UCLA

UCLA Electronic Theses and Dissertations

Title
A Unified Knowledge Representation System for Robot Learning and Dialogue

Permalink
https://escholarship.org/uc/item/1{5839gXx

Author
Shukla, Nishant

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/1j58g9gx
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

A Unified Knowledge Representation System

for Robot Learning and Dialogue

A thesis submitted in partial satisfaction
of the requirements for the degree Master of Science

in Computer Science

by

Nishant Shukla

2016



© Copyright by
Nishant Shukla

2016



ABSTRACT OF THE THESIS

A Unified Knowledge Representation System

for Robot Learning and Dialogue

by

Nishant Shukla

Master of Science in Computer Science
University of California, Los Angeles, 2016

Professor Song-Chun Zhu, Chair

To allow wide-spread adoption of consumer robotics, robots must be able to adapt to their
environment by learning new skills and communicating with humans. Each chapter explains a
contribution to achieve this goal. Chapter One covers a stochastic And-Or knowledge
representation framework for robotic manipulations. Chapter Two further expands this
established system for robustly learning from perception. Chapter Three unifies perception with
natural language for a joint real-time processing of information. We've successfully tested the
generalizability and faithfulness of our robotic knowledge acquisition and inference pipeline. We

present proof of concepts in each of the three chapters.
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Chapter 1: A Unified Framework for Human-Robot Knowledge Transfer

Abstract

Robots capable of growing knowledge and learning new
tasks is of demanding interest. We formalize knowl-
edge transfer in human-robot interactions, and establish
a testing framework for it. As a proof of concept, we
implement a robot system that not only learns in real-
time from human demonstrations, but also transfers this
knowledge.

Introduction

Transferring knowledge is a vital skill between humans
for efficiently learning a new concept. In a perfect sys-
tem, a human demonstrator can teach a robot a new task
by using natural language and physical gestures. The
robot would gradually accumulate and refine its spatial,
temporal, and causal understanding of the world. The
knowledge can then be transferred back to another hu-
man, or further to another robot. The implications of
effective human to robot knowledge transfer include the
compelling opportunity of a robot acting as the teacher,
guiding humans in new tasks.

The technical difficulty in achieving a robot imple-
mentation of this caliber involves both an expressive
knowledge structure and a real-time system for non-
stop learning and inference. Recently, skill acquisition
and representation have become some of the core chal-
lenges in achieving robots capable of learning through
human demonstration.

We propose a real-time unified learning and inference
framework for knowledge acquisition, representation,
and transfer. Knowledge is represented in a Spatial,
Temporal, and Causal And-Or Graph (STC-AoG) hier-
archical network (Tu et al. 2014), which can be thought
of as a stochastic grammar. The STC-AoG encapsu-
lates the hierarchical compositional structures of phys-
ical objects, logical deductions, and instance-based ac-
tions. Our knowledge graph manipulation framework
enables learning to be a continuous on-line process that
occurs alongside inference. We view a robot as a knowl-
edge database, where humans may deposit and with-

Copyright (©) 2015, Association for the Advancement of Arti-
ficial Intelligence (www.aaai.org). All rights reserved.

draw skills. These skills can be used by both humans
and robots alike.

As a proof of concept, we teach an industrial robot
how to fold clothes (Figure 1). The robot watches a hu-
man demonstrator and learns in real-time. To test the
faithfulness of the human-robot knowledge transfer, we
propose an evaluation procedure called the Knowledge
Transfer Test. Our experiments demonstrate that our
proposed framework can adequately transfer knowledge
to and from a robot. Furthermore, we illustrate our sys-
tem’s interactive learning capabilities that are backed by
a Bayesian formulation.

L‘.‘@
Figure 1: The robot autonomously performs a cloth
folding task after learning from a human demonstration.

Related Works

We extend the learning of And-Or grammars and se-
mantics from video (Si et al. 2011) to an interactive real-
time robotics platform with a natural communication in-
terface between humans. The And-Or data structure has
also been used in learning a visually grounded storyline
model from labeled videos (Gupta et al. 2009); how-
ever, our system requires no labeled data, and evokes
a richer segmentation of spatial, temporal, and causal
concepts for more tractable queries. Miller et al. es-
tablish high standards for a cloth-folding robot, but our
focus is instead on novel learning, knowledge represen-
tation, and knowledge transfer. The action-planning in-
ference system in our STC-AoG data structure resem-
bles closest to a Planning Graph (Blum and Furst 1997),



which is essentially an STC-AoG without causal nodes.
Yang et al. learn concrete action commands from small
video clips. Unlike their system, our design allows a
modifiable grammar and our performance is measured
on multi-step actions.

Contributions

The contributions of our paper include the following:

o A unified real-time framework for learning and infer-
ence on a robot system by using an STC-AoG data
structure for ensuring faithful knowledge transfer.

e A test to evaluate the success of a human-robot
knowledge transfer system.

Our Approach

We encapsulate knowledge by an expressive graphical
data structure G, = (Gs, Gt, G.) which models the
compositional structures of objects G5, actions G and
causality G.. A specific piece of information or skill,
such as how to fold clothes, is a subgraph G C Gq.
The goal of knowledge transfer is to deliver G from one
agent (e.g. human) to another (e.g. robot) with a mini-
mum loss of knowledge.

In human-robot interactions, we restrict communica-
tion to only physical actions through a video-camera
sensor V, and natural language text L. Therefore, the
learner must construct an optimal G based only on V'
and L, resulting in the Bayesian formulation,

G* = arg r%atxP(Gtﬂ/, L)= arg max PV, L)
Similar to (Ha, Kim, and Zhang 2015), we use a graph
Monte Carlo method that assumes the graph structure is
determined only by that of the previous iteration.

G* = arg max P(V|G, L)P(Gy-1, L)

The learning algorithm is similar to a marginalization-
based parameter learning algorithm, where we first
marginalize our STC-AoG, and learn the S-AoG, T-
A0G and C-AoG separately, then jointly learn the con-
ditional model between each other.

Figure 2 shows a small segment of G*, and specific
details of the spatial, temporal, and causal segments are
described as follows.

Spatial Representation

Sensory data from the environment is encoded to form
a belief representation. We use a PrimeSense camera
to capture RGB-D (Red, Green, Blue, and Depth) in-
formation per frame. We represent every cloth by a
high-level abstract understanding based off its contour
shape, and a low-level representation by specific key-
points. The keypoints and contour shape data are used
as input to the folding algorithm which generalizes to
arbitrary articles of clothing. To store the hierarchi-
cal structure of physical objects, we use an And-Or
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Figure 2: An automatically learned STC-AoG.

