
UCLA
Research Reports

Title
Multiple-Objective Optimal Designs for Studying the Dose Response Function and 
Interesting Dose Levels

Permalink
https://escholarship.org/uc/item/1j63v3q0

Journal
The International Journal of Biostatistics, 11(2)

ISSN
2194-573X 1557-4679

Authors
Hyun, Seung Won
Wong, Weng Kee

Publication Date
2015

DOI
10.1515/ijb-2015-0044
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1j63v3q0
https://escholarship.org
http://www.cdlib.org/


Seung Won Hyun* and Weng Kee Wong

Multiple-Objective Optimal Designs for Studying the Dose
Response Function and Interesting Dose Levels

DOI 10.1515/ijb-2015-0044

Abstract: We construct an optimal design to simultaneously estimate three common interesting features in
a dose-finding trial with possibly different emphasis on each feature. These features are (1) the shape of the
dose-response curve, (2) the median effective dose and (3) the minimum effective dose level. A main
difficulty of this task is that an optimal design for a single objective may not perform well for other
objectives. There are optimal designs for dual objectives in the literature but we were unable to find
optimal designs for 3 or more objectives to date with a concrete application. A reason for this is that the
approach for finding a dual-objective optimal design does not work well for a 3 or more multiple-objective
design problem.

We propose a method for finding multiple-objective optimal designs that estimate the three features
with user-specified higher efficiencies for the more important objectives. We use the flexible 4-parameter
logistic model to illustrate the methodology but our approach is applicable to find multiple-objective
optimal designs for other types of objectives and models. We also investigate robustness properties of
multiple-objective optimal designs to mis-specification in the nominal parameter values and to a variation
in the optimality criterion. We also provide computer code for generating tailor made multiple-objective
optimal designs.

Keywords: approximate design, c-optimal design, compound optimal design, constrained optimal design,
design efficiency, dose-finding study

1 Background

Experiments are increasingly expensive to conduct and it is desirable to obtain maximal information at
minimal cost. Researchers now want to have several research questions answered from a single study to
save cost. Designing such multi-objective experiments can be challenging because an optimal design for
one objective can perform poorly under another and further, not all objectives may be equally important.
Contrary to a single-objective optimal design, the sought design has to incorporate the multiple objectives
at the onset and provide user-specified efficiencies for making inferences for the more important objectives.

There is some work on constructing dual-objective optimal designs but there is little in the literature on
construction and properties of optimal designs for 3 or more objectives with a concrete application. Our aims in
this paper are to construct 3-objective optimal designs for a pharmaceutical application, investigate effective-
ness of such designs over single-objective optimal designs, and study their robustness properties under mis-
specification in the nominal values of the model parameters and a change in the optimality criterion. Our focus
is to estimate interesting characteristics of an agent in a dose response study where some drug characteristics
may be more meaningful or important than others. Our dose response model is the flexible 4-parameter logistic
model widely used in many disciplines, such as in educational research, biological sciences, pharmaceutical
sciences and agronomy, to name a few. Both our application and the model are illustrative in the sense that the
methodology described here also applies to other models and criteria.

Our setup assumes that we have a nonlinear regression model defined on a given compact dose interval
X. The model has a known mean structure with unknown parameters and errors are assumed to be normal,
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independent and identically distributed, each with mean 0 and constant variance σ2. The sample size n is
assumed to be fixed in advance either by cost consideration or the number of subjects available for the study.
Given the model and optimality criteria with possibly different degrees of importance, the research questions
are (i) what is the optimal number of doses to be used in the study? (ii) what are the doses? and, (iii) what is
the optimal number of subjects at each of these doses? Our focus is on approximate designs, which means
that we now determine the optimal number of doses K, the location of each dose Di and the optimal
proportion wi of subjects to assign to the dose Di in the study, i= 1, . . . ,K. In practice, after the optimal
approximate design is identified, we assign nwi subjects to Di, such that nw1 + nw2 + � � � + nwK = n and each
nwi is rounded to the nearest positive integer. The advantages of this approach versus the approach of
finding optimal exact designs are well documented in Kiefer [1], among others. For example, one can use
convex analysis theory and construct algorithms for finding different types of optimal approximate designs.
One can also assess the proximity of any design to the optimal approximate design (without knowing the
optimal approximate design) by providing an efficiency lower bound for the design [2]. Equivalence
Theorems are also available to confirm the optimality of an approximate design among all designs on X.

We follow convention and measure the worth of a design by its information matrix defined as the
negative of the expectation of the second derivatives of the log likelihood function with respect to the model
parameters. Given an approximate design ξ , this matrix is the weighted sum of information matrices over
the distinct dose levels of ξ , and the weights are the proportions of subjects at the dose levels. For nonlinear
models, this matrix depends on the model parameters. Because the design criteria are formulated in terms
of the information matrix, the resulting optimal designs depend on the nominal values of the model
parameters. These optimal designs are termed locally optimal [3] and it is well known that they can be
sensitive to the choices of the nominal parameter values. This suggests that when there are conflicting
nominal values for the model parameters, it is desirable to have a design that is robust to mis-specification
in the nominal values. Our work also investigates whether multiple-objective optimal designs are robust to
changes in the optimality criteria or changes in the degrees of interest in the objectives.

Section 2 describes the methodology for searching optimal designs when there are 3 or more objectives
of varying interests. In Section 3, we discuss optimality criteria for dose response studies in the context of
the popular Hill model and its relationship with the 4-parameter logistic model. In Section 4, we revisit a
dose response study with 7 anti-cancer drugs from Khinkis et al. [4], report the single-objective optimal
designs for estimating all parameters in the mean function, the ED50 and the MED, and how they compared
with the multiple-objective optimal design that accounts for these objectives simultaneously at the onset.
Additionally, we show how an Equivalence Theorem can be used to confirm the optimality of a multiple-
objective optimal design and study sensitivities of such an optimal design to mis-specification in the
nominal values, changes in the design criteria and relative interests in the multiple objectives. Our work
here suggests that multiple-objective optimal designs are generally more efficient for making inferences
than single-objective optimal designs and more robust to mis-specification in the nominal values of the
parameters than single-objective optimal designs. We offer a conclusion in Section 5.

