
Lawrence Berkeley National Laboratory
LBL Publications

Title

Investigating User Experiences with Data Abstractions on High Performance Computing 
Systems

Permalink

https://escholarship.org/uc/item/1j93t5gm

Authors

Paine, Drew
Poon, Sarah
Ramakrishnan, Lavanya

Publication Date

2021-06-30

DOI

10.2172/1805039
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1j93t5gm
https://escholarship.org
http://www.cdlib.org/


Investigating User Experiences with Data Abstractions on
High Performance Computing Systems

Drew Paine, Sarah Poon, and Lavanya Ramakrishnan
Data Science and Technology Department
Lawrence Berkeley National Laboratory
{pained, sspoon, lramakrishnan}@lbl.gov

June 2021

Abstract

Scientific exploration generates expanding volumes of data that commonly require High Perfor-
mance Computing (HPC) systems to facilitate research. HPC systems are complex ecosystems
of hardware and software that frequently are not user friendly. The Usable Data Abstractions
(UDA) project set out to build usable software for scientific workflows in HPC environments by
undertaking multiple rounds of qualitative user research. Qualitative research investigates how
individuals accomplish their work and our interview-based study surfaced a variety of insights
about the experiences of working in and with HPC ecosystems. This report examines multiple
facets to the experiences of scientists and developers using and supporting HPC systems. We
discuss how stakeholders grasp the design and configuration of these systems, the impacts of
abstraction layers on their ability to successfully do work, and the varied perceptions of time
that shape this work. Examining the adoption of the Cori HPC at NERSC we explore the an-
ticipations and lived experiences of users interacting with this system’s novel storage feature,
the Burst Buffer. We present lessons learned from across these insights to illustrate just some
of the challenges HPC facilities and their stakeholders need to account for when procuring and
supporting these essential scientific resources to ensure their usability and utility to a variety
of scientific practices.

Keywords — user research, qualitative methods, HPC system, abstraction layers, Burst Buffer
Report Number: LBNL-2001374

1



1 Introduction
Scientific exploration for decades has produced and relied upon expanding and evolving volumes of data,
and improved fidelity and accuracy of simulations. Scientist’s ability to scale their work up, typically as part
of large projects, frequently requires High Performance Computing (HPC) systems to provide the necessary
computing, storage, and networking resources to work with these big datasets. HPC systems are complex
computational ecosystems, particularly contrasted with personal computers, that perpetually incorporate
new technologies and practices. Novice and experienced users alike can find it challenging to easily utilize
different HPC systems in their work due to complex abstraction layers, the need to craft work practices
and software to function with high amounts of parallelism, and ongoing changes to the organization and
operation of these resources. Building usable, user friendly tools for working with large datasets in HPC
environments requires understanding how scientists do their work now as well as how they understand
and conceptualize different computing environments as resources. Only by investigating the actual work of
scientists using computing systems can we understand how to support scientists and build usable software
systems [16].

The Usable Data Abstractions (UDA) project was a multi-year study of these challenges. We investigated
how scientists manage data in evolving HPC environments through multiple rounds of semi-structured
interviews in our qualitative user research. We engaged with staff at an HPC facility, developers building
data management and analysis tools, and domain scientists from a variety of backgrounds over multiple
years. Our interviews enabled us to better understand how scientists work across multiple HPC systems
and their storage hierarchies, as well as how work changed as a facility transitioned to a new HPC system. We
drew upon insights from this work to design new abstractions and workflow systems to support changing
scientific work [4].

This report discusses multiple facets to user’s experiences working in HPC ecosystems and offers lessons
learned for stakeholders who are interested in better supporting the scientific work these resources are built
to facilitate. We explore how users grasp the construction of HPC ecosystems as resources for their work,
particularly the ways abstraction layers impact their experiences processing and analyzing data. A key facet
to these experiences are user’s multiple perceptions of time and the ways different components of an HPC
impact this experience [3]. Examining the introduction of a new HPC at the National Energy Research
Scientific Computing Center (NERSC), we discuss how a next generation storage system was anticipated by
stakeholders then experienced in practice. Our insights illustrate a few of the complexities around working
in HPC ecosystems and demonstrate concerns that stakeholders should take into account as they design
entire systems, software tools, policies, and practices.

2 Background
Our investigation engaged with stakeholders from across the NERSC facility. To situate our findings we
first characterize ecosystems of HPC facilities to illustrate some of the varied roles stakeholders hold, the
technical resources commonly made available, and some characteristics of working in such environments.
We then discuss systems and resources available at the NERSC facility. Finally, we discuss concepts from
human computer interaction and user centered design that influence the insights and takeaways from our
findings.

2.1 HPC Ecosystems
High Performance Computing (HPC) facilities are essential elements of data-intensive research. This type
of facility is common in the funding landscape of the Department of Energy, as well as other agencies like
the National Science Foundation. HPC facilities create and sustain a dynamic, diverse ecosystem where
stakeholders from varied backgrounds, holding multifaceted roles, can accomplish work. These ecosystems
provide cutting edge computing resources, historically oriented towards facilitating large batch processing
jobs, as well as large amounts of data storage, and high speed networking. They also commonly pull in
software resources from other realms and situate these products within a given ecosystem. The National

2



Energy Research Scientific Computing Center (NERSC), located at Berkeley Lab, is one HPC facility sup-
porting more than 7,000 scientific users [9].

To contextualize this report’s findings we first examine a few aspects of HPC ecosystems. We discuss
some of the different roles stakeholders in these ecosystems frequently hold, the types of resources that
make advanced scientific work possible, and characteristics inherent to working with HPC systems. We also
provide a high-level overview of some of the resources the NERSC facility offers its users which emerge in
our findings.

2.1.1 Roles of stakeholders in HPC ecosystems

HPC ecosystems require a large variety of stakeholders in different roles to enable and sustain scientific
work. These individuals create and sustain a diverse human infrastructure [8], and over the course of our
study a few broad roles emerge in our data, including: Domain Scientists, Computer Engineers, HPC Fa-
cility Staff, and Data Analysis & Visualization Tool (DAVTool) Developers. These roles capture different
perspectives and challenges for individuals using HPC systems. This list is not exhaustive, but represents
core constituencies whose impacts became visible in our study.

Domain Scientists. Domain scientists are researchers in different natural sciences, ranging from climate
science to cosmology and material science. These individuals commonly accomplish their research goals
as part of multiple scientific collaborations that are composed of complex web of coordinative entities [12].
This work involves varying arrangements of Principal Investigators (PIs), career scientists, postdoctoral re-
searchers, and students. Domain scientists frequently produce novel data analysis software that relies upon
packages produced within their collaboration and/or community, as well as the larger data science ecosys-
tem. Depending on the volume, velocity, and variety of data being generated and used this software may
be run on systems ranging from personal computers to clusters and HPC systems or the commercial cloud.
In our study domain scientists are the primary users of HPC systems being investigated.

Computer Engineers. Computer engineers, in our study, are members of collaborations who ensure that
scientific software runs on an HPC system. These individuals help turn the software domain scientists
write into reliable and scalable products that can leverage the unique features of different HPC systems.
Computer engineer’s work ranges from modifying or adapting existing code to utilize features of an HPC
system; identifying, installing, and maintaining software from a collaboration or community; or writing
new code to adapt a collaboration’s software stack to a particular HPC ecosystem.

HPC Facility Staff. HPC facility staff are comprised of individuals in various different roles surrounding
the acquisition, operation, and support of HPC systems. A subset of the many varied roles at a facility can
include: staff supporting the design and procurement of systems; liaisons between users (domain scientists)
of a system and other facility staff to gather information about user needs; engineers who ensure the system
is running on a day-to-day basis; and support staff who help end users troubleshoot their use of the system.

Data Analysis & Visulization Tool (DAVTool) Developers. An essential type of scientific software are
general purpose tools for data analysis and visualization, such as VisIt [7] or ParaView [14]. In addition,
there are endless domain-specific software packages and tools. Developers of general purpose DAV tools
are faced with producing resources that work with a variety of data and scientific methods. In our study
we see these individuals interact with other stakeholders in an HPC ecosystem, and beyond, in their efforts
to support particular scientific collaborations or projects.

2.1.2 Technical Resources in HPC ecosystems

Facilities supporting HPC systems have to procure and support a variety of resources. Hardware resources
include an HPC and its components, data storage systems, and advanced networking to connect these el-
ements. Software resources range from particular operating systems to stacks of end user data processing
and analysis tools. Here we briefly describe some of the key technical resources provided by HPC facilities
that influences our study’s findings.

HPC Systems. HPC systems are built out of a series of nodes connected to each other and data storage

3



systems via high speed network interfaces. Three common types are Login, Compute, and Data Transfer
nodes. Nodes have different numbers of processing cores, quantities of memory, and operating system
configurations depending on their purpose. Login nodes are where users interactively logon to develop and
test code, use interactive computing tools like Jupyter Notebooks, and explore data residing in the system.
Compute nodes are used for large batch processing jobs where intensive computations are done in parallel.
Data transfer nodes are configured to support the movement of data in and out of the HPC facility, and its
systems, from other facilities.

