

Carlo updates, termed reflection and swap updates, are introduced to address effective ergodicity

problems that arise as a result of the phonon-mediated attraction between electrons. These two

additional types of updates become more important as the dimensionless electron-phonon coupling

λD increases, helping the system to successfully equilibrate.
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Finally, a novel method for averaging over translation symmetry in both space and imaginary

time when making measurements is introduced. Expressing these averages as periodic cross cor-

relations, they can be efficiently evaluated using FFTs. This dramatically reduces computational

cost of making measurements, resulting in a more favourable scaling with system size. In practice

this also means significantly more random vectors can be used to measure correlation functions,

substantially reducing the error associated with certain measurements.

Chapter 3 investigates the effect of strain on CDW order in the square Holstein model, modeled

as an anisotropic hopping (tx, ty) = (1−δ, 1+δ) such that the total bandwidth W = 8 is independent

of δ. For small anisotropy δ . 0.3 the CDW transition temperature Tcdw only decreases a small

amount. On the other hand, Tcdw decreases more rapidly for larger values δ & 0.4. However,

both the electron kintetic energy and the charge structure factor Scdw begin to be suppressed even

for small values of δ. Despite Scdw becoming very small for large δ, the opening of a gap at the

Fermi Surface (FS) in the spectral function A(w) for δ = 0.9 indicates the presence of a finite

temperature phase transition to CDW as δ → 1. The persistence of CDW order out to large

anisotropy is understood to occur because alternating CDW correlations first form in the direction

of larger hopping, the ŷ direction in the model. This leads to a larger effective coupling eventually

occurring in the x̂ direction, ultimately giving rise to CDW order even when δ → 1.

In Chapter 4 the formation of CDW in the half-filled cubic Holstein model is studied, the first

QMC investigation of a three dimensional Holstein model. Results for this study were collected

using the Langevin method, a QMC algorithm that is very similar to HMC in many respects,

including the use of global updates based on an artificial dynamics to achieve near linear scaling

with system size. By performing a finite size scaling analysis using the 3D Ising universality class

critical exponents, the CDW transition temperature Tcdw is determined for several different values of

the dimensionless electron-phonon coupling λD. The transition temperature has a maximum value

Tcdw ∼ 0.4 at intermediate coupling λD ∼ 0.4t. Also, relative to several two dimensional Holstein

models on a variety of lattice geometries with comparable values for λD, the cubic Holstein model

has significantly higher transition temperatures. This increase in Tcdw is similar to that of going

from 2D square (Tc ≈ 2.27) to 3D cubic (Tc ≈ 4.51) for the CDW transition of classical lattice gas

(Ising) model.
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QMC studies of electron-phonon models, and in particular various Holstein models, have typ-

ically been restricted to systems with very large phonon frequencies, on the order of the hopping

amplitude ω0 ∼ t. However, in real materials the phonon frequencies are usually small compared

to the hopping amplitudes. The HMC method introduced in this dissertation enables the simula-

tion of phonon frequencies that are physically relevant to real materials. Near linear scaling with

system size also allows for the simulation of significantly larger lattice sizes, enabling the study

of model Hamiltonians for electron-phonon interactions in three dimensions. Taken together, the

ability to simulate larger system sizes and realistic phonon frequencies opens the door to solving

electron-phonon models that are designed with specific materials in mind, like transition metal

dichalcogenides or bismuthate superconductors.

Quantum Monte Carlo methods have been an essential tool in advancing our understanding of

correlation effects in condensed matter sysems. However, in many case QMC simulations have been

limited in their usefulness by only allowing for the simulation of very simple model Hamiltonians and

relatively small systems sizes. It is important then that QMC methods continue to be developed

with the eventual goal to be able to simulate model systems that are more directly inspired by

real materials. This dissertation provides several important contributions to this ongoing effort,

introducing novel HMC methods that allow for the simulation of more realistic electron-phonon

models.
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APPENDIX A

The Atomic Limit of the Holstein Model

The atomic limit (t = 0) of the Holstein model is described by the single-site Holstein Hamil-

tonian

(A.1) Ĥ =
1

2
P̂ 2 +

1

2
ω2

0X̂
2 + λX̂ (n̂− 1)− µn̂,

where n̂ = n̂↑ + n̂↓, for which an analytic solution exists. Additionally, the normalization ~ =

mph = 1 has been applied, where mph is the phonon mass. We begin by completing the square in

X̂,

Ĥ =
1

2
P̂ 2 +

1

2
ω2

0

(
X̂ +

λ (n̂− 1)

