
UC San Diego
UC San Diego Previously Published Works

Title
Impact of a deep learning sepsis prediction model on quality of care and survival

Permalink
https://escholarship.org/uc/item/1jb4h9z2

Journal
npj Digital Medicine, 7(1)

ISSN
2398-6352

Authors
Boussina, Aaron
Shashikumar, Supreeth P
Malhotra, Atul
et al.

Publication Date
2024

DOI
10.1038/s41746-023-00986-6

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1jb4h9z2
https://escholarship.org/uc/item/1jb4h9z2#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


ARTICLE OPEN

Impact of a deep learning sepsis prediction model on quality of
care and survival
Aaron Boussina 1,4, Supreeth P. Shashikumar 1,4, Atul Malhotra1, Robert L. Owens 1, Robert El-Kareh1,2,
Christopher A. Longhurst 1,2, Kimberly Quintero2, Allison Donahue3, Theodore C. Chan3, Shamim Nemati 1,3,5 and
Gabriel Wardi 1,3,5✉

Sepsis remains a major cause of mortality and morbidity worldwide. Algorithms that assist with the early recognition of sepsis may
improve outcomes, but relatively few studies have examined their impact on real-world patient outcomes. Our objective was to
assess the impact of a deep-learning model (COMPOSER) for the early prediction of sepsis on patient outcomes. We completed a
before-and-after quasi-experimental study at two distinct Emergency Departments (EDs) within the UC San Diego Health System.
We included 6217 adult septic patients from 1/1/2021 through 4/30/2023. The exposure tested was a nurse-facing Best Practice
Advisory (BPA) triggered by COMPOSER. In-hospital mortality, sepsis bundle compliance, 72-h change in sequential organ failure
assessment (SOFA) score following sepsis onset, ICU-free days, and the number of ICU encounters were evaluated in the pre-
intervention period (705 days) and the post-intervention period (145 days). The causal impact analysis was performed using a
Bayesian structural time-series approach with confounder adjustments to assess the significance of the exposure at the 95%
confidence level. The deployment of COMPOSER was significantly associated with a 1.9% absolute reduction (17% relative
decrease) in in-hospital sepsis mortality (95% CI, 0.3%–3.5%), a 5.0% absolute increase (10% relative increase) in sepsis bundle
compliance (95% CI, 2.4%–8.0%), and a 4% (95% CI, 1.1%–7.1%) reduction in 72-h SOFA change after sepsis onset in causal
inference analysis. This study suggests that the deployment of COMPOSER for early prediction of sepsis was associated with a
significant reduction in mortality and a significant increase in sepsis bundle compliance.

npj Digital Medicine            (2024) 7:14 ; https://doi.org/10.1038/s41746-023-00986-6

INTRODUCTION
Sepsis, a dysregulated host response to infection, is estimated to
afflict over 48.9 million people a year worldwide of whom
approximately 11 million die1,2. The early recognition of sepsis is
critical since interventions such as fluid resuscitation, antibiotic
administration, and source control all have greater benefits when
implemented earlier in the disease course3–9. The detection of
patients with sepsis can be challenging due to the heterogeneity
of the condition; thus, we and others have used predictive
analytics to improve the early detection10–14. We recently reported
the performance of COMPOSER, a deep-learning model that
imports real-time data from electronic health records to predict
sepsis before obvious clinical manifestations15. Few sepsis
algorithms have been rigorously tested at the bedside or
evaluated with regard to patient outcomes16–19. Existing algo-
rithms within electronic health records (EHRs) have demonstrated
relatively poor positive predictive value (PPV) and may contribute
to provider mistrust of predictive models20,21. Of note, false
positive alerts from such models often lead to alarm fatigue and
provider burnout/mistrust. COMPOSER was specifically designed
to reduce false alarms by flagging outliers and out-of-distribution
samples as indeterminate15.
Based on this conceptual framework, we integrated the

COMPOSER algorithm in two emergency departments (ED) at UC
San Diego (UCSD) Health via our EHR (Epic Systems, Verona, WI).
We seek to test the hypothesis that our algorithm-based
intervention was feasible in real-time and that the additional

information would help to guide clinicians to earlier sepsis
recognition and result in improved patient outcomes. To
accomplish this goal, we conduct a quasi-experimental study in
which we track outcomes before and after deployment, with
historical control data to account for baseline acuity, comorbid-
ities, seasonal effects, and secular trends over time.