Data Storage Systems. Data storage systems commonly include forms of disk-based storage, increasingly
flash memory (SSD) storage, and long-term tape archives for massive quantities of data. Nodes in an HPC
typically do not have local disk storage. Users must rely upon the different shared filesystems that are
mounted on each HPC node. Filesystems often have different policies and characteristics depending on
whether they’re meant for short-term storage during computing jobs, medium-term housing of working
files, or long-term archive of large shared datasets. In some cases flash memory storage is attached to a
subset of an HPC system’s nodes to provide local high speed storage for use when executing large compute
jobs. Tape storage systems provide long-term archiving of massive datasets that are used infrequently.

Cluster Management & Job Queues. HPC systems are complex and managing the demands of many com-
peting users, and their computing needs, requires the use of software for cluster and resource management
and scheduling of computing jobs. Jobs are an allocation of the system’s resources (processing cores, mem-
ory) for a specified period of time. Management and scheduling software takes the job specifications that a
user provides and determines when to execute the work on the system.

Core Software Environments and Tools. The core software environments on HPC systems span users home
directories to stacks of software pre-configured for use by workflows and analysis tools, such as compilers
for various languages. User environments provide the spaces for home directories and default shells that
can be customized. Software stacks provided through modules enable users to access common types of
software (e.g., versions of the Python language stack, parallel computing tools, compilers, etc.).

Data Analysis & Visualization Tools (DAVTools). Users frequently work directly with large datasets
directly on HPC systems. Facilities support varied tools for doing this work, including general purpose
DAVTools like Jupyter Notebooks, VisIt, or Mathematica, as well as domain specific packages.

2.1.3 Characteristics of working in an HPC ecosystem

Working with an HPC system is different from using a personal computer, private cluster, or the commer-
cial cloud. Users must learn how to work with a few fundamental characteristics of these computing en-
vironments. Characteristics include how to program for HPC systems, obtaining and using allocations of
computing time, and working with batch queuing systems for running jobs.

Programming for HPC. The nodes in HPC systems are composed with varying numbers of processors (or
cores, depending on the chip design) and memory that is shared by the processors. Applications designed
to execute tasks in serial process data in a specific sequence using a single processor or core. Leveraging
the size and scale of an HPC requires crafting programs that work in parallel, splitting tasks up so that
many can be completed simultaneously across processors and nodes. These parallelized applications can
accomplish more computation in a given timeframe and users must design, and frequently optimize, their
scientific software for this computational mode. In addition to parallelizing work, HPC systems mostly
rely on shared data storage systems globally available across nodes. Some systems also include some form
of local storage, recently flash memory, on a subset of nodes. User applications have to be constructed to
manage moving data between systems before, during, and after a computing job to ensure that the work
can be completed. Domain scientists often have to work with computer engineers and HPC facility staff
to parallelize their software, and optimize data management. These tasks can require understanding the
nuances of HPC systems overall as well as one particular machine.

Allocations. HPC facilities manage the shared use of these systems through allocations of computing time.
Users apply for time on the machines and allocations are provided to projects/PIs in consultation with the

4



funding agency. Individuals and groups with time allocations then use this when submitting jobs to be run.
Allocations are provided as compute hours and the facility determines an annual rate for jobs using different
resources, whether that is the type of processor or priority queue. PIs and their colleagues have to determine
the quantity of allocation to request based on their expected computing needs to address their planned
science goals. The process of estimating can require science teams coordinate with computer engineers or
facility staff to help develop a reasonable request.

Batch Queues. Computing allocations are used on HPC systems through batch queues. This type of soft-
ware schedules and manages jobs by assigning computing tasks to different system resources. Jobs have a
“footprint” based on the number of nodes used and the maximum amount of computing time requested
(known as the walltime). Scientists submit a job to a particular system queue with a request for a particular
number of nodes and walltime. Facilities frequently setup different queues that provide different quality of
service (QOS) which constrains the amount of time that can be requested, number of nodes, priority for a
given job to run, and the cost to a user’s allocation. The queueing system’s scheduler will take a user’s choice
of queue, number of requested nodes, and walltime to prioritize when, and on what part of the system, to
run the computational tasks. These systems are designed so that the many nodes of an HPC are utilized
as much as possible at all times. For users requesting more resources (e.g., more nodes and walltime) it is
likely that there will be a longer wait time for their job to be run.

2.2 HPC Systems at NERSC
Seeing the variety of stakeholder roles, technical resources, and some characteristics for working in HPC
ecosystems, we briefly discuss some of these elements at the NERSC facility. NERSC sustains one to two
HPC systems in production simultaneously while also preparing for a next generation replacement of the
oldest system. NERSC also runs other infrastructural computing systems including the Spin container-
platform for hosting databases and web gateways. In addition, the facility supports different data storage
systems and software environments for their users, including interactive computing through Jupyter [13].

At NERSC the HPC systems in production at any given time include nodes with varied purposes, from
login nodes that support interactive access to data and batch processing nodes for large computing jobs
to data transfer nodes for moving large quantities of data in and out of the facility. Our study spanned
the period where the Cori system was provisioned and brought into production. NERSC’s previous HPC
Edison was in production and available to users as well and its shutdown was planned around the time we
conducted our final interviews. Planning for the next-generation system, Perlmutter, also began towards
the conclusion of our study. The facility hosted various shared filesystems that users access from different
systems, along with some machine specific solutions, including a global disk storage solution and an HPSS
tape-based archival system.

Cori was built with 2,388 Intel “Haswell” nodes and 9,688 Intel Xeon Phi “Knights Landing” (KNL)
nodes [10] for computing jobs, as well as login nodes for direct user engagement with the system. Over time
NERSC added large memory nodes to the system as well. All of the nodes provided access to the shared
filesystems and a dedicated Cori scratch filesystem that offers higher performance. The compute nodes
included access to the SSD-based Burst Buffer for high throughput storage during computing jobs. For
users running compute jobs the nodes built with Intel Haswell processors are similar in design to previous
generations of systems and required minimal effort to adapt software to run jobs. In contrast, nodes with
KNL processors presented a new architectural design with more cores per processor but less memory shared
among them contrasted to Haswell processors. This shift in design often necessitated changes to scientific
software to take effectively use these resources.

2.3 Sociotechnical Perspectives on Collaboration and Design
Sociotechnical scholarship in Human Computer Interaction (HCI) and Computer Supported Cooperative
Work (CSCW) informs our findings. A sociotechnical viewpoint recognizes and foregrounds that, when
studying and designing technical systems or solutions, there are fundamentally many different social and
political issues bound up with the technical decisions being made. CSCW work investigating the complex,
social and technical dynamics to scientific work, computing, and data (see [5,12,18] for overviews) influences

5



how we grasp HPC ecosystems, and the ways stakeholders work within these environments. User centered
design principles from HCI shape the takeaways we offer about designing usable data abstractions.

Collaboration is a key aspect to successfully accomplishing scientific work in all contexts, and particu-
larly when working with resources at HPC facilities. CSCW research underscores the balancing acts and
tensions inherent in multidisciplinary collaboration. A noteworthy element of such work are the inherent
tensions between the research and development needs of domain scientists and computer scientists [6, 17].
Domain scientists increasingly have a need for usable software but may not have the expertise or resources
to build products needed in their work, requiring collaboration with computer scientists or software en-
gineers [19]. Computer scientists, in contrast, often need to focus on their own novel research rather than
engineering stable tools. Tensions like these can end up shaping the experiences HPC users have engaging
with DAVTool developers and facility staff.

Lee et al. [8] described the varied nature of the “human infrastructure” of large scientific projects. They
emphasize how individuals may hold the multiple roles and frequently lack of clarity on their own mem-
bership among different teams. Stakeholders working in and using HPC facilities may encounter multiple
diverse human infrastructures depending on the projects they are involved in. Steinhardt and Jackson [22]
noted that when trying to cultivate vision in collective practices as part of large, distributed scientific projects
stakeholders can end up undertaking “anticipation work.” Anticipation work is the practices individuals
and teams use to develop collective visions for the work to be done and how to shape and leverage changing
technologies. With the longitudinal nature of HPC facilities, stakeholders engage in anticipation work as
new systems are envisioned, procured, and provisioned for end users. We see parts of such work in our
data with the advent of the Cori HPC at NERSC.

Understanding these issues from collaborative work, we also find our findings are informed by design
concepts from HCI and user-centered design [11, 20, 21]. Usability and usefulness are key qualities of in-
terfaces and design research has generated a variety of heuristics and principles to shape the development
of systems. Shneiderman et al. [21] note that usability measures including time to learn (how long a user
takes to understand how to accomplish a task), rate of error by users (how many and what types of errors do
people make using a system), and retention over time (how well do users remember how to accomplish a task
after time has passed). Sharp et al. [20] lay out a few common usability goals, including having systems that
are effective to use (effectiveness), efficient to use (efficiency), safe to use (safety), easy to learn (learnability),
and easy to remember how to use (memorability). Nielsen [11] specifies ten usability heuristics. He impor-
tantly underscores that usable systems make the status of the system visible to users (visibility), consistent
and standard descriptions and actions across parts of the system (consistency), be flexible and efficient to
use (flexibility and efficiency), and ensuring errors users encounter are able to be recognized, diagnosed, and
recovered from (recognizable and recoverable). Overall, these foundational design principles for systems illus-
trates varied facets to working with computing systems. While they are most commonly applied to personal
and mobile computing, as well as websites, these usability heuristics are important for ensuring HPC sys-
tems are usable, useful, and accessible to diverse scientific user bases. Our results illustrate various areas
where current and past systems fall short in addressing these heuristics.

