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THE ENERGY TO CONSTRICT A DISSOCIATED DISLOCATION
| Arthur Caetano Nunés, Jr.
Inorganic Materials Reséarch Division; Lawrencé Radiation Laboratory,
and Department of Mineral Technology, College of Engineering,
University of Californie, Berkeley, Califqrni&
Septembér; 1966
ABSTRACT
The enérgy to constriet a dissoclated dislocation is- caleulated
using linéar isotropic elasticity theory coupled with a core energy
model‘containihg parameters based on the Morse poténtial calculation
of Doyams and'Cotterili for copper. Np assumption is made restricting
the curvature of the partial dislocations to small values, but the
shape of the partials are assuméd'to be éxponential curves specified
by a single parameter with respect to which the enérgy-is minimized.
The results are very sensitivé to the core model. A least

squares fit of -a linear log-log relation to the caleulated points

gives for the edge constriction

1

and for the screw constriction

d_ 1.45
AE Ty '
Go3 = 0.0077 (=)
where AE is the constriction energy; G, the elastic shear modulus; b,
the Burgers vectorj; and dT,.the separation distance between partials.
These results are more accurate than those previously obtained using the

line energy model of a dislocation.



INTRODUCTION
Before cross-slip or intersection can take place a dissociuted
Gislocation must constrict.® A constricted QlulOCuuLOH has a‘ﬂJ.hLT
ener:y than an unconstricted dislocation, thus an eunergy burrier exisls
between the states prior to and after the above procésses.
The determination of the energy of a simple constriction at a po.nv

ociated dislocation has been undertaken by a nwnocr of invesn-
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tigators. Stroh,” beeger, and Dorin and Mitchell” have made coleulalions

0
FE Y

based on the line tension model of a dislocation. Ochck und Secper
have made a similar calculation based on an extension of Pcierlu' calcul-
ationY of the width of a dislocation. Kr&ner, Seeger, and Wolf Thave
made use of a technigque similar to the one used in this paper for calcul-

ating the energy of a constriction where one partial dislocation remains

in this papef the energy of a symmetrical constriétion of assumed
exponential shape in an isotropic linear elastic medium is calculated
for both edge and screw extended dislocations. In addition to the purcly
elastic terms the effects of the core and stacking fault are included
It is believed that this calculation is the most accurate one that has
been made to date. DBetter models involving_anisotropy or departure from
a continuum approach must be pair for in limitedmapplicability or

greatly increased complication.

¥There i3 also the possibility of cross-slip by formation of a ctair-rod
on ovut the strong atltraction between tho
2 auch a proc

aislocationt with no constricti

strair-rod and cross-slipped dislocation segments

ly.g A pure edge dislocation jog formed during constriction muy

sith a slight ¢OWerJng of envrgy, but for dislocations not purcly

r e required length of step makes Tor splitting makes the vhoenonenon
ergpetically unfavorable.?2 Oziy the constriction model will boe con- ’

sidered in the [ollowing investigation.
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Wnen the significance of the dislocation for the plastic derformaticon

N
Py

of the elasticians had been on tie scene for roughly thirty years; the

. A - 2 e s .
‘classic treatize was that of V. Volterra, "Sur 1'dguilibre des corps

élastiques multiplement conncxes''; the English name of "disiocution"
: . ‘ 13 '
had been given by A. E. H. Love.
While the energy of a dislocation loop of arbitrary shape may be
. . . A e
calculated on an entirely classical basis, this calculation will be
described here in terms of Kroner's "Xontinuumstheorie der Versetuuncen
i w15 . . .. 16
und Eigenspannungen as expounded in English by R. deWit.
The method involves the evaluation of a double line integral, the
origination of which is as follows:

The energy, B, of an elastically strained body of volume V may be

written as the volume. . integral

e8]
!

I zci_ €5 av (1)
R B '

/
v

where g, . and €, are the stress and strain respectively acting unon
bty
volume element dV. The convention of summing on repeatced indices will

be followed in all subsequent eguaitions, hence equation (i') will b

ritten

which means ‘exactly the same thing as cquation (L"),

. . . . ox . i s o s .
»rocess in crystalline material was 1*(3&112.@&971 * in 1934, the dlclocation



The volume integral (1) can be converted into a surface integrul

throuzh the relations

. /8ui &uﬁ
653 Gr ) (2)
J 1

where U is a displacenment of a point in the elastic body away from the

initial unstrained position,

g., = 0,, (3)
ij ji
and the divergence theorem
oT
3 = 1
faxi av = [TaA, (&)
v A

vhere T is a tensor of any rank and dAi is a vector normal to and equn
n magnitude to an element of surface area of A enclosing volumne V. The
sign of dAi is positive when directed away from volume V:

The result is

oo L o |
E =3 / 5 Y dA, _ (5)

When a dislocation loop is created in an initially unstresced
. _ , '
elastic body, all surfaces but the lcop surface being held rigid, the
nrocess may be visualized as follows.
Pirst a "wormhole' must be cut out along the boundary of the loop
to allow slipping of loop surfaces over one another without generating
L]

infinite stresses. This "wormhole' region is referred to as the "core!

region of the dislocation.
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Secondly a cub is made over the surface of the loop, the surfaces
are siipped reiwvive to one another by vector bj’ the burgers vector of
the iislocation, and the surfaces are rewelded.

Thirdly the core material 1s reinscrted in place.

Assuming that the cutting and welding processes reguire no net
expenditure of encrgy the energy of the dislocation loon sy be decowposed
into three terms:

(i) The energy required to slip one surface with respect to

the other for the loop

()Y

b-?
£, = —é-f o; 5 Ay (

(ii) The disturbance in the elastic energy of the elastic
continuum outside the dislocation core upon reinsertion
of the.core material referred to as the "core traction
_energy" énd labeled Ej.
(iii) The energy of the core material itself, labeled E3.
v_ Only Ej will be considered for the moment. For convenieénce a stress

function Xy, may be defined such that

0., = ~=2G € Y § %

1] ikl-Ejmn axkaxm (Xln -V pp'dln) (7)

while €iu1 and Ejmh are permutation symbols defined so that they are zuro

unless all the indices are different and if they are different

123 231 312
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él is a Krcnecker delta defined such that it is unity when 1l = n
n i

and zero when 1 # n, and G and v ere the shear modulus and Poisson's

ratio respectively for the material. The stress function X1n may be
thiought of as a generalirzation of a scalar potential.

¥rdner expresses the stress function in terms of a dislocation

.5 4 .
density:
P L EE U L

{F—‘

(r') oR dV']S (8)

o

Xln m L f Enrs Otls
V!

where R is the distance Y x'% + y'z + z'2 from the coordinate origin

at which Xy, 1s being evaluated, and o« (r') is the dislocation density

is
defined so that upon completing a Burger's circuit about a local aren
element dAl'the closure failure is dbs = alsdAl. The [ 17 means

that only the symmetrical part of the tensor is to be taken. To

calculate the energy of a dislocation loop one writes

1 3 1 — 1 1 1
als(r ) av' = [als(r ) dAl] dll- (9)
= ht 1
ol ai;

\

hat is, one expresses the core volume, which is assumed to contain Lhe
entire dislocation, as the product of an érea times a léngth, combines
the érea with the dislocation density tensor and obtains the Burgers'
vector of the dislocation line bé. dli represents a différentiulrline
element along the dislocation line.

Combining eguations (6), (7), (8) and (9) and making use ol thu

relations:



£ . € =8, 6 -8 6, {10)
Jmn "nrs T §t ms | mr js
and Stokes' theorem
8T " P
- —_— A = 3 11
f ikl Exk i é Tdll L
A, 1 .
i -
and 5
JE g = e 2R g =0 - (1z)
9%y k ijk ox, dxk i _
1 A J

the expression for El is obtained

Gb,b!

2.
- i 3“R . 2V \
B er % %k, (41301 + I Al aly)
kk
2 %R ——935—) a1' a1 (13)
1-v ‘0x.9x. i) 9x.9x k k o
J i 1771

Equation' (13) is a much more complicated expression than it appears

at first sight when the compact notation of the suﬁmation convention is
translated into the solution of an actual problem. Some illustrative
calculations using equation (13) are presented in Appeﬁdix I.

f oop 1 reated in e contint he energy becomes:
If a second 1 is ¢ ted th tinuum th becom

2 )(el,

L+ e, ) av C (Al
137013 1d

1 ] '
E== g;, + 0
QI(lJ
i
where the superscripts denote the loop. Expression (14) can be written
because superposition of stress and strain are allowed in linear

/

elasticity theory. Hence




L o Lo . 1 2 2
E=3[ o, el av+ ?ff of  ef. Qv
1 2. .1 12
+ + 0; 1
>/ (clJ el, + 9l lj) v (15)

= pll 4 p22 4 iz

-1l -2 2 : - 3 - .3 £¥4 Vel
Blb ang 22?2 are the self-energies of loops 1 and 2@ respectively and
E!? ig the interaction energy of the pair of loops. By constructing
loops 1 and 2 at the same time or by first constructing one and then

the other it is seen that

av = | d; e?, av  (16)

pl2 = )
J 1

o

J 1y 1iJ ij

2 1 1 2 - 2 1
f (Uij €5, * 0L e..) av = f Oij €.
v v _ %

Thus the interaction energy of a pair of loops may be calculated
from {13) but it is required that (13) be evaluated for each lcop and
added together or that double the value for a single loop be taken.