ω2
0

)2

− λ2

2ω2
0

(n̂− 1)2 − µn̂

=
1

2
P̂ 2 +

1

2
ω2

0

(
X̂ +

λ

ω2
0

(n̂− 1)

)2

− λ2

2ω2
0

(2n̂↑n̂↓ − n̂+ 1)− µn̂,

=
1

2
P̂ 2 +

1

2
ω2

0

(
X̂ +

λ

ω2
0

(n̂− 1)

)2

+

(
λ2

2ω2
0

− µ
)
n̂− λ2

2ω2
0

(2n̂↑n̂↓ + 1) ,(A.2)

where we have made use of the fact that n̂2
σ = n̂σ. At this point we define the operator substitution

Ŷ = X̂ + λ
ω2

0
(n̂− 1), leaving the momentum operator unchanged, such that

[
Ŷ , n̂σ

]
= 0. After

making this operator substitution, and dropping the − λ2

2ω2
0

additive constant, we are left with

(A.3) Ĥ =

Ĥqho︷ ︸︸ ︷
1

2
P̂ 2 +

1

2
ω2

0Ŷ
2 +

Ĥel︷ ︸︸ ︷(
λ2

2ω2
0

− µ
)
n̂− λ2

ω2
0

n̂↑n̂↓,
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where Ĥel is a purely electronic term and Ĥqho describes a shifted quantum harmonic oscillator

(QHO). Therefore, the partition function is given by

Z =Tr e−βĤ

= [Zqho] [Zel]

=
[
Tr e−βĤqho

] [
Tr e−βĤel

]
=

[ ∞∑
l=0

e−βω0(l+ 1
2)

]∑
n↑,n↓

e−βĤel


=

[
e−βω0/2

1− e−βω0

] [〈
0, 0

∣∣∣e−βĤel

∣∣∣ 0, 0〉+
〈
↑, 0

∣∣∣e−βĤel

∣∣∣ ↑, 0〉
+
〈

0, ↓
∣∣∣e−βĤel

∣∣∣ 0, ↓〉+
〈
↑, ↓

∣∣∣e−βĤel

∣∣∣ ↑, ↓〉]
=

[
e−βω0/2

1− e−βω0

][
1 + 2e

−β
(
λ2

2ω2
0
−µ
)

+ e2βµ

]
.(A.4)

A.1. Particle-Hole Transformation

In the atomic (t = 0) limit of the Holstein model at half-filling (µ = 0), a particle-hole

transformation can be realized by flipping the sign of phonon position operator, X̂ 7→ −Ŷ , and

replacing the electron creation (annihilation) operator by hole creation (annihilation) operators,

ĉ†σ
(
ĉσ
)
7→ d̂σ

(
d̂ †σ
)

. The Hamiltonian is invariant under this transformation:

Ĥ =
1

2
P̂ 2 +

1

2
ω2

0X̂
2 + λX̂ (n̂− 1)

=
1

2
P̂ 2 +

1

2
ω2

0X̂
2 + λX̂ (n̂↑ + n̂↓ − 1)

=
1

2
P̂ 2 +

1

2
ω2

0X̂
2 + λX̂

(
ĉ†↑ĉ↑ + ĉ†↓ĉ↓ − 1

)
=

1

2
P̂ 2 +

1

2
ω2

0Ŷ
2 − λŶ

(
d̂↑d̂

†
↑ + d̂↓d̂

†
↓ − 1

)
=

1

2
P̂ 2 +

1

2
ω2

0Ŷ
2 − λŶ

(
1− d̂ †↑ d̂↑ + 1− d̂ †↓ d̂↓ − 1

)
=

1

2
P̂ 2 +

1

2
ω2

0Ŷ
2 − λŶ

(
1− d̂ †↑ d̂↑ − d̂

†
↓ d̂↓

)
=

1

2
P̂ 2 +

1

2
ω2

0Ŷ
2 + λŶ

(
d̂ †↑ d̂↑ + d̂ †↓ d̂↓ − 1

)
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=
1

2
P̂ 2 +

1

2
ω2

0Ŷ
2 + λŶ

(
ĥ↑ + ĥ↓ − 1

)
=

1

2
P̂ 2 +

1

2
ω2

0Ŷ
2 + λŶ

(
ĥ− 1

)
,(A.5)

where ĥσ = d̂ †↑ d̂↑ is the hole number operator.

A.2. Useful expectation values

In this section we derive expressions for several expectation values. In addition to being helpful

for developing physical intuition, they are also a useful for testing Holstein QMC codes.

