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Power and Energy Constrained Battery Operating Regimes: Effect of Temporal1

Resolution on Peak Shaving by Battery Energy Storage Systems2

Shiyi Liu,1 Sushil Silwal,1 and Jan Kleissl13

Center for Energy Research, University of California San Diego4

Battery Energy Storage Systems (BESS) are often used for demand charge reduction5

through monthly peak shaving. However, during economic analysis in the feasibility stage,6

BESS are often sized and BESS revenue is quantified based on 1 hour load and/or solar out-7

put data for one year. To quantify the error in the demand charge from coarse-resolution8

modeling, the effect of two temporal resolutions, 15 min and 1 hour, on peak load re-9

duction is compared across a battery ratings space defined by power capacity and energy10

capacity. A linear program of the system optimizes the peak of the net load and the as-11

sociated demand charge assuming perfect forecasts. Based on the 15 min load profile of12

a particular day, a critical power (CP) and critical energy (CE) can be defined, yielding13

a critical point in the power-energy space. Based on the difference of demand charge14

(DoDC) across the two load profiles at different temporal resolution for a real building,15

the battery rating space is divided into three different regions: oversized region, power-16

constrained region, and energy-constrained region, which are separated by CP and CE.17

The DoDC in the power-constrained and energy-constrained regions is explained by time18

averaging effects and the load sequence at high resolution. In the power-constrained re-19

gion of the battery rating space, the difference between the original 15 min peak and the20

1 hour average peak persists in the optimized net load until the battery power capacity is21

sufficiently large. In the energy-constrained region, averaging may change the peak period22

duration, which depends on the sub-hourly sequence of the original load data. Through ar-23

tificial load data and reordering of real load data, we demonstrate that the sequence effect24

causes energy-constrained batteries to underestimate peak shaving and demand charge re-25

duction. Demand charge savings were especially sensitive to the BESS power capacity: for26

a ≈ 50 kW load, demand charge errors were up to $53 for power-constrained batteries and27

were an order of magnitude smaller for energy constrained batteries. The power capacity28

of the battery should be carefully considered when interpreting results from optimizations29

at low resolutions.30

1



I. INTRODUCTION31

A. Motivation for demand charge management32

Battery Energy Storage Systems (BESS) can mitigate the challenges caused by uncertainty and33

variability of renewable energy generation in hybrid renewable energy systems and contribute to34

CO2 emission reductions. BESS are also critical to demand-side management for power end-users35

in microgrids. For example, BESS have become a popular solution for electricity cost reduction36

in commercial buildings through peak demand reduction and an associated reduction in demand37

charges. Largely owed to progress in technology and manufacturing in the last 5 years, the BESS38

costs have decreased dramatically. With many countries aiming to achieve sustainable power grids39

and reductions in carbon emissions, it is anticipated that BESS will be widely implemented in the40

near future.41

There are two primary categories of existing BESS research: (i) utility side or “in front of42

the meter” applications and (ii) demand side or “behind the meter” applications1. In utility side43

applications, BESS can provide grid services to power systems with high levels of renewable44

penetration to decrease intermittency and disturbances2,3. However, this paper targets demand45

side applications. Peak demand shaving is a popular BESS application in demand side manage-46

ment (DSM). Most commercial and industrial end-users are charged two components in electricity47

billing, energy charges and demand charges. Energy charges are based on the total energy (kWh)48

consumed while demand charges are a function of the peak demand in any 15-minute period of the49

billing cycle (typically one month). Through appropriate scheduling of charging and discharging50

(i.e., a battery dispatch schedule), BESS can reduce the peak demand and, thus, achieve economic51

savings4. To reach these goals, building and microgrid optimization typically requires forecasts52

of both renewable generation and electricity demand or load. For example, minimizing the an-53

nual energy cost, the mixed-integer linear programming (MILP) DER-CAM model elucidated the54

drivers for adoption of BESS4. REopt5 evaluates economic viability, identifies system sizes of55

grid connected PV, wind and battery systems, and provides an optimal BESS dispatch strategy.56

B. Literature review on time resolution effects on modeling battery dispatch schedules57

The temporal resolution of input data and models has significant impacts on simulation, design,58

and operation of energy systems including BESS. Bistline6 cautions that while analyses performed59
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with simplified temporal aggregation reduce computational cost, they cannot accurately evaluate60

the advantages of renewable generation or storage systems. Bistline also points to a need for higher61

data resolution for policy analysis, power system planning, and technology evaluation in scenarios62

with higher penetration of variable renewables. Similar conclusions are drawn by Abdullaha et63

al.7 for residential BESS, Poncelet et al.8 for energy system planning models, and by Jaszczur et64

al.9 for energy flows between PV, home, and grid and self-consumption. Schmid et al.10, Hack65

et al.11, and Tang et al.12 also confirm that higher resolution data results in better accuracy of66

techno-economic analyses of BESS.67

Battery dispatch scheduling is sensitive to the time resolution (or time averaging; both are used68

synonymously here consistent with the literature) of the load profiles. Most analyses on tempo-69

ral resolution use residential load profiles. However, since residential electricity tariffs are only70

volumetric and not a function of peak load, these analyses do not consider minimizing load peaks71

which is important for commercial customers in reducing demand charges. Peak shaving and72

valley filling is also important to grid operators in enhancing grid reliability, such as in analyses73

of BESS impacts on larger power systems using hourly load and generation data (Yang et al.13).74