Graph data-structure, called the Spatial And-Or Graph
(S-AoG) (Zhu and Mumford 2006). AND nodes in the
S-AoG represent structural compositionality (i.e. a ve-
hicle has an engine). OR nodes in the S-AoG represent
variations (i.e. a car is a type of vehicle).

Causal Representation

The perceived model of the world is then used to learn
a logical cause-and-effect type of reasoning from a

P(V|Gy, L)P(Gy, L) single-instance, inspired by the Dynamics Model (Wolff

2007).

The Dynamics Model defines causal relationships as
interpretations of force vectors. The nodes in the S-AoG
are normalized feature vectors in a higher dimensional
space, and are acted on by force vectors from the T-
Ao0G. As per the model, if the net force on a spatial node
is collinear with the vector represented by the end-state
of an action, then a causality is deduced, as shown in

Figul'e 3 .
E ﬁ
R

Figure 3: Forces associated with the simulated actua-
tor 7' and other forces O sum to produce a resulting
R force, which is nearly collinear to the observed end-
state F/, implying that 7" causes S7 to become Sa.

T

O

The causal relationships are stored in a Causal And-
Or Graph (C-AoG). AND nodes in the C-AoG indicate
that all preconditions are necessary, whereas OR nodes
indicate that only one of the preconditions is sufficient.



Temporal Representation

These deductive models are used to plan out the next
course of action, which may affect the environment.
The actuators that affect the environment, whether by
the robot or the human, are represented in another data-
structure, called the Temporal And-Or Graph (T-AoG).
AND nodes represent actions done in a series of steps.
OR nodes represent variations in possible actions.

Joint Representation

We represent the physical models (S-AoG), the reason-
ing models (C-AoG), and the environment actuators (T-
AoQG) all into one unified Spatial Temporal Causal And-
Or Graph (STC-AoG) data structure. As a consequence,
the whole system forms a closed-loop from perception
to learning to inference, and back again to perception.
Figure 2 demonstrates a small portion of the STC-AoG
applied to a cloth-folding task.

Knowledge Transfer Test

_ -sO sl s2 ~ s3.
- ’ N ~ o
Robot Robot Human
A B B
o N \..:I’J

Figure 4: Arrows represent the direction of knowledge
transfer. The judge assigns task scores at each step.

One of the most useful properties of knowledge trans-
fer is the ability to propagate the knowledge among oth-
ers. To determine the proficiency of knowledge transfer
to and from an artificial agent, we propose the following
three-part test.

A human demonstrator H4 will perform a chosen
task to receive a task score sy by a human judge. In
the first part of the test, H4 will teach this task to a
robot R4 that has not been previously trained on the
task. The judge will assign a task score s; based on
R 4’s performance.

Next, the second test will evaluate R 4’s ability to
transfer knowledge to another robot Rp that has not
been previously trained on the task. Robot-to-robot
knowledge transfer can be as direct as sending over the
explicit knowledge structure, which in our case is the
STC-Ao0G. Again, the judge will assign a task score s,.

Finally, Rp must teach the task to a human Hp that
has no previous knowledge of the task procedure. A
task score s3 will be assigned by the judge. If all three
task scores match within 10% of sq, then R 4 is said to
have passed the Knowledge Transfer Test (KTT). The
entire process is visualized in Figure 4

Experimental Results

We evaluate our framework on a two-armed robot us-
ing the proposed Knowledge Transfer Test on a cloth
folding task. To benchmark real-time performance, we
calculate the ratio between the duration of the demon-
stration and the total time spent learning. The average
speed of our robot system is 5 fps, resulting in a sys-
tem which out-performs most perception-heavy robot
learning-systems today.

Our robot was able to understand the cloth-folding
task, generating a STC-AoG similar to Figure 2, confi-
dently enough to pass the first part of the KTT. We were
able to save the graphical structure and load it into a dif-
ferent type of robot to pass the second part of the KTT.
The robot was also able to teach the task successfully
to a human, but since folding clothes is already a well
known skill by most humans, we set aside deeper inves-
tigation of robot-to-human teaching for future work.
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Chapter 2:
Robot Learning with a
Spatial, Temporal, and Causal And-Or Graph

Abstract— We propose a stochastic graph-based frame-
work for a robot to understand tasks from human demon-
strations and perform them with feedback control. It
unifies both knowledge representation and action planning
in the same hierarchical data structure, allowing a robot
to expand its spatial, temporal, and causal knowledge at
varying levels of abstraction. The learning system can
watch human demonstrations, generalize learned concepts,
and perform tasks in new environments, across different
robotic platforms. We show the success of our system by
having a robot perform a cloth-folding task after watching
few human demonstrations. The robot can accurately
reproduce the learned skill, as well as generalize the task
to other articles of clothing.

I. INTRODUCTION

Writing automated software on robots is not nearly as
robust as that on traditional computers. This is due to
the heavy burden of matching software assumptions to
physical reality. The complexities and surprises of the
real world require robots to adapt to new environments
and learn new skills to remain useful.

In robot automation, implicit motor control is widely
used for learning from human demonstrations [1] [2]
[3]. However, implicit motor control is insufficient for
generalizing robot execution. For instance, a robot can
imitate a human’s demonstration to open a door; yet,
it cannot execute a similar motion trajectory such as
opening a window without the explicit representation
of the task. Intuition such as how to rotate the joints
of an arm is not something easily expressible, but
rather learned through experiences. Uniting explicit and
implicit knowledge allows immediate communication
through natural language [8], as well as clear grounding
of abstract concepts into atomic actions.

In this paper, we propose a unified framework to
bridge the implicit motor control with explicit high-
level knowledge so the robot can understand human
behavior, perform a task with feedback control, and
reason in vastly different environments. As a proof of

C. Xiong, N. Shukla, W. Xiong, and S.-C. Zhu are
with the Center for Vision, Cognition, Learning, and
Autonomy (VCLA), University of California, Los Angeles

caimingxiong@ucla.edu, nxs@ucla.edu,
wenlongx@gmail.com, sczhu@stat.ucla.edu

concept, we teach a robot how to fold a shirt through
few human demonstrations, and have it infer how to
fold never-before-seen articles of clothing, such as pants
or towels. The same causality-learning framework can
be extrapolated to arbitrary tasks, not just cloth-folding.
Specifically, the robot can learn different skills (e.g.
flattening, stretching) depending on which features it
tracks (e.g. smoothness, elastic stress). Moreover, since
explicit knowledge is structured graphically, our frame-
work naturally allows for the merging, trimming, and
addition of knowledge from various human demonstra-
tions, all with feedback control. The high-level concepts
are human-understandable, so both the human and robot
can communicate through this intermediate language [7].
Thus, programming the robot becomes an act of merely
modifying a graph-based data structure.

The contributions of this paper include the following:

« Proposes a cross-platform stochastic framework for
robots to ground human demonstrations into hier-
archical spatial, temporal, and causal knowledge.

