
UCLA
UCLA Electronic Theses and Dissertations

Title
Finger-powered Digital Microfluidics for Micro Droplet Manipulation

Permalink
https://escholarship.org/uc/item/1j47t4fz

Author
Peng, Cheng

Publication Date
2017

Supplemental Material
https://escholarship.org/uc/item/1j47t4fz#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1j47t4fz
https://escholarship.org/uc/item/1j47t4fz#supplemental
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Finger-powered Digital Microfluidics for

Micro Droplet Manipulation

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Mechanical Engineering

by

Cheng Peng

2017

© Copyright by

Cheng Peng

2017

ii

ABSTRACT OF THE DISSERTATION

Finger-powered Digital Microfluidics for

Micro Droplet Manipulation

by

Cheng Peng

Doctor of Philosophy in Mechanical Engineering

 University of California, Los Angeles, 2017

Professor Yongho Ju, Chair

Microfluidic devices that do not require bulky peripheral hardware, such as pumps and

external battery/power supplies, are a suitable technology for portable applications in resource-

constrained settings, such as point-of-care (POC) diagnosis in developed countries,

environmental monitoring, and on-site forensic analysis, etc. The existing portable microfluidic

devices are mostly based on microchannel structures, in which the pre-defined channels limit

their functional flexibility, rendering them difficult to scale up. Digital microfluidics, on the

other hand, can tackle this problem since they deal with discrete droplets individually and can

therefore provide more on-demand flexibility and versatility. Most digital microfluidic devices,

however, require external electric power sources.

iii

We first propose finger-powered digital microfluidic (F-DMF) based on electrowetting on

dielectric (EWOD). Instead of requiring an external power supply, our F-DMF uses piezoelectric

elements to convert the mechanical energy produced by human fingers into electric voltage

pulses for droplet manipulation. The voltage outputs of piezoelectric element mounted in

cantilever beam configuration are studied theoretically and experimentally. Using this energy

conversion scheme, the basic modes of droplet operations, such as droplet transport, splitting,

and merging on EWOD devices are confirmed. The key assay steps involved in glucose

detection and immunoassay are also successfully performed using F-DMF-EWOD.

Exploiting the same energy conversion scheme, F-DMF based on the electrophoretic

transport of discrete droplets (EPD), which has the potential to overcome pinning and surface

contamination often encountered in EWOD, is then presented. Successful EPD actuation,

however, requires the piezoelectric elements to provide both sufficient charge and voltage pulse

duration. These requirements are quantified using numerical models to predict the electrical

charges induced on the droplets and the subsequent electrophoretic forces. The transport and

merging of aqueous droplets as well as direct manipulation of body fluids is experimentally

demonstrated using F-EPD-DMF. Further, a mechanical system and an efficient pin-assignment

scheme are explored to facilitate the practical implementation of pre-programmed and functional

actuation of droplets in the EPD-based system.

For the second part of this thesis, one practical issue in digital microfluidics biochip (DMFB)

design is discussed: the droplet routing problem, which largely decides the performance and

correctness of the system. The problem is formulated to a multi-agent path finding problem

(MAPF) and an approximate algorithm based on Independent Detection (ID) is applied to solve

iv

the problem. The modified ID algorithm shows promising performance on selected benchmark

problems with medium number of droplets (≤12). Overall, it achieves better timing result (~15%

reduction) and total routing length (~50% reduction) with no compromise in fault tolerance

(indicated by the total number of used cells), when compared with the previous best known

results.

v

The dissertation of Cheng Peng is approved.

Chang-Jin Kim

Pei-Yu Chiou

Qibing Pei

Yongho Ju, Committee Chair

University of California, Los Angeles

2017

vi

This work is dedicated to my mom.

vii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1

1.1 Portable Microfluidic Devices ... 1

1.1.1 Motivation .. 1

1.1.2 Existing Portable Microfluidic Devices ... 2

1.2 Digital Microfluidics (DMF) ... 7

1.2.1 Digital-microfluidics and Applications .. 7

1.2.2 Design Automation for DMFB ... 9

1.3 Scope of Research .. 12

CHAPTER 2 EWOD (ELECTROWETTING ON DIELECTRIC) DIGITAL

MICROFLUIDICS POWERED BY FINGER ACTUATION ... 14

2.1 Introduction .. 14

2.2 EWOD Device ... 15

2.2.1 Device Design and Fabrication ... 15

2.2.2 EWOD Actuation Voltage .. 19

2.3 Mechanical Energy Conversion ... 21

2.3.1 Piezoelectricity and Material Selection .. 21

2.3.2 Modeling of Voltage Output... 23

2.4 Basic Droplet Operations ... 27

2.5 Application to Biological Assays... 30

viii

2.6 Summary .. 34

CHAPTER 3 FINGER-POWERED ELECTROPHORETIC TRANSPORT OF

DISCRETE DROPLETS FOR PORTABLE DIGITAL MICROFLUIDICS 35

3.1 Introduction .. 35

3.2 Experimental Setup .. 37

3.3 Droplet Charging and Actuation .. 38

3.3.1 Modeling of Induced Droplet Charge and Electrophoretic Force 38

3.3.2 Results and Discussion ... 42

3.3.2.1 Droplet charges ... 42

3.3.2.2 Charge dissipation time ... 45

3.3.2.3 Droplet velocity and electrophoretic force .. 48

3.4 Droplet Transport and Merging ... 55

3.5 Towards Practical System Implementation ... 59

3.5.1 Mechanical System for Programmed Operations ... 59

3.5.2 Base Electrode Matrix and Electric Connection Schemes ... 63

3.5.3 Pre-programmed Functional Actuation of Droplets ... 66

3.6 Summary .. 68

Appendix 3-A.. 70

Appendix 3-B .. 73

Appendix 3-C .. 74

ix

CHAPTER 4 DROPLET ROUTING USING INDEPENDENCE DETECTION (ID) AND

OPERATOR DECOMPOSITION (OD) ALGORITHM.. 77

4.1 Introduction .. 77

4.2 Problem Formulation ... 79

4.2.1 Objective function .. 79

4.2.2 Fluidic Constraint ... 80

4.3 Modified OD+ID algorithm ... 81

4.3.1 Preliminaries ... 81

4.3.2 Approximate algorithm based on ID+OD .. 82

4.4 Results .. 87

4.5 Summary .. 93

Appendix 4-A Source Code for droplet routing ... 94

CHAPTER 5 SUMMARY AND RECOMMENDATIONS ... 165

REFERENCE .. 167

x

LIST OF FIGURES

Figure 1.1 (a): Paper patterned with photoresist to actuate the fluid through capillary action and

to carry out glucose assay [19]; (b): Schematic of a degas-driven microfluidic chip device for on-

chip blood separation [17]. ... 3

Figure 1.2 (a): A portable microfluidic device for potential parallel cell analysis. A lower power

consumption is achieved with 10 solenoid actuators as valves and several electro-osmosis (EO)

pumps for fluid control [20]; (b): Schematic of a battery operated microfluidic system employing

elastomeric valves for fluidic control [21]. ... 4

Figure 1.3 (a): “Light-driven” microfluidics for continuous-flow PCR, which exploits the change

in wettability of a polymer material with temperature [29]; (b): Finger-powered droplet

microfluidic device based on hydraulic pressure, having an integrated deformable chamber that

can be activated by a human finger press to pump multiple streams of fluids [32]; (c): A timer-

actuated immunoassay cassette for biomarker detection in oral fluids. When the dial rotates

under spring-force, the actuation balls pushes the on-chip air pouches to drive the fluids in the

lateral flow chips [33]. .. 6

Figure 1.4 (a): Electrowetting on dielectric (EWOD) in closed configuration [54]; (b): A compact

digital microfluidic platform for point of care (POC) testing [48]. .. 8

Figure 1.5 (a): Partition and pin assignment results for the multiplexed bioassay using droplet

trace based array partitioning techniques and “Connect 5” algorithm [73]; each color represents

one partition and the number indicates the different pins assigned; (b): Cross-referencing for pin

xi

assignment, droplet 1, 2, and 3 are activated simultaneously by one couple of the electrode, and

droplet 4 indicates false inference [74]. .. 11

Figure 2.1: Schematic of one possible implementation of the finger-actuated digital microfluidic

platform. The piezoelectric elements convert the mechanical energy imparted by human fingers

into electrical energy to actuate the droplets confined between two parallel plates, through the

EWOD phenomenon. .. 15

Figure 2.2: Cross section of the assembled EWOD device, illustrating the top plate with the

transparent conductive ITO layer and the bottom plate with the metal electrode array. 17

Figure 2.3: Top view of an assembled EWOD microfluidic device and an enlarged optical image

of a part of the bottom EWOD electrode array. The overall dimension of the device is ~ 6 × 2.5

cm2. ... 18

Figure 2.4: Threshold actuation voltage of a water droplet on EWOD devices as a function of the

thickness of PECVD SiNx dielectric layers. ... 20

Figure 2.5: Droplet configuration for splitting [82]. ... 21

Figure 2.6: Separation of the positive and negative centers of the molecules under deformation in

piezoelectric material. The facing polarities inside the material are mutually cancelled, leaving

free charge on the surface [88]. ... 22

Figure 2.7: (a) Cross section of the main functional layers of a laminated piezoelectric element

used in the present study; (b) Definitions of the length Lp and the bending angle 𝛼. 24

Figure 2.8: Open-circuit output voltages of a single piezoelectric element as a function of the tip

bending angle αtip. ... 26

xii

Figure 2.9: Total voltage outputs from multiple piezoelectric elements connected in series under

different tip bending angles. ... 27

Figure 2.10: Finger-actuated EWOD transport of a water droplet, where the actuation voltage

pulses were provided by bending a series of piezoelectric elements. ... 28

Figure 2.11 (a): Finger-actuated EWOD droplet splitting. The piezoelectric elements 1 and 3 are

bent simultaneously for splitting; (b): Finger-actuated EWOD droplet merging. 30

Figure 2.12: Snapshots of sample and reagent droplet during a glucose assay and enzyme

catalyzed formation of colored product. ... 32

Figure 2.13: (a)-(c) Frames from a video depicting a droplet of BCIP/NBT enzyme solution

transported towards immobilized antibody spot upon finger actuation and (d) purple precipitation

observed indicating the detection of the ALP conjugated antibody. .. 33

Figure 3.1: Schematic illustration of one implementation of our finger-powered EPD device. An

electric field is established across adjacent EP electrodes when the corresponding piezoelectric

elements are deflected by human fingers (or finger-powered mechanical levers in an auxiliary

mechanical system). .. 36

Figure 3.2: Electrical connections used to link the piezoelectric elements to the EP electrodes. 38

Figure 3.3: Finite element model used to predict the electric charges acquired by a droplet

suspended between two biased electrodes and the resulting electrophoretic force. 40

Figure 3.4: Predicted droplet equilibrium charge Qeq as a function of the droplet size under an

electrode bias voltage Vp of 200 V. The results are shown for different electrode pitches, varying

from 2 to 8 mm. .. 42

xiii

Figure 3.5: Normalized equilibrium droplet charge is approximately inversely proportional to the

normalized droplet radius r under combinations of geometric parameters examined in the present

study. ... 45

Figure 3.6: I-V curve for piezoelectric element resistance measurement. 47

Figure 3.7: Decaying voltage output from a single piezoelectric element with increasing time. . 48

Figure 3.8: Measured (symbols) and predicted (lines) droplet velocities as a function of the

normalized distance from the charging electrode under different applied voltages. The electrode

pitch p = 1.76 mm and the droplet radius r = 0.63 mm. ... 51

Figure 3.9: Variations in the local droplet translational velocity for different values of the

electrode pitch. The actuation voltage is fixed at 200 V and the droplet radius is fixed at 0.7 mm.

... 52

Figure 3.10: Variations in the droplet velocity at the middle point between the electrodes (x/p =

0.5) for four different droplet radii and three different actuation voltages. The r/p ratio is kept

constant at 0.33 for all the cases. .. 55

Figure 3.11: Time sequence showing continuous droplet transport by finger-powered EPD. The

droplet volume is approximately 2 μL and the electrode pitch is 2.08 mm. The r/p ratio is ~ 0.37.

... 56

Figure 3.12 (A): Time sequence showing the merging of two oppositely charged droplets; (B):

Mixing by pure diffusion (upper) compared with enhanced mixing using EPD actuation (lower).

The radius of the merged droplet is ~ 0.75 mm. ... 58

xiv

Figure 3.13: Sequential images of a saliva droplet, a urine droplet, and a NaOH droplet

transported via finger-powered EPD. The droplet radius is ~0.7 mm and the droplet-radius to

electrode-pitch ratio (r/p) is approximately 0.4. ... 59

Figure 3.14: Finger/hand-rotated drum system, consisting of a drum with protrusions and an

array of mechanical levers mounted in a see-saw configuration. One end of each lever is linked

mechanically to a piezoelectric element. In this particular device, the outer diameter of the drum

is approximately 6 cm; the width and height of each protrusion are 3 mm; the length of the levers

is approximately 10 cm; and the lever ratio is approximately 1:7. ... 60

Figure 3.15: Voltage outputs from a single piezoelectric element unit over multiple deflections

(A) by the mechanical drum system; (B) by a human finger. The solid red lines indicate the

average voltage outputs and the dotted red lines represent one standard deviation. 62

Figure 3.16: (A) Base electrode matrix of size 4×4; (B) Example droplet actuation paths that can

be realized using the 4×4 base electrode matrix; (C) By replicating the base electrode matrix, one

can power a larger electrode matrix using 8 piezoelectric element units; (D) Parallel execution of

a set of identical operations on 4 droplets. .. 64

Figure 3.17: Predicted normalized interfering forces at different positions between two driving

electrodes under different values of the ratio between the droplet radius and the electrode pitch,

r/p, showing that the magnitude of interfering forces is less than 10% of the main driving force

under typical actuation conditions used in the present study. ... 66

Figure 3.18: (A) Demonstration of droplet actuation along different paths on the base 4×4

electrode matrix, which is connected to 8 piezoelectric element units; (B): Demonstration of the

merging and subsequent enhanced mixing of two droplets on the base electrode matrix. 68

xv

Figure 3.19: Schematic illustration of the model used for the simulation of transient droplet

charging... 70

Figure 3.20: Predicted temporal evolution of the droplet charges for three different droplet-

electrode contact areas. ... 73

Figure 3.21: Predicted terminal velocities of electrophoretically actuated droplets with a fixed

value of r/p = 0.1 for different combinations r and p. .. 74

Figure 4.1: Sample droplet routing diagram with 6 droplets. The start and goal positions for all

droplets are indicated by squares of green and orange, respectively; blockages are indicated by

blue squares and resulted routes are marked using red arrows. .. 91

Figure 4.2: Routing results for (a): droplet 4 and (b): droplet 5 in sample test problem after

increasing the routing cost from 1 to 10; solid line is the new route and dashed line is the original

route. ... 92

xvi

ACKNOWLEDGEMENTS

This work would not have been possible without the support of many people. First and

foremost, I would like to express my sincere appreciation and gratitude to my advisor, Dr.

Yongho Ju, for his enthusiastic guidance and support throughout my PhD research, as well as his

understanding and support in my future career development. I would also like to thank my

committee members, Dr. Chang-Jin Kim, Dr. Pei-Yu Chiou, and Dr. Qibing Pei, for their

valuable suggestions and encouragement.

