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ABSTRACT OF THE THESIS

Query-Efficient Black-box

Adversarial Attacks

by

Simranjit Singh

Master of Science in Computer Science

University of California, Los Angeles, 2020

Professor Cho-Jui Hsieh, Chair

Machine learning systems have been shown to be vulnerable to adversarial examples. We study

the most practical problem setup for evaluating adversarial robustness of a machine learning

system with limited access: the hard-label black-box attack setting for generating adversarial

examples, where limited model queries are allowed and only the decision is provided to a

queried data input. Several algorithms have been proposed for this problem but they typically

require huge amount (>20,000) of queries for attacking one example. Among them, one of

the state-of-the-art approaches (Cheng et al., 2019) showed that hard-label attack can be

modeled as an optimization problem where the objective function can be evaluated by binary

search with additional model queries, thereby a zeroth order optimization algorithm can be

applied. In this thesis, we adopt the same optimization formulation but propose to directly

estimate the sign of gradient at any direction instead of the gradient itself, which enjoys

the benefit of single query. Using this single query oracle for retrieving sign of directional

derivative, we develop a novel query-efficient Sign-OPT approach for hard-label black-box

attack. We provide a convergence analysis of the new algorithm and conduct experiments

on several models on MNIST, CIFAR-10 and ImageNet. We find that Sign-OPT attack

consistently requires 5X to 10X fewer queries when compared to the current state-of-the-art

approaches and usually converges to an adversarial example with smaller perturbation.
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CHAPTER 1

Introduction

It has been shown that neural networks are vulnerable to adversarial examples [29, 15, 7, 3].

As an example, a neural network like Resnet-50 [16] might correctly classify an image of a

Panda, but when the pixels are perturbed slightly, the network might classify it as a Gibbon

[15]. These perturbations are ubiquitous in many machine learning systems and are so small

that these are imperceptible to humans and the algorithms to find such perturbations are

called adversarial attacks. Given a victim neural network model and a correctly classified

example, an adversarial attack aims to compute a small perturbation such that with this

perturbation added, the original example will be misclassified.

Adversarial examples are a threat to the security of machine learning models and hence

have gained a lot of attention in the past years. An attacker can fool an autonomous driving

system by changing a traffic sign slightly, for example changing a stop sign with stickers

and paints so that it is classified as 45 mph sign but still looks like a stop sign to a human,

and can cause serious damages. Adversarial examples can be developed against voice-based

agents which appear like noise to humans but can give specific commands to the model. A

miscreant can try to sell banned substances on an e-commerce platform by fooling the machine

learning based security systems. Hence, evaluating robustness of models and developing

defense strategies against adversarial attacks becomes very important before these models

are deployed in real environment.

Many adversarial attacks have been proposed in the literature. Most of them consider

the white-box setting, where the attacker has full knowledge about the victim model. In this

setting, the gradient of the objective function with respect to the input can be computed
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by back-propagation and perturbations can be crafted easily. This is not realistic setting

but does provide a way to evaluate the robustness of the model. Popular Examples include

C&W [7] and PGD [25] attacks.

On the other hand, some more recent attacks have considered the probability black-box or

score-based setting where the attacker does not know the victim model’s structure and weights,

but can iteratively query the model and get the corresponding probability output or the logits.

In this setting, although gradient (of output probability to the input layer) is not computable,

it can still be estimated using finite differences. Each directional derivative estimation only

requires one or two queries and these estimate of gradient can be used to device adversarial

attack. Algorithms based on this finite-difference estimator include [10, 17, 30, 19].

In this thesis, we consider the most challenging and practical attack setting – hard-label

black-box setting – where the model is hidden to the attacker and the attacker can only

make queries and get the corresponding hard-label decisions (e.g., predicted labels) of the

model. A commonly used algorithm proposed in this setting, also called Boundary attack [5],

is based on random walks on the decision surface, but it does not have any convergence

guarantee. More recently, [11] showed that finding the minimum adversarial perturbation

in the hard-label setting can be reformulated as another optimization problem (we call this

Cheng’s formulation in this thesis). This new formulation is based on evaluating the distance

of decision boundary in a particular direction and finding a direction that has minimum

distance to the boundary. It enjoys the benefit of having a smooth boundary in most tasks

and the function value is computable using hard-label queries via binary search. Therefore,

the authors of [11] are able to use standard zeroth order optimization to solve the new

formulation. Although their algorithm converges quickly, it still requires large number of

queries (e.g., 20,000 for a CIFAR-10 image) for attacking a single image since every function

evaluation of Cheng’s formulation has to be computed using binary search requiring tens of

queries.

In this thesis, we follow the same optimization formulation of [11] which has the advantage

of smoothness. Here, instead of using finite differences to estimate the magnitude of directional

2



derivative, which requires tens of queries, we propose to evaluate its sign with just a single

query. With this single-query sign oracle, we design novel algorithms for solving the Cheng’s

formulation, and we theoretically prove and empirically demonstrate the significant reduction

in the number of queries required for hard-label black box attack.

The contributions of the thesis are summarized below:

• We elucidate an efficient approach to compute the sign of directional derivative of

Cheng’s formulation using a single query, and based on this technique we develop a

novel optimization algorithm called Sign-OPT for hard-label black-box attack.

• Our novel optimization method can be viewed as a new zeroth order optimization

algorithm that features fast convergence of signSGD [4]. Instead of directly taking

the sign of gradient estimation, our algorithm utilizes the scale of random direction.

This make existing analysis inappropriate to our case, and we provide a new recipe

to prove the convergence of this new optimizer. We give a formal theoretical analysis

showing that our algorithm, although using a non-standard update rule, converges to a

stationary point with convergence rate similar to previous zeroth order methods.