« Demonstrates a robot capable of learning, correct-
ing its mistakes, and generalizing in a cloth-folding
task from human demonstrations.

o Establishes the first system to use a non-rigid phys-
ical simulation to model the robot’s environment to
improve task execution.

o Provides experimental evidence of our framework
to generalize a cloth-folding task across different
clothes and different robot platforms.

II. RELATED WORKS

While precisely grounding a human demonstration to
atomic robot actions has been done in various forms
[6] [13] [26], we instead focus on the novel represen-
tation and generalizability of tasks. Beetz et al. inte-
grate robot knowledge representation into the perception
processes as well, but our framework allows alternative
planning generated by probabilistic sampling to match
observed expectations. For example, there are multiple
ways to fold a t-shirt, and each of these ways has its
own likelihood. Our probabilistic learning framework
resembles closest to the human-inspired Bayesian model
of imitation by Rao et la. [21]. However, we instead



emphasize the hierarchical and ever-changing nature of
spatial, temporal, and causal concepts in the real world.

Autonomously folding clothes has been demonstrated
in various works. Wang et al. [29] were able to success-
fully design a perception-based system to manipulate
socks for laundry. Miller et al. [11] have demonstrated
sophisticated cloth-folding robots, and Doumanoglou et
al. [28] have made substantial progress in autonomously
unfolding clothes. On the other hand, our focus is to un-
derstand how to perform arbitrary tasks. There are other
systems [6] that also learn concrete action commands
from small video clips, but unlike those, our design
allows a modifiable grammar and our performance is
measured on multi-step long-term actions. Furthermore,
our solution to knowledge representation is more power-
ful than commonsense reasoning employed by first-order
logic [19], since it takes advantage of the probabilistic
models under ambiguous real-world perception.

Our work is based on the knowledge representation
system incorporated by Tu et al. [12], augmented heavily
into the robotics domain. We extend the learning of event
And-Or grammars and semantics from video [4] to our
real-time robotics framework. The And-Or graph encap-
sulates a conformant plan under partial observability,
enabling an architecture that is cognitively penetrable
since an updated belief of the world alters the robot’s
behavior [14]. Unlike traditional graph planning [10],
the hierarchical nature of the knowledge representation
system enables a practical way of generating actions for
a long-term goal.

III. METHOD

There is often a fine distinction between memorization
and understanding, where the latter enables generaliz-
ing learned concepts. In order to understand a human
task from demonstrations/videos such as cloth-folding, a
knowledge representation system is necessary to ensure
actions are not simply memorized. Four types of knowl-
edge are important for understanding and generalizing:

o Spatial knowledge expresses the physical config-
uration of the environment when performing the
task. For a cloth-folding task, a table, cloth, and
each part of the cloth, such as the left and right
sleeve of a shirt, needs to be detected.

+ Temporal knowledge reveals the series of human
actions in the process of the task. In cloth-folding,
the hand motion, grip opening, and grip closing ac-
tions are essential. These actions combine together
to form a fold action.

o Causal knowledge conveys the status change of an
object in each dynamic human action. For example,
a shirt may be folded in various ways, either by
folding the left sleeve into the middle and then the

right sleeve, or vice versa. Folding a cloth requires
multiple hierarchical steps for reasoning.

« The interplay between the spatial, temporal, and
causal concepts manifests a generalizable form of
knowledge to be used in changing application do-
mains. The robot must choose an action to achieve a
state change by using a causal reasoning concept.
Each of the three must work together to express
learned knowledge.

A. Mathematical Formulation for Human Task

Given a set of human task demonstrations D =
{D1,Ds,---,D,} such as cloth-folding videos, the
goal is to learn a joint model (Gsr¢) including Spatial,
Temporal, and Causal concepts, that we formulate as

Gére = argmax P(Ggre|D) (D
Gstc

= P(Gs|D) - P(Gr|D) - P(Gc|D)
-P(R(Gs,Gr,Ge)|D)

where Gg is the model of spatial concepts, Gr is
the model of temporal concepts, G¢ is the model
of causal concepts, and R(Gg,Gr,G¢) is the re-
lational/conditional model between spatial, temporal,
causal concepts.

To implement this formulation, we need to define the
concrete representation for each symbol in Eq. 1. Due
to the structured and compositional nature of spatial,
temporal, and causal concepts, we adopt the hierarchical
stochastic grammar model, And-Or graph (AoG) [5], as
the base of our model representation which is introduced
below. To simplify the learning process, we marginalized
the complex STC-AoG (Ggr¢) into the S-AoG (Gg),
T-AoG (G7) and C-AoG (G(); thus, we can learn the
G, G and G separately as the model’s initialization,
then jointly learn the conditional model between them.

B. And-Or Graph Overview

The And-Or Graph is defined as a 3-tuple G =
(V,R, P), where V = VAND yVORyU VT consists of a
disjoint set of And-nodes, Or-nodes, and Terminal nodes
respectively. R is a set of relations between Or-nodes or
subgraphs, each of which represents a generating process
from a parent node to its children nodes. P(r) is an
expansion probability for each relation.

Figure 1 shows an example of an And-Or graph. An
And-node represents the decomposition of a graph into
multiple sub-graphs. It is denoted by an opaque circle,
and all the out-going edges are opaque lines. An Or-
node is a probabilistic switch deciding which of the sub-
graphs to accept. It is denoted by an open circle with
out-going edges drawn in dashed lines. The Terminal
node represents grounded components, often referred to
as a dictionary.



(
/"‘:"
rs ~u
Shirt %ﬂts %ss
Left Right
sleeve ! ( ! ! Ig
b _ «sleeve
7 Mﬁdle \\
Dictionary # 1 AN

IRV

Fig. 1.

ORedge =essss Spatial And-Or Graph
AND edge Indoor scene
‘ ~
Object node (.’ . Foreground

Background

—)

Spatial Parse Graph

Indoor scene

Foreground Background

The Spatial And-Or Graph on the left represents the ongoing perceptual knowledge of the world, i.e. a learned stochastic visual

grammar. A specific instance of the And-Or graph is realized in the parse graph on the right.

The nodes are structured into a hierarchical directed
acyclic graph (DAG) structure. The AoG is a combina-
tion of a Markov tree and Markov random field, where
an And-node corresponds to a graphic template model,
and an Or-node corresponds to a switch in a Markov
tree [17].

Given a set of human demonstrations D, the graph G
is composed of an AoG graph structure G and parame-
ters f. The nodes and rules/edges in the graph structure
aim to maximize the objective function, denoted by the
posterior probability:

P(G|D) = P(G,0|D) )
= P(G|D)P(0|D,G) 3)

The first term models the structure of an And-Or
graph G from a human demonstration D. To solve the
first term, we manually design the structure of the S-
AoG, but we learn the T-AoG and C-AoG structure
automatically [4] [25] [15].