A.2.1. Electron density. The expectation value for the density is given by

〈n〉 =
1

Z
Tr
[
e−βĤ n̂

]
=

1

Zqho
Tr
[
e−βĤqho n̂

]

=
2e
−β
(
λ2

2ω2
0
−µ
)

+ 2e2βµ

1 + 2e
−β
(
λ2

2ω2
0
−µ
)

+ e2βµ

,(A.6)

where it is straightforward to see if µ = 0, then 〈n〉 = 1.

A.2.2. Phonon position. The expectation value for the phonon position is

〈X〉 =

〈
Y − λ

ω2
0

(n̂− 1)

〉
= 〈Y 〉 − λ

ω2
0

(〈n〉 − 1)

=
λ

ω2
0

(1− 〈n〉) ,(A.7)

where we have used the fact that 〈Y 〉 = 0. If µ = 0, then 〈n〉 = 1 and 〈X〉 = 0.

A.2.3. Double occupancy. The expectation value for the double occupancy is

〈n↑n↓〉 =
1

Z
Tr
[
e−βĤ n̂↑n̂↓

]
=

1

Zel
Tr
[
e−βĤel n̂↑n̂↓

]
=

e2βµ

1 + 2e
−β
(
λ2

2ω2
0
−µ
)

+ e2βµ

.(A.8)
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A.2.4. Phonon kinetic energy. The expectation value for the total energy of a quantum

harmonic oscillator at finite temperature is

(A.9) 〈Hqho〉 = − ∂

∂β
lnZqho =

ω0

2
coth

(
βω0

2

)
.

The equiparition function tells us the energy is evenly split between the kinetic energy and potential

energy modes. Additionally, X̂ and Ŷ share the same conjugate momentum operator P̂ . Therefore,

we can immediately say the expectation value for phonon kinetic energy Ĥph−ke = 1
2 P̂

2 is

(A.10) 〈Hph−ke〉 =
1

2
〈Hqho〉 =

ω0

4
coth

(
βω0

2

)
.

A.2.5. Phonon potential energy. The phonon potential energy term is

Ĥph−pe =
1

2
ω2

0X̂
2

=
1

2
ω2

0

(
Ŷ − λ

ω2
0

(n̂− 1)

)2

=
1

2
ω2

0

(
Ŷ 2 +

λ2

ω4
0

(n̂− 1)2 − 2Ŷ
λ

ω2
0

(n̂− 1)

)
.(A.11)

Taking the expectation value we see that

〈Hph−pe〉 =

〈
1

2
ω2

0

(
Ŷ 2 +

λ2

ω4
0

(n̂− 1)2 − 2λ

ω2
0

Ŷ (n̂− 1)

)〉
=

1

2
ω2

0

〈
Ŷ 2
〉

+
λ2

ω2
0

〈
(n̂− 1)2

〉
− 2λ

〈
Ŷ
〉

(〈n̂〉 − 1)

=
1

2
〈Hqho〉+

λ2

ω2
0

(2 〈n̂↑n̂↓〉 − 〈n̂〉+ 1) ,(A.12)

from which we also see

(A.13)
〈
X2
〉

=
2

ω2
0

〈Hph−pe〉 .

A.2.6. Electron-phonon energy. The electron-phonon term is

Ĥel−ph =λX̂n̂ = λ

(
Ŷ − λ

ω2
0

(n̂− 1)

)
n̂

=λŶ n̂− 2λ

ω2
0

n̂↑n̂↓,(A.14)
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and the corresponding expectation value is

〈Hel−ph〉 =

〈
λŶ n̂− 2λ

ω2
0

n̂↑n̂↓

〉
=− 2λ

ω2
0

〈n↑n↓〉 .(A.15)

A.3. Adiabatic semiclassical limit

In this section we investigate the semiclassical adiabatic limit of the single site Holstein model,

where the phonon kinetic energy term is neglected and the phonon position operator X̂ is replaced

by a classical continuous degree of freedom x. This limit can understood as being equivalent to

letting the phonon mass go to infinity, mph → ∞. While we do have access to the exact solution

derived above, examining this limit is still a qualitatively insightful exercise. The Hamiltonian in

this limit is

Ĥx =
1

2
ω2

0x
2 + λx (n̂− 1)− µn̂,(A.16)

with a partition function given by

Zx =Tr e−βĤx =

∫ ∞
−∞

dx
∑
n↑,n↓

e−βĤx

=

∫ ∞
−∞

dx

(
e
−β
(
ω2

0
2
x2−λx

)
+ 2e

−β
(
ω2

0
2
x2−µ

)
+ e
−β
(
ω2

0
2
x2+λx−2µ

))

