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METHODOLOGY ARTICLE Open Access

An evaluation of processing methods for
HumanMethylation450 BeadChip data
Jie Liu1 and Kimberly D. Siegmund1,2*

Abstract

Background: Illumina’s HumanMethylation450 arrays provide the most cost-effective means of high-throughput
DNA methylation analysis. As with other types of microarray platforms, technical artifacts are a concern, including
background fluorescence, dye-bias from the use of two color channels, bias caused by type I/II probe design, and
batch effects. Several approaches and pipelines have been developed, either targeting a single issue or designed to
address multiple biases through a combination of methods. We evaluate the effect of combining separate
approaches to improve signal processing.

Results: In this study nine processing methods, including both within- and between- array methods, are applied
and compared in four datasets. For technical replicates, we found both within- and between-array methods did a
comparable job in reducing variance across replicates. For evaluating biological differences, within-array processing
always improved differential DNA methylation signal detection over no processing, and always benefitted from
performing background correction first. Combinations of within-array procedures were always among the best
performing methods, with a slight advantage appearing for the between-array method Funnorm when batch
effects explained more variation in the data than the methylation alterations between cases and controls. However,
when this occurred, RUVm, a new batch correction method noticeably improved reproducibility of differential
methylation results over any of the signal-processing methods alone.

Conclusions: The comparisons in our study provide valuable insights in preprocessing HumanMethylation450
BeadChip data. We found the within-array combination of Noob + BMIQ always improved signal sensitivity, and
when combined with the RUVm batch-correction method, outperformed all other approaches in performing
differential DNA methylation analysis. The effect of the data processing method, in any given data set, was a
function of both the signal and noise.

Keywords: HumanMethylation450 BeadChip, Preprocessing, Normalization, Batch correction, Concordance plot

Background
DNA methylation, featured by the presence of 5-
methylcytosine in the context of CpG dinucleotides, is
the most studied form of epigenetic modification. It
plays an important role in both physiological processes
and disease states. For instance in cancers, alterations in
DNA methylation landscapes include a global hypome-
thylation of the genome accompanied with CpG island
hypermethylation [1]. DNA methylation alterations are
also described for other types of diseases, such as

neurological and autoimmune diseases, and other disor-
ders such as cardiovascular diseases, metabolic diseases
and myopathies [2]. Furthermore, epidemiological studies
have revealed associations between DNA methylation and
exposures such as prenatal maternal smoking [3] and
environmental chemicals [4]. The Illumina Infinium
HumanMethylation450 (HM450) BeadChip is a popular
technology for large-scale DNA methylation profiling due
to its advantage in reagent cost and time, comprehensive
coverage and high throughput.
Along with the widespread application of the HM450

array, a number of statistical approaches have arisen to ad-
dress technical noise in the estimate of DNA methylation
level. For a targeted cytosine, probes bind to methylated
and unmethylated alleles and emit a fluorescence signal.
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The DNA methylation level, called Beta value, is estimated
by the ratio of the methylated to the sum of methylated
and unmethylated intensities. Issues encountered during
probe design resulted in the implementation of two types
of chemical assays, Infinium I and Infinium II, with differ-
ent technical characteristics. The Infinium type I design
utilizes two probes in the same color channel to quantify
methylated and unmethylated alleles, the color channel
determined by the nucleotide 5’ to the target cytosine
(green for G/C and red for A/T); type I probes are more
likely to target CpG-dense regions and in the body of the
probes all CpGs are assumed to have the same methyla-
tion state as the target site. In contrast, the Infinium type
II design utilizes one probe but two color channels for a
single cytosine target, with green and red channel measur-
ing methylated and unmethylated alleles, respectively; type
II probes contain a degenerate base at the cytosine pos-
ition for CpGs in the probe body. Technical noise is intro-
duced by the variation in background fluorescence signal
across arrays and color channel and the different average
intensities in the red and green channels. Together, these
can introduce additive and multiplicative errors to the sig-
nal intensity, reducing the dynamic range of the Beta value
and skewing the values of Infinium II Beta values differen-
tially across samples. Other studies showed type II Beta
values have lower dynamic range than type I Beta values
[5, 6] and that technical variation potentially varies by
position on the chip (12 samples/BeadChip), and process-
ing time or place.
Given the increasing popularity of the HM450 array