The second term models the parameters 6 in the
graph, given the learned knowledge graph structure. It
is reformulated as follows:

P@ID,G) < [ P(Dil6,G) @)
D;eD
~ [ maxP(Dilpg:. 0.6)P(pg:l0.G)
D,eD Pgi
5)

where pg; is the parse graph of D;. A parse graph is
an instance of G where each Or-node decides one of its
children. P(pg;|0,G) is the prior probability distribution
of parse graph pg; given G. To simply the learning

process, we set it as a uniform distribution. Thus,

P(0|D,G) x || max P(D;|pg;,0,G) (6)
pPgi
D;,eD
And,

P(Di|pgivevg) = H P(Chv|v7011)4ND) (7)
vEVAND
[I P(Cholv.09%) (8)
vEVOR
IT P@Dilv) ©)
veVT
where Ch, denotes the child of a non-terminal node
v € VANPUVOR The probability derivation represents
a generating process from a parent node to its child node,
and stops at the terminal nodes to generate the sample
D,. The parameters are learned in an iterative process
through a Minimax Entropy algorithm explain in more
detail later.

C. S-AoG: Spatial Concepts Model

A powerful way to capture perceptual information is
through a visual grammar to produce the most probable
interpretations of observed images. Therefore, we repre-
sent spatial concepts through a stochastic Spatial And-
Or Graph (S-AoG) [5]. Nodes in the S-AoG represent
visual information of varying levels of abstraction. The
deeper a node lies in the graph, the more concrete of
a concept it represents. An And-node signifies physical
compositionality (i.e. a wheel is a part of a car) whereas
an Or-node describes structural variation (i.e. a car is a
type of vehicle).

As demonstrated in Figure 1, the root node of the S-
AoG encompasses all possible spatial states a robot may
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perceive. Here, the “Indoor scene” is decomposed into
“Foreground” and “Background,” which are then further
decomposed. The nodes deeper in the tree represent
finer and finer concepts until they end up the terminial
nodes consisting of grounded perception units such as
the sleeve of t-shirt.

D. T-AoG: Temporal Concepts Model

The action-space of the world is often an assortment
of compositional and variational sub-actions. The hierar-
chical nature of actions leads us to represent actions by a
stochastic Temporal And-Or Graph (T-AoG) [4]. And-
nodes correspond to a sequence of actions (i.e. close
the door, then lock it), whereas Or-nodes correspond
to alternate conflicting actions (i.e. close the door, or
open the door). The leaf nodes of this graph are atomic
action primitives that the robot can immediately perform.
Different sequences of atomic actions produce different
higher-level actions.

The T-AoG structure is learned automatically using
techniques from Si et al. [4] establishing an initial
knowledge base of actions. Our T-AoG does not learn
new atomic actions, but may learn higher-level actions
that are built from these atomic actions. By fixing the set
of atomic actions, we ensure the grounding of higher-
level actions to alleviate the correspondence problem.
Our framework assumes detectors of such atomic action
as input.

As shown in Figure 2, the root node of the T-AoG
represents all possible actions. As we traverse the tree
down, the actions become less and and less abstract,
until they can no longer be simplified. Therefore, the
robot can unambiguously perform the atomic actions
represented by the leaf nodes.

The T-AoG provides us a way to define the structure
and sequence of actions, but how an action causes a
change in state is incorporated in the causality data
structure defined next.

E. C-AoG: Causal Concepts Model

Causality is defined as a fluent change due to a
relevant action. We can think of fluents as functions on
a situation x1(s),x2(s), ..., such as the state of a car’s
engine (on vs. off) or its current speed (Smph, 10mph,
etc.). We use the Causal And-Or Graph (C-AoG) to
encapsulate causality learned from human demonstration
[15], as shown in Figure 3. Each causal node is a
fluent change operator, transforming an input fluent to
an output fluent by using an action from the T-AoG. As
shown in the diagram, there are various ways to reach the
same state. Or-nodes capture the various ways a fluent
may change from one state to another.

From the point of view of automated planning, fluents
are multi-variate observations of a state. The fluents that
change due to a relevant action are vital for predicting
future actions. If a fluent does not change from a change-
inducing action, then it is irrelevant with respect to
the action. These time-invariant properties as defined as
“attributes” of the node (i.e. color, weight). Addition-
ally, fluents that change due to an inertial action (i.e.
actions that are irrelevant to a fluent change) are noted
inconsistent.

For example, given an cloth s, let fluent x;(s) rep-
resent high-level abstract information such as the shape
of a cloth, whereas if the cloth is a shirt, fluent z5(s)
represents specific keypoints for shirts. The C-AoG
structure is learned through an information projection
pursuit outlined by Fire et al [15]. The STC-AoG uses
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Fig. 3. The Causal And-Or Graph encapsulates the fluent changes per action. The parse graph on the right shows the reasoning system in
action.

these relevant fluent changes to plan out tasks.

FE. Relational Model between Spatial, Temporal, Causal
And-Or Graph

Each of the three And-Or Graphs are unified into a
common framework for a complete representation of the
world [12]. This explicit knowledge is represented by
a hierarchical graphical network specifying a stochastic
context sensitive grammar [16], called the the Spatial,
Temporal, and Causal And-Or Graph (STC-AoG) [12].
The cloth-folding task in our real-time robot framework
is incorporated as described in Figure 4.

T-A0G

Fold

Fig. 4. For illustrative purposes, this diagram shows simple interac-
tions between the spatial, temporal, and causal And-Or graphs. When
the width w or height h of the shirt is larger than the target width
wr or height h, the C-AoG triggers a fold action in an attempt to
reach a smaller folded shirt. The robot then folds the shirt to produce
the desired width and height (w < w¢ AND h < h7).

Formally, the fluent functions Vj z;(s;) partition the

reals R. Two fluents z;(s,) and x;(s,) are identical if
they belong in the same partition. Each spatial or tem-
poral situation s; may have multiple fluents (z1, x2, ...).

(10)

The fluent change between two states s; and sy is
formally defined as a binary vector:

Az (sj, k)

Nx(sj, si) = | Dwa(sy, sk) (11)

0 if ZL‘i(Sj) = l‘i(Sk)

Aziss, ) = 1 otherwise

By accumulating human demonstrations of an action,
we obtain a set of video clips Q, = {¢1, ¢, ...} for a
specific action a, where ¢; is a video clip showing action
a. The score w;(a) of an action to make a fluent change
is defined as:

_ 2ilaw=ie
Q||

\ 2o wila)®.