Wright et al.14 analyzed averaging effects on the import and export proportion of on-site genera-75

tion for a residential load with time averaging ranging from 1 to 30 min. Longer averaging was76

unable to capture short-term peaks, reducing peak loads. Cao & Siren15 analyzed the error of the77

fraction of production consumed on-site (also referred to as self-consumption ratio) and fraction78

of local demand supplied by PV (also referred to as self-sufficiency) as a function of time resolu-79

tion. Coarser resolutions overestimated the self-consumption and self-sufficiency because the load80

variability decreased with averaging. Adding a BESS as in a PV+BESS (PVB) system reduced81

these errors significantly due to the ability to flatten spikes. Stenzel et al.16 analyzed the impact82

of time resolution on self-consumption rates for PVB. Self-consumption was over-estimated for83

longer averaging times due to smoothing, leading to an overestimation of the cost-savings from84

PVB. Beck et al.17 assessed the effect of temporal resolution of PV generation and electrical load85

ranging from 10 s to 60 min with a MILP model. A temporal resolution of 60 min was found to86

be sufficient for sizing both the PV and PVB systems. Especially for PVB, the influence of time87

resolution was negligible. Burgio et al.18 studied the impact of time averaging and PVB system88

size on PVB system economics. Temporal averaging did not affect PVB sizing. However, a time89

resolution of 60-min caused a substantial under-estimation (39%) of the peak load, as compared90

to a 3 min resolution. Talavera et al.19 proposed a new BESS sizing approach also considering91
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nominal impacts of input data resolution. However, we will later show that around certain BESS92

power capacities, BESS sizing economics are very sensitive to and can be reduced by higher data93

resolution.94

C. Research gap95

Most of the research on the effect of temporal resolution targets self-consumption or self-96

sufficiency, which has been motivated by renewable feed-in policies, e.g. in Germany. Self-97

consumption is overestimated at coarse time resolutions, as the high-frequency variation of the98

load and solar profiles are averaged out. For BESS peak shaving and demand charge reduction, it99

is trivial that peak loads of PVB systems will be underestimated for low temporal resolutions. For100

example, in Burgio et al.18 the peak of the 15 min load, 15 min load+PV, and 15 min PVB grid101

imports was 12%, 15%, and 15% higher than that of hourly load for one day, respectively (their102

Table 6). Burgio et al. is the only study that reported peak grid import values for PVB systems103

at different temporal resolutions, but did so in passing only. Burgio et al.18 performed economic104

analysis of PVB systems on high-resolution electric load data for one day at a university laboratory105

and office building. While Burgio et al.18 focused on analyzing self-consumption for hypothetical106

residential PVB systems and reported peak values only for a single day and a single PVB config-107

uration, our study compares the DoDC for the entire power-energy space of the BESS for several108

days. In summary, the interaction of BESS properties, load shape, and temporal resolution have109

not yet been systematically quantified in the context of demand charge reduction.110

D. Overview of the paper and hypothesis111

The gap in the literature is addressed by examining the difference between optimal demand112

charges (DoDC; viz the net load peak) achieved by BESS dispatch scheduling based on load113

profiles for two common temporal resolutions, 15 min and 1 hour. Our hypothesis is that BESS114

dispatch modeling at 1 hour interval underestimates the actual demand charges for BESS that are115

too small in power rating, energy rating, or both. The 15 min interval is the benchmark as it is used116

by most utilities for customer metering, while the 1 hour interval is a more common resolution117

of solar resource data and is typically applied in optimization models to reduce computational118

cost (e.g.5,20). We establish DoDC regimes (i.e. BESS benefits) within the BESS power-energy119
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rating space based on several indicators. A critical point separates the power-energy rating space120

into three regions: (i) power-constrained, (ii) energy-constrained, and (iii) oversized region. The121

magnitude and trends of the DoDC are linked to the regions of the BESS space and the properties122

of the load timeseries.123

E. Novelties124

This is the first systematic analysis of the interaction of BESS properties, load shape, and125

temporal resolution for demand charge reduction. We identify for the first time how and by how126

much BESS power and energy ratings cause an underestimation of demand charges at a 1 hour127

temporal resolution compared to 15 min resolution.128

F. Assumptions129

We make several key assumptions: (i) We only consider non-coincidental demand charges (i.e.130

daily peaks), not peak demand charges. (ii) We only consider demand charges and not time-of-131

use energy charges. (iii) We optimize based on perfect forecasts. (iv) Power dynamics are not132

considered, which . While these assumptions are unrealistic and will distort the economic value of133

BESS, these choices are deliberate as the fundamental effect of BESS and load shape properties134

can be illustrated more clearly in the simplified electric tariffs and optimization inputs assumed135

here.136

G. Structure of the paper137

The rest of the paper is organized as follows: Section II reviews the methodology, Section III138

presents the results, and Section IV provides conclusions and future directions.139