RESULTS
During the study period, January 1st, 2021 through April 30th,
2023, 6,340 ED encounters met the Sepsis-3 consensus sepsis
definition, of which 123 were excluded because they were
transitioned to comfort measures before sepsis onset. The final
study included 6217 patients, 5065 in the pre-intervention phase,
and 1152 in the post-intervention phase. Table 1 shows baseline
characteristics and summary statistics for the study cohort.
Baseline characteristics from each emergency department are
compared in Supplementary Table 1. Most septic patients
exhibited some level of chronic comorbidity (median Elixhauser
of 5) and the median SOFA score at the time of sepsis was 2. We
did not observe significant differences in the baseline character-
istics between the pre-intervention cases and post-intervention
cases.

COMPOSER alerts
During the post-intervention period, an average of 235 alerts were
generated per month corresponding to 1.65 alerts per nurse per
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month. Alerts by acknowledgement reason are visualized in Fig. 1.
The most common acknowledgement reason was “Will Notify MD
Immediately” which comprised over half of all acknowledgement
reasons. Only about 5.9% of BPAs were exited without acknowl-
edgement and responses to the BPA remained consistent across
the 5-month intervention period.

Interventions and patient outcomes
The results from causal impact analysis on our primary and
secondary outcomes are summarized in Table 2. The observed in-
hospital mortality rate and the corresponding predictions from the
Bayesian structural time-series model are shown in Fig. 2a. The
residual quantile-quantile and autocorrelation plots are described

Table 1. Demographics and baseline characteristics of septic patients before and after COMPOSER.

Total Pre-intervention Post-intervention P-valuea

Characteristic

Number of patients, N (%) 6217 (100%) 5065 (81.5%) 1152 (18.5%) -

Age, mean (SD) 63 (17.1) 63 (17.0) 64 (17.3) 0.08

Sex, N (%)

Male 3592 (57.8%) 2966 (58.6%) 626 (54.3%) -

Female 2625 (42.2%) 2099 (41.4%) 526 (45.7%) -

Race

Asian 530 (8.5%) 404 (8%) 126 (10.9%) -

Black or African American 639 (10.3%) 519 (10.2%) 120 (10.4%) -

White 2983 (48%) 2440 (48.2%) 543 (47.1%) -

Otherb 2065 (33.2%) 1702 (33.6%) 363 (31.5%) -

Ethnic group -

Hispanic/Latino 1756 (28.2%) 1449 (28.6%) 307 (26.6%) -

Not Hispanic/Latino 4461 (71.8%) 3616 (71.4%) 845 (73.4%) -

Organ dysfunction

Elixhauser Comorbidity Index, Median (IQR) 5 (0–13) 5 (0–13) 5 (0–14) 0.64

SOFA Score at Time of Sepsis, Median (IQR) 2 (1–3) 2 (1–3) 2 (1–3) 0.99

Lab values

Lactate at the time of sepsis 2.4 (1.6–4.3) 2.4 (1.6–4.3) 2.4 (1.6–4.3) 0.76

Interventions

Mechanical Ventilation, N (%)c 1035 (16.6%) 849 (16.8%) 186 (16.1%) 0.64

Administration of Vasoactive Medications, N (%)c 424 (6.8%) 345 (6.8%) 79 (6.9%) 1.0

aP-values for continuous variables are based on Kruskal–Wallis rank sum tests. P-values for categorical variables are based on Pearson’s chi-squared tests.
bOther race corresponds to Native Hawaiian or Other Pacific Islander, American Indian or Alaska Native, Other Race or Mixed Race, or Unknown.
cWithin 72-h of ED arrival.