2 Multiple-objective optimal designs

Multiple-objective optimal designs are appealing because many scientific studies have several objectives
and these objectives may vary in importance. A properly constructed design allocates resources that
ensures the more important objectives are attained with user-specified efficiencies at minimum cost. Such
situations arise frequently in real studies. We give three examples. In a dose response study, there is
interest to infer the mean response at a specific dose and to estimate the shape of the overall dose curve
accurately, and one of these objectives may be more important than the other. Another example is in
estimation problems. It is often the case that some parameters are more meaningful than others and so
there is greater interest in estimating selected parameters more accurately. For instance, in the 2-parameter
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Michaelis-Menten model, the Michaelis-Menten constant is clearly more interesting to estimate than the
other parameter because it controls the rate of an enzyme-kinetic reaction. The third example concerns
model inadequacy and inference. A properly targeted multiple-objective optimal design can detect model
inadequacies and provide accurate inference at the same time. For example, consider the Emax model,
which is the same as the Michaelis-Menten model except that the substrate concentration variable in the
model is raised to some power. With the power as the third parameter, the Emax model is more flexible and
can better capture asymmetry in the mean dose response curve than the Michaelis-Menten model. Model
inadequacy concern and accurate inference on the parameters for the Emax model can then be simulta-
neously incorporated at the design stage using a multiple-objective optimal design that requires the power
parameter be estimated with a user-specified efficiency, say 90% and subject to this constraint, the design
does as well as possible for estimating the other two parameters in the model.

Multiple-objective optimal designs date back to the early seventies, where the proposed methods for
constructing such designs were largely either based on ad-hoc procedures or simply based on the hope that
the design constructed for the most important objective will be adequate for the other objectives. Stigler [5],
Lauter [6, 7] and Lee [8, 9] were early attempts to formalize the procedure. Most were concerned with
polynomial regression problems. For instance, Studden [10] was concerned about model inadequacy and
wanted to find a design that was robust to the degree of the assumed polynomial model. His method
ensured that coefficients in the assumed model were estimated as accurately as possible, and at the same
time, the design could also provide user-specified efficiencies for estimating coefficients that might be
needed for a higher degree polynomial model. Subsequent work on finding dual-objectives optimal designs
includes Dette [11, 12], Zhu et al. [13], Wong [14], Song and Wong [15], Tsai and Zen [16], Atkinson [17],
McGree et al. [18], Tommasi [19] and, Padmanabhan and Dragalin [20]. A recent application is Zhang et al.
[21] where they constructed dual-objective optimal designs for a mixture experiment.

The formulation of the multiple-objective optimal design problem invariably involves a constrained
optimization problem where the goal is to find a design that simultaneously meets user-specified minimal
efficiencies for the various criteria, with higher efficiencies sought for the more important criteria, and
subject to these requirements, does as well as possible for the least important criterion. Of course the
sought multiple-objective optimal design may not exist if the requirements are too stringent and the
objectives are competitive, meaning that much efficiency of one type has to be given up for a small gain
in another criterion. Ad-hoc methods generally seek to combine the multiple design criteria into a single
criterion with the expectation that the resulting optimal design for the single combined criterion may be
efficient for all the criteria. The common problems with such an approach include how to combine the
criteria in a meaningful way and the unclear interpretation of the combined criterion.

A more formal method to search for multiple-objective optimal approximate designs when there are two
objectives ϕ1 and ϕ2 was proposed by Cook and Wong [22]. Their method involves the following steps: (0)
Decide which is the more important criterion, say ϕ1; (1) formulate each objective as a concave function of the
information matrix; (2) specify the efficiency requirement for the sought design under ϕ1, for example, e1 ≥0.9;
(3) form a compound criterion ϕ by taking a convex combination of the two objectives: ϕ= ð1− λÞϕ1 + λϕ2

(which is still concave); (4) for a large number of fixed values for λ 2 ½0, 1�, use an algorithm to search the
compound optimal design ξ λ that maximizes the compound criterion; (5) compute the efficiencies of the
compound optimal designs under the two criteria;: e1ðξ λÞ and e2ðξ λÞ; (6) construct the efficiency plot by
graphing both e1ðξ λÞ and e2ðξ λÞ versus values of λ over the interval ½0, 1�; (7) on the graph, identify λ*, the
value of λ that corresponds to the intersection point where e1ðξ λÞ meets the horizontal line e1ðξλÞ= e1 and, (8)
the sought constrained optimal design is ξ λ* which is guaranteed to have at least e1-efficiency and does as well
as possible under the second criterion. Efficiency definitions are given in Section 4.2 and examples of efficiency
plots to search for dual-objective optimal designs are available in Cook and Wong [22] and Wong [23].

Clyde and Chaloner [24] extended the methodology to find Bayesian multiple-objective optimal designs
for nonlinear models. However, there is no work to date that focuses on constructing an optimal design for 3
or more different objectives with a concrete application. We were also unable to find work that studies
robustness properties of multiple-objective optimal designs to model mis-specifications or under a change in

S. W. Hyun and W. K. Wong: Multiple-Objective Optimal Designs 255

Brought to you by | University of California - Los Angeles - UCLA Library
Authenticated

Download Date | 1/11/16 4:24 AM



the optimality criterion. There are only a handful of related papers that either briefly considered finding an
optimal design for a problem with 3 or more objectives or they addressed a different class of problems. For
example, El-Monsef and Seyam [25] proposed optimal designs for model discrimination, parameter estima-
tion, and estimation of a function of parameters. The paper combined the optimality criteria for the three
objectives using a weighted compound criterion. However, despite the title of their paper, only the last half
page outlined how one may construct a specific 3-objective optimal design. There were no practical details,
examples and explanation on how to meaningfully select the weights in the combined design criterion for
maximizing each efficiency. Another related work is Antognini and Zagoraiou [26], who considered a non
dose-response setup and their goal was to determine an adaptive optimal allocation scheme for subjects to
treatment groups under 3 criteria in a clinical trial. They wanted to balance the competing needs of ethics
requirements, proper randomization and precise treatment efficacy estimation. In such problems, the number
of treatment groups is fixed (i.e. the design space consists only of a few points) and so only the optimal
proportion or optimal number of subjects to assign to each treatment has to be determined. Our optimization
problems have a continuous dose interval and we need to determine the number of optimal dose levels, the
optimal dose levels, and the optimal proportions or numbers of subjects to assign at the dose levels. Our
constrained optimization problems are thus more difficult because they have more variables to optimize over
a continuous multi-dimensional space. Earlier, Zhu and Wong [27] also found multiple-objective optimal
designs but their setup was limiting; their interest was confined only to estimating percentiles in a two
parameter logistic model and did not discuss different types of criteria, which we have here.