II. METHODOLOGY140

A. Optimization Problem141

To analyze the effect of temporal resolutions, a simple energy system is adopted consisting142

of three main components: (i) the utility grid, (ii) the load, and (iii) a BESS with adjustable143
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FIG. 1. Schematic of the power system including a BESS, load, and utility grid with power flows.

parameters (Fig. 1). All electronic converters, connections, and electric lines are assumed to be144

lossless and unlimited in capacity. The system is assumed to be grid-connected at all times. The145

analysis is limited to energy-matching; frequency voltage control, dynamics, as well as protection146

are handled by other systems or insignificant over time scales of minutes and are not of concern147

here. All of these assumptions are common in microgrid sizing and dispatch research5,18–20. The148

BESS is assumed to be 100% efficient.149

To study the economic savings of the behind-the-meter BESS, the meter net load given by Pg is150

recorded. Pg measures electricity imported from the utility resulting from the original load, l, offset151

by the negative (charging) or positive (discharging) power from the BESS Pb, Pg = l−Pb. The152

BESS response is assumed to be instantaneous, such that the charging/discharging dispatch is “on153

demand”. Given that the response time of Lithium-ion type batteries is on the order of milliseconds154

(i.e. much smaller than the time interval), this assumption is justified1. The charging/discharging155

power of BESS, Pb (kW), is limited by the nominal power capacity, cp (kW), and energy capacity,156

ce (kWh).157

Without loss of generality, the load in this example is a true building load. But the same method158

can be applied to any time series, such as a net load resulting from summation of actual load and159

PV generation. Specifically, we are interested in the peak net load that determines the demand160

charge.161

The optimization model is a convex optimization problem, which is formulated in discrete time162
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with time step size, ∆t, determined by the temporal resolution of the load profile. The optimization163

model minimizes an objective function J164

min J = d×max(Pg)+ ε×
N

∑
n=0
|Pn

b |, (1)

where d is the demand charge rate, ε is a penalty factor, N is the number of time steps, and n is the165

time index.166

The first term in the objective function measures the optimal demand charge (ODC). ODC is

the product of the maximum net load, which is called optimal peak (OP (kW)), and the demand

charge rate:

ODC = d×max(Pg) = d×OP (2)

The demand charge rate, d = 20.62 $/kW, is included as a multiplier to demonstrate the economics167

of reducing the optimal peak; d is obtained from the AL-TOU rate schedule for >500 kW demand168

by the local utility San Diego Gas & Electric (SDG&E). This rate does not affect the generality of169

the results but is included for illustrative purposes.170

The second term is a penalty for charging/discharging power decisions. Of the many possible171

solutions with equal objective function, the penalty term ensures that the solution with the least172

battery activity is selected. By multiplying in a small coefficient, ε = 10−6, the optimization model173

diminishes the oscillation of Pn
b while simultaneously preserving the ODC, because the first term174

has a much heavier weight than this penalty term.175

The constraints are:

Energy balance: Pn
g = ln−Pn

b , ∀n ∈ N (3a)

Power capacity: −cp 6 Pn
g 6 cp, ∀n ∈ N (3b)

State of charge: SOCn+1 = SOCn−
Pn

b×∆t
ce

,∀n ∈ N (3c)

Initial state: SOC1 = SOCend = 0.5 (3d)

where SOC is the state of charge of the BESS. Equation (3a) requires that, at each time step, the176

net load supplied by the grid must equal the building load demand ln minus the BESS power,177

where positive Pb is defined as discharging. According to (3b), the power from the BESS is178

constrained by the power capacity; Pn
b > 0 indicates discharging the BESS, and Pn

b < 0 indicates179

charging. While the BESS is charging or discharging, SOC must be consistent with the BESS180

7



dispatch as stipulated in the (3c). Following a common assumption for daily time horizons, the181

BESS is further constrained to be half charged at both the beginning (0000 h) and end of the182

day (2400 h). This initial condition in (3d) avoids savings through net battery discharge that may183

penalize performance on subsequent days. Instead, the net charging/discharging energy after the184

simulation period, T , is zero. The model is built using CVX in MATLAB with the MOSEK solver.185

B. Load data and difference of optimal demand charge (DoDC)186

The 2019 load data collected on October 7, 13, and 23 from the Police building on the campus187

of the University of California, San Diego (UCSD) is analyzed. The data show typical variations188

for commercial buildings but do not limit the generality of the LP model. Although the demand189

charge is usually measured in billing cycles of one month, this study examines only one day at a190

time for illustrative purposes (i.e., T = 24 hours).191

We consider two temporal resolutions of the input data: 15 min and 1 hour (i.e., 60 min). Since

the load is measured as interval data of 15 min by the real SDG&E meter, 15 min is defined as

the reference temporal resolution. On the other hand, many data sets, analyses, or optimization

models for peak shaving are based on a 1 hour resolution (e.g., REopt). The low-resolution profile

is derived by taking the average of four high-resolution time steps (Fig. 2). The number of battery

dispatch decisions (i.e. number of time steps), N, for the same scheduling horizon, T for the