and the biases observed due to platform design, several
approaches and pipelines have been developed, either
targeting a single issue or designed to address multiple
biases within a complete framework. Recently, some
systematic comparisons of preprocessing procedures
have appeared [7–10], however, evaluations of combin-
ation approaches are less common [11, 12]. Pidsley et al.
[13] evaluated the combining of methods with different
mechanisms together. However, improved approaches
have since appeared and are worthy of further consider-
ation. Of interest is (1) the overall best approach for signal
processing; (2) the performance of recent between-array
methods when analyzing data with substantial biological
heterogeneity; and (3) the efficacy of processing ap-
proaches when DNA methylation differences are subtler
than the stark changes observed in tumorigenesis or aging.
In this study nine processing methods are applied and
compared in four datasets. The methods include both
between-array and within-array normalization methods,
as well as combination approaches that sequentially
apply procedures addressing different platform biases.
The datasets range from cancer data to Alzheimer’s
brain data, showing distinctly different variation in
DNA methylation. The methods are evaluated based on

their ability to reduce technical variance, as well as to
identify reproducible differential methylation positions
(DMPs) in case-control studies. We show that the per-
formance of processing methods will depend on the na-
ture of the datasets, and, in general, within-array
processing for background and probe design bias per-
forms well in all datasets. Furthermore, we reveal that
the within-array methods appear robust to obtaining
reproducible results across different types of data sets.
This should be especially meaningful when dealing with
clinical research data where we have only one sample
per group. Finally, between-array normalization helps
when the variation due to noise is greater than the vari-
ation due to biological signal; however, when the methyla-
tion alterations are substantial in size and number some
between-array methods might remove biological signal.

Methods
Preprocessing methods
In total we evaluate and compare nine preprocessing
approaches based on the following within-array and be-
tween-array methods: (1) background correction and
dye-bias equalization (Noob) [14]; (2) beta-mixture
quantile normalization (BMIQ) [6]; (3) subset-quantile
within-array normalization (SWAN) [15]; (4) background
adjustment followed by between-array normalization per-
formed separately by probe design (Dasen) [13]; (5)
subset-quantile normalization (SQN) [11, 16]; and (6)
functional normalization (Funnorm) [17]. All analyses are
implemented in R version 3.0.3, Bioconductor version
2.12 [18] with functions Noob, SWAN, SQN and Fun-
norm implemented in the minfi package (version 1.6.0)
[16], and Dasen and BMIQ in wateRmelon (version 1.0.3)
[13]. In addition to these published methods, we also
combine methods that correct for different biases: (1)
Noob + BMIQ; (2) Noob + SWAN; (3) Funnorm+ BMIQ.
We note that the function Funnorm already includes
Noob as a first step.
Briefly, Noob performs within-array normalization

correcting for background fluorescence and dye bias. It
fits a normal-exponential convolution model to estimate
the true signal conditional on the observed intensities,
capitalizing on the unique design of the Infinium I probe
pairs to estimate non-specific signal from the ‘out-of-
band’ intensities, the wavelength in the opposite color
channel to their design (n = 92,596 for Cy3 features and
n = 178,406 for Cy5 features). These background-
corrected intensities are then normalized for variation in
average intensity in the red and green channel via a
multiplicative scale factor computed using the average
intensities of the positive control probes.
BMIQ is a mixture-model-based normalization method

designed to correct the type II probe bias and make the
methylation distribution of type II features comparable to
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the distribution of type I features. BMIQ fits a three-state
(unmethylated, 50 % methylated and fully methylated)
beta mixture model for the type I and type II probes sep-
arately, with probes assigned to the state with maximum
probability. Beta values for the type II features are normal-
ized by state to the distributions of the same estimated in
type I features. Like Noob, it is a within-array method.
SWAN is also a within-array normalization method

