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FITTING BIRTH–DEATH PROCESSES TO PANEL DATA WITH
APPLICATIONS TO BACTERIAL DNA FINGERPRINTING

By Charles R. Doss∗, Marc A. Suchard1,5,†, Ian Holmes2,‡,

Midori Kato-Maeda3,§ and Vladimir N. Minin4,5,∗

University of Washington, Seattle∗, University of California, Los Angeles†,
University of California, Berkeley‡, and University of California,

San Francisco§

Continuous-time linear birth–death-immigration (BDI) processes
are frequently used in ecology and epidemiology to model stochastic
dynamics of the population of interest. In clinical settings, multiple
birth–death processes can describe disease trajectories of individual
patients, allowing for estimation of the effects of individual covari-
ates on the birth and death rates of the process. Such estimation is
usually accomplished by analyzing patient data collected at unevenly
spaced time points, referred to as panel data in the biostatistics lit-
erature. Fitting linear BDI processes to panel data is a nontrivial
optimization problem because birth and death rates can be functions
of many parameters related to the covariates of interest. We propose
a novel expectation–maximization (EM) algorithm for fitting linear
BDI models with covariates to panel data. We derive a closed-form
expression for the joint generating function of some of the BDI pro-
cess statistics and use this generating function to reduce the E-step
of the EM algorithm, as well as calculation of the Fisher informa-
tion, to one-dimensional integration. This analytical technique yields
a computationally efficient and robust optimization algorithm that
we implemented in an open-source R package. We apply our method
to DNA fingerprinting of Mycobacterium tuberculosis, the causative
agent of tuberculosis, to study intrapatient time evolution of IS6110
copy number, a genetic marker frequently used during estimation
of epidemiological clusters of Mycobacterium tuberculosis infections.
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2 C. R. DOSS ET AL.

Our analysis reveals previously undocumented differences in IS6110
birth–death rates among three major lineages of Mycobacterium tu-
berculosis, which has important implications for epidemiologists that
use IS6110 for DNA fingerprinting of Mycobacterium tuberculosis.

1. Introduction. Linear birth–death-immigration (BDI) processes pro-
vide useful building blocks for modeling population dynamics in ecology
[Nee (2006)], molecular evolution [Thorne, Kishino and Felsenstein (1991)]
and epidemiology [Gibson and Renshaw (1998)], among many other areas.
Although Keiding (1975) has extensively studied inference for fully ob-
served continuous-time BDI processes, more often such processes are not
observed completely, posing challenging computational problems for statis-
ticians. Here, we use applied probability tools to develop a new, efficient
implementation of the expectation–maximization (EM) algorithm for fitting
discretely observed BDI processes.

We are interested in situations where we observe multiple independent
continuous-time BDI trajectories at fixed, possibly irregularly spaced, time
points. Such observations, called panel data, often arise in medical applica-
tions, with independent BDI trajectories corresponding to some stochastic
process recorded in different patients under study [Crespi, Cumberland and
Blower (2005)]. The birth and death rates can then be modeled as functions
of patient-specific covariates. This modeling framework is similar to the use
of continuous-time Markov chains (CTMCs) in multi-state disease progres-
sion models with a finite number of states [Kalbfleisch and Lawless (1985)].
Although established methods for fitting finite state CTMCs to panel data
exist [Kalbfleisch and Lawless (1985), Lange (1995), Jackson (2011)], less
attention has been paid to infinite state-space processes, such as BDI mod-
els.

Outside of medical applications, estimating parameters of discretely ob-
served BDI models is considered in the molecular evolution and bioinfor-
matics literature [Thorne, Kishino and Felsenstein (1991), Holmes (2005)].
For example, Holmes (2005) proposed an EM algorithm for discretely ob-
served BDI processes in the context of finding the most optimal alignment
of multiple genomic sequences. The author argues that the EM algorithm’s
simplicity and robustness make this method attractive for large-scale bioin-
formatics applications. Unfortunately, implementation of the EM algorithm
by Holmes (2005) is applicable only to a very restricted class of BDI pro-
cesses. In this paper, we develop a more general EM algorithm that applies
to a large class of BDI models and is not restricted to molecular evolution
applications.

Computing expectations of the complete-data log-likelihood, needed for
executing an EM algorithm, can be challenging, especially if the complete-
data were generated by a continuous-time stochastic process. When the com-
plete data are generated by a finite state-space CTMC, these expectations
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can be computed efficiently [Lange (1995), Holmes and Rubin (2002)]. Al-
though the BDI process is also a CTMC, the infinite state-space of the
process prohibits us from using these computationally efficient methods.
Holmes (2005) considers a BDI model with the immigration rate either zero
or proportional to the birth rate. Under this restriction, the complete-data
likelihood belongs to the exponential family, which means that the complete-
data log-likelihood is a linear function of sufficient statistics of the complete
data. Making further stringent assumptions about the initial state of the
process, Holmes (2005) computes expectations of these sufficient statistics
by numerically solving a system of coupled nonlinear ordinary differential
equations (ODEs). Working with this birth–death-restricted immigration
(BDRI) model, but without any restrictions on the starting state of the
process, we develop a new computationally efficient method for computing
the expected sufficient statistics. Our method combines ideas from Kendall
(1948) and Lange (1982) and reduces computations of the expected suffi-
cient statistics to one-dimensional integration, a computational task that
is much simpler than solving a system of nonlinear ODEs. We develop a
similar integration method to compute the observed Fisher information ma-
trix via Louis’ formula [Louis (1982)] and use this matrix for calculation
of confidence intervals and sets. In addition, when we have multiple BDRI
trajectories observed, we allow the birth and death rates to be functions of
trajectory-specific covariates.