15 min resolution is 4 times that of the 1 hour resolution. For dispatch scheduling over one day,

where T = 24 hours, the decision numbers are given by:

N1−hour =
T

∆t1−hour
= 24, and

N15−min =
T

∆t15−min
= 96

The 1 hour averaged load data may result in a different objective function value compared192

to the original 15 min load profile, which subsequently leads to a different optimal peak and a193

different optimal demand charge (ODC). This deviation is defined as the difference of demand194

charge, DoDC:195

DoDC = ODC15−min−ODC1−hour (4)

where ODC15−min and ODC1−hour are the optimal demand charge achieved using the same BESS196

and load profiles with 15 min and 1 hour time resolution, respectively. DoDC is a result of the peak197
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difference caused by applying the BESS to a load with lower temporal resolution as compared to198

a load with higher temporal resolution. DoDC is hypothesized to depend on the BESS capacities199

– namely, power capacity, cp, and energy capacity, ce.200

C. Battery space analysis201

Given a specific load profile, the OP and corresponding ODC are determined by the BESS202

power and energy ratings. Due to human activity and equipment schedules, the load of a building203

varies based on the time of day. During the peak period(s), the BESS responds by supporting the204

load to limit grid imports once the power demand exceeds the OP. Since the SOC at the end of205

the day is constrained to be the same as at the beginning of the day, the BESS must recharge after206

each peak period. Hence, the BESS is able to reduce the peak by shifting demand, and its capacity207

ratings determine how much it can reduce the peak.208

Several indicators characterize the load profile. The perfect peak, PP (kW), is the average209

FIG. 2. 15 min and 1 hour temporal resolution load profiles, along with the perfect peak, on October 23,

2019. The maximum 15 min load occurs from 12:30 to 12:45 h at 54.05 kW, the maximum 60 min load

occurs from 12:00 to 13:00 h at 51.48 kW, while the perfect peak is 39.02 kW (green line). The purple area

shows the critical energy (Eq. 6a). The red lines show the critical power (Eq. 6b.)
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power of the daily load:210

PP =
∑

T
t lt

T
(5)

A reduction of the load peak to the PP can only be achieved by a sufficiently large BESS. For a

particular load profile, the BESS will have an ideal cp and ce, such that any larger capacity will not

lower the optimal peak. These ideal capacities are defined as critical capacities— critical power,

CP (kW), and critical energy, CE (kWh):

CP = max |lt−PP|, and (6a)

CE = 2×max(|
t

∑
1
[(lt−PP)×∆t]|) (6b)

CP measures the maximum distance from the load to the PP at any time step. Because load211

profiles tend to be positively skewed, the positive maximum distance from the load is expected212

to be larger than the negative distance as shown in Fig. 2. CP15−min and CP1−hour, describe the213

critical power for the 15 min and 1 hour temporal resolutions, respectively. It is intuitive – and214

confirmed in Fig. 2) – that the distance between the PP and extreme points in the 1 hour load is215

smaller than or equal to that of the 15 min load; thus, CP1−hour is smaller than or equal to CP15−min.216

The overall CP is defined according to the 15 min timeseries, i.e. CP= CP15−min. CE is twice the217

maximum absolute value of the cumulative sum of the distance from the 15 min load to the perfect218

peak for all time steps. This measures the minimum BESS energy capacity required to guarantee219

achieving the PP.220

As the BESS capacities determine the OP for a particular load, we examine the variation of the221

DoDC with BESS energy and power capacities as the two dimensions of the battery ratings space222

(Fig. 3) The critical point is found at the intersection of the CP and CE lines. Note that the CP223

and CE change from day to day based on the load profile. To derive the DoDC across the battery224

rating space for the load profile of a particular day, each BESS candidate (i.e., every point in the225

battery rating space) is input to the optimization model. The DoDC is then calculated from the226

optimization results for the net load for both the 15 min and 1 hour temporal resolutions.227

Based on the critical point, CE and CP, the battery rating space is divided into three regions228

(O), (P), and (E) in Fig. 3. BESS larger than the critical point in both power and energy (oversized229

region “O”) will have a DoDC of exactly zero. Once the BESS capacity exceeds CP and CE,230

the load at any temporal resolution equal to or larger than 15 min can be reshaped to the optimal231

result (the PP) and the additional battery capacities are not used. Hence, region (O) is named232
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FIG. 3. Conceptual diagram of a typical battery ratings spaces consisting of “oversized” (O), “power-

constrained” (P), and “energy-constrained” (E) regions.

the “oversized region”, where the ODC for the load in both temporal resolutions are the same.233

BESSs with either power or energy capacity smaller than the critical point will not be able to234

reduce the peak to the PP for the load profiles in both resolutions. Then, the two OPs will differ,235

and the DoDC will not equal zero. In region (P), insufficient BESS power capacity restricts the236

peak shaving ability, while the energy capacity is sufficient. In region (P), if the power capacity is237

fixed while energy capacity increases, the two OPs and ODCs will not change because the power238

capacity limits the peak shaving performance. In region (E), insufficient BESS energy capacity239

restricts the peak shaving ability, while the power capacity is sufficient. Therefore, regions (P) and240