I would like to thank my former and current colleagues in UCLA Multiscale Thermosciences

Laboratory: Youngsuk Nam, Gillwan Cha, Tanye Tang, Katie Bulgrin, Stephen Sharratt, Yujia

Zhan, Yanbing Jia, Jinda Zhuang, Yang Shen, Zezhi Zeng, Yide Wang, Chao Fan, Navid dehdari

Ebrahimi, Abolfazl Sadeghpour and Quzheng Xian for their help during my stay at UCLA. I

would also like to thank members from UCLA Micro-nano Manufacturing Laboratory and

mechanical engineering department staff: Supin Chen, Lian-Xin Huang, Jia Li and Mr. Benjamin

Tan for their advice and help in device fabrication. Also, I would like to thank Professor Richard

Korf in UCLA computer science department, and Yuanlu Xu in UCLA Statistics Department for

their advice and help in algorithm design.

Last but not least, I would like to thank my friends: Dan Duan, Luyao Xu, Fangting Xia, Lili

Feng, Shengxin Jia and Muchen Xu for their encouragement and continued support over the

years. My deepest gratitude goes to my family and my boyfriend for their love and support.

xvii

VITA

2011 - 2017 Graduate student researcher/Teaching Associate

University of California, Los Angeles, USA

2014 summer Summer Intern

Sony Life Science Laboratory, Tokyo, Japan

2007 - 2011 B.S. Energy and Power Engineering

Xi’an Jiao tong University, Shaanxi, China

PUBLICATIONS

C. Peng, Y. Wang, and Y. Sungtaek Ju, “Finger-powered electrophoretic transport of discrete

droplets for portable digital microfluidics,” Lab Chip, vol. 16, no. 13, pp. 2521–2531, 2016.

C. Peng, Z. Zhang, C.-J. “CJ” Kim, and Y. S. Ju, “EWOD (electrowetting on dielectric) digital

microfluidics powered by finger actuation,” Lab Chip, vol. 14, no. 6, p. 1117, 2014.

C. Peng and Y. S. Ju, “Finger-powered droplet actuation by electrophoretic force for portable

microfluidics,” in 2015 Transducers - 2015 18th International Conference on Solid-State

Sensors, Actuators and Microsystems (TRANSDUCERS), 2015, pp. 232–235.

C. Peng, C.-J. C. J. Kim, and Y. S. Ju, “Finger-triggered digital microfluidics,” in 2013

Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors,

Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013, pp. 388–391.

xviii

C. Peng and Y. Sungtaek Ju, “Finger-Powered Electro-Digital-Microfluidics,” in Biosensors and

Biodetection: Humana Press, Ch. 20, Vol. 2, Forthcoming 2017.

S. Sharratt, C. Peng, and Y. S. Ju, “Micro-post evaporator wicks with improved phase change

heat transfer performance,” Int. J. Heat Mass Transf., vol. 55, no. 21, pp. 6163–6169, 2012.

1

Chapter 1 Introduction

1.1 Portable Microfluidic Devices

1.1.1 Motivation

Microfluidics refers to the technology of manipulating fluids at sub-millimeter length scales.

It offers the advantages of low-volume sample consumption, high-throughput fluidic handling,

and miniaturization, compared with conventional laboratory tests [1], [2]. Microfluidic devices

that do not require external hardware have garnered significant attention as a suitable technology

for a wide range of portable applications, such as point-of-care (POC) diagnostics in resource-

constraint settings [3], wearable monitoring devices [4], on-site environmental analysis [5], and

forensic analysis [6], [7], where a central laboratory and trained workers, as well as access to a

reliable electric supply are unavailable.

However, the powering for various microfluidic components often required for fluidic

control, such as micropump, microvalve, micromixer, and micro-separator, is becoming a major

engineering challenge for portable applications [8]. Therefore, a fluid manipulation mechanism

that does not require external pumping systems, power supplies, or other external support

equipment is the key to the successful development of portable microfluidics.

2

1.1.2 Existing Portable Microfluidic Devices

The majority of existing portable microfluidic devices are based on microchannel structures,

and can be categorized into three types based on their fluid pumping schemes: “passive”

pumping, “active” pumping powered by battery, and powered by energy obtained from the

surrounding environment (including human) [8].

Passive pumping

Capillary action is the ability of a liquid to flow in narrow channels without the help of

external force and is a popular mechanism, which is widely exploited in passive pumping. For

example, paper-based microfluidic devices use capillary action to guide fluids along the

patterned “channel” on paper (Figure 1.1(a)). Recent studies further improved the fluid handling

accuracy of paper-based microfluidics through the use of different components, including a

magnetic-valve for timed fluidic control [9] and a delay valve made with sugar for the sequential

delivery of fluids [10]. Using these fluidic components, various biomedical applications of

paper-based microfluidics, such as the quantification of the nitrite levels in saliva [11] and the

separation of hemolysis-free blood plasma [12], have been demonstrated. As an alternative to

paper, different materials have also been proposed to improve the mixing further [13-15].

Degas-driven flow is another passive pumping mechanism that takes advantage of the free

volume of PDMS. The potential energy of the evacuated PDMS drives the absorption of air in

3

the sealed side of the microchannel, and thus pumps the fluid in the channel, as shown in Figure

1.1(b)[16-18].

Figure 1.1 (a): Paper patterned with photoresist to actuate the fluid through capillary action and

to carry out glucose assay [19]; (b): Schematic of a degas-driven microfluidic chip device for on-

chip blood separation [17].

Active pumping powered by battery

Sometimes, active microfluidic components are necessary for precise fluid handling, which is

required for certain bio-medical assays to achieve high precision and efficient reactions [8].

Developing low power consumption components that can be powered by the on-chip battery is

4

one way to pursue this goal. For example, solenoid actuators and electro-osmosis (EO) pumps

powered by a small powering unit are implemented on chips as valves and pumps for fluid

injection and control [20] (Figure 1.2(a)). Similarly, a handheld microfluidic device

incorporating multiple elastomeric microvalves and powered by a 9-V battery was demonstrated

for horseradish peroxidase (HRP) amplification (Figure 1.2(b)) [21]. The use of battery to power

the microsyringe pumps integrated in the portable system for fluid actuation, has also been

reported [22].

Another interesting method for eliminating the bulky pumping system is to use centrifugal

force, generated by the rotation of the microfluidic disk [23], [24]. These systems usually depend

on a step motor for actuation, which can be potentially powered by a battery for portable

applications.

Figure 1.2 (a): A portable microfluidic device for potential parallel cell analysis. A lower power

consumption is achieved with 10 solenoid actuators as valves and several electro-osmosis (EO)

5

pumps for fluid control [20]; (b): Schematic of a battery operated microfluidic system employing

elastomeric valves for fluidic control [21].

Active pumping powered by environment/human

Reducing the power consumption can hardly be the ultimate solution, if the key components

of microfluidics are to be adopted [8]. Energy conversion modules, combining various energy

harvesters with a small rechargeable battery or other energy storage system, have been reported

to replace the traditional battery for autonomous power supply [25], [26]. Table 1.1 summarizes

the common types of energy sources, the approximate magnitude of the returned power, and their

corresponding advantages/disadvantages [25], [26]. It is shown that vibration-based mechanical

energy is more accessible than solar and thermal energy. As an example, the energy harvested

from the movement of human body with a triboelectric nanogenerator is used to charge the

lithium battery that powers glucose biosensors and water/ethanol detectors [27], [28].

Table 1.1: Source and harvested power for different energy sources [25], [26].

Source Harvested Power Advantage/disadvantage

Ambient light High power

 Indoor ~ 10 𝜇𝑊/𝑐𝑚2

 Outdoor ~ 10 𝑚𝑊/𝑐𝑚2

Vibration/kinetic (Human) ~ 4 𝜇𝑊/𝑐𝑚2 High accessibility

Thermoelectric (Human) ~ 30 𝜇𝑊/𝑐𝑚2 Environmental dependent

Fuel cells ~ 50 𝜇𝑊/𝑐𝑚2 In vitro

6

Energy conversion modules can also be used in POC devices to charge the battery, or even

better, to directly manipulate fluids through various energy forms. A “light-driven” flow exploits

the change in wettability of a polymer material with temperature, to pump and control fluids. The

temperature difference is generated by the ambient light (Figure 1.3(a)) [29]. Moreover, the

mechanical energy of the human body is directly used to provide the hydraulic pressure for fluid

pumping in microchannels. Figure 1.3(b) shows a finger-powered device for continuous droplet

formation and transportation [30]–[32]. Figure 1.3(c) illustrates a novel spring-driven

mechanical actuator for the automation of fluid control in a lateral-flow based cassette through

the opening/closing of a series of pre-evacuated air pouches [33]. A reprogrammable punch-card

based portable microfluidic device has also been designed for low-cost and reconfigurable

applications [34].

Figure 1.3 (a): “Light-driven” microfluidics for continuous-flow PCR, which exploits the change

in wettability of a polymer material with temperature [29]; (b): Finger-powered droplet

7

microfluidic device based on hydraulic pressure, having an integrated deformable chamber that

can be activated by a human finger press to pump multiple streams of fluids [32]; (c): A timer-

actuated immunoassay cassette for biomarker detection in oral fluids. When the dial rotates

under spring-force, the actuation balls pushes the on-chip air pouches to drive the fluids in the

lateral flow chips [33].

1.2 Digital Microfluidics (DMF)

1.2.1 Digital-microfluidics and Applications

Digital microfluidics (DMF) is an intriguing alternative to channel-based (continuous)

microfluidics, though most of the existing portable microfluidics are based on the latter. Digital

microfluidics use discrete droplets to perform fluidic functions and possesses several salient

features that are not present in continuous microfluidics. One is to allow various processes to

perform in parallel within an often-compact design, providing better capability to scale up. The

other is its reconfigurability, which allows researchers to design a diverse set of biomedical

assays using one chip for the most part, offering more flexibility.

The most prominent example of DMF is electro-wetting on dielectric (EWOD) [35]. Figure

1.4(a) shows a typical EWOD device in closed configuration; the bottom substrate is patterned

with electrodes (normally Au) using photolithography, and followed by a dielectric layer and a

hydrophobic layer. A droplet is sandwiched between the top and bottom plates, and the top plate

is usually coated with conductive ITO followed by a hydrophobic layer. The actuation force for

8

the droplet is provided by the change in surface tension between the polarized/conductive droplet

and the dielectric layer, which is often coated with a hydrophobic layer, when a voltage is

applied between the two. Recently, EWOD is being widely used in many biomedical

applications, including immunoassays (e.g. ELISA) [36-39], DNA-based applications (e.g. PCR)

[40], [41], cell-based applications [42], [43], and chemical and enzymatic reactions (e.g. glucose)

[44-46], [47]. A compact EWOD system has also been developed for point-of-care (POC)

diagnostics, though it still requires DC plugin (Figure 1.4(b)) [48].

Other techniques of DMF include dielectrophoresis (DEP) [49], surface acoustic waves [50],

magnetic force [51], [52], and thermocapillary force [53], the details of which are introduced

elsewhere. For most DMF, however, an external powering unit is necessary for droplet actuation

and control.

Figure 1.4 (a): Electrowetting on dielectric (EWOD) in closed configuration [54]; (b): A compact

digital microfluidic platform for point of care (POC) testing [48].

9

1.2.2 Design Automation for DMFB

The digital microfluidic biochips (DMFB) design process refers to the conversion of

biomedical protocols to an efficient chip design, through a series of sub-phases such as

scheduling, resource placement, droplet routing (motion planning), pin assignment, and wire

routing, etc. [55], [56].

Droplet routing is a key design issue for performing a large number of operations on a 2D

biochip. The goal is to transport each droplet from its start position to the goal position, while

ensuring that the droplets in motion do not accidentally collide with one another or with any

functional modules on the chip. Many droplet routing methods have been developed since last

decade, partially taking advantage of the strategies used in very-large-scale-integration (VLSI).

Some of the early efforts include a two-stage algorithm that utilizes maze routing followed by

random selection and re-scheduling for the selected paths [57]. A prioritized A* search is

reported by identifying the problem’s resemblance to the multi-agent path problem (MAPF), and

arbitrarily assigns priority to each droplet [58]. Many of the recent algorithms further improve

the routing performance as well as the ability to solve harder problems with larger cardinality

(evaluated by the number of droplets). A high-performance droplet routing algorithm based on

bypassibility was reported, in which the droplet with high bypassibility is routed first and the

possible deadlocks are solved by backing off some droplets followed by a final compaction step

[59]. The global moving vector was proposed together with an entropy-based function for

determining the routing order; the reported results show further reduction in the latest arrival

time and the used cells [60]. A novel algorithm for concurrent path allocation to multiple

10

droplets based on the Soukup’s routing algorithm was also discussed, showing quite encouraging

results [61]. In addition, a two-phase routing was proposed by defining a new metric of

Interfering Index (IInet) and routed droplet with low IInet in the first phase, and another metric

Routable Ratio (RR) for routing the remaining droplets in the second phase [62]. The test cases,

however, are limited to problems with small cardinality. Whereas the algorithms mentioned

above lead to heuristic results, “exact” methods targeting optimal solutions have also been

reported. The latter mainly tackles the problem by formulating it to an Integer Linear

Programming (ILP) problem [63-65] or a Boolean satisfiability (SAT) problem [66], [67].

Further efforts have also been made to tackle the problem of cross-contamination in routing

heterogeneous droplets [68-71].

Another design issue of great practical importance is the efficient pin assignment (electrode

addressing), which allows one pin to control multiple electrodes on a chip, thus significantly

reducing the number of electrical interconnects and manufacturing difficulty. Given the droplet

routing results, both broadcast addressing [72] and trace-based-partition method [73] can be used

to reduce the number of pins needed, compared with the more straight-forward direct addressing

strategy. Broadcasting addressing aims to group compatible electrodes together by examining its

activation sequence. On the other hand, trace-based-partition method is based on the “Connet-5”

algorithm, which automatically partitions the microfluidic array and each pin is assigned to one

partition [73] (Figure 1.5(a)). Cross-referencing is another strategy used specifically for EWOD

pin assignment, where an electrode on the microfluidic array is connected to two pins, one

corresponding to a row and the other to a column (Figure 1.5(b)). Therefore, multiple droplets

can be activated simultaneously on a cross-referenced EWOD chip. This method, however, is

11

prone to unintentional droplet manipulation and high power consumption [74], [75]. In addition,

a general-purpose pin assignment algorithm, which is not application specific, was developed in

[76], [77].

It is also noticed that by combining two or more synthesis processes in the design stage, more

optimal solutions can be found. For example, three objective functions including the total

number of control pins, electrode usages, and routing completion time are considered

simultaneously for co-optimization by combining the droplet routing and pin assignment stages

[78], [79]. ILP has also been presented to solve the pin-constraint routing for DMFB in problems

with small cardinality [80], [81].

Figure 1.5 (a): Partition and pin assignment results for the multiplexed bioassay using droplet

trace based array partitioning techniques and “Connect 5” algorithm [73]; each color represents

one partition and the number indicates the different pins assigned; (b): Cross-referencing for pin

assignment, droplet 1, 2, and 3 are activated simultaneously by one couple of the electrode, and

droplet 4 indicates false inference [74].

12

1.3 Scope of Research

The present work investigates finger-powered digital microfluidics for fluid manipulation

and one practical problem in the DMFB design: the droplet routing problem.