• We conduct comprehensive experiments on several datasets and models. We show

that the proposed algorithm consistently reduces the query count by 5–10 times across

different models and datasets, suggesting a practical and query-efficient robustness

evaluation tool. Furthermore, on most datasets our algorithm can find an adversarial

example with smaller distortion compared with previous approaches.
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CHAPTER 2

Background

2.1 White-box attacks

In white-box setting, the attacker has complete access to the model including architecture,

weights etc. This means that for neural networks, under this assumption, back-propagation

can be conducted on the target model because both network structure and weights are known

by the attacker. This setting is not applicable for most real scenarios since, internals of a

machine learning model are rarely exposed. Nonetheless, this setting provides important

insights into the model’s robustness as well as feature representation. Many white-box attacks

are used in defence strategies like the adversarial training wherein adversarial examples are

generated for the model during training and included in the training dataset.

Since it was firstly found that neural networks are easy to be fooled by adversarial

examples [15], a lot of work has been proposed in the white-box attack setting, where the

classifier f is completely exposed to the attacker. One of the first attacks, Fast Gradient Sign

Method (FGSM) introduced in [15] is based on calculating the gradient of the loss function

with respect to the input and adding it to the input aiming at maximizing the loss and hence

misclassifying the resulting example. Given a correctly classified example, x0, with label

y0 and a model with parameters θ and a loss function J the adversarial example can be

calculated as

xadv = x0 + ε ∗ sign(∇xJ(θ,x0, y0))

where ε is a small multiplier to ensure the perturbation is imperceptible. This is illustrated

in Figure 2.1. I-FGSM [21] extends this idea and conducts FGSM iteratively to achieve a

smaller distortion and a higher success rate.
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Figure 2.1: Illustratoin of the FGSM attack [15]

The C&W [7] attack is based on optimizing an objective function that is a combination of

the distance from original input and the loss function of the classifier. It can be formulated as

xadv = argmin
x
{D(x0,x) + c · L(Z(x))}

where D(·, ·) is a distance measure (e.g. l2, l∞, etc.), L is some loss function and Z(x) is the

final (logit) layer output. For an untargeted attack, L can be

L(Z(x)) = max{[Z(x)]y0 −max
i 6=y0

[Z(x)]i,−κ}

where [·]i denotes the ith component in the vector. EAD [9] further uses the elastic net to

combine the l2 and l1 penalty.

Projected Gradient Descent (PGD) [25] is another famous white-box attack. It is an

iterative method that tries to find an adversarial example using the following update:

xk = ΠBp(x,ε)(xk−1 + ηsl)

sl = Π∂Bp(0,1)∇xJ(θ,xk, y0)

where xk is the adversarial output at kth step, ΠS is the projection onto the set S, Bp(x
′, ε′)

is an lp ball of radius ε′ around x′, η is the step size, ∂U is the boundary of set U [18].

Intuitively, PGD update perturbs input in the direction of increasing loss and the projection

ensures that at every step, perturbation is within a given distance from original input.
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Recently, the BPDA attack introduced by [3] bypasses some models with obfuscated

gradients and is shown to successfully circumvent many defenses. In addition to typical

attacks based on small `p norm perturbation, non-`p norm perturbations such as scaling or

shifting have also been considered [31].

2.2 Black-box attacks

Recently, black-box setting is drawing rapidly increasing attention. In black-box setting, the

attacker can query the model but has no (direct) access to any internal information inside

the model. Depending on the model’s feedback for a given query, an attack can be classified

as a soft-label or hard-label attack. In the soft-label setting, the model outputs a probability

score for each decision while in hard-label attack only decision labels are available as output

from the model.

The black-box attacks can be broadly divided into two kinds - transfer-based and

query-based. The former uses a substitute model to devise attacks on target model while

later simply relies on queries to the target model to generate adversarial examples.

2.2.1 Transfer-based attacks

A very common strategy in this setting is to train a substitute model and then use it to

devise adversarial examples. This model acts as a representative substitute of the target

model and then white-box attacks can be used to craft adversarial examples. This was first

introduced in [28] where the attacker generates a synthetic dataset of examples which are

labeled using black-box queries to the target model. The attacker then trains a substitute

model on this dataset. Since the substitute model is a representative of the target model

in terms of classification and features, the attacks on substitute model tend to be highly

transferable on target model. However there are disadvantages to this method, major one

being the need of a training dataset. Also overall, the query efficiency using substitute models

tends to be worse than query-based methods [18].
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2.2.2 Soft-label attacks

In the soft-label setting, the model outputs a probability score for each decision. [10] uses a

finite difference in a coordinate-wise manner to approximately estimate the output probability

changes and does a coordinate descent to conduct the attack. [17] uses Neural evolution

strategy (NES) to approximately estimate the gradient directly. Later, some variants [18, 30]

were proposed to utilize the side information to further speed up the attack procedure. [2]

uses a evolutionary algorithm as a black-box optimizer for the soft-label setting. Recently,

[1] proposes SignHunter algorithm based on signSGD [4] to achieve faster convergence in

the soft-label setting. The recent work [1] proposes SignHunter algorithm to achieve a more

query-efficent sign estimate when crafting black-box adversarial examples through soft-label

information.

2.2.3 Hard-label attacks

In the hard-label case, only the final decision, i.e. the top-1 predicted class, is observed. As a

result, the attacker can only make queries to acquire the corresponding hard-label decision

instead of the probability outputs.

2.2.3.1 Difficulty of hard-label attacks

Hard-label black-box attacks are very challenging due to the limited information available to

the attacker. The direct extension of any white-box or gradient-based attacks does not apply

since the objective function is a discontinuous step function. This is illustrated in Figure 2.2

taken from [11] which shows the extension of these methods onto a simple 3-layer neural

network. Figure 2.2 (a) shows a decision boundary learned by the network. We see that the

loss function on the logits layer (Z(x)) is continuous as shown in Figure 2.2 (b). Zeroth-order

methods can therefore be applied to optimize such an objective funtion. Figure 2.2 (c) shows

the loss function if only final decisions are available (hard-label setting). It is clear that

the objective functions is a step function and no first-order or zeroth-order methods can be

7



(a) f(x) (b) L(Z(x)) (c) L(f(x)) (d) g(θ)

Figure 2.2: Difficulty of hard-label attack [11].

applied to optimize such a function.