We first test our EM algorithm on simulated data and then turn to a
problem of estimating birth and death rates of the transposable element
IS6110 in Mycobacterium tuberculosis, the causative bacterial agent of most
tuberculosis (TB) in humans. Mycobacterium tuberculosis genome carries
multiple IS6110 copies that get duplicated and deleted rapidly during repli-
cation. Estimating IS6110 copy number birth (duplication) and death (loss)
rates is an important task in TB molecular epidemiology because researchers
use IS6110 copy number to group infected individuals into epidemiological
clusters [Small et al. (1994)]. In the United States, the resurgence of TB
cases, attributed to significant changes in socioeconomic factors, started in
the late 1980s, with the number of TB cases reaching its peak in 1991 and
steadily declining since then [Cattamanchi et al. (2006)]. Since 1991, the
University of California, San Francisco has been maintaining a database of
TB cases reported to the San Francisco Department of Public Health. The
database contains demographic and certain clinical information as well as M.
tuberculosis genotypes (e.g., IS6110 copy number) for each reported TB case
[Jasmer et al. (1999)]. Rosenberg, Tsolaki and Tanaka (2003) used a subset
of this database to estimate IS6110 birth and death rates. These authors
proposed an approximate likelihood method to accomplish this estimation.
We revisit this problem using our EM algorithm and compare our results
with the approximation of Rosenberg, Tsolaki and Tanaka (2003). Further,
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we examine differences in birth and death rates among three main lineages
of M. tuberculosis and find that the East-Asian M. tuberculosis is evolv-
ing at a slower rate than its European–American counterpart. This novel
finding has serious implications on the definition of epidemiological clusters
based on the IS6110 copy number. To investigate the possibility of spurious
effect of M. tuberculosis lineage on IS6110 birth and death rates due to a
confounding factor, we build a more complicated model for birth and death
rates. In addition to the lineage, we include M. tuberculosis drug-resistance
status and HIV infection status of each patient as birth and death rate co-
variates. We find that after including these covariates, the lineage remains
the only variable that significantly affects IS6110 birth and death rates.

2. BDRI process with covariates. We start with m independent conti-
nuous-time homogeneous linear BDRI processes {Xp,t}, for p = 1, . . . ,m,
with corresponding per capita birth rates λp ≥ 0, per capita death rates
µp ≥ 0 and immigration rates νp = βλp, where β ≥ 0 is a known constant.
Assuming that each process p has c1 covariates related to the birth rates
and c2 covariates related to the death rates, collected into vectors z

′
p,λ =

(zp,λ,1, . . . , zp,λ,c1) ∈ R
c1 and z

′
p,µ = (zp,µ,1, . . . , zp,µ,c2) ∈ R

c2 , we model birth
and death rates as log-linear functions of these covariates:

logλp = z
′
p,λγλ and logµp = z

′
p,µγµ,(1)

where γ′
λ = (γλ,1, . . . , γλ,c1) and γ ′

µ = (γµ,1, . . . , γµ,c2) are birth and death
regression coefficients. Covariate vectors zp,λ and zp,µ are assumed to be
known and fixed for every process p. For example, if each BDRI process
models a disease related trajectory for each patient, then covariates are
usually composed of patient-specific clinical and demographic information
(e.g., gender, medical history).

We assume that we observe the pth process at n(p) + 1 distinct times,
0 = tp,0 < tp,1 < · · ·< tp,n(p). We denote our data vector by

Y = (X1,t1,0 , . . . ,X1,t1,n(1)
, . . . ,Xm,tm,0 , . . . ,Xm,tm,n(m)

)

and the parameter vector by γ = (γλ,γµ) ∈R
c1+c2 . We are interested in com-

puting the parameter maximum likelihood estimates (MLEs), γ̂ =
argmaxγ lo(Y;γ), where

lo(Y;γ) :=

m
∑

p=1

n(p)−1
∑

i=0

log pXp,tp,i
,Xp,tp,i+1

(tp,i+1 − tp,i;λp, µp)(2)

is the observed-data log-likelihood and pi,j(t;λ,µ) = Pλ,µ(Xt = j|X0 = i),
i, j = 0,1, . . . , are the transition probabilities of the BDRI process. These
transition probabilities can be calculated either using the generating function
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derived by Kendall (1948) or via the orthogonal polynomial representation
of Karlin and McGregor (1958). Despite the explicit algebraic nature of
the orthogonal polynomials, the latter method can be numerically unstable
and the generating function method is often preferred [Sehl et al. (2011)].
Although one can maximize the likelihood lo(Y;γ) using standard off-the-
shelf optimization algorithms, such generic algorithms can be problematic
when the BDI rates are functions of a high-dimensional parameter vector,
such as the vector of regression coefficients γ in our case. As an alternative to
generic optimization, we develop an EM algorithm, known for its robustness
and ability to cope with high-dimensional optimization [Dempster, Laird
and Rubin (1977)].

3. EM algorithm for the BDRI process. The complete data in our case
consist of the BDRI trajectories {Xp,t}, observed continuously during the

corresponding intervals [0, tp,n(p)], p= 1, . . . ,m. Let X= {Xp,t}
t∈[0,tp,n(p) ]

p=1,...,m be
the complete data and let lc(X;γ) be the complete data log-likelihood. The
EM algorithm starts by initializing the parameter vector to an arbitrarily
chosen vector γ0. At the kth iteration of the algorithm we set

γk = argmax
γ

Eγk−1
[lc(X;γ)|Y].(3)

To accomplish the above maximization, we need to be able to evaluate the
expectation in (3) for any vector γ. Traditionally, a numerical procedure for
computing such an expectation is called an E-step of the EM algorithm. The
maximization of the expectation is called an M-step of the EM algorithm.
Below, we develop efficient algorithms for implementing these E- and M-
steps for the discretely observed BDRI process. As is often the case, we will
see that to compute the needed expectations for all γ ∈R

c1+c2 , we need to
compute only the expectations of certain statistics that do not depend on γ.