for probe type design, but unlike BMIQ, it starts from
methylated and unmethylated intensities. SWAN is based
on the assumption that probes with the same number of
CpGs in the probe body should have similar intensity
distributions (since the regions they interrogate should
have similar biological features). For the methylated and
unmethylated intensities separately, a random subset of
type I and II probes matched on underlying CpG number
are selected and quantile normalized. The intensities of
the remaining probes are adjusted by linear interpolation.
Consequently, the intensity distributions between two
probe types are identical in each subset, while the differ-
ence in overall distributions between two probe types still
remains.
In contrast to the first three methods, the Dasen

method is a between-sample normalization method,
and like Noob and SWAN, it adjusts the raw intensities
instead of Beta values. The background of type I probes
is adjusted to match that of the type II and standard quan-
tile normalization applied to methylated and unmethy-
lated intensities separately by probe type (I or II).
SQN is another between-sample normalization method

for methylated and unmethylated intensities that also
involves within-sample normalization of type I and II
probes. Type II intensities are normalized across arrays,
and within arrays, type I intensities are normalized to the
type II distributions within four feature subsets (CpG is-
land, CpG island shore, CpG island shelf, and Open Sea)
([16]). The stratified within array normalization allows for
the biased distribution of type I and II probes by genomic
regions, with type I probes appearing more frequently in
CpG dense regions that are typically unmethylated.
Funnorm is a between-sample (functional) normalization

method that attempts to remove unwanted variation by
adjusting for covariates estimated from a control probe
matrix. Briefly, 42 summary measures are estimated
from the combined 848 control probes and type I ‘out-
of-band’ intensities, with the first m = 2 principle compo-
nents of the summarized measures chosen as covariates
for intensity adjustment. Adjustment is performed separ-
ately in methylated and unmethylated intensities, and in
type I and II probes. For probes mapped to X and Y
chromosomes, males and females are processed separ-
ately, with ordinary quantile normalization used for
probes on the Y chromosome because of the small
number of probes (N = 416). By default the functional

normalization is applied after Noob in the current ver-
sion of minfi package (version 1.6.0).
The summary of data preprocessing methods used in

this study is shown in Additional file 1. We note that
both SQN and Funnorm normalize features on X and
Y chromosomes in males and females separately, while
Dasen does not. Also, Funnorm only uses control
probes for between-array normalization whereas SQN
and Dasen normalize signals using the biological features
directly.

Illumina HumanMethylation450 data sets
Five datasets are used to evaluate the different process-
ing methods. One contains six technical replicates from
human peripheral blood lymphocytes (PBLs), and is
used to investigate how the processing methods reduce
technical variances. These samples were commercially
bought, pooled human PBLs, and are the same as used
in [14]. The second data set is five lung adenocarcinomas
from The Cancer Genome Atlas (TCGA), measured using
both HM450 and whole-genome bisulfite sequencing
(WGBS) platforms. These data, shared by Titus et al. [19],
allow us to benchmark our DNA methylation estimates
for HM450 with a whole-genome sequencing-based assay.
The remaining three datasets are used to evaluate repro-
ducibility of differential methylation analysis with data
processing. The motivation is that better signal processing
should lead to better reproducibility in identifying differ-
ential methylation. Two of the latter datasets are from
TCGA with large-scale methylation differences between
cancer and normal tissue, and one is from an unpublished
brain data set, showing subtle methylation differences be-
tween cases with Alzheimer’s disease and controls.
All samples are analyzed using the Infinium Human-

Methylation450 BeadChip, and DNA methylation levels
are reported as Beta (β) values, the proportion of methyla-
tion intensity to the total intensity, ranging from 0 to 1.
The samples from the last three studies are divided into
discovery and validation datasets for evaluating reproduci-
bility of testing differential DNA methylation. Each
processing method is performed in the discovery and
validation set separately. The separate processing will not
affect the Beta values for individual samples processed
using within-array methods (Noob, SWAN, BMIQ), but
can affect the Beta values when using between-array pro-
cessing methods (Dasen, SQN, Funnorm). The details for
defining discovery and validation data sets are described
below, and summarized in Additional file 2. All samples
are anonymized, and this study did not require institu-
tional review board approval.

