
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Active Learning Guided Source-Free Domain Adaptive Semantic Segmentation and 
Applications in the Environmental Space

Permalink
https://escholarship.org/uc/item/1j56m62f

Author
Sashikanth, Sujith Kumar

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1j56m62f
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Active Learning Guided Source-Free Domain Adaptive Semantic Segmentation and
Applications in the Environmental Space

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Computer Science

by

Sujith Kumar Sashikanth

March 2023

Thesis Committee:

Dr. Amit K. Roy-Chowdhury, Chairperson
Dr. Ahmed Eldawy
Dr. Konstantinos Karydis



Copyright by
Sujith Kumar Sashikanth

2023



The Thesis of Sujith Kumar Sashikanth is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I am grateful to my advisor Professor Amit K. Roy-Chowdhury, without whose help, I would

not have been here.

iv



To my parents and brother for all the support.

v



ABSTRACT OF THE THESIS

Active Learning Guided Source-Free Domain Adaptive Semantic Segmentation and
Applications in the Environmental Space

by

Sujith Kumar Sashikanth

Master of Science, Graduate Program in Computer Science
University of California, Riverside, March 2023
Dr. Amit K. Roy-Chowdhury, Chairperson

In most domain adaptation methods, concurrent access to source and target data is

needed. In many real-life problem statements, it’s highly likely that the access to the source

data might not be possible during the adaptation process. Source-free domain adaptation

methods, while very necessary, usually have significant performance gap when compared

with those that assume access to the source data. To tackle this, we introduce a source

free domain adaptation strategy for the semantic segmentation problem that internally uses

active learning on the pixel level predictions (i.e., pseudo labels) to obtain a framework that

can generalize well between the source and the target domain. Given a small budget for

labeling, we select the pixels needed to be sent to an oracle for labeling. These labeled

pixels are then used to boost performance of the the overall system. Our method does not

assume any source data or any prior labels available on the target data. We observe that

even without the source data and only by labeling a small percentage of pixels using ac-

tive learning, we can still reach comparable performance with many standard unsupervised

domain adaptive semantic segmentation methods. We also show a few brief example appli-
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cations of domain adaptation on the environmental scenario. We apply domain adaptation

to two different environmental applications, namely forest fire detection and also vegetation

segmentation. In the forest fire detection project we localize the fires by predicting bound-

ing boxes over them in the form of coordinates. In the vegetation segmentation project, we

classify every pixel of the image into seven different classes. The overall domain adaptation

operation is achieved through a simple self-learning approach.
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Chapter 1

Introduction

Semantic segmentation involves the classification of every pixel in an image to

the available semantic classes. It has numerous applications in autonomous driving[8, 53],

medical imaging[72, 11], and robotics [35, 36]. Much of the success of existing semantic

segmentation methods is owed to large-scale supervised training, which requires cumbersome

labeling of each pixel of every image in large datasets [14]. However, in real-world scenarios,

annotation efforts may be constrained by a pre-defined budget, and inference might need

to be performed on images that incur a heavy domain shift with those used during training

[27, 17]. Such domain shift is mainly due to the changes in the image environment and

conditions leading to a shift in the data distribution [33, 48, 57, 75]. An example of domain

shift is shown in Fig 1.1. If not addressed, domain shifts will result in a catastrophic drop in

the performance of a semantic segmentation model. To address this issue researchers have

proposed numerous domain adaptation approaches to make semantic segmentation models

more practically applicable [42, 60, 59].
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Figure 1.1: Figure depicting the visual domain gap between the GTAV(Source)
[45] and Cityscapes(Target) dataset [13]. GTAV is a dataset of synthetic images and
Cityscapes reflect real-world imagery. A model trained on synthetic images will fail to
capture the semantic concept in real-world urban imagery.

A fully supervised domain adaptation (FSDA) task involves transferring knowledge

learned from a labeled source domain to a labeled target domain. However, obtaining

fully-annotated training data for any new domain is expensive. Additionally, concurrent

access to source and target domain data does not reflect real-world scenarios where data

privacy might deter a vendor from sharing source-side data with a client [25]. To address

the issue of annotation unavailability, unsupervised domain adaptation (UDA) has been

proposed in the literature [48, 42, 26, 47]. UDA approaches rely on pseudo labels based self-

training principles to align source and target domains where the latter has no annotations

[18, 62, 26, 59]. On the other hand, to preserve data privacy and make UDA semantic

segmentation more practically viable, researchers have started to address UDA without

access to the source data, formally known as source-free UDA (SF-UDA) [25, 67, 47, 29].

In such cases, only the source-trained models, which embed information about the source
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dataset, are available to share.