Fluents that represent specific properties, such as
keypoints, tend to be heavier weighted than those that
are broad high-level concepts, such as shape [18]. The
fluents are typically hand-chosen, but we suggest au-
tomatically generating various abstractions of fluents by
varying the dimensionality of autoencoders. Recent work
on spatial semantics [27] can also initialize nodes with
a set of useful fluents.

Vj wj(a) = P(Az; =1 Q) (12)

with the scores normalized by



The STC-AoG is not just a knowledge representation
system, but also a hierarchical planning graph. Folding
a shirt using shirt fluents x1(s) and z2(s) has greater
affordance than that from using just abstract shape
information x;(s). That way, causal reasoning remains
specific to the object, guaranteeing that when folding a
shirt, there is less preference to use knowledge about
how to fold pants if knowledge about how to fold shirts
already exists. We define the affordance of transferring
from state s; to s; using action a by aff(a,s;,s;) =
w(a)T Ax(s;, s;), suggesting that the automated plan-
ning and reasoning should only be based on the relevant
features.

Unifying the three sub-graphs produces a closed-
loop framework for robots learning from demonstrations.
Moreover, graphs can store relationships in an intuitive
and highly regular structure, allowing for algorithms that
rely on simple graph manipulations. The real world is
encoded through perception into the S-AoG to form a
physical belief state of the world. The learning algo-
rithm constructs a C-AoG to understand actions from
human demonstrations. And lastly, inference combines
the reasoning from the C-AoG and the actuators from
the T-AoG to physically perform the task. The energy
of the joint parse graph [12] combines the energy terms
of each:

Esrc(pg) = Es(pg)+Er(pg)+Ec(pg)+ Y, Er(r)
reR’

prg (13)

We use generative learning by the Minimax Entropy
Principle [20] to learn the probability distribution of STC
parse graphs P(pg). Doing so assumes that the sample
mean of statistics ¢;(pg) should approach the true
expectation s; from observations. The parameters are
solved by minimizing the Kullback-Leibler divergence
between the observed distribution and the candidate

KL(f|lp) = E¢llog f(pg)] — E¢[logp(pg)]. This sim-
plifies to a maximum likelihood estimate, formulated by

p* = argmax E[logp(pg)] = argmax Y _log p(pg;) + €
peEN pEQ T4
(14)

Iteratively, we choose the statistics F' = {¢1, ¢2, ...} that
minimize the entropy of the model, and the parameters
£ that yield maximum entropy.
p* = argmin{mélx entropy (p(pg; 0) } (15)
F
Effectively, the robot “daydreams” possible probability
distributions of parse graphs to converge with obser-

vations. During inference, it samples a parse graph to
perform the action.
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G. Learning Motor Control

The STC-AoG expresses explicit knowledge in a
graphical structure easily understandable by humans,
acting as a gateway for communication. However, the
STC-AoG only defines discrete salient spatial, temporal,
and causal concepts. The interpolation of how an indi-
vidual action is performed requires a specification of the
fine motor skills involved as well as an assignment of
probability distribution parameters.

The explicit knowledge captured by a causal node
represents a conformant plan learned by human demon-
strations. The information stored in the STC-AoG only
provides results from discrete time-steps, ¢ € N. Its
state-action table represents fluent changes by z!*1(s) =
f(z*(s),z%(a)). To shift paradigms from explicit to
implicit knowledge, we relax the assumption of null run-
time observability, and use a finer distinction in time,
2ttt (s) = f(2*(s),z*(a)). By learning this continuous
function f, the robot system is capable of verifying,
correcting, and inferring causal relations to adapt to
dynamic environments.

We make two assumptions to simplify the learning
of f. First, we restrict the range of spatial and tem-
poral changes to adhere to spatiotemporal continuity,
rendering sudden changes impossible. Second, we use a
physical simulator based on perception encoded by the
STC parse graph (STC-pg) to compare with reality at
rapid time intervals. When a discrepancy is detected, we
point fault at the robot’s actions. The feedback learning
system uses a simplified optimization process inspired
by Atkeson et al [22] to update the control mechanics.
Adjusting the parameters of the simulator to adhere to
reality also reveals useful knowledge, but it is out of
scope for this study.

H. Inference

Since the STC-AoG model is generatively learned, we
infer a parse graph through a simple sampling process.
As seen in Figure 5, the procedurally generated parse
graph lays out a conformant action plan for the robot.
It then creates a simulation of the action by converting
the STC-pg into a motion plan and spatial objects into
3D meshes from point cloud.

The simulation plan is matched with reality at small
interval steps to verify that the robot is at its correspond-
ing simulated state. In case of substantial mismatch be-
tween expected and actual states, the robot understands
the action did not complete, and that a new action plan
must be generated based on the latest perception input.
Concretely, the sampling procedure is encapsulated by
the algorithm in Figure 6.
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Fig. 5. The inference engine samples a parse graph to create
a conformant action plan. There is feedback between the plan, its
simulation, and the corresponding perceived execution.

1: while camera is producing image I do
2 pgl < Interpret(Gg, I;)

3 pgh < Sample(Gsrc, pg)

4 pgy + Sample(Gsro, pgs, pgy)

5 pgsro < Merge(pgs, pgt, pag)

6 PerformWithFeedback(pgsrc)

7: end while

Fig. 6. The robot inference algorithm performs tasks on a learned
STC-AoG. It interprets the sensory input as spatial, temporal, and
causal parse graphs, which are merged to formed a joint representation
that is sampled and acted on.

IV. EXPERIMENTS

We conduct our experiments on a cloth-folding task.
The S-AoG models the physical status of the cloth,
table, robot, human, and various decompositions of
each. The T-AoG consists of three atomic actions to
span the action-space for this simple task: MoveArm(a),
Grab, and Release. A Fold action in the T-AoG is
a higher-level And-node consisting of four children:
MoveArm(a), Grab, MoveArm(b), and Release, with the
corresponding textual representation: Fold(a,b)
MoveArm(a); Grab; Move Arm(b); Release.
And consequently, a specific instance of folding
is a series of Fold actions: FoldStylel =
Fold(a,b); Fold(c,d);...; Fold(y,z).  Lastly, the
C-Ao0G nodes describe how to fold a shirt from one
state to another, learned through human demonstrations.

We use Baxter, a two-armed industrial robot to per-
form our cloth-folding task. Each arm consists of 7
degrees of freedom that are adjusted through inverse
kinematics relative to the robot’s frame of reference. The
robot’s primary perception sensor is an Asus PrimeSense
camera that provides an aligned RGB-D (Red, Green,
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Blue, and Depth) point cloud in real-time. In order to
use localization results from perception, we compute the
affine transformation matrix from the camera coordinate
system to that of the robot. All components interact
together through the Robot Operating System (ROS).