3 Research Methods
We conducted qualitative user research at Lawrence Berkeley National Laboratory to gather in depth in-
sights about the ways users work with HPC systems. Qualitative user research approaches can incorporate
a range of methods from ethnographic observations, semi-structured interviews, descriptive surveys, col-
lections of artifacts from a field site, and usability evaluations. The UDA project conducted multiple rounds
of semi-structured interviews, between 2014-2018, to learn about HPC ecosystems and develop insights that
could shape a data abstraction tool [4].

3.1 Semi-Structured Interviews
Semi-structured interviews help researchers learn about the observations and practices of participants. This
method helps us develop detailed descriptions of tools and work practices, hear varied perspectives on
tasks and challenges, and grasp problems from an overarching perspective [23]. Designing semi-structured

6



interviews involved crafting a protocol with a set of open-ended questions to guide a conversation while
leaving room for exploration of nascent topics. This enables the researcher to probe issues or topics more
deeply, expanding beyond their preconceptualized notions.

We conducted 56 interviews between 2014-2018 that on average lasted one hour each. Initial interviews
developed a starting sense of user’s understanding of HPC systems and experiences working with different
software tools and storage systems in their research. Later interviews explored storage system abstraction
layers, data analysis and visualization tools, and the challenges with the Cori Burst Buffer in depth. Inter-
views were transcribed and discussed among the research team.

Initial interviews were designed to learn about a participants research work, use of HPC systems, and
the data and software work this entailed. One round of subsequent interviews asked users to show us how
they worked with different data analysis and visualization tools in HPC ecosystems. A different round of
follow up interviews explored temporal issues in greater depth – asking about user’s compute allocations
from NERSC, how much time they spend on tasks when working with an HPC, and how they track the
amount of time work took. These interviews raised challenges with data storage systems in varied HPC
machines as well as the abstraction layers that condition user’s interactions with the system. Finally, our last
round of interviews asked participants whether they were using the Burst Buffer, what their experiences
were with this feature, how their understanding of this storage component evolved over time, and how it
compares with other HPC storage systems.

3.2 Data Analysis
Our interviews have been analysed using an iterative qualitative data analysis approach over multiple years.
For this report the first author revisited this dataset and open coded each. Open coding [2] is a qualitative
data analysis process where insights are systematically drawn out and compared across interviews to iden-
tify common themes. In our case, codes and themes emerged about users experiences and understandings
of HPC systems, issues with abstraction layer tools, and experiences with the Burst Buffer. The first author
also compared the points about temporal issues that re-emerged with findings published in [3] to validate
and summarize the points in this report.

4 User Experiences Working in HPC Ecosystems
The findings from our project’s interviews surface different aspects to how users understand HPC systems,
the utility and challenges of abstraction layers in these ecosystems, and overarching issues regarding time
and economics around computing allocations for projects with end users utilizing HPC systems. These
insights capture multiple angles to the experiences stakeholders have working with different HPC machines.

4.1 Examining How Users Understand and Experience High Performance Computing
HPC ecosystems are more complex computing environments than everyday computing devices. A recur-
ring theme in our data is the importance of recognizing how users perceive and understand an HPC system
as well as the ways they and their collaborations do work. Over the course of our study we saw varying
perspectives from users and developers about the perception of the resources available from HPC facili-
ties. Stakeholders in HPC ecosystems bring various worldviews to their work with these systems, including
the ways people conduct research and how data, software, and systems are constructed. Domain scientists
and computer scientists have different ways of structuring their ideas and these variations end up being
expressed through the designs of their software and data products. The social and technical facets to data,
software, and systems require understanding and accounting for a variety of different points of view. Many
potential mismatches and misalignments between a scientific user’s use of an HPC and the modes of com-
putation that the system and facility provide result from the diverse points of view and ways of working in
HPC environments. DAVTool developers and facility staff noted that domain scientists often want to treat
computing systems as black boxes in their work, and yet these users still must continually work to under-
stand how an HPC system functions to accomplish their work. Learning about and understanding how to

7



effectively use HPC systems requires a significant amount of knowledge to be able to open up and effec-
tively peer into these black boxes and the way data is stored and moved through them. Teams building
DAVTools, furthermore, explained the necessity of fostering relationships between diverse stakeholders to
align worldviews and build usable systems.

4.1.1 Commonly black boxed views of computing systems

Computing systems are commonly opaque, filled with unexamined internal details – a black box to users.
Some DAVTool developers and HPC facility staff explained that in their interactions with science users there
is often a desire to be able to treat any particular computing system as a black box. So long as a given input
produces an expected output, domain scientists often do not express significant concern about the inner
workings of a computational system. For these scientists, so long as their software functions reasonably
well, the details of its internal construction, or the HPC system used to run it, are not at the forefront.

One leader of a bioinformatics DAVTool team noted that the scientists they support have historically been
likely to treat their software and computing systems as black boxes. If a result took a day or even a week
that was fine so long as running the tool was simple. This individual explained that in recent years they had
started emphasizing a need to re-evaluate older tools. This is necessary since the software’s performance
was not great, and with newer computational architectures the tool could likely be updated and made more
efficient. Scientific end users often don’t have the time to be able to learn about every detail of a system’s
construction, such as the number of processor cores and their shared memory, and how their software could
perform better by leveraging a new system feature. They want to focus on their research and usually become
concerned with computational efficiency when this work is significantly hindered. Scientists in such cases
must work to better understand how HPC systems function in different ways.

4.1.2 Perpetual work to understand how HPC systems function

Learning and understanding how HPC systems work is an ongoing process. Usability characteristics such
as time to learn, retention of knowledge, and overall learnability of HPC systems is variable and shifts over
time. Participants in our study ranged from new to experienced HPC users. Multiple interviewees com-
mented on the need to continuously learn how an HPC system functions as they do their work. This is nec-
essary because alignments between hardware, software, and policy are always evolving, at different rates,
in an HPC facility. One interviewee summed up this need, expressing that after more than a year of using
one HPC system they felt that they’re “still learning I guess”. At the same time, users with over 20 years of
HPC experience still face difficulties understanding these systems as new designs emerge incorporating new
types of hardware into the computing fabric. Interviewees noted these challenges with hardware elements
of a given HPC system such as I/O performance of data storage systems, as well as the varying software
configurations provided. Domain scientists also face challenges determining how to balance the amount of
human time to expend to optimize software for a machine versus the performance benefits obtained.

Uncertainty about I/O performance among data storage systems. Science users noted they often have some
amount of uncertainty about the operation of data storage systems in an HPC system. They grasped the
overall systems offered for different machines at a facility (e.g., flash memory, disk storage, tape archives),
but did not necessarily spend the time to try and learn which data storage system would be best for their
current work. Instead they would try different solutions to figure out what worked best for the problem at
hand.

One experienced science user described a situation where their Python code unexpectedly began run-
ning slowly. His expectation was that a parallel implementation would provide performance gains, yet it was
running exceptionally slowly and erratically on the same dataset. Experimenting with the facility’s different
data storage systems at the time, he found that running the code off a different disk setup lead to significant
performance improvements. Reflecting on this experience he commented “we never did figure out why that
was, but when I copied the file over to scratch, all of a sudden it is an order of magnitude faster.” This scientist ended
up having to expand their knowledge about the different available disk systems at the HPC facility and the
performance implications of each. They assumed that using this more optimized Python implementation
would provide benefits no matter what, but it turned out more work was required to understand a bit about
the different data storage system’s and their performance characteristics.

8



Another example comes from a scientist who was building tools for their group. Through their software
development work they implicitly designed the I/O patterns of their tool with the assumption of smooth,
constant performance like their personal computer exhibited. In this case the scientist was incorrectly ex-
pecting consistency between the behavior of an HPC system and a laptop or desktop computer. This implicit
assumption came into tension with the way HPC systems perform once this scientist pivoted to testing the
software in a production context. This individual found that his software’s ability to even read files would
not operate smoothly since the load on the HPC could be variable depending on how many and what type
of jobs were running simultaneously across nodes. Their assumptions were rooted in experiences with per-
sonal computers and broke down in a multi-user environment, leading them to determine that they should
keep in mind the variability in I/O performance from storage systems when moving between types of com-
puting environments.

Keeping up with software configurations. The software ecosystems configured on HPC systems will vary
from one to another, even within one facility, due to differences in the hardware making up each machine.
These changing configurations emerged as another challenge impacting learnability, memorability, and con-
sistency for users who have different depths of understanding of a given HPC system.

One example of this emerges with the way software modules are installed and made available to all
HPC users at NERSC. The facility has a few options depending on how widely they anticipate the software
will be used, as one staff member explained. During our study, NERSC had two HPC systems running,
each configured with access to a common data storage system that supported access to home environments
and file repositories from either machine. With this configuration users are able to create a global software
module that can be employed on either system. The facility itself however creates separate modules, even
for the same software, optimized to each HPC and its overall configuration. Configuring the software en-
vironments with this delineation makes it clearer for end users to be able to easily recall which computing
context they are working in should they get lost in details of their work. A staff member asserted that end
users building their own module configurations would benefit from this approach, since doing so would en-
sure the scientist’s workflows run consistently while allowing the software to be tuned to each HPC system’s
features. Mirroring this implementation approach would support memorability and visibility for scientists
when they need to quickly ascertain which environment their software is executing in. The facility staff
member noted that their web-based documentation describes this design pattern for configuring software
modules as a recommendation to their user base.