From Appendix I the values

9°R 2 ,
e (ar)
‘ k' k
and
9% Oug Xi%i o L .(185
9%, 09X, R R3
J 1

may be taken and inserted into (13) to give

>
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- El = - o é it =y ((‘“ a1, +
) 5 XX\
2V Ly s U S R S 1 BT Vo
eriC Y ey | " T RS Sk (19)

where Xi is defined as (Xi - x!) and R is the distance beiween segments

dl, and dl'.
1 [

It can be seén that in equation (19) the inverse of the separation
between dislocation segments will become infinite as the segments approach
one another closer and closer. The situation is saved by remembering
that interactions within the core are not the same as linear elasticily
predicts. < ié assumed that all interactions over a distance shorter
than one Burgers vector must be treated separately in the core energy
analysis and all ;uch interactions are eliminated in performing the
integration, which then converges.> Thus a point.on the dislocation line
does not interact with any oﬁher point ihside a sphere of radius b.
These spheres ofbno interaction markvoff a tubular core region about
each partial dislocation which is shown in Fig. 5a. (Pg. 21)

The_dislocations depicted in Fig. 2 may be characterized by their
shape equations

vy =y, () (2o

«
N
I
[
n
o
—
~
k._.

N

and their Burgers vectors b, and b

Initially



R (22
- ’,“ i e
Yi0 T 2 %
1. -
V.. = - — ! ( o) )
Io0 2 Y :

To determine the elastic energy of a constricted dislocation by

means of equation (19) requires the integration of (19) over the two
q

closed loops shown in Fig. 1.

X

Fig; 1. Constricted Dislocation Shown with Closing Loop

But we are really only interested in the change in energy AEl
produced upon constriction of the dislocation. Consideration of thc
physics of the situation leads to the expéétation that the constriction
process should be locglized and not very dependent upon the configuration

\

of dislocations outside of its immediate neighborhood.

In Appendix II the effect of the closing loop on the enerpy change

AEl is shown to be nonzero in general, but a closing loop contour ic

found for wihich integration over the unclosed dislocation lines depicted

1

in Fig. 2 yields the same results as for integration over a loop. 1t

seams reasonavle to pick such a loop as most representative of the
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conditions present in an acvual mediwa.

Fig. 2. Constricted Dislocation Ranges of Integration.

-

In Appendix III equation (19) is evaluated for the general configuration

shown below in Fig. 3.

) |
%bly‘ @
\ -
P X
/\b boy
, 2P — @

bax

Fig. 3. General Constricted Dislocation.

- For a screw dislocation b, and D

1 add to give a.vebtor‘g in the

2

x;direction. The angle that Y. makes with . and %--with b must be
1 : 1x 2 2x

30°; this is required by the geometry of the f.cjc. lattice.
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For an edge dislocatlon b, and b2 must add to give o Durgurs vecior
1 .
> ~r > -

b in the y-direction. L, and b_ nake 30° angles with b, and o
1 2 ’ 1y 2y

I o~

The coni Burgers vectors is shown in Fig. b ana the

1]
@]
(=7

guratio

b

partial Burgers vectors are glven in terms of the total Rurgevs vector

in Table I.

by lwz |
bly |b2y
30 v /%& =3
2%

i

b , .
a. Screw | "~ b Edge

FPig. 4. Burgers Vector Configurations

Table I

Partial Burgers Vectors

Screw . Edge
b b
—— +.—~—~__.-—-
b + 5

}_.l

>
3%}
n

o’

+

+
oo’

F_}
<
ro
h

o’
4
o
!

2V 3
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Symmetry considerations can simplify the expression derived in Appendix
IITI for the screw dislocation case. A plane of mirrvor symmetry along

the x-uxis requires that
Yo (x) = -y, (%) (2ha)
Y5 (x') = —yi (x") (2Lb)

providedythaf the external stresses and barrier don't destroy the
symmetry . Such a simplification dqes not exist for the cdge dislocation.
The complexity of the integrals of Appendix III makes the exact
solution even to the relatively simplified model taken by us, whoere we
have neglected anisotropy and nonlinearity, impracticable. An exact
solution(relative to the model chosen would reqﬁire finding the minimum

energy configuration of the system:
S 8 (LE) = 0 ' (25)

wnere AEC represents the total energy required to constrict the dislocation,
including stacking fault and core energies as well as strictly elastic

terms. The variation of AEC takes place under conditions:

v, (0) =y, (0) =0 o -_ (26a,b)
and
' 4
y, (#€)=y, (W) =+ — (27a,b)
4
v, (W) =y, (K] = - (27c,a)



and similarly for primed functions. {Note that aiand R are not the
same;G{ is a limit, and R is a function egual to Xixi')

Therefore it 1s necessary to limit our objectives to the extraction
ol a good apgroximate solution For the constriction crergy. This can

be done by means of an assumpiion about the shape of the partial

dislocations comprising the constriction.
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THE ASSUMED CONFIGURATION

Algebraic complexity prevented tic solution of equation (25) in
a general way. An approximate solution can be obtained, however, in
tne following way. A shape function depending on a single parameter is
specified, and the enerpgy is minimized with respect to this parametor.
This shape function prescribes a curve which is not in equilivriwm as
prescribed by equation 25. The energy calculated using the shape function
is thus that of equilibrium shape plus that due to the application of
constraint forces necessary to distort the equilibrium shape to the
ascwied shape. Sincé the energy error due to using the assumed shape
depends upon the square of these constraint forces, the approximate
energy obtained will be only slightly higher than the exact energy
provided that the shape assumed is close enoﬁgh to the true equilibrium
shape to make the‘constraint forces small. It is assumed that a good
enough shape for the pufposes of an energy calculation is represented
by the. curve: Bx

y=y (1-e 9 . (20)

in the positive y-x quadrant with reflectidn symmetry sbout the x and
¥y axes.

8 is the parameter with respect to whiéh energies are minimized.
Differentiation of equation (28) shows 6 to be the slope at the origin of
of partial dislocation in the positive quadrant. When B is high the

constriction is sharp, and when B is low the constriction is gradual.

’
i

-



A semilozs plot from Stroh's™ Pig. 1 chows Lhal Lis curve s
ronresented Lo o pood avproximation by equation (28) with B
approximately 0.5. Our resultant £'s turn out to b nearer unity, and
as the core decreases in importance the values of B go toward {but do

not reach) 0.5.

THE CCRE TRACTION_ENE?GY

As pointed out by Bullough and Foremanl7 in their cotendation ol
the elastic energy of a rhombus shaped loop and as indicated in the
previous section on the elastic energy of the constriction, a core
traction energy, E,, must be accounted for. |

Making the assumption that the core traction energy is localized
very close to the core of the dislocation, E; may be approximated by
integrating along the dislocations the difference in energy of 'a unit
length of straight dislocaﬁion that has and that has not had the core
tractions eliminated by an appropriate stress function.

N

In Appendix IV it is calculated that

G

- 16w (1~v)2 8 f bidge dl (29)

AE,

where the subscript "edge"

refers to the edge component of dislocation
of line increment dl. Only edge dislocations contribute core traction

energy. A f b2 dl is evaluated for the assumed éurve shape in
edge . ;

Appendix V.
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THE CORE ENERGY

In the linear elastic treatment of the bulk elastic enerpgy of u
dislocation there exists a singularity at the core df the dislocation
which would give an infinite energy if it were not eliminated. In real
substances nonlinearities smooth out and eliminate such singularities.
Therefore the core region of a diglocation is cut out of the bulk energy
and its encergy is treated in a completely different way.

Before proceeding with a discussion of what the energy of the material
inside the region of nonlinear behavior should be, let us consider how
much of the continuum about the dislocation has been eliminated in the
elastic calculations. The transformation of the energy integral from a
space integral to a double line integral complicates matters. In the
space of the double line integral the interactions between segments less
than a Burgers vector apart are eliminated; in fact this test is made
directly in the.course of the numerical integration. Thus in the space
in which the double line integral is performed, the core region may b¢
said to lie inside a region generated by sweeping A sphecre of Burgers
vector radius along all dislocation lines present. As the space is the
sarle for the volume integral associated with the eﬁergy (although the
form of the integral is different) as for the double line integral, the
region of core cut out is ldentified with that for thé line integrals.
Thus the:.care region 1s that swept out by a sphere of,BurgerS vector
radius translated along the dislocaﬁion lines. It may be noted in passing

that the cut out process may result in negative bulk elastic energies
: i

=

when the overall energy of constriction is small. The core energ



contribution (and other energy contributibns such as core_tractiOn)
must be such as to compensate for any siuch negative bulk elastic energy
to pive a total positive constriction energy.

The energy of a unit length of core region should depend upon the
energy density and the volume of the core. We have chosen to consider
a core radius of one Burgers vector. Any extension of ithe actual core
beyond this radius is considered to be approximately accounted ror by
the elastic energy of the model localised in the region just outside the

Burgers vector radius.

19 (

Research by Doyama and Cotterilll8’ Morse potential core energy
calculations for copper) indicates that core radii of 1.5b and 2.0b may
be expected for edge and screw dislocations respectively in copper. For
. od

a partial dislocation with a maximum partial Burgers vector of b/ﬂJ—; a
core radius of one Burgers vector seems reasonable if the core radius
is roughly proportional to the Burgers vector. If the core transition
takes place at approximately the same stress, which is proportional to
the Burgers vector and inversely proportional to the distance from the
dislocation center in the elastic model, one would expect the core
radius to be proportional to the Burgeré vector.

A calculation vased upon the analysis of Doyama and Cotterill
vields a strong dependence of the core energy density on the orientation
of the Burgers wvector. The energy density associated with an edge disiocution
is about five times that of a screw diclocation. The energy density of the
core oi a mixed dislocation hus not be investigated, but it might be

; .
catimnted by some kind of interpolation function - dependent on the relative edge

e e a
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~and-screv components. As the energy density depends on the maznitudes Ve

o v

of e ge and screw components and not on their cipgnz the interpoiation

cf

P4

notion shouwld involve the squares'of'the edge and screw Burgers vector
components. The simplest function that can be constructed is a linear -
- function of these squares of the edge and screw Burgers -vector components.