The TCGA-KIRC dataset
We use the identical samples and study design imple-
mented by Fortin et al. [17]. In total, 222 kidney clear cell
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tumor samples and 160 non-tumor kidney samples are
assayed and included in the study. These samples are split
into discovery (training) and validation (testing) datasets.
The discovery set contains 65 tumor samples and 65 non-
tumor kidney samples, analyzed in two plates with little
variation between plates. The validation set contains 157
tumor samples and 95 non-tumor kidney samples, spread
over 4 plates and designed to have larger variations among
samples.

The TCGA-COAD dataset
A total of 321 COAD (colon adenocarcinoma) samples
(284 tumor/37 non-tumor colon) are included in this
study. These samples are selected by plate to create dis-
covery and validation datasets. No substantial plate-to-
plate variation was observed in COAD dataset (Additional
file 3). The discovery set was assigned 143 tumor samples
and 17 controls spread across 7 plates, and the validation
set 141 tumors and 20 controls run over 4 plates. All sam-
ples had fewer than 5 % missing Beta values in each color
channel and were analyzed on plates with more than 2
COAD samples.

The Brain data
A total of 376 bulk brain samples obtained from the
middle temporal gyrus were analyzed over 8 plates. Of
these, 215 are from patients diagnosed with Alzheimer’s
disease (AD) and 161 are from controls, frequency
matched by age and sex. Once more, discovery and
validation data sets are created selecting samples by
plate. A total of 180 samples across the first four
plates are assigned to the discovery set (102 diseased
and 78 controls) and 196 samples from the latter four
plates to the validation set (113 diseased and 83 con-
trols). These data were generated at the University of
Southern California.

Evaluation metrics
Improved measures of DNA methylation should in-
crease our power to detect biological associations.
However, evaluating our ability to detect true signals in
real data is complicated by the fact that we do not
know which signals are genuine. However, we can study
the reproducibility of differential methylation results
between different data sets. Higher reproducibility
would reflect more potential for a method in revealing
true signals, while poorer agreement indicates the re-
sults are more likely due to chance. We assess differen-
tial methylation by disease status for the case-control
data by applying two-sample t-tests separately in dis-
covery and validation sets. The data are analyzed on
the Beta-value scale and tests are two-sided. Several
tests of reproducibility are performed. First, result repro-
ducibility is evaluated from the lists of (ranked) p-values

using concordance plots and ROC curves. Second, we as-
sess overlap of differentially methylated positions (DMPs)
applying the Benjamini-Yekutieli method [20] to con-
trol the false-discovery rate (FDR-adjusted p <0.05).
Benjamini-Yekutieli allows for correlation in test re-
sults and results in many fewer significant test results
than methods that ignore correlation between test
statistics.

Concordance plot
In a concordance plot, the overlap percentage is plotted
against feature list size for lists of size one to k, where
the overlap percentage is defined by the proportion of
features ranked in the top k in both the discovery and
validation set. The processing approach with higher
overlap percentages across different list sizes indicates
higher reproducibility. If the data set is underpowered
and the results are not reproducible, the overlap per-
centage follows a diagonal line through the origin, with
slope equal to the inverse of the number of features.
This approach has connections with the change of cor-
respondence plot proposed for the irreproducibility rate
framework [21].

ROC curves
ROC curves are used to quantify, for a known gold stand-
ard, the true positive and false-positive results using all
possible threshold values of a quantitative marker. Al-
though the genuine gold standard is unknown, we use the
results from the discovery subset, samples selected be-
cause they reflected lower technical variation between
plates, to define the ‘gold standard’, and pick the number
of true signals from a list size with high overlap percent-
age from the concordance plots. Specifically, for the
TCGA KIRC and COAD data sets, the features from the
top 100,000 ranked p values in the discovery subset are
defined as “true signal”. For the brain data, we anticipate
small differences and only select the top 100 in the discov-
ery set as “true signals”. These same list sizes are used in
[17] for evaluation of strong and weak signals. The area
under the curve (AUC) is computed to assess the per-
formance of a method. A method with good reproducibil-
ity will have an ROC curve above the diagonal line, with
high AUC. The ROC analysis is performed using ROCR
package in R (version 1.0-7).