=

∫ ∞
−∞

dx e
−β
(
ω2

0
2
x2−µ

) (
eβ(λx−µ) + 2 + e−β(λx−µ)

)
=

∫ ∞
−∞

dx e
−β
(
ω2

0
2
x2−µ

) [
4 cosh2

(
β

2
(λx− µ)

)]

=

∫ ∞
−∞

dx e
−
(
β

(
ω2

0
2
x2−µ

)
−2 ln cosh(β2 (λx−µ))−2 ln 2

)
.(A.17)

While it is possible to evaluate the integral in Eq. (A.17) in order to get Zx, for developing

physical intuition it is more useful to instead define and understand the action

(A.18) Sβ (x) = β

(
ω2

0

2
x2 − µ

)
− 2 ln cosh

(
β

2
(λx− µ)

)
− 2 ln 2
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such that

(A.19) Zx =

∫ ∞
−∞

dx e−Sβ(x).

Therefore, the quantity Sβ (x) /β, which has units of energy, can be approximately interpreted as

the system energy as a function of x. It is then useful for comparison purposes to define three

functions

(A.20) En (x) =
1

2
ω2

0x
2 + λx (n− 1)− µn,

where the operator n̂ in Eq. A.16 is replaced by an integer n = 0, 1 or 2. Each of the three En (x)

functions is the energy of the system for a given x at fixed electron number n, as in the canonical

ensemble.
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0
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10 |Ueff|
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10 |Ueff|
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S5(x)
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0
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15E2(x)

Figure A.1. The left panel shows Sβ versus x at various inverse temperatures β,

where Ueff = − λ2

ω2
0
. The right panel plots Sβ and βEn versus x for β = 15. All curves

are for half-filled systems, µ = 0.

The left panel in Fig. A.1 shows that as temperature is lowered, Sβ (x) quickly forms a double-

well structure, with a local maxima at xmax = 0 and Sβ (0) = 0. Also, as β increases the location

of the two local minima approach xmin ≈ ± λ
ω2

0
, with corresponding action Sβ (xmin) ≈ −β |Ueff |,

where Ueff = − λ2

ω2
0
. The right panel shows that the left and right local minima are well described by

the E2 (x) and E0 (x) curves respectively, while the local maximum at xmax = 0 is approximately
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given by the intersection point of the three En (x) curves. This suggests a natural interpretation

for the double-well structure of Sβ (x). The local minima on the left and right correspond to two or

zero electrons being on the site respectively, while the energy barrier corresponds to one electron

living on the site.

In the zero temperature limit, the height of energy barrier approaches

(A.21) lim
β→∞

Sβ (0)− Sβ
(
±λ/ω2

0

)
β

=
|Ueff |

2
.

In Sec. 1.1 it is established that the strength of the phonon mediated electron-electron attraction is

approximately parameterized by Ueff . How then should we interpret the energy barrier approaching

a value of |Ueff | /2 as the temperature goes to zero? Imagine two single-site Holstein models, each

with one electron. Then take one of those electrons and move it to the other site. The total energy

of this new density configuration, with two electrons on one site and zero on the other, will have

an energy that is approximately |Ueff | lower than the original configuration with one electron on

each site. This process, which results in the total energy being lowered by nearly |Ueff |, describes

an effective attractive interaction between electrons.
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APPENDIX B

Units in the Holstein Model

When reintroducing units to the Holstein Hamiltonian it is easiest to start with the unitless

form

(B.1) Ĥ = −t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + h.c.

)
− µ

∑
i,σ

n̂i,σ + ω0

∑
i

(
b̂†i b̂i +

1

2

)
+ g

∑
i,σ

(
b̂†i + b̂i

)(
n̂i,σ −

1

2

)

where the normalization ~ = 1 has been applied. Explicitly including ~ results in

Ĥ =− t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + h.c.

)
− µ

∑
i,σ

n̂i,σ + ~ω0

∑
i

(
b̂†i b̂i +

1

2

)
+ g

∑
i,σ

(
b̂†i + b̂i

)(
n̂i,σ −

1

2

)(B.2)

=− t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + h.c.

)
− µ

∑
i,σ

n̂i,σ + ε
∑
i

(
b̂†i b̂i +

1

2

)
+ g

∑
i,σ

(
b̂†i + b̂i

)(
n̂i,σ −

1

2

)
,(B.3)

where ε = ~ω0. It is clear when looking at this expression that t, ε, g and µ all have units of

energy. At this point it is useful to recall the definition for the dimensionless electron-phonon

coupling λD = 2g2

Wε , where W ∼ t is the non-interacting bandwidth. In the remainder of this section

we will assume a square lattice where W = 8t.