The various modules produced by either the facility or scientists encapsulate a particular version of the
software. This facility staff member also explained that when the facility updates versions of existing mod-
ules the new ones are installed as a separate instantiation while leaving the old default alone and present.
Users are then informed via regular updates, whether via email or in announcements on the website, that
there is a newer version of the software in the revised module. End users are also provided with a date
to expect the now older version to be deprecated and removed. This practice put in place by NERSC en-
sures that scientist’s workflows can remain stable in the short-term, providing consistency from a usability
perspective, while their users and maintainers have an opportunity to revise which module they rely upon
and test the effects of the change. In contrast, when a new HPC is brought online its default will be set to
whatever the latest stable version of a piece of software is. This version may be out of alignment with what
is installed in the old system’s environment. In these cases, it is expected that users must adjust and realign
their workflows and practices to the new HPC and its software configurations. This is an opportunity for
scientists and their collaborations to systematically optimize and/or modernize their software stack.

Varying views on effort spent optimizing human versus machine time. Completing scientific work is
always a process of optimization and making tradeoffs. Scientists and computer engineers face different
optimization choices when building and maintaining scientific software, from machine learning and paral-
lel programming techniques to collaborating with HPC facility staff to ensure that their essential software
will work in an efficient manner. One facet we saw above is understanding and managing time when work-
ing with data. Determining which file systems in an HPC to store data on based on unclear performance
characteristics, along with questions of when and how to retrieve data during development and testing or
production runs of jobs, can be difficult to sort out when trying to optimize a workflow. Associated with
this issue, as we examine more in a later section, abstraction layers can make it challenging for end users to
understand how long it will take for data to be loaded for jobs.

9



In a different vein, as we noted above, HPC ecosystems periodically shift when facilities update hard-
ware or software that a user’s work depends on. This introduces additional work to adapt to any changes
in the configuration. Facility staff expend time before deploying upgrades to test and try to identify any
potential issues, while recognizing that effort will be required after deployment fixing bugs that surface.
Scientific users may need to adapt their software in light of changes, adapting and optimizing their setup to
the changed system configuration. Staff at HPC facilities, such as NERSC, offer the expertise to help scien-
tists learn about and better understand how their software performs on a given system in these situations.
Collaborations between staff and scientists to optimize software can save computing time and ensure a more
reliable product. A concern among some domain scientists in our study was that undertaking this type of
collaboration may be labor intensive if they need to teach facility staff or computer engineers about their
domain itself. Scientists may not grasp that putting effort into a collaboration up front can pay off in the
long run with more stable and better performing tools. We see in particular that DAVTool developers find
fostering collaborations and learning the domain science language to be beneficial to getting work done.

4.1.3 Fostering relationships to align scientific and computing worldviews

Domain scientists often treat HPC systems as something of a black box and have to undertake significant
work to understand and learn about their changing operation over time. At the same time, a key part of the
experience of working in HPC ecosystems is collaborative work. This may be as part of a particular scien-
tific team tackling a shared research problem, or in conjunction with computer scientists building software
resources (such as DAVTools) necessary to make science possible. Importantly, the stakeholders in multi-
disciplinary collaborations all have to work to understand the language and cultures of their colleagues.
Research has noted that part of this effort is determining the right amount of, as well as who should be
fostering, communication [6].

Participants in our study building DAVTools, in particular, raised the challenge of effectively commu-
nicating across disciplinary and technical boundaries. These individuals expect their work is more likely
to be successful when they intentionally form relationships and develop shared perceptions of a design
space (whether that’s the scientific research approach, the software design approach, or the HPC environ-
ment, etc.). Computer scientists and domain scientists have different disciplinary languages and points of
reference. DAVTool developers interviewed explained how they find that building a relationship between
individuals across teams is a fruitful mechanism for knowledge to be exchanged and longer-term efforts sus-
tained. As part of building relationships, a way to help make generic tools (e.g. a generalized data analysis
and visualization tool) more usable and friendly to a particular scientific community is by crafting interfaces
and abstractions. Crafting interfaces and abstractions, whether graphical or the terminology in APIs, that
are aligned with a domain specific language externally and mapped to a tool’s internal structures enables
domain stakeholders to engage with a system without requiring deep customization.

One visualization tool developer explained the utility of this approach when working with climate scien-
tists. They crafted a graphical workflow that portrayed data by default in geographical terms as a translation
on top of the tool’s internal representation and computation of the data in a more generic form. Complex
aspects of the tool were abstracted away, available for the interested user who digs in, while helping the
scientists get their immediate work done. In this case climate scientists were more easily able to engage
with the software, helping grow the tool’s user base. This developer was able to facilitate this growth in
part by building a relationship with the scientists in particular projects, and building an understandable
representation and mode of interaction.

4.1.4 Takeaways

• HPC users may want to treat the system as a black box where they do not have to spend time learning about
its internal operations. Collaborations between domain scientists and developers or staff can encourage users
to learn more about necessary aspects of a system to ensure their software workflows are optimized and taking
advantage of all features.

• Users may encounter uncertainty with the I/O performance of different data storage systems if they view these
elements as the same as what their personal computer provides. The varied performance of different data storage

10



systems furthermore can lead to confusion for users working to implement and optimize their software. This
may result in a need for facility staff to support scientists encountering I/O problems.

• The commonly changing software configurations of HPC systems can be challenging for users to keep track
of over time, inhibiting the system’s memorability and learnability. Configuring software modules optimized
for each HPC system is one way that NERSC already works to make differences and changes visible over time.
Teaching users this pattern to constructing elements of their work could increase their ability to track changes
to systems.

• Scientists should engage with HPC facility staff whose job is to collaborate and help optimize scientific software
tools. Collaborating will benefit scientists through more reliable, optimized tools while facility staff learn more
about their domain which supports future engagements.

• DAVTool developers who build relationships with their user community learn about their worldviews and re-
search practices. This can inform the design of simple abstractions to make a general purpose tool more accessible
to a specific community of domain users, so long as these users can then explore underneath the abstraction as
desired.

4.2 How Users Comprehend HPC Systems and Abstraction Layers
Abstraction layers are a key way to manage the complexity of large-scale systems and potentially improve
usability for different types of stakeholders. Middleware tools are abstraction layers that can make it easier
for scientists to work with an HPC, or other, system as long as they can fairly easily learn and grasp what
the abstraction layer is accomplishing. At the same time many of our study’s participants conveyed issues
that can make them or their colleagues wary of abstractions. This emerges from a tension abstraction layers
must address, that between providing simplicity and visibility into system details.

Abstraction layers are fundamental concepts in software development to mask complex system features
to provide a simpler user experience through the software design principle of information hiding [15]. En-
gaging with different types of computing systems may foreground different types of abstractions. Using
a personal computer requires minimal examination of the abstractions around storage systems where as
the experience with an HPC system and its varied data storage systems introduces a different experience for
users. As part of the perpetual work to understand how HPC systems function we see that the memorability
and learnability of different abstraction layers utilized in an HPC ecosystem is key to the user experience.

Participants in our study encounter many abstraction layers when building different data systems for
scientific work and these tools positively and negatively impact user experiences. Many expressed frustra-
tion with the design and functionality of abstraction layers wrapping different HPC components, from data
storage systems to parallelization tools for running jobs across many nodes. Often these abstractions are
black boxes to their users, sometimes by the user’s choice and at others due to the tool’s design. The ability
of users to open up these black boxes and clearly identify which systems their data is flowing through was
too often minimal, making them wary of new abstractions in current HPC systems since breakdowns may be
hard to interpret and inspect. This ability or inability to comprehend and account for the fabric of different
HPC systems in the software remains a challenge for scientists and developers. At the same time, multiple
interviewees noted that abstraction layers can simplify the software they have to build for different projects.
At the same time the information hiding principle underlying abstractions can generate challenges when
breakdowns take place. Abstractions that do not provide sufficient means for users to peer inside and in-
vestigate breakdowns result in a diminished user experience. We see examples of this from the experiences
of multiple different scientists.

4.2.1 Abstractions breaking down with architecture shifts

HPC system design is continually evolving as new hardware and software resources are adopted. The evo-
lution of these systems ends up impacting and changing various aspects of usability for users, including
consistency as features and behaviors change as well as learnability and the ability for users to identify and
recover from errors encountered in their work. Abstraction layers in software tools are one way to smooth
over some of these issues for users, but they raise their own concerns in high performance environments.

11



When HPC systems change and an abstraction layer breaks down due to an architectural shift, the engi-
neers and users working with scientific software encounter new errors and performance slow downs that
may require more work to resolve.

One staff member explained this challenge by noting that two decades ago, when the cost of using an
HPC system was higher, developing applications for an HPC system required understanding what resources
were available and how they would impact the performance of particular computing jobs. Today, it is more
common for scientists, and their collaborators, to write software then test to see what performance is like
without explicitly factoring in the resources, and their nuances, of a particular system. One computer engi-
neer noted that abstractions are “inviting and helpful for thinking about things” but often end up deterring
high performance over time as system’s change. This becomes a problem and breaks down when an under-
lying architecture change disrupts the abstraction and causes poor performance, unless someone takes the
time to revise the abstraction layer itself. To this computer engineer the solution is to avoid “fancy abstrac-
tion stuff” and to optimize the scientific software they are supporting, but this comes as a trade off since
“usability is abstraction” to some extent.