Fig. 1 Acknowledgements to Each COMPOSER Best Practice Advisory alert from December, 2022 until April, 2023.
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Table 2. Observed outcomes in the pre-intervention period, the expected counterfactual values from causal impact analysis, and the actual post-
intervention values.

Outcome Pre-intervention value Expected post-intervention
value (95% CI)

Actual post-intervention
value

In-hospital mortality % 10.3% 11.4% (9.8%−13.0%) 9.5%

Average 72-h Change in SOFA 3.71 3.71 (3.6–3.8) 3.56

Sepsis bundle compliance rate 48.3% 48.4% (45.5%−51.0%) 53.4%

Blood cultures prior to antibiotics compliance rate 71.1% 72.0% (69.9%−73.9%) 73.9%

Rate of antibiotics administered within 24 h prior and 3 h after
severe sepsis onset.

82.8% 82.8% (81.3%−84.4%) 84.6%

Rate of lactate measured within 6 h prior and 3 h after severe
sepsis onset

83.5% 83.4% (81.3%−85.8%) 85.6%

Rate of repeat lactate measured within 6 h after severe sepsis
onset if initial lactate is elevated

97.8% 97.3% (96.2%−98.4%) 98.6%

Rate of administration of vasoactive medications within 6 h of
septic shock

58.0% 57.5% (46.7%−68.2%) 55.5%

Rate of administration of 30cc/kg of fluids within 3 h of
presentation of septic shock or hypotension

54.2% 53.9% (48.9%−58.8%) 59.3%

ICU transfer rate 32.6% 32.5% (30.7%−34.2%) 31.8%

Average ICU-free days 25.4 25.1 (24.6–25.6) 25.6

Significant post-intervention values against the 95% confidence interval are bolded.

Fig. 2 Causal impact analysis of COMPOSER Best Practice Advisory on patient outcomes. Plots of the causal impact analysis using a
Bayesian structural time-series model. The top subpanel (“original”) shows the actual outcome (black) and the average model predictions
(dashed blue) and 95% confidence limits (shaded blue) during the pre-intervention and post-intervention periods, indicated by the solid gray
vertical line. The middle subpanel (“pointwise”) shows the difference between the model predictions and the observed outcome. The bottom
subpanel (“cumulative”) shows the sum of the pointwise differences during the post-intervention period. Preparation for the implementation
of COMPOSER began in May 2022 approximately 6 months prior to the go-live date of the model. a The cumulative post-intervention in-
hospital sepsis mortality rate is below the 95% confidence limit. b The cumulative post-intervention 72-h change in SOFA score is below the
95% confidence limit.
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in Supplementary Figs. 4 and 5. The average sepsis mortality rate
during the post-intervention period was 9.49%. If the COMPOSER
algorithm had not been deployed, the expected counterfactual
mortality rate would have been 11.39% with a 95% confidence
interval of [9.79%, 13.00%], corresponding to a 1.9% absolute
decrease in sepsis-related in-hospital mortality. This value
corresponds to a 17% relative decrease in in-hospital mortality
among patients with sepsis and 22 additional patients who
survived during the 5-month intervention period. The probability
of this occurring by chance is determined from the Bayesian one-
sided tail-area probability, p= 0.014. Additional data regarding the
difference in mortality at our two hospitals are provided in
Supplementary Figs. 6–9. We found at one site (the “safety net”
hospital) we had a significant decrease in mortality in the post-
intervention period, but we did not observe a significant change
at the other clinical site (the quaternary care facility).
The average compliance rate during the post-intervention