(E) are the “power-constrained region” and “energy-constrained region”, respectively.241

III. RESULTS AND DISCUSSION242

A. Overview243

Fig. 4a exemplifies the DoDC across the battery space based on the load on October 23. The244

ODC for the 15 min and 1 hour loads are shown respectively in Fig. 4b and Fig. 4c. The DoDC245

at each point in the battery space (Fig. 4a) is derived from the difference of the corresponding two246

ODCs (Fig. 4b and Fig. 4c). The two ODC plots confirm that the ODC is inversely proportional247

to the BESS power and energy capacities. The constant DoDC= 0 region at the right top with248

large power and energy capacity, indicate that PP is achieved and both BESS power and energy249
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capacity are larger than the critical point for both load profiles. Thus, the ODC is the same (i.e.,250

ODC= $804.52) at both temporal resolutions. At 15 min resolution, the reduction of ODC at251

the PP is $309.99, or 27.81% of the maximum load, $1114.51. The BESS achieves significant252

economic savings through demand charge management.253

FIG. 4. Demand charge metrics ($, color) for October 23 as a function of power and energy capacity: (a)

DoDC, (b) ODC of 15 min load, and (c) ODC of 1 hour load. (a) is the difference between (b) and (c). The

red circle shows the critical point. The regions in Fig. 3 are centered around the critical point in (a).

The distribution of DoDC in Fig. 4a is consistent with our conjectures about the optimal, power-254

constrained, and energy-constrained regions in Fig. 3. In the oversized region, DoDC is zero255

as expected. In the power-constrained region, DoDC is independent of energy capacity; in the256
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energy-constrained region, DoDC is independent of power capacity. These findings confirm that257

1 hour load profiles can overestimate peak shaving, as the DoDC values are non-negative across258

the battery ratings space. While the pattern in Fig. 4 is derived from the load profile on October 23,259

the generality is confirmed on other days (not shown). The battery space consisting of the critical260

point and three characteristic regions is the characteristic pattern of the DoDC for any load profile.261

The meaning of the oversized region should be clear by now, but the two capacity-constrained262

regions still require further study. In Section III B, the power-constrained region is discussed, and263

peak shaving is quantified as a function of load averaging. In Section III C, the energy-constrained264

region is discussed, including a comparative analysis of the DoDC results from different days.265

Section III C also elucidates how the sequencing of 15 min load during the peak period affects the266

boundaries between the regions.267

B. Power Constrained Region268

To eliminate energy capacity constraints, the fixed energy capacity is chosen to be larger than269

the CE of the load profile, which is 146.84 kWh for October 23. For a randomly chosen fixed270

energy capacity of 175.41 kWh, DoDC, ODC15-min and ODC1-hour are shown in Fig. 5. Fig. 5271

represents a horizontal slice of the battery ratings space at ce = 175.41 kWh in Fig. 4a. The left272

side, marked as (P), represents the power-constrained region, while the right side, (O), represents273

the oversized region. The two sides are split by the CP. As the battery power capacity increases,274

ODC15-min and ODC1-hour, decrease linearly and in parallel with a fixed difference of $52.99,275

starting from $1114.51 and $1061.52 respectively. This trend remains until the power capacity276

reaches the CP, after which both ODCs settle at the same level. The DoDC is constant until the277

power capacity reaches 12.46 kW (CP1−h), where DoDC falls rapidly before settling at zero for a278

power capacity of 15.03 kW (CP15−min).279

The ODC in the power-constrained region is affected by time averaging of the load from high-280

resolution (15 min) to low-resolution (1 hour). The constant DoDC of $52.99 for power ratings281

smaller than the transient zone in Fig. 5 results from282

(ML15−min−ML1−hour)×d = $52.99 (7)

where ML15-min= 54.05 kW and ML1-hour= 51.48 kW are the maximum load demand of Oc-283

tober 23 for the two time resolutions. For example, Fig. 6a displays the loads and net loads284
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FIG. 5. DoDC, ODC15-min, and ODC1-hour on Oct 23 at a fixed BESS energy capacity of 175.41 kWh.

as optimized by the same BESS energy capacity as in Fig. 5 in the power-constrained region.285

M15-min= 45.65 kW occurs at 12:30 to 12:45 h while ML1-hour= 43.08 kW occurs at 12:00 to286

13:00 h. The difference of 2.57 kW results in DoDC = $52.99 for the day.287

The sharp drop in DoDC occurs between the CPs of the loads for the two temporal resolutions.288

Hence, the two CPs marks the transient zone between the power-constrained and the oversized289

regions. The beginning and end of the transient DoDC zone, 12.46 kW and 15.03 kW, occur at CP290

of the 1 hour and 15 min load, CP1-hour=12.46 kW and CP15-min=15.03 kW for October 23. The291

difference of the two CPs is caused by time averaging. Fig. 6b displays the optimization results292

of a BESS with capacity of cp =CP1-hour and large energy capacity. With a power capacity of293