Thusvthe energy per unit length of dislocation will be taken as
dE3 .. oG B2

- edge 2 : , : .
a1 - -hw'{ 1-v ? bscrew}‘" - o (30)

' inforder“to account’for the change in orientation of.Burgers vector with

'respect to the partlal dlslocatlon. 'Equation 30 is usually written2

o'thhout the f, whlch is 1ncluded here for the sake of generallty

As customarlly used Equation 30finterpolates between cores of different

.disize. Thus when the Doyama and Cotterill values of 1.0 eV per {112} plane
”vand 0. 2 eV, per {llO} plane for edge and screw dislocations respectlvely

are used w1th an assumed value of sz for copper equal to. L, 3 eV tne
_:results (a = 1. 12 and f = 0.52) have to be modlfled to ellmlnate the

l>effect of change ln core size whlch has already been accounted for in

the elastlc energy, albeit crudely. 'If a uniform energy den31ty dlstrlbdtion

. . 2
is assumed w1th1n the core, multlplylng f by (2'32)

'cufs down the
":effectrve size of the screw core to that of the edge giving f = 0.3.
ﬁ 'Mult1ply1ng o by (b/-——~f )2 accountsvfor some addltlonal material

- conualned.in the core aszuming a strict proportionaldtygof core radius

to‘Bargers vectors giving a, = 1.5, but this calculation is not very

: meaniﬁgful as it lies well within the wide bounds of indeterminacy to
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‘which this calculation is subject.

To revéal the magnitude of the energy dependency on the core parameters
chosen calculations are also made using @, = 1.0 and £ = 1.0.

An additicnal contribution to the core energy due wo the stacking
fault lying between the core edge and the core centerline ié present in
any analysis that calculates the stacking fault area from the centerline
of the core instead o£ from its edge. Due to the high deformation in
the core region the concept of a stacking fault, which implies a region of
partially slipped but.not highly deformed or jumbled up material, loses
its meaning. For this reason as well as to isolate the effect of the.
material in the core region the stacking fault is eliminated from the

core regions. This will be discussed later in conjunction with the stacking

fault energy.



Wilen HECLON OF CORE OVERLAP
constriction in a dis;ocidted dislocation rulers to recombination
of the partials at a point. Au long as dislocations are thoupshl of ws
strictly linecar imperfections cuch a point should have no oifeet on the
core eneryy because it occupien no volume, In this model a aiscontinuous
change occurs in the core energy when 5 = 0, 1.e. when the gradually
constricted partials reach the limit at Which they recombine. At this
Iimit the Burgers véctors and not the energies are additive; otherwiae the
'

core energies of the nonoverlapping partials are simply additive.

Because of the vendency in nature for avoidance of such disecontinuous

1

v

jﬁmps'and because of the overlapping of real cores of finite radius
near the constricﬁion‘point it seems reasonable that a portion of the
overlap core region might better be replaced by the core of a recombined
dislocation, the length of.the recombined portion increasing as 8
decreases, so as to change the core character smoothly to that of o
recombined diélocation at 8 = 0.

In Fig. 5 the region of overlap is Shown. A charactoristic len;th,
2x', varying from zero to infinity may be found for the overlap resion

of the assumed configuration such that

¥y
1 = 0 1 Y. :
X g 1n 3 (31)
where V 1s the root immediately belOw‘B of* the equation
. b?" a
VY - 283+ (1482)V2 - 2V + p2(1 - ; =) =0 (32)
! Q

(l:;(n‘ /\]);'ni‘l"l\ff)( V) o . ’
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Figure 5. Region of Overlap of a Constricted Dislocation

Because only part of the region between *x' actually overlaps the

- . 3 X i . ;
recombined region is taken only between rjg. In this region the encrgy

contribution of the two partial dislocations including core traction

%

energy as well as‘core eneréy proper is subtracted out of the constriction
energy and thebcqre and core £raction energigs of a recombined dislqc#tion
added in their place. The energy change resulting from the above
substitution is called the recombinétion energy and is given the symbol
AEy. In the rghge of B's for which caleculations arevgadejjjs usually
negative for the screw constriction and positive for the edge constriction.

—~

The magnitude of the recombination energy is shown in Figs. 8 and 9 for
) .
a casce where the separation of partials is small/with raspact 1o the cord

diamcter.



ThE STACKIRG FAULT ENLRGY
The energy resident in a region of material betwéen a pair of partial
dislocations, conceived as due fo.an-unstable phase'produced by a shear
transformation on passage of the first partial and notv yet wiped out by
passage of the second partial, is usually characterized by a stacking
fault energy, v, per unit area_of stacking fault.

This represents a fifth contribution to the constriétion encrgy
ARs = ybA ' (33)

where AA 1s the area change of the stacking fault due to the constriction.

The area change AA is considered to be that between the -inner core

. 2y 2
boundaries and not that between centerlines, which is simply - *-%—,
as shown in Appendix V..

2y 2 Lyb oy .
‘ o o 0 v o b v
A T o e o e DL _ — — — —
A : T -3 (1 yo) in =]
'
/ v -
+1+1n {1+ é+V __1+BV
\ 1+V?
B Do v, '
* 2 yO>[tan v l+VZ:1 ' . (34

where V' is the solution to Eq. (32) mentioned previously.
In order to express the constriction energy in the nondimentional
form AE/GbZdT, where d. 15 the equilibrium separation distance between

partials (d = Eyo), an expression for Yy in térms of G, B, and d.



must be obtained. The configuration of the unconstricted partials is
)

shown in Fig. 6.

Fig. 6. Configuration of Unconstricted Partials

may be

The force, 4Fi, '‘acting on a dislocation segment, dlk’

written in terms of stresses acting at the dislocation segment:

F. = ¢.. 3
aF €53k %im b dl, (35)

Requiring equilibrium for a segment of dislocation 1 in Fig. 5 along the

y-direction:

- + O + = C
Y. ox bl‘x Gzy bly 0 (36a)
and for dislocation 2:
+y + o0 +0 by =0 (3¢
Y 2X bzx zy 2y (360)
Trhe externally acting stresses are Tox and Tyy. The stress contribution

)
due to a dislocation may be obtalned from Appendix IV for the edge



ey o v ' .
= + + + T b 5
Y (EWdT sz) blx L2n(l—\1)dT sz) Ly (37a)
Gb 1. Gb
14 X, v .
xR ~ — ——e . b
¢ end_ * sz) b‘x 2w(1~v)dT Tay) b?y (370)
or, aVeraging‘(33a) and {33b):
by b2
G N
Y QﬂdT [blx bzx * 1-v ]
by, - b2
+ TZX [ X X}
S 2
b1, - b» ' -
+ (3
sz L——1L7§~—4[] _ (37c)
Making the terms of the ‘equation nondimensional:
: b; b by b,
X oLy x %1y y Sy
Gb dT 2m’ b b 1-v b b
- T 2x (lJ [blx _ bzx]
G 2 b b

+
~
ol
N
(SR o
——
v,Lc‘
o —
' .
7}
"
_\1
foN)
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BOUNDARY STRESSES
A constricted dislocation is zenerally under a state of long range
stress, .., which may be considered as due to the stresses acting on
the boundary of the region containing the dislocation. Designating the
Y 4 3 : . - 3 I Im - e
internal stresses due to the dislocation configuration by Gij the totval

o

elastic energy of the body may be written
L= %~f (o.@ + o.%) [E By l) dv (38)
v

where Ei? and €i§ are the strains due to the boundary apd internal stresses
respectively and the integral is taken over the total volume of material
neglecting the dislocation cores. The effect of the internal stresses
alone has already been accounted for through E; and E;. Using the

divergence theorem and the condition of local equilibriuwn the energy

N\
can be transformed to a surface integral.

_ 1 B I B

E = > f (clJ + Oij) (uj + u.) dA
A
1 B, B Iy .. ,

- + h + - p

E; + Ep + 3 / Gij,(uj +‘2uj) A, (39)

where u? représents tﬁe jth componeht of a displacement due to the
boundary stresses, dAi represents the ith component of a differcntial
surface arew, etc.

The principle of superposition of stresses %nd strains imnlics.ﬁhat

L

. B, N . . .
11:"0__I is held. constant, which will be the case for all of the following




. B . .
analysis, uj must be constant too. The change in energy may then be

written:

’ B I '
AE = AE} + AEp + A | o, u, dA, (ho)
: iJ k i .
The sketch in Fig. 7 showing schematically the stresses and displacements
on the surface of a cut which is to have its surfaces relatively
displaced to form a new slipped area, AAi, and the stresses and displaccments

acting on the exterior surface of a unit cube of material containing the

cut clarifies the method of evaluation of the last term in equation (40).

b'j (é{ﬁ) .

~ "Fig. 7. Stresses and Displacements

Hence

A f,c;g u; dA. = (work done by 0.? on éxterior surface)
X3 1 ' 1
: o B . .
+ (work done by o;5 on internal slip surface)

= 6.2 b, aA, + (-0.0)b. aA, = O (k)
iy 4 i 13773 i
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Thus there is no change in elastic energy stored in the material
directly due to the boundary stresses when the latter are held constant.
It is, or course, possible that elastic energy may be stored in the
specimen as it deforms under a constant stress since the term evalualed in
equation (41) does not represent an energy balance. If the effect orf
the dislocation configuration within the material is to alter the stress

. : . I
acting at the slipped surface by Aojj, then an energy balance may be

written (for a quasi equilibrium situation):

AE = 0,5 b, M, + (-0.° + A0, T )b, 4A.
i3 ij ij7/73 i
= Ac.? b, AA
i3 7d
‘= AE; + AR, (42)

\
From equation (42) it can be seen that althoush the elastic encrgy
increase is supplied by the external stresses;'it appears in the

internsal stresses.

