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ABSTRACT

On-chip photonic-neural-network processors promise benefits in both speed and energy efficiency but have not yet
reached the scale to compete with electronic processors. The dominant paradigm is to build integrated-photonic
processors using discrete components connected by single-mode waveguides. A far more compact alternative is to
avoid discrete components and instead sculpt a complex and continuous microphotonic medium in which compu-
tations are performed by multimode waves controllably propagating in two dimensions. We show our realization
of this approach with a device whose refractive index as a function of space can be rapidly reprogrammed. We
demonstrate optical computations much larger and more error-resilient than previous photonic chips relying on
discrete components. We argue that beyond photonic-neural-network processors, devices with such arbitrarily
programmable index distributions enable the realization of a wide range of photonic functionality.
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Introduction

The size of deep neural network (DNN) models has been increasing exponentially over the past decade, leading
to exponentially increasing energy costs for their execution. Limits to energy costs now impose a practical
constraint on how large models can be,2 strongly motivating the exploration of alternative, energy-efficient
computing approaches for executing DNNs. Optical neural networks (ONNs) that specialize in performing
the computationally most expensive operation, matrix-vector multiplications (MVMs), with optics instead of
electronics are one promising candidate approach.3–6

Integrated photonics is a leading platform for optical neural networks due to its compact form factor, ex-
cellent phase stability, availability of high-bandwidth modulators and detectors, manufacturability, and ease of
integration with electronics.3,4, 7–11 The dominant paradigm for designing integrated photonic neural networks is
to construct networks of discrete, programmable photonic components—such as Mach–Zehnder interferometers,
microring resonators, or phase-change-memory cells—connected by single-mode waveguides.6 The scale of such
chips has been limited by at least two factors: (1) the large spatial footprint of individual components and the
inefficiency of dedicating a substantial portion of the chip’s area to non-programmable interconnection regions
comprising well-isolated waveguides that connect relatively sparsely arranged programmable elements, and (2)
the systems-integration complexity of controlling each discrete component with electronic wires carrying the
trainable parameters of the neural network.

We could achieve far greater spatial efficiency12,13 if, instead of building the integrated photonic neural
network from discrete components, we treated the entire chip as a blank slate that we could arbitrarily and
reprogrammably sculpt. Here lies the central challenge that our work tackles: for such a chip to perform
an MVM with a programmable matrix, we need to be able to continuously program the chip’s refractive-index
distribution, n(x, z).12–17 How can we make a photonic chip whose refractive-index distribution is programmable,
ideally in a way that avoids the integration complexity of introducing electronic wiring?

This conference proceeding is a summary of our recent work,1 adapting figures and text thereof.
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Figure 1. Operating principle of the 2D-programmable waveguide. (A) The 2D-programmable waveguide
linearly transforms arbitrary optical input fields via wave propagation through a lithium niobate slab waveguide whose
two-dimensional refractive-index modulation ∆n(x, z) can be continuously and arbitrarily programmed (up to practical
limits on resolution and the maximum modulation) by an illumination pattern that is projected onto the device (shown in
green). (B) A photograph of our 2D-programmable waveguide in our experimental setup. (C) Experimental realization
of a Y-branch splitter on the 2D-programmable waveguide, which splits the input light into two equal output beams. The
projected pattern shown in (A) directly corresponds to the induced refractive-index modulation (in gray). A simulation
of the wave propagating through the device is overlaid with the pattern (in red). Figure adapted from ref.1

Operating principle of the device

We present a photonic chip with a waveguide that is fully programmable in two dimensions: a 2D-programmable
waveguide. The chip uses massively parallel electro-optic modulation to program n(x, z) across∼10,000 individual
regions of a lithium niobate slab waveguide. A distinguishing feature of our device is its programmability,
setting it apart from typical inverse-designed photonic devices, which are fixed after manufacturing. We achieve
programmability optically, decoupling the electronic wiring for programming from the photonic chip: a pattern
of light shone on top of our device creates a spatially-varying refractive-index modulation ∆n(x, z) in the slab
waveguide. Inspired by optoelectronic tweezers, this is achieved by using the principle of photoconductive
gain18,19 to induce a refractive-index modulation via the strong electro-optic effect in lithium niobate.