2.2.3.2 Cheng’s reformulation

Cheng et. al in [11] reformulated this optimization problem to make the objective function

continuous. The authors formulate it into a problem that finds a direction which could

produce the shortest distance to decision boundary. We refer to [11] for the explanation of

the reformulation in this section.

For a given example x0, true label y0 and the hard-label black-box function f : Rd →

{1, . . . , K}, we define our objective function g : Rd → R depending on the type of attack:

Untargeted attack: g(θ) = min
λ>0

λ s.t f(x0 + λ
θ

||θ||
) 6= y0 (2.1)

Targeted attack: g(θ) = min
λ>0

λ s.t f(x0 + λ
θ

||θ||
) = t (2.2)

wher t in Equation 2.2 is a given target class. In this formulation, θ represents the

search direction and g(θ) is the distance from x0 to the nearest adversarial example along

the direction θ. Equation (2.1) and (2.2) correspond to Untargeted and Targeted attacks

respectively. For untargeted attack, g(θ) also corresponds to the distance to the decision

boundary along the direction θ. For our example, Figure 2.2 (d) shows the g(θ) corresponding

to the neural network. We can see that it is a continuous function and such is the case for

most of the applications.
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Figure 2.3: Cheng’s formulation of adversarial attack [11]

Instead of searching for an adversarial example, we search the direction θ to minimize

the distortion g(θ), which leads to the following optimization problem:

min
θ

g(θ). (2.3)

Finally, the adversarial example can be found by x∗ = x0 +g(θ∗) θ∗

‖θ∗‖ , where θ∗ is the optimal

solution of (2.3). This is illustrated in Figure 2.3

2.2.3.3 Other Hard-label attacks

[5] first studied this problem and proposed an algorithm based on random walks near the

decision boundary. By selecting a random direction and projecting it onto a boundary sphere

in each iteration, it aims to generate a high-quality adversarial example. Query-Limited

attack [17] tries to estimate the output probability scores with model query and turn the

hard-label into a soft-label problem.

The recent arXiv paper [8] applied the zeroth-order sign oracle to improve Boundary attack,

and also demonstrated significant improvement. The major differences to our algorithm

are that we propose a new zeroth-order gradient descent algorithm, provide its algorithmic

convergence guarantees, and aim to improve the query complexity of the attack formulation

proposed in [11]. For completeness, we also compare with this method in Section 5.5.

Moreover, [8] uses one-point gradient estimate, which is unbiased but may encounter larger

variance compared with the gradient estimate in our work. Thus, we can observe in Section

9



5.5 that although they are slightly faster in the initial stage, Sign-OPT will catch up and

eventually lead to a slightly better solution.
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CHAPTER 3

Sign-OPT

We follow the same formulation explained in subsubsection 2.2.3.2 and consider the hard-label

attack as the problem of finding the direction with shortest distance to the decision boundary.

Specifically, for a given example x0, true label y0 and the hard-label black-box function

f : Rd → {1, . . . , K}, the objective function g : Rd → R (for the untargeted attack) can be

written as:

min
θ
g(θ) where g(θ) = arg min

λ>0

(
f(x0 + λ

θ

‖θ‖
) 6= y0

)
. (3.1)

It has been shown that this objective function is usually smooth and the objective function g

can be evaluated by a binary search procedure locally. At each binary search step, we query

the function f(x0 + λ θ
‖θ‖) and determine whether the distance to decision boundary in the

direction θ is greater or smaller than λ based on the hard-label prediction1.

As the objective function is computable, the directional derivative of g can be estimated

by finite differences:

∇̂g(θ; u) :=
g(θ + εu)− g(θ)

ε
u (3.2)

where u is a random Gaussian vector and ε > 0 is a very small smoothing parameter. This

is a standard zeroth order oracle for estimating directional derivative and based on this we

can apply many different zeroth order optimization algorithms to minimize g. For example,

[11] used the Random Derivative Free algorithm [27] to solve problem (3.1). However, each

computation of (3.2) requires many hard-label queries due to binary search, so [11] still

requires a huge number of queries despite having fast convergence.

1Note that binary search only works in a small local region; in more general case g(θ) has to be computed
by a fine-grained search plus binary search, as discussed in [11].
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Original Image X0

Class Y0

Figure 3.1: Illustration of Single-Query oracle

In this work, we introduce an algorithm that hugely improves the query complexity

over [11]. Our algorithm is based on the following key ideas: (i) one does not need very

accurate values of directional derivative in order to make the algorithm converge, and (ii)

there exists an imperfect but informative estimation of directional derivative of g that

can be computed by a single query.

3.1 A Single-Query oracle

As mentioned before, the previous approach requires computing g(θ + εu) − g(θ) which

consumes a lot of queries. However, based on the definition of g(·), we can compute the sign

of this value sign(g(θ + εu)− g(θ)) using a single query. Considering the untargeted attack

case, the sign can be computed by

sign(g(θ + εu)− g(θ)) =


+1, f(x0 + g(θ) (θ+εu)

‖θ+εu‖) = y0,

−1, Otherwise.

(3.3)

This is illustrated in Figure 3.1. Essentially, for a new direction θ + εu, we test whether a

point at the original distance g(θ) from x0 in this direction lies inside or outside the decision

boundary, i.e. if the produced perturbation will result in a wrong prediction by classifier. If

the produced perturbation is outside the boundary i.e. f(x0 + g(θ) (θ+εu)
‖θ+εu‖) 6= y0, the new

direction has a smaller distance to decision boundary, and thus giving a smaller value of g. It

indicates that u is a descent direction to minimize g.