UDA methods usually suffer significant performance drops compared to FSDA

methods. Although self-training approaches for standard UDA have resulted in considerable

performance gains over recent years, the noisy nature of pseudo labels acts as a bottleneck

for such approaches to reach near FSDA performance. This is mainly due to the imbalance

in class distributions whereby common entities, like “road” and “building”, appear more

frequently than others such as “rider” and “light”, thereby making self-training methods

heavily emphasize the high-frequency classes as opposed to the rare ones [67]. This issue

is exacerbated for SF-UDA methods [25], where the unavailability of source domain data

renders any domain-alignment regularization inapplicable [71, 67, 63, 66].

In recent years researchers have attempted to address the issue of self-training

bias for standard UDA-based semantic segmentation by introducing human-in-the-loop ap-

proaches. These approaches focus on using a human annotator to label the smallest but

most informative subset of the target domain training data, which suffices in boosting UDA

performance to near full-supervision levels [67, 40, 68, 74]. The selection of the most infor-

mative subset of data during training cycles is formally known as active learning [30, 7, 32].

For semantic segmentation, the selection of the most informative pixels in each image [67, 50]

is far more efficient than selective entire images to label [30, 74, 68]. However, the use of

active learning for improving the performance of SF-UDA is unexplored. In this paper,

we aim to address source-free UDA-based semantic segmentation with a human-in-the-loop

active learning approach, which results in a more practically applicable model that adheres

to pre-defined pixel-level annotation budgets while preserving data privacy.
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Our method, Active Source-free Domain Adaptative semantic segmentation or

ASDA, starts with a model pre-trained on the source domain. We utilize this model to

perform self-training on a set of unlabeled target domain training images. During training,

after each active learning cycle (generally composed of a few epochs) we query a human to

select a budgeted set of informative pixels of the target side images based on a selection

criteria. In the active learning method, the selection criteria chooses samples that the model

is most confused about, thus harboring more information than the remaining training set.

In ASDA, we utilize the predictive uncertainty associated with the pixel-level pseudo labels

of the target domain images as the selection criteria. Quantifying the model’s predictive

uncertainty enables flagging pixels that tend to be from the rare semantic classes as the

unavailability of data tends to increase model confusion [19, 21].

Additionally unlike prior active domain adaptation works [67, 41, 51] we do not

assume the existence of an initial small labeled set for the target domain for the active

learning to start with. This initial supervisory signal allows for improving the domain

alignment especially if source data is available. In contrast, we start with a fully unlabeled

set and show that we can still reach comparable performance with many standard UDA

methods without the availability of source data.

The major contributions of our work are as follows:

• To the best of our knowledge, this is the first paper that incorporates a human-in-

the-loop active learning approach to address SF-UDA for semantic segmentation.

• We show how predictive uncertainty guided active learning can bridge the gap between

SF-UDA and standard UDA.
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• Experimental results show that our method outperforms multiple prior UDA, as well

as, SF-UDA based semantic segmentation methods.

1.1 Related works

Domain Adaptation

The issue of domain shift can cause problems for models trying to generalize be-

tween different data distributions. To address this, several approaches have been proposed

for semantic segmentation tasks. One such approach is class-balanced self-training, which

formulates a loss minimization problem for end-to-end learning of both the classifier and

domain-invariant features [80]. Another approach is the dual student network, which con-

sists of two student networks that learn from each other through mutual supervision to

achieve better feature learning and domain adaptation [20]. A structured output adapta-

tion approach [58] uses adversarial learning to minimize the discrepancy between the two

domains in the output space, and a curriculum-style approach [77] learns to estimate lo-

cal and global label distributions to regularize the trained semantic segmentation network.

These approaches aim to improve performance and overcome the difficulty of transferring

between different domains.

As discussed earlier, domain shift could lead to a huge issue in terms of the model

generalizing between two different domains.[80] proposes a class-balanced self-training method

for domain adaptation in semantic segmentation tasks.The Self-training approach is formu-

lated as a loss minimization problem that enables end-to-end learning of both the classifier

and domain-invariant features. By creating pseudo-labels with a balanced class distribution,
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a class-balanced self-training is proposed to address the imbalance problem of transferring

difficulty among classes. [20] proposes a dual student network for semi-supervised semantic

segmentation that surpasses the performance of a teacher-student network by a large mar-

gin. The dual student network consists of two student networks that learn from each other

through mutual supervision, which allows for better feature learning and domain adapta-

tion. They achieve this by introducing a novel training stabilization constraint called stable

sample.[58] proposes a structured output adaptation approach for semantic segmentation

that learns to adapt the output space between the source and target domains by minimizing

the domain gap between the two domains. They use adversarial learning to minimize the

discrepancy between the two domains in the output space. They also utilize a multi-level

adversarial network to enhance the outputs from the trained model post the adaptation

process. [77] suggest solving this problem using a curriculum-style approach. It proposes

to learn to estimate the local label distributions of the landmark superpixels in the target

domain as well as the global label distributions of the images. The authors believe this

approach would give them an edge over considering it as a pixel level problem statement

approach. They use this information to regularize the source trained semantic segmentation

network.