period was 53.42% while, in the absence of the COMPOSER
intervention, the expected compliance rate would have been
48.38% (95% CI, 45.46%–51.01%; Fig. 3), or a 5.0% (95% CI,
2.4%–8.0%) increase in compliance. This corresponds to a 10%
(95% CI, 5%–16%) relative increase in sepsis bundle compliance
following the implementation of COMPOSER. As shown in
Supplementary Figs. 10 and 11, compliance with our sepsis
bundle increased at both EDs during the intervention period.
Compliance with specific bundle elements is shown in Table 2 and
Supplementary Figs. 12–17. We observe significant improvements
in antibiotic compliance, repeat lactate compliance, and admin-
istration of fluids compliance.
We also observed a reduction in the 72-h change in SOFA score

following sepsis onset (Fig. 2b). The average change in SOFA score
during the post-intervention period was 3.56. In the absence of
the COMPOSER intervention, however, the expected counter-
factual average change in SOFA score would have been about
3.71 with a 95% confidence interval of [3.58, 3.83]. This
corresponds to a 4% decrease in the average 72-h change in
SOFA score following sepsis onset. The probability of this
occurring by chance is p= 0.013. Additional data on the change
in SOFA score at each emergency department are provided in
Supplementary Figs. 18 and 19. We further observe a downward
trend in our secondary endpoint of ICU admissions (Supplemen-
tary Fig. 20) and an upward trend in ICU-free days (Supplementary
Fig. 21) although neither reaches statistical significance. The
temporal trends of all covariates used in the Bayesian structural
time-series models are provided in Supplementary Fig. 22.
Associations between time-to-antibiotics in septic patients and

acknowledgement reasons are shown in Table 2. We observe that
in cases where nurses indicated that they would notify physicians

immediately, there was a significant reduction in time to antibiotic
administration (p= 0.002; two-sided t-test with adjustments
for ED volume, sex, baseline SOFA, Elixhauser comorbidity score,
and age).

DISCUSSION
In this before-and-after quasi-experimental study, we demon-
strated that the implementation of a real-time deep-learning
model to predict sepsis in two EDs was associated with a 5.0%
absolute increase in sepsis bundle compliance and a 1.9%
absolute decrease in-hospital sepsis-related mortality. This finding
represents, to our knowledge, the first instance of prospective use
of a deep-learning model demonstrating an association with
improved patient-centered outcomes in sepsis. Our findings also
suggest that the utilization of such models in clinical care was also
associated with improvements in intermediate outcomes, such as
less organ injury at 72 h from the time of sepsis and improve-
ments in elements of sepsis bundles which may explain the
mortality benefit described. Importantly, we show in scenarios
where nursing staff reported notification of the provider with
concern for sepsis (approximately 55% of cases) that antibiotics
were administered sooner, providing a plausible mechanism for
the lower-than-expected in-hospital mortality we report.
Despite major interest in strategies to relieve the morbidity and

mortality of sepsis, novel therapeutics have failed to translate into
meaningful patient-centered outcomes. The potential to improve
care through the use of artificial intelligence is attractive,
particularly with advances in machine learning in the past
decade22,23. Unfortunately, the majority of algorithms designed
to predict sepsis never make it to the bedside24. Older models
designed to detect sepsis were largely based on clinical criteria
(i.e., SIRS criteria, hypotension, or a combination of these). These
models were associated with occasional improvement in quality
metrics (i.e., increased rates of lactate orders or time to antibiotics),
but did not improve patient-centered outcomes and had poor
PPV25–27.
More recently, several studies have implemented sophisticated

models at various hospitals showing benefits to patients.
Shimaburuko et al. conducted a small randomized trial of 142
patients in the ICU using a machine-learning algorithm to predict
severe sepsis and found a decrease in in-hospital mortality and
length of stay in the intervention group, although this study was
limited to patients either in the hospital wards or intensive care
units18. Adams et al. recently provided a prospective analysis of
the TREWS model at five hospital systems in which they
demonstrated a significant decrease in mortality, organ failure,
and length of stay in hospitalized patients when the sepsis alert