CP1-hour, the 1 hour net load becomes flat and equal to the PP of 39.02 kW. However, the CP1-hour294

BESS is unable to completely flatten the 15 min load, resulting in a net load peak of 41.59 kW295

during 12:30 to 12:45 h. The 2.57 kW increase over the PP results in a DoDC= $52.99 in Fig. 5.296

In the power-constrained region, the peak shaving depends solely on two factors: the peak297

demand (maximum load in kW) and the power capacity of the BESS. The energy capacity will not298

constrain the peak shaving (i.e. the BESS will not discharge to zero SOC), but the power capacity299

of the BESS will be fully utilized at the time interval with the peak demand. The original peak300

difference between the two load profiles is maintained, as the limited power capacity of the BESS301
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FIG. 6. 15 min and 1 hour load on October 23 and net load optimized for the following BESS: a) 8.40 kW,

175.41 kWh; b) 12.46 kW (= CP1-hour) and 175.41 kWh.

is unable to reduce the peak demand to the PP. Even when the energy capacity is smaller than at302

the critical point, there will be a range (i.e., the lower power-constrained region in Figs. 3 and 3)303

where peak shaving is limited by the power capacity, thus maintaining the original peak difference.304

C. Energy Constrained Region305

1. Three example days: Overview306

To analyze the DoDC in the energy-constrained region, the power capacity is fixed at the CP.307

Fig. 7 presents the variation of the ODC15-min, ODC1-hour, and the corresponding DoDC for Oct308

7 (CP = 10.20 kW), Oct 13 (CP = 16.40 kW), and Oct 23 (CP = 15.03 kW). Selecting a fixed309

power capacity of CP eliminates the potential influence of insufficient power, ensuring that the310

effect of constrained energy capacity can be analyzed in isolation. In Fig. 7, the left (E) part311

represents the energy-constrained region, while the right (O) part represents the oversized region.312

The DoDC at zero energy capacity is the same as the DoDC in the power-constrained region (and313

the DoDC of the original load), but DoDC decreases rapidly as the energy capacity increases. For314

ce0, the ODCs at both time resolutions are closer to each other, as compared to the ODCs in the315

power-constrained region in Fig. 5, resulting in a small DoDC magnitude of a few $. However, the316
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FIG. 7. The DoDC at the critical power capacity as a function of BESS energy capacity for a) Oct 7, b) Oct

13, and c) Oct 23. (O) represents the oversized region and (E) represents the energy-constrained region.

The vertical dashed line represents the critical energy (CE).

variation of the DoDC in the energy-constrained region is more complex and irregular than in the317

power-constrained region.318

The energy-constrained regions of Oct 7 and Oct 23 show that the DoDC reaches zero at some319

energy capacity smaller than CE. For Oct 7, DoDC= 0 when 11.97 < ce < 25.10 kWh & ce >320

76.58 kWh (Fig. 7a) and for Oct 23, DoDC= 0 for ce > 123.10 kWh (Fig. 7c). However, this321

feature is inconsistent, as DoDC6= 0 in the energy-constrained region for Oct 13 and the DoDC322

behavior for Oct 7 and 23 differs. The reason for the inconsistent results is a change in the peak323

period duration of some load profiles for the original versus the time-averaged load. For other324

load profiles, where the averaging does not change the peak period duration, DoDC= 0 at CE as325
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FIG. 8. Artificial load profiles at 15 min and averaged to 1 hour resolution: a) Sequence LH, and b)

Sequence HL.

expected based on the definition of CE. We demonstrate this “sequence effect” through artificial326

load profiles and then verify the conclusion using real data from Oct 7.327

2. Artificial load and sequencing328

To illustrate the impact of the load sequence on DoDC in the 15 min profile, a regular inverse329

U-shaped load with a flat peak demand from 1100 to 1700 h is employed. In Fig. 8, the two 15 min330

resolution load profiles are identical except during the beginning of the peak period (1000–1100 h).331

During 1000-1100 h the hourly average is identical, but the 15 min profiles differ. As shown in332

Table 1, the four power demands from 1000-1100 h have the same values but are arranged in a333

different order; in other words, the sequence differs. Sequence LH (low-high) starts with smaller334

loads of 45 kW from 1000-1030 h and ends with higher loads of 55 kW from 1030-1100 h;335

sequence HL (high-low) is the reverse.336

Since the three artificial loads (i.e., the two 15 min profiles and the 1 hour profile) have iden-337

tical peak loads, the net load peak is not affected by the power capacity of the BESS. However,338

the 15 min load sequence at the start of the load peak (e.g., 1000 to 1100 h) changes the peak339

duration. An energy-constrained BESS, with power capacity of 25 kW and energy capacity340

of 45 kWh, is selected for the net load peak optimization (Fig. 9). The CP for Sequence LH341
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TABLE I. Data of the artificial load time series shown in Fig. 8. The three load profiles share the same CP

of 20.2 kW and the same CE of 195.8 kWh

Load Profile / kW

0:00-10:00 10:00-11:00 11:00-17:00 17:00-24:00

1-hour 35 50,50,50,50 60 35

15-min Sequence LH 35 45,45,55,55 60 35

15-min Sequence HL 35 55,55,45,45 60 35

(CP= 52.69 kW) is 0.19 kW higher than for Sequence HL (CP= 52.50 kW) and for the 1-hour342

average (CP= 52.50 kW). Though this difference is small, it is of fundamental interest because343

the DoDC changes from zero to non-zero as a result of a seemingly irrelevant modification from344