4.2.2 Necessity for user’s to have visibility into I/O middleware operations and clear error mes-
sages

A key element to usable abstraction layers and systems is the ability of their users to have visibility into
the black boxes these components create. Work in HPC ecosystems is particularly impacted by data storage
systems and their I/O performance, as we saw above. To make systems usable and efficient for users, visi-
bility into abstractions wrapping data storage systems is important since the underlying devices often have
widely varying performance characteristics and this impacts how users perceive the work at hand. Each
data storage system may be designed and optimized with different purposes, some short-term and high-
throughput for use when running jobs and others long-term and low-throughput when archiving data for
sporadic access. Executing a large analysis job may result in a disruption or breakdown if the location of
data is hidden behind an abstraction layer that does not provide users with a sense of relative time to access
or load particular subsets. Additionally, usability issues can also emerge with the error messages generated
by a particular abstraction layer, and how they can be understood by users.

One domain scientist explained such a situation when they were working with a particular HPC sys-
tem at NERSC. This astronomer was developing a data analysis pipeline and using a middleware tool to
handle I/O operations for their data. This middleware tool seamlessly moved files between the system disk
and a tape archive. These were data storage systems with very different performance implications, and
the middleware was designed so that users didn’t need to know where a file was stored when accessing it.
When this scientist began running their performance intensive workflow the software ending up breaking
down fairly easily. Over time through troubleshooting this scientist realized the breakdown occurred when
some of the data was on disks while other pieces were in the tape archive. The middleware tool had com-
pletely abstracted away any visibility of the location of an individual piece of data. The middleware also
made it difficult to understand the inner workings of this software to isolate the issue since it didn’t offer
“enough power hooks” where the user could query to filter and show only readily available data products
for example. Consequently the variability in access times for various pieces of data would hold up the anal-
ysis software, to the point that the scientist’s software broke down and caused this individual significant
frustration.

A similar case emerged for a domain scientist trying to manage the execution of their computational
models at scale on an HPC system. This user decided to turn to a NERSC task management tool. This
tool was designed to help users make their computational model execute in parallel across many nodes of a
NERSC machine. This scientist expected this tool to handle configuration issues, but they rapidly encoun-
tered errors that were “cryptic” enough that this user and their colleagues couldn’t figure out why their tasks
were failing. Over time through testing they came to the conclusion that the abstraction layer would start
off running tasks in parallel before unexpectedly breaking down when trying to read in the various files.
For this scientist, their best conclusion was that file I/O was happening in serial and hampering the parallel
execution of tasks that the tool was supposed to enable. This abstraction’s breakdown was not expected by
the scientist, and produced error messages that offered little understandable feedback. Consequently, this
user wasn’t provided with sufficient insight about the issue emerging and how to fix it. This user needed

12



the ability to peer into the abstraction’s operations but this was not possible.

4.2.3 Takeaways

• Abstractions can make complex systems more usable for end users but can easily break down as computing
architectures shift and must be maintained to remain useful and usable.

• Users concerned with the performance of their software should re-evaluate and revise the abstractions they’re
designing and using when working with new computing architectures to obtain the best performance.

• Providing users with the ability to understand how a middleware tool operates internally, and perhaps to specify
complex usage scenarios, will enable a better user experience.

• User experiences can be simple when relying heavily on default abstractions so long as additional options are
provided for more advanced users who need to handle more complex analysis configurations in different HPC
environments.

• Error messages must be designed to provide clear, concise descriptions of the problem and ideally a pointer to
more information. These messages can be essential to helping users open the black box of an abstraction layer.

4.3 Challenges Scientific Collaborations Face With HPC Allocations & Queues
A fundamental element of HPC ecosystems that domain scientists work with are allocations of computing
time. As we described earlier, scientific projects receive allocations that they can spend on running compu-
tational jobs through different batch queues. HPC facilities configure batch queues on their systems with
different performance characteristics, and consequently costs in terms of allocation usage. Among our study
participants we found that projects faced challenges and misalignments around computing allocations as
well as with the design and use of queuing systems.

4.3.1 Challenges and misalignments with computing time allocations and policies

Receiving computing allocations is a key aspect to the funding of many large scientific project since the
processing and/or analysis of vast quantities of data would not be feasible without an HPC system. HPC
facilities end up balancing varied social, political, economic, and technical concerns with their policies for
allocating and enabling the use of computing time over the course of a given year. We see two primary
challenges around computing allocations and policies for domain scientists. First, that projects and their
members require visibility into the quantity of computing allocation they have over the course of a year.
Second, the rhythm of collaborative work in a project may be out of alignment with the need to steadily
expend allocation.

Projects and their members need to have visibility into the quantity of computing allocation available
over the course of the year, from the time a request is made through its use as work is accomplished. Sci-
ence users face challenges when determining how much of this “virtual currency” to request, and how to
manage its use over the course of a year. Projects may end up receiving a smaller allocation of comput-
ing time than they perceive is necessary to get their research done if they have a difficult time determining
how much is reasonable to request. Shortfalls can emerge sometimes if a request is made based on past
experiences running software in HPC environments but these don’t align with the current work. This can
be a challenging balancing act when large collaborations have software in various states of functionality
or varied data collection timelines making the expenditure of computing time uneven over the course of a
year. At the same time, the finite amount of computing time available on any given HPC system results in
a facility expecting that allocations given to projects, and users, need to be spent steadily throughout the
year. NERSC, for example, has a policy emphasizing that allocations will be reduced at set times over an
operational year if sufficient quantities of computing time are not being spent by a project. This reduction
returns the time to a pool that facility staff can reallocate to other work. This is a mechanism to ensure that
the limited time resource is not allowed to go to waste. This policy is outlined on NERSC’s website, albeit
directed at principal investigators and account managers, breaking down how much will be removed in
particular circumstances. Consequently project members may not realize if an allocation they’re expected

13



to use has decreased, or even increased, over the course of a year which can lead to unexpected disruptions
to running their software.

We also see that NERSC’s policy for using computing allocations can be out of alignment with the
rhythm of work in particular teams. Multiple scientists that we interviewed were not always aware, or were
unclear on the specifics, that they would lose allocated time if they were not steadily using some amount
over the course of a year. These scientists must balance the expected amount of computing time that may be
needed to achieve their scientific goals with the effort to get their software to work (an optimization issue).
The rhythms of work within a given project, and when large amounts of HPC time is needed, will not nec-
essarily align with the availability of a particular HPC system, or could place a large burden on this shared
resource, limiting how many other users can do their work. Teams can spend many months using small
amounts of their allocation as they work to get their software running and optimized. Once the software is
optimized and functioning as desired the researchers will then be able to go through thousands or millions
of hours running jobs in a short amount of human time.

For example, one scientist described their project’s allocation of around 40 million hours of computing
time before explaining that at that point the project had only used maybe 15 million of those hours. This
researcher expected to use maybe ten million hours for an upcoming run of the team’s code, but they were
still in the process of testing their software before launching such a large job. When we asked whether
the remainder of their allocation would be enough they were not sure and expected that they might have
to request more time from the facility. In the past their colleagues have run over their allocation and just
automatically had their available amount extended without a clear explanation. At the same time this re-
searcher’s colleagues also faced situations where they unexpectedly had allocation time taken away because
they were not using it rapidly enough. In this case, this scientist is the project PI and therefore responsible
for tracking and managing the project’s usage. Even he was not entirely clear on the actual ways the policies
underlying removal or addition of time unfold in practice. In this brief example this scientist was connected
to three different project allocations. Two of these allocations were underutilized, yet only one received a
reduction in available time in line with the facility’s policy. This left this group of users unsure about the
implementation of the policy in practice, leaving a gulf between the described approach and the actual.
The team did not want to waste allocated computing time on something that was incorrect which is why
they were focused on testing and optimizing their code, resulting in low utilization of their allocation up to
this point in time. This scientist noted that he knew of no formal way to tell the facility about their plans
to forestall any reduction in their allocation per the time policy. Within the facility ecosystem there may
be an implicit approach to achieving this goal, but the pathway to doing so was not clear to this principal
investigator.

4.3.2 Challenges with queuing systems

Domain scientists and their collaborations also face challenges understanding and determining which queues
to use when running jobs on HPC systems. HPC facilities manage the use of a system’s limited resources
through processing or job queues where users submit the jobs they want to be run. Queuing systems func-
tion as an abstraction and management tool for ensuring the finite compute resources of a given HPC are
utilized as efficiently as possible. Queues are designed with different shapes or forms that convey varying
amounts of resources available. Designing queues to be efficient and effective requires balancing different
concerns — the form of computation needed (e.g. how much process power, memory, time, etc.), the priority
of access and other costs to the ecosystem and its users, and so on. Scientists in turn encounter uncertainty
when trying to understand how much of an HPC a particular analysis will need, and how long they will have
to wait for it to run when using different queues in the HPC ecosystem. We see that the design and structure
of a facility or system’s queues need to be made understandable to the end users if they are to be helpful
and useful. In previous work we noted annoyance “at having to wait in the queue for a quick test during
code development or testing” [3] since scientists desire the ability to evaluate a bug fix then move on to other
work. We find that the learnability and consistency of different queues impacts how HPC users experience
these ecosystems. Facilities in turn recognize such challenges and face their own difficulties balancing how
to organize various queues to maximize utilization.