Fig. 3 Causal impact analysis of COMPOSER Best Practice Advisory (BPA) on sepsis bundle compliance rate. Implementation of the
COMPOSER BPA was significantly associated with an increase in sepsis bundle compliance.
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was confirmed by a provider16. While this study was not
randomized, the data are compelling that proper attention to
implementation may improve patient-centered outcomes in
sepsis.
However, a commonly used predictive model, the Epic Sepsis

Score (ESS), has not demonstrated consistent improvement in
patient-centered outcomes. Although a small randomized quality
improvement initiative from a single center found an improve-
ment of the composite clinical outcome measure of days alive and
out of hospital at 28 days was greater in the ESS care group, these
results have not been generalized thus far. Importantly, research-
ers at the University of Michigan highlighted a substantial drop in
test characteristics (sensitivity, specificity, PPV) of the ESS at their
institution from what was reported by Epic, as well as an
unacceptably high rate of false positives20.
To the best of our knowledge, the only deep-learning model

previously tested in an ED setting is the Sepsis Watch by
investigators at Duke; however, no patient-centered outcomes
have been reported thus far28. As such, the present study is the
first reporting of improvement in patient-centered outcomes
attributable to the deployment of a deep-learning-based sepsis
prediction model.
The use of deep learning for early prediction of sepsis is

significant since such models are capable of modeling temporal,
nonlinear, and complex correlations among risk factors, thus
enabling them to solve more difficult problems. Moreover, deep-
learning models are capable of handling large quantities of
multimodal data from radiology imaging, clinical notes, and
wearable sensors, among other29–32. Additionally, this class of
models provides a flexible framework for transfer learning and
continual learning to enable the adoption of such models to local
healthcare settings33–35.
Importantly, the COMPOSER deep-learning model was designed

to minimize false alarms via the conformal prediction framework.
This approach imposes a boundary around the algorithm, which
enables the model to identify whether it has enough prior
knowledge of similar cases to determine reliably whether a patient
is at risk for sepsis. If the algorithm finds the data non-conformant
to the training samples, it will flag the case as ‘indeterminate’. The
resulting reduction in false alarms, previously reported to be 75%,
greatly reduces the burden of resources or time spent on false
diagnoses.
There are various potential reasons that may explain the

reduction in mortality described above. First, we noted a high
percentage (~55%) of alerts were transmitted by nursing staff to
physicians. In this scenario, we found that these patients were
more likely to receive timely antibiotics, thus providing a potential
mechanism to decrease mortality and mitigate organ dysfunction
at 72 h. The use of artificial intelligence to facilitate a shared
mental model of risk between nursing staff and providers has
demonstrated good acceptance and improved use of these
models in other clinical areas36. In our system, for instance, we
chose to have the nurses receive the alert and determine if
escalation to the provider was appropriate. While the ideal target
population for such an intervention is unclear, we felt that our
nurses would be the ideal candidate for this alert because of the
high frequency of nurses opening patients’ charts. In the author’s
collective experience, physicians in the ED may have up to 15–20
patients at a time and may not receive a BPA that requires a chart
to be open to receive the notification. Given the high rate of
provider notification, we suspect that this approach was beneficial
to patient care while additionally minimizing unnecessary alerts.
Finally, although speculative, it is possible that the implementa-
tion of the alert improved situational awareness of sepsis care
within our ED staff. This finding has been reported in other sepsis
clinical decision tools as well37.
Despite our study’s strengths, we acknowledge several limita-