Feature filtering
A total of 485,512 cytosines are queried by the HM450
BeadChip array. For method evaluation, we filter probes
with missing Beta values across samples. For the TCGA
and brain data sets we also exclude probes mapped to
the X or Y chromosomes, containing a common SNP
(minor allele frequency > 0.1) within 10 bp of the target
cytosine, or map to multiple regions of the genome. This
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filtering results in 485,110 features in the PBL dataset,
371370 in KIRC, 384470 in COAD, and 360894 in the
brain data set.
It is worth noting that the minfi and methylumi pack-

ages in R have different criteria in assigning missing to
Beta values. In minfi, missing values (“NAs”) are
assigned when both the raw methylated and unmethy-
lated intensities are zero. Although this catches all fea-
tures with failed probes that do not fluoresce, it allows
features fluorescing at background levels for both M
and U probes to have Beta values near 0.5. We favor
the additional assignment of ‘NA’ to features that do
not have at least one of the M and U intensities fluor-
esce above background. Such masking is applied in the
methylumi package, where the detection p values are
used for determining missing Beta values; the detection
p-value reports the quantile from the distribution of
600 negative control probes (from the same color chan-
nel) for the larger of the methylated or unmethylated
intensity. Then, the Beta value will be assigned missing
if the corresponding detection p-value is more than
0.05 (not above background). This can result in a much
larger number of missing Beta values than assigned in
the minfi package. We use missing values assigned by
the methylumi package.

Results
Reduction in technical variance
We assess the ability of preprocessing methods to re-
duce technical variance and adjust type I/II bias using
six technical replicates from commercially available
pooled human male peripheral blood lymphoctytes
(PBLs) assayed as part of a larger experiment [22] and
previously evaluated in [14]. Figure 1a shows variability
in the density distributions of the Beta values for the six
replicates that is no longer evident after processing the
data using Noob + BMIQ (Fig. 1b). The density distribu-
tions, stratified by probe type, appear in Additional file
4. For the raw data the density distributions vary consid-
erably across the six replicates, especially among type II
probes; the reduced dynamic range of raw Beta values
for type II probes relative to type I probes was also ap-
parent [5]. All of the normalization methods increase
the dynamic range of the type II probes with perhaps
the greatest reduction in type I/type II bias seen when
combining Noob with BMIQ. It is worth of noting that
SQN changes the distribution of type I probes most no-
ticeably, presumably because it uses type II probes as the
anchors when normalizing between two probe designs in
each sub-category (defined by genomic context relative
to CpG islands).
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Fig. 1 Evaluation of preprocessing methods in reducing technical variance using PBLs dataset. a Density distribution of Beta values in six replicates in
the raw data. b Density distribution of Beta values in six replicates in the data processed by Noob + BMIQ. c Loess curve fitted to the scatterplot of
standard deviation versus average of methylation Beta values for different processing methods. d Boxplot of absolute difference in methylation Beta
values between adjacent type1-type2 probe pairs in PBLs dataset, averaged across six replicates
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Figure 1c shows a smoothed curve summarizing a
scatterplot of standard deviation versus mean Beta
values across six replicates for all probes. All processing
methods reduce the average standard deviation com-
pared to the raw data. The correlation between standard
deviations and means is least obvious after application of
Dasen and SQN, possibly due to the fact that both
Dasen and SQN are between-array methods that
normalize methylated and unmethylated intensities sep-
arately. Interestingly, the within-array methods are com-
petitive with the between-array methods despite the
application to technical replicates for which all between-
array assumptions are met. Also, Funnorm shows good
stability despite the use of principal components adjust-
ment estimated from only six arrays.
Figure 1d shows a boxplot of the average of the abso-

lute difference in Beta value for the 32,713 pairs of adja-
cent type I/II probes that lie within 200 bp of each
other. Based on the well identified spatial correlation of
DNA methylation at scales < 500 bp [23], we expect that
the ideal normalization algorithms should minimize the
averaged absolute difference, as previously observed by
Teschendorff et al [6]. Noob + BMIQ seems to show the
greatest reduction in deviation between measures from
adjacent type I/type II probes, while SQN does not per-
form well with respect to reducing type I/type II bias.