3.1. E-step. Since our BDRI process is a CTMC, the log-likelihood of
the complete data is

lc(X;γ) =−
m
∑

p=1

[

∞
∑

i=0

dp(i)[i(λp + µp) + νp]

(4)

+

∞
∑

i=0

(np
i,i+1 log(iλp + νp) + np

i,i−1 log(iµp))

]

,

where dp(i) is the total time spent by Xp,t in state i and np
i,j is the number of

jumps from state i to state j during the interval [0, tp,n(p)] [Guttorp (1995)].
Replacing νp with βλp in the above equation, we arrive at a more compact
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representation of the complete-data log-likelihood:

lc(X;γ) =
m
∑

p=1

[−Rp,tp,n(p)
(λp + µp)− tn(p)βλp

(5)
+N+

p,tp,n(p)
logλp +N−

p,tp,n(p)
logµp] + const,

where the number of jumps up N+
p,tp,n(p)

:=
∑

i≥0 n
p
i,i+1, the number of jumps

down N−
p,tp,n(p)

:=
∑

i≥0 n
p
i,i−1, and the total particle-time

Rp,tp,n(p)
:=

∫ tp,n(p)

t0

Xs ds=
∞
∑

i=0

idp(i)

for p= 1, . . . ,m, are the sufficient statistics. Equation (5) shows that, for the

E-step, the only expectations we need are Eγ̃ [N
+
p,tp,n(p)

|Y], Eγ̃ [N
−
p,tp,n(p)

|Y]

and Eγ̃ [Rp,tp,n(p)
|Y] for all values γ̃. Using independence of the p BDRI

processes, the Markov property and additivity of expectations, we break the
desired expectations into sums of expectations of the numbers of jumps up
and down and the total particle time during each time interval [tp,k, tp,k+1],
conditional on Xp,tp,k and Xp,tp,k+1

. By the homogeneity of each of the BDRI
processes, in order to complete the E-step of the EM algorithm, we need to
be able to calculate

Ui,j(t) = Ui,j(t;λ,µ) = E(N+
t |X0 = i,Xt = j),

Di,j(t) =Di,j(t;λ,µ) = E(N−
t |X0 = i,Xt = j) and(6)

Pi,j(t) = Pi,j(t;λ,µ) = E(Rt|X0 = i,Xt = j)

for all nonnegative integers i and j.
Following Minin and Suchard (2008), we choose to work with restricted

moments

Ũi,j(t) = Ũi,j(t;λ,µ) = E(N+
t 1{Xt=j}|X0 = i),

D̃i,j(t) = D̃i,j(t;λ,µ) = E(N−
t 1{Xt=j}|X0 = i) and(7)

P̃i,j(t) = P̃i,j(t;λ,µ) = E(Rt1{Xt=j}|X0 = i),

that we can divide by transition probabilities pi,j(t) to recover the condi-
tional expectations (6),

Ui,j(t) = Ũi,j(t)/pi,j(t),

Di,j(t) = D̃i,j(t)/pi,j(t) and(8)

Pi,j(t) = P̃i,j(t)/pi,j(t).
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In order to compute the restricted moments, we first consider the joint gen-
erating function

Hi(u, v,w, s, t) := E(uN
+
t vN

−
t e−wRtsXt |X0 = i),(9)

where 0≤ u, v, s≤ 1 and w≥ 0. Partial derivatives of this function,

∂Hi(u,1,0, s, t)

∂u

∣

∣

∣

∣

u=1

=

∞
∑

j=0

sj
∞
∑

n=0

nPri(N
+
t = n,Xt = j)

=

∞
∑

j=0

Ũi,j(t)s
j,

∂Hi(1, v,0, s, t)

∂v

∣

∣

∣

∣

v=1

=

∞
∑

j=0

sj
∞
∑

n=0

nPri(N
−
t = n,Xt = j)

=

∞
∑

j=0

D̃i,j(t)s
j and(10)

∂Hi(1,1,w, s, t)

∂w

∣

∣

∣

∣

w=0

=−
∞
∑

j=0

sj
∫ ∞

0
xdPri(Rt ≤ x,Xt = j)

=−
∞
∑

j=0

P̃i,j(t)s
j

are power series with coefficients Ũi,j(t), D̃i,j(t) and −P̃i,j(t), respectively,
for j = 0,1, . . . ,∞, where Pri denotes probability conditional on X0 = i. We
will denote these power series by G+

i (t, s), G
−
i (t, s) and G∗

i (t, s), respectively.
If we can compute G+

i (t, s), G
−
i (t, s) and G∗

i (t, s) for every possible t and
s, then we should be able to recover coefficients of the corresponding power
series via differentiation or integration. Numerical evaluation of the partial
derivatives (10) is straightforward if we can compute finite differences of
Hi(u, v,w, s, t). Remarkably, Hi(u, v,w, s, t) is available in closed form, as
we demonstrate in the theorem below, so one can even obtain derivatives
(10) analytically. Note that the theorem below applies to a general linear
BDI process, not only to the BDRI processes.

Theorem 1. Let {Xt} be a linear BDI process with parameters λ≥ 0,
µ≥ 0 and ν ≥ 0. Over the interval [0, t], let N+

t be the number of jumps up,
N−

t be the number of jumps down and Rt be the total particle-time. Then

Hi(u, v,w, s, t) = E(uN
+
t vN

−
t e−wRtsXt|X0 = i) satisfies the following partial

differential equation:

∂

∂t
Hi = [s2uλ− (λ+ µ+w)s+ vµ]

∂

∂s
Hi + ν(us− 1)Hi,(11)
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subject to initial condition Hi(u, v,w, s,0) = si. The Cauchy problem defined
by equation (11) and the initial condition has a unique solution. When λ > 0,
the solution is

Hi(u, v,w, s, t) =

(

α1 − α2(s−α1)e
−λ(α2−α1)ut/(s−α2)

1− (s−α1)e−λ(α2−α1)ut/(s− a2)

)i

(12)

×
(

α1 −α2

s− α2 − (s−α1)e−λ(α2−α1)ut

)ν/λ

e−ν(1−uα1)t,

where α1 =
λ+µ+w−

√
(λ+µ+w)2−4λµuv

2λu and α2 =
λ+µ+w+

√
(λ+µ+w)2−4λµuv

2λu .