The dearth of work for finding an optimal design for 3 or more objectives in a dose response study with a
concrete application can be partially explained by the complexity of the efficiency plot, which increases in
dimension as the number of objectives increases. In a high-dimensional efficiency plot, the visual appreciation
of the shapes of various efficiency plots becomes compromised and it becomes difficult to identify the correct
vector λ* to be used in the compound optimality criterion. One may resort to an exhaustive search for the sought
multiple-objective optimal design by first generating a complete list of compound optimal designs and then
identifying the one that meets the user-specified efficiency requirements for the constrained optimal design. This
task is generally laborious and time consuming because the algorithm may require a long time to find all
compound optimal designs. Huang and Wong [28] hinted that a sequential method to tackle design problems
with 3 or more objectives might work. They suggested to first consider two objectives at a time and determine the
dual-objective optimal design. Then sequentially pair the rest of the objectives, two at a time, and compute the
dual-objective optimal designs. The multiple-objective optimal design is then determined from the collection of
generated dual-objective optimal designs. However they were unclear on how to systematically pair the
objectives and work with them sequentially to determine the sought multiple-objective optimal design.

This paper presents a systematic approach to construct a multiple-objective optimal design for the 3
common objectives in a dose response study and the methodology can be directly applied to find other
types of multiple-objective optimal designs in other problems. We provide an efficient algorithm for
searching the multiple-objective optimal design that meets different user-specified efficiencies for the
objectives and for evaluating efficiency of the generated design under various criteria. We also provide a
concrete application to a dose response study and study robustness properties of the multiple-objective
optimal design to mis-specification in nominal values for the model parameters and under a change of
criterion. Bayesian multiple-objective optimal designs can also be found using our approach and we
provide an example of such an optimal design with 10 dose levels found from our algorithm.

3 Objectives, models and algorithms for finding optimal designs
in dose response studies

We assume that the continuous response variable from the jth subject treated at the ith dose Yij can be
modeled by
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Yij = f ðxi,ΘÞ+ εij; εij ⁓Nð0, σ2Þ, j= 1, 2, . . . , ni, i= 1, 2, . . . ,K, n1 + � � � + nK = n,
where f ðxi,ΘÞ is the mean response at dose xi, Θ is the vector of model parameters and σ2 is an unknown
positive constant. In practice, each xi is usually expressed as log dose and the dose is selected from a given
compact dose interval X, which can be multi-dimensional. Let ξ = fðxi,wiÞgK1 denote the approximate design
that takes nwi subjects at xi.

3.1 Common objectives in dose response models

Some interesting characteristics of a drug are the shape of the dose-response, the median effective dose
(ED50) and the minimum effective dose level (MED) [29]. ED50 is the dose expected to produce 50% response
rate when the outcome is binary. For continuous outcome, it is the dose expected to produce one-half of the
anticipated difference between the maximum and the minimum expected responses. This dose is an
interesting dose to estimate because it gives a reasonable expectation of the drug effect; guidelines for
accurately estimating ED50 are given in Sebaugh [30]. Another common dose to estimate is MED. This dose
is the expected lowest dose that produces a clinically significant effect specified by the user. Padmanabhan
and Dragalin [20] defined the MED as the dose producing a mean response of δ units better than the
minimum dose. Here δ is user-selected and represents the predetermined clinically significant effect of
interest. Doses lower than the MED are deemed not to provide the δ clinically significant effect. When the
dose-response relationship is decreasing (increasing), the value of δ is negative (positive). Our interest here
is to find a tailor-made optimal design to estimate one or more such quantities as accurately as possible
based on their relative importance.

A D-optimal design minimizes the volume of the ellipsoidal confidence region of the model parameters
and so estimates from the D-optimal design are the most precise. When the goal is to estimate a function of
the model parameters, such as the ED50 or the MED, a c-optimal design is used to minimize the asymptotic
variance of the estimated function of interest. However, a single-objective optimal design usually does not
perform well under other criteria and we need a model-based compromised design to balance the compet-
ing objectives and based on their importance.

3.2 A common dose response model

We now consider a versatile and popular model commonly used in dose response studies and several other
disciplines. The 4-parameter Hill model has a continuous outcome and its mean response is given by

f ðDi, a, b, c,dÞ= c+
ðd− cÞðDi

a Þb

1 + ðDi
a Þ

b . (1)

Here f ðDi, a, b, c, dÞ is the mean response of a continuous outcome at dose Di, a is the ED50, the dose that
produces a response mid-way between the upper limit d, and the lower limit c. The parameter b denotes the
Hill constant that controls the flexibility in the slope of the response curve.

Khinkis et al. [4] conducted a cell growth inhibition study in a laboratory to investigate the effectiveness
of 7 anticancer drugs to shrink the tumor using the 4-parameter Hill model. Nominal parameter values for
these drugs used in the study are displayed in Table 1. Figure 1 shows the mean response shapes of (2) for
the 7 different sets of values of the parameters in Khinkis et al. [4], suggesting that the characteristics of the
drugs are quite different.

Let Θ= ðθ1, θ2, θ3, θ4Þ. Model (1) may be re-parameterized as

f ðxi,ΘÞ= θ1
1 + eθ2xi + θ3

+ θ4, (2)
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which is sometimes referred to as the 4-parameter logistic model. This form was used in Li and Majumdar
[31] and is equivalent to the above form with θ1 =d− c, θ2 = − b, θ3 = blogðaÞ, θ4 = c, θ1 > 0, θ2 ≠0, and
−∞ <ED50 <∞, where xi = logðDiÞ 2 ½−M,M� for some sufficiently large value of M. When θ4 = 0, we have
the 3-parameter logistic model or hyperbolic Emax model. The reduced 3-parameter logistic model was used
in a Phase II clinical trial for ascertaining asthma indication in Bretz et al. [32]. Fitting these curves can be
accomplished using commercial software packages or more specialized software using R-codes provided by
Ritz and Streibig [33]. However, in dose-response studies, fitting the curves well is harder because there are
usually only a few available doses to explore. This reinforces that selecting the right doses is an important
design issue.

The 4-parameter logistic model has an advantage over the Hill model in that it tends to provide more
stable parameter estimates [34]. In what is to follow, we use the 4-parameter logistic model (2) and redesign
the study in Khinkis et al. [4] using optimal design theory and compare benefits of our locally multiple-
objective optimal designs with their locally D-optimal designs.

If the approximate design ξ takes wi proportion of the total subjects at xi, i= 1, . . . ,K, a direct calcula-
tion shows the Fisher information matrix for model (2) using ξ is

Iðξ ;ΘÞ =
n
σ2

XK
i= 1

wigðxiÞTgðxiÞ, (3)

Dose

E
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Figure 1: Expected response curves across the dose levels for the 7 drugs using nominal values of the parameters in Table 1
for Model (1).

Table 1: Nominal parameter values for the 4-parameter logistic model for the 7 drugs.