Source Free Domain Adaptation

As explained earlier, in practical domain adaptation scenarios, it might not always

be possible to have concurrent access to source and target data during training. Examples of

these scenarios include decentralized or edge computing and medical image analysis. To ad-

dress such cases, source-free domain adaptation methods have been proposed in literature.
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These methods rely on self-training principles to distill knowledge from a source trained

model to adapt to a new domain [31, 25]. Some methods also used entropy regularization

[73, 16] to improve SF-UDA performance. In [31] an attention-based generative method is

proposed to capture pixel-level information. In [24], the authors use a combination of multi-

ple approaches such as online pseudolabel generation, self-attention and curriculum learning

to achieve performance in the source-free scenario. Kundu et. al. [25] extend SF-UDA for

the multi-source multi-domain scenario and use a Context prior enforcing autoencoder to

refine the predicted pseudo labels. However, their approach relies on the assumption that

such context encoders need to be trained on the source side. Additionally, since most of

these methods rely on pseudo label based training, they are unable to compensate for the

noisy nature of these pseudo labels. To alleviate this issue we introduce the concept of

human-in-the-loop SF-UDA.

Active Learning

The goal of active learning is to minimize labeling effort on an enormous dataset

while maximizing the performance of the model. Numerous methods have been proposed

to address active learning for large scale image recognition [6, 9, 39, 28, 69]. In recent

years active learning strategies have been extended to semantic segmentation. Common

strategies include uncertainty based sampling [79, 7, 70] and representation/diversity based

sampling [64, 54, 34]. In [69], classification difficulty is used to perform, whereby the error

map between the prediction and ground truth is passed to a probabilistic attention module

to predict pixel wise classification difficulty. A pixel wise attention module is used to fine

tune the model on region’s where there is difficulty in prediction.Here a custom acquisition
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function is also devised so that examples that have high semantic difficulty levels are then

selected on primary basis .This approach is particularly useful in regions where the segmen-

tation model struggles.In [9], a reinforcement learning based approach is used to actively

select pixels that are to be sent to an oracle for subsequent labelling. The Reinforcement

learning system is basically used as an agent, where profitable selections in terms of segmen-

tation metric turns into a reward for the agent and selections which hinder the segmentation

metric are considered as a penalty for the agent. In [39],the authors propose a multi agent

reinforcement learning system, where the internal function is in principle similar to the

working of [9] but there also is an online retraining phase which is used to improvise the

generated predictions. The authors use this overall system and integrate this into a robotic

perception phase where the agents are placed in novel environments to navigate.

Active Domain Adaptation

It combines the principles of active learning with UDA for improving domain

alignment. Due to its success in image recognition [51, 7, 74], researchers have extended

active learning for more complex domain adaptation tasks like semantic segmentation. In

[41], the authors introduce a multi-anchor strategy to select a subset of target domain images

to label. Although effective but labeling all pixels in multiple images is very inefficient.

Shin et al. [51] improved upon [41] by introducing a point-based selection strategy to

efficiently label the most informative pixels. In [67], a region-based active learning approach

was employed to select a minimal amount of regions to preserve neighborhood contextual

information. Although these methods combine UDA with active learning they still require

concurrent access to labeled source data to boast high performance. In comparison we cast
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active domain adaptation as an SF-UDA problem making it more practically viable. In

[76], similar to [41] the authors use a category based anchor centroid approach to match

features in the target distribution space and generate the pseudolabels accordingly. The

authors also employ an anchor based pixel level loss to refine the predictions.

There have been a few traditional methods in terms of unsuperivsed domain adap-

tation such as , in [16] it employs a task classifier to learn task-specific features and a domain

classifier to learn domain-invariant features. [21] learns to reduce the domain shift between

the source and target domains by utilizing an adversarial loss. In [14], By reducing the

difference between the feature distributions of the source and target domains, [14] develops

a non-linear mapping between them.Combining domain-specific and task-specific losses, the

model is trained. In [23] maximizing the source domain’s marginal distribution and reduc-

ing the target domain’s conditional distribution, [22] aligns the joint distributions of the

source and target domains. Combining domain-specific and task-specific losses, the model

is trained. Also, domain shifts could lead to the need of adaptation techniques to solve this

by building a feature map that generalizes between the multiple domains. To solve this

problem of domain shift, domain adaptation methods have been proposed [56, 72, 27].