When λ= 0, the solution is

Hi(u, v,w, s, t) =

(

se−(µ+w)t − vµ(e−(µ+w)t − 1)

µ+w

)i

(13)
× eνu[vµ−(µ+w)s](e−(µ+w)t−1)/(µ+w)2+ν(uvµ/(µ+w)−1)t.

Proof. Our proof, detailed in Appendix A, is a generalization of Kendall’s
derivation of the generating function of Xt [Doss et al. (2013), Kendall
(1948)]. �

Having Hi in closed form gives us access to functions G+
i , G

−
i and G∗

i , so
we are left with the task of recovering coefficients of these power series. One
way to accomplish this task is to differentiate the power series repeatedly,

for example, Ũi,j(t) =
1
j!

∂jG+
i (s,t)

∂sj
|s=0. In Appendix C, we demonstrate that

for the death-immigration model (λ= 0, ν 6= 0, µ 6= 0) and the BDRI model
considered by Holmes (2005), these derivatives can be found analytically
[Doss et al. (2013)]. In general, repeated differentiation of G+

i , G
−
i and G∗

i
needs to be done numerically, making this method impractical. Instead, we
extend G+

i (t, ·), G−
i (t, ·) and G∗

i (t, ·) to the boundary of a unit circle in
the complex plane by the change of variables s= e2πiz (i in this context is
the imaginary number

√
−1, not the initial state of the BDI process). For

example,

G+
l (t, e

2πiz) =

∞
∑

j=0

Ũl,j(t)e
2πijz

is a periodic function in z, which means that Ũl,j(t) are Fourier coefficients
of this periodic function. Therefore, we can use the Riemann approximation
to the Fourier transform integral to obtain

Ũl,j(t) =

∫ 1

0
G+

l (t, e
2πis)e−2πijs ds≈ 1

K

K−1
∑

k=0

G+
l (t, e

2πik/K)e−2πijk/K
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for some suitably large K. The Fast Fourier Transform (FFT) [Henrici
(1979)] can be applied to quickly compute multiple Fourier coefficients [Lange
(1982), Dorman, Sinsheimer and Lange (2004), Suchard, Lange and Sin-
sheimer (2008)]. We do not, however, use the FFT in our algorithm because,
for a particular time interval length t, we almost always need to compute
Ũi,j(t), D̃i,j(t), P̃i,j(t) for only one value of j.

Now, we can put the pieces together to compute Eγ̃ [lc(X;γ)|Y]. As men-
tioned above, N+

p,tp,n(p)
equals the sum of the number of jumps up over

the disjoint intervals [tp,i−1, tp,i), i= 1, . . . , n(p). The Markov property says
that the conditional expectations of the number of jumps up of Xp,t over
[tp,i−1, tp,i) given Y is equal to the conditional expectation of the number of
jumps up over [tp,i−1, tp,i) given just Xp,tp,i−1 and Xp,tp,i . Using similar logic

for N−
p,tp,n(p)

and Rp,tp,n(p)
, this gives for p= 1, . . . ,m,

Eγ̃p
[N+

p,tp,n(p)
|Y] =

n(p)
∑

i=1

UXp,tp,i−1 ,Xp,tp,i
(tp,i − tp,i−1; λ̃p, µ̃p),

Eγ̃p
[N−

p,tp,n(p)
|Y] =

n(p)
∑

i=1

DXp,tp,i−1 ,Xp,tp,i
(tp,i − tp,i−1; λ̃p, µ̃p) and(14)

Eγ̃p
[Rp,tp,n(p)

|Y] =

n(p)
∑

i=1

PXp,tp,i−1
,Xp,tp,i

(tp,i − tp,i−1; λ̃p, µ̃p),

where log λ̃p = z
′
p,λγ̃p,λ and log µ̃p = z

′
p,µγ̃p,µ. Thus, by (5), (8) and (14), we

see that, up to an additive constant, Eγ̃ [lc(X;γ)|Y] is equal to

m
∑

p=1

{

−tn(p)βλp

+

n(p)
∑

i=1

(

−
P̃Xp,tp,i−1

,Xp,tp,i
(tp,i − tp,i−1; λ̃p, µ̃p)

pXp,tp,i−1
,Xp,tp,i

(tp,i − tp,i−1; λ̃p, µ̃p)
(λp + µp)

+
ŨXp,tp,i−1 ,Xp,tp,i

(tp,i − tp,i−1; λ̃p, µ̃p)

pXp,tp,i−1 ,Xp,tp,i
(tp,i − tp,i−1; λ̃p, µ̃p)

logλp

+
D̃Xp,tp,i−1 ,Xp,tp,i

(tp,i − tp,i−1; λ̃p, µ̃p)

pXp,tp,i−1 ,Xp,tp,i
(tp,i − tp,i−1; λ̃p, µ̃p)

logµp

)

}

,

where the transition probabilities pXp,tp,i−1 ,Xp,tp,i
(tp,i − tp,i−1; λ̃p, µ̃p) can be

calculated by using the (known) generating function for the BDI process, as
is described in Appendix A [Doss et al. (2013)].
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3.2. M-step. To complete the M-step for each iteration of the EM algo-
rithm, we use a Newton–Raphson algorithm to maximize

f(γ) = Eγ̃ [lc(X;γ)|Y].