Sequence LH to Sequence HL.345

As the BESS energy is sized to achieve an optimal net load between 50 kW and 55 kW, the start346

of the peak period of the 1 hour load and sequence HL is at 1100 h, while the start in sequence347

LH is at 1030 h due to its step-shaped peak demand period. This difference in the start time of the348

peak period also manifests in the SOC, where the discharging period starts at 1030 h for sequence349

LH but at 11:00 h for sequence HL and the 1 hour averaged load. Therefore, a BESS with a350

limited energy capacity can achieve a lower net load peak for the 1 hour averaged load than for351

Sequence LH. On the other hand, Sequence HL has a recharging period of 1030-1100 h, allowing352

the BESS SOC to recover after discharging from 1000 to 1030. This recovery more efficiently uses353

the limited energy capacity, as the net effect of the sequence HL in 1000-1100 h is the same as354

for the aggregated 1 hour U-load. Subsequently, the 1 hour Load and sequence HL have identical355

optimal peaks.356

In summary, a difference in sequence in the 15 min load can affect the optimal net-load peak.357

In this example, the 15 min sequence in the beginning of the peak period has a lower demand358

followed by a higher demand with an identical hourly average. The result is an increased optimal359

net-load peak, as compared to the corresponding 1 hour load. This occurs because the duration of360

the peak period is extended, and the integral between the target peak net load and the original load361

then contains more energy that cannot be shaved by a BESS with limited energy capacity. Note362

that the energy sequence during the original load peak period is irrelevant, as it does not extend363

the duration of the peak period. However, the energy sequence at the end of the peak period364
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FIG. 9. a, b) 1 hour artificial load of Table I and its optimized net load and SOC by an energy-constrained

battery. c, d) Load, net load, and SOC of the 15 min load in sequence LH. e, f) Load, net load and SOC of

the 15 min load in sequence HL.

also affects the optimal peak: a decreasing trend in the 15 min energy sequence will increase the365

optimal peak, while an increasing trend will result in zero DoDC.366

3. Sequence Verification on Oct 7367

To verify the energy sequence effect conclusions from the artificial data, a modified 15 min368

load from Oct 7 is designed and the corresponding battery space is studied. According to the369

original DoDC results in Fig. 7 and the load in Fig. 10, for OP45 kW the peak period starts at370

1300 h and ends at 1800 h. For 40 kWOP45 kW, the peak period starts as early as 0900 h and371

extends to as late as 2300 h. Following the analysis in Section III C 2, we can achieve optimal net372

load peak equality between 15 min and 1 hour loads by re-ordering the energy sequence within373
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FIG. 10. Original and modified load profile on Oct 7. The duration when the peak load within the hour is

greater than the OP is divided into three regions: A) before peak load hour: load is reordered in descending

order; B) peak-load hour: load is left unchanged; and C) after peak-load hour (C): load is reordered in

ascending order.

these specified hours. During the beginning of the peak period (before 1400 h), the four 15 min374

periods within each hour are reordered from largest to smallest and the opposite sequencing is375

applied at the end of the peak period as show in see Fig. 10. The modified load shares the same376

1 hour averages, CE, and CP as the original load. A slice across the energy-constrained region at377

CP based on the optimization result for the DoDC of the modified Oct 7 load is shown in Fig. 11.378

The DoDC in the entire energy-constrained regions is now zero (except the trivial situation when379

ce = 0), supporting our hypothesis about the sequence effect.380

In summary, time averaging can affect the duration of the peak period based on the particular381

time sequence of the 15 min loads. Therefore, for energy-constrained BESS, time averaging the382

load can result in an underestimation of ODC for the net load.383
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IV. CONCLUSIONS384

A. Summary385

In this paper, the difference of optimal demand charge (DoDC) derived from net load peak386

minimization of load data at two temporal resolutions (i.e., 15 min and 1 hour) is analyzed for387

a range of battery power and energy ratings. The battery rating space can be divided into three388

characteristic regions. A 1-hour averaged load may overestimate peak shaving potential for bat-389

teries with limited power or energy capacities. Specifically, in the power-constrained region of390

the battery rating space, the difference between the original (15 min) and the 1 hour average load391

peak persists in the optimized net load until the battery power capacity is sufficiently large. In the392

energy-constrained region, averaging can change the peak period duration for increasing (decreas-393

ing) sub-hourly sequence of the original load data right before (after) the peak period. Through394

artificial load data and reordering of real load data, we demonstrated that the sequence effect395

causes energy-constrained batteries to underestimate peak shaving.396

FIG. 11. The DoDC for the critical power capacity for the modified load of October 7 as a function of

the BESS energy capacity. (E) represents the energy-constrained region and (O) represents the oversized

region. Compared to Fig. 7a, DoDC is now zero throughout for non-zero energy capacities.
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B. Discussion of assumptions and limitations397