Chapter 2 presents electrowetting-on-dielectric (EWOD) digital microfluidics, which is

powered by the electric energy converted from the mechanical energy of human finger press,

through an array of piezoelectric elements. The output voltage of the piezoelectric element under

different bending angles is characterized both theoretically and experimentally. EWOD devices

of different thickness are then fabricated using the standard photolithography technique, and

their actuation voltages are measured experimentally. Using finger actuation, the basic modes of

droplet manipulation, such as transport, merging, and splitting are demonstrated, and key steps of

bioassays are performed on EWOD devices.

Chapter 3 explores the electrophoretic transport of discrete droplets (EPD) powered by the

human finger, exploiting the same energy conversion scheme as in Chapter 2. Finite element

models are developed to predict the induced droplet charges and the subsequent electrophoretic

force for a range of droplet sizes, electrode pitches, and actuation voltages, which are anticipated

in typical microfluidics applications. The model helps in establishing the engineering criteria for

successful EPD actuation. The EPD actuation of various aqueous and body fluids powered by

human finger are experimentally demonstrated. Further, an auxiliary mechanical system is

developed to facilitate the control of simultaneous deflection of multiple piezoelectric elements

for practical implementation. The efficient pin-assignment scheme is further investigated,

specifically for the EPD in our application to reduce the number of piezoelectric elements

13

required. Both strategies are adopted for the experimental demonstration of the pre-programmed

functional actuation of droplets on a 4×4 base electrode matrix.

Chapter 4 discusses a droplet routing algorithm based on Independent Detection (ID) to

reduce the assay execution complexity (time), which is critical to the implementation of

proposed portable devices. The problem of concurrent droplet routing on digital microfluidic

chips is formulated to a multi-agent path-finding problem, with cost functions consisting of the

total routing length and used cells. An approximate version of the original ID algorithm is

implemented to solve selected hard test benchmarks with medium number of droplets. Finally,

the key evaluation metrics including the latest arrival time and used cells are reported, and our

results are compared with those of the state-of-the-art algorithms.

14

Chapter 2 EWOD (Electrowetting on Dielectric)

Digital Microfluidics Powered by Finger

Actuation

2.1 Introduction

The electrowetting on dielectric (EWOD) phenomenon is one of the most promising

actuation mechanisms used in DMF. The basic fluidic operations such as droplet transporting,

splitting, and mixing have been extensively studied through experiments and

numerical/analytical models in previous literatures [82][83][84]–[86] [87]. However, the current

EWOD devices still require an external high-voltage supply and switching circuitry, which

entails custom development to realize compact systems.

In this chapter, the finger-actuated digital microfluidics (F-DMF) based on the manipulation

of discrete droplets via the EWOD phenomenon is reported. Instead of utilizing an external

power supply, F-DMF-EWOD uses piezoelectric elements to convert the mechanical energy

produced by human fingers into electric voltage pulses for droplet actuation. Figure 2.1

schematically illustrates one possible implementation of our device concept, which uses an array

of piezoelectric elements to convert mechanical energy pulses provided by human fingers into

voltage pulses. Using this scheme, basic modes of droplet manipulation, such as transporting,

15

splitting, and merging of water droplets were performed. Furthermore, to demonstrate its

capability for biomedical applications, the key assay steps involved in glucose detection and an

immunoassay were successfully performed.

Figure 2.1: Schematic of one possible implementation of the finger-actuated digital microfluidic

platform. The piezoelectric elements convert the mechanical energy imparted by human fingers

into electrical energy to actuate the droplets confined between two parallel plates, through the

EWOD phenomenon.

2.2 EWOD Device

2.2.1 Device Design and Fabrication

To successfully manipulate micro-droplets using EWOD, voltage pulses of sufficient

amplitude must be generated to overcome the capillary (contact-line hysteresis), inertial, and

16

viscous forces. The EWOD-induced contact angle change is related to the applied voltage by the

Lippmann-Young equation:

𝑐𝑜𝑠𝜃(𝑉) − 𝑐𝑜𝑠𝜃0 =
𝜀0𝜀

2𝛾𝐿𝐺𝑡
𝑉2 (2.1)

where 𝜃0 denotes the equilibrium contact angle at V = 0V, 𝜀0 is the permittivity of vacuum, 𝜀 is

the dielectric constant of the dielectric layer separating the droplet from the electrode, t is its

thickness, and 𝛾𝐿𝐺 is the surface tension between the droplet and the surroundings. Since the

contact angle change represents the actuation force along the surface, the higher the applied

voltage, the stronger the actuation force that will drive the droplet against the above-mentioned

resistant forces. As the capillary resistance that originates from the contact angle hysteresis of an

aqueous droplet surrounded in air (as opposed to the popular oil environment) is larger than the

inertial or viscous resistance in most cases, the performance of EWOD devices is often measured

in the air environment without resorting to the filler oil or oil impregnation [87]. To manipulate

water droplets in air, typical EWOD devices require voltage source of about 40 V [82].

 Figure 2.2 shows the schematic of the cross section of our EWOD device, when a single

droplet is being actuated. Our EWOD devices consist of two parallel glass plates that were

separated by approximately 100 𝜇m. The bottom glass plate contains an array of 1×1 mm2 gold

electrodes, which was fabricated using standard micro-fabrication processes. A 20-nm Cr/100-

nm Au layer was first deposited on a glass wafer and the layer was patterned by wet etching. A

dielectric layer of silicon nitride was then deposited by PECVD (plasma enhanced chemical

vapor deposition). Next a solution of Teflon® AF (2% wt/wt in Fluorinert FC-40) was spin

17

coated at 2000 rpm for 30 s, and it was baked at 180 °C for 10 min to obtain a ~100 nm-thick

hydrophobic topcoat. A shadow mask was used to define the electrical contact pads. The top

glass plate was coated with a transparent conductive ITO (indium tin oxide, <15 ohm/square)

layer to form a counter electrode for EWOD. The counter electrode was also coated with a ~100

nm-thick layer of Teflon®. Figure 2.3 shows the optical image of the assembled EWOD device

from the top. The EWOD electrodes on the bottom plate are connected individually to larger

electrical contact pads to facilitate soldering or other wired connections to the piezoelectric

elements. A silver paste was used to make an electrical connection between the counter electrode

on the top plate to the ground.

Figure 2.2: Cross section of the assembled EWOD device, illustrating the top plate with the

transparent conductive ITO layer and the bottom plate with the metal electrode array.

18

Figure 2.3: Top view of an assembled EWOD microfluidic device and an enlarged optical image

of a part of the bottom EWOD electrode array. The overall dimension of the device is ~ 6 × 2.5

cm2.

Due to the finite energy-conversion efficiency of our piezoelectric elements and the safety

consideration for portable applications, a low actuation threshold voltage, and therefore a thin

dielectric layer is desired. However, a thin dielectric layer is less robust and prone to pinholes

and other defects, which lead to electrolysis-induced failure of the EWOD devices. The dielectric

layer thickness is further limited by the capacitance allowed per EWOD electrode, which must

be kept below that of the piezoelectric element to minimize the voltage dividing effect. With the

above considerations in mind, SiNx layers of thicknesses ranging from 0.8 𝜇m to 2.5 𝜇m were

examined as our dielectric layers. The estimated capacitance was approximately 60pF per

19

electrode for the EWOD devices with a 0.8 𝜇m-thick dielectric layer, which is much smaller than

that of the piezoelectric element (~ 1nF).

Another feature of our designed EWOD devices is that the entire voltage drop can be

considered to be across the dielectric layer, due to the much smaller thickness of the hydrophobic

coating layer compared with that of the dielectric layer in series connection; the voltage drop

across the hydrophobic coating layer can be ignored.

2.2.2 EWOD Actuation Voltage

To characterize the threshold actuation voltage required for EWOD actuation as a function of

the dielectric layer thickness, an external programmable power source was used to apply

precisely defined voltage pulses. A water droplet of ~ 0.3 𝜇L in volume was spotted onto the

EWOD device and subsequently split into two nominally identical daughter droplets. After one

of these droplets was positioned on one of the electrodes, the amplitude of the voltage pulse

applied to the adjacent electrode was gradually increased until the droplet was successfully

transported.

The threshold actuation voltage was recorded for each dielectric layer thickness and the

results are plotted in Figure 2.4 (symbols). The solid line in Figure 2.4 indicates the voltages

required theoretically (Equation 2.1) for the contact angle to change from 120° to 70°, which is

an empirically determined range for droplet actuation in the given EWOD device. In general, the

threshold actuation voltage increases with the increase in dielectric layer thickness. For EWOD

20

devices with a PECVD SiNx dielectric layer with a thickness of ~ 2.5 𝜇m, a voltage as large as

70 V is required for successful actuation of a water droplet.

Figure 2.4: Threshold actuation voltage of a water droplet on EWOD devices as a function of the

thickness of PECVD SiNx dielectric layers.

During droplet splitting (cutting), the droplet is elongated in the longitudinal direction due to

the actuation by the electrodes on the two sides. The middle electrode is non-activated to keep it

non-wetting and the droplet pinches in the middle, as shown in Figure 2.5. The physical

parameters describing the process can be expressed as:

𝑅2

𝑅1
= 1 − (

𝑅2

𝑑
)

𝜀0𝜀𝑉𝑑
2

2𝛾𝐿𝐺𝑡
 (2.2)

21

where d is the distance between the top and bottom plates, R1 and R2 are the principal radii of

curvature as shown in Figure 2.5. At the splitting point, R1 = -R2, and the critical d/R2 was

calculated for various dielectric thicknesses, and the corresponding actuation voltages measured

above. The result shows that the critical d is ~ 200 𝜇m, which is much larger than our separation

of ~ 100 𝜇m. Therefore, with actuation voltages exceeding the minimum values calculated

above, successful splitting of droplets is expected on our EWOD devices.

Figure 2.5: Droplet configuration for splitting [82].

2.3 Mechanical Energy Conversion

2.3.1 Piezoelectricity and Material Selection

When subjected to an external stress, the internal structure of piezoelectric material can be

deformed, causing the separation of the positive and negative centers of the molecules and

generating dipoles, as shown in Figure 2.6. The generated polarization forms an electric field,

22

and the process converts the mechanical energy of the material deformation into electrical

energy. Specifically, when electrodes are coated on two sides of the piezoelectric material, an

electric voltage will be developed due to the free charge on the surfaces when deformation is

generated [88].

Figure 2.6: Separation of the positive and negative centers of the molecules under deformation in

piezoelectric material. The facing polarities inside the material are mutually cancelled, leaving

free charge on the surface [88].

Two common types of piezoelectric materials are ceramics and polymers. Traditionally,

ceramics such as lead zirconate titanate (PZT) have been widely used for mechanical energy

harvesting. However, one disadvantage of most ceramic materials is its extreme brittleness [28].

Moreover, for our finger-actuation application, the magnitude of force that can be imparted

directly from human finger is limited. Therefore, materials with large piezoelectric constant g31

(3 indicates the common polarization direction), which is proportional to the ratio of the open-

23

circuit voltage to the magnitude of the applied force in the x direction, are preferred. Therefore,

PVDF (polyvinylidene fluoride), which is one of the most commonly used polymer piezoelectric

materials, was chosen due to its large piezoelectric constant (~ 5 times higher than PZT [89]) as

well as better reliability compared to ceramic materials.

2.3.2 Modeling of Voltage Output

Piezoelectric elements of 13×25 mm2 were used to convert the mechanical energy input by

human fingers into voltage pulses to actuate the micro-droplets in our EWOD DMF devices.

Each piezoelectric element consists of a PVDF layer of thickness 28 𝜇m (piezoelectric layer)

laminated on a polyester layer of thickness 125 𝜇m (substrate layer), as illustrated in Figure

2.7(a), to maximize the average strain in the piezoelectric layer and hence its output voltage. The

length of the piezoelectric layer Lp is approximately 20.5 mm.

24

Figure 2.7: (a) Cross section of the main functional layers of a laminated piezoelectric element

used in the present study; (b) Definitions of the length Lp and the bending angle 𝛼.

Each piezoelectric element was modeled as a Euler-Bernoulli beam. The element (beam) is

mounted vertically with the clamped end fixed. The bending angle 𝛼(𝑠) is defined as the rotation

of the piezoelectric element beam, measured in radians at a distance s from the fixed end, as

illustrated in Figure 2.7(b). For a single piezoelectric element, the open circuit voltage can be

expressed as [90]:

𝑉0 =
𝑒31ℎ𝑝

𝜀𝑠
𝑆1 (2.3)

Here, e31 is the electromechanical coupling coefficient of the piezoelectric layer, 𝜀𝑠 is the

permittivity of the piezoelectric layer under constant strain, and hp is the thickness of the

piezoelectric layer. The average strain, 𝑆1̅, is defined as:

25

pp

h

h

tip

pp

h

hL

hL

ydy

hL

ydyds
s

S
p

 








2

1

0

2

1

1

)()(


 (2.4)

where h1 and h2 are the distances from the neutral axis of the entire beam to the bottom and top

of the piezoelectric layer, respectively; 𝛼𝑡𝑖𝑝 and 𝛼0 are the bending angle 𝛼(𝑠) at the tip and at

the starting end of the piezoelectric layer, respectively (Figure 2.7(b)).

To characterize the energy conversion capability of our piezoelectric elements, the open-

circuit voltage outputs were measured using an electrometer of input impedance >200 TΩ.

Optical images of the side views of the element were captured to extract the bending angles

along the beam.

Figure 2.8 shows the measured and predicted output voltages as a function of the tip bending

angle 𝛼𝑡𝑖𝑝 for a single piezoelectric element. The prediction (straight line) agrees reasonably well

with the experimental results (symbols) over the entire range. Output voltages greater than 40 V,

which is sufficient to actuate a water droplet reliably in the EWOD device with a ~ 0.8 𝜇m-thick

SiNx dielectric layer, can be generated at tip bending angles greater than 80°. However, larger

deformations may not be desirable for field operations and may lead to the degradation of the

piezoelectric elements. The forces required to achieve bending angles of 36°, 70°, and 108° were

estimated to be approximately 0.06, 0.12, and 0.18 N, respectively.

26

0 30 60 90 120 150 180
0

30

60

90

120

O
u

tp
u

t
V

o
lt

a
g

e
 A

m
p

li
tu

d
e

 (
V

)

Tip Bending Angle 
tip

 (Degree)

 Prediction

 Experimental data

Figure 2.8: Open-circuit output voltages of a single piezoelectric element as a function of the tip

bending angle 𝛼𝑡𝑖𝑝.

If needed, multiple piezoelectric elements may be connected electrically in series and

mechanically in parallel to increase the output voltage, while limiting the required deflection to

an acceptable range. Figure 2.9 shows the total output voltage of single and two or three

piezoelectric elements connected in series. The results are shown for three different bending

angles of 15°, 45°, and 90°. At relatively small tip bending angles (~15°), the total voltage output

increases linearly with each additional piezoelectric element. At larger tip bending angles (45°

and 90°), adding more elements does not lead to a proportionate increase in the output voltage.

This could be due to asynchronous bending and finite leakage currents. It is also reported that the

parasitic capacitances formed by the insulation layers and derived from peripheral circuitry

degrade the output voltages, setting a limit to the maximum output voltage with increasing

number of elements in series connection [91]. Nevertheless, it was demonstrated that the output

27

voltages on the order of 100 V can be reliably generated using piezoelectric elements connected

in series with tip bending angles <90°.