In each Newton–Raphson step, we update γ via the following recursion:

γnew = γcur − [Hf(γcur)]
−1

∇f(γcur),

where ∇f(γcur) is the gradient vector and Hf(γcur) is the Hessian matrix
of the function f(γ). If we collect the observation times into a vector T

′ =
(t1,n(1), . . . , tm,n(m)), the expectations of the sufficient statistics into vectors

U
′ = (Eγ̃ [N

+
1,t1,n(1)

|Y], . . . ,Eγ̃ [N
+
m,tm,n(m)

|Y]),

D
′ = (Eγ̃ [N

−
1,t1,n(1)

|Y], . . . ,Eγ̃ [N
−
m,tm,n(m)

|Y]),(15)

P
′ = (Eγ̃ [R1,t1,n(1)

|Y], . . . ,Eγ̃ [Rm,tm,n(m)
|Y]),

and the process-specific birth and death rates into vectors

λ′ = (λ1, . . . , λm) and µ′ = (µ1, . . . , µm),

then after defining covariate matrices

Z
′
λ = (z1,λ, . . . ,zm,λ) and Z

′
µ = (z1,µ, . . . ,zm,µ),

the gradient and the Hessian can be compactly expressed in matrix form as

∇f(γ) = (Z′
λ[−diag(P+ βT)λ+U],Z′

µ[−diag(P)µ+D]),(16)

Hf(γ) =

(−Z
′
λ diag(P+ βT)diag(λ)Zλ 0

0 −Z
′
µ diag(P)diag(µ)Zµ

)

,(17)

which we show in Appendix B; see (S-4), (S-6) and (S-9) [Doss et al. (2013)].
Notice that the algebraic separation of the birth and the death components
in the complete-data likelihood results in blocks—corresponding to γλ and

γµ—in the above formulae. The fact that the gradient and Hessian of f(γ) is
available analytically results in fast execution of Newton–Raphson updates.
In our experience, the Newton–Raphson algorithm in our M-step converges
after only 3–5 iterations. However, we also note that it is not critical to
achieve convergence of this algorithm since even a single Newton–Raphson
update within the M-step is enough to guarantee the usual convergence
properties of the EM algorithm [Lange (1995)].

We obtain the observed Fisher information via Louis’ formula:

ÎY(γ̂) = Eγ̂ [−Hlc(X; γ̂)|Y]−Eγ̂ [∇lc(X; γ̂)∇lc(X; γ̂)′|Y],

where ∇lc is the gradient and Hlc is the Hessian of the complete-data log-
likelihood [Louis (1982)]. This requires calculation of the conditional cross-
product means, E[N+

t N−
t |Y], E[N+

t Rt|Y], E[N−
t Rt|Y], and the conditional
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Table 1

Summary statistics for the simulated and M. tuberculosis IS6110 data

Value Simulated data IS6110 data

Number of intervals 387 252
Average interval length 5 0.35
Number of individuals 100 196
Number of intervals with an increase 78 14
Average increase given an increase 1.5 1
Number of intervals with a decrease 190 14
Average decrease given a decrease 2.5 1.2
Number of intervals with no change 119 224
Mean starting state 5.5 11
Standard deviation of starting state 3.8 5.3
Total length of time 1947 89

second moments of N+
t ,N−

T and Rt. The derivation of the information in
terms of these moments is in Appendix B [Doss et al. (2013)]. These con-
ditional second- and cross-moments, as well as P and D, can be computed
in analogous fashion to U above, using the joint generating function (12).
We use the information matrix to compute approximate standard errors
of γ̂ and use these standard errors together with asymptotic normality of
maximum likelihood estimators to form confidence intervals and sets for our
model parameters.

4. Results.

4.1. Simulations. To test our methods, we simulate data from the BDRI
model with λ= 0.07, µ= 0.12 and β = 1.2, where β is assumed to be known,
leaving us with only two parameters to estimate: λ and µ. We choose these
parameters to resemble, but not exactly match, the dynamics of our biologi-
cal example, discussed in the next subsection. We simulate 100 independent
processes starting from initial states drawn uniformly between 1 and 15.
From each process we collect at least two observations. We place observation
times uniformly between 0 and 30. Table 1 gives some summary statistics
for the simulated data.

We test our EM algorithm and confidence interval calculations on these
simulated data with initial parameter values of 0.2 for both λ and µ. We
considered other choices of starting values, but the algorithm was not sensi-
tive to them. Notice that this is the simplest parameterization of our BDRI
model, where both zλ and zµ are vectors of ones. We estimate 0.067 with
a 95% confidence interval of (0.052,0.081) for λ and 0.12, (0.1,0.14) for µ,
indicating that our algorithm successfully recovered these BDRI model pa-
rameters. We also conduct a similar simulation study for the BDRI model
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with covariates, successfully estimating parameters of this model as well,
but omit detailed results of this simulation for brevity.

4.2. Comparison with the frequent monitoring method. We compare our
EM algorithm for computing the actual MLE to the frequent monitoring
(FM) method of Rosenberg, Tsolaki and Tanaka (2003) for computing the
MLE of an approximate likelihood. In the FM method, Rosenberg, Tsolaki
and Tanaka (2003) assume that if the starting and ending values of the birth–
death process are equal for a particular interval, then no jumps occurred
in this interval. Further, if the difference between the starting and ending
values is −1 or 1, then exactly one jump up or exactly one jump down must
have occurred, respectively. The authors exclude all observed intervals, for
which starting and ending values differ by more than one unit. Let i be the
starting state for an interval, t the length of the interval and λi = i(λ+ µ).
Then the corresponding probabilities for the three possible events are e−λiu,
iλ
λi
(1−e−λiu) and iµ