Drug Θ Drug Θ

TMTX Θ1 = ð1.563, 1.790, 8.442, 0.137Þ AG Θ5 = ð1.563, 1.030, −4.851, 0.137Þ
MTX Θ2 = ð1.563, 2.740, 10.421, 0.137Þ AG Θ6 = ð1.563, 1.540, 1.169, 0.137Þ
AG Θ3 = ð1.563, 0.825, 0.653, 0.137Þ ZD Θ7 = ð1.563, 1.690, 5.322, 0.137Þ
AG Θ4 = ð1.563, 3.490, 8.930, 0.137Þ
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and gðxÞ is the gradient of the mean function f ðx,ΘÞ evaluated at the nominal values of the parameters:

gðxÞ= 1
1 + eθ2x + θ3

,
− θ1xeθ2x + θ3

ð1 + eθ2x + θ3Þ2
,

− θ1eθ2x + θ3

ð1 + eθ2x + θ3Þ2
, 1

 !
.

When estimates Θ̂ for Θ become available, the asymptotic variance of the estimated response at x is
proportional to gðxÞIðξ , Θ̂Þ − 1gðxÞT and, as will be shown in the next section, this quantity plays an important
role for finding the optimal design.

4 Dose response optimal designs

We now present single-objective optimal designs, multiple-objective optimal designs and investigate
robustness properties of the latter designs to mis-specification in nominal parameter values and changes
in the objectives. The nominal values in Table 1 were used to construct optimal designs on the dose interval
½logð.001Þ, logð1000Þ�= ½− 6.91, 6.91�. For model (2), Li and Majumdar [31] proved that the locally D-optimal
design has 4 dose levels and the design only depends on the nominal values for the parameters θ2 and θ3.
Yang [35] generalized these results and showed that up to 4 dose levels are required to optimize the Fisher
information matrix for model (2) regardless of the values of Θ. The implication is that if the optimality
criterion is a function of the Fisher information matrix, all classical optimal designs for model (2) have at
most 4 dose levels. The paper also showed that all classical optimal designs for model (2) do not depend on
the parameters θ1 and θ4. Accordingly, in what is to follow, we use the same values of θ1 and θ4 and
different values of θ2 and θ3 in Table 1 to construct optimal designs.

All optimal designs in this paper were found based on the Yang-Biedermann-Tang (YBT) algorithm that
has been shown to converge to an optimal design for a large class of design problems [36]. The authors also
used several examples and showed that their algorithm performed faster than current algorithms for finding
single-objective optimal designs, including a traditional class of algorithms such as the V-algorithm. The
YBT algorithm requires that the dose range to be discretized. If there are s parameters in the mean function,
the algorithm uses a starting design with s+ 1 dose levels randomly selected from the discretized set of
doses in X. At each iteration, the algorithm adds the dose that maximizes the sensitivity function to the
current design to form a new design. The weights for the new design are found by optimizing the design
criterion over a set of known dose levels using the Newton-Raphson method. The dose levels with zero
weights are removed for the next iteration.

We discovered that there was a problem in the YBT algorithm when we applied it to search for multiple-
objective optimal designs. If the randomly selected s+ 1 dose levels were far from the optimal dose levels,
the YBT algorithm frequently required a lot more time to find the multiple-objective optimal design and
sometimes it failed to do so. We modified the YBT algorithm by having it chose better initial dose levels via
the V-algorithm [37]. This modification improved the search speed and generated the multiple-objective
optimal design that the original YBT algorithm could not. We offer more details with examples and software
implementation in Section 4.2. Our modified algorithm includes a function called MOPT to search and verify
the multiple-objective optimal designs in this paper. The function is in an R-package called VNM [38] and
the package can be freely downloaded from the R-archive. Interested readers may also write to the first
author for the codes.

4.1 Single-objective optimal designs

We recall that a D-optimal design ξD maximizes the determinant of the information matrix Iðξ ;ΘÞ over all
designs on the specified dose interval and a c-optimal design provides the most accurate estimate for a
user-selected function of the model parameters. For model (2), the ED50 as a function of the model
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parameters is given by ED50 = arg
x

ff ðx,ΘÞ= 1
2 ðθ1 + 2θ4Þg= − θ3

θ2
. Let cED50 be the maximum likelihood esti-

mate of ED50 and let ED50
′ = 0, θ3

θ22
, − 1

θ2 , 0
� �

be the derivative of ED50 with respect to Θ. The c-optimal design

for estimating the ED50 minimizes VarðcED50Þ and is given by

ξED50
= arg min

ξ
fED′50I −ðξ ;ΘÞ½ED′50�Tg, (4)

where I−ðξ ;ΘÞ is a generalized inverse of Iðξ ;ΘÞ.
Similar to estimating the ED50, the MED as a function of the model parameters in model (2) is given by

MED= arg
x

ff ðx,ΘÞ= f ðxmin,ΘÞ + δg=
log − δ

θ1 + δ

� �
− θ3

θ2
if θ2 > 0 or

log θ1 − δ
δ

� �
− θ3

θ2
if θ2 < 0. Here xmin is the minimum

dose level and δ is a user-specified clinically significant effect, with δ < 0 when θ2 > 0 or δ > 0 when θ2 < 0. For

the given δ, the c-optimal design for estimating the MED minimizes VarðdMEDÞ and is given by

ξMED = arg min
ξ

fMED′I−ðξ ;ΘÞ½MED�Tg, (5)

where

MED′=

− 1
ðθ1 + δÞθ2 ,

θ3 − logð − δ
θ1 + δ

Þ
θ22

, −
1
θ2

, 0

 !
, if θ2 > 0

1
ðθ1 − δÞθ2 ,

θ3 − logðθ1 − δδ Þ
θ22

, −
1
θ2

, 0

 !
, if θ2 < 0.

8>>>>><>>>>>:
In the rest of the paper, we assume δ= − 1 unless we mention otherwise.

Table 2 displays the single-objective optimal designs found from our modified algorithm. All optimal
designs found by the algorithm are verified by an Equivalence Theorem. This is an important tool in
optimal design theory that enables one to confirm if a design is optimal among all designs on the given
dose interval. It is derived from the Frechet derivative of the convex(or concave) optimality criterion, and
while all the Equivalence Theorems have similar forms, each criterion has its own Equivalence Theorem.
For example, for D-optimality, the Equivalence Theorem states that if we have a homoscedastic model and
the mean response function has s parameters, the design ξD is D-optimal if and only if

Table 2: Single-objective optimal designs for different sets of Θ.