Thus the fraction of energy sﬁoréd elastically (the remainder

being dissipated as heat) is

’ bo T ‘ : :
- Energy Stored - ij . - ‘ (43) -
Energy Input E o B ‘ : 2
iy ’

To find the equilibrium configuration of a constfiction subject

to a long range stress one can proceed in two ways. The wminimization
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Pal

of ener rinciple applies to internal forces and displacements of an
: PP §

isoloted system. Therefore one can consider the source of the external

stress as a part of the syostem, the energy of which 1s to be wmininised,

along with the elastic continuum containing the dislocation. Tne

result of this procedure is an additional contribution to the energy to

be minimized:
ABg = -0, . b, M (L)

AEg represents the energy change of the external system exerting_the
stress 0i?7 |

The alternative viewpoint is to consider the elastic system as
infinitely extended with fixed boundaries. If this system is initially
sﬁressed>at the level Gi?’,Slip of dislocationé will chiange the egergy
of the continuum itself without appreciably changing the long range state
of stress, provided that the dislogation féarrangement is finite in
extent. In this case equation (LL) is again obtained as an additional
energy change that must be considered in energy minimizatién for the

. , .

continuum.

The case in which the long range shear stresses 7__ and 1 act

L X A
at the constriction yields the.result:
( .

AEg = -Gb §L == () = ()] oA o
| . e,
\ ) !

{sz szx TZX, bzy ] 2 -

* { ¢ o ) g '( D )j oA (h5u)
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where AA! and AA2 refer to areas slipped by dislocations 1 and 2 respectively.
The form of (L5a) can be altered to make it similar to that orf

the stacking fault energy in (374):

/

AES _ JTZX by bz
Gb(AAI-0A2)

. 5 ( by + gy) (L5b)

where (AAl - AA%) is AA between the partial dislocation centerlines.
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BARRIER STRESSES

In order for the constricting dislocation to be in equilibrium
under the action of the externally imposed slresses sz and sz a
barrier must be present.to exert the necessary equilibrating counterforce.

Two kinds of barriers may be distinguished: those exerting long
range back stresses for which the effective external stresses at the
dislocation are zero and those exerting very short range stresses
which require the dislocation to contract under the aéfion of external
stresses on the trailing partial dislocation. Cases in between may

be roughly handled by use of a barrier parameter o The leading

B‘.
dislocation is considered to be always in equilibrium, althouzh the
external stresses remaining when the "long range'" barrier stresses
have been subtracted from Ty and sz are considered to contribute

to AEg on the barrier side as well as the trailing dislocation.

Rewriting equation (36b):

by Gb,
+ [~ o+ = = L6
A ( omd_ * 0LBsz)bzx on(l-v)d N )bzy 0 (46)
results - in a revised value of AEj:
__ I A .
Gb(8Al - 8A2) 20 b . b 4
SR S Yy 2y _b)
2n{1-v) *' b b dT
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AE6 T bl T . bl
o (_2X X, Ty y)
GbAAL BY'G Db G b
T 2 T b2 2 -
+ ( ZX X, Z¥ y) LA (L7)
G b G b Aal

For a ''long range' barrier

ay = 0 ’ : (L8a)

and for a "short range' barrier

ap = 1 | (481)

For this work it will be assumed that the stressgs Tox and sz are zer

or very small, and we will not concern ourselves with the nature of

thé barrier except for having already indicated how the barrier can bu
accounted for in crude approximation. In a pileup of n sérew dislocations
the assumption that Tox is n times the external Tox gives contractions

in rough (order of magnitude) agreement with those of Wolf'88 Figure L

when using equation (L6) above with an = 1.
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RESULTS AND DISCUSSICN

Upon carrying out the computation program delineated in the
previous sections one finds that the bulk elastic eﬁergy and the stacking
fault energy contributions to the constriction energy tend to cancel
each other when the core is of appreciable size in comparison with the
separation between partial dislocations. This is apparent in Figs. 8
“and 9 Whefe the conponents of the constriction energy are plotted for
the case where the separation is only four times the core radius. 1In
the case of the edge dislocation the stacking fault term actually
overpowers the bulk elastic term and without the recéhbination energy
. & negative constriction ehergy results at low falues ofFB, i.e. gradual
constrictions. A

Because of the cancellatioﬁ of the largest energy contributions
the smaller contributions due to the core.becbme extremely imporfant
for smail separations. Two conclusions céh bé drawn ffom this: first,
for small'sepafations the accuracy of our calculation is ohly as good
as the accuracy of the core energy, which isvkﬂ0wn énly to the extent
of its order of magnitude; and secohd'extrapélations to smaller éeparations
than thosé for which the calculations were méde are even more doubtful.
Figs. 10 and 11 show the difference made by a slightly different assumption
about the core. |

An a?proximate equation can be given for the constriction energy
giving a straight line least sqﬁares it to the curng'shown in Fig; llﬁ,

For the edge dislocation the constriction energy, 0E, is given by .
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: d_.1:36
AE T
o3~ 0.0124 ("b‘) (h9)

and for the screw constriction, by

£E - = 0.0077 [%)1-45 (50)

Experimental confirmation of these results is difficult to obtain
because for those cases where the stacking fault width can be measured
the activation energy for a process involving constriction is so high
that the process would not be expected to occur; and where activation
energies>are measurable the stacking fault width is too small to measure.
It is possible, however, to estimate the stacking fault energy indirectly22
by relatiné it to the energy of a twin boundary and relating the twin
boundary energy tq that of a grain boundary. By this meané the energy of
a stacking feult in aluminum is estimated at roughly 200 ergs/cm2 and
in copper, 40 ergs/cm?. The constriction energies (Table II) based on
these vaiues are tabﬁlated'and comparéd with: (1) some theoretical
values obtained by Schock and Seeger3 based on an extension of the
Peierls extended dislocation model, (2) experimental values of the
activation energy for stage III hardening given by Berner,23 and (3)
an experimental value of the activation energy for thermally activated
low temperature aeformation of aluminum obtained by Mukherjee, Mote and
Dorn. ‘ ‘

The activation energies cited are the total energies required to

surmount the associated short range barriers to dislocation motion.



Table II

Cdmparison of Results with Experiment and Other Theory

Diélocation Constriction Spergy Stage ITI Low Temperature
o ' ge - Deformation
Material Deformation . .
. R JActivation Energy
Type Activation Energy after Mukherje
. . o 21 L r e
Obtained by Ug Optained by ; after Berner Mote and.Dorno2
Schéck & Seeger
Edge 0.10 eV 0.21 eV
Al 0.13 eV 0.18 to 0.19 eV
Screw 0.02 eV 0.11 ev
Edge 1.6 eV 3.9 eV
Cu O.bih ev | e
Screw 0.38 ev 0.84 ev

mgg_
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This has not been obtained for the low temperature deformation of
copper because25 no athermal regime of behavior is encountered when

flow stress is plotted vs. temperature. Because cross slip may be

expected to require the formation of a pair of constrictions, the constriction

energy should be2 of the order of half the stage III activation energies

or larger depending upon aid given to the cross slip process by the

shear stress on the cross slip plane. The mechanism governing the low
temperature deformation of aluminum, when considered tb be the intersection
process, may be expected to require the formation of a pair of constrictions
and jogs for each unit intersection process. As Stroh points out,-

however, because the dislocation segments forming the constriction about

a jog are'dn different planes the attractive forces between them are not

the same as for a planar constriction especially for small separations as

for aluminum. Only for large dT/b does he estimate the energy of a single

Jog by means of his equation for the constriction:

a_ =« a
AE T =
o3 .03 5 in 5 v (51)

for‘which he takeé the logarithm term equal to unity. _For small separations
as in aluminum he bases his jog energy estimate on the core energy and
obtains & value of about 0.1 Gb2 with which a calculétion of Seeger22
agrees éithbugh Friede126 estimates both calculations to_ be several
times too high.

It should also be noted that stress gradiénts, e.g. a forward force
on the rear partial blocked by a backward acting barrier force on

the front partial, can reduce dE/b; Another correction is also
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N

involved in this case to account for the work done by the stresses
during constriction as has been discussed in the sections on boundary
and barrier stresses. This effect has not been accounted for in the

results obtained and can lower the constriction ener significantly.
g
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CONCLUSIONS
From the foregoing analysis it may be concluded that:
(1) The model chosen for the dislocation core strongly affects
the calculated constriction energy over the entire range of constriction
energies considered.
v ' . . . . 18,19
(2) For the core model chosen (based on Morse potential calculations

for cbpper) the constriction energies may be represented approximately

by the equations:

Gy = 0.012k (=)

for an edge constriction and

d .
S = 0.0077 (—{;—)l *
for & screw constriction, or by the curves in Figs. 10 and 11.
From comparison with reported experimental data it may.also be
concluded that:
(3) The acfivation energies for stage III hardening of Al and Cu
and that for low temperature deformation of Al are of the order of magnitude

of the estimated constriction energies.
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hppendix I
Illustrative Culculationé Using Fquation (173)
A. lThe Line Energy of a Screw Dislocation.
The use of equation (13) in the body of this report may be illustrated
iﬁ.a calculation of the line energy of a screw dislocation. The config-

uration wscd is shown below in Fig. I-1.

airt = (ax', 0, 0)

a1 = (ax, 0, 0)

. R . .
\ ~s 7% +b L
Figure I-1. Screw Dislocation.