λi
(1−e−λiu), respectively. Rosenberg, Tsolaki and Tanaka

(2003) use this FM method to estimate rates in what is effectively a multi-
state branching process, but we will compare the two methods on our BDRI
model with the immigration rate β constrained to be 0. We again simulate
an underlying BD process using λ= 0.07 and µ= 0.12. To compare the two
methods, we generate three different sets of data. In each set, we generate
observed states of the BD process at a fixed constant distance dt apart.
This distance varies across the data sets, taking the values 0.2,0.4 and 0.6,
respectively. We repeat this procedure 200 times and compute birth and
death rate estimates and corresponding 95% confidence intervals using the
EM algorithm and FM approximation method. We show box plots of the
resulting estimates for λ and µ in Figure 1. As expected, the FM estimates
behave reasonably when interval lengths are small, but the approximation
becomes poor as we increase the interval length. The FM method always
underestimates the parameters since the method effectively undercounts the
number of unobserved jumps in the BD process. We also compute Monte
Carlo estimates of coverage probabilities of the two methods, shown above
the box plots in Figure 1. Not surprisingly, coverage of the 95% confidence
intervals computed under the proper BD model likelihood are very close to
the promised value of 0.95. In contrast, the FM approximation-based 95%
confidence intervals contain the true parameter value less than 95% for all
three simulation scenarios.

4.3. Mycobacterium tuberculosis IS6110 transposon. We apply our EM
algorithm to estimation of birth and death rates of the transposon IS6110
in M. tuberculosis [McEvoy et al. (2007)]. A transposon, or transposable el-
ement, is a genetic sequence that can duplicate, remove itself and jump to a
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Fig. 1. Box plots of birth (left panel) and death (right panel) rate estimates, obtained from
200 simulated data sets using the EM algorithm and frequent monitoring (FM) method.
The true parameter values, used in data simulations, are marked by the horizontal dashed
lines. Above the box plots, we show Monte Carlo estimates of coverage probabilities of the
95% confidence intervals.

new location in the genome. IS6110 is a transposon that plays an important
role in epidemiological studies of tuberculosis. More specifically, the number
and locations of IS6110 elements in the M. tuberculosis form a genetic sig-
nature or genotype of the mycobacterium, allowing epidemiologists to draw
inference about disease transmission when the same genotype is observed
among patients with active tuberculosis [van Embden et al. (1993)]. Such
genotypic comparison can translate into meaningful epidemiological infer-
ence only if the dynamics of IS6110 evolution are well understood. There-
fore, accurate estimation of rates of changes of IS6110 -based genotypes is
critical for using these genotypes in epidemiological studies [Tanaka and
Rosenberg (2001)].

We analyze data from an ongoing population-based study that includes
all tuberculosis cases reported to the San Francisco Department of Public
Health [Cattamanchi et al. (2006)]. Our data include patients with more than
one M. tuberculosis isolate from specimens sampled more than 10 days apart
and genotyped with IS6110 restriction fragment length polymorphism. We
ignore genomic locations of IS6110 and assume that the transposon counts
are discretely observed realizations of a BDRI process, with no immigration
(β = 0); in particular, we assume that patients are not reinfected with a
different strain of the bacteria in the period between observations. The third
column in Table 1 gives summary statistics for the data.

We first use a simple model with one single birth rate and one single
death rate of the IS6110 for all patients. In the analysis presented, we start
the EM algorithm with parameter guesses of 0.05 and 0.05 for λ and µ,
respectively, and their MLEs are 0.0176 and 0.0207, respectively. The start-
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ing values for the EM do not affect these results. Our estimate and 95%
confidence interval for λ, 0.0176 and (0.0082,0.027), are consistent with
the corresponding quantities, 0.0188 and (0.0085,0.0291), from Rosenberg,
Tsolaki and Tanaka (2003). Although the authors’ confidence interval for
µ, (0.0057,0.0237), overlaps with ours, (0.011,0.031), our estimate for µ,
0.0207, is noticeably higher than Rosenberg, Tsolaki and Tanaka’s (2003)
estimate of 0.0147. Note from Table 1 that among the intervals with a de-
crease, the average count drop is by more than 1; there are 3 intervals where
IS6110 counts drop by 2, whereas there are no intervals that experience an
increase by more than 1. Thus, we would expect our estimate for µ to in-
crease over Rosenberg, Tsolaki and Tanaka’s (2003) approximation, whereas
that of λ should be similar between the two methods. We also point out that
we analyze an updated version of the data analyzed by Rosenberg, Tsolaki
and Tanaka (2003). Moreover, Rosenberg, Tsolaki and Tanaka (2003) use
a slightly more complicated model for IS6110 evolution, which takes into
account shifts in transposon location. We conclude that estimates of birth
and death rates of IS6110 do not vary dramatically when estimation meth-
ods and data collection are altered. We now turn to more complicated BDRI
models that have not been applied before to the M. tuberculosis IS6110 copy
number evolution. These models will take into account potential dependence
of IS6110 birth and death rates on patient-specific covariates.

4.3.1. Mycobacterium tuberculosis lineage comparison. In addition to es-
timation of the global birth and death rates, we separately estimate these
parameters in each of the three lineages of M. tuberculosis observed in
San Francisco. Based on genomic sequence similarity, M. tuberculosis is
divided into six main lineages: Euro-American, East-Asian, Indo-Oceanic,
East-African–Indian, West-African I and West-African II [Gagneux et al.
(2006)]. In our lineage-specific analysis, we consider 109 individuals infected
with Euro-American (EU) lineage strains, 54 individuals infected with East-
Asian (EA) lineage strains and 25 individuals infected with Indo-Oceanic
(IND) lineage strains. One simple way to accommodate this lineage effect
is to build a log-linear model for birth and death rates with two categorical
covariates:

logλp = γλ,1 + γλ,2EUp+γλ,3 INDp, logµp = γµ,1 + γµ,2EUp+γµ,3 INDp,

where EUp = 1 if patient p is infected with the EU strain and 0 otherwise,
and INDp = 1 if patient p is infected with the IND strain and 0 otherwise.
The intercepts, γλ,1 and γµ,1, correspond to birth and death of the EA strain.
We transform the coefficients (γλ,1, γλ,2, γλ,3) and (γµ,1, γµ,2, γµ,3) into theM.
tuberculosis lineage-specific birth and death rates and show these estimates
together with their corresponding confidence in the first column of Figure 2.
Most notably, there appears to be a substantial difference between death
rates of the Euro-American and East-Asian lineages. We report regression
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Fig. 2. Point estimates and 95% confidence intervals for birth and death rates of the
IS6110 transposable element obtained by separately analyzing three M. tuberculosis lin-
eages: European–American (EU), Indo-Oceanic (IND) and East Asian (EA) (leftmost
column) and by fitting the log-linear model with lineage, drug resistance and HIV status as
covariates. For the latter model, the estimated regression coefficients are transformed into
four sets of lineage-specific birth and death rates (last four columns).