12



Algorithm 1: Sign-OPT attack

Input: Hard-label model f , original image x0, initial θ0 ;

for t = 1, 2, . . . , T do

Randomly sample u1, . . . ,uQ from a Gaussian or Uniform distribution;

Compute ĝ ← 1
Q

∑Q
q=1 sign(g(θt + εuq)− g(θt)) · uq ;

Update θt+1 ← θt − ηĝ ;

Evaluate g(θt+1) using the same search algorithm in [11] ;

end

3.2 Sign-OPT attack

By sampling random Gaussian vector Q times, we can estimate the imperfect gradient by

∇̂g(θ) ≈ ĝ :=
∑Q

q=1
sign(g(θ + εuq)− g(θ))uq, (3.4)

which only requires Q queries. We then use this imperfect gradient estimate to update our

search direction θ as θ ← θ − ηĝ with a step size η and use the same search procedure to

compute g(θ) up to a certain accuracy. The detailed procedure is shown in algorithm 1. Note

that in our implementation the step size η is selected for each iteration using exactly the line

search procedure in the implementation provided by [11].

We note that [23] designed a Zeroth Order SignSGD algorithm for soft-label black box

attack (not hard-label setting). They use ∇̂g(θ) ≈ ĝ :=
∑Q

q=1 sign(g(θ + εuq)− g(θ)uq) and

shows that it could achieve a comparable or even better convergence rate than zeroth order

stochastic gradient descent by using only sign information of gradient estimation. Although

it is possible to combine ZO-SignSGD with our proposed single query oracle for solving

hard-label attack, their estimator will take sign of the whole vector and thus ignore the

direction of uq, which leads to slower convergence in practice (please refer to section 5.4 and

Figure 5.4 (c) for more details). In the next section we talk about other estimates of the

gradients.
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3.3 Other gradient estimations

We observe that the value sign(g(θ + εu) − g(θ)) computed by our single query oracle is

actually the sign of the directional derivative:

sign(〈∇g(θ),u〉) = sign( lim
ε→∞

g(θ + εu)− g(θ)

ε
) = sign(g(θ + εu)− g(θ)) for a small ε.

Therefore, we can use this information to estimate the original gradient. Let yq :=

sign(〈∇g(θ),uq〉), a more accurate gradient estimation can be cast as the following con-

straint optimization problem:

Find a vector z such that sign(〈z,uq〉) = yq ∀q = 1, . . . , Q.

Therefore, this is equivalent to a hard constraint SVM problem where each uq is a training

sample and yq is the corresponding label. The gradient can then be recovered by solving the

following quadratic programming problem:

min
z

zTz s.t. zTuq ≥ yq, ∀q = 1, . . . , Q. (3.5)

By solving this problem, we can get a good estimation of the gradient. As explained earlier,

each yq can be determined with a single query. Therefore, we propose a variant of Sign-OPT,

which is called SVM-OPT attack. The detailed procedure is shown in algorithm 2. We will

present an empirical comparison of our two algorithms in section 5.1.

Algorithm 2: SVM-OPT attack

Input: Hard-label model f , original image x0, initial θ0 ;

for t = 1, 2, . . . , T do

Sample u1, . . . ,uQ from Gaussian or orthogonal basis ;

Solve z defined by (3.5) ;

Update θt+1 ← θt − ηz ;

Evaluate g(θt+1) using search algorithm in [11] ;

end
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CHAPTER 4

Theoretical Results

To the best of our knowledge, no previous analysis can be used to prove convergence of

Algorithm 1. In the following, we show that Algorithm 1 can in fact converge and furthermore,

with similar convergence rate compared with [23] despite using a different gradient estimator.

Assumption 1. Function g(θ) is L-smooth with a finite value of L.

Assumption 2. At any iteration step t, the gradient of the function g is upper bounded by

‖∇g(θt)‖2 ≤ σ.

Theorem 4.0.1. Suppose that the conditions in the assumptions hold, and the distribution

of gradient noise is unimodal and symmetric. Then, Sign-OPT attack with learning rate

ηt = O( 1
Q
√
dT

) and ε = O( 1
dT

) will give following bound on E[‖∇g(θ)‖2]:

E[‖∇g(θ)‖2] = O(

√
d√
T

+
d√
Q

).

The proof is provided below. The main difference with the original analysis provided

by [23] is that they only only deal with sign of each element, while our analysis also takes

the magnitudes of each element of uq into account.

Define following notations:

∇̂g(θt;uq) := sign(g(θt + εuq)− g(θt))uq

∇̇g(θt;uq) :=
1

ε
(g(θt + εuq)− g(θt))uq

∇̄g(θt;uq) := sign(
1

ε
(g(θt + εuq)− g(θt))uq)

15



Thus we could write the corresponding estimate of gradients as follow:

ĝt =
1

Q

Q∑
q=1

sign(g(θt + εuq)− g(θt))uq =
1

Q

Q∑
q=1

∇̂g(θt;uq)

ġt =
1

Q

Q∑
q=1

1

ε
(g(θt + εuq)− g(θt))uq =

1

Q

Q∑
q=1

∇̇g(θt;uq)

ḡt =
1

Q

Q∑
q=1

sign(
1

ε
(g(θt + εuq)− g(θt))uq) =

1

Q

Q∑
q=1

∇̄g(θt;uq)

Clearly, we have ∇̄g(θt;uq) = sign(∇̇g(θt;uq)) and we can relate ∇̄g(θt;uq) and ∇̂g(θt;uq)

by writing ∇̂g(θt;uq) = Gq � ∇̄g(θt;uq) where Gq ∈ Rd is absolute value of vector uq i.e.

Gq = (|uq,1|, |uq,2|, · · · , |uq,d|)T

Note that Zeroth-order gradient estimate ∇̇g(θt;uq) is a biased approximation to the true

gradient of g. Instead, it becomes unbiased to the gradient of the randomized smoothing

function gε(θ) = Eu[g(θ + εu)] [14].