The energy of the line segment di’ can be represented by the integral

dE' _ Gb? 32R " 2v
T = " 1ar  ar e (8x * 1oy ax)
k“k
2 (32R 32R
-t 1-v (axz - axlaxl) d (I-1)

Care must be taken in evaluation of the derivatives of R. Defining-

X, = (x., - x'):
1

i i
R =Vxx = Vix—x')2 + (y-y")2 + (z-2')2 (1-2)

-x! ’ !
QB.: X=X - X=X (1-3)

P NV (xmx')? # (yy)? + (2-2")2 T
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and in general

X.
R4 ),
ox. R (1-4)
1
Similarly
32R _ 1 -
ax? Vi(x-x")? + (y=-y")2 + (2-2')2
(x=x')?
[(x=x")2 + (y-y")2 + (2-2")2]3/2
1 (x-x')? -
=& Axx) (1-5)
and
%R _ (x=x")(y-y*)
I [(aex)2 4 (yey)? + (zat)2]32
C{x=x"){y=y") .
- R3yy _ (1-6)
Thus in general
. 3.. X.X
9% _Ciy _TiTy | (1-7)
ax_axi R R3 )

Formally we may calculate



L6

% 32R 611 xixi'
9x. 9%, R ~ R3
1 1
_3_R_2
"R R R (1-8)

by use of the summation convention. The same result would have been

arrived at by differentiation of the less compact expressions. Therefore

E' _ Gb2 ;2 + 2V
v = 16r g (ax t S )
241 Lex!)? 2
*ISR T ®RI TR (1-9)
Gb2

Since R = |x~x'| = |x]|.

Integrating over the ranges
-R< (x-x") < -b

b < (z-2') < +)

" “the relation

&
5
&

(1-10)

jon)
'._l
H
=
=
o’

¥Note to readers unfamiliar with tensor algebra:

aii = 611 + 622 + 633 =1+1+1=3
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is obtained. The expression represents in a sense the effect of a length
26fof dislocation on an element at the origin, interactions from dislocation
line closer than a distance b to the origin being forbidden. Neglect

of the rest of the loop is unjustified and in this case the infinite

Joop having&_ = = would have g%;-= © too. The regult is similar to Lhat
obtained by the classical use of a specified displacement field of a
screw dislocation in a cylinder (see Appendix IV).

The elastic energy of the material in a cylinder of outer radius
Ty with a small cylindrical region of radius r. removed from the center,
the site of a.screw dislocation of Burgers vector b is given by the

expression
Gb2 ro
E = = [en - 1] (1-11)
. i
The constant term is due to a balancing couple required for equilibrium.
Otherwise the energy expressions in (I-10) and (I-11) are the same in
form, and exactly the same if the cutoff terms b and r oare identified
and also the outer radius ro and the integration range (.
If & term due to the remainder of the loop connecting x = +@\to

x = - taken as a semicircle is added to the energy, the energy is

changed by a constant term (see Appendix II):

dE' _Gb2 . [ 8-3v |
e TR C - R )

In our constriction calculations (¥ is extended to infinity as we are

calculating differences in energy which remain finite as?{ becones
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large in contrast with absolute energies which become infinite in this>

situation. The cutoff radius b, however, must be specified. In the above
special case it can be identified with the core radius of the dislocation.
Following the lead of Jé¢ssang, Lothe, and Skylstad27 the cutoff in the
integration, b, will in general be considered as the core radius of the

dislocation and will be taken to be one Burgers vector in magnitude.

B.- The Line Energy of an Edge Dislocation.
The energy of a small segment of edge dislocation may be calculated
in a manner similar to that of the screw segment. The configuration is

shown in Fig. I-2.

e S -
_ - ~ V%
_ - .
e
v a1* = (ax', 0, 0)
/
. ar = (ax, 0, 0)
[ > Zpdl y
R
\\ ;02 TANG b, = (0, b, 0)
A P b b' = (0, b, 0)
X

Figure_I-Q. Edge Dislocation.

-

The line energy integral may be written

ag' _ Gb2 2 (BZR

‘at T i 1 ayz) dx

. _ G2 2 (12
- T 16w § 1-v (R - R) dx
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-b "
Gb? dx d"|
T Br(1-v) f - ‘;‘+ f —i
ey 5 J

) N (3}

= m in -B- (I—'l3)

This expression agrees with the calculation for a dislocation in

& cylinder of radius ry and internal cutout cylinder of radius T,

. 2 r
Gb ’. [@] 3"“)4\) (I"lh)

B U S

E=maoy L’“‘ r, ")

Adding on the hemicircular closing loop changes (I-13} to

dE' _ - Gb2 R 5 | -
ar’ - (i) M w T3] (1-15)

The constant terms in (I-14) are due partly to core traction terms
and partly to the free sﬁrface of the cylinder. The constant terms thus
may be thought of as due to different "boundary'" conditions and should
not be expected to be the same for dislocations having different
environments. The meaning of this consideration for the constriction

is more fully discussed in Appendix II,
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Appendix II
Closing Lecop Energy Contribution
- Let us consider the energy change (elastic) when a dissociated

dislocation loop is deformed within a region P as shown in Fig. II-1.

Figure II-1. Dislocation Loop

One partial dislocation is labelled "1" and the other "2"; Q is
the closure loop region and remains undeformed. The energy change AE,

may be decomposed:

A, = AEF + AE% + apf® . ' (II-1)

Since Q isvundefofmed

AES = 0 ' (11-2)

PQ

- The interaction term AE is written in terms of an integral:

g Gbl b _2 4 ®
aE = Al - == [ f = (a1%a’
p o PRI J i

P2 %) - A (AL
Cd=v T
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A
+ —Eg-i—) SERCERY

PQij

(11-3)

—— -

As the distance from P to Q is increased R increases but so

PQij
does the length of dislocation line over which integration is carried
out. Iquations (I-12) and (1-15) in Appendix I show contributions to
thé line energy of an element at the origin due to the closure loops
considered, which clearly imply thal an alteration of shape in region P
changes the elastic energy of the system differently depending upon the

closure loop shape.

In this appendix the calculations will be made. The closing loop

for a screw dislocation segment is shown in Fig. II-2.

z

Figure II~2. C(losing Loop

The line energy is written (from equation (19))

g=n
ag' Gb2 2 -
E Tl B G i
¢=0
2 (1 (Rsing)?
el i e K
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Gb2 3-v o
= S

where = cos ¢

_ o2 [ 83y -
" EH‘T} | (11=4)

 The picture for the edge case 1s similar to that of Fig. II-2 with
the Burgers vector direction along the y-axis. The energy expression

is:

[Ras)(-sing)]

2 ¢’=7T
b
=t 8w (1l~-v) f
¢=0

(1 + sin®¢)(-sin¢ d¢)



~53-

-1 .
2
= -——~—8"((;?_\))_ [ (e - £?) ag
' 1
I (2 (11-5)
- th’(.l"'\i_‘ § 7

The need to consider the above type.of interactions can, however,
be removed without violating the closing loop requirement. Since P is

confined to the x-y plane it is possible to choose Q, or rather critical

Q

K normal to the x-y

is zero by>taking de

regions of Q, such that dli al K

plhane. Since the Bufgers vectors are also restricted to the x-y plane

le = dl? = 0 in (II~3). These regions of Q can be extended from the

J
boundaries of P normal to the plane of P for an indefinite distance.
Thus the coﬁnection between the branches of Q which are normal to the
plane can be brought farther aﬂd farther away from P without increasing
its size and although this part of Q must have components of extension

parallel to the x-y plane, its effect may be made as small as desired.

" For this closing loop (shown in Fig. II-3):

AEPQ =0 (1I-6)

and'
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Figure II-3. Closing Loop Q Having No Effect on AE

1°
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Calculation of AEl
The calculation of AEl is helped by a few decompositions:
- 11 4 122 12 e
bE, AE] ARTE + 34 | (T11-1)
| x .
AEil = AEilxx + AE}lyy + AE;I v (177-2)

22 . Am22XX 222YY 22%Y
AEl BE? + B2 + 0E2

12, ppleXxx 12YY 12Xy . -l
BE;Z + AB}ZT 4 a1 2V 4 apl2¥ (III-k)

where 1 and 2 refer to the dislocation lines and x and y refer to

Burgers vector components.

D e
11XX G(blx)z A
= o ——— [
AEY o i i yrT (Gx'dx
- -
w112
+ 2v dx'dx) - 1 1 (x=-x")

1-v

1
Rl 1 XX
(@]

(dx'dx + dy'dy) - (dx'dx +

). ax'ax) (I11-5)
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where

RITASE .\«y yI)’ + (x=x' )’ (r171-6)

v, = yl(X) vy = yl(x;) (III-7)

and-

N (r11-8)

G(p. )2 +R +R
IRy
8

. 112 : dy! ay '
o= o) 7 ?(dxj.‘ ) ax'ax (1T1-9)
gy o+ (x-xt)?)3 2|
G(bl )2-+R +&, N

1YY Y’ ,

AE 8 [ vy (dy'ay +
=R R

2 R 1 1 Y2

—l—_-\‘f dy 'dy) ( + Ly=y")

1-v RILYY (RIIYY)3



1
(dx'dx + dy'dy) + N \x dx'dx
A l"\)\Rlly—y;'

o |

where

—_— G(b1 |
pEIVY = ol [ f
-—4',-3\,-@/
dy! dy
1v — “1hx%d£l dxax
-V
Vi, )02 + (x=x")2 )
T 2 {' [
_ (y,~v]) i Ez;_iz_? e
. l-\) 2 3/2 1+ ' dx | X
[(y-y])? + (x-x")?] L ]
. “ = mam*_}dx'dx
-y L\[(yl~yi)2 ¥ ()2 Ve
(b, b H +3R.
11Xy _ _nniz_kx_ s
AE; -2 f f T (dy ax

—d{-@t

(ITII-10)

(ITI-21)

(111-12)

(II1-13)
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; 1 ((yl-yi) (x-X')) N

lav Xy
: 11
(R )2
(dx'dx + dyjdy,) - 0 | (III-14)
where

115 YT 12 TT-15
R = ‘\/(yl v1) (x-x') A (IIT-15)

Gb, b R R

xy
N ——T——¥1

-R -R

dy! ‘
1 1J .