tions. First, our study was not randomized and thus our findings

do not allow definitive causal inferences or mechanistic insights.
We performed a causal impact analysis with common confounders
which revealed that the implementation was significantly
associated with positive outcomes. Regardless, we view the
findings as important and believe that they provide a strong
rationale for further research. Second, our study was conducted at
two EDs in a large academic center that has a major interest in
sepsis and clinical informatics. Although we had a large sample
size and a diverse population of patients (racial, ethnic, socio-
economic status, etc.), we acknowledge the need for external
validation in other healthcare settings (e.g., community hospitals,
different demographics, hospitals without robust IT infrastructure,
etc.). Third, one could argue that an abrupt intervention has
important immediate benefits raising awareness and helping to
prioritize the care of a specific group of patients. Conversely, the
sustainability of the intervention could be questioned, emphasiz-
ing the need for longer-term follow-up. Although human
interventions are subject to fatigue and complacency, we
anticipate our automated algorithms will improve over time with
increasing experience and larger data sets, which will likely result
in improvements in end-user satisfaction. However, we certainly
recognize the importance of continuous education as a compo-
nent of care optimization. Finally, we did not evaluate the impact
of this alert on patients who ultimately did not have sepsis, such
as the potential adverse effects of inappropriate use of antibiotics
and healthcare costs associated with this. We also acknowledge
that we did not have any comparison data from the same time
period as all of our EDs used this model. However, we did not have
any other quality improvement initiatives during the same time
period. Despite these limitations, we view our new findings as
actionable and important.
In the before-and-after quasi-experimental design study con-

ducted at two EDs, we demonstrate that the implementation of a
real-time deep-learning model to predict sepsis was associated
with a significant increase in bundle compliance, a significant
reduction in in-hospital mortality, less organ dysfunction at 72 h,
and improved timeliness to antibiotics when nurses notified the
physician of the BPA. To our knowledge, this is the first time that
the improvement of patient outcomes due to the use of a deep-
learning model for sepsis prediction has been reported. Future
multicenter randomized trials are indicated to validate these
findings across a diverse hospital and patient population.

METHODS
Study design and cohort
We conducted a prospective before-and-after quasi-experimental
study to evaluate the impact of a sepsis Best Practice Advisory
(BPA; Fig. 4) powered by the COMPOSER deep-learning model on
patient outcomes and process measures. The University of
California San Diego Institutional review board (IRB) approval
was obtained with the waiver of informed consent (#805726) and
additional approval was obtained from the Aligning and
Coordinating QUality Improvement, Research, and Evaluation
(ACQUIRE) Committee (project #609). Our study was completed
in accordance with STROBE guidelines38. A completed checklist is
provided in Supplementary Note 1. These EDs have a total volume
of approximately 100,000 patients annually with one serving at a
quaternary academic center and the other at an urban “safety net”
hospital.
Patients were identified as septic according to the latest

international consensus definitions for sepsis (“Sepsis-3”)1,3. The
onset time of sepsis was established by following previously
published methodology, using evidence of organ dysfunction and
suspicion of clinical infection1,12,15. Clinical suspicion of infection
was defined by a blood culture draw and at least 4 days of non-
prophylactic intravenous antibiotic therapy satisfying either of the
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following conditions: (1) if a blood culture draw was ordered first,
then an antibiotics order had to occur within the following 72 h, or
(2) if an antibiotics order occurred first, then a blood culture draw
had to occur within the next 24 h. Evidence of organ dysfunction
was defined as an increase in the Sequential Organ Failure
Assessment (SOFA) score by two or more points. In particular,
evidence of organ dysfunction occurring 48 h before to 24 h after
the time of suspected infection was considered, as suggested in
Seymour et al.1. Finally, the time of onset of sepsis was taken as
the time of clinical suspicion of infection. The inclusion of 4 days
of non-prophylactic antibiotics to improve the specificity of sepsis
is similar to what Rhee et al. proposed as a surveillance approach
for identifying sepsis from electronic health records which have
outperformed reliance on administrative coding of sepsis39. We
included all adult patients (age ≥18 years old) who met the criteria
for the above-described Sepsis-3 definition within the first 12 h of
their ED stay. We excluded patients who were transitioned to
comfort measures prior to their time of sepsis and patients who
developed sepsis after 12 h of hospital admission. All data used to
derive the onset time of sepsis and patient outcomes were
extracted via SQL queries on Epic Clarity.