Θ ξD ξED50
ξMED

Θ1
−6.91 − 5.21 −4.08 6.91
0.250 0.250 0.250 0.250

� �
−6.91 −4.80 6.91
0.276 0.500 0.224

� �
−6.91 −4.61 6.91
0.500 0.454 0.046

� �
Θ2

−6.91 −4.18 − 3.43 6.91
0.250 0.250 0.250 0.250

� �
−6.91 − 3.80 6.91
0.250 0.500 0.250

� �
−6.91 − 3.59
0.500 0.500

� �
Θ3

−6.91 − 2.00 0.50 6.91
0.250 0.250 0.250 0.250

� �
−6.91 −0.87 6.91
0.257 0.500 0.243

� �
−6.91 −0.29 6.91
0.500 0.476 0.024

� �
Θ4

−6.91 − 2.86 − 2.27 6.91
0.250 0.250 0.250 0.250

� �
−6.91 − 2.56 6.91
0.250 0.500 0.250

� �
−6.91 − 2.39
0.500 0.500

� �
Θ5

−6.91 3.37 5.22 6.91
0.250 0.250 0.250 0.250

� �
1.43 5.04 6.91
0.185 0.500 0.315

� �
− 1.69 5.27
0.500 0.500

� �
Θ6

−6.91 − 1.43 −0.08 6.91
0.250 0.250 0.250 0.250

� �
−6.91 −0.75 6.91
0.250 0.500 0.250

� �
−6.91 −0.39 6.89
0.500 0.499 0.001

� �
Θ7

−6.91 − 3.75 − 2.52 6.91
0.250 0.250 0.250 0.250

� �
−6.91 − 3.17 6.91
0.253 0.500 0.247

� �
−6.91 − 2.84 1.49
0.500 0.491 0.009

� �
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dðx, ξDÞ= gðxÞI− 1ðξD;ΘÞg
TðxÞ− s ≤0

for all dose levels x in the dose interval X, with equality when x is a dose level of the design ξD.
Equivalence Theorems for other types of optimal designs are available in design monographs, see for

example, Pukelsheim [39] and Atkinson et al. [40]. For example, in order to verify if a design ξ * is c-optimal
for estimating the ED50 or c-optimal for estimating theMED, one checks whether one of the inequalities below
is satisfied for all dose levels x in the dose interval X, with equality when x is a dose level of the design ξ *:

ðgðxÞI−ðξ *;ΘÞ½ED′50�
TÞ2 − ED′50I−ðξ *;ΘÞ½ED′50�

T
≤ 0

or

ðgðxÞI−ðξ *;ΘÞ½MED′�TÞ2 −MED′I−ðξ *;ΘÞ½MED′�T ≤0.

In the literature, the function on the left hand side of the inequality is sometimes refereed to as the
sensitivity function. Figure 2 shows the plot of the sensitivity function for each of the single-objective
optimal designs when Θ1 is assumed as nominal values for Θ. Each plot shows the graph of the sensitivity
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Figure 2: Plots of the sensitivity functions of the single-objective optimal designs when Θ1 is the nominal set of values for
the model parameters in Model (2).
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function is bounded above by 0 with equality at the optimal dose levels and so confirms the optimality of
the generated design shown in the first row of Table 2. All our optimal designs reported in this paper have
been verified using an Equivalence Theorem.

Table 2 shows the optimal designs for different nominal sets for Θ and they vary depending on the
nominal set of values and the study objective. For estimating Θ, the D-optimal designs are always equally
supported at 4 dose levels including the lower and upper bounds of the dose interval and the middle two dose
levels vary depending on Θ. Unlike the D-optimal designs, the c-optimal designs for estimating the ED50 may
or may not include the extreme doses. Additionally, we observe that the c-optimal designs for estimating the
MED are much more sensitive to the nominal values for the model parameters than the D-optimal designs and
the c-optimal designs for estimating the ED50. Depending on Θ, the c-optimal design for estimating the MED
can have 2 or 3 dose levels with different weights. Interestingly, the smallest allowable dose is mostly included
in the c-optimal designs for the sets of nominal parameter values considered here. There are two cases (ξED50

and ξMED for Θ5), where the smallest allowable dose is not included in the c-optimal designs; however the
lowest dose levels for these two optimal designs can be replaced with the smallest allowable dose without
much loss in efficiencies. In practice, designs with more dose levels are desirable because they are likely to
have non-singular information matrices and so can estimate all parameters in the model. Such optimal
designs may also allow researchers to conduct a lack of fit test to assess model adequacy.

4.2 Multiple-objective optimal designs

We now apply our modified algorithm to search for multiple-objective optimal designs for estimating Θ,
the ED50, and the MED simultaneously. Because an optimal design under one objective may not perform
well under another, the implemented design must be selected carefully to provide satisfactory efficien-
cies for the various objectives. A common approach is to use a compound design criterion that combines
the 3 optimality criteria using their efficiencies and find a design that maximizes the various efficiencies
at the same time. For a model with s parameters in the mean function, recall that the D-efficiency of a
design ξ is

EffDðξÞ=
jIðξ ;ΘÞj
jIðξD;ΘÞj

 !1
s

.

The efficiencies of using ξ to estimate the ED50 and MED are, respectively given by

EffED50ðξÞ=
ED′50I −ðξED50 ;ΘÞ

½ED′50�T

ED′50I−ðξ ;ΘÞ½ED′50�T

and

EffMEDðξÞ=
MED′I−ðξMED;ΘÞ½MED′�T

MED′I −ðξ ;ΘÞ½MED′�T .

The above measures are all between 0 and 1 and have the following interpretation: if ξ has Eff ðξÞ= e, then it
needs 100ð1=e− 1Þ% more subjects to do as well as the optimal design. Multiple-objective optimal design for
the objectives can be constructed by finding a design that maximizes the logarithm of a weighted product of
the various efficiencies among all designs. Given a user-selected vector of weights λT = ðλ1, λ2, λ3Þ, the
sought multiple-objective design ξM, λ is

ξM, λ = arg max
ξ

λ1 logðEffDðξÞÞ+ λ2 logðEffED50ðξÞÞ+ λ3 logðEffMEDðξÞÞf g

= arg max
ξ

λ1
s
logðjIðξ ;ΘÞjÞ− λ2 logðVarðcED50ÞÞ− λ3 logðVarðdMEDÞÞ

� 	
.
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Here each λi is non-negative and
P3

i= 1 λi = 1. Because a convex combination of concave functionals is also
concave, we may directly use directional derivative considerations and show that for a fixed λ, the
sensitivity function for the locally multiple-objective criterion is

dðx, ξÞ = λ1
s
gðxÞI − 1ðξ ;ΘÞg

TðxÞ+ λ2
ðgðxÞI −ðξ ;ΘÞ½ED′50�TÞ

2

ED′50I−ðξ ;ΘÞ½ED′50�T
+ λ3

ðgðxÞI−ðξ ;ΘÞ½MED′�TÞ2

MED′I−ðξ ;ΘÞ½MED′�T − 1. (6)