User confusion about queue setups and job execution times. Interviewees noted that queuing systems as

14



an abstraction can often make it difficult to understand how long they may have to wait until their analysis
job is actually run on an HPC system, and then how long it will take to actually complete. Users indicated
that they didn’t necessarily have a grasp on how a system’s job scheduler is balancing different factors when
determining which jobs to run in a queue. They also found it difficult to pick a queue when there were many
on offer when using a particular HPC system.

For example, one scientist explained that the ability to estimate start times for small jobs helps him decide
when to kick off a job then pivot to other work or to wait and see what the results end up being. Sometimes
this individual expects a short minute or two wait time and will “probably type qstat five or six times” while
waiting. In contrast, if the showstart command indicated the job won’t start for at least twenty minutes
then they will move on to other work (or just go home). In one case twenty minutes was indicated but the
job actually took more than an hour to be queued up and run by the system. For this user the commands
available to probe a job’s status in a queue do give him an idea of whether something will take a long time
to actually be run. His experience has given him a sense that if the system reports a few minute wait time
then this will be fairly accurate but as the estimated time increases the accuracy drops and jobs may not run
for a lot longer than stated. Here we see that the consistency of the user’s experience is variable and does
not improve their understanding and ability to learn about the organization and operation of a queue.

In a different vein, another scientist faced challenges learning how to set up the archiving of their data
and model setups using a queue dedicated to such a task. This scientist explained how there was a “xfer
queue specifically designed for backing up your files to HPSS”, the archival data storage system. Information
about this queue’s configuration were opaque (black boxed) and only surfaced in use, rather than being
more clearly designed in a user friendly, learnable way. This individual came to understand that seemingly
the xfer queue was setup to only allow runs for twelve hours whereas the scientist’s archives required more
time. The scientist also wasn’t sure how many processors this queue let tasks access and how this might be
impacting the performance of their work. Their software was breaking down, and not failing gracefully, so
this scientist had to quit using the queue and shift to using one of the HPC system’s login nodes. This is a
use case that the login nodes are not meant to be used for, but this user manages to do so to accomplish their
goals.

Facility challenges designing consistent, transparent queues. Constructing queues for running jobs is a
challenging process. Facilities have to balance overall usability and utility of their different HPC systems
with flexibility to handle the different types of work scientists have, as well as different project’s economic
considerations around how to expend their allocations of computing time. Conveying the details of these
decisions in an informative way without obscuring the functionality of the system is also difficult and make
producing systems users can learn easily a challenge.

During our study we learned from NERSC staff how the facility had experimented with different quan-
tities and types of queues on HPC systems over time to try and provide a more usable user experience. One
facility staff member explained that at one point there were seven or so queues that provided users access
to machine resources with different priorities for processing and amounts of memory and CPU resources
available. This allowed NERSC to charge compute allocations at varying rates depending on the size and
priority of work being executed. Finding that users had a hard time determining which queue to utilize,
when the facility brought a new machine online they reduced the number to three — a debug queue for
rapid testing of changes before later running a large job, then regular and premium queues for standard
jobs with different priorities. This new design was partially possible because the software underlying the
queues could now support users providing more information about their requests (e.g., more details about
the amount of CPU and memory needed), and the system could then automatically adjust usage more ef-
ficiently. This would overall improve access to the machine and was intended to improve the usability for
domain scientists. The challenge with adopting this queuing setup is that users visibility into this software’s
decisions and operations were obscured. If users end up without the ability to see why their work is or is not
being run at a given time, thanks to the queue software’s decision making, then they may end up frustrated
with the HPC system. A key part of the design challenge here is coherently illustrating to end users how
these automated queues operate and why the policies for them are designed in a given manner so that these
scientists have visibility into the decisions, and can expect consistent behavior that enables them to learn
how their work is likely to be run on a machine.

15



4.3.3 Takeaways

• HPC facilities could clarify their mechanisms for warning projects of impending time allocation reductions.
Augmenting automated reductions with clearer or more visible messages to the associated PI, allocation man-
agers, and/or entire team with the action and reason for it would help clarify what did or did not take place.

• HPC facilities should more clearly define a process for teams to engage in discussions about their use of computing
allocations so that timelines can be discussed and support provided where needed.

• Projects and teams using HPC resources should try to collectively track their use of time allocations and as much
as possible forecast whether they will be in a situation where large amounts might expire. If they find themselves
in such a situation they could start a conversation with the facility to try and come to an agreement that meets
their timelines.

• Commands should present reasonable estimates for jobs and enough information to help a user understand the
factors influencing the value.

• Configure queues with clear parameters so that users can develop reasonable expectations of how long their jobs
will take to be run in everyday circumstances.

• Minimizing the number of queues users chose from while requiring more parameters about their jobs simplifies
their engagement with the system but may make it difficult to grasp when their job will be executed.

4.4 Challenges Deploying & Adopting Unique System Features: Experiences with the
Cori Burst Buffer

Users face challenges with I/O that change over time as technological solutions are developed and deployed
while working with continuously increasing volumes of data. During the initial phase of our study, NERSC
was preparing to bring the Cori HPC online. Distinct from prior generations of machines the Cori system’s
computing fabric included elements that would upend the conventions of practice users had established,
including manycore Knights Landing (KNL) processors and the Burst Buffer on-node flash storage. The
Burst Buffer emerged as a point of anticipation in our early interviews since it was specifically designed to
address I/O issues by incorporating high speed flash memory in the storage hierarchy. We subsequently
interviewed users about their thoughts and experiences with the Burst Buffer after the Cori HPC had been
in production for a few years.

Overall the Burst Buffer (BB) was introduced to provide higher performance I/O operations on Cori
while balancing the cost of flash memory technologies. Scientists could employ the Burst Buffer during
computing jobs by taking advantage of this higher speed solid state memory hardware that was included
on a subset of Cori’s nodes. Incorporating a Burst Buffer was a way to include this technology while mak-
ing the overall Cori HPC economically feasible for NERSC. Our interviews identified varied visions and
anticipations of how this feature would work and later reflections on the experience and usefulness of this
element of Cori.

4.4.1 Anticipations and Visions

Facilities try to incorporate new technologies in HPC systems to understand how they can be used by sci-
entists while generating insights for future systems. This practice and vision resulted in the Burst Buffer
being woven into the computing fabric of Cori — as a resource to address current demands and as a way
to look towards the future. Stakeholders we engaged with underscored varying aspects to this vision, both
from the facility’s view and that of the user community. Stakeholders from the facility as well as the user
community undertake anticipation work [22] to develop a collective vision for how a new feature like the
Burst Buffer can work and be useful. These visions and anticipations are shaped by past, and other, com-
puting experiences. The usability, or lack of, systems in these experiences influences users expectations as
well. We see that the initial descriptions of this feature by the facility, then explorations by users shape an
initial collective vision of the Burst Buffer and its utility. Subsequent efforts trying out the delivered feature
reshape and refine collective visions as projects and collaborations attempt to leverage the feature in their
everyday work.

16



Facility staff visions and anticipations. The Burst Buffer was communicated to the NERSC user community
as a way to ameliorate existing I/O struggles when running large computing tasks. Interviews with facility
staff highlighted a vision that the Burst Buffer was an innovation that could improve user’s compute jobs,
include newer technology which would enable research on changing technological resources, and influence
the design of future machines. A paper published by NERSC after the initial deployment and testing of the
Burst Buffer described this feature as “one path forward” by serving as a “fast storage layer, close to the compute”
to address the growing I/O challenge in HPC realms [1].

Stakeholders from the facility noted there was excitement about the Burst Buffer, but at the same time
they wanted to manage and temper the expectations of user communities for the built solution. One subject
explained that the Burst Buffer was expected to have variable success improving scientist’s work depending
on the structure of their software analyses. The anticipation was that the Burst Buffer would probably overall
be faster for most users than established parallel file systems at the facility, but as one staff member described
the feature “it’s not a silver bullet” that will readily solve all issues. Realistically as a new technology the Burst
Buffer is “not gonna make all of the people happy all the time,” it may help some users jobs run 10, 20, or 30 percent
faster while others may see no or perhaps even negative improvements.

Recognizing this expected variable utility of the Burst Buffer, we learned that the system procurement
process included a research and development contract specifically to develop usable software abstractions
for the feature. These abstractions were deemed necessary so that science users could have a more seamless
and hopefully transparent experience with the Burst Buffer. Part of the hope was that users would have
minimal learning to do to be able to use this feature. One of the facility staff explained that this element
of the contract was motivated by experiences observed at other HPC facilities incorporating cutting edge
technology that required significant steps by users to actually use it in their computing work. Over time we
learned that experiences with the resulting software stack ended up varying for users, with there being a
lack of clarity about the scope of features that were even actually delivered years after the Cori HPC was in
production.

Science stakeholder anticipations. We spoke with a variety of science stakeholders who use NERSC re-
sources about their initial understanding of the Burst Buffer, and anticipations for its application to their
computing work. These conversations included scientists doing particular research along with computer
engineers who develop systems supporting large projects. Across all of these conversations the earliest
notions of the Burst Buffer underscored uncertainty and confusion about this new resource. Interviewees
professed that they didn’t really know what the Burst Buffer was going to be exactly, and offered varying
conjectures based on their experience with HPC systems that existed at the time as well as their personal
computers. The Burst Buffer, like any change in an HPC ecosystems, raises the issues identified above with
having to continually learn how HPC systems function and the need for visibility into I/O systems and their
middleware.