The STC-Ao0G is stored in the platform-independent
Graphviz DOT language, and used by our platform
written in C++. The hand-designed perception logic
combines off-the-shelf graph-based [24] and fore-
ground/background [23] segmentation to localize a cloth
per frame. On top of that, we train a shirt detector model
using a Support Vector Machine to facilitate narrowing
down the search for an optimal S-AoG parse graph.
Each cloth node has a fluent z; describing the low-level
shape. If a cloth is a shirt, we represent the structure of
its keypoints as another fluent zo. We simplify learning
the probability distribution of parse graphs by limiting
the number of statistics to F' = {¢1}, where ¢; is the
affordance cost of the action sequence in a STC-pg.

Performance on a task is measured by the percent
of successful actions throughout the task. The overall
performance is the average of all task performances over
multiple trials. An action is successful if performing the
action satisfies the pre- and post-conditions of the causal
relationship used.

A. Experiment Settings

In the first set of experiments, we measure the perfor-
mance of representing learned knowledge from human
demonstrations. After watching human demonstrations,
the robot generates an action plan step by step. The
human performs the action suggested by the robot, and
at each step, the human qualitatively verifies whether the
robot’s action was indeed the intended action as per the
demonstration. If verification fails in either case, then
the action is marked unsuccessful, and otherwise it is
marked successful. This performance score on learning
will set the baseline for the next set of experiments.

In the second series of experiments, we measure
the quality of grounding the learned knowledge to the
robot’s actions. This time we let the robot, instead of
the human, perform the actions. We compare the perfor-
mance of the robot folding clothes with the results from
the first set of experiments to evaluate the success of
grounding physical actions to see how well they match
that of a human. The expected performance should be
less than the ground truth established from the previous
experiment.

In the third series of experiments, we measure the
improvements from a feedback system compared to
no feedback. We expect that the performance score
calculated through this step should be higher than that
from the previous experiment, but lower than the ground
truth.



Finally, we are also curious how much we can stretch
the generalizability of a learned task. After demon-
strating how to fold a t-shirt, we ask the robot to
infer how to fold different articles of clothing, such
as full-sleeve shirts, towels, and pants. The criteria for
generalizability of knowledge will follow the similar
performance procedure as in the previous experiments.

B. RESULTS

On 10 trials per four sets of different t-shirt folding
demonstrations D1, Dy, D3, D4, we measure the average
performance of using our system to learn knowledge,
ground robot actions, and control feedback.

Performance of Our System
100

20 H Fold Style 1

® Fold Style 2
60

Fold Style 3

40 ® Foid Style 4
20
0

Plan Execution Execution with feedback
Fig. 7. Our learning system successfully understood the various

folding techniques. It had some difficulty executing the task using
simply a conformant plan, but with added feedback the execution was
highly successful.

As seen in Figure 7, our knowledge representation
system was able to characterize the cloth-folding task
enough to faithfully communicate with a human, pro-
ducing a learned representation with an average perfor-
mance of 90%. This sets the upper bound for the next
two inference experiments. As anticipated, our frame-
work was able to ground the actions with a performance
of 42.5%. The low score indicates that although the
robot knows what to do, there is still a discrepency
between the human’s action and that generated by the
STC-AoG. By adding feedback correction of compar-
ing perception to physical simulation, the performance
leaped to 83.125%, also matching our expectation.

Generalizability of Our System

100

a0 :I—snlrt

60 ong-sleeve
Towel

40 u Pants

B [] ]

o ||

Plan Execution Execution with feedback
Fig. 8.  Our knowledge framework correctly understood how to

generalize a t-shirt folding instruction to long-sleeve shirts and towels;
however, it expectedly had difficulty extrapolating its knowledge to
fold pants.

The performance of generalizability was measured
after training the robot on only t-shirt folding videos.
The results are visualized in Figure 8. For example, since
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a full-sleeve shirt may have the same width and height
fluents as that of a t-shirt, the inference plan for folding
a full-sleeve shirt performed very well. Moreover, the
robot was able to generate reasonable action plans to
fold a towel it has never seen, since a t-shirt with both its
sleeves folded resembles the same rectangular shape of a
towel. However, generating a reasonable inference result
for folding pants was less successful due to the natural
lack of knowledge transferred between a shirt folding
and pant folding task. Figure 9 shows a few qualitative
results of successful folding plans and executions.

Fig. 9. Some qualitative results on the robot execution after learning
from human demonstrations.

V. DISCUSSION AND FUTURE WORK

The experiments show preliminary support for the
expressive power of the robot learning and execution
framework laid out in this paper. While we focus heavily
in the cloth-folding domain, the framework may be
used for training any goal-oriented task. In future work,
we wish to continue improving the robustness of each
spatial, temporal, and causal And-Or graph to optimize
for speed and accuracy.

The STC-AoG acts as a language to ground knowl-
edge and reasoning into robot actions. Since the knowl-
edge representation and robot action planning systems
share the same And-Or graph data structure, the graph
acts as a programming language for the robot, and self-
updating the graph is an act of metaprogramming.

Due to the hierarchical nature of the STC-AoG, the
higher level nodes are readily articulated and under-
standable by humans. are currently working on incor-
porating natural language statements, commands, and
questions to more easily allow humans to manipulate
the graph. To scale up the graph for life-long learning,
we are investigating other practical storage solutions,
including graph-based databases such as Neo4j [30].
Since the graph is sufficient to transfer knowledge, we
can upload different skills to a cloud platform and share
knowledge between different robots.

Limits in physical reachability and dexterity of the
robot arms played a crucial difficulty in mapping action
plans to motor control execution. If a grip location was
unreachable, the conformant plan would fail to execute
the action at all. Fortunately, by introducing the feedback
control system, we were able to at least extend the reach
as far as possible to grip a reasonable point.



Lastly, the performance of the causal learning system
relies on successfully detecting fluent changes. This
requires adjusting thresholds for fluent-change detectors
until the results seem just right. We solved this problem
by offline supervised learning for our chosen fluents,
but we set aside the problem of learning these threshold
parameters online to future work.

VI. CONCLUSIONS

The stochastic graph-based framework is capable
of representing task-oriented knowledge for tractable
inference and generalizability. It successfully unified
theoretical foundations of And-Or perception grammars
to a practical robotics platform. The experimental results
support our claims for grounding learned knowledge to
execute tasks accurately. We also express the generaliz-
ability of our framework by extrapolating from human
demonstrations of folding a t-shirt to other articles of
clothing. And lastly, our novel framework can make
use of perceived discrepancies between high-level action
plans and low-level motor control to verify and correct
actions.
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Chapter 3: Task Learning through
Visual Demonstration and Situated Dialogue

Abstract

To enable effective collaborations between humans and
cognitive robots, it is important for robots to continu-
ously acquire task knowledge from human partners. To
address this issue, we are currently developing a frame-
work that supports task learning through visual demon-
stration and natural language dialogue. One core com-
ponent of this framework is the integration of language
and vision that is driven by dialogue for task knowledge
learning. This paper describes our on-going effort, par-
ticularly, grounded task learning through joint process-
ing of video and dialogue using And-Or-Graphs (AOG).