Each summand in (6) has been properly scaled, and it is easy to see that if all but one of the weights is
nonzero, (6) reduces to the Equivalence Theorem for the single-objective optimal design. The Equivalence
Theorem states that for a given vector λ, the design ξM, λ is the multiple-objective optimal design if and only
if for all doses x in the dose range X,

dðx, ξM, λÞ ≤0,

with equality when x is a dose level of the design ξM, λ.
All multiple-objective optimal designs were obtained using a modified version of the YBT algorithm and

confirmed using the above Equivalence Theorem in (6). As noted earlier, without the modification, we were
unable to find the multiple-objective optimal designs for some cases. One reason appears to be that the YBT
algorithm sometimes begins its search using poor initial dose levels that are far from the optimal dose levels.
The modification we made was to first run the V-algorithm r times using the sensitivity function (6) and then
select the last s+ 1 generated dose levels as the initial dose levels for the YBT algorithm. The stopping criterion
we used for both algorithms was that the maximum of jdðx, ξ tM, λÞj < 0.001, implying that we were willing to
accept ξ tM, λ, the design generated at the tth iteration as the multiple-objective optimal design if it satisfied the
stopping criterion. Our experience suggests that r = 10 usually works for finding the multiple-objective optimal
design but sometimes it may fail. This seems to happen especially when the weight for the D-optimality
criterion is small. For these cases, we suggest using r = 30 or r = 50 in our modified algorithm to choose better
initial dose levels to search for the multiple-objective optimal designs. We provide two examples:

Example 1: We used the set of nominal values Θ1 in Table 1 to find the multiple-objective optimal designs
using the YBT and our modified algorithms on the dose interval ½logð.001Þ, logð1000Þ�. The weights for the 3
criteria were λ1 = 0.05, λ2 = 0.05 and, λ3 = 0.90, respectively. When the YBT algorithm was ran, it failed to
find the multiple-objective optimal design. For this example, we found jdðx, ξ tM, λÞj converged to a constant
(0.048) as the algorithm iterated without end. When we applied our modified algorithm with r = 10, the
multiple-objective optimal design was found in 38 s.

Example 2: Miller et al. [29] assumed Θ= ð16.8, − 1, 4.248, 22Þ, δ= 5 with weights λ1 = 0.00, λ2 = 0.10 and,
λ3 = 0.90 to find the multiple-objective optimal designs on the dose interval ½logð.001Þ, logð100Þ�. Again, the
YBT algorithm failed to find the multiple-objective optimal design due to the same reasons as in the
previous example: jdðx, ξ tM, λÞj converged to a constant (0.036). When our modified algorithm with r = 10
was used, the multiple-objective optimal design was found in 20 s.

Table 3 shows the multiple-objective optimal designs from the YBT algorithm and our modified algorithm
for the two examples. Figures 3 and 4 confirm the optimality of the two multiple-objective optimal designs
found from our modified algorithm but not the designs found from the YBT algorithm.

Table 4 shows the multiple-objective optimal designs for the different Θs found from our modified
algorithm when we assumed λ1 = λ2 = λ3 = 1=3. They are all supported at 4 dose levels and always include the
lower and upper bound of the dose interval. The middle two dose levels and the proportions of subjects at
the doses of the multiple-objective optimal designs depend on the set of nominal values for Θ. Figure 5 is
the plot of the sensitivity function of the multiple-objective design shown in Table 4 when Θ1 is assumed as
the nominal values for Θ in model (2). The plot shows that the graph is bounded above by 0 with equality at
the optimal dose levels and so confirms the optimality of the generated design.
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Table 3: Multiple-objective optimal designs for estimating Θ, ED50 and MED in
Examples 1 and 2 found from the two algorithms.

Example 

YBT algorithm −6.91 −4.81 −4.54 −4.21 3.45
0.481 0.182 0.221 0.061 0.055

� �
Modified algorithm

−6.91 −4.71 − 3.97 6.90
0.481 0.413 0.055 0.051

� �
Example 

YBT algorithm
−6.91 2.41 3.47 4.60
0.460 0.084 0.429 0.027

� �
Modified algorithm

−6.91 2.30 3.37 4.60
0.458 0.074 0.441 0.027

� �
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Figure 3: Plots of the sensitivity functions of the
generated designs from the YBT and modified
algorithms for Example 1.
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Figure 4: Plots of the sensitivity functions of the
generated designs from the YBT and modified
algorithms for Example 2.
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How does a multiple-objective optimal design perform under a single-objective criterion? Table 5 displays
these efficiencies and also shows how well single-objective optimal designs perform under a variation of
criterion. As expected, single-objective optimal designs have efficiency 1 under their own criterion but do not
perform well under different objectives. On the other hand, the multiple-objective optimal design ξM, λ with
λ1 = λ2 = λ3 = 1=3, performs quite well for estimating Θ and the ED50 for the various sets of nominal parameter
values. It provides lower efficiencies for estimating the MED but still clearly outperforms the other two single-
objective optimal designs. We notice that the efficiencies of ξM, λ for the 3 objectives are not equal even though
we had set λ1 = λ2 = λ3 = 1=3 for the 3 objectives. This is often the case suggesting that careful choice of the set
for λ is important to capture the different efficiency requirements for each objective.

For multiple-objective optimal designs, the components in the weight vector λ represent the relative
importance of each criterion but they can be rarely preselected to produce the targeted efficiencies, other than
a sense that a larger weight for one objective should result in a higher efficiency under that objective. Thismeans
that determining in advance the correct weight vector λ to use in the compound criterion to find the multiple-
objective optimal designs can be problematic. In particular, it is often difficult to predict how a change in the
vector λ will translate to a change in the corresponding efficiencies, and this issue is frequently overlooked in
such work. As an illustration, consider finding a dual-objective optimal design for estimating Θ and the ED50 in
model (2) using the nominal setΘ2. In this case, λ is a scalar and the sought dual-objective optimal design ξλ, dual is

ξ λ,dual = arg max
ξ

λ logðEffDðξÞÞ+ ð1− λÞ logðEffED50ðξÞÞf g.

Table 4: Multiple-objective optimal designs for estimating Θ, the ED50 and the MED using different sets of
nominal values for Θ when λ1 = λ2 = λ3 = 1=3.