Figure 2.9: Total voltage outputs from multiple piezoelectric elements connected in series under

different tip bending angles.

2.4 Basic Droplet Operations

Next, the successful finger-powered actuation of water droplets on EWOD devices with 0.8

𝜇m-thick PECVD SiNx dielectric layers is demonstrated. An array of single piezoelectric

elements was used to convert the mechanical energy into voltage pulses. Figure 2.10 shows the

optical images of a single water droplet (~ 0.15 𝜇L) being transported over adjacent electrodes

28

through a sequence of finger-driven deflection of the piezoelectric elements. To prevent droplets

from being trapped on an inactive zone between the two adjacent electrodes, the release of the

previously bent piezoelectric element is delayed while deflecting the neighboring element. For

example, with reference to Figure 2.10, Element 2 was not entirely released when Element 3 was

deflected, so that the front contact line of the droplet would stay across the gap between

Electrodes 2 and 3. For such a delayed release, a holding force of approximately 0.06 N is

sufficient.

Figure 2.10: Finger-actuated EWOD transport of a water droplet, where the actuation voltage

pulses were provided by bending a series of piezoelectric elements.

29

The droplet splitting was demonstrated by simultaneously deflecting two non-adjacent

piezoelectric elements, while keeping the middle one non-deflected. Figure 2.11(a) illustrates the

splitting of a water droplet (~ 0.3 𝜇L) into two daughter droplets of similar sizes through the

simultaneous deflection of element 1 and 3. When the splitting was in order, the droplet was

elongated in the longitudinal direction by the wetting force exerted at the two ends, while the

middle was kept non-wetting, as shown in Figure 2.11(a). The actuation voltage on either side

was approximately 40–50 V, produced by one single piezoelectric element with a bending angle

<90°. For a large droplet that covers multiple electrodes, asymmetric splitting can also be

achieved by simultaneously deflecting a set of piezoelectric elements connected to the electrodes

in an asymmetric manner, for example, elements 1 and 3, 4.

Figure 2.11(b) shows the merging of two droplets of similar sizes by asynchronous bending

and the release of three piezoelectric elements (2, 4, and 3).

30

(a)

 (b)

Figure 2.11 (a): Finger-actuated EWOD droplet splitting. The piezoelectric elements 1 and 3 are

bent simultaneously for splitting; (b): Finger-actuated EWOD droplet merging.

2.5 Application to Biological Assays

As proof of principle demonstration of the biological applications of our F-DMF based on

EWOD, the basic steps of glucose detection and immunoassay were performed. In these

experiments, where higher EWOD voltages are necessary to actuate the droplets, silicon nitride

layers of thickness 2.5 𝜇m were used, because they help prevent electrolysis of water under the

low-frequency (~1 Hz) finger-driven actuation scheme. Two piezoelectric elements, connected in

series, were used to provide an actuation voltage of up to 100 V.

31

Glucose detection was demonstrated based on enzymatic oxidation, in which the color of an

assay solution changes from clear to brown in the presence of glucose. Since the reagent solution

may chemically attack the hydrophobic coatings, both the upper plate and bottom substrate of

our EWOD devices were pre-treated with silicone oil. The reagent solution was prepared by

adding 0.8 mL of o-Dianisidine Reagent to an amber bottle containing 39.2 mL of 1:5

horseradish peroxidase/glucose oxidase solution (15 units of protein per mL of solution). A

droplet of 1mg/mL standard glucose solution and another one of reagent solution (both of

approximately 0.15 𝜇L) were spotted onto the bottom plate and covered with the top plate. The

reagent droplet was then transported towards the glucose sample droplet and merged, as shown

in Figure 2.12(b-d). An optical image was taken to verify the color change, which is indicative of

the successful enzymatic oxidation reaction. Brown color was observed to start developing after

the merging and was fully developed after a 5-min incubation, as shown in Figure 2.12(e).

32

Figure 2.12: Snapshots of sample and reagent droplet during a glucose assay and enzyme

catalyzed formation of colored product.

Next, an immunoassay-related enzyme-based colorimetric reaction was performed using the

F-DMF-EWOD. 5-bromo-4-chloro-3-indolyl blue tetrazolium (BCIP/NBT) is a commonly used

substrate for alkaline phosphate (ALP). In our experiment, the enzyme substrate was used to

detect the ALP conjugated antibody. This mimicked the last step of signal detection and

amplification in the ALP-based colorimetric ELISA [92]. To prepare the experiment, ALP

conjugated IgG antibody (2.5mg/mL) was first diluted to approximately 13 𝜇g/mL. The antibody

was immobilized on the upper plate of our EWOD device by manual pipetting of ~500 nL of the

diluted solution. The upper plate was chosen due to the smaller interference with actuation,

compared with the bottom plate. The spots were allowed to air-dry before use. Approximately

0.15-µL aliquots of enzyme substrate (BCIP/NBT) solution (BCIP: 0.15 mg mL-1, NBT: 0.3 mg

mL-1, Tris Buffer: 100 mM, and MgCl2: 5 mM) was loaded onto the bottom plate of the EWOD

33

device, as shown in Figure 2.13(a). Voltage pulses provided by finger-driven actuation were then

used to move the sample droplet towards the immobilized antibody spot, as illustrated in Figure

2.13(b-c). After ~5-minute incubation, black-purple precipitates were confirmed to be produced

(Figure 2.13(d)), indicating the detection of the ALP-conjugated antibody.

Figure 2.13: (a)-(c) Frames from a video depicting a droplet of BCIP/NBT enzyme solution

transported towards immobilized antibody spot upon finger actuation and (d) purple precipitation

observed indicating the detection of the ALP conjugated antibody.

34

2.6 Summary

In this chapter, finger-actuated digital microfluidics based on the EWOD phenomenon was

demonstrated using piezoelectric energy conversion of human power. The generation of voltage

pulses of amplitudes >100 V were demonstrated using laminated polymer piezoelectric elements

connected in series. Using this scheme, the basic EWOD droplet operations such as droplet

transport, splitting, and merging were confirmed, and an implementation of the basic assay steps

in glucose detection and immunoassay were demonstrated. Due to the low-frequency nature of

finger actuation, a relatively thick dielectric layer was used to help prevent possible electrolysis.

This work offers a promising solution for expanded applications of EWOD-based digital

microfluidics in portable systems.

35

Chapter 3 Finger-powered Electrophoretic

Transport of Discrete Droplets for Portable

Digital Microfluidics

3.1 Introduction

Electrophoretic control of discrete droplets (EPD) is a promising alternative approach for

digital microfluidics. EPD utilizes the rapid charging of conductive droplets by adjacent

electrodes and their subsequent electrophoretically induced motion [93], [94]. Both the droplet

and electrodes are typically immersed in a dielectric fluid. This is advantageous, because EPD

minimizes direct liquid-solid contacts, compared with other droplet actuation methods such as

EWOD [87], thermomechanical [53], and surface acoustic wave (SAWs)-driven [95] actuations.

 Previous studies of EPD investigated the electrophoretic force and the resulting trajectories

of a droplet suspended between parallel plates or other macroscale electrodes [96-98]. EPD is

typically thought to require very high voltages [99], making it ill-suited for portable applications.

However, actuation voltages can be reduced to well below 500 V through miniaturization.

In this chapter, the finger-powered EPD digital microfluidics is introduced using a similar

energy conversion scheme. An array of piezoelectric elements is connected in parallel to the

electrodes immersed in dielectric fluids, as shown in Figure 3.1. When deflected by human

fingers, the piezoelectric elements establish an electric field across adjacent EP electrodes to

36

charge and actuate a droplet via electrophoretic force. The numerical models and their

experimental validation are reported, to help develop design criteria for successful droplet

actuation. The transport and merging of aqueous as well as various body fluids are

experimentally demonstrated using our finger-powered EPD. Next, to facilitate practical system-

level implementation of our concept, a mechanical system is designed and developed to facilitate

controlled deflection of multiple piezoelectric elements. An efficient pin assignment scheme to

reduce the number of piezoelectric elements required for practical purposes, is also explored.

The pre-programmed functional actuation of droplets on a 4×4 base electrode matrix, integrating

our mechanical system and the pin assignment scheme, is experimentally demonstrated.

Figure 3.1: Schematic illustration of one implementation of our finger-powered EPD device. An

electric field is established across adjacent EP electrodes when the corresponding piezoelectric

elements are deflected by human fingers (or finger-powered mechanical levers in an auxiliary

mechanical system).

37

3.2 Experimental Setup

The device, schematically illustrated in Figure 3.1, was used to study finger-powered EPD

operations. A transparent acrylic cell is filled with two immiscible dielectric liquids. The two

liquids are chosen to have densities and surface tensions such that the spherical aqueous droplets

stay near the interface of the two liquids. In this study, silicone oil (DC 200F, 𝜐 = 5 cSt, σ = 10-13

S/m, ε = 2.8 ε0) and Fluorinert FC-40 (ε = 1.9 ε0) were chosen. Insulated copper electrodes of

diameter ~0.18 mm are assembled to form an array with pitch distance p. The top surfaces of the

electrodes are exposed to allow for droplet charging. Aqueous droplets are placed inside the cell

using a micropipette (Eppendorf, 0.1-2.5 μL). Different kinds of aqueous droplets are tested,

including those of DI water (𝜌 = 0.1–1 MΩ), human body fluids (saliva and urine), and a sodium

hydroxide solution, covering pH values from 5.6 to 9.

The actuation unit consists of laminated polymeric piezoelectric elements (Measurement

Specialist, LDT Series) with active layers (Polyvinylidene fluoride) of thickness 28 μm and size

1.3×2.5 cm2. A pair of piezoelectric elements are connected in series to increase the voltage

output. The negative terminal of each piezoelectric unit is grounded, while the positive terminal

is connected to each individual EP electrode, as shown in Figure 3.2. With this arrangement,

when the adjacent units are deflected in opposite directions, a voltage differential of

approximately 200 V can be generated across the two EP electrodes (see Section 2.3.2). This

output is then used to charge a droplet and establish an electric field necessary for droplet

actuation.

38

Figure 3.2: Electrical connections used to link the piezoelectric elements to the EP electrodes.

3.3 Droplet Charging and Actuation

3.3.1 Modeling of Induced Droplet Charge and Electrophoretic Force

For the successful transport of a droplet across adjacent EP electrodes, the piezoelectric

elements need to provide sufficient charges and electric bias to generate appropriate

electrophoretic forces. First, finite element models were developed to predict the induced droplet

charges and the resulting electrophoretic force for a range of droplet sizes, electrode pitches, and

actuation voltages anticipated in typical microfluidic applications.

Figure 3.3 illustrates our simulation domain and boundary conditions. Two cylindrical

electrodes of radius rc and pitch p and a spherical droplet of radius r were immersed in a

dielectric fluid (Fluid 1). A second fluid of a higher density (Fluid 2) was used to separate the

droplet from the solid surface at the bottom. The electrodes protrude into Fluid 1 by a finite gap

39

of h. The dielectric constants of the two fluids are denoted as ε1 and ε2, respectively. A DC

voltage of magnitude Vp is applied to Electrode 2 while Electrode 1 is grounded.

The droplet is initially in contact with the upper surface of Electrode 1. The droplet quickly

reaches an equipotential state with the electrode, with electric charges of the same polarity

distributed over the droplet surface. It is assumed that the droplet takes the maximum

equilibrium charges before it leaves the charging electrode. A further discussion of this

assumption is provided in Appendix 3-A. The charged droplet then detaches from the electrode

under repulsive electrophoretic force acting on the acquired charges. The parameter dx is defined

as the location of the droplet center from its charging electrode (Electrode 1) along the x-axis.

The electric field E= -∇ V is obtained by solving the Laplace equation in both the upper and

lower dielectric fluids:

∇2𝑉 = 0 (3.1)

The free charge density is set to be 0 in the dielectric fluids.

40

Figure 3.3: Finite element model used to predict the electric charges acquired by a droplet

suspended between two biased electrodes and the resulting electrophoretic force.

The droplet is initially in contact with Electrode 1, and the following boundary conditions are

specified.

𝑉 = 0 on Electrode 1 (3.2)

𝑉 = 𝑉𝑛 on Electrode 2 (3.3)

𝑉d = 0 on droplet surface (3.4)

At the outer boundaries, the zero charge or symmetry boundary condition is specified.

𝜀
𝜕𝑉

𝜕𝑛
= 0 (3.5)

41

Once the electric field E is obtained, the total charge Qeq of the droplet is calculated by

integrating the electric displacement over the droplet surface Sd:

𝑄𝑒𝑞 = 𝜀 ∫ 𝐸⃗ 𝑑𝑆 (3.6)

The lateral electrophoretic force Fe along the x-axis is calculated by integrating the Maxwell

stress tensor over Sd:

𝐹𝑒 =
𝜀

2
∫𝐸𝑛

2𝑐𝑜𝑠𝜃 𝑑𝑆 (3.7)

Here En is the electric field normal to the droplet surface and 𝜃 is the angle between the surface

normal vector and the x-axis.

Next, the electrophoretic force acting on the droplet at different positions between the two

adjacent electrodes is determined, assuming that the total droplet surface charge is equal to that

obtained in Eq. (3.6): Q = Qeq. As the droplet moves, the electric field distribution is modified

(E’). The Laplace equation for each droplet location is solved to determine E’ and then the

electrophoretic force is calculated using Eq. (3.7) under this new electric field distribution.

42

3.3.2 Results and Discussion

3.3.2.1 Droplet charges

Figure 3.4 shows the predicted equilibrium charges Qeq for various combinations of droplet

sizes and electrode pitches under an actuation voltage of 200 V. The droplet radius r was varied

from 0.2 to 1 mm and the electrode pitch p from 2 to 8 mm. The actuation voltage of 200 V is

chosen to be comparable to outputs from commercial piezoelectric elements used in this study.

0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

electrode pitch

D
ro

p
le

t
C

h
a
rg

e
 (

p
C

)

Droplet radius r (mm)

 2 mm

 4 mm

 6 mm

 8 mm

Figure 3.4: Predicted droplet equilibrium charge Qeq as a function of the droplet size under an

electrode bias voltage Vp of 200 V. The results are shown for different electrode pitches, varying

from 2 to 8 mm.

43

The predicted charges are in the range of a few to a few tens of picocoulombs. These

translate into equivalent capacitances of approximately 10-2 to 10-1 pF (given an applied voltage

of 200 V) for our droplet/electrode system. To provide sufficient charges to the droplet while

maintaining the electric bias field during droplet transportation, the capacitance of the

piezoelectric elements must be much larger than this value. This represents one criterion, in

terms of the minimum capacitance, in designing piezoelectric elements.

The capacitance of our piezoelectric elements currently used is approximately 1.3 nF, more

than 4 orders of magnitude greater than the equivalent capacitances of the droplet/electrodes. The

amount of charge generated by our piezoelectric elements at an output voltage of 200 V

(approximately 2.6 x 10-7 C) is likewise more than 4 orders larger than the amount of charges

acquired by the droplet. As a result, the flow of charges from the piezoelectric elements to the

droplet would have minimal effect on the electrode bias voltages. The actuation voltages may

therefore be approximated as a constant equal to the open circuit output voltage of the

piezoelectric elements.

For reference, Table 3.1 lists the estimated capacitances per unit area for two common types

of piezoelectric elements with two different thicknesses [100], [101].

Table 3.1: Capacitances of typical piezoelectric elements per unit area.