To prove the convergence of proposed method, we need the information on variance of

the update ∇̇g(θt;uq). Here, we introduce a lemma from previous works.

Lemma 4.0.2. The variance of Zeroth-Order gradient estimate ∇̇g(θt;uq) is upper bounded

by

E
[
‖∇̇g(θt;uq)−∇gε(θt)

∥∥2
2
] ≤ 4(Q+ 1)

Q
σ2 +

2

Q
C(d, ε),

where C(d, ε) := 2dσ2 + ε2L2d2/2

Proof. This lemma could be proved by using proposition 2 in [23] with b = 1 and q = Q.

When b = 1 there is no difference between with/without replacement, and we opt for with

replacement case to obtain above bound.

By talking Q = 1, we know that E
[
‖∇̇g(θt;uq)−∇gε(θt)

∥∥2
2
] is upper bounded. And by

Jensen’s inequality, we also know that the

E
[
|(∇̇g(θt;uq)−∇gε(θt))l

∣∣] ≤√E
[
((∇̇g(θt;uq)−∇gε(θt)

)
)2l ] := δl, (4.1)
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where δl denotes the upper bound of lth coordinate of E
[
|∇̇g(θt;uq)−∇gε(θt)|

]
, and δl is

finite since E
[
‖∇̇g(θt;uq)−∇gε(θt)

∥∥2
2
] is upper bounded.

Next, we want to show the P[sign((ḡt)l) 6= sign((∇gε(θt))l)] by following lemma.

Lemma 4.0.3. |(∇gε(θt))l| · P[sign((ḡt)l) 6= sign((∇gε(θt))l)] ≤ δl√
Q

Proof. Similar to [4], we first relax P[sign((∇̇g(θt;uq))l) 6= sign(∇gε(θt))l] by Markov inequal-

ity:

P[sign((∇̇g(θt;uq))l) 6= sign((∇gε(θt))l)] ≤ P[|∇̇g(θt;uq)l)| ≥ |∇gε(θt)l|]

≤
E
[
|(∇̇g(θt;uq)−∇gε(θt))l

∣∣]
|∇gε(θt)l|

≤ δl
|∇gε(θt)l|

,

where the last inequality comes from eq (4.1).

Recall that (∇̇g(θt;uq))l) is an unbiased estimation to (∇gε(θt))l. Under the assumption

that the noise distribution is unimodal and symmetric, from [4] Lemma D1, we will have

P[sign((∇̇g(θt;uq))l) 6= sign(∇gε(θt))l] := M ≤


2
9

1
S2 , S ≥ 2√

3

1
2
− S

2
√
3
, otherwise

<
1

2
,

where S := |∇gε(θt)l|/δl.

Note that this probability bound applies uniformly to all q ∈ Q regardless of the magnitude

|(uq)l|. That is,

P[sign(

Q∑
q=1

|(uq)l|sign((∇̇g(θt;uq))l) 6= sign(∇gε(θt))l] =

P[sign((

Q∑
q=1

sign(∇̇g(θt;uq))l) 6= sign(∇gε(θt))l]. (4.2)

This is true as when all |(uq)l| = 1, P[sign((
∑Q

q=1 sign(∇̇g(θt;uq))l) 6= sign(∇gε(θt))l] is

equivalent to majority voting of each estimate q yielding correct sign. This is the same as sum

of Q bernoulli trials (i.e. binomial distribution) with error rate M. And since error probability

17



M is independent of sampling of |(uq)l|, calculating P[sign(
∑Q

q=1 |(uq)l|sign((∇̇g(θt;uq))l) 6=

sign(∇gε(θt))l] could be thought as taking Q bernoulli experiments and then independently

draw a weight from unit length for each of Q experiment. Since the weight is uniform, we will

have expectation of weights on correct counts and incorrect counts are the same and equal to

1/2. Therefore, the probability of P[sign(
∑Q

q=1 |(uq)l|sign((∇̇g(θt;uq))l) 6= sign(∇gε(θt))l] is

still the same as original non-weighted binomial distribution. Notice that by our notation,

we will have sign(∇̇g(θt;uq)l) = ∇̄g(θt;uq)l thus 1
Q

∑Q
q=1 sign(∇̇g(θt;uq))l = (ḡt)l. Let Z

counts the number of estimates ∇̇g(θt;uq)l yielding correct sign of ∇gε(θt)l. Probability in

eq (4.2) could be written as:

P[sign(sign((ḡt)l) 6= sign(∇gε(θt))l] = P[Z ≤ Q

2
].

Following the derivation of theorem 2b in [4], we could get

P[Z ≤ Q

2
] ≤ 1√

QS

⇒ |(∇gε(θt))l| · P[sign((ḡt)l) 6= sign((∇gε(θt))l)] ≤
δl√
Q

(4.3)

We also need few more lemmas on properties of function g.

Lemma 4.0.4. gε(θ1)− gε(θT ) ≤ gε(θ1)− g∗ + ε2L

Proof. The proof can be found in [24] Lemma C.

Lemma 4.0.5. E[‖∇g(θ)‖2] ≤
√

2E[‖∇gε(θ)‖2] + εLd√
2

, where g∗ = minθ g(θ).

Proof. The proof can be found in [23].