{W'-yl)h Gy

dy
+ 2 L . dxl dx'dx
I-v WV'(yl-yi)eﬁ (x=x")

dy, 4y
E | W™ &

1 { (yl-yi)(x-X')l

= + 1) dx' dx (III-16)
Vol [y a)® o+ (xex)? ¥ }

| — - 6(b, )2
amco o=



] 0
V .égﬂ,m_w_p L D axtax
lﬁv V(Y2~y;72 + (x=x')" V(%) J
i 2
- l%v -—Si;f~z*~’~“—g e - }dx'dx
Vi) ¥ Gex)? S et)®
- T szﬁg 2 7?}(%% ?b } dx* dx
l-v [(yg"'yé) + (X__X,) ])/ dx X
11%X
by similarity with AEl
o +R +R
oYY G<br> ) 1
A2 2y J
1 T T T 8r
: R -R
. - dyé Ve \ dx'dx
= oo | | & &

2
H
(y,-3)

[(y,=v5)2 + (x-x)275/2

1
1=v '

g 1 ) 1
L a2+ )2 NP

119Y
by similarity with El

(IT1-18)
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. +R +R
AFEEX-‘Y _ (Jblxblr ‘»
4_11 = “'ﬂ' J"
R “-R -
i ayh
| axtax

dy
+ 2V L - 2 dx'dx
Y S 5 dx
V{yph)™ + Ge=x?)
1 (yov5) (x=x") dyl v, N
- s — + 1| ax'dx
- 4 1
o [(ye--yé)2 b (xxt)PP/0 O dx
115V (II1-19)
by similarity with AEl
. +R E +R
| Gb. b
10X% 1x_2x , 1 .
aByT = =2 T f e (@x'dx
- i 2 R

e
+ 2v ax'dx) = 1 1 | (x=x') a
' 1=y

1=y XX 1 XX =
rt? (z27)?
: 1
.:(dx'd.x * dyldy,) e (ax'dx +
o]
2 v axtdx) + 1 1 + (n=x")
1= 1= 12" 1275
R~ (R )
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t + ! - v e
(dx'dx d.yld_yg) —~ (dxtax +
R 12
YA
oy dxtdx) + 1 1_ . (x=xt)" )
1~y 1~y KX XX
12 L 12 5
R (R )
o o
where
XX r
12 N 5
= - + ~x!
R \J )"+ et
XX ‘
RN T
(df = geparation of partials before constriction)
. +R 1R
AR L b1 Pox
1 B L
~R =R
y 1 1 1
. - dx'dx
1=y
2 2 L2 2
| 4\Qy2-yi) + (x=x") *Vét + (x-x*) J
1 (x~x')2 (x-x')"

v ')?]5/2 [di + (x~x')2]5/§

[(ry=rt) + (x=x

)(dx'dx) (TII-20)

(III-21)

(TII~22)

dx'dx
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r 2 ay! dy |
- 1 (X"'X’) - { _‘V 2 ) d){’d.x (III—Q})
L-v t w w11\2.3/2 dx'  ax :
[(yp=yy) + (=x")7]
- : R 4R
Gb, b ;
12YY 1y°2y 1 ,
. 4 = - Ar——————aas. P ]
! ° o J J 127 (dvp01
' R R R
(y,=y1)
+ 2v dy dy’) - l‘ 1 + 2 Y1 .
RIENY 2Vl L=y lgyy lgyy 3
R (R° )
1 1
t + 1 -+
(dox’ dx dyEdyl) "Ly . 1YY
RO
dt2
+ dx'dx (IIT~2L)
@27y
O
where 7 _
| yy 2 2 ]
RE = '\/(yg—yi) + o (x=x")" (ITI-25)
v .
R(:%e = \/de + o (xex")? (III-26)
+R +R
vy Gb_. h
1277 1y 2
o e [
) -R -R
1
1 ] W Iy




where

1 1 ; } e
- Y — \/_ — ax ' ax
' 2 2 2
W/(yﬁ-y{) + (X-X')2 a. + (x-x') J
12 2
T 1-v ) 2 2572
§ L(YQ-Yj) +(x-x") J)/ [a Fo(x-x%
e . ,
= — = = dx 'dx
BV gy P e P12 J ax ax’
X Gb, b +R +R
ap? T - 2(2) 1x 2y L (dyax!
1 T X 2 1
' -R -R 12 S

2V ] Jor
+ ' R
1-v dyidx) l-v < 12%XY 3
' (R
. . ' . 1 _d;f‘(X—X' )
(dxdx' + dy;dy,) - T
1-v 12 3
ES )

Xy .
12 2 2
R ='\/kyé-yi> +(x-x")

Xy
12 . 2 2
R, = \/at + (x=2")

(r11-27)
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Gl AR ]
12X DyPoy R
S T N
LR YR ,
o !
1 Wy, I s
— ax dx
~/ V= (12 ax l-v  ax’
(y,=yy ) #(xx")
- e V! “
o (v, vy M xmx") a, (x-x") .
T ) A Iy 2 2.4/ o
v LCypmy ) e Gemxt) V/ L, ‘-(H-X')JJ/
- (¥,-yI )N (x-x") dy. 4y,
- c L ) 21 axax (I11-31)
1=v [(yé-yi)2+(x—X')5/é' dx' dax /. ' ’

; R
The expression for AEl/Gb d, that results from summing the component

t

parts above is of the form

£ oo oo
= %/b @/c f(u,u') dudu’ (II1-%2)

i -00 -0

!

where u and u' represent the nondimensionalized lengths %5 and %3 re-
spectively, and the notation E C refers to the elimination of core terms
in the course of performing the integration (see below).

Decomposing the integrals

\

N 0 SR Y
—y— = ?/; + E/b E/; + L/C T{u,n") dudu' (III-3%a)

V) ¢
0 - 0

-8




= %/; ?/E' f(-u,-u') dudu'
0 0 ’
o w
+ %/;u Efc  f(u,u') dudu'
0 0
% o

+ EJC E/& f(~u,u') dudu’

>3

0
+ EJC E/C £(u,-u') dudu’
5 .

@]

-8

o
N

E/c  [f(-u,-u") + f(u,u’)
.
¢

(@)

+ fl-u,u") + f(u,-u')] dudu’

(III-53b)

(1I1-33c)

(III-334)

Using the transformation of (III-3%d) plus the above enerpy ex-

A 1 .
pressions for the case where v = 7 and the Burgers vectors are given

3
as in Table I equations. (ITI-34) and (III-35) are obtained.

be machine integiated to finite upper limits using Simpson's

extrapolated to infinite limits.- For the screw dislocation

These may

rule and
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AR 0\0 3\7 ( 2 - ('\. ! )
L. L gle ple {2
2 i sl
Gb d N \ T a2
T 0 o \(u—u') + (e " e )
2 -plutu')

[9(u-u')2+ 5(é—BLI-e'B]l' ) ][l+52 - (v’ )]

[ (ueut )P o (TP B 2 372

[9(u+u')2+5(e'5u -Pu’ ) ][l B ~Butu! )]

[ura' )2+ (e PU_g™Pu"y2 5/2

+ - 9 " 9
{(u-u')2 /(u+u')2

6 + 108% ~p(utu’)

\/(u-u’) + (Q_e-Bu_e-Bu' )2

+

6 - 10p2e~Plutu’)

VS

[9(u-ut)? Lo Bu_Bu Ry 2 -Blurut ),

[(u-—u’) +(2_G"5u_e“5u )2]3/2



2 pluru')

o _A; _ ' )
_[9(utu' )™ - 3(2-e au-e fu )gj[l + B e
. -e -Bu_e -{Bu' )2

6

2E

v : 6
- ww? s

| .2 2
. 9(u~u')" - 12 . 9(utu')

)2 + 4

- 12

[(u-u')? + 43772

[(whut )P+ 472

dudu’

(113-34)

where the %/; integration sign means that the core is eliminated from

the range of integration by equating terms involving distances of inter-

action less than a Burgers vector to zero. FEach sum of squares in the

s - - 1
denominator, for example (u-u')a + (e Pu_g-Pu

)2

in the first term in

(ITII-34), represents the square of a distance between two elements

du and du'. If ‘the squaré of the distance is equal to or greater

than (b/yo)e, since the u's are distances nondimensionalized with

respect to yo, then the term is included in the integral. If not, the
term is equated to zero.
For the edge dislocation
AE 1 ) ; -8
5 = - E/C EJC
. ) - - 1 2
Gb q’r _ 96 m 0 0 4 \/(U_-U')E-*- <C‘ BU_G Bu >

\/Qu+u,>2 N (e-Bu_e-Bu’>2

CDBueut P o(e e P R 4 g2 Pl

[(u-u')2 . (e-ﬁu_e-Bu')E]ﬁ/Q
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- [5(u+u’)2*‘9(G-Bu-e-5u’)€][l _4ﬁ2€-6(u+u')]
[(wrat)? + (e7Pe P )P/

+ ,r__}l___ + : 1%;_“~
\ (u_u,)E ' J (u+u’)2
104-6528-B(u+u')

S P e (e PP

- 10 - gplePlutu’) + 10
V/kU+u')2 (z-e"ﬁu_e"ﬁu')2 ' v/ku-U')g .l

WS
FIRRT

T« 10 + 36 |
Vo Per Jrn? 12/

36
[(u+u' )2 + l;]5/2

V4’/‘//.+

~.
N

DBumw)® 9(e-ePUePU T L 62 Bluru’ ),
[(weu' )2 + (zoePUo=PU"y273/2

+P[3(u+u')2 - 9(2—6-Bu—eh5u‘)2][l + 526—B(u+u')]
[(u+u')2 (g_e-Bu_e-Bu’)gji/e

'3(u_u,)2 - B(Ufu')z
[(umu )P+ 8172 (a )P+ 43777

dudu'’ (III-—j5)
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A tabulation of the results of evaluation of the inteprals is

given in Tables III-1 and III-2.
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Table TII-1.