Cross-platform comparison with whole-genome bisulfite
sequencing
We used five lung adenocarcinoma (LUAD) samples from
TCGA to benchmark the post-processing HM450 Beta
value estimates to estimates from WGBS. The number of
features available for cross-platform comparison ranged
from 110,962 to 199,441 after restricting to cytosines with
a minimum sequencing depth of 10. Loess curves sum-
marizing the relationship between the Beta values from
the two platforms showed Noob + BMIQ estimates were

most similar to WGBS (Fig. 2a). The Pearson correlation
was highest for Noob + BMIQ (0.953), lowest for SQN
(0.930) and Dasen (0.937), and intermediate for the raw
data (0.942). The other four LUAD samples also showed
the highest Pearson correlations for Noob + BMIQ proc-
essed data (Fig. 2b).

Reproducibility of differential DNA methylation analysis
The ability to reliably identify features differentially
methylated by disease subtype will depend on the
strength of the biological signal and noise due to tech-
nical issues. A multidimensional scaling plot of the top
5000 variable features allows us to visualize sample
distances by disease state for our three studies (Fig. 3).
For the KIRC and COAD data sets, the first dimension
explains 49.8 and 43.7 % respectively, of the total vari-
ance in Beta values from the raw signals, with the sec-
ond dimension explaining only 5.9 and 6.0 % (Fig. 3a,
b). These two scaling dimensions allow us to visualize a
clear separation between cancer and control samples
for both the discovery and validation data sets indicat-
ing a large biological signal even in the raw data. On
the other hand, the first and second scaling dimensions
for the brain data only explain 29.9 and 3.8 % of the
total variance, and it is not until the 18th dimension
that the cumulative proportion of variance exceeds
50 %. Case-control differences are not apparent until
the 10th dimension (t-test p = 0.002) (Fig. 3c). Figure 3d
shows scaling dimensions 1 and 2 for the brain data
with samples colored by processing plate. We see that
the 1st scaling dimension is associated with sample
plate, with plate 5 and plate 8 samples appearing more
towards the right side of the figure.
We use concordance plots to present the overlap in

the top ranking DMPs as a function of list size when ap-
plying the different processing methods. Combining the
methods Noob with BMIQ or SWAN always showed

Fig. 2 Cross-platform comparison of Beta values from HumanMethylation450 vs whole-genome bisulfite sequencing. a For 1 LUAD sample, loess
curve fitted to 199441 paired Beta values for WGBS and HM450 data after different processing methods. The dashed line indicates equal values, b
Scatter plot of correlations between WGBS Beta values and HM450 Beta values after different processing methods in 5 LUAD samples. Different
colors represent different samples. Aqua shows the results from the sample in a)
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higher reproducibility than any of the three methods
alone so the results for the individual methods are not
shown. For the two cancer data sets, all within-array
combination methods show similar performance to one
another and all show higher concordance compared to
the raw data (Fig. 4a and c). The performances of
between-array methods show more variability. Funnorm,
a method that utilizes control probes for normalization,
always performs better than the raw data, but not better
than the within-array methods. SQN and Dasen, two
between-array methods that only use signal from the
biological features for normalization, only perform better
than the raw data for the KIRC study; for COAD, they
are worse (Grey lines in Fig. 4a, c). The poor perform-
ance might be due to the substantial heterogeneity
among the COAD tumor samples relative to control

samples (as is shown in Fig. 3b), and normalizing inten-
sities across samples may hide true biological signals. In
contrast to the concordance plot which reflects sensitivity
across different list sizes, the ROC curve shows sensitivity
across different false positive rates for a specific list size.
In our study the results of ROC curve are consistent with
the overlap plot analysis, showing high sensitivity for
Noob + BMIQ, Noob + SWAN, and Funnorm + BMIQ
(Fig. 4b, d with a, c, respectively). And whereas there is
little variation in sensitivity among the evaluated
methods for the KIRC study, the COAD study shows a
clear loss in sensitivity when performing between-
sample normalization using SQN (Fig. 4d).
We note that for each of these two cancer datasets,