Proof of Theorem 4.0.1 From L-smoothness assumption we could have
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gε(θt+1) ≤ gε(θt) + 〈∇gε(θt),θt+1 − θt〉+
L

2
‖θt+1 − θt‖22

= gε(θt)− ηk〈∇gε(θt), ĝt〉+
L

2
η2t ‖ĝt‖22

= gε(θt)− ηt � Ḡt‖∇gε(θt)‖1 +
dL

2
η2t � Ḡt

2

+ 2ηt � Ḡt

d∑
l=1

|(∇gε(θt))l|P[sign((ḡt)l) 6= sign((∇gε(θt))l)]

where Ḡt is defined as (Ḡt)l =
∑Q

q=1 (Gq)l∇̄g(θt;uq)l =
∑Q

q=1 |(uq)l|∇̄g(θt;uq)l. Continuing

the inequality,

gε(θt)− ηt � Ḡt‖∇gε(θt)‖1 +
dL

2
η2t � Ḡt

2

+ 2ηt � Ḡt

d∑
l=1

|(∇gε(θt))l|P[sign((ḡt)l) 6= sign((∇gε(θt))l)]

≤ gε(θt)− ηt � Ḡt‖∇gε(θt)‖1 +
dL

2
η2t � Ḡt

2
+ 2ηt � Ḡt

d∑
l=1

δl√
Q

using (4.3)

≤ gε(θt)− ηt � Ḡt‖∇gε(θt)‖1 +
dL

2
η2t � Ḡt

2
+ 2ηt � Ḡt

‖δl‖1√
Q

≤ gε(θt)− ηt � Ḡt‖∇gε(θt)‖1 +
dL

2
η2t � Ḡt

2
+ 2ηt � Ḡt

√
d
√
‖δl‖22√
Q

= gε(θt)− ηt � Ḡt‖∇gε(θt)‖1 +
dL

2
η2t � Ḡt

2

+ 2ηt � Ḡt

√
d
√

E
[
((∇̇g(θt;uq)−∇gε(θt)

)
)2l ]√

Q
using(4.1).

Thus we will have,

19



gε(θt+1)− gε(θt) ≤ −ηt � Ḡt‖∇gε(θt)‖1 +
dL

2
η2t � Ḡt

2

+ 2ηt � Ḡt

√
d
√

E
[
((∇̇g(θt;uq)−∇gε(θt)

)
)2l ]√

Q

⇒ ηt � Ḡt‖∇gε(θt)‖1 ≤ gε(θt)− gε(θt+1) +
dL

2
η2t � Ḡt

2

+ 2ηt � Ḡt

√
d
√

E
[
((∇̇g(θt;uq)−∇gε(θt)

)
)2l ]√

Q

⇒ η̂t‖∇gε(θt)‖1 ≤ gε(θt)− gε(θt+1) +
dL

2
η̂t

2 + 2η̂t
√
d

√
E
[
((∇̇g(θt;uq)−∇gε(θt)

)
)2l ]√

Q

where we define η̂t := ηt � Ḡt. Sum up all inequalities for all ts and take expectation on both

side, we will have

T∑
t=1

η̂tE[‖∇gε(θt)‖1] ≤ E[gε(θ1)− gε(θT )] +
dL

2

T∑
t=1

η̂t
2

+
T∑
t=1

2η̂t
√
d
√

E
[
((∇̇g(θt;uq)−∇gε(θt)

)
)2l ]

≤ E[gε(θ1)− gε(θT )] +
dL

2

T∑
t=1

η̂t
2

+
T∑
t=1

2η̂t
√
d

√
4(Q+ 1)

Q
σ2 +

2

Q
C(d, ε) using Lemma 1.

Substitute Lemma 3 into above inequality, we get

T∑
t=1

η̂tE[‖∇gε(θt)‖1] ≤ gε(θ1)− g∗ + ε2L+
dL

2

T∑
t=1

η̂t
2

+
T∑
t=1

2η̂t
√
d

√
4(Q+ 1)

Q
σ2 +

2

Q
C(d, ε).

Since ‖ · ‖2 ≤ ‖ · ‖1 and we can divide
∑T

t=1 η̂t on both side to get
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T∑
t=1

η̂t∑T
t=1 η̂t

E[‖∇gε(θt)‖2] ≤
gε(θ1)− g∗ + ε2L∑T

t=1 η̂t
+
dL

2

∑T
t=1 η̂t

2∑T
t=1 η̂t

+
T∑
t=1

2
√
d√
Q

√
4(Q+ 1)σ2 + 2C(d, ε).

Define a new random variable R with probability P[R = t] = ηt∑T
t=1 ηt

, we will have

E[‖∇gε(θR)‖2] = E[ER[‖∇gε(θR)‖2]] = E
[ T∑
t=1

P[R = t]‖∇gε(θt)‖2
]
.

Substitute all the quantities into Lemma 4, we will get

E[‖∇g(θ)‖2] ≤
√

2(gε(θ1)− g∗ + ε2L)∑T
t=1 η̂t

+
dL√

2

∑T
t=1 η̂t

2∑T
t=1 η̂t

+
εLd√

2

+
T∑
t=1

2
√

2
√
d√

Q

√
4(Q+ 1)σ2 + 2C(d, ε).

By choosing ε = O( 1
dT

) and ηt = O( 1
Q
√
dT

), then the convergence rate as shown in above

is O( d
T

+ d√
Q

).
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CHAPTER 5

Experimental Results

We evaluate the Sign-OPT algorithm for attacking black-box models in a hard-label setting

on three different standard datasets - MNIST [22], CIFAR-10 [20] and ImageNet-1000 [13]

and compare it with existing methods. For fair and easy comparison, we use the CNN

networks provided by [7], which have also been used by other previous hard-label attacks as

well. Specifically, for both MNIST and CIFAR-10, the model consists of nine layers in total -

four convolutional layers, two max-pooling layers and two fully-connected layers. Further

details about implementation, training and parameters are available on [7]. As reported in [7]

and [11], we were able to achieve an accuracy of 99.5% on MNIST and 82.5% on CIFAR-10.

We use the pretrained Resnet-50 [16] network provided by torchvision [26] for ImageNet-1000,

which achieves a Top-1 accuracy of 76.15%.

In our experiments, we found that Sign-OPT and SVM-OPT perform quite similarly in

terms of query efficiency. Hence we compare only Sign-OPT attack with previous approaches

and provide a comparison between Sign-OPT and SVM-OPT in section 5.1. We compare the

following attacks:

• Sign-OPT attack (black-box): The approach presented in this thesis.