HPC users with years of experience became accustomed to file systems globally accessible across an
HPC. Consequently, in conversations about the Burst Buffer one domain scientist expected that this storage
system would be available globally across all of Cori’s nodes. They had spent years working with this
model in other HPC systems and didn’t anticipate the fundamental conceptualization of the HPC would
be changing all that much. We explained the anticipated design to this individual, including that the Burst
Buffer would be local to specific nodes. This prompted this scientist to speculate that the feature might
be able to help their work by solving data caching issues that were occurring when running simulations.
This user speculated that they could employ the Burst Buffer to save intermediate data products before
migrating these outputs to NERSC’s stable disk storage systems. Doing so would let their models treat this
flash memory as extra disk storage during jobs. This type of use case was expressed by at least one other
scientist as well.

In contrast, one scientist working with large observation datasets faces different I/O challenges. Rather
than simulation workloads that need high bandwidth, their data processing requires many “little metadata-
style operations” that stress I/O systems that are not optimized for low latency. This individual’s expectation
was that the burst buffer’s attempt to provide storage faster than normal disks, but still not as fast as memory,
would probably not really help their research work. Ideally from this user’s perspective the Burst Buffer
would feel like working on their laptop with a solid state disk where it functions mostly invisibly. Whether
that would be the case remained to be seen at the time. In their idealized vision the Burst Buffer would

17



behave and perform similar to the commercial Dropbox tool at petabyte scale. Data would always feel like
they are locally accessible, regardless of where they are actually housed. The system’s software abstractions
would function seamlessly enough that they do not have to spend time thinking about where there data is
or how it works. This desire is similar to our earlier point that not having to think about data’s location in a
storage hierarchy is nice, but perhaps not realistic in practice. The feasibility of this vision with high volumes
of data is probably low, but the influence of this user’s everyday computing experiences juxtaposed with
the potential for changes to the HPC’s design results in a lofty vision, even tempered with this individual’s
expectations that this is unlikely in practice.

4.4.2 Early experiences evaluating the test bed system.

NERSC deployed a test bed system to provide access to an early version of the Burst Buffer. With the test
bed scientists could explore how they potentially could make changes to their software to adopt this I/O
feature in their work. Deploying a test bed is a mechanism for helping users to learn about the shift to the
computing fabric and realign their ways of doing work, encouraging them to open the black box of the HPC
and think about the way it functions when executing their software. Test beds however come with their
own challenges and tensions emerged in practice with the early versions of the Burst Buffer that made users
express hesitation about relying upon it in their work.

One scientist explained that their goal with using the test bed was to compare to standard Lustre disk
storage available on pre-existing NERSC machines with the Burst Buffer. This individual wanted to deter-
mine whether reading files would indeed be faster since this new type of hardware should result in perfor-
mance gains. They explained that during their tests they did not actually see such gains. He admitted that
his small experiment’s results couldn’t necessarily be trusted since he wasn’t sure he had actually devised
and executed an appropriate test. This tension between having a test bed available and having the clarity
to know whether an evaluation is appropriate highlights a challenge for facilities introducing new features
and being flexible about their use. As a user this scientist was not sure how this impending change should
necessarily be conceptualized and considered when building software analyses. With further inspection,
we discovered that the test bed was not optimized for parallel read operations while the existing Lustre
disk system was. As this scientist suspected, they were indeed comparing the performance of two different
configurations that did not entirely align. This scientific user’s inability to determine how the test bed was
configured, and the relationship of this configuration to the existing systems they were accustomed to, hin-
dered their ability to make truly meaningful use of the system. The abstractions they used when testing this
new way of working didn’t provide enough visibility into either data storage system to help them determine
what was being evaluated.

4.4.3 Experiences and reflections on the built system

We investigated user’s experiences with the Burst Buffer once Cori was in production and available for
everyday use. We found that many interviewees and the projects they work on conducted some exploratory
tests of the Burst Buffer, but the majority of the subjects we interacted with claimed they did not end up
using this feature all that much. Interestingly, stakeholders from NERSC noted that the feature is in fact
heavily utilized, based on usage logs and system activity, indicating there is a user base but they were not
clearly visible in our study. Future studies could rely upon system logs to identify active users to gather
their perspective.

Regardless, even with logs indicating the feature is used, it is not necessarily clear that the Burst Buffer
is being utilized as it was envisioned. Users may be leveraging the feature without getting the full range of
benefits possible due to issues we see from the interviews we conducted. A recurring concern across many
of our interviews ended up being the anticipated amount of human effort to maintain support for the Burst
Buffer if adopted. From our conversations certain types of work, like simulations, could benefit from using
this feature while other work like bioinformatics could not. As a stepping stone towards a future all flash
memory file system the Burst Buffer demonstrated varying degrees of utility for HPC users.

Scientists running simulations benefit with this feature. Among our conversations scientists with tra-
ditional HPC workloads running large simulations were able to benefit from the Burst Buffer with fairly

18



minimal effort. Talking with one scientist their group found that adopting the Burst Buffer was an effective
way to remove bottlenecks within individual nodes during their simulation runs. From this individual’s
perspective the Burst Buffer made their I/O bottlenecks go away. Not only did this feature help with the
loading of large datasets at the beginning of a simulation run, it also made it possible for these scientists to
write out data during check points without worrying that the I/O system would crash.

Evaluated, but adoption requires too much effort. Many of the scientists we talked to are building complex
data analysis software for multi-national projects. These individuals noted that their projects tested the Burst
Buffer when it initially came out, but in the end could not align the feature to their longitudinal visions
and practices for work. Projects typically had a team member develop some experiments, sometimes in
collaboration with NERSC, to benchmark the performance of their project’s software with existing storage
systems and the new Burst Buffer. They would typically find a small performance increase without doing
much work to adapt their software, but not enough of an increase to justify expending the large amounts of
effort required to fully incorporate this resource. Participants noted how incorporating this specific system
feature would also result in maintenance headaches over time. These include needing to have a person keep
code bases up to date and functioning in this unique environment, to more basic issues where the Burst
Buffer itself may be unavailable when a job needs to be run.

Varied computing environments and project timelines hinder usage of unique features. Stakeholders
working in multi-institutional, often multi-national, scientific collaborations face challenges adopting a fa-
cility specific feature beyond just the human time and effort. Large scientific projects can spend many years
building an instrument, collecting data, and running analysis software. These projects often leverage com-
puting resources from facilities across the country and/or world. In contrast, the procurement, develop-
ment, operation, and retirement of an HPC is on the order of half a decade or more. This depends on
the efforts of a facility and the agency funding the resource. Consequently, mismatches emerge between
the timelines of the long-term work of science projects and the HPC resources provided by any particular
facility. The variability in features among HPC systems across, and even within, facilities combines with
mismatches in timelines to make it challenging for collaborations to take advantage of unique features on
one system.

Multiple participants in our study work as part of multi-institutional and multi-national projects that
rely upon computing resources around the world. Their teams build software and data systems that must
function consistently across a variety of HPC systems. Domain scientists noted that their use of varying
HPC systems for a project results in multiple streams of hardware and software features available across
these different ecosystems. Each of these ecosystems shift features over time at different rates. As a result,
the scientists and engineers in the projects design for the lowest common denominator of features readily
available across the different HPC systems available for their work. These individuals also noted that their
project’s software stacks try to consistently use data management abstractions that handle any unique sys-
tem features as much as possible. Multiple scientists managing project’s software raised these challenges,
noting that adopting one site’s unique feature would have to offer a significant benefit to balance out these
human time costs. Faced with Cori being one of the only machines with a Burst Buffer, members of these
teams indicated they had low expectations about their potential ability to us this feature. One scientist
commented “I had very low expectations. ... the work that I’m doing ... has a global workflow system” and as a
result adapting this system to the Burst Buffer was unlikely to be rational given the potential headaches and
increased amount of human labor.

Adapting to use the Burst Buffer also would have introduced a long-term maintenance burden, even
though using this feature requires fairly simple adaptations to where data is referenced. Teams working
globally with many different systems could not justify expending the human time to adapt their software
to this one site’s unique feature due to potential maintenance and reliability concerns. This is especially
important for a core element of the work that must be reliable and without a fully seamless API participants
anticipated too many hindrances to adoption. In spite of hesitance to incorporate the Burst Buffer into key
software work, these same participants noted they had pondered hosting parts of their software stack on
this hardware or using it for non-critical tasks. Employing this feature to run databases or smaller scale
simulation workflows was one envisioned opportunity, letting the project take advantage of the Burst Buffer
and its potential speed while not disrupting their essential, primary work.

19



Doesn’t align with software designed to use local machine storage. Another issue that emerged from our
conversations was a general mismatch between scientific software designed to use local storage temporarily
and the construction of HPC systems which the Burst Buffer could have impacted. Multiple domain science
software developers explained that much of the commonly used software in their field expects a computing
system to have local disk storage available. This local storage is used by these tools to temporarily write data
out before migrating to other storage. HPC systems generally do not have local storage on nodes, relying
instead upon the shared file system. Our informants noted that initially they speculated that the Burst Buffer
could stand in as a form of local disk since it is associated with particular nodes of Cori. One interviewee
explained “... we were hopeful for burst buffer and, uh...I would say...it’s been very spotty successes.”