Sepsis algorithm and platform
The COMPOSER algorithm for the early prediction of sepsis is
described in Shashikumar et al.15. It is a feed-forward neural
network model that incorporates routinely collected laboratory
and vital signs as well as patient demographics (age and sex),
comorbidities, and concomitant medications to output a risk score
for the onset of sepsis within the next 4 h. Importantly, the model
utilizes the conformal prediction method to reject out-of-
distribution samples that may arise due to data entry error or

unfamiliar cases. The model achieves an area under the receiver
operating characteristic curve (AUROC) of 0.938–0.945 within ED
settings15. We fixed the score threshold to achieve an 80%
sensitivity level. Prior work demonstrated that at this sensitivity,
the PPV was 20.1%.
The COMPOSER algorithm is hosted on a cloud-based

healthcare analytics platform that enables access to data elements
in real-time by leveraging the FHIR and HL7v2 standards
(Supplementary Fig. 1)40. Specifically, the Amazon Web Services
(AWS)-hosted infrastructure receives a continuous stream of
Admit, Discharge, Transfer (ADT) messages from the hospital’s
integration engine to determine the active patients and map their
journey through care units. The platform extracts data at an hourly
resolution for these patients using FHIR APIs with OAuth2.0
authentication and passes the feature set to COMPOSER. Hourly
frequency was selected to ensure adequate data availability for a
prediction. The resulting sepsis risk score and the top features
driving the recommendation are then written to a flowsheet
within the EHR using an HL7v2 outbound message. This flowsheet
triggers a nurse-facing BPA (Fig. 4) on the chart open which alerts
the caregiver that the patient is at risk of developing severe sepsis
and provides the model’s top reasons. The nurse could acknowl-
edge the alert by selecting one of the four options: (i) no infection
suspected, (ii) sepsis treatment/workup in progress, or (iii) will
notify MD immediately. If a nurse exited the patient’s chart
without selecting an option, we recorded this as “no acknowl-
edgement”. If the “will notify MD immediately” option is selected,
the nurse can use a ‘secure chat’ feature to contact the provider
from within the BPA to discuss the care of the patient.
Prospectively deployed algorithms are susceptible to model

drift in which their performance degrades overtime due to
changes in the patient population or treatment practices41.

Fig. 4 COMPOSER Best Practice Advisory.
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To detect this possibility, we implemented a data quality
dashboard that tracks the median values of all input features to
ensure they are within their upper and lower process control limits
(based on the upper and lower quantiles from the training cohort).
We further evaluate model performance, such as sensitivity and
positive predictive value (PPV), biweekly to ensure there is no
degradation in COMPOSER performance (Supplementary Note 3).
We established a Predetermined Change Control Plan (PCCP) to
trigger model retraining if the performance drops below
predetermined thresholds, although this has not been required
as of the time of this reporting.

Implementation of COMPOSER into our electronic
health record
Implementation was completed in various stages according to the
EPIS (exploration, preparation, implementation, sustainment)
framework, with frequent feedback provided to nursing staff
during the implementation and sustainment periods42. Early
stages in the Exploration stage began 2–3 years prior to model
deployment with significant institutional support at the depart-
mental and health system level. Preparation began approximately
6 months prior to the go-live date. Included in this was the
creation of a multidisciplinary team to guide implementation,
surveys of the nursing staff to identify specific needs, educational
sessions, and iterative changes to the BPA from end-users. We
employed a “silent mode trial” in which COMPOSER outputs were
reviewed in real-time by a team of physicians to assess the
accuracy and usefulness of the alerts. Adjustments to the
algorithm were iteratively made based on these reviews to
improve the timeliness and appropriateness of the alerts. During
the Implementation phase, frequent feedback and education were
provided to nursing staff on the COMPOSER model. In final form,
our BPA would fire for all adult (at least 18 years old) patients who
were receiving care in the ED with a score above the threshold
and the following exclusions: patient discharged or deceased,
comfort care measures initiated, patient no longer under the care
of ED nurses, or a sepsis bundle had previously been instituted
during their stay. Nurses would have to have the patient’s chart
open for it to fire. The lockout periods for each acknowledgement
reason were: “No infection suspected” 8 h; “Will notify MD
immediately” 12 h; Sepsis treatment/work-up in progress” 12 h.
We defined our pre-intervention time period from January 1st,
2021 to December 6th, 2022. COMPOSER went live December 7th,
2023. Our post-implementation phase was from December 7th,
2022 until April 30th, 2023.