9
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TARGET PHASE
CITYSCAPES
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Figure 1.2: This is the overall figure that depicts the working of the ASDA system, to
the left is the client side or the source side where the segmentation model is trained in
conventional end-to-end manner. Following this, the source trained model is then handed
over to the vendor side. The vendor obtains predictions on target images without access
to the source data. A small percentage of these predicted pixels is then annotated by the
oracle to provide the final prediction.
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Chapter 2

Methodology and Experimental

Results

2.1 Motivation and Overview

We consider two datasets from two different domains Ds = {Xs,Ys} and Dt =

{Xt} where Ds is the source domain and Dt is the target domain. Both Ds and Dt share the

same label space. In the standard UDA setup, one does not have access to the labels of Xt

but has access to the entire labeled set Ds. The final goal is to test on data from the target

domain itself. However, in practical scenarios privacy issues can force a source side vendor

to make Ds inaccessible to a client who aims to adapt to the target domain. In such an SF-

UDA case a vendor shares a model ϕ trained on Ds to the client. The client aims at using

only ϕ, which embeds information about Ds, to adapt to Dt. A common approach is to re-

train ϕ on Dt using self-training based on pseudo labels, but as mentioned before, the noisy
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nature of pseudo labels creates a bottleneck on SF-UDA performance [25, 67]. To alleviate

this issue, we propose an uncertainty-guided active learning approach in our SF-UDA setup.

The overview of ASDA is shown in Fig 1.2. Starting with ϕ, we start self-training on Dt,

and after a few cycles, we query a human to label the most informative subset of pixels

in each image of Dt. We then use the newly labeled set to provide a supervisory signal in

the loss computation, enabling ASDA to better align ϕ to the target domain. It must be

noted that compared to prior active domain adaptation works, [67, 74, 40] we start with a

completely unlabeled set for Dt.

2.2 Uncertainty based Active Learning

Given an image Xt ∈ RH×W×3 from Dt, we pass it through ϕ to obtain a pixel-

wise probability mask Pt ∈ RH×W×C where C is the number of semantic classes. Thus the

pseudo label associated with pixel (i, j) is given as Ỹi,j
t = arg maxc∈{1,...,C}P

i,j,c
t .

To select the most informative subset of pixels for the human oracle to label we first

compute the uncertainty associated with the pseudo labels of each pixel. We use entropy

as the uncertainty measure, which for pixel (i, j) is shown below:

E(i, j) = −
C∑
c=1

Pi,j,c
t logPi,j,c

t . (2.1)

Therefore, the entropy mask for Xt is E(Xt) = {E(i, j)}H,W
i=1,j=1 ∈ RH×W . E(Xt) is flat-

tened, and all its entries are sorted to find the pixels with the highest entropy values.

Generally, the model tends to provide high confident pseudo labels for the pixels coming

from high-frequent classes, thereby resulting in lower entropy values for such pixels. There-

fore, the pixels that are harder to classify, possibly due to belonging to rare semantic classes,
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will have higher entropy values. Based on a pre-defined cycle budget b, the most informative

subset of pixels is chosen by taking the top b pixels in Xt with the highest E(i, j) values.

The labeled pixel set for each image Xt is henceforth referred to as Sxt
l and the

remaining unlabeled pixels as Sxt
ul .

2.3 Training Methodology

After every active cycle, for each image, the labeled set of pixels is used to compute

a supervised classification loss as shown below:

Lce = − 1

|Sxt
l |

∑
(i,j)∈Sxt

l

C∑
c=1

Ŷi,j,c logPi,j,c
t , (2.2)

where Ŷi,j is the queried label of (i, j) ∈. Thus Lce is the standard categorical cross-entropy

loss. On the other hand, the remaining unlabeled set of pixels is used for self-training

whereby the negative pseudo-label loss is computed as shown below:

Lnl = − 1

Γ(Sxt
ul )

∑
(i,j)∈Sul

C∑
c=1

π(Pi,j,c
t ) log(1−Pi,j,c

t ), (2.3)

where π(Pi,j,c
t ) is the assigned negative pseudo label defined as follows:

π(Pi,j,c
t ) =


1 if Pi,j,c

t < τ

0 otherwise

(2.4)

with τ being a pre-defined threshold. Γ(Sxt
ul ) in Lnl is the set of all negative pseudo labels

defined as

Γ(Sxt
ul ) =

∑
(i,j)∈Sxt

ul

C∑
c=1

π(Pi,j,c
t ). (2.5)
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The negative pseudo-label loss has been shown to outperform the standard cross-entropic

pseudo-label loss [23, 73, 67] by better handling ambiguous cases associated with low output

probabilities in the initial stages of the learning [67].

The overall model ASDA is trained end-to-end with by minimizing the total loss

Ltotal = Lce + Lnl. It must be noted that unlike prior active learning studies [67, 40, 74]

we do not start with a small labeled target domain dataset Dt and instead, it is completely

unlabeled. Therefore, before the first active cycle starts, the model is trained with Ltotal =

Lnl where the unlabeled set Sxt
ul will be all the pixels in Xt. The overall approach of ASDA

is shown in Algorithm ??.

2.4 Experiments

Datasets. We use three different datasets to construct two domain adaptation tasks. The

datasets are as follows:

• Cityscapes dataset [13] is used for real-scene evaluation. It contains high-quality urban

road scenario images and is comprised of 2,975 training images and 500 validation

images with a resolution of 2048x1024.