Adopting the Bust Buffer failed for these domain scientists and engineers. This was the case in part
because their testing kept surfacing bugs with the Burst Buffer’s software. Some of these bugs were resolved,
but others stemming from fundamental design decisions about how this feature is made available to users
were never resolved. These scientists also ended up not using the Burst Buffer because it did not improve
performance with the various off the shelf software tools they have to support for their community. Third,
the short-term nature of storing data on the Burst Buffer was a hindrance to improving the performance
of jobs that rely on common, shared bioinformatics datasets. The Burst Buffer was designed so that most
data is staged in and out when executing a job, with the ability to have short-term reservations holding data
for a week or two at most typically. The work of these scientists may have benefited if some common data
could be stored in the Burst Buffer for use during randomly executed jobs. Without a guarantee that the
data would actually exist on this hardware when a job begins, if it is not directly staged into this component,
then trying to store commonly used datasets was determined to be futile.

Overall, as developers ensuring pre-existing tools function in an HPC environment there is only so much
time or money available for science software developers to adapt pre-existing software to the environment.
The Burst Buffer was enticing in theory but given issues with its design in relationship to common tools
these developers could not align it to their use case.

5 Summary
HPC ecosystems provide vital resources for large-scale scientific exploration with large volumes of data that
are distinct from many of the computing systems familiar to most individuals. The facilities procuring and
sustaining these resources work with diverse stakeholders to ensure everyday tasks can be accomplished.
Ensuring these systems are usable for science stakeholders is essential to the mission of HPC facilities and
our study identified various key concerns impacting usable HPC experiences. We interviewed domain sci-
entists, computer engineers, and facility staff who work with HPC systems to explore many facets to user’s
experiences with these ecosystems.

We examined the easily black boxed nature of these large computing systems and the perpetual work
users must do to understand how to effectively work with these resources. Abstraction layers can enable
usability, but need to be maintained as system architectures shift and ensure user’s can peer inside to identify
the sources of errors. Without visibility into abstractions, in particular their error messages, users may end
up frustrated and find this software tool not useful in their work. Users working in HPC ecosystems also
must work with allocations of computing time to the projects they are a part of and the variable cost for
running tasks on a system through a queuing system with this allocation. Similarly, challenges emerge for
users who might want to adopt unique features deployed on one HPC system. In this case we examined
the concerns science collaborations faced with the vision and deployment of the Burst Buffer in the Cori
HPC. These collaborations work with diverse resources and find that adopting unique features is unlikely
to be worth the effort of having an individual maintain a unique software stack and the risk of the resource
being unavailable when work needs to be accomplished. Abstractions could enable projects to need unique
hardware features but a facility would have to maintain this solution and ensure it is aligned with other data
abstractions and made user friendly.

The experiences working with HPC systems that we’ve examined vary and highlight some of the di-
versity to work in these realms. Facilities must support a range of users while scientists themselves bring
varied needs. Creating usable interfaces to these systems to ensure user experiences are positive remains
challenging. Continued, systematic qualitative studies with these groups and examination of changes over

20



time is one way to support the development and maintenance of user friendly HPC ecosystems.

6 Acknowledgements
The authors wish to thank the members of the Usable Data Abstractions team and our anonymous study
participants for their insights and feedback. This work is supported by the U.S. Department of Energy,
Office of Science and Office of Advanced Scientific Computing Research (ASCR) under Contract No. DE-
AC02-05CH11231.

References
[1] Bhimji, W., Bard, D., Romanus, M., Paul, D., Ovsyannikov, A., Friesen, B., Bryson, M., Correa, J., Lock-

wood, G. K., Tsulaia, V., et al. Accelerating science with the nersc burst buffer early user program.
pages 17

[2] Charmaz, K. Constructing Grounded Theory: A Practical Guide Through Qualitative Analysis, 2nd ed. Sage,
2014. pages 7

[3] Chen, N.-C., Poon, S., Ramakrishnan, L., and Aragon, C. R. Considering time in designing large-
scale systems for scientific computing. In Proceedings of the 19th ACM Conference on Computer-Supported
Cooperative Work & Social Computing (New York, NY, USA, 2016), CSCW ’16, ACM, pp. 1535–1547. pages
2, 7, 14

[4] Ghoshal, D., and Ramakrishnan, L. Madats: Managing data on tiered storage for scientific workflows.
In Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing
(New York, NY, USA, 2017), HPDC ’17, Association for Computing Machinery, p. 41–52. pages 2, 6

[5] Jirotka, M., Lee, C. P., and Olson, G. M. Supporting scientific collaboration: Methods, tools and con-
cepts. Computer Supported Cooperative Work (CSCW) 22, 4-6 (2013), 667–715. pages 5

[6] Lawrence, K. A. Walking the tightrope: The balancing acts of a large e-research project. Computer
Supported Cooperative Work (CSCW) 15 (2006), 385–411. pages 6, 10

[7] Lawrence Livermore National Laboratory. VisIt. https://wci.llnl.gov/simulation/

computer-codes/visit/. pages 3

[8] Lee, C. P., Dourish, P., and Mark, G. The human infrastructure of cyberinfrastructure. In Proceedings of
the 2006 20th Anniversary Conference on Computer Supported Cooperative Work (New York, NY, USA, 2006),
CSCW ’06, Association for Computing Machinery, p. 483–492. pages 3, 6

[9] National Energy Research Scientific Computing Center. About NERSC. https://www.nersc.gov/

about/. pages 3

[10] National Energy Research Scientific Computing Center. Cori. https://docs.nersc.gov/systems/
cori/. pages 5

[11] Nielsen, J. 10 usability heuristics for user interface design. https://www.nngroup.com/articles/

ten-usability-heuristics/, Apr 1994. pages 6

[12] Paine, D., and Lee, C. P. Coordinative entities: Forms of organizing in data intensive science. Computer
Supported Cooperative Work (CSCW) 29, 3 (2020), 335–380. pages 3, 5

[13] Paine, D., and Ramakrishnan, L. Understanding interactive and reproducible computing with jupyter
tools at facilities. Report LBNL-2001355, Lawrence Berkeley National Laboratory, 2020. pages 5

[14] ParaView. ParaView. https://www.paraview.org/. pages 3

[15] Parnas, D. L. Information distribution aspects of design methodology. Methods 4, 5 (1971), 6–7. pages
11

21

https://wci.llnl.gov/simulation/computer-codes/visit/
https://wci.llnl.gov/simulation/computer-codes/visit/
https://www.nersc.gov/about/
https://www.nersc.gov/about/
https://docs.nersc.gov/systems/cori/
https://docs.nersc.gov/systems/cori/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.paraview.org/


[16] Ramakrishnan, L., and Gunter, D. Ten principles for creating usable software for science. In 2017 IEEE
13th International Conference on e-Science (e-Science) (2017), pp. 210–218. pages 2

[17] Ribes, D., and Finholt, T. A. The long now of technology infrastructure: Articulating tensions in devel-
opment. Journal of the Association for Information Systems 10, 5 (2009), 375–398. pages 6

[18] Ribes, D., and Lee, C. Sociotechnical studies of cyberinfrastructure and e-research: Current themes and
future trajectories. Computer Supported Cooperative Work (CSCW) 19, 3 (2010), 231–244. pages 5

[19] Segal, J. Software development cultures and cooperation problems: A field study of the early stages of
development of software for a scientific community. Computer Supported Cooperative Work (CSCW) 18,
5 (2009), 581–606. pages 6

[20] Sharp, H., Rogers, Y., and Preece, J. Interaction design: beyond human-computer interaction, 2nd ed. John
Wiley and Sons Inc., 2007. pages 6

[21] Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S., Elmqvist, N., and Diakopoulos, N. Designing
the User Interface: Strategies for Effective Human-Computer Interaction (6th Edition), 6th ed. Pearson, 2016.
pages 6

[22] Steinhardt, S. B., and Jackson, S. J. Anticipation work: Cultivating vision in collective practice. In Sec-
ondary Anticipation Work: Cultivating Vision in Collective Practice, edition ed., Series Anticipation Work:
Cultivating Vision in Collective Practice. ACM, 2675298, 2015, ch. Chapter, pp. 443–453. pages 6, 16

[23] Weiss, R. S. Learning From Strangers: The Art and Method of Qualitative Interview Studies. The Free Press,
New York, NY, 1995. pages 6

22


	Introduction
	Background
	HPC Ecosystems
	Roles of stakeholders in HPC ecosystems
	Technical Resources in HPC ecosystems
	Characteristics of working in an HPC ecosystem

	HPC Systems at NERSC
	Sociotechnical Perspectives on Collaboration and Design

	Research Methods
	Semi-Structured Interviews
	Data Analysis

	User Experiences Working in HPC Ecosystems
	Examining How Users Understand and Experience High Performance Computing
	Commonly black boxed views of computing systems
	Perpetual work to understand how HPC systems function
	Fostering relationships to align scientific and computing worldviews
	Takeaways

	How Users Comprehend HPC Systems and Abstraction Layers
	Abstractions breaking down with architecture shifts
	Necessity for user's to have visibility into I/O middleware operations and clear error messages
	Takeaways

	Challenges Scientific Collaborations Face With HPC Allocations & Queues
	Challenges and misalignments with computing time allocations and policies
	Challenges with queuing systems
	Takeaways

	Challenges Deploying & Adopting Unique System Features: Experiences with the Cori Burst Buffer
	Anticipations and Visions
	Early experiences evaluating the test bed system.
	Experiences and reflections on the built system


	Summary
	Acknowledgements