Bulk Elastic Energy Screw Constriction

10 .25 .5 625 .75 1.15 .5 2.5 3.0 3.5 L.o L5
. > B
6.96 3.65  L.03h  -.178 -1.878 -1.940
13.96  6.03 3.00 .T27 -2.98
zL.5 5.89 3.16 .195 -1.9k
13.07 6.22 3.78 .895  -.670 -1.58 2,155
13.25 5.44 4.6k .32 . 540
A\




Table III-2. Bulk Elastic Energy Edge Constriction

.25 .50 290 1.00 1.50 2.00 2.50 3.00 3.50 4,00 h.s 5.00
: -
15.84  8.28 - L.98 3.91 2.61 1.92
23,87 12.40 7.26 5.59
27.66 1h.s2 9.31 8.67 6.69 4,52
29.6  15.77 9.71 7.95 5.83
30.6 16.57 10.71 9.03% 8.25 7.76 7.54h1 7!13' 6.76
W o

-Tj_;_
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APPENDIX IV
Core Traction Energy Calculations
The Core Traction Energy of an Edge Dislocation

A.

A straight edge dislocation embedded in the center of a straight

cylinder as shown in Fig. (IV-1) may be described in terms

J

Z

Figure -IV-1., Straight Edge Dislocation in Cylinder

of .a stress functioneq X, in terms of which the local stresses, oiJ’
may be calculated by differentiation:
r 17 2 : i
5 o o Lax L 8% _ 3 13y 0
rr ré rz ror r 2362 or r 96
= LA 37X

9or %68 %6z | - T 9r r 98 dr2 0 (1v-1)
921 %26 %2z 0 -V (orr * 066)
i IS ]

The above formulation assumes no displacements (or strains) along
the axis of thé dislocation. Any X that is specified must automaéica}ly

satisfy the equilibrium condition on the stresses.

[

i
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The stress function characterizing the edge dislocation of Fig. (IV-1)
is

X, = Dr 1lnr sin® (Tv-2)

where

Gb
D = E;TT:;T . (IV“B)

The stresses due to the dislocation may then be calculated to be:

r‘D sin 6 D cos 6 o
r r
[Olj] - - D C;S €] D S;_‘n 0 0 (IV-)J,)
0 0 _ 2vD sin O
— o r J

These stresses fall off from a singularity at the origin to zero at
infinity and may be considered to fepresent a dislocation in a cylinder
of infinite radius with a "full" core. The elastic energy, E, stored in

the stress field of a region between radii ro and Ra is given by the

volume integral

av (1v-5)

where €,,, the local strain, is related to the stress tensor by Hooke's

id

law:



€ €
rr r6 rz

“or f00 f6z| ~
.gzr ez6 gzz
e - -
b - 2 (a__+0, +0_ ) O o.. ©
rr 1+v rr 68 “zz rf .- rz
1
G %r %50 " T3v (OrytOg70.5)
o o - ~2-(o o
Zr . 26 2% 1+v rr 660
e .

Sinée the stress tensor may be written

orr Ore 0
[cij] %6 %6 0
: ' +

. Q 0 V(orr 066)

’,a, b -

the strain tensor simplifies to

crr_v(crr+066) °re 0
1
[e;51 = 35 e 9=V {0,*0gq) 0
0 0. 0
" .

- o + ¢
v(orr %96

(IV-6)

(Iv-7)

(Iv-8)
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1
al”

- - 2 2y
“f'{(l v)(orr t Oge ) chrroee

+ 20 2} av (Iv-9)
ré

Inserting the stresses due to the dislocation stress function:
1 D2 )
E = hGA'I'{(l~v) v (2 sin®e)

2

- n2
- 2v %g-(sinze) + 2 %5‘(c0526)} av : (Iv-1.0)

or for a unit length of dislocation

2G r2
r=r 06=0
o
2 R
- ID e
=7 In (1-v)
o
= Db 32
2 r
o}

R
= £ -
IREIFE S (1v-11)
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Another stress function, Xc’ may be added to that of the dislocation,
Xo’ to remove the effect of the core material by eliminating forces

exerted by the core material on the surrounding region, i.e. by eliminating

"core tractions". This stress function is
X = Bsinb (IV«12)
c T

where B is a constant.

The stresses associated with xC are:

oBsing OBcosd
3 3 0
r r
' C 2Bcos6 2Bsinb
- 2Bcos8 e2Bsinb IV-1
0 0 0

which have the proper symmetry to eliminate Opp and'ore on a surface of
constant r. As 0.z is already zero and is not affected by Xo this stress
function can be seen to eliminate core tractions when it is seen that

the stresses drop off in magnitude and do not influence the stresses

at the surfacé of an infinite cylinder. In'passing it should be noted
that there exists another stress function of similar stress symmetry

that increases in magnitude with r and may be used to eliminate tractions
on the surface of a cylinder about the dislocation: this device.is used
when one wishes to consider a finite cylinder containing a dislocation.
For the sake of simplicity we will work with an infinite cylinder, which

will not affect the core traction energy term because the surface terms
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will be negligible in regions of small r, provided Rc’ the cylinder diameter
is very large.

. Thus at ros the core surface

- S =0 _ (Iv-1ka)
r r
0 o)
and (equivalently)
" 2Bcosé _ Dcos® -0 (IV-1hb)
r 3 r
o o}
which requires that
Dr02
= iv-1
B 5 ( 5)
The new stress tensor becomes
RS 1T |
D = - —— sinéd D - %=+ -——3 cosb 0
r r3 r
1 ro2 1 ro2 :
= - — e i -
[oij] D -z + -3 cosé D T+ -5 siné 0 (Iv-16)
VD si
0 0 _ 2 VD sin 6
T
.

The stresses are different now that the core has been removed but
the expression for the elastic energy of the hollow cylinder in terms
of stresses is the same. Hence for the hollow cylinder

' 2 2
=< 1 D2 s lo k(1w 22 gin?
Eh =1G 1 - v ;5- 1 - o, + (1 + 7 sin“o
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2 .
+ 2 %g*[(-l + —%5)2] cos?8} dv

- > r 4
= 1 ' D o in?
= EEJ {(1-v) » [2 +2 r“] sin“@ .
A
D2 T .
- 2v = (1 ~‘—;r] sin<4o
2 4
D2 . I‘o ‘ ro 2.
+ 2 L -
2 2 (1 2 + '-;_5-] cos<0} dv
. D2 rO“ 2r02 .
= E + EEZJ’{"Fg = —— cos?6} av (IV-17)

The core traction energy, E;, for a unit length of edge dislocation

becomes

| D2 il ‘roq 2ro2 2
Ep = E‘Eh.= -G e - Tph - cos 6) rdédr
=0 r=r
o
2 R ' r 4 r 2
=2 | on 2o 2] ar
2G rd r3
r
o)
D2 rol+ : ro2 R
=% "7|hew Y o2
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2 4
] 1@3( 1,1te] _1flo
TG L“h 2 LR L 1R
2] 2
_ 1D? ig , XY
= e 1-{R) _ (1v-18)
| C )92
R o
v "mwl—vzil’(‘ﬁ’ (1v-18)
If r=band R = 2b
E, = [1 - iz}z (Ey) =2, (E,) (1v-19)
2 2 2/motal 16 2/Total

so that a little over half the energy due to the core tractions lies
within a Burgers vector of the core surface. This is our justification
for treating the energy as localized along the length of a dislocation.
The magnitﬁde of the effect of the core region on the interactions
of dislbcations is obtained by calculating the percent change in shear

‘stress, o for 6 = 0 when the core is added to a hollow dislocation:

r6>

ré _ n__r r r3 . O (1V-20)

Thus there'is an effect of 25% of the magnitude of the hollow core stress
at twice the core radius, 11% at three times the core radius, 6% at
four times, etc.

If the length of dislocation where the cores of the partial dislo-

cations are closer together than, say, 5 or 6 Burgers vectors is vary
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influential in the constriction energy calculation,.then the effect of
the core bécomés important in the elastic as well as the core energy
proper. We assume this effect to bé negligible. |

Two ways to handle the situation where the core traction stresuen

cannot be separated from the elastic stress fiéld of the hollow dislocation
are:

(1) Describe thé dislocation in terms of a distributed dislocation
density; this would be équivalent to a three-dimensional
generalization of Peierls' calculationL of the width of a
dislocation. Computer célculations of the configuration of
f.c.c. dislocations havé béen madgagassﬁmihg Morse potential
interactions. Either a simplifying assumption or extensive

.analysis of* this would be réquiréd here.

(2)  Integrate the more genéral‘form of the Krbner elastic energy

expression where the double line integral becomes a quadruple

_integral involving coordinates of integration normal to the
.lines?- Tﬁié approach wouldvstill involve the assumptions of
isotropy and a given dislocation shape; it would probably

- not be worth the frouble unless one were lucky enough to hit
uéon some unexpected simplification, say by a clever choice
of a dislocation density distribution profile across the
dislocation core.