the concordance after processing nears 85 %. However,
the concordance of discoveries is above 70 % even for
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pairs are computed for a common set of 5000 features having the largest standard deviations across all samples. Features containing SNPs or
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the raw data at a list size of 15,000 features. The overlap
percentage for the raw COAD data is over 80 % for the
top 50,000 features. These results are not surprising
given that the separate clustering of cancer and non-
cancer samples in the MDS plots reflects substantial
variation in DNA methylation between groups with
genuine signals very likely to be detected and repro-
duced. The higher homogeneity of colon control samples
and their homogeneity relative to cancer samples might
explain the higher reproducibility of DMPs in the COAD
study (see Fig. 3b).
Reproducibility for the Brain data is much lower than

for the cancer data, which was not surprising either based
on the earlier MDS figures. This time, the fraction of over-
lapping discoveries from the analysis of the raw data
appears essentially random (Fig. 5a); however, the proc-
essed data sets are able to show a small enrichment in the
overlap of top hits. This time the greatest overlap occured
for the between-array method Funnorm combined with
(within-array) BMIQ. The advantage over Noob + BMIQ,
the second best method, was modest. We note that the
strictly within-array methods Noob + BMIQ or Noob +
SWAN appeared as good as or better than the between-
array (Noob+)Funnorm alone, showing the importance of

correcting for probe design bias. This time the between-
array methods SQN and Dasen were always much better
than the raw data, but never achieved the reproducibility
of the top within-array method, Noob + BMIQ. The same
results are seen from an ROC curve analysis using the top
100 features as the gold-standard (Fig. 5b). All together,
these results suggest that correction for technical effects
in these data is needed to find the more subtle biological
signal. Furthermore, the modest overlap percentage after
normalization led us to investigate RUVm, the new variant
of remove unwanted variation designed for removing
batch effects in DNA methylation data [24]. We evaluated
RUVm for batch effect correction, comparing it to com-
peting methods surrogate variable analysis (SVA) [25] and
ComBat [26].
RUVm improved result reproducibility, outperforming

both SVA and ComBat. In fact ComBat showed a minor
loss in reproducibility over no batch correction, suggesting
there was confounding between samples and BeadChips.
Applying RUVm to Noob + BMIQ processed brain data
resulted in a nearly 30 % improvement in overlap percent-
age, achieving a max 63 % overlap in the brain data set, up
from 36 % observed using normalization methods alone
(Fig. 5c). The results using RUVm depended heavily on

Raw Noob+SWAN

Noob+BMIQ Funnorm

Funnorm+BMIQ

SQN Dasen

a b

c d

Fig. 4 Overlap plot and ROC curves for KIRC (a,b) and COAD (c,d) datasets. The top ranked 100,000 features in the discovery set were defined as
genuine signals for the ROC curve analysis (b, d)
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the original data processing, with Noob + BMIQ+ RUVm
showing a 65 % increase in sensitivity compared to
SWAN+RUVm at a 5 % false-positive rate (Fig. 5d).
Lastly, we investigated whether our results are sensi-

tive to the single split of the data into discovery and val-
idation sets. We resampled the brain data ten times into
new discovery and validation sets, each time computing
the AUC for the raw data, the data processed with Noob
+ BMIQ, and the data processed with Noob + BMIQ +
RUVm. There was very little overlap in distributions,
with AUC interquartile ranges (IQR) 0.65-0.68 for the
raw data, 0.7-0.82 for Noob + BMIQ and 0.95-0.97 for
Noob + BMIQ + RUVm. This order of results held their
rank, and suggested that one data split was representa-
tive, and the performance does not change with repeated
sampling.