• GTAV dataset [45] has 24,966 images of size 1914x1052 with 19 classes common to

Cityscapes. These images are synthetic and they are extracted from the game GTAV

• SYNTHIA dataset [46] has 9,400 images of size 1280x760 with 16 classes common to

Cityscapes. This is also a synthetic urban scene dataset.
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Figure 2.1: Qualitative visualization of segmentation results from GTAV→CITYSCAPES.
From left to right: Original image, ground-truth label, semantic maps predicted by source-
only model, and semantic maps predicted by ASDA

Implementation details. All of the experiments are carried out on Tesla A100 GPU.

We use Deeplabv2 [10] with ResNet-101 pre-trained on ImageNet as the backbone. We use

the SGD optimizer, with a weight decay of 1e-4 and a momentum of 0.9. Also, we employ

the poly learning rate policy with the initial starting point of the curve at 1e-3. The target

side images to 1280 × 640. Similar to [67] we perform active learning in 5 cycles.

Annotation Budget. We fix the annotation budget to 10% of the most informative

pixels to be labeled in each image. We also run a study where we vary the budget to 5%,

7%, and 20%.
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Table 2.1: Comparison with prior domain UDA methods GTAV → Cityscapes.
All results are reported in terms of mIoU (%). We also report the class-wise performance
of 16 out of 19 categories. ∗ refers to standard (with access to labeled source data) UDA
methods, † refers to SF-UDA methods, and ⊥ refers to active learning based UDA methods.
♯ refers to performance based on DeepLabV3. The best results w.r.t. standard UDA and
SF-UDA methods are highlighted in bold.

[1.2pt] Method ro
ad

si
de
.

bu
il.

w
al
l

fe
nc
e

p
ol
e

lig
ht

si
gn

ve
g.

te
rr
.

sk
y

p
er
s.

ri
de
r

ca
r

tr
uc
k

bu
s

tr
ai
n

m
ot
or

bi
ke

mIoU
Source Only 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
CBST∗ [80] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
MRKLD∗[81] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1
Seg-Uncertainty∗[76] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3
TPLD∗[52] 94.2 60.5 82.8 36.6 16.6 39.3 29.0 25.5 85.6 44.9 84.4 60.6 27.4 84.1 37.0 47.0 31.2 36.1 50.3 51.2
DPL-Dual∗[12] 92.8 54.4 86.2 41.6 32.7 36.4 49.0 34.0 85.8 41.3 86.0 63.2 34.2 87.2 39.3 44.5 18.7 42.6 43.1 53.3
ProDA∗[22] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
URMA†[16] 92.3 55.2 81.6 30.8 18.8 37.1 17.7 12.1 84.2 35.9 83.8 57.7 24.1 81.7 27.5 44.3 6.9 24.1 40.4 45.1
SRDA†[5] 90.5 47.1 82.8 32.8 28.0 29.9 35.9 34.8 83.3 39.7 76.1 57.3 23.6 79.5 30.7 40.2 0.0 26.6 30.9 45.8
GND†[25] 90.9 48.6 85.5 35.3 31.7 36.9 34.7 34.8 86.2 47.8 88.5 61.7 32.6 85.9 46.9 50.4 0.0 38.9 52.4 51.6
ASDA(10%) 94.9 69.4 83.9 50.8 50.3 44.3 54.0 49.8 86.1 46.7 85.9 67.7 40.4 90.1 48.5 56.3 49.4 44.5 63.7 62.9
AADA (5%)⊥,♯ [56] 92.2 59.9 87.3 36.4 45.7 46.1 50.6 59.5 88.3 44.0 90.2 69.7 38.2 90.0 55.3 45.1 32.0 32.6 62.9 59.3
MADA (5%)⊥,♯ [41] 95.1 69.8 88.5 43.3 48.7 45.7 53.3 59.2 89.1 46.7 91.5 73.9 50.1 91.2 60.6 56.9 48.4 51.6 68.7 64.9
RIPU ⊥[67] 96.5 74.1 89.7 53.1 51.0 43.8 53.4 62.2 90.0 57.6 92.6 73.0 53.0 92.8 73.8 78.5 62.0 55.6 70.0 69.6
Fully Supervised (100%) 96.8 77.5 90.0 53.5 51.5 47.6 55.6 62.9 90.2 58.2 92.3 73.7 52.3 92.4 74.3 77.1 64.5 52.4 70.1 70.2
[1.2pt]

Evaluation Metric. Like most prior related works [67, 25, 76, 69] we use the mean

Intersection-over-Union (mIoU) metric for evaluating the performance of our method. For

GTAV→Cityscapes the common 19 Classes between GTAV and CityScapes are considered

and Synthia→Cityscpaes, the 16 common classes are considered.