Introduction

As a new generation of social robots emerges into
our daily life, techniques that enable robots to learn
task-specific knowledge from human teachers have be-
come increasingly important. In contrast to previous ap-
proaches based on Learning from Demonstration (Cher-
nova and Thomaz 2014) and Learning by Instruc-
tion (She et al. 2014), we are currently developing a
framework that enables task learning through simulta-
neous visual demonstration and situated dialogue. Sup-
ported by our framework, robots can acquire and learn
grounded task representations by watching humans per-
form the task and by communicating with humans
through dialogue. The long-term goal is to enable in-
telligent robots that learn from and collaborate with hu-
man partners in a life-long circumstance.

A key element in our framework is And-Or-Graph
(AOG) (Tu et al. 2014; Xiong et al. 2016), which em-
bodies the expressiveness of context sensitive grammars
and probabilistic reasoning of graphical models. We use
AOG to build a rich representation (i.e., STC-AOG) of
the Spatial, Temporal, and Causal knowledge about the
real world and the task. In addition, we are also design-
ing an AOG-based schema (i.e., CI-AOG) to model and
interpret the communicative intents between an agent
and its human partner. These expressive and deep repre-
sentations then allow a robot and a human to efficiently
and effectively establish and increment their common
ground (Clark 1996) in learning real-world tasks.

Copyright (©) 2016, Association for the Advancement of Arti-
ficial Intelligence (www.aaai.org). All rights reserved.
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This paper provides an overview of the AOG-based
framework and uses an example to illustrate our on-
going work on joint task learning from visual demon-
stration and situated dialogue.

Representations
STC-AOG

An And-Or-Graph (AOG) (Tu et al. 2014) is an exten-
sion of a constituency grammar used in Natural Lan-
guage Processing. It is often visualized as a tree struc-
ture consisting of two types of nodes, i.e., And-node
and Or-node. An And-node represents the configuration
of a set of sub-entities to form a composite entity; An
Or-node represents the set of alternative compositional
configurations of an entity. Using this general represen-
tation, three important types of task knowledge can be
modeled:

e Spatial And-Or Graph (S-AOG) models the spatial
decompositions of objects and scenes.

e Temporal And-Or Graph (T-AOG) models the tem-
poral decompositions of events to sub-events and
atomic actions.

e Causal And-Or Graph (C-AOG) models the causal
decompositions of events and fluent changes.

Figure 1 illustrates an example of the S-/T-/C- AOG
representation for cloth-folding tasks, which captures
the spatial, temporal, and causal knowledge of the do-
main. Robots can then utilize this rich knowledge rep-
resentation to understand, communicate, and perform
task-oriented actions. Based on this knowledge repre-
sentation framework, Xiong et al. (2016) has devel-
oped a statistical learning mechanism that automatically
learns the parameters (e.g., the branching probabilities
of Or-Nodes) of S-/T-/C-AOGs from a set of human
demonstration videos. Furthermore, methods for learn-
ing the structures of different types of AOG have also
been studied in previous work (e.g., Pei et al. 2013; Fire
and Zhu 2013).

The basic idea of learning AOG-based task knowl-
edge is to treat each demonstration as a specific in-
stance, or a so-called “parse graph”, which is generated
by selecting one of the alternative configurations at each
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Figure 1: An example of the S-/T-/C- AOG for a cloth-folding domain.

Or-node of an AOG model (see Tu et al. (2014) for de-
tails). Given a series of demonstrations represented as
parse graphs, the structures and parameters of the un-
derlying AOG model then can be learned using statisti-
cal learning techniques.

CI-AOG

Since AOG in essence can be viewed as a stochas-
tic grammar machinery, and has been shown power-
ful in parsing the hierarchical structure of goal-driven
events (Pei et al. 2013), we propose to use the same
mechanism for analyzing the intentional structure of
knowledge transferring dialogues.

For this purpose, we first construct an AOG, which
we call the “Communicative Intent” AOG (CI-AOG)
here, to describe how the intentional structure of such
dialogues could possibly unfold. Our CI-AOG is simi-
lar to the T-AOG or “event grammar” as we illustrated
earlier, where an Or-node captures different possibili-
ties and an And-node captures sequential events, and
the terminal nodes represent the basic actions (i.e., dia-
logue acts) that one can perform in a dialogue.

To illustrated the idea, we have manually crafted a
(partial) CI-AOG that can be used to analyze the inten-
tional structure of a task teaching dialogue as shown
in Figure 2. We composed this CI-AOG based on
“situated learning” literature (Lave and Wenger 1991;
Herrington and Oliver 1995) to model how the teacher’s
and the learner’s intents interact in a mixed-initiative di-
alogue. For example, we capture in this CI-AOG the
common intentions in situated learning, such as artic-
ulation (the leaner articulates what is being understood
regarding the current situation), reflection (the learner
reflects what has been learned), and assessment (the
teacher provides feedback to the learner’s reflections or
articulations).

Furthermore, the CI-AOG is also used to capture
the unique characteristics of dialogue, including turn-
taking, initiatives, and collaborative dynamics (Clark
1996; Clark and Schaefer 1989). To capture the turn-
taking dynamics in dialogue, each node in CI-AOG is
assigned a role (i.e., who the speaker is). This is illus-
trated in Figure 2 by assigning different colors to the
nodes (i.e., orange nodes represent the learner and blue
nodes represent the teacher). Therefore, an And-node
in CI-AOG not only represents the temporal order of its
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Figure 2: An example of Communicative Intent AOG
(CI-AOG).

children nodes, but also captures who takes the initiative
of the sub-dialogue and how the turn-taking switches
between the learner and the teacher.

The expressiveness of the AOG language also al-
lows us to capture the collaborative dynamics studied in
the discourse analysis literature (e.g., Clark and Schae-
fer (1989)). For example, as illustrated in the left bottom
part of Figure 2, after the learner requests the teacher
for teaching an alternative way of doing a task (i.e., the
Request-One-Alternative node), the teacher should re-
spond an explicit acknowledgement, or a negation, or
directly teach an alternative without explicit acknowl-
edging (the “relevant-next-turn” behavior).

Suppose a CI-AOG has already been constructed, it
then can be used for “parsing” the underlying inten-
tional structure of an ongoing dialogue. This is similar
to previous work (Pei et al. 2013) that used a Top-Down
parsing algorithm to analyze the hierarchical structure
of goal-driven events from an observed sequence of
atomic actions. Figure 3 further illustrates a parse graph
on the underlying intentional structure of the following
example dialogue.