The Holstein Hamiltonian is also frequently written in the unitless form

(B.4) Ĥ = −t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + h.c.

)
− µ

∑
i,σ

n̂i,σ +
∑
i

(
1

2
ω2

0X̂
2
i +

1

2
P̂ 2
i

)
+ λ

∑
i,σ

X̂

(
n̂i,σ −

1

2

)
,

where λ =
√

2ω0g. The phonon position and momentum operators are respectively

X̂i =

√
1

2ω0

(
b̂†i + b̂i

)
(B.5)

P̂i =i

√
ω0

2

(
b̂†i − b̂i

)
.(B.6)
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In addition to having normalized ~ = 1 in Eq. (B.4), it has also normalized the mass of the ion

associated phonon to M = 1. Reintroducing both constants the Holstein Hamiltonian becomes

Ĥ =− t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + h.c.

)
− µ

∑
i,σ

n̂i,σ +
∑
i

(
1

2
Mω2

0X̂
2
i +

1

2M
P̂ 2
i

)
+ λ

∑
i,σ

X̂

(
n̂i,σ −

1

2

)(B.7)

=− t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + h.c.

)
− µ

∑
i,σ

n̂i,σ +
∑
i

(
Mε2

2~2
X̂2
i +

1

2M
P̂ 2
i

)
+ λ

∑
i,σ

X̂

(
n̂i,σ −

1

2

)
(B.8)

where λ =

√
2Mω2

0
~ g =

√
2Mε
~ g has units of energy

length , and the phonon position and momentum operators

are now given by

X̂i =

√
~

2Mω0

(
b̂†i + b̂i

)
=

~√
2Mε

(
b̂†i + b̂i

)
(B.9)

P̂i =i

√
~Mω0

2

(
b̂†i − b̂i

)
= i

√
Mε

2

(
b̂†i − b̂i

)
.(B.10)

It is useful to define a characteristic length scale for both the bare phonon mode

(B.11) X0 =

√
~

2Mω0
=

~√
2Mε

,

and phonon displacement magnitudes with interactions

(B.12) ∆X =
λ

Mω2
0

=
~2λ

Mε2
= ~g

√
2

Mε3
.

Now let us plug in some numbers based on what might be expect in real materials where

electron-phonon interactions play a prominent role in characterizing the physics. The parameter

values with and without units are shown below on the left and right respectively:

• λD = 0.2←→ λD = 0.2

• t = 1.0 eV←→ t = 1.0

• ε = 0.1 eV←→ ε = 0.1

• µ = 0.0 eV←→ µ = 0.0
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• M = 10−25 kg←→M = 1

• W = 8t = 8 eV←→W = 8t = 8

• ω0 = ε
~ = 1519.0THz←→ ω0 = ε = 0.1

• g =
√

λDWε
2 = 0.283eV←→ g =

√
λDWω0

2 = 0.283

• λ =
√

2Mε
~ g = 15.2 eV

Å
←→ λ =

√
2ω0g = 0.127

• X0 = ~√
2Mε

= 0.0186Å←→ X0 =
√

1
2ω0

= 2.236

• ∆X = ~g
√

2
Mε3

= 0.105Å←→ ∆X = λ
ω2

0
= 12.7

Note that the mapping X0 = 0.0186Å←→ X0 = 2.236 defines how to assign units to the observed

phonon displacements that occur in HQMC/DQMC simulations of the Holstein model. Using the

procedure outlined in this note, it is possible to back out real units for Holstein model studies

presented in Chapters 3 and 4.
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[9] Jindřich Kolorenč and Lubos Mitas. Applications of quantum Monte Carlo methods in condensed systems. Rep.

Prog. Phys., 74(2):026502, January 2011.

[10] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal. Quantum Monte Carlo simulations of solids. Rev.

Mod. Phys., 73(1):33–83, January 2001.

[11] J. Hubbard and Brian Hilton Flowers. Electron correlations in narrow energy bands. Proceedings of the Royal

Society of London. Series A. Mathematical and Physical Sciences, 276(1365):238–257, November 1963.

[12] D. J. Scalapino. A common thread: The pairing interaction for unconventional superconductors. Rev. Mod.

Phys., 84(4):1383–1417, October 2012.

[13] Daniel P. Arovas, Erez Berg, Steven Kivelson, and Srinivas Raghu. The Hubbard Model. arXiv:2103.12097

[cond-mat], July 2021.
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