The conclusions derived from the load data of one-day periods apply to demand charge analysis398

of a month, or even a whole year, because the peak load of a time period longer than a single day399

varies based on the most challenging day(s) within the period (i.e., the days with largest critical400

power (CP) or critical energy (CE)). For load profiles with a “spiky” peak caused by short peak401

duration (i.e., high CP, low CE), the overestimation of optimal demand charges for loads at low402

temporal resolution tends to be high for a BESS in the power-constrained region. On the other403

hand, for load profiles with a “broad” peak (i.e., low CP, high CE), the DoDC is relatively more404

expressed for batteries with limited energy capacity, and thus the energy-constrained region would405

be larger.406

In this paper, 15-min and 1-hour intervals are chosen for comparison as high- and low-407

resolution, respectively. However, the analysis and conclusions also apply for other temporal408

resolutions.409

The assumptions detailed at the end of the introduction and the beginning of Section II.A cause410

the results to be idealized. Considering capacity limitations of converters and electrical lines would411

make some of the analyses infeasible, but does not affect the structure of the battery rating space.412

Considering losses in transformation, conversion, conduction, and storage of electric power and413

energy would mainly increase energy use, but only minimally increase peak demand and demand414

charges. Losses would be expected to impact 15 min and 1 hour loads similarly and therefore not415

affect the DoDC battery ratings space. The effect of adding peak demand charges and time-of-use416

charges will be studied in a future paper.417

Using real (instead of perfect) forecasts would be expected to increase the DoDC as forecast418

errors tend to increase with the variability of the timeseries which is higher for 15 min than 1 hour419

loads. Larger forecast errors can result in premature battery discharge or in sub-optimal intra-420

15 min scheduling that increase peak demand. As a result the oversized region would be expected421

to shrink, i.e. start at a power rating and energy rating larger than the CP and CE, respectively.422

C. Significance423

The concept of partitioning the BESS ratings space offers a new perspective for the study of424

BESS demand charge reduction at different temporal resolutions. The details of high-resolution425
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TABLE II. Summary of DoDC for three days. For the energy constrained region, only ce > 10 kWh is

considered.

Day
15-min peak

load (kW)

Max DoDC ($)

Power constrained Energy constrained

Oct 7 50.49 37.73 2.06

Oct 13 38.28 38.35 2.87

Oct 23 54.05 52.99 2.22

profiles should be considered carefully in demand side management for a BESS with limited ca-426

pacities. Capturing actual peak demand at the time resolution consistent with the utility tariff (here427

15 min) is especially critical for the BESS economics, but temporal sequencing of the load can428

also cause a small overestimation of demand charge reduction for time averaged load data. Anec-429

dotally, Table II shows that differences in demand charge for the three days simulated were $37 to430

$53 per day for a power-constrained battery and $2 to $3 per day for an energy constrained battery.431

In practice, choosing a BESS with larger power and energy capacities than those determined from432

optimization at low temporal resolution can offset the DoDC uncertainties from load resolution433

conversion. Our results show that demand charge savings can be especially sensitive to the BESS434

power capacity; therefore the power capacity of the battery should be carefully considered when435

interpreting results from optimizations at low resolutions. Conversely, if the 15 min (net) load436

data are available and the modeling tool restricted the temporal resolution to 1 hour, DoDC can be437

mitigated by up-sizing the BESS from CP1−h to CP15−min (see Fig. 5).438

Depressed solar energy production can cause large net load peaks. The largest net load peaks439

often occur, when heavy rain associated with thunderstorms depresses solar energy production by440

up to 90%, yet thunderstorms are short-lived and their largest impact may not the represented in441

hourly data. Therefore, underestimation of demand charge savings for hourly net load profiles442

would likely be larger for sites with solar energy production compared to what was observed in443

this paper.444

In Burgio et al.18 the peak of the 15 min load, 15 min load+PV, and 15 min PVB grid imports445

was 12%, 15%, and 15% higher than that of hourly load for one day, respectively. For Oct 23 in our446

paper, the 15-min load peak (54.1 kW) was 4.8% or 2.6 kW higher than the hourly load (51.5 kW).447

Our analysis shows how BESSs of different energy and power ratings reduce the difference in the448
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peak net load, which is equivalent to the PVB peak in Burgio et al. The peak net load difference449

is completely eliminated by a BESS in the optimal region and mostly eliminated by a BESS in the450

energy constrained region (less than a $2.2 or 0.1 kW difference). BESS in the power constrained451

region (up to a power rating of about 13 kW) do not reduce the net load difference, unless the BESS452

energy rating is large enough to place the BESS to the right of a line of about ce = 0.2cp1 h in453

the battery rating space. Our analysis shows that the ability of a given BESS system to reduce the454

net load difference is driven by the variability in the original load shape, in particular the critical455

power and critical energy.456

This comprehensive study of the effect of temporal resolutions on peak shaving provides novel457

insights into how load profiles interact with BESS power and energy ratings to determine peak458

shaving effectiveness.459
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