coefficients on the multiplicative scale [e.g., exp(γλ,1)] with their correspond-
ing 95% confidence intervals in the lineage model columns of Table 2. In this
table the highlighted EU rate multiplier shows that the death rate of IS6110
copy number is estimated to be approximately ten times higher than the
corresponding death rate in the EA lineage. The confidence interval of the
EU rate multiplier does not contain one, indicating that EA and EU lineages
have different death rates of the IS6110 transposon.

Since this is a novel result that has implications for monitoring tubercu-
losis with molecular genotyping, we examine the difference in death rates
between the three lineages more closely. More specifically, we add two binary
covariates to our log-linear model: M. tuberculosis drug resistance (DR) and
HIV infection status of each patient (HIV+). Our new model for birth and
death rates becomes

logλp = γλ,1 + γλ,2EUp+γλ,3 INDp+γλ,5DRp+γλ,4HIV
+
p ,

logµp = γµ,1 + γµ,2EUp+γµ,3 INDp+γµ,5DRp+γµ,4HIV
+
p ,

where DRp = 1 if patient p is infected with a drug resistant strain M. tuber-
culosis and 0 otherwise, and HIV+

p = 1 if patient p is infected with HIV and
0 otherwise. Parameter estimates of this full model and their corresponding
95% confidence intervals are reported in the full model columns of Table 2.
The HIV infection and drug resistance appear to have no effect on the birth
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Table 2

Results of the two log-linear models for birth and death rates of IS6110. The lineage
model includes only effects of M. tuberculosis lineages (EA, EU, IND). The full model
combines the effects of lineages, HIV infection status (HIV+) and drug resistance status
(DR). The birth and death rate multiplier estimates for the EU lineage are highlighted in

bold to indicate that the confidence intervals for these parameters are above one

Lineage model Full model

Coefficient MLE CIs MLE CIs

EA birth rate, exp(γλ,1) 0.011 (0.003, 0.034) 0.012 (0.006, 0.025)
EU multiplier, exp(γλ,2) 2.63 (0.689, 10.0) 3.2 (1.1, 9.4)
IND multiplier, exp(γλ,3) 1.40 (0.229, 8.53) 1.7 (0.29, 9.7)
DR multiplier, exp(γλ,4) – – 0.88 (0.36, 2.1)
HIV+ multiplier, exp(γλ,5) – – 0.61 (0.28, 1.3)
EA death rate, exp(γµ,1) 0.004 (0.0005, 0.028) 0.004 (0.0005, 0.031)
EU multiplier, exp(γµ,2) 9.32 (1.19, 72.8) 11 (1.2, 114)
IND multiplier, exp(γµ,3) 5.40 (0.553, 52.6) 6.2 (0.36, 1.1)
DR multiplier, exp(γµ,4) – – 1.1 (0.52, 2.3)
HIV+ multiplier, exp(γµ,5) – – 0.64 (0.36, 1.1)

and death rates of IS6110 transposon. IS6110 copy number variation may
have an impact on functions of neighboring genes in the M. tuberculosis
genome [Alonso et al. (2011)]. Therefore, IS6110 copy number can poten-
tially interact with other M. tuberculosis phenotypes, such as drug resistance
and adaptation to HIV and antiviral treatment, with the help of selection
[McEvoy et al. (2007)]. However, we do not expect to see association between
IS6110 copy number and M. tuberculosis phenotypes within one patient be-
cause selection is unlikely to play a role on such a short time scale. Hence,
we view our estimated small effects of HIV infection and drug resistance on
IS6110 copy number as biologically plausible. The EU lineage effect on the
death rate remains statistically significant even after controlling for the two
additional covariates. Interestingly, the EU lineage effect on the birth rate
also becomes statistically significant in the full model. Effect sizes for both
birth and death rates increase and the confidence intervals include larger
values in the full model over the lineage-only model. This indicates that
the full model tends to find more differences in rates between the lineages
than the lineage-only model does. While more data are certainly needed to
confirm that EU lineage birth rate effect is not 1, the full model may be
capturing information the simpler lineage-only model does not, which, in
the face of limited data, is valuable. For practical considerations, the fact
that our most parameter rich full model results in significant effects of EU
lineage on IS6110 birth and death rates suggests that M. tuberculosis lin-
eage has to be taken into consideration when IS6110 genotype data are used
to uncover the history of M. tuberculosis transmission.
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Fig. 3. Low- vs high-count genotype analysis. Histograms of simulated numbers of inter-
vals and sums of interval lengths are plotted for intervals with starting values less than six
and greater or equal to six. The vertical dashed lines indicate the observed values of the
four statistics.