Material
Relative

permittivity

Film thickness

(μm)

Capacitance

per unit area

(pF /mm2)

PVDF 12.4 25 4.4

PVDF 12.4 100 1.1

PZT-5A 1600 25 531

PZT-5A 1600 100 132

44

Figure 3.4 also reveals that, for a given droplet size, the total amount of charge decreases

with increasing electrode pitches or decreasing nominal electric fields Enom under a constant bias

voltage. The nominal electric field is defined as Enom = Vp/p. This is expected since the

equilibrium droplet charges depend on the electric displacement on the droplet surface, which is

in turn proportional to the electric field strength. It is also noted that the droplet surface charge

density decreases rapidly with increase in droplet sizes, resulting in a nearly linear increase in the

total droplet charges with the droplet radius. This is in part because droplet charging is governed

primarily by non-uniform electric fields in the immediate vicinity of the electrode tip, whose

magnitudes decrease rapidly with distance from the electrode tip.

To illustrate these points further, consider the case of a droplet of radius r suspended between

two large parallel plate electrodes. The amount of equilibrium charges under this configuration

Qparallel is given by:

𝑄parallel =
𝜋

6
(4𝜋𝑟2)𝜀𝐸. (3.8)

The predicted droplet charges are plotted for various combinations of droplet sizes and

electrode pitches in Figure 3.5, for Enom = 0.01 MV/m, 0.1 MV/m, and 1 MV/m. The normalized

charges are approximately inversely proportional to the normalized droplet radius for the

electrode and the geometric parameters of the droplet considered in the present study. This is

consistent with the nearly linear relation between the amount of droplet charges and the droplet

radius observed in Figure 3.4.

45

Figure 3.5: Normalized equilibrium droplet charge is approximately inversely proportional to the

normalized droplet radius r under combinations of geometric parameters examined in the present

study.

3.3.2.2 Charge dissipation time

For the successful actuation of a droplet through electrophoretic force, the charge acquired

and carried by the droplet and the electric field established by our piezoelectric elements between

the neighboring EPD electrodes must be maintained over the actuation process. The relaxation of

electric charges carried by a droplet is governed by the charge dissipation through the

surrounding dielectric liquid:

46

𝑄(𝑡) = 𝑄0𝑒
−

𝑡

𝜏𝑟 (3.9)

 𝜏𝑟 = 𝜀/𝜎 (3.10)

Here 𝜏𝑟 is the relaxation time constant, and is equal to the ratio between the permittivity and

conductivity of the material. The estimated value of 𝜏𝑟 for silicone oil is >200 s.

To estimate the discharge time across the piezoelectric element due to finite leakage, the

element is modeled as a capacitor (C ~ 0.8 nF) connected in parallel with a resistor of resistance

R. The voltage decay can then be described as:

𝑉(𝑡) = 𝑉0𝑒
−𝑡/𝑅𝐶 (3.11)

The resistance R was measured using a source meter.

Figure 3.6 shows the measured I-V curves under sourcing voltages ranging from 0 to 120 V.

The resistance R obtained from the linear fit is ~4×1010 Ω. The theoretical discharge time

constant 𝜏𝑝 is then ~30 s, which is smaller than 𝜏𝑟, and is thus is expected to dominate.

47

0.0 0.5 1.0 1.5 2.0 2.5

0

50

100

 Voltage

 Linear Fit of Voltage

V
o

lt
a

g
e

 (
V

)

Current (nA)

Figure 3.6: I-V curve for piezoelectric element resistance measurement.

This estimation was further confirmed by directly measuring the voltage decay curves. The

piezoelectric element was deflected to a pre-selected bending angle and the resulting open circuit

voltage output was measured as a function of time using an electrometer of input impedance >

200 TΩ. The measurements were then repeated at different bending angles, and hence output

voltages.

Figure 3.7 shows the temporal variations in the output voltage from a piezoelectric element

for different bending angles in the log scale. The average measured time constant 𝜏𝑝 was 27.5 s

with a standard deviation of 5.8 s, which is consistent with the value estimated from the

resistance and capacitance of the piezoelectric elements.

48

Figure 3.7: Decaying voltage output from a single piezoelectric element with increasing time.

3.3.2.3 Droplet velocity and electrophoretic force

To establish the baselines, experiments were conducted, in which the droplets were actuated

using an external power supply. The droplet translational motions were recorded using a digital

camera at 30 fps. The instantaneous droplet velocities at different positions between the

electrodes were calculated through image analyses using ImageJ®. Each calculated velocity

represents the average value over five independent trials (N = 5) performed under nominally

identical bias voltage and geometric parameters. The estimated errors e, indicated by the error

bars in this and subsequent figures, account for both the random error (SN), as estimated from the

standard deviations at the 95% confidence level, and the uncertainty in the measured droplet

positions due to the finite spatial resolution of our imaging system.

49

𝑒 = √𝑆𝑁
2 + 𝑢2 (3.12)

The measured droplet velocities were compared with the so-called droplet terminal

velocities, which were obtained by equating the predicted electrophoretic force at each droplet

location to the steady-state drag force. The steady-state drag force Fx of a droplet moving parallel

to a horizontal surface at a constant velocity U can be determined from [102], [103]:

𝐹𝑥 = 6𝜋𝜇𝑟𝑈𝑓 (3.13)

𝑓 = (
8

15
+

64

375
 𝜖) log (

2

𝜖
) + 0.5846 (3.14)

where μ is the viscosity of the surrounding dielectric fluid after correcting for the finite viscosity

of the liquid droplet, r is the radius of the droplet, and ϵ is the ratio of the gap h (shown in Figure

3.3) to the droplet radius r.

In Figure 3.8, the filled symbols represent the measured instantaneous velocities of the

droplets under three actuation voltages: 150 V, 200 V, and 250 V. These voltage values were

chosen to be comparable to the outputs from our piezoelectric elements. The droplet radius was

0.63 mm and the electrode pitch was 1.76 mm. The lines correspond to the predicted droplet

terminal velocities at different positions between the electrodes.

The predicted terminal velocities agree reasonably well with the experimentally measured

velocities in the middle sections (0.3 < dx/p < 0.7) for actuation voltages of 150 V and 200 V.

50

They deviate from the experimental data near the starting and terminal electrodes. This is mainly

due to the fact that our steady-state model ignores the finite inertia of the droplets and the

dynamic variations in droplet charges due to finite leakage. The model overpredicts the velocities

at the highest actuation voltage (250 V) due to the incomplete initial droplet charging, as further

discussed later in the section. The droplet translational velocity decreases quite substantially with

decreasing bias voltages due to the combined effect of smaller droplet charges and smaller

electric fields. For all the cases shown in Figure 3.8, the droplet velocity increases with dx /p.

That is, a larger electrophoretic force acts on the droplet as it approaches the terminal electrode

of the opposite polarity, than it does as it departs from the charging electrode of the same

polarity.

Aqueous droplets are also successfully actuated when the electrodes are biased using the

piezoelectric elements. The measured droplet translational velocities, marked as the crosses in

Figure 3.8, are similar to those obtained at 200 V using an external power supply.

The total droplet transit time across the two electrodes was <1 s for all the cases studied here.

The voltage applied by the piezoelectric elements may be assumed to remain constant only when

this total droplet transit time is much less than the discharging time of the piezoelectric elements.

This consideration leads to a second criterion for reliable transport of droplets using our

piezoelectric actuation scheme: the droplet transit time (between the electrode pairs) must be

sufficiently short when compared with both the discharging time of the piezoelectric elements

and the charge relaxation time of the dielectric medium. In our piezoelectric elements, the RC

time constant is estimated to be 30 s from their measured electrical capacitance and resistance.

51

The estimated value of 𝜏𝑟 for the silicone oil used in the present study is >200 s, which is much

larger than the RC time constant of the piezoelectric elements (see Section 3.3.2.2).

0.0 0.2 0.4 0.6 0.8
0

4

8

12

16

Electrode bias voltage

 150V

 200V

 250V

 Piezo output

D
ro

p
le

t
V

e
lo

c
it

y
 (

m
m

/s
)

Normalized Position (x/d)

Figure 3.8: Measured (symbols) and predicted (lines) droplet velocities as a function of the

normalized distance from the charging electrode under different applied voltages. The electrode

pitch p = 1.76 mm and the droplet radius r = 0.63 mm.

Next, the experiments were repeated for different values of the electrode pitch. In

Figure 3.9, the solid lines show the predicted terminal velocities of droplets having a radius

of 0.7 mm at an electrode bias voltage of 200 V. The electrode pitch p is varied from 2.2 to 5.9

mm. The predicted droplet terminal velocity decreases rapidly with the increasing pitches. The

droplets were also successfully actuated with the piezoelectric elements for the electrode pitches

of 2.2 and 3.34 mm. The measured translational velocities are plotted as filled symbols in

52

Figure 3.9. For the largest pitch (5.9 mm), the droplet transit time approaches the discharge

time of the piezoelectric elements and a stable actuation voltage cannot be maintained. To help

further discuss our results, an external power supply was used to obtain the droplet velocities for

the case with the largest electrode pitch.

Figure 3.9 also shows that the spatial variations in the local droplet velocity along dx

qualitatively differ for different electrode pitches. For a large electrode pitch of 5.9 mm, the local

droplet velocity stays relatively constant for 0.3 < dx/p < 0.7. In contrast, for the smaller pitches,

the local droplet velocity increases monolithically with dx/p, as the droplet continues to spatially

“sample” highly non-uniform electric fields near the electrodes.

Figure 3.9: Variations in the local droplet translational velocity for different values of the

electrode pitch. The actuation voltage is fixed at 200 V and the droplet radius is fixed at 0.7 mm.

53

Note that the above results were obtained by varying the electrode pitch for a fixed droplet

radius. Alternatively, we may consider cases where the droplet radius is varied at the same time

such that the ratio of the droplet radius to the electrode pitch r/p stays constant. In this case, the

spatial variations in the local droplet velocity along x remain qualitatively similar for different

electrode pitches considered in the present study. Representative simulation results for r/p = 0.1

are presented in Appendix 3-B.

Next, the droplet velocities at the mid-point between the two electrodes was determined as a

function of the droplet radius, while keeping r/p constant (approximately 0.33). The experiments

were repeated for three different bias voltages: 200 V, 250 V, and 300 V. The filled symbols in

Figure 3.10 are the measured values, which agree reasonably well with the predicted terminal

velocities (lines). With r/p being kept constant, the droplet velocity decreases with increase in

droplet sizes, as the nominal electric field and charge density at the droplet surface decrease. For

the largest droplet of radius 1.1 mm, the piezoelectric actuation is insufficient due in part to a

large transit time and in part to a large droplet inertia.

At high actuation voltages (250 V and 300 V in Figure 3.10), it should be noted that the

measured velocities are lower than the predicted values for smaller droplet sizes (and electrode

pitches). Similar overprediction is also noted in Figure 3.8 at an actuation voltage of 250 V. One

possible origin of these discrepancies is a partial or incomplete charging of droplets under high

electric fields present in these situations. That is, the actual amount of droplet charges is less than

Qeq, which in turn leads to reduced electrophoretic force.

For a droplet with finite conductivity, a finite charging time is necessary for the droplet to

reach equipotential with the charging electrode. If the droplet leaves the electrodes within this

54

charging period, then the droplet will acquire only a fraction of Qeq. The charging time is a

function of the conductivity of the droplet, the dielectric properties of the fluids, and the contact

area between the droplet and the charging electrode. Transient numerical simulations were used

to estimate the charging time, and were found to be on the order of a few to a few tens of

milliseconds for aqueous droplets of the sizes and electrical properties used in the present study

(see Appendix 3-A). This is comparable to or larger than previously estimated contact times at

local electric fields of approximately 3 kV/cm [104], [105]. Therefore, it is expected that the

droplet is only partially charged before it is detached from the charging electrode under the high

bias voltages. This in turn leads to decreased electrophoretic forces and hence smaller droplet

translation velocities.

55

Figure 3.10: Variations in the droplet velocity at the middle point between the electrodes (x/p =

0.5) for four different droplet radii and three different actuation voltages. The r/p ratio is kept

constant at 0.33 for all the cases.

3.4 Droplet Transport and Merging

By satisfying the design criterion for successful EPD actuation, the droplet transport and

merging is demonstrated using finger-powered EPD DMF. Figure 3.11 shows the time-sequence

optical images of a single water droplet having a volume of approximately 2 μL being

transported between adjacent electrodes through a sequence of finger-powered ECD actuations.

The electrode pitch p is ~ 2.08 mm and the droplet radius r is ~ 0.78 mm. To transport a droplet

in a desired direction, one needs to sequentially alternate the relative polarities of the electrode

56

pairs. For example, referring to Figure 3.11 (c) to (d), the polarities of Electrode 1 and 3 are

interchanged when the droplet reaches the nearest approaching electrode (Electrode 2). This

allows the positively charged droplet on Electrode 2 to continue moving to Electrode 3.

Figure 3.11: Time sequence showing continuous droplet transport by finger-powered EPD. The

droplet volume is approximately 2 μL and the electrode pitch is 2.08 mm. The r/p ratio is ~ 0.37.

Figure 3.12(A) shows the merging of two DI water droplets using the same electrode

configuration as above. The two droplets were oppositely charged in advance. The transparent

droplet on the left was positively charged on Electrode 2, whereas the dyed droplet on the right

was negatively charged on Electrode 3. When actuated to approach each other, the two droplets

merge almost instantaneously upon contact through electrostatic interaction.

57

Enhanced internal mixing can be achieved by continuously transporting the droplet back and

forth between the two electrodes and thereby inducing internal flows. This can be achieved

readily in EPD microfluidics by simply maintaining the electrode bias, that is, by keeping the

piezoelectric elements bent. The oscillatory motion is maintained, because the polarity of the

droplet keeps reversing as the droplet alternatingly contacts one of the two electrodes. Enhanced

mixing can be observed by mixing a dyed droplet with a clear droplet (Figure 3.12 (B)) with or

without the sustained electrode bias (EPD enhanced vs static). The mixing time is reduced by

approximately 30%. Further reduction in the mixing time may be achieved by breaking the

symmetry and stirring more chaotic flows inside the droplet using a 2D array of electrodes rather

than a linear array [106].

58

Figure 3.12 (A): Time sequence showing the merging of two oppositely charged droplets; (B):

Mixing by pure diffusion (upper) compared with enhanced mixing using EPD actuation (lower).

The radius of the merged droplet is ~ 0.75 mm.

One important challenge in the biomedical application of microfluidics originates from high

viscosities, extreme pH values, or other unusual properties of the samples such as body fluids.

Figure 3.13 shows the successful transport of droplets of human body fluids (saliva and urine)

and an alkaline solution across three electrodes. The pH values for these droplets varies from 5.8

(human urine) to 9 (sodium hydroxide solution).

59

Figure 3.13: Sequential images of a saliva droplet, a urine droplet, and a NaOH droplet

transported via finger-powered EPD. The droplet radius is ~0.7 mm and the droplet-radius to

electrode-pitch ratio (r/p) is approximately 0.4.