Figure 2.2: Qualitative visualization of pixels annotated by the human oracle for
GTAV→CITYSCAPES. From left to right. Ground truth maps, pixels annotated by
random selection, and pixels annotated by uncertainty based selection.
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Table 2.2: Comparison with prior domain UDA methods SYNTHIA → Cityscapes. We
report the mIoUs in terms of 13 classes (excluding the wall∗, fence∗, and pole∗) and 16
classes which are correspondingly referred to as mIoU∗(%) and mIoU(%) respectively. ∗
refers to standard (with access to labeled source data) UDA methods, † refers to SF-UDA
methods, and ⊥ refers to active learning based UDA methods. ♯ refers to performance
based on DeepLabV3. The best results w.r.t. standard UDA and SF-UDA methods are
highlighted in bold.
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Source Only 64.3 21.3 73.1 2.4 1.1 31.4 7.0 27.7 63.1 67.6 42.2 19.9 73.1 15.3 10.5 38.9 34.9 40.3
CBST∗ [80] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.9
MRKLD ∗[81] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1
DPL-Dual ∗[12] 87.5 45.7 82.8 13.3 0.6 33.2 22.0 20.1 83.1 86.0 56.6 21.9 83.1 40.3 29.8 45.7 47.0 54.2
TPLD ∗[52] 80.9 44.3 82.2 19.9 0.3 40.6 20.5 30.1 77.2 80.9 60.6 25.5 84.8 41.1 24.7 43.7 47.3 53.5
Seg-Uncertainty ∗[76] 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 47.9 54.9
ProDA ∗[22] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 62.0
URMA †[16] 59.3 24.6 77.0 14.0 1.8 31.5 18.3 32.0 83.1 80.4 46.3 17.8 76.7 17.0 18.5 34.6 39.6 45.0
GND †[25] 89.0 44.6 80.1 7.8 0.7 34.4 22.0 22.9 82.0 86.5 65.4 33.2 84.8 45.8 38.4 31.7 48.1 55.5
ASDA(10%) 90.9 61.7 83.4 31.7 32.8 33.1 36.1 43.9 88.9 86.1 52.9 41.8 87.3 40.2 32.4 53.1 56.1 64.3
RIPU ⊥,♯[67] 96.8 76.6 89.6 45.0 47.7 45.0 53.0 62.5 90.6 92.7 73.0 52.9 93.1 80.5 52.4 70.1 70.1 75.7
AADA (5%)⊥,♯ [56] 91.3 57.6 86.9 37.6 48.3 45.0 50.4 58.5 88.2 90.3 69.4 37.9 89.9 44.5 32.8 62.5 61.9 66.2
MADA (5%)⊥,♯ [41] 96.5 74.6 88.8 45.9 43.8 46.7 52.4 60.5 89.7 92.2 74.1 51.2 90.9 60.3 52.4 69.4 68.1 73.3

Fully Supervised (100%) 96.7 77.8 90.2 40.1 49.8 52.2 58.5 67.6 91.7 93.8 74.9 52.0 92.6 70.5 50.6 70.2 70.6 75.9
[1.2pt]

2.5 Comparative Results

We compare ASDA with prior UDA, SF-UDA as well as active domain-adaptation

based UDA methods. The comparative results are shown in Tables 2.1 and 2.2 for GTAV

→ Cityscapes and SYNTHIA → Cityscapes, respectively. The fully supervised baseline

involves access to a fully-annotated source and target domain training set.

Comparison with standard UDA methods. In both Tables 2.1 and 2.2, the methods

marked with ∗ reflect prior state-of-the-art standard (with labeled source data) UDA based

semantic segmentation methods. It can be observed that with just 10% labeled pixels, ASDA

significantly outperforms these approaches which highlights that with a human-in-the-loop

approach, we can not only improve upon standard self-training approaches for UDA but

also eliminate the need for concurrent access to both source and target data. Specifically for

hard classes like fence and pole ASDA achieves very high performance gains. This makes

17



ASDA preserve source side data privacy making it more practically viable for real-world

UDA tasks.

Comparison with SF-UDA methods. In both Tables 2.1 and 2.2, the methods marked

with † reflect prior state-of-the-art SF-UDA based semantic segmentation methods. ASDA

along with these prior methods, show considerable performance gains over just using the

source only trained model for inference on target domain test data. Although the prior

SF-UDA methods showed that eliminating source side data can still enable effective UDA,

the noisy nature of pseudo label based self-training creates a bottleneck in the performance.

With ASDA, we show that the performance of a complex task like SF-UDA can be signif-

icantly improved by enabling a human-in-the-loop training approach where we constrain

labeling efforts by a pre-determined budget.