Θ ξM, λ Θ ξM, λ

Θ1 −6.91 −4.89 −4.18 6.91
0.344 0.323 0.162 0.171

� �
Θ5 −6.91 2.76 5.03 6.91

0.271 0.118 0.399 0.212

� �
Θ2

−6.91 −4.04 − 3.57 6.91
0.318 0.187 0.308 0.187

� �
Θ6

−6.91 − 1.26 −0.43 6.91
0.316 0.172 0.325 0.187

� �
Θ3

−6.91 − 1.52 0.04 6.91
0.329 0.226 0.262 0.183

� �
Θ7

−6.91 − 3.56 − 2.83 6.91
0.321 0.184 0.310 0.185

� �
Θ4

−6.91 − 2.79 − 2.38 6.91
0.316 0.183 0.313 0.188

� �
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Figure 5: Plot of the sensitivity function of the
multiple-objective optimal design when Θ=Θ1 for
Model (2) and λ1 = λ2 = λ3.
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Figure 6 shows the efficiency plots and visualize the effect of the choice of λ on the two efficiencies of
the dual-objective optimal design. The weight λ represents the importance of estimating the model para-
meters relative to estimating the ED50. If D-optimality is more important, λ should be large and EffDðξλ, dualÞ
should be larger than EffED50ðξ λ, dualÞ. Table 6 lists selected values of λ and shows when λ=0.55,
EffDðξ0.55, dualÞ=0.912. When λ increases from 0.55 to 0.90, EffDðξ0.90, dualÞ=0.995, implying that an increase
of 64% in λ brings an increase of only 9% in D-efficiency. The figure also suggests that setting λ=0.45
rather than 0.5 maximizes both efficiencies equally.

For 3 or more-objectives, it is harder to visualize the changes in the efficiencies of the generated design as
the weights vary in the compound criterion from the high-dimensional efficiency plot. To this end, we
generated multiple-objective optimal designs for each possible pair of values for λ1 and λ2 using a grid
density 0.05, and evaluated the efficiencies of the resulting compound optimal designs under each of the 3
criteria. Figure 7 shows how the 3 efficiencies vary as the different values of the weights in λ change when
Θ=Θ1. The figure shows that the multiple-objective optimal design provides equal efficiencies for the 3
objectives when λ1 = 0.20, λ2 = 0.35, and λ3 = 0.45, and it has EffD � EffED50 � EffMED � 0.800.
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Figure 6: Efficiency plots of the dual-objective optimal
designs when Θ=Θ2 in Model (2).

Table 5: Efficiencies of various optimal designs under different objectives and various nominal values for Θ’s when
λ1 = λ2 = λ3 = 1=3.

Θ Design EffDðξÞ EffED50 ðξÞ EffMEDðξÞ Θ Design EffDðξÞ EffED50 ðξÞ EffMEDðξÞ
Θ1 ξD  . . Θ5 ξD  . .

ξED50
�  . ξED50

�  

ξMED �   ξMED � . 

ξM, λ . . . ξM, λ . . .

Θ2 ξD  . . Θ6 ξD  . .
ξED50

�  . ξED50
�  .

ξMED �   ξMED �  

ξM, λ . . . ξM, λ . . .

Θ3 ξD  . . Θ7 ξD  . .
ξED50

�   ξED50
�  .

ξMED � .  ξMED � . 

ξM, λ . . . ξM, λ . . .

Θ4 ξD  . .
ξED50

�  

ξMED � . 

ξM, λ . . .

Notes: “�” represents undefined EffDðξÞ due to singular IðξD ;ΘÞ; “0” represents Effð�ÞðξÞ < 0.001.
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In practice, practitioners first prioritize the importance of each objective and set efficiency requirements
for each objective with higher efficiencies for the more important ones. For example, suppose Θ1 is the set
of nominal parameter values and we want to find an multiple-objective optimal design that maximizes
EffD subject to constraints that EffED50 ≥0.80 and EffMED ≥0.70. Figure 7 shows such an optimal design
exists and is given by the plot for λ1 = 0.40. By visual inspection, the required weights are λ1 = 0.40,
λ2 = 0.40 and λ3 = 0.20, and the resulting D-efficiency is EffD =0.879 under the constraints that
EffED50 = 0.838 ≥0.80 and EffMED =0.702 ≥0.70.

Table 6: Dual-objective optimal designs for different values of λ.

λ ξdual EffD EffED50

. −6.91 −4.05 − 3.59 6.91
0.250 0.247 0.253 0.250

� �
. .

.
−6.91 −4.13 − 3.46 6.91
0.250 0.251 0.249 0.250

� �
. .

.
−6.91 −4.15 − 3.43 6.91
0.250 0.251 0.249 0.250

� �
. .

.
−6.91 −4.18 − 3.43 6.91
0.250 0.250 0.250 0.250

� �
. .
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Figure 7: Efficiency plots of the multiple-objective optimal designs when Θ=Θ1 in Model (2).
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4.3 Robustness properties of multiple-objective optimal designs

This section investigates impact of uncertainty of the nominal parameter values on the multiple-objective
optimal designs. This can arise when there are different single best guesses for the set of nominal values for
the model parameters or there are several competing sets for the nominal values. In the latter case, one
could adopt a Bayesian approach that averages the criterion over the various choices and optimize the
resulting criterion. If nominal parameter values come from equally good previous studies or from equally
qualified experts, one may use a uniform prior to average out the uncertainty; otherwise weights assigned
to different sets of nominal parameter values may be chosen to reflect their plausibility. We now report the
results from our investigation on how mis-specification in nominal values of the model parameters affect
the performance of the multiple-objective optimal designs.

We first investigate whether multiple-objective optimal designs generally provide higher efficiencies for
all criteria than single-objective optimal designs when there is uncertainty in the nominal parameter values.
Consider the seven different sets of nominal values for Θ for the different drugs. For fixed λT = ðλ1, λ2, λ3Þ,
the robust multiple-objective optimal design ξRM, λ maximizes a weighted log product of the 3 efficiencies
using a prior weight qi for Θi, i.e.

ξRM, λ = arg max
ξ

X7
i= 1

qi
λ1
s
logðjIðξ ;ΘiÞjÞ− λ2 logðVariðcED50ÞÞ− λ3 logðVariðdMEDÞÞ

� 	" #
.