3.5 Towards Practical System Implementation

3.5.1 Mechanical System for Programmed Operations

Relying on just human fingers to deflect multiple piezoelectric elements precisely in a

complex sequence is not a realistic method for the practical implementation of our concept. To

convert finger (or hand) motions into a sequence of controlled and reproducible deflections of

60

the piezoelectric elements, a finger/hand-rotated drum system is proposed. Its design, shown in

Figure 3.14, consists of a drum and an array of mechanical levers, all printed by high-resolution

3D printing. This design is analogous to that of a music box where pins (or embossed

protrusions) formed on a cylinder are used to pluck an array of cantilever beams in a specific

sequence. On the surface of the drum, there is a set of protrusions at pre-programmed locations.

The surface of the drum is patterned like a toothed-gear, so that reusable plastic protrusions can

be placed at desired locations. The mechanical levers are mounted in a see-saw configuration

using a common shaft on a fixed fulcrum. One end of each lever is linked mechanically to the

piezoelectric elements. As the drum is rotated manually, the protrusions push down on the

mechanical levers, which in turn deflect the corresponding piezoelectric elements.

Figure 3.14: Finger/hand-rotated drum system, consisting of a drum with protrusions and an

array of mechanical levers mounted in a see-saw configuration. One end of each lever is linked

mechanically to a piezoelectric element. In this particular device, the outer diameter of the drum

61

is approximately 6 cm; the width and height of each protrusion are 3 mm; the length of the levers

is approximately 10 cm; and the lever ratio is approximately 1:7.

The consistency of the voltage pulses generated using the mechanical drum system was

experimentally examined. Each piezoelectric element unit consists of two piezoelectric elements

connected electrically in series and mechanically to the same lever. The drum is rotated at

approximately 100 degrees/second, resulting in voltage pulses of duration approximately 0.1 s.

This duration is comparable to the typical droplet transit times across two adjacent electrodes.

Figure 3.15 shows the voltage pulses measured during repetitive deflections of one of the

piezoelectric units.

Table 3.2 summarizes the results obtained from three independent piezoelectric element

units. The results show that our drum system provides fairly consistent voltage pulses (standard

deviations of approximately 4%) with smaller amplitude variations than human fingers.

62

Figure 3.15: Voltage outputs from a single piezoelectric element unit over multiple deflections

(A) by the mechanical drum system; (B) by a human finger. The solid red lines indicate the

average voltage outputs and the dotted red lines represent one standard deviation.

63

Table 3.2: Measured voltage pulse outputs from 3 independent piezoelectric element units over

100 deflections either by the drum system or by human fingers.

Unit Voltage (V) by drum Voltage (V) by finger

1 90.2 ± 3.4 87.4 ± 7.9

2 97.2 ± 1.6 99.8 ± 7.3

3 93.8 ± 2.6 90.5 ± 6.3

3.5.2 Base Electrode Matrix and Electric Connection Schemes

The number of piezoelectric elements that can be used in practical portable EPD devices is

limited. A base electrode matrix and its connection scheme were explored to realize different

microfluidic functions using minimum numbers of piezoelectric elements. Similar schemes were

explored for EWOD digital microfluidics [73]. The electric polarities of the electrodes, however,

were not fixed in those studies, as they implicitly assumed the availability of external power

supplies/switching circuits. In contrast, in our finger-powered EPD microfluidics, the polarity of

each piezoelectric element unit is pre-fixed to facilitate their mechanical integration.

For a square electrode matrix of size n×n (n > 3), the minimum number of piezoelectric

element units necessary to actuate a droplet located at any given position in any of the four

independent directions (up, right, down, or left) is 8 (see proof in Appendix 3-C). Figure

3.16(A) shows one design of a base electrode matrix of size 4×4. Even numbers (red) are used to

label the electrodes connected to the four piezoelectric elements of positive polarity, while odd

numbers (blue) are used to label the electrodes connected to the remaining four piezoelectric

elements of negative polarity. Figure 3.16(B) shows sample droplet transport paths that can be

64

achieved using the base electrode matrix. Other possible path designs for operations such as

droplet merging and storage are provided in the Supplementary Information in the corresponding

paper. This basic matrix can be replicated multiple times (Figure 3.16(C)). A minimum of 8

piezoelectric elements may be used to actuate a droplet across a larger electrode matrix or to

perform an identical set of actuations for multiple droplets in parallel (Figure 3.16(D)).

Figure 3.16: (A) Base electrode matrix of size 4×4; (B) Example droplet actuation paths that can

be realized using the 4×4 base electrode matrix; (C) By replicating the base electrode matrix, one

65

can power a larger electrode matrix using 8 piezoelectric element units; (D) Parallel execution of

a set of identical operations on 4 droplets.

Electrically connecting multiple electrodes to a single piezoelectric element unit allows

significant reduction in the number of piezoelectric elements, and hence the size and cost of the

overall system. However, the interference among these electrodes may present a potential issue.

To quantify the interfering influence of adjacent electrodes, additional numerical simulations

were conducted. Figure 3.17 shows the predicted interfering forces at various positions between

two driving electrodes for different values of r/p ratio under a typical electric field strength used

in our experiments. The normalized magnitude of the interfering forces is larger for larger

droplets (larger radius-to-electrode pitch ratios) and for smaller electric fields. For all the cases

that were calculated, the magnitude of the predicted interfering forces was less than 10% of the

main driving force for electric fields as small as 0.16 MV/m and r/p ratios as large as 0.45.

66

Figure 3.17: Predicted normalized interfering forces at different positions between two driving

electrodes under different values of the ratio between the droplet radius and the electrode pitch,

r/p, showing that the magnitude of interfering forces is less than 10% of the main driving force

under typical actuation conditions used in the present study.

3.5.3 Pre-programmed Functional Actuation of Droplets

Finally, our 4×4 base electrode matrix, which is connected to 8 independent piezoelectric

element units, was experimentally tested. The units were deflected in pre-programmed sequences

using our mechanical drum system. Sequential droplet actuations were successfully

demonstrated over multiple paths covering different electrode sites on the matrix. Figure 3.18(A)

shows the snap shot images for the linear transport of the droplet for two typical paths, and

67

Figure 3.18(B) shows the snap shot images for the merging of two droplets and the subsequent

enhanced mixing. The corresponding videos are also provided in the Electronic Supplementary

Material.

68

Figure 3.18: (A) Demonstration of droplet actuation along different paths on the base 4×4

electrode matrix, which is connected to 8 piezoelectric element units; (B): Demonstration of the

merging and subsequent enhanced mixing of two droplets on the base electrode matrix.

3.6 Summary

In this chapter, the finger-powered electrophoretic transport of droplets (EPD) for digital

microfluidics was demonstrated. The mechanical energy provided by human fingers can be

converted using an array of piezoelectric elements into sufficient electrical energy to charge and

electrophoretically actuate the droplets.

Numerical models for the electrical charging of the droplet and the resulting electrophoretic

forces were developed and experimentally validated to establish the design criteria for finger-

powered EPD actuation. The capacitance of the piezoelectric elements needs to be much larger

than the droplet/electrode system, and the droplet transit time (across two electrodes) needs to be

sufficiently smaller than the discharge time of the piezoelectric elements. The latter in turn limits

the electrode pitch. The linear transport and merging of aqueous droplets were successfully

demonstrated directly using finger actuation. The transport of human body fluids, such as saliva

and urine droplets, was also demonstrated.

To facilitate the practical implementation of portable microfluidic devices based on our

approach, a finger/hand-rotated drum system was designed to reliably control the deflections of

multiple piezoelectric elements in a pre-programmed manner. A pin assignment scheme to

implement different microfluidic functions while using a minimum number of piezoelectric

69

elements was reported. Multiple pre-programmed droplet actuations were demonstrated using

our integrated system, which consists of a 4×4 base electrode matrix and a mechanical drum with

protrusions. This work establishes the engineering foundation for the systematic design and

implementation of finger-powered EPD devices for portable microfluidic applications.

70

Appendix 3-A

In the main text in this chapter, it was assumed that the droplet acquires maximum

equilibrium charges before it is detached from the charging electrode. To examine the validity of

this assumption, the transient charging process for an aqueous droplet is directly simulated.

The model is shown schematically in Figure 3.19. A spherical droplet of radius R,

conductivity σ, and permittivity εi is in contact with one of the electrodes through a contact area

A. The droplet and electrodes are immersed in a dielectric oil. Subscripts “i,” “o,” and “s” are

used to label the variables associated with the region inside the droplet, in the surrounding oil,

and at the droplet interface, respectively. The electrical charges are assumed to be transported by

Ohmic volume conduction within the droplet. It is also assumed that all the dielectric properties

are constant.

Figure 3.19: Schematic illustration of the model used for the simulation of transient droplet

charging.

71

The transient continuity equation is solved:

𝜕𝜌𝑠
(𝑡+1)

𝜕𝑡
+ ∇ ∙ 𝐽 (𝑡) = 0 (3.15)

The current density is related to the electric field within the droplet:

𝐽 (𝑡) = 𝜎𝐸⃗ (𝑡) = −𝜎∇𝑉(𝑡) (3.16)

At each time t, the electric field 𝐸(𝑡) = −∇𝑉(𝑡) is obtained by solving the Laplace equation:

∇2𝑉(𝑡) = 0 (3.17)

The boundary conditions are:

• Constant electric potentials at the two electrode surfaces:

𝑉 = 0 on Electrode 1 (3.18)

𝑉 = 𝑉𝑛 on Electrode 2 (3.19)

• Continuity of the electrostatic displacement vector across the droplet surface, where 𝜌𝑠 is

the surface charge density:

72

𝜀𝑜
𝜕𝑉𝑜

(𝑡)

𝜕𝑛
− 𝜀𝑖

𝜕𝑉𝑖
(𝑡)

𝜕𝑛
= 𝜌𝑠

(𝑡) (3.20)

• Symmetry boundary conditions on the outer boundaries:

 𝜀𝑜
𝜕𝑉

𝜕𝑛
= 0 (3.21)

 The total charge at any given time t is obtained by integrating the surface charge density on

the droplet surface Sd. The predicted temporal evolution of the amount of charges on the droplet

is shown in Figure 3.20. The droplet radius is 0.63 mm, electrode pitch is 1.76 mm, and applied

voltage is 100 V. The results are presented for three different contact areas A: 2.5×10-2 mm2,

5×10-3 mm2, and 2.5×10-3 mm2. The largest value is equal to the area of the top surface of the

electrode in our study, and the others to 1/5 and 1/10 of that value. The droplet charges approach

the maximum (in magnitude) equilibrium value at different rates, depending on the contact area.

The estimated charging times range from a few milliseconds to tens of milliseconds, increasing

with a decrease in the contact area.

73

0.00 0.02 0.04

0

2

4

6

8

10

 2.54x10
-3
 mm

2

 5.09x10
-3
 mm

2

 25.4x10
-3
 mm

2

M
a
g

n
it

u
d

e
 o

f
D

ro
p

le
t

C
h

a
rg

e
s
 (

p
C

)

Time (s)

Contact area

Figure 3.20: Predicted temporal evolution of the droplet charges for three different droplet-

electrode contact areas.

Appendix 3-B

 Figure 3.21 shows the predicted terminal velocities (in log scale) for a fixed r/p ratio of 0.1,

under a bias voltage of 200 V. The droplet radius is varied from 0.2 to 0.8 mm and the electrode

pitch from 2 to 8 mm. Note that the spatial variations in the local droplet velocity with increasing

traveling distance (dx/p) are qualitatively similar for all the cases that were simulated.

74

0.0 0.3 0.6 0.9

1

10

V
e
lo

c
it

y
 (

m
m

/s
)

d
x
/p

 r = 0.2 mm

 r = 0.4 mm

 r = 0.6 mm

 r = 0.8 mm

Figure 3.21: Predicted terminal velocities of electrophoretically actuated droplets with a fixed

value of r/p = 0.1 for different combinations r and p.

Appendix 3-C

For a square electrode matrix of size n × n (with n > 3), we first show that the minimum

number of piezoelectric elements necessary to actuate a droplet at any given position in any of

the four independent directions (up, right, down, or left) is 8. (i, j) is used to indicate the row and

column of each electrode, c(i, j) ⊂ {+,−} to indicate its polarity, and p(i, j) to indicate the

piezoelectric element connected to that electrode.

1. Consider electrode (i, j), where 𝑖 ≠ 0 , 𝑗 ≠ 0, 𝑖 ≠ 𝑛, 𝑗 ≠ 𝑛. This center electrode is surrounded

by four adjacent electrodes: (i-1, j), (i, j+1), (i+1, j), and (i, j-1), corresponding to each of the

75

four directions of possible linear droplet actuation. Here, Ω is used to represent the set of

piezoelectric elements connected to these 4 surrounding electrodes:

Ω = {𝑝(𝑖 − 1, 𝑗), 𝑝(𝑖, 𝑗 + 1), 𝑝(𝑖 + 1, 𝑗), 𝑝(𝑖, 𝑗 − 1)}.

2. For the EPD actuation of a droplet initially located at (i, j), the destination electrode must have

the opposite polarity. That is, we must have c(i-1, j) = c(i, j+1) = c(i+1, j) = c(i, j-1) = -c(i, j). In

other words, the four electrodes centered around one common electrode must have the same

polarity, opposite to that of the center electrode.

3. Dummy electrode with no electric connection to a piezoelectric element is not allowed in the

matrix.

4. It is first proved that min (|Ω|) = 4. Let us assume that for a particular center electrode m, |Ωm|

< 4. At least 2 of the adjacent electrodes would then be connected to the same piezoelectric

elements. Interference would occur when a droplet initially located on the center electrode m is

to be actuated to one of these adjacent electrodes. Therefore, we must ensure that |Ω| ≥ 4 for any

center electrode.

5. For a matrix of any size greater than 3×3, there are at least two adjacent center electrodes,

denoted as A and B. In Steps 2 and 4, it is already shown that |ΩA| ≥ 4 and |ΩB| ≥ 4, and that the

piezoelectric elements in each set must each have the same polarity. Since the polarities of

76

electrodes A and B themselves must be opposite (one electrode is adjacent to the other), so do

the piezoelectric elements in the two sets. That is, ΩA ∩ ΩB = ∅. Therefore, |ΩA∪ΩB| = 8.

77

Chapter 4 Droplet Routing Using Independence

Detection (ID) and Operator Decomposition (OD)

Algorithm

4.1 Introduction

The minimization of assay completion time, i.e., the maximization of throughput is essential

for portable applications, where sensors can provide early detection and warning. The demands

for parallel execution of multiple droplets to achieve this also enables more efficient

implementation given our proposed mechanical actuation scheme in portable device. Droplet

routing is one of the key steps in digital microfluidic biochip (DMFB) design to optimize assay

execution. The goal of droplet routing in a DMFB is to find an efficient route for each droplet

from its source to the target, while optimizing the design targets and satisfying the fluidic

constraints. In Section 1.2.2, various droplet routing methods were reviewed, which are used to

minimize the latest arrival time (Tla), number of used cells (# cells), or total routing length [57],

[58], [60], [61], [107]–[109]. Most of these methods are based on the decoupled approach,

resulting in sub-optimal solutions. The Integer Linear Programming (ILP) or Boolean

satisfiability (SAT) based methods, though aiming to find optimal solutions, are computationally

78

expensive, and are only utilized for solving relatively easy problems with cardinality less than 5

[64], [110], [111].