Comparison with Active Domain Adaptation methods. We also compare ASDA

with prior active domain adaptation (marked with ⊥ in tables 2.1 and 2.2) works like AADA

[56], MADA [41] and RIPU [67]. These approaches are built on top of standard UDA meth-

ods which means they assume access to a fully-labeled source dataset for alignment regu-

larization. Additionally, AADA [56] and MADA [41] label 5% of all images in the target

domain which involves annotating all the pixels in these images which is very inefficient. In

comparison, ASDA, only labels 10% of pixels which are of high uncertainty values. RIPU’s

selection strategy is much more efficient involving labeling 2.2% of 9 × 9 regions in each

image, enabling it to achieve near full supervision performance. Although ASDA requires

a higher annotation budget compared to RIPU, it must be noted that RIPU’s performance
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gains are largely attributed to access to fully labeled source side data for adaptation. More-

over, all three of these works assume the availability of a small labeled subset of images

in the target domain to start the active learning cycles. Therefore, the assumption of a

fully-unlabeled target domain training data is unmet. We relax this assumption and show

that ASDA can achieve comparable performance (Tables 2.1 and 2.2) with these prior active

domain adaptation tasks along with being a completely source-free setup. To summarize,

ASDA is a truly source-free domain adaptive semantic segmentation method with no prior

labels in the target domain, while the most competitive recent methods like AADA, MADA

and RIPU assume (i) the existence of fully labeled source data, and (ii) small amount of

labeled data on the target side.

2.6 Qualitative Analysis

As shown in Fig 3.2 by utilizing a human-in-the-loop active learning approach

ASDA significantly produces significantly better semantic maps compared to just using a

source-only trained model. Fig 2.2 also shows that the uncertainty based selection strategy

enables the labeling of more hard to classify pixels. In such cases, the standard pseudo-

labeling approach would fail as it will propagate noisy predictions during the optimizing of

the model.

2.7 Analysis of Annotation Budget

We run an ablation study on GTAV → Cityscapes by changing the annotation

budget and as observed from Fig 2.3 the performance of ASDA increases with the rise in

19



Figure 2.3: Performance variation of ASDA with varying pixel-level annotation budgets.
Budget is capped at 20%

the budget. We constrain the budget to no more than 20% and can see that at 20% the

performance is at par with fully-supervised setups even without access to source data during

model adaptation.

2.8 Analysis of Pixel Selection Strategy

Table 2.3 shows the performance of ASDA in comparison to a random pixel selec-

tion. It can be observed that an uncertainty-guided pixel selection strategy is much more

effective than random selection for all annotation budgets.

Table 2.3: Comparison of our selection strategy with that of random pixel selec-
tion for different annotation budgets. Results reported on GTAV → Cityscapes

Pixels Entropy MIOU Random MIOU

5% 57.2 45.1%
7% 59.8 47.4%
10% 62.9 49.7%
20% 67.3 50.3%
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Chapter 3

Environmental Applications of

Domain Adaptation

In this Chapter, we will see a couple of applications of domain adaptation applied

to the environmental use cases. Here we explain how a simple yet effective strategy of

self-learning can help bridge the gap between different domains. We apply this self-learning

based adaptation system to the two of the following use cases:-

• Forest Fire Detection.

• Vegetation Segmentation from Satellite Imagery.
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3.1 Forest Fire detection

Problem Statement:

The calamitous nature of forest fires warrants the development of autonomous

systems for real-time detection of fires. In recent years, deep-learning based computer-vision

frameworks have achieved tremendous success in the autonomous detection of everyday

objects in images and videos. We aim to develop such learning models geared towards

the detection of fires from image data at a near real-time speed, thereby allowing their

deployment in drone-based environment monitoring systems.

Figure 3.1: Visual results of the adapted YOLOV5s model on the Sparx project
forest fire data
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Methodology:

We have developed methods for detection of forest fires from imagery and evaluated

them on data collected by collaborators from the Sparx project, as well as publicly available

opensource datasets. We start by developing a deep object detection model capable of

detecting fires as objects in a given frame. For this we use the open source YOLOV5S[44]

object detection architecture as the backbone for this system. We choose YOLOV5s[44]

since it is an object detection framework known for its minimal latency and significantly

quick inference time. To train the model we use two publicly available datasets FIRENET[1]

and IEEE-Fire[49]. Individually the model gets an Average Precision (AP) of 81% and 94%

on FIRENET[1] and IEEE-Fire[49], respectively. However, real world images of vegetation

will have a significant domain shift wrt to such existing open-sourced datasets; hence,we

also aim to develop frameworks that can adapt to images from different domains in order

to make it generalizable to varying external environments and conditions. For example,

a machine learning model trained on high resolution images captured by a mobile phone

would underperform for the same task when deployed onto a CCTV camera. To address

this issue, we develop a simple domain adaptation algorithm on top of the existing object

detector. Basically we employ self learning as the fronte of the adaptation mechanism and to

bridge the domain gap. Here we train the YOLOV5s[44] model initially on the source data

until it attains a significantly good amount of performance. Once this is done, the model

trained on the source data is then tested on the target dataset to generate pseudolabelled

predictions. We then combine these weak pseudolabel predictions with the labelled source

data to restart the training of the original model. To test its efficacy we perform a domain
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Adaptation Type Pseudolabels Generated Ground Truth Used mAP