Primary and secondary outcomes
Our primary outcome was in-hospital mortality. Secondary
outcomes included: compliance with our sepsis bundle (initial
and repeat serum lactate if initial lactate >2mmol/L, initiation and
completion of a 30 mL/kg crystalloid fluid bolus, checking of blood
cultures prior to antibiotics, and initiation of intravenous
antibiotics within 3 h of time of sepsis), 72-h change in sequential
organ failure assessment (SOFA) score following sepsis onset, ICU
admission, and ICU-free days. ICU-free days were calculated as 30
less the number of ICU days with in-hospital death and stays
longer than 30 days were fixed at 0. For patients who died in the
ICU, this value is 0. For example, a patient who is in the ICU for
4 days and survives would have a value of 26. Patients who either
die in the ICU or in the ICU for > 29 days have a value of 0.

Statistical methods
Descriptive statistics were provided as indicated. Differences
between the pre-intervention and post-intervention cohort were
assessed with Kruskal–Wallis rank sum tests on continuous
variables and Pearson’s chi-squared tests on categorical variables

and significance was assessed at a P-value of 0.05. All statistical
analyses were performed using the R statistical software version
4.0.4 and the CausalImpact package version 1.2.743,44.
To estimate the causal effect of the COMPOSER BPA interven-

tion, we performed causal inference using a Bayesian structural
time-series model44. This approach, pioneered by Brodersen et al.
from Google Inc., has been widely used to assess the impact of
advertisement campaigns on product sales and the effect of
economic changes on markets45–47. Here, we apply it to patient
outcomes data to assess the impact of the COMPOSER algorithm
adjusted for confounders. Briefly, a state-space model is trained on
the control time-series prior to the intervention of interest. The
observed outcome is modeled as a function of the latent state and
Gaussian noise, with the latent state modeled by a local linear
trend, in addition to a linear regression on the model covariates. In
this work, we assume the effect of the regression coefficients on
the outcome of interest is independent of time and the static
regression parameters are sampled from a spike-and-slab prior
distribution. Posterior inference is then performed on the post-
intervention time-series to estimate the counterfactual outcome if
the intervention had not been introduced. Under the assumption
that the response variable in the control time-series is indepen-
dent of the intervention, the difference between the model
prediction and the observed value is a probability density of the
causal impact of the intervention over time (See Supplementary
Note 3 for more details). Additionally, model residuals were
evaluated using quantile-quantile and autocorrelation plots to
ensure adequate modeling of the time-series information.
Emergency department volume, sex, baseline SOFA, comorbid-

ity burden via the Elixhauser comorbidity score, age, COVID-19
infection status, ED location (La Jolla or Hillcrest), local trends, and
season were included as covariates in the Bayesian structural time-
series model and 1000 samples of Markov Chain Monte Carlo were
used for posterior inference. No imputation was performed since
all covariates were fully observed. There were no missing values
present in the covariates. We included seasons and local trends
(e.g., ED volume) as prior data suggest outcomes of sepsis patients
are worse in the winter and may be impacted by high patient
volumes48,49. Outcomes were predicted at a monthly resolution to
reduce the influence of random fluctuations on the outcome
variable. We plotted the model predictions and true outcomes
data, the pointwise difference between the two, and the
cumulative difference across the post-intervention period and
assessed significance against the 95% confidence intervals.
We further evaluated the association of alert acknowledgement

and sepsis intervention, measured by the time from ED triage to
the administration of antibiotics. We adjusted for the aforemen-
tioned confounders and performed a two-sided t-test on time-to-
antibiotics as a function of acknowledgement reason.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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