To tackle this dilemma, it is noticed that droplet routing in DMFS is closely related to the

multi-agent path finding problem (MAPF) [58]. Previous works on MAPF mainly consists of

two types of approaches: the decoupled approach and the centralized approach. The decoupled

approaches are mostly based on a reservation system, in which a reservation is placed on the

required location and time slots for the droplet that has already been routed [112]. Other

decoupled approaches allow agents at a given location to move only in a designated direction,

similar to establishing a traffic law [113]. The decoupled approaches are often faster to solve and

have better scalability. The centralized methods, however, plan the agents globally and often lead

to a solution with completeness and optimality. A complete coupled algorithm combining

Operator Decomposition (OD) with Independence Detection (ID) is proposed in [114] (referred

to as OD+ID, hereafter), where the agents are divided into small groups, and the optimal

solutions for the subgroups are found and finally merged. A novel increasing cost tree search

(ICTS) is proposed in [115], where the high-level phase searches the increasing cost tree for a set

of cost (per agent), and the low-level phase plans route for every agent under the cost constraint

given in the high-level phase. A similar idea of Conflict Based Search (CBS) is proposed in

[116], [117], where a constraint-tree (CT) is created and each node in the CT carries the

constraints on time and location for each agent. New paths satisfying the constraints given by the

node are found through a search algorithm. The performance of centralized algorithms depend on

the given problem instance, such as the graph size and topology, the number of agents and

branching factor, etc. [116].

79

In this paper, the droplet routing problem is formulated to an MAPF problem, with a cost

function consisting of the total routing cost (length) and the total number of used cells. One of

the centralized algorithms, OD+ID [114] is then applied with necessary modifications to solve

the problem. Here, our discussions are limited to EWOD routing problems. However, the same

algorithm can be applied to EPD with minor changes. The modified OD+ID algorithm shows

promising performance on test benchmarks with medium number of droplets. It enhances the

quality of results in terms of the latest arrival time, the total routing cost (length), as well as the

total number of used cells, when compared with previous state-of-the-art droplet routers. In

addition, the algorithm also provides an easy approach to handle the routing of droplets with

different routing costs, for example, due to its different viscosity, pH values, etc.

4.2 Problem Formulation

4.2.1 Objective function

The main objective of the droplet routing problem is to transport all the droplets successfully

from their start positions to their destinations with minimum routing cost (Ltot), i.e., the sum of

routing costs for all droplets [58]. As droplets are routed in a concurrent fashion, some literatures

alternatively minimize the latest arrival time (Tla) for all the routed droplets [57], [59]–[61],

[107]. In addition, it is ideal to minimize the number of cells used (# cells) in assay operations,

for fault tolerance. In this paper, we primarily consider the total routing length Ltot as well as the

number of used cells (# cells), while indirectly minimizing Tla., because the former reflects the

80

optimality of the routing solution in general and provides flexibility to assign different costs to

droplets of different types. The droplet routing problem can thus be formulated as follows.

Given n droplets 𝐷 = {𝑑1 , 𝑑2 , … , 𝑑𝑛 }, their start locations and destinations as well as the

locations of the other functional modules (blockages) in different time slots, route all droplets

from their starts to their destinations while minimizing {Ltot , # cells}, under fluidic and design

constraints.

4.2.2 Fluidic Constraint

During concurrent routing of multiple droplets, a minimum spacing needs to be maintained

between the droplets themselves as well as between the droplets and the functional modules on

the chip, to avoid unwanted merging. For a functional module, a segregation region (usually one

electrode distance) is added to the surrounding to separate them from the designed droplet routes.

Let 𝐷𝑖 and 𝐷𝑗 denote two distinct droplets to be routed, and 𝑋𝑖(𝑡), 𝑌𝑖(𝑡) be the two coordinates

of droplet 𝐷𝑖 on the microfluidic 2-D array at time t. To prevent the two droplets from accidental

merging, the following fluidic constraints must be satisfied.

|𝑋𝑖(𝑡) − 𝑋𝑗(𝑡)| ≥ 2 or |𝑌𝑖(𝑡) − 𝑌𝑗(𝑡)| ≥ 2 (4.1)

|𝑋𝑖(𝑡 + 1) − 𝑋𝑗(𝑡)| ≥ 2 or |𝑌𝑖(𝑡 + 1) − 𝑌𝑗(𝑡)| ≥ 2 (4.2)

|𝑋𝑖(𝑡) − 𝑋𝑗(𝑡 + 1)| ≥ 2 or |𝑌𝑖(𝑡) − 𝑌𝑗(𝑡 + 1)| ≥ 2 (4.3)

81

where Eq. (4.1) is static fluidic constraint, indicating that if one electrode is occupied by a

droplet at time t, there will be no droplets on the adjacent eight electrodes at time t. Eq. (4.2–4.3)

are the dynamic fluidic constraints, requiring that the activated cell for 𝐷𝑖 at the next time step

cannot be adjacent to the currently activated cell of 𝐷𝑗 . The reason is that when more than one

electrode surrounding 𝐷𝑗 are activated, 𝐷𝑗 may result in unpredicted movement.

4.3 Modified OD+ID algorithm

4.3.1 Preliminaries

Operator Decomposition (OD)

In standard A* algorithm with n droplets to be routed, the node expansion results in 5𝑛

nodes, where each droplet can and must choose one of the following directions {N, E, W, S,

wait} to move to the next time step. Operator Decomposition (OD) decomposes the standard

operator in A* by using another representation of the search space, allowing only one droplet to

move at each state and takes n intermediate states to advance to the next time step, thus reducing

the branching factor from 5𝑛 to 5n [114]. It significantly reduces the number of searched states

compared with that of standard A*, since the intermediate state with higher costs are not

expanded. OD is thus adopted in our algorithm to replace the standard A* operator. More

detailed description of OD can be found in [114].

82

Heuristic function

In A* search, a heuristic function is used to estimate the remaining cost of transporting a

droplet to its goal state. A good heuristic can reduce the search space and effectively speed up

the searching process. In this paper, the shortest path of each cell on the microfluidic 2D array to

all the destination cells of all droplets is pre-calculated using the standard breadth-first search,

and the results are stored and used as the heuristic function.

4.3.2 Approximate algorithm based on ID+OD

Independence Detection

First, the independence detection (ID) in [114] is reviewed, as it is applied in this paper as the

high-level algorithm to solve the routing problem. The pseudocode for ID implementation is

provided in Table 4.1. ID first solves each droplet routing problem independently using standard

A* algorithm (Table 4.1, line 1-2). Whenever a conflict is found between the two groups i and j

that violates any fluidic constraint, and those two groups were not resolved for conflict

previously, ID attempts to re-plan a path for one of the two groups (for example, group j). In

doing so, ID first “reserves” the path for group i by placing reservations on the required positions

and time slot in Reservation, and then a modified A* search is used to find an alternative path for

group j without any violation to those time slots and positions already reserved in Reservation.

(The details of modified A* search is explained later in this section). To guarantee the optimality

of the solution, the cost of the newly re-planned path should be equal to the original cost.

83

Similarly, the route for group i is re-planned while reserving the original route of group j if the

previous attempt fails (Table 4.1, line 11-20). Finally, if both the attempts fail, or if the two

conflict groups were resolved for conflict before, the two groups are merged to a new group, and

the new merged problem is solved using the modified A* search (Table 4.1, line 24). This whole

process is repeated until no conflicts are found between any two groups, i.e., an optimal solution

is found for the original problem.

The standard ID in [114] is complete and optimal in terms of minimizing the total path length

(Ltot). However, in our routing problems, more “congestions” are encountered, and independent

groups are found to be easily merged into a new group in our preliminary experiments. For some

hard test cases, the cardinality of the newly merged group can easily exceed 5, resulting in

excessive computational time and demands for memory to solve the merged problem. Therefore,

an approximate algorithm derived from standard ID is adopted, similar to that proposed in [114].

The standard ID has two constraints: Firstly, the re-planned path has a cost limit that does not

exceed that of the original path (Table 4.1, line 14, 19). Secondly, the modified A* algorithms

expand the nodes in a non-decreasing order of the cost function f, which is determined by the

total path length (Ltot), breaking ties using future conflicts with other groups and used cells. In

the approximate algorithms, a maximum group size (MGS) is introduced as an input parameter,

and the two constraints are dropped dynamically when the merging of the two conflict groups

results in a group size larger than MGS (Table 4.1, line 8-10). Specifically, by dropping the

second constraint, the nodes are expanded in a non-increasing order of future conflicts, resulting

in less merging of groups and iterations in the future. Since the time for searching is determined

by the re-planning of the group with the largest number of droplets, dropping both constraints

84

helps increase the computation speed while sacrificing the optimality of the solution. To

calculate the future conflicts, a conflictAvoidanceTable (Table 4.1, line 13, 18) is used to register

the positions and required time slots for all the other routes except the one under re-planning.

Table 4.1: Independence Detection (approximate algorithm)

Algorithm 1: Independence Detection

1: Assign each droplet to a group;

2: Plan a path for each group using standard A* search;

3: Initialize conflict table to record conflict groups having been resolved;

4: WHILE i is not the last group

5: IF no conflict of group i with any other group

6: i ← i + 1; CONTINUE;

7: i, j ← conflict groups; //conflict exists between group i and j//

8: IF MGS ≥ group_size(i) + group_size(j)

9: f ← set future conflict as priority;

10: ELSE f ← set total path length as priority;

11: IF group i and j have not conflict before (according to conflict table)

12: Fill Reservation table with path of group i;

13: Fill ConflictAvoidanceTable with all other paths except group j;

14: Find alternative path for group j using modified A* search;

15: i ← min(i, j); CONTINUE;

16: IF failed to find alternative path for j

17: Fill Reservation table with path of group j;

18: Fill ConflictAvoidanceTable with all other paths except group i;

19: Find alternative path for group i using modified A* search;

20: i ← min(i, j); CONTINUE;

85

21: Merge i and j into one new group;

22: Re-plan path for the new group without Reservation;

23: Update conflict table;

24: i ← new group index;

25: RETURN final paths for all groups;

Modified A* search based on OD

The pseudo code for modified A* search algorithm used for low-level path search is

summarized in Table 4.2. In the standard A* algorithm, two sets are maintained: Open list and

Closed list. The Open list is usually implemented using a priority queue to store the states that

need to be expanded and the Closed list stores all the states that have been expanded previously,

thus cutting off the redundant search space. The Open list contains one state initially: the start

state As, which is determined by the starting positions of all the droplets; the Closed list starts

empty (Table 4.2, line 1). A* search then tries to find a series of legal transition states to connect

the start state As to the goal state Ag, essentially converting the routing problem into a graph

searching problem.

As mentioned previously, Reservation stores the positions and corresponding time slots

occupied by the droplets of the conflict group, and ConflictAvoidanceTable stores the positions

and time slots occupied by all the other droplets. When new states are generated by moving one

agent, those that are neither in violation with Reservation nor previously expanded (in Closed or

Open list) are then added to the Open list (Table 4.2, line 15, 22, 23). Various state attributes (up

86

to this state) such as the routing cost (length), used cells, and number of future conflicts with the

other already-planned routes are also calculated (Table 4.2, line 16-20).

At each iteration, the most “promising” state is popped from Open list, depending on the cost

function f and whether approximate search is adopted (Table 4.2, line 20). For optimal solutions,

f is first determined by the total path length (cost), and breaking ties using the number of conflict

and used cells ensures that the algorithm returns the path with smallest future conflicts and used

cells among all the optimal solutions, with the smallest path cost (length). For approximate

search, however, f is non-decreasing with future conflicts, and breaking ties using the total path

cost (length) and used cells to avoid merging of groups provides a solution faster. The key

modification compared with standard A* is highlighted in blue in Table 4.2.

Table 4.2: Modified A* search

Algorithm 2: Modified A* search

1: As ← start state; Ag ← goal state;

2: Reservation ← reserved routs; conflictAvoidanceTable ← all other routs;

3: Open ← {As}; Closed ←{ }

4: WHILE Open ≠ ∅, BEGIN

5: s ← pop state from Open with smallest f;

6: IF s = Ag // reach goal state

7: IF s. longest_time≥ Reservation.longest_time

8: RETURN s and the path;

9: ELSE

10: s’ ← s with time step + 1 and other remains the same;

11: Put s’ into Open if s’ does not conflict with Reservation;

12: ELSE

87

13: children ← assign valid moves to one agent in s; // use OD state//

14: For each q in children

15: IF q has conflict with Reservation, CONTINUE;

16: q.g ← s.g + cost for last step;

17: q.h ← cost from q to goal position;

18: q.used_electrode ← used electrodes of all steps in planned path until q;

19: q.conflict ← all conflicts with conflictAvoidanceTable until q;

20: q.f = f (q.g + q.h, q.used_electrode, q.conflict);

21: q.predecessor ← s;

22: IF q’ in Open and Closed such that q = q’ and q.f < q’f, CONTINUE;

23: Put q to Open;

24: End For

25: Add s to Closed;

26: End IF

27: RETURN ∅

4.4 Results

The ID-based droplet router was implemented in Python language on an 8-GHz Mac

machine with 8 GB memory. To avoid long computation time (>2 h), we used MGS = 1. The

experiments were performed on various benchmark suites, including four of the difficult cases in

[59] (test 1-4), seven of the difficult cases in [60] (test a-g), and one bioassay: in vitro_1 [57],

[59], [60]. The maximum number of droplets was 12 for all the chosen cases; however, problems

with more droplets may be solved in a reasonable time with improved hardware.

Table 4.3 describes the size of the microfluidic array, the number of droplets (#D) to be

routed, and the block area (#Blk) for each benchmark case. The routing results including the

88

latest arrival time (Tla) and total number of used cells (#cells) were compared with those of the

state-of-the-art algorithms [59]–[61]. The cells denoted by “-” are either failed or untested cases

by the corresponding algorithms. For the sake of convenience, the results of fast route algorithm

[60] was used as the base line for the comparison. Among all the algorithms, the novel droplet

routing algorithm [61] resulted in the shortest Tla on average, at the expense of a 15% increase in

the number of used cells compared with the baseline algorithm. For all the solved cases, the

average Tla of the high-performance algorithm [59] was 2.56 times that of the baseline algorithm.

The proposed algorithm decreases the average Tla by ~15% without increasing the number of

used cells (~5% decrease), as highlighted in red in Table 4.3. It is also shown that our

implemented algorithm achieves 100% routing completion for all the chosen cases with medium

number of droplets. Overall, the results show that our algorithm can achieve better timing result

and fault tolerance compared with the best-known algorithms on problems with medium number

of droplets.

In addition, due to the lack of reporting of total routing cost (length) for most of the

algorithms mentioned above, only the total routing length was compared with those reported in

[59] for the solved cases (Test 1 and 4). The results show that our algorithm successfully reduces

the total routing length by more than 50%, indicating a large improvement in overall routing

efficiency.

89

Table 4.3: Experimental results for selected test benchmarks.

Benchmark Suite High-

Performance[59]

Fast Route

[60]

Novel

Routing[61]

Ours

name size #D #Blk Tla #cells Tla #cells Tla #cells Tla #cells

Test 1 12x12 12 23 100 67 39 73 23 63 28 75

Test 2 12x12 12 25 - - 47 65 21 60 28 69

Test 3 12x12 12 28 - - 41 48 22 73 33 75

Test 4 12x12 12 31 70 64 38 71 26 109 32 63

Test a 13x13 6 69 - - 17 51 - - 15 38

Test b 13x13 5 53 - - 13 33 - - 13 34

Test c 16x16 7 95 29 74 24 61 - - 20 67

Test d 16x16 9 133 - - 27 87 - - 28 56

Test e 24x24 10 173 38 170 38 128 - - 38 117

Test f 24x24 12 215 - - 45 129 - - 32 139

Test g 32x32 6 485 - - 39 121 - - 39 121

Total 2.56 0.92 1 1 0.6 1.15 0.86 0.95

Table 4.4 compares the results of the baseline algorithm [60] and that of ours for in vitro_1

bioassay, which involves 11 sub-problems. The maximum latest arrival time (Max. Tla), average

latest arrival time (Avg. Tla), and total number of used cells (#cells) among all the sub-problems

are summarized. Due to the relative small number of droplets in all the sub problems (<7), the

90

improvement of our algorithm over [60] for Max. Tla and #cells are not significant. However, we

can see a 20% reduction in Avg. Tla. Therefore, our algorithm also performs well on relatively

easy bioassays with fewer droplets.