Example dialogue of a robot learning to fold a t-shirt:

R1: Could you teach me how to fold the t-shirt?

H1: Sure.

H2: First, you fold the right sleeve towards the middle of the
t-shirt.

R2: I saw you approached the right sleeve, grasped there,
then moved to a position, and released your hand there.

R3: Is that position the middle of the t-shirt?
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Figure 3: The CI parse graph for the given example di-
alogue.

H3: Yes, that position is in the middle of the t-shirt.

R4: OK, what is the next step?

H4: Next, you fold the left sleeve to the middle.

RS5: OK.

R6: This is what I have learned: first fold the right sleeve to
the middle, and then fold the left sleeve to the middle.

HS5: You can also fold the left sleeve first, and then the right
sleeve.

R7: 1see.

R8: What is next?

As illustrated in Figure 3, the overall intent of this
dialogue is for the robot to learn a sequential task. It is
initiated by the robot’s request for teaching (R1), fol-
lowed by the human’s explicit acknowledgement (H1).
The following sub-dialogue is then led by the human’s
intent of teaching the robot the first step with an instruc-
tion (H2). Following that, the robot articulates what it
understands about the current situation (R2), and tries
to map the unknown concept “middle” to a physical po-
sition in the visual context (the question asked in R3,
with an intent of what we call “ground’). The human’s
positive response (H3) confirms the robot’s understand-
ing, and also closes the subroutine of teaching the first
step. The dialogue routine then rolls back to a higher-
level of the intent hierarchy, where the robot moves on
with its intent of learning the next step (R4). In R6, after
two consecutive steps have been learned, the robot is-
sues a reflection on what has been learned so far, which
triggers human’s following intent to teach an alternative
order (H5).

Now we have introduced different types of AOG as
the fundamental representations of the physical world,
task knowledge, and dialogue dynamics. Next we turn
our focus to discussing how we utilize these represen-
tations to build learning agents under a unified frame-
work.

Learning from Situated Dialogue

Natural language and dialogue can play an important
role in learning task knowledge from a human. Lan-
guage provides a key source of information to gear
the learned knowledge towards how humans concep-
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The interplay between them provides an integrated rep-
resentation of the task knowledge.

tualize and communicate about situations and tasks.
Such “human-oriented” knowledge is very necessary
for facilitating human-robot communication and col-
laboration (for example, Lemon, Gruenstein, and Pe-
ters (2002)).

Furthermore, dialogue provides an expedited way to
learn task knowledge. This can be demonstrated by our
earlier example of learning how to fold a t-shirt. Af-
ter the robot reflected (in R6) the just learned two steps
(i.e., fold-right-sleeve and fold-left-sleeve), the human
further taught that the order of the two steps could be
switched and it would result into the same status of
performing the task (HS). With our AOG-based rep-
resentation, the robot can add this new knowledge by
directly modifying the high-level structure of the STC-
AOG (i.e., create new temporal and causal Or-Nodes to
represent this alternative sequence of actions and fluent
changes). Using language makes it much easier to com-
municate such high-level knowledge (Figure 4 illus-
trates the STC-AOG representation that can be learned
thereafter).

We thus propose an AOG-based framework to enable
robot learning task knowledge from natural language
and visual demonstration simultaneously. Supported by
this framework, the robot can also proactively engage in
human’s teaching through dialogue, and gradually accu-
mulate and refine its knowledge. One key advantage of
our proposed framework is to provide a unified view of
modeling the joint and dynamic task learning process.
Besides, since we use AOG as a common representa-
tion basis, different components of our model can be
stored and accessed using the same format (e.g., graph
database), and be processed by the same set of algo-
rithms. It thus can greatly ease the burden of building
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complex Al agents.

Figure 5 illustrates the basic ideas of our task learn-
ing system. It mainly consists of three tightly connected
components that are all based on AOG representation
and processing:

o Language and Vision Understanding processes the
visual context into a “Vision Parse Graph” (V-PG)
and the linguistic context into a “Language Parse
Graph” (L-PG), and fuses them together into a “Joint
Parse Graph” (Joint-PG) for a deep and accurate
understanding of the current situation. A previous
work (Tu et al. 2014) has employed the same AOG-
based representations for joint text and video pars-
ing in the question-answering domain. The process-
ing in our component here resembles that work. How-
ever the linguistic content of a dialogue could require
more sophisticated approaches than those for han-
dling monologues, and our goal is to learn generaliz-
able task knowledge rather than just understand one
situation.

o World and Task Model manages the representation
and acquisition of knowledge of the physical world
and tasks. As introduced earlier, we use STC-AOG
to represent general knowledge about the world and
the tasks, while a specific situation (i.e., a Joint Parse
Graph) is represented as an instantiation (or sub-
graph) of the STC-AOG. Motivated by the Com-
mon Ground theory (Clark 1996), our agent main-
tains three copies of models. One is the human’s
model of the world and knowledge, which is inferred
from the joint parsing of language and vision. One
is the agent’s own model, and the third one is their
shared/matched understanding of the situation and
knowledge of the task (i.e., their common ground).
In future work, we will further extend these models
towards modeling the “Theory of Mind” in human-
robot collaboration.

e Dialogue Modeling and Management uses CI-AOG
to model and analyze the intentional structure of the
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task learning dialogue, and to facilitate the agent’s
decision making in knowledge acquisition and dia-
logue engagement. Our design of the situated dia-
logue agent also resembles the classical theory on
discourse modeling (Grosz and Sidner 1986). Le.,
the intentional structure is captured by a CI- Parse
Graph (CI-PG) in our dialogue management compo-
nent. The linguistic structure in our case has been ex-
tended to the joint model of the linguistic and visual
contexts (captured as STC- Parse Graphs), and the
shared knowledge (captured as STC-AOG). The at-
tentional state is captured by linking each node in
the CI-PG to a specific node/edge in the situation or
knowledge representation graphs.

As the dialogue and demonstration unfold, the agent
dynamically updates its intent, situation, and knowl-
edge graphs. Each component can utilize the informa-
tion from others through the interconnections between
their graph representations. Based on this unified frame-
work, sophisticated learning agents can become easier
to be designed and built.

Conclusion

This paper provides a brief overview of our on-going
investigation on integrating language, vision, and situ-
ated dialogue for robot tasking learning based on And-
Or-Graphs (AOQG). In particular, through an example, it
demonstrates how language and dialogue can be used to
augment visual demonstration by incorporating higher-
level knowledge. Here we use cloth-folding as an ex-
ample, but the same framework can be extended to other
types of task learning. We are currently in the process of
implementing the end-to-end system and plan to collect
realistic data to evaluate our approach.
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