Discussion
In this study nine preprocessing methods for Illumina
HM450 array data are applied and compared, using
combinations of three within-array and three between-
array methods. Since different normalization methods
address different technical effects in the data, we take
advantage of this diversity of approaches and combine
methods addressing different mechanisms.
Analysis of technical replicates showed that different

methods optimized different assessment criterion. The
within-array methods Noob + BMIQ and Noob + SWAN
were favored at removing type I/type II bias, while the
between-array methods Funnorm, SQN and Dasen,

reduced between-sample variability the best. However,
a recent paper by Lemire et al. found Noob + BMIQ
performed best in reducing differences between Beta
values in intra-plate duplicates [27]. SQN, a between-
array method that normalizes intensities between typeI/
II probes, did the least to remove probe type bias; this
might be due to the fact that SQN utilizes type II
probes, those known to show greater bias, as “anchors”
when normalizing type I intensities. The results consist-
ently showed that a priori background correction and
dye-bias normalization using Noob improved both bias
and variance over type I/type II correction methods
alone (BMIQ and SWAN). Analysis of paired HM450
and WGBS data showed the highest Pearson correla-
tions after using Noob + BMIQ to process the HM450
data.
When evaluation focused on detecting reproducible

DMPs across different disease data sets, within-array
normalization and between-array methods that relied
only on control features consistently displayed the
highest reproducibility. The performance of between-
array methods that utilized biological features for
normalization depended on the characteristics of the
data set. When disease state was not associated with
the principal scaling dimension, between-array methods
tended to improve sensitivity of reproduced signals.
Still, they never outperformed the best within-array
methods. Furthermore, when the biological signal was
strong, they had the potential to behave worse than no
processing at all. This was the case for the COAD data
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Fig. 5 Overlap plot and ROC curves for brain dataset without batch correction (a,b) and with batch correction (c,d). The top ranked 100 features
in the discovery set were defined as genuine signals for the ROC curve analysis (b, d)
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set for which the first two principal scaling dimensions
were both associated with disease status. It also agreed
with the separate finding of a lower validation rate after
SQN by Wu et al. [9]. Overall, we found the within-
array method Noob + BMIQ to consistently provide the
most reproducible signal detection across the three data
sets.
We evaluated three batch-correction methods capable

of removing additional variation not accounted for by
data processing (RUVm, SVA, and ComBat), to see
whether they could improve the low reproducibility of
DMPs in the brain data. Both RUVm and SVA im-
proved reproducibility, however using ComBat to adjust
for BeadChip effects reduced it. This suggested that
there was confounding of case-control comparisons by
BeadChip. Application of RUVm increased DMP repro-
ducibility in the brain data the most, and interestingly,
a large variation in performance appeared depending
on the preprocessing method applied; Noob + BMIQ
turned in substantially superior reproducibility com-
pared to competing approaches.
Finally, Beta regression has been proposed as a more

powerful test of differential DNA methylation than t-
tests [28]. However, since current software for Beta re-
gression is slow, and our focus was on finding the most
reproducible processing method instead of the most
sensitive test, we used t-tests on the Beta values. Data
that are subjected to variance-stabilizing transforma-
tions prior to t-tests might show higher sensitivity for
differential testing [28], with the difference (in sensitiv-
ity) a function of both the effect size and sample size.
The already high overlap percentages observed in our
cancer studies suggest that data transformation is unlikely
to change the results. For the brain data, it is possible that
data transformation could improve the overlap percent-
ages for the different normalization methods. The analyses
with batch correction were performed on the logit scale,
so these potentially represent the most sensitive t-test
result.

Conclusions
This study provides a comprehensive comparison of the
currently popular normalization methods in processing
HM450 array data. Combinations of methods are applied
and compared in five data sets, ranging from cancer data
to Alzheimer’s brain data, and showing distinctly differ-
ent variation in DNA methylation. We find that the
combination of Noob + BMIQ, a within-array method,
performs well in reducing technical variance, adjusting
typeI/II bias, and gaining reproducibility in differential
methylation analysis. At the same time, the between-
array normalization methods might hurt the data when
there are global methylation alterations. For differential
DNA methylation analysis RUVm was the most powerful

batch correction method, and it performed best on data
first processed with Noob + BMIQ. The combination of
methods and comprehensive comparisons in our study
provide valuable insights in processing HM450 Bead-
Chip data.
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