SOURCE MODEL DIRECT - - 74%

SUPERVISED DA - FireNet & IEEE 91%

UNSUPERVISED DA IEEE ONLY FireNet 88%

SOURCE FREE DA IEEE - 81%

Table 3.1: Table depicting results on the FireNet → IEEE experiments. It is a Compari-
son of Mean Average Precision(mAP) scores for different adaptation strategies on the test
dataset(IEEE) . Here acroos all of these experiments, FireNet is the source data and the
IEEE dataset is the target dataset. Pseudolabels generated refers to the pseudolabels from
which dataset used during the self-learning stage.Ground truth used basically means the
ground truths from which dataset was added to the pseudolabels during the self-learning
process.

adaptation test between FIRENET[1] and IEEE-Fire[49] where the former is used as the

source domain and the latter the target domain on which the model is to be tested. The

adapted model gets average precision(AP) of 88% on IEEE-Fire[49] which is significantly

higher than the unadapted performance of just 74%. We apply our domain adapted model

on some in-the-wild captured fire imagery obtained from our collaborators in the team, the

qualitative results of which are shown below. The inference time per image is about 0.8ms,

which is significantly faster than real-time processing. The detailed analytical results is

given in Table 6.1. Some of the sample visual results is provided in Figure 6.1.

3.2 Vegetation Segmentation:

Problem Statement:

Similar to the Forest fire detection workflow, a vegetation segmentation pipeline

was also built. Here, PSPNet[78] was used as a segmentation backbone to classify the

Sentinel-2 data satellite images into seven different classes namely urban land,agriculutural
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Adaptation Type Pseudolabels Generated Ground Truth Used mIOU

SOURCE MODEL DIRECT - - 37%

SUPERVISED DA - DeepGlobe & LoveDA 51%

UNSUPERVISED DA LoveDA ONLY DeepGlobe 48%

Table 3.2: Table depicting results on the DeepGlobe → LoveDA. It is a Comparison of
Mean Intersection over Union(mIOU) scores for different adaptation strategies on the test
dataset(LoveDA) . Here across all of these experiments, Deepglobe is the source data and
the LoveDA dataset is the target dataset. Pseudolabels generated refers to the pseudolabels
from the target dataset(LoveDA) used during the self-learning stage. Ground truth used
basically means the ground truths from which dataset that was added to the pseudolabels
during the self-learning process. The first row depicts the results of a model trained on
source data directly applied to the target, the second row depicts supervised DA where
both the G.T from source and target are utilized. The third row depicts, unsupervised DA
where Pseudolabels are generated on the Target and then self-learning is done

land, rangeland,forest land, water, barren land and unknown. PSPNet is a popular semantic

segmentation network widely adopted in the industry due to its simplicity. A domain

adaptation procedure was carried out between two different benchmark datasets called the

DeepGlobe LandCover dataset[15] and the LoveDA dataset[61]. Self learning was once again

used as a key element for the adaptation process. Similar to the fire detetcion project,we

initially trained a PSPNet[78] model on the source data(DeepGlobe[15]), this trained model

was then tested on the target datset to generate pseudolabel predictions. Thus by combining

the generated pseudolabels and the source dataset, the original source trained model was

then retrained to complete the self-learning system and thus bridging the domain gap. Some

of the analytical results obtained have been furnished in Table 6.2. A few sample results

on the Sentinel - 2 data has been shown in Figure 6.2

.
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Summary:

Through this chapter,we were able to demonstrate that using a simple yet effective

technique like self-learning, the domain gap within two different environmental use cases

(i)Forest Fire Detection and (ii) Vegetation Segmentation was bridged. We had used popular

architectures for this namely YOLOV5s[44] for detetction and PSPNet[78] for segmentation.

We had also tested out these adapted models on a custom data such as the Sparx forest

fire detection project data thus supporting the usefulness of these models in a real world

environment.

26



Figure 3.2: Visual Results of adapted PSPNet model predictions on Sentinel-2
data. On the left we have the input satelite images, and on the right we have
the corresponding mask predictions as color maps
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Chapter 4

Conclusions

In this thesis, a source-free domain adaptive semantic segmentation method with

a human in the loop ispresented. Given a pre-trained source model, but no source data,

we adapt the model to the target domain, which is completely unlabeled. By analyzing the

performance of the adaptation, we estimate which pixels in the segmentation task should

be labeled to improve the performance of the overall system. This drives the selection

of such pixels in the active learning strategy, based on a small labeling budget that is

provided. We show that the resulting approach can achieve results that are comparable

to many unsupervised domain adaptation methods for segmentation. In fact, with about

20% labeling budget, this method achieves the same performance as the fully supervised

case. In the end, a few environmental applications of domain adaptation such as forest fire

prediction and vegetation segmentation have also been demonstrated.
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