Thus.the core traction energy of a curved edge dislocation‘is

taken to be
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E, = U/ szd
2 = ' —S88S g0 (Tv-21)
length of 167 (1~v)?
dislocation

assuming R >> ros where d& is an increment along the dislocation line.

The integral.is always positive, not depending on the sign of AL as

is the case fbr the Krdner line intégrals of which one is the result

of an application of Stokes' theorem and thé othér depends on the relative

direction of the Burgers vector.

B. The Core Tractién Energy of a Screw Dislocation

When a similar calculation to the above is performed for a screw
dislocation, it is found that the core traction energy is zero. Rather
than repeét the details oflthe calculation a physical argument Jjustifying
the absence of core traction energy will be given.

In forming a screw dislocation the displacements made are all
pérallel to the dislocation axis; also the displacements are the same
whether the core is empty or full. The -only work that screw tractions
can do during formation is to provide a frictional force, but not a
force that can distort material in the elastic matrix around the core
after the dislocation has been formed except for local pinching or
stretching on the atomic level, which we neglect, and which wouid
require detailéd knowledge of core structure to calculate. Thus we
concludé that there is no elastic core.traction energy associated with

a screw dislocation.
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Appendix V
Some Line and Area Integrals
A, Introduction |
In order to determine the core and core traction energies asgocianted

with a particular constriction configuration it is necessary to evaluate
2

dl which represent the change
screw :

. 2
the integrals A [ bedge dl and A& [ b
in squares of the edge and screw Burgers vectors associated with a unit

length of dislocation line. Later in the analysis a portion of the core

is -removed to be replaced by a recombined segment. This requires the

. /2, /2 N
calculation of the integrals [ D dl and [ D dl. It is
edge serew
-x /2 ~x/2

also necessary to evaluate the change in area of stacking fault, 2OA4,
that occurs when fhe constriction is made. These quantities are cal-
culated in this appendix.’

B. The Integrals A [ b2 a1 and A S b2 a1
edge screw

Let the Burgers vector of a partial dislocation be written

b = bT + b3 o (v-1)

where T and 3’are unit wvectors along the x and y axes respectively.
The tangent vector to the dislocation line is given by:
[shig x¥ + ay 3

dl dl

and the local screw component‘is given by:



E

.-.} -
= N al
b = (b a1 ) i

H

—~

=1

_ ax dy yd
= (b b al );

< 3T v (Vv=3)

o
}_J

The local edge component is
2 i = b -0 (VL)
edge P screw

and its square is

= b
edge D screw he) screw

]
—— e ———eaa..
o’

no
+
o’
n
1
—
o
n
—
&
N’
o
n
ke

Consequently:



R PV I N C(v6)

Similarly

+ | o & dyJ b_b a1 (v=7)
Xy
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In performing the integration one must remember to integrate over

all of the partial dislocation lines belween =« and +w ., Letting

b MAEp -1y , (v-8)

(
p° 1+p° + 1 /

P = in

Ji+ e -3

Q = B - | (V'9>

the evaluated integrals are:

For the edge constriction
’ 2

5 b7q
= — 2 + ° "»-A
Ao bedge a1 —— [37 + 20] (v 10)
2 bng
Af Dopew = o [P 6Q ] (V-ll)
For fhe screw constriction
2 bedr
= =12
A J Pegge It = Tz [P 6R] (v-12)
. va_
A boerew = —iE—'[)P +2Q] ' (v-13).
: /2 5, Hx /2
C. The Integrals [ b gpe 41 and [ bhcrew 1
-X/g g -X/2 S —_——

Recalling Equations (V=3) and (V-5)

o’
o

w2 VL | - I ( dy 2
dpp Poaee ™ = 1, L{l R O



[dx &y |
- 2 | b, pal
L
and
+x /2 /2 |l . 2
f biCI‘eW b = f (g% b)2(
-x/2 -x/2
Fé KW yp a1
dl dil Xy

(S,

(v-1k)

(V-15)

One must be careful to integrate over all the partial dislocation

lines between «x/2 and +x/2.

Defining
T~3‘-l N1 +BV + 1 J1+(32..1
B :
N1+ 62 + 71 N1 +pV -1
5 J1+62 - JT+
= - 5
where
Bx
y
V =.pe ©°
the‘evaluated integrals are:
;/  For the edge constriction:
J /2, bedT
/ . = e +
bedge a1 5~ [3T au)]

-x/2

(V-16)

(v-17)

(v-18)

(v-19)



~87=

/e, b2q _
= ==L [T + 6U] (V-20)
-x/2 SCrew 12
For the screw constriction:
+x /2 5 bEdT :
i = + V=21
_i/e bedge dl = [T + 6U] (v-21)
/2, bng
< - _ PG o} )
~£/2 bocrew ¥t = I3 [T + 2U] (v-22)

In contrast to the energy differenccs calcula ted in Fgs. (V—lO) to
(V—IB), which remain finite, these enerpgy terms go to infinity at the

limit where x goes to = and V goes to zero.
D. The Stacking Fault Area

The stacking fault area change upon constriction may be decomposed
into two parts for convenience: (1) the area change when the stacking
fault is considered to extend to the centerline of the partials, AAl,
and (2) the area éhange necessary to exclude the stacking fault from the
core region, AAQ. The stacking fault area change, AA; my then be

written:

DA = 0A + DA, | (v-2%)

AAI is shown in Fig. V-l. It is easily calculated.
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S

‘Figure V-1. Stacking Fault Area Change Including Stacking
Fault Between Partial Centerlines and Core Boundary.

v, |
8ay = -4 [ xa
0
y
| o ¥
=-L4f -=21n(1-%L) gy
. -8 Yo
0
2 2 '
A (v-2L)
8 B :

The sign is negative because the area of the stacking fault decreases

when the constriction is produced.
|

The stacking fault contained in the core is shown in Fig. V-=2.
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Figure V-2. OStacking Fault Contained in Cores of Partial Dislocations

Let the initial area of stacking fault within the core in a region
x = =of to x = +o€ about the constriction be AI and let the area of

stacking fault in the core ¢f the constricted dislocation within the

same region be AII‘ Then

1i :
BAp = pon (Apy = Ap) (v-25)

AI is easy to calculate
A; = bo& ' (V-26)

but AII requires further computation.

The vector to a point on the centerline of the partial in the

positive quadrant is given by:

> T
r = Xio+ y}



~90=

Bx

o =~ —

. y
X'+ y (1 =-e 97

The vector to a point on the inner boundary of the core is

by
()_.'
. ( dc-r)v \
?o= ?+b< -
B
dr

(v="17)

c piven

yb
= x + bfe 7
_ 2pBx
yO
1+ Bee
- Bx
. v }
tly(l-e 9 - b i (v-28)
| o |
1+ poe ©

where use was made of a Frenet-Serret formula to

the centerline curve.

Then-

- Ex

. x =oL Yo

Ay = % [ oy (@d=-e 7)
X = 0

obtain a wiit normal to



Yy
Qo
x + 208 = &
\/F o -E
Ty
2
1+ P o
¥

. B
y b ‘ 4
y (L =e %) ‘ = 0 ‘ (V-29)
2Bx
y-O

1+ Bge

Integrating and taking the limit one gets:

AAE=..LLy‘;bb_r.‘Z»J.-\-’+(1«-Il-)1nz
B ) b B ¥ B
0 .
-
: +
+1+1n (l4~/l+V)_ Loy
2 S+ P
r
""ST ol tan™t v+ L | (V-350)
yO L 1+ VE' J
. Bx
o yo
where V(= Be ) is the root of the equation

A N G VA

+52(1- —) = 0 - (V-21)

nearest to and less than B.
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Appendix VI
Size of Overlap Region
In Appendix V a vector following the inner edge of the core of the

partial dislocation in the positive guandrant was derived:

(i)i
. Yo 1
._)B - x + bBe } '\l‘ﬂ)
\/ _ eBx ]
¥
1 +p°% O
Bx
Y .
oy (lae ©) - > i (v-03)

The‘overlap region ends when the end of E% Just touches the x-axis.

Defining x! as the x at which this occurs then

- Bxt
yo b
y(1=-ce )y - — = 0 (VI-l)
© _ 2px
v
1+g% °
or defining
y - .
x! = - 59 in %- (31)

4 5 2 > A
Ve 2By + (1480 aopy + B - ) = 0 (32)

yO



Since x' must be positive only roots such that V < 3 are acceptable,
and since V = B (and x! = Q) for large B, the solution of Eq. (32)
giving physically acceptable behavior is that just below . This
solution may be found by computer by'starﬁing evaluations of the poly=~
nomial at B and then dccreasing (3 until the sigh ol the polynominl changes;
any desired accuracy may be‘obtained by backing off to the point just

before the sign change and proceeding again with a Tiner 3 interwal.
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APPENDIX VII
Minimization Curves
Figures VII-1 through VII—h show plots of constriction energy vs.
the B-parameter. The minima of the energy curves are taken as the equil-

ibrium values of the constriction energy.
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FIG. YL -1 CONSTRICTION ENERGY vs. 8 PARAMETER,
- EDGE CONSTRICTION & =15, f=0.3.
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CONSTRICTION ENERGY (GbZdy x102)

FIG. YI-2 CONSTRICTION ENERGY vs. 8 PARAMETER.
SCREW CONSTRICTION a,=1.5, f=0.3.



~ CONSTRICTION ENERGY (Gb? dg x 102)
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FIG. XI-3 CONSTRICTION ENERGY vs. 8 PARAMETER.
EDGE CONSTRICTION a.=1.0, f=1.0



CONSTRICTION ENERGY (6b%d, x103)
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FIG. WI-4 CONSTRICTION ENERGY vs. 8 PARAMETER.
SCREW -CONSTRICTION a=1.0, f=1.0,
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