Here Varið�Þ=Varð�ÞjΘ=Θi
,
P7

1 qi = 1 and qi, as mentioned above, is the prior weight representing the relative
plausibility of each Θi. If we believe that all 7 sets of the nominal values are equally likely, we may want to
use a uniform prior with q1 = q2 = � � � = q7 = 1=7. For a user-selected λ and a given prior distribution qi on
Θi, i= 1, . . . , 7, a direct calculation shows the sensitivity function is:

dðx, ξÞ=
X7
1

qi
λ1
s
giðxÞI− 1ðξ ;ΘiÞg

T
i ðxÞ+ λ2

ðgiðxÞI −ðξ ;ΘiÞ½ED′50i�TÞ
2

ED′50iI−ðξ ;ΘiÞ½ED′50i�T
+ λ3

ðgiðxÞI −ðξ ;ΘiÞ½MED′i�TÞ2

MED′iI−ðξ ;ΘiÞ½MED′i�T

0@ 1A8<:
9=;− 1, (7)

where giðxÞ = gðxÞjΘ=Θi
, ED′50i = ED′50jΘ=Θi

and MED′i =MED′jΘ=Θi
. For the robust multiple-objective optimal

design ξRM, λ, we require that dðx, ξRM, λÞ ≤0 for all doses x in the dose range X, with equality when x is a
dose level in ξRM, λ. When λ1 = λ2 = λ3 and qi = 1=7, i= 1, . . . , 7, the robust multiple-objective optimal design
found from our modified algorithm is a 10-point design given by:

ξRM, λ =
− 6.91 − 4.89 − 3.81 − 2.87 − 2.40 −0.75 −0.56 3.19 5.15 6.91
0.168 0.115 0.150 0.064 0.130 0.049 0.126 0.020 0.121 0.057

� �
.

Figure 8 shows that the sensitivity function of the robust multiple-objective optimal design has a maximum
value of 0 at the optimal dose levels over the dose interval and so confirms the optimality of the generated
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Figure 8: Plot of the sensitivity function of the robust
multiple-objective optimal design ξRM, λ from the
modified algorithm when λ1 = λ2 = λ3 and Model (2) is
assumed.
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design. Table 7 displays the efficiencies of ξRM, λ and the various single-objective optimal designs for the
different Θs. In the table, ξDi

, ξED50i, ξMEDi
are the single-objective optimal designs obtained when Θ=Θi,

and we use 0 to represent efficiencies smaller than 0.001. We observe that the single-objective optimal
designs perform very poorly on other sets of nominal parameter values. On the other hand, ξRM, λ does not
provide high efficiencies under different nominal values of Θs and under each objective due to the
competitiveness of the criteria but it still clearly outperforms the single-objective optimal designs. For
space consideration, we do not provide results when unequal prior weights are used to combine the 3
objectives but note that the various efficiencies also depend on the prior weights.

5 Summary

We presented a systematic method for finding multiple-objective optimal designs for the 4-parameter
logistic regression model. The objectives were to estimate (1) the overall dose-response curve; (2) the
ED50; and (3) the MED. The methodology is general and can be directly applied to other models and
criteria. In this paper, all objectives have the same inferential nature, but they can be more extended to
balance ethical and inferential requirements in a study [41]. Our optimal designs are versatile and can be

Table 7: Efficiencies of optimal designs under various criteria for different sets of nominal values for Θ.

EffD EffED50 EffMED EffD EffED50 EffMED

Θ1 ξD1
 ξED501  ξMED1

 Θ5 ξD1
 ξED501  ξMED1



ξD2
. ξED502 . ξMED2

. ξD2
. ξED502  ξMED2



ξD3
. ξED503  ξMED3

 ξD3
. ξED503 . ξMED3



ξD4
. ξED504 . ξMED4

 ξD4
. ξED504  ξMED4



ξD5
 ξED505  ξMED5

 ξD5
 ξED505  ξMED5



ξD6
. ξED506 . ξMED6

 ξD6
. ξED506  ξMED6

.
ξD7

. ξED507 . ξMED7
 ξD7

. ξED507  ξMED7


ξRM, λ . ξRM, λ . ξRM, λ . ξRM, λ . ξRM, λ . ξRM, λ .

Θ2 ξD1
. ξED501 . ξMED1

 Θ6 ξD1
. ξED501  ξMED1

.
ξD2

 ξED502  ξMED2
 ξD2

. ξED502  ξMED2
.

ξD3
. ξED503  ξMED3

 ξD3
. ξED503 . ξMED3

.
ξD4

. ξED504 . ξMED4
 ξD4

. ξED504 . ξMED4


ξD5
 ξED505  ξMED5

 ξD5
. ξED505 . ξMED5



ξD6
. ξED506 . ξMED6

 ξD6
 ξED506  ξMED6



ξD7
. ξED507 . ξMED7

. ξD7
. ξED507 . ξMED7

.
ξRM, λ . ξRM, λ . ξRM, λ . ξRM, λ . ξRM, λ . ξRM, λ .

Θ3 ξD1
. ξED501  ξMED1

. Θ7 ξD1
. ξED501 . ξMED1



ξD2
. ξED502 . ξMED2

 ξD2
. ξED502 . ξMED2

.
ξD3

 ξED503  ξMED3
 ξD3

. ξED503 . ξMED3


ξD4
. ξED504 . ξMED4

 ξD4
. ξED504 . ξMED4

.
ξD5

. ξED505  ξMED5
 ξD5

 ξED505  ξMED5


ξD6
. ξED506 . ξMED6

. ξD6
. ξED506 . ξMED6



ξD7
. ξED507 . ξMED7

 ξD7
 ξED507  ξMED7



ξRM, λ . ξRM, λ . ξRM, λ . ξRM, λ . ξRM, λ . ξRM, λ .

Θ4 ξD1
. ξED501 . ξMED1



ξD2
. ξED502  ξMED2

.
ξD3

. ξED503  ξMED3


ξD4
 ξED504  ξMED4



ξD5
 ξED505  ξMED5



ξD6
. ξED506  ξMED6



ξD7
. ξED507 . ξMED7

.
ξRM, λ . ξRM, λ . ξRM, λ .
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properly tailored to provide user-specified efficiencies for the various objectives, with higher efficiencies for
the more important objectives.

The YBT algorithm was recently proposed as a state-of-the-art algorithm to find single-objective optimal
designs, but we found that the algorithm can sometimes fail to find multiple-objective optimal designs. We
overcame the problem by modifying the YBT algorithm by ensuring it selects better initial dose levels using
the traditional V-algorithm. Our modified algorithm finds tailor-made multiple-objective optimal designs
and can sometimes also outperform the YBT algorithm for searching single-objective optimal designs. For
instance, in Examples 1 and 2, the YBT algorithm took 7.80 and 4.91 s respectively, to find the D-optimal
designs and our modified algorithm using r = 10 took 4.62 and 1.81 s respectively, to find the same optimal
designs. We also found that our multiple-objective optimal designs obtained from our modified algorithm
are more robust than single-objective optimal designs to mis-specifications in nominal values for the model
parameters and to a change in the design criterion. Our software implementation can be modified to
generate other types of multiple-objective designs for other models and objectives, compare them with
competitive designs, and help the user make an informed decision on the design for implementation.
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