Our device is composed of a lithium niobate slab waveguide and a photoconductive film, which are sandwiched
between a pair of electrodes across which a bias voltage is applied (Fig. 1A). For regions of the chip that are
illuminated at intensities of tens of mW/cm2, the photoconductor’s impedance drops substantially, increasing
the voltage across the slab waveguide (and the electric field within), thereby locally changing the refractive index
of lithium niobate by approximately 10−3. Illumination patterns extend over an area of 9mm × 1mm with a
resolution of 9µm and can be updated at a rate of around 3Hz.

To illustrate the operating principle of our device, we projected a pattern in the shape of a Y-branch splitter
onto the 2D-programmable waveguide (Fig. 1A). The projected pattern instantiated a refractive-index distribu-
tion of a Y-branch splitter. We coupled a single input Gaussian beam into the device using a beamshaper and
measured the intensity of the output light with a camera.

MNIST handwritten-digit classification

We train multimode photonic structures within the chip that perform neural-network inference. The structures
realized by our 2D-programmable waveguide are similar to inverse-designed nanophotonic devices:16,20 they are
computer-optimized, two-dimensional metastructures that control multimode wave propagation. We show that
we can train the refractive-index distribution so that the complex wave propagation through the device performs
a desired neural-network inference.
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Figure 2. MNIST classification with multimode wave propagation in the 2D-programmable waveguide. (A)
Exemplary classification of an image of a handwritten digit. Left: The image is reshaped to 1D and amplitude-encoded
into 49 spatial Gaussian modes to produce the initial optical field distribution. Center: Simulated wave propagation
(red) in the chip after training of the projected pattern (overlaid in green). Right: The experimentally measured output
intensity. (B) Confusion matrix showing the test accuracy in experiment after training. Figure adapted from ref.1

In Fig. 2, we present our experimental results on MNIST handwritten-digit classification. The task consists
of classifying 14-by-14-pixel images of handwritten digits from 0 to 9. We divided the MNIST dataset in the
standard manner into 60,000 training images and 10,000 test images. We down-sampled each MNIST image to
7-by-7 pixels, then reshaped them to 49-dimensional input vectors. We encoded the 49-dimensional input vectors
in the amplitudes of 49 equidistant spatial Gaussian modes at the input facet of the device. We measured the
intensity at the output facet with a camera and binned the camera pixels into 10 different regions, with each
region corresponding to one digit. The predicted digit for an input is given by the region that receives the most
optical power. The refractive-index distribution was trained via a backpropagation algorithm21 to steer the most
power toward the region corresponding to the correct digit.

As shown in Fig. 2B, the system achieved 86% accuracy on the test dataset after 10 epochs of training, which
took about 10 hours on the experimental setup. This falls 4 percentage points short of the 90% accuracy that a
one-layer digital neural network achieves on this downsampled MNIST classification task, likely due to imperfect
modeling and experimental drifts. This result suggests that complex wave propagation in our device can be
harnessed to perform computations comparable to that of a single-layer neural network with a 49× 10 matrix of
trainable parameters.

Discussion and outlook

We have introduced and demonstrated a 2D-programmable photonic processor comprising a lithium niobate
slab waveguide whose refractive-index distribution, n(x, z), can be continuously programmed. The device de-
sign enables programming by massively parallel electro-optic modulation with approximately 10,000 degrees of
freedom. We used our chip to perform neural-network inference by training the refractive-index distribution and
consequently the multimode wave propagation through the chip.

We believe that our device concept, with its ability to programmably control multimode wave propagation,
may create new opportunities in the fields of optical computing and optical information processing.5,6, 22 Any
photonic device that can be specified as an inhomogeneous refractive-index distribution can in principle be real-
ized. It may ultimately even be possible to make a device that combines programmable linear wave propagation
(this work), programmable nonlinear wave propagation (a natural extension of this work to having programmable
χ(2)(x, z)), and programmable gain/loss (demonstrated in ref. 17), giving rise to a reconfigurable on-chip platform
capable of realizing almost every functionality we have in free-space optics.
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