• Opt-based attack (black-box): The method proposed in [11] where they use Ran-

domized Gradient-Free method to optimize the same objective function. We use the

implementation provided at https://github.com/LeMinhThong/blackbox-attack.

• Boundary attack (black-box): The method proposed in [5]. This is compared only

in L2 setting as it is designed for the same. We use the implementation provided in

Foolbox (https://github.com/bethgelab/foolbox).
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Figure 5.1: Example of Sign-OPT targeted attack. L2 distortions and queries used are shown

above and below the images. First two rows: Example comparison of Sign-OPT attack and

OPT attack. Third and fourth rows: Examples of Sign-OPT attack on CIFAR-10 and

ImageNet
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• Guessing Smart Attack (black-box): The method proposed in [6]. This attack

enhances boundary attack by biasing sampling towards three priors. Note that one of

the priors assumes access to a similar model as the target model and for a fair comparison

we do not incorporate this bias in our experiments. We use the implementation provided

at https://github.com/ttbrunner/biased_boundary_attack.

• C&W attack (white-box): One of the most popular methods in the white-box setting

proposed in [7]. We use C&W L2 norm attack as a baseline for the white-box attack

performance.

For each attack, we randomly sample 100 examples from validation set and generate

adversarial perturbations for them. For untargeted attack, we only consider examples that

are correctly predicted by model and for targeted attack, we consider examples that are

already not predicted as target label by the model. To compare different methods, we mainly

use median distortion as the metric. Median distortion for x queries is the median adversarial

perturbation of all examples achieved by a method using less than x queries. Since all the

hard-label attack algorithms will start from an adversarial exmample and keep reduce the

distortion, if we stop at any time they will always give an adversarial example and medium

distortion will be the most suitable metric to compare their performance. Besides, we also

show success rate (SR) for x queries for a given threshold (ε), which is the percentage of

number of examples that have achieved an adversarial perturbation below ε with less than

x queries. We evaluate success rate on different thresholds which depend on the dataset

being used. For comparison of different algorithms in each setting, we chose the same set of

examples across all attacks.

Implementation details1: To optimize algorithm 1, we estimate the step size η using

the same line search procedure implemented in [11]. At the cost of a relatively small number

of queries, this provides significant speedup in the optimization. Similar to [11], g(θ) in

last step of algorithm 1 is approximated via binary search. The initial θ0 in algorithm 1 is

1Code available at https://github.com/cmhcbb/attackbox
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calculated by evaluating g(θ) on 100 random directions and taking the best one.

5.1 Comparison between Sign-OPT and SVM-OPT

In our experiments, we found that the performance in terms of queries of both these attacks

is remarkably similar in all settings (both L2/L∞ & Targeted/Untargeted) and datasets. We

present a comparison for MNIST and CIFAR-10 (L2 norm-based) for both targeted and

untargeted attacks in Figure 5.2. We see that the median distortion achieved for a given

number of queries is quite on part for both Sign-OPT and SVM-OPT.

Number of queries per gradient estimate: In Figure 5.2, we show the comparison

of Sign-OPT attack with different values of Q. Our experiments suggest that Q does not

have an impact on the convergence point reached by the algorithm. Although, small values

of Q provide a noisy gradient estimate and hence delayed convergence to an adversarial

perturbation. Large values of Q, on the other hand, require large amount of time per gradient

estimate. After fine tuning on a small set of examples, we found that Q = 200 provides a

good balance between the two. Hence, we set the value of Q = 200 for all our experiments in

this section.

5.2 Untargeted attack

In this attack, the objective is to generate an adversary from an original image for which

the prediction by model is different from that of original image. Figure 5.3 provides an

elaborate comparison of different attacks for L2 case for the three datasets. Sign-OPT attack

consistently outperforms the current approaches in terms of queries. Not only is Sign-OPT

more efficient in terms of queries, in most cases it converges to a lower distortion than what

is possible by other hard-label attacks. Furthermore, we observe Sign-OPT converges to a

solution comparable with C&W white-box attack (better on CIFAR-10, worse on MNIST,

comparable on ImageNet). This is significant for a hard-label attack algorithm since we are

given very limited information.
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Figure 5.2: Median L2 distortion vs Queries. First two: Comparison of Sign-OPT and

SVM-OPT attack for MNIST and CIFAR-10. Third: Performance of Sign-OPT for different

values of Q.
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Figure 5.3: Untargeted attack: Median distortion vs Queries for different datasets.

We highlight some of the comparisons of Boundary attack, OPT-based attack and Sign-

OPT attack (L2 norm-based) in Table 5.1. Particularly for ImageNet dataset on ResNet-50

model, Sign-OPT attack reaches a median distortion below 3.0 in less than 30k queries while

other attacks need more than 200k queries for the same.

5.3 Targeted attack

In targeted attack, the goal is to generate an adversarial perturbation for an image so that

the prediction of resulting image is the same as a specified target. For each example, we

randomly specify the target label, keeping it consistent across different attacks. We calculate

the initial θ0 in algorithm 1 using 100 samples in target label class from training dataset and
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Figure 5.4: (a) Targeted Attack: Median distortion vs Queries of different attacks on MNIST

and CIFAR-10. (b) Comparing Sign-OPT and ZO-SignSGD with and without single query

oracle (SQO).

this θ0 is the same across different attacks. Figure 5.1 shows some examples of adversarial

examples generated by Sign-OPT attack and the Opt-based attack. The first two rows show

comparison of Sign-OPT and Opt attack respectively on an example from MNIST dataset.

The figures show adversarial examples generated at almost same number of queries for both

attacks. Sign-OPT method generates an L2 adversarial perturbation of 0.94 in ∼ 6k queries

for this particular example while Opt-based attack requires ∼ 35k for the same. Figure 5.4

displays a comparison among different attacks in targeted setting. In our experiments, average

distortion achieved by white box attack C&W for MNIST dataset is 1.51, for which Sign-OPT

requires ∼ 12k queries while others need > 120k queries. We present a comparison of success

rate of different attacks for CIFAR-10 dataset in Figure 5.5 for both targeted and untargeted

cases.