4.3.2. IS6110 counts. The initial number of IS6110 elements is a poten-
tial confounder in our analysis because patients infected with Euro-American
and East-Asian differ drastically in the number of IS6110 elements at the
beginning of the observation period. The isolates from the Euro-American
lineage have between 2 and 17 IS6110 elements, with 41 out of 109 patients
having the first recorded IS6110 count less than 6, while IS6110 counts vary
between 6 and 22 for the East-Asian isolates. Warren et al. (2002) suggest
that IS6110 genotypes with fewer than six elements have a very low rate of
change, because in their data cases with no observed changes in the geno-
type are dominated by such low-count genotypes. However, our birth–death
model very well predicts the conclusion of Warren et al. (2002) that low-
count genotypes evolve slower than high-count genotypes. To demonstrate
this, we simulate 1000 data sets using our global birth and death rates and
observed initial IS6110 counts for each patient. We record the number of
intervals with equal starting and ending values less than six, n0,<6, and
equal starting and ending values greater or equal to six, n0,≥6. We also
recorded the length sum of both kinds of intervals: t0,<6 and t0,≥6. In our
data, nobs

0,<6 = 53 and nobs
0,≥6 = 171 with nobs

0,<6/t
obs
0,<6 = 4.6> 2.8 = nobs

0,≥6/t
obs
0,≥6,

in agreement with Warren et al.’s (2002) analysis. Histograms of simulated

values of the four statistics, n0,<6, n0,≥6, t0,<6 and t0,≥6, shown in Figure 3,
demonstrate that our birth–death model replicates well the observed dy-
namics of low-count and high-count IS6110 genotypes. We conclude that
our data do not provide evidence that evolutionary dynamics of low-count
genotypes differ from high-count genotype dynamics. Therefore, it is un-
likely that a high percentage of low-count genotypes in the Euro-American
lineage isolates causes our estimated discrepancy between death rates of
Euro-American and East-Asian M. tuberculosis lineages.
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5. Discussion. In this paper we present a novel EM algorithm for fit-
ting birth–death processes to panel data. We allow logarithms of birth and
death rates to be linear combinations of individual-level covariates. Such
birth–death models with covariates share analogy with covariate-dependent
CTMC models on finite state spaces—a widely used class of models in med-
ical statistics [Kalbfleisch and Lawless (1985)]. To our knowledge, there is
no established and well tested method for fitting birth–death processes, con-
sidered in this paper, to panel data. We hope that by filling this void with
our new EM algorithm, accompanied by an open-source R package DOBAD

(available at http://cran.r-project.org), we will stimulate statistical ap-
plications of birth–death processes, at least in the context of panel data.

We illustrate the applicability of birth–death models by analyzing the evo-
lutionary dynamics of the IS6110 transposon—an important genetic marker
that serves as a genetic signature of the M. tuberculosis bacterium. By build-
ing realistic models for IS6110 dynamics, we uncover differences in IS6110
birth and death rates among major lineages of M. tuberculosis, while con-
trolling for other clinical covariates. This novel result is important because
IS6110 copy number is used as a genetic marker to create DNA fingerprints
of M. tuberculosis using the restriction fragment length polymorphism tech-
nology [van Embden et al. (1993), Kato-Maeda, Metcalfe and Flores (2011)].
Strains that have the same IS6110 counts and in which the IS6110 element
is located in DNA fragments of similar size are considered identical. When
such identical strains are found in community-based studies, the strains are
clustered and patients carrying these strains are inferred to belong to the
same M. tuberculosis transmission chain [Kato-Maeda, Metcalfe and Flores
(2011)]. However, if some M. tuberculosis lineages evolve at much slower
rates than others, as we discover in our analysis, then using the same notion
of similarity between IS6110 counts for these slow-evolving lineages could be
highly misleading. Therefore, we suggest that when using IS6110 genotypes,
M. tuberculosis lineage effect should be included explicitly in statistical pro-
tocols of estimating tuberculosis epidemiological clusters.

Although in ourM. tuberculosis fingerprinting example we do not consider
the possibility of immigration, we include immigration in our methodological
developments. More specifically, our EM algorithm and the accompanying
software package allow for immigration to occur at a rate proportional to the
birth rate. We have two reasons for including this generalization. First, this
limited form of immigration complicates neither our mathematical develop-
ments nor computational tractability of the EM algorithm. Second, incor-
porating immigration makes our EM algorithm more transferable to other
domains of application of birth–death processes. For example, our method-
ological developments directly apply to modeling the evolution of insertions
and deletions in molecular sequences, where immigration is needed to pre-
vent molecular sequences contracting to length zero [Thorne, Kishino and

http://cran.r-project.org
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Felsenstein (1991), Holmes (2005)]. Moreover, as we show in Appendix C,
for this particular application, the E-step of our EM algorithm is available
in closed form, eliminating the need for numerical integration [Doss et al.
(2013)]. Another example of potential transferability of our EM algorithm is
for hidden death-immigration models for recurrent medical conditions, such
as that considered by Crespi, Cumberland and Blower (2005). Although our
EM algorithm does not apply directly to the application these authors con-
sider, because the states of the immigration-death process are only partially
observed at discrete time points, our mathematical results remain useful
here. More specifically, one can use our mathematical developments in the
context of continuous-time hidden Markov models [Roberts and Ephraim
(2008)] in order to develop an EM algorithm, akin to a classical Baum–Welch
algorithm [Baum et al. (1970)]. As in the aforementioned insertion-deletion
model, Appendix C demonstrates that the expectations of complete data
sufficient statistics for the death-immigration model are available in closed
form [Doss et al. (2013)]. We note that because our Theorem 1 applies to
general linear BDI models, we are able to use this theorem to study proper-
ties of a death-immigration model, which is not a BDRI model—the main
focus of this manuscript.

Finally, we would like to point out that the generating functions derived in
Theorem 1 are useful not only for developing EM algorithms for birth–death
models, but also for probabilistic characterization of birth–death trajectories
in general. For example, we are not aware of analytic formulae for expecta-
tions of the sufficient statistics that do not involve the ending state of the pro-
cess at time t: E(N+

t |X0 = i), E(N−
t |X0 = i) and E(R+

t |X0 = i). These ex-
pectations, useful for prediction purposes, arise analytically from the gener-
ating functions in Theorem 1 [e.g., E(N+

t |X0 = i) = ∂Hi(u,1,0,1, t)/∂u|u=1 ].
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