Table 4.4: Results for in vitro compared with [60]

 [60] Ours

name size #D #Sub Max.

Tla

Avg.

Tla

#cells Max.

Tla

Avg.

Tla

#cells

in

vitro

16x16 28 11 18 12.47 231 17 10.43 229

Figure 4.1 illustrates the routing result of one example test problem with 6 droplets. The start

and goal positions of the droplets are marked as squares in different colors; the blockages are

indicated by the blue blocks, and the resulted routes for different droplets are marked in red

arrows. The stalls of droplets are denoted by “s” on the corresponding cells along the routes.

91

Figure 4.1: Sample droplet routing diagram with 6 droplets. The start and goal positions for all

droplets are indicated by squares of green and orange, respectively; blockages are indicated by

blue squares and resulted routes are marked using red arrows.

One advantage of our model is its ability to assign different cost to droplets of different types

(pH, viscosity, etc.), by including the total routing length (cost) in our objective function. By

varying the routing cost of the droplets, for example, by increasing the cost per step for a certain

droplet from unit 1 to 10, we can prioritize the optimization for that droplet route at the expense

of increasing total cost. Figure 4.2(a) and (b) demonstrate the re-routing results for droplet 4 and

5 for the same test case as in Figure 4.1, with routing cost set at 1 (dashed line) and 10 (solid

line), respectively. The increased routing cost reduces the route length for that droplet. Table 4.5

lists the reduction in route lengths for different droplets in the same test case by increasing their

routing cost from 1 to 10. Droplets 3 and 6 were not included, since their routes were already at

92

the optimal level in the original solution, as shown in Figure 4.1. Therefore, no further

improvement can be made when the routing costs are increased.

Figure 4.2: Routing results for (a): droplet 4 and (b): droplet 5 in sample test problem after

increasing the routing cost from 1 to 10; solid line is the new route and dashed line is the original

route.

Table 4.5: Reduction of droplet routing length for sample test problem with increasing routing

cost.

No.

Droplet

Original length

(Cost = 1)

New length

(Cost = 10)

Reduction

1 13 12 7.96%

2 12 11 9.09%

4 17 13 23.53%

5 15 12 20.00%

 15.1%

93

4.5 Summary

A droplet routing algorithm was implemented based on independence detection (ID) and

operator decomposition (OD) to solve the routing problem in DMFB design. The basic ID

functions by first dividing the droplets into independent groups and then routing them separately.

The results are then merged sequentially and when conflict between two groups are found, the

two conflict groups are merged as a new group, and legitimate paths for the new group is

searched. To increase the computation speed, several constraints were dropped from the basic

ID, resulting in an approximate algorithm for droplet routing on DMFB.

Experiments on selected benchmarks demonstrate that our algorithm can achieve 100%

routing completion for problems with medium number of droplets (≤12). Overall, the routing

results show that our algorithm achieve better timing result and fault tolerance compared with the

previous best-known results. In addition, the algorithm provides a flexible approach to route the

droplets of different routing costs, while minimizing the total routing cost. All the Python codes

used to obtain the results in this paper are available in Appendix 4-A and online at:

https://github.com/sophiapeng0426/MAPF.

https://github.com/sophiapeng0426/MAPF

94

Appendix 4-A Source Code for droplet routing

Example to run …/SingleAgent/Solver/IDSolver/EnhancedID.py:

fileroot = '/Users/chengpeng/Documents/MTSL/ElectrodeDesgin/DMFB'

filename1 = 'test_12_12'

filename1 = 'benchmark_'

filename1 = 'in-vitro_2.'

for i in range(1, 2):

 # filename = filename1 + '{0}_minsik'.format(i)

 # filename = filename1 + '_{0}.in'.format(i)

 filename = filename1 + '{0}'.format(i)

 saveRoot =

'/Users/chengpeng/Documents/MTSL/ElectrodeDesgin/Result/{0}/'.format(f

ilename)d

 if not os.path.exists(os.path.dirname(saveRoot)):

 os.makedirs(os.path.dirname(saveRoot))

 testProblem = generateProblem(os.path.join(fileroot, filename))

 testProblem.plotProblem()

 # save probleminstance

 with open(saveRoot + 'InitialProblem.pickle', 'wb') as f:

 pickle.dump(testProblem, f)

 f = open('{0}/discription.txt'.format(saveRoot), 'a+')

 f.write('agent num: {0}'.format(len(testProblem.getAgents())))

 f.close()

Sample input file:

grid 13 13 500

blk target = 115.2

#0

block 1 2 3 3

#1

block 0 6 3 8

#2

block 1 11 3 12

#3

block 5 3 7 7

#4

block 6 9 9 11

#5

block 9 3 10 4

#6

block 11 1 12 2

95

#7

block 11 6 12 7

#8

block 11 10 12 12

blk real = 175

nets 6

net 0 0 12 0 4 8 8

net 1 10 6 0 0 5 11

net 2 4 9 0 0 1 11

net 3 0 3 0 10 0 13

net 4 8 0 0 9 7 8

net 5 10 12 0 7 8 7

The following contains all classes used to solve droplet routing

problems in this paper:

…/SingleAgent/Solver/Astar/GeneticAStar.py

from Queue import PriorityQueue

from SingleAgent.Solver.ConstraintSolver import ConstraintSolver

from SingleAgent.Utilities.StateClosedList import StateClosedList

from SingleAgent.Utilities.ProblemInstance import ProblemInstance

class GeneticAStar(ConstraintSolver):

 def __init__(self):

 """

 _openList: priority queue

 _closeList: stateCloseList

 _goalState: result goal state (used for reconstruct path)

 """

 super(GeneticAStar, self).__init__()

 self._openList = PriorityQueue()

 self._closeList = StateClosedList()

 self._goalState = None

 self._heuristic = None

 self._ignoreCost = False

 def solve(self, problemInstance, fileroot, cost, total):

 """ updated solve

 :param problemInstance:

 :param root:

 :param cost:

 :param total:

 :return:

 """

 import os

96

 import time

 startTime = time.time()

 assert isinstance(problemInstance, ProblemInstance),

"Initialize solve function require problemInstance"

 self.init(problemInstance)

 # ====== for debug ===========

 # alist = [str(x.getId()) for x in

problemInstance.getAgents()]

 # name = '_'.join(alist)

 # dirname = fileroot + '/log/'

 # # dirname =

'/Users/chengpeng/Documents/MTSL/ElectrodeDesgin/Result/test_16_16_1/l

og3.5t/'

 # if not os.path.exists(os.path.dirname(dirname)):

 # os.makedirs(os.path.dirname(dirname))

 # f = open('{0}{1}.txt'.format(dirname, name), 'a')

 # f.write(dirname)

 # ===== end ======

 maxgValue = 0

 if total:

 for agent in problemInstance.getAgents():

 maxgValue += agent.getCost()*

problemInstance.getGraph().getSize() * cost

 # maxgValue = maxgValue * self._heuristic.nAgent()

 print("max cost: {0}".format(maxgValue))

 # f.write("max cost: {0}\n".format(maxgValue))

 root = self.createRoot(problemInstance)

 self.setHeuristic(root, 'trueDistance', self._heuristic)

 self._setTables(root, problemInstance)

 self._openList.put(root)

 elapse = 0

 while not self._openList.empty() and self._closeList.size() <

500000 and elapse < 1800:

 elapse = time.time() - startTime

 currentState = self._openList.get()

 if self._closeList.size() % 10000 == 0:

 toPrint = True

 else:

 toPrint = False

 if toPrint:

97

 print("\nOpenList size: {0}; closedList size ~:

{1}".format(self._openList.qsize(),

self.closeList().size()))

 print("timeStep: {0}, pop:

{1}".format(currentState.timeStep(), currentState))

 # f.write("\nOpenList size: {0}; closedList size ~:

{1}".format(self._openList.qsize(),

 #

self.closeList().size()))

 # f.write("\ntimeStep: {0}, pop:

{1}\n".format(currentState.timeStep(), currentState))

 self._closeList.add(currentState)

 # reach goal state

 if self.isGoal(currentState, problemInstance):

 if currentState.timeStep() >=

self.getReservation().getLastTimeStep():

 self._goalState = currentState

 return True

 else:

 nextgoal =

currentState.generateNextGoal(problemInstance)

 if self.getReservation().isValid(nextgoal):

 print("put back {0}, timestep: {1}

".format(nextgoal, nextgoal.timeStep()))

 # f.write("put back {0}, timestep:

{1}\n".format(nextgoal, nextgoal.timeStep()))

 self.setHeuristic(nextgoal, 'trueDistance',

self._heuristic)

 self._setTables(nextgoal, problemInstance)

 self._openList.put(nextgoal)

 else:

 # delete goal in closelist

 self._closeList.delete(currentState)

 # ====== experiment with deleting all ========

 # preS = currentState.getPreState()

 # while preS is not None:

 # if preS in

self._closeList.getClosedList():

 # self._closeList.delete(preS)

 # preS = preS.getPreState()

 # ======== end ==========

 print("Conflict with reservation, do not put

back.")

 # f.write("Conflict with reservation, do not

98

put back.\n")

 # not reach goal state

 else:

 potentialStates = currentState.expand(problemInstance)

 for s in potentialStates:

 self.setHeuristic(s, 'trueDistance',

self._heuristic)

 self._setTables(s, problemInstance)

 # ======== each agent maxCost ======

 lessValue = True

 if not total:

 for singleS in s.getSingleAgents():

 if singleS.fValue() >

problemInstance.getGraph().getSize() * cost * singleS.getStepCost():

 lessValue = False

 else:

 lessValue = s.gValue() + s.hValue() <

maxgValue

 # ========= end ============

 if self.getReservation().isValid(s):

 if lessValue:

 if toPrint:

 print(s)

 # f.write(str(s) + '\n')

 # agents stays

 if not self._closeList.contains(s):

 self._openList.put(s)

 self._closeList.add(s)

 if toPrint:

 print("add to openlist/closelist")

 # f.write("add to

openlist/closelist\n")

 elif s.isStay(currentState):

 self._openList.put(s)

 if toPrint:

 print("add to openlist")

 # f.write("add to openlist\n")

 else:

 if toPrint:

 print(s)

 # f.write(str(s) + "obey violations\n")

 # f.close()

 return False

 def init(self, problemInstance):

 """

 :param problemInstance:

 :param pathList:

99

 :return:

 """

 from TDHeuristic import TDHeuristic

 while not self._openList.empty():

 self._openList.get()

 self._closeList.clear()

 self._goalState = None

 # init TDHeuristic

 self._heuristic = TDHeuristic(problemInstance)

 def setIgnore(self, tf):

 if tf:

 print("AStarSolver set violation free as priority.")

 else:

 print("AStarSolver set cost as priority.")

 self._ignoreCost = tf

 def getHeuristicTable(self):

 return self._heuristic

 def setHeuristic(self, s, mode, input):

 s.setHeuristic(mode, input)

 def _setTables(self, s, problemInstance):

 """

 set s._conflictViolations and s._usedElectrode

 :param s: multiagentstate or ODstate, not implemented for

single agentstate

 :return:

 """

 nsize = problemInstance.getGraph().getSize()

 # if self.getUsedTable().isInitialized() is True:

 s.updateUsedElectrode(self.getUsedTable(), nsize)

 if self.getCAT().isEmpty() is False: #

self.getCAT().isInitialized() is True and

 s.updateCATViolations(self.getCAT())

 def isGoal(self, s, problemInstance):

 return s.goalTest(problemInstance)

 def getPath(self):

 """ Get list of states as paths

 :return:

 """

 pathList = []

 if self._goalState is None:

 return pathList

 s = self._goalState

100

 while s is not None:

 pathList.append(s)

 s = s.predecessor()

 return pathList[::-1]

 def printPath(self):

 """

 :return: print list of states as path

 """

 pathList = self.getPath()

 if len(pathList) == 0:

 print("No path to print")

 for s in pathList:

 print(s)

 def closeList(self):

 return self._closeList

 def createRoot(self, problemInstance):

 """create root node for AStar solver"""

 pass

 def __str__(self):

 return "AStar"

…/SingleAgent/Solver/Astar/BreadthFirstSearch.py

from GeneticAStar import GeneticAStar

class BreadthFirstSearch(GeneticAStar):

 def __init__(self):

 super(BreadthFirstSearch, self).__init__()

 def simpleInit(self):

 if self._ignoreCost:

 self.setIgnore(False)

 while not self._openList.empty():

 self._openList.get()

 self._closeList.clear()

 self._goalState = None

 def createRoot(self, problemInstance):

 from SingleAgent.States.SingleAgentState import

SingleAgentState

 assert len(problemInstance.getAgents()) == 1, 'breadthfirst

101

input > 1 agent problemInstance'

 agentid = problemInstance.getAgents()[0].getId()

 return SingleAgentState.fromProblemIns(agentid,

problemInstance)

 def simpleSolve(self, problemInstance):

 self.simpleInit()

 root = self.createRoot(problemInstance)

 self.setConsHeuristic(root, 0)

 self._openList.put(root)

 self._closeList.add(root)

 while not self._openList.empty():

 currentState = self._openList.get()

 self._closeList.add(currentState)

 potentialStates = currentState.expand(problemInstance)

 for s in potentialStates:

 self.setConsHeuristic(s, 0)

 if not self._closeList.contains(s):

 self._openList.put(s)

 self._closeList.add(s)

 return True

 def setConsHeuristic(self, s, cons):

 s.setHeuristic('constant', cons)

 def finalList(self):

 position = []

 distance = []

 for state, _ in self.closeList().getClosedList().items():

 position.append(state.getCoord().getNode().getPosition())

 distance.append(state.gValue())

 return position, distance

…/SingleAgent/Solver/Astar/SingleAgentAStar.py

from GeneticAStar import GeneticAStar

from SingleAgent.States.SingleAgentState import SingleAgentState

class SingleAgentAStar(GeneticAStar):

 def __init__(self):

 super(SingleAgentAStar, self).__init__()

102

 def createRoot(self, problemInstance):

 if not self._ignoreCost:

 assert len(problemInstance.getAgents()) == 1, "Not a

singleAgent problemInstance"

 return SingleAgentState.fromProblemIns(0, problemInstance)

 else:

 assert False, 'Not implement violation first.'

…/SingleAgent/Solver/Astar/MultiAgentAStar.py

from GeneticAStar import GeneticAStar

from SingleAgent.States.MultiAgentState import MultiAgentState

class MultiAgentAStar(GeneticAStar):

 def __init__(self):

 super(MultiAgentAStar, self).__init__()

 def createRoot(self, problemInstance):

 if not self._ignoreCost:

 assert len(problemInstance.getAgents()) >= 1, "