5.4 The power of single query oracle

In this section, we conduct several experiments to prove the effectiveness of our proposed single

query oracle in hard-label adversarial attack setting. ZO-SignSGD algorithm [23] is proposed

for soft-label black box attack and we extend it into hard-label setting. A straightforward way

is simply applying ZO-SignSGD to solve the hard-label objective proposed in [11], estimate
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Figure 5.5: Success Rate vs Queries for CIFAR-10 (L2 norm-based attack). First two and

last two depict untargeted and targeted attacks respectively. Success rate threshold is at the

top of each plot.

the gradient using binary search as [11] and take its sign. In Figure 5.4 (b), we clearly observe

that simply combining ZO-SignSGD and [11] is not efficient. With the proposed single query

sign oracle, we can also reduce the query count of this method, as demonstrated in Figure 5.4

(b). This verifies the effectiveness of single query oracle, which can universally improve many

different optimization methods in the hard-label attack setting. To be noted, there is still

improvement on Sign-OPT over ZO-SignSGD with single query oracle because instead of

directly taking the sign of gradient estimation, our algorithm utilizes the scale of random

direction u as well. In other words, signSGD’s gradient norm is always 1 while our gradient

norm takes into account the magnitude of u. Therefore, our signOPT optimization algorithm

is fundamentally different [23] or any other proposed signSGD varieties. Our method can

be viewed as a new zeroth order optimization algorithm that features fast convergence in

signSGD.

5.5 Comparison with HopSkipJumpAttack

There is a recent paper [8] that applied the zeroth-order sign oracle to improve Boundary

attack, and also demonstrated significant improvement. The major differences to our algorithm

are that we propose a new zeroth-order gradient descent algorithm, provide its algorithmic

convergence guarantees, and aim to improve the query complexity of the attack formulation

proposed in [11]. To be noted, HopSkipJumpAttack only provides the bias and variance
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analysis (Theorem 2 and 3) without convergence rate analysis.

Also, HopSkipJumpAttack uses one-point gradient estimate compared to the 2-point

gradient estimate used by Sign-OPT. Therefore, although the estimation is unbiased, it

has large variance, which achieves successful attack faster but generates a worse adversarial

example with larger distortion than ours. For completeness, we also compare with this

method (and mention the results) as follows.

Figure 5.6 shows a comparison of Sign-OPT and HopSkipJumpAttack for CIFAR-10 and

MNIST datasets for the case of L2 norm based attack. We find in our experiments that

performance of both attacks is comparable in terms of queries consumed. In some cases,

Sign-OPT converges to a better solution.
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Figure 5.6: Comparison with HopSkipJumpAttack for CIFAR and MNIST: Median

distortion vs Queries. (U) represents untargeted attack and (T) represents targeted attack.

5.6 Conclusion

We developed a new and ultra query-efficient algorithm for adversarial attack in the hard-label

black-box setting. Using the same smooth reformulation in [11], we design a novel zeroth order

oracle that can compute the sign of directional derivative of the attack objective using single

query. Equipped with this single-query oracle, we design a new optimization algorithm that

can dramatically reduce number of queries compared with [11]. We prove the convergence of

the proposed algorithm and show our new algorithm is overwhelmingly better than current

hard-label black-box attacks.
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Table 5.1: L2 Untargeted attack - Comparison of average L2 distortion achieved using a

given number of queries for different attacks. SR stands for success rate.

MNIST CIFAR10 ImageNet (ResNet-50)

#Queries Avg L2 SR(ε = 1.5) #Queries Avg L2 SR(ε = 0.5) #Queries Avg L2 SR(ε = 3.0)

Boundary attack

4,000 4.24 1.0% 4,000 3.12 2.3% 4,000 209.63 0%

8,000 4.24 1.0% 8,000 2.84 7.6% 30,000 17.40 16.6%

14,000 2.13 16.3% 12,000 0.78 29.2% 160,000 4.62 41.6%

OPT attack
4,000 3.65 3.0% 4,000 0.77 37.0% 4,000 83.85 2.0%

8,000 2.41 18.0% 8,000 0.43 53.0% 30,000 16.77 14.0%

14,000 1.76 36.0% 12,000 0.33 61.0% 160,000 4.27 34.0%

Guessing Smart
4,000 1.74 41.0% 4,000 0.29 75.0% 4,000 16.69 12.0%

8,000 1.69 42.0% 8,000 0.25 80.0% 30,000 13.27 12.0%

14,000 1.68 43.0% 12,000 0.24 80.0% 160,000 12.88 12.0%

Sign-OPT attack
4,000 1.54 46.0% 4,000 0.26 73.0% 4,000 23.19 8.0%

8,000 1.18 84.0% 8,000 0.16 90.0% 30,000 2.99 50.0%

14,000 1.09 94.0% 12,000 0.13 95.0% 160,000 1.21 90.0%

C&W (white-box) - 0.88 99.0% - 0.25 85.0% - 1.51 80.0%

Table 5.2: L∞ Untargeted attack - Comparison of average L∞ distortion achieved using a

given number of queries for different attacks. SR stands for success rate.

MNIST CIFAR10 ImageNet (ResNet-50)

Avg L∞ # Queries SR Avg L∞ # Queries SR Avg L∞ # Queries SR

OPT attack
0.4 13,414 72.5% 0.2 2,381 100.0% 2.0 3,202 94.0%

0.15 17,650 2.1% 0.03 4,943 43.0% 0.5 10,712 54.0%

Sign-OPT attack
0.4 3,497 100.0% 0.2 1,080 100.0% 2.0 1,653 100.0%

0.15 7,633 10.1% 0.03 5,379 70.0% 05 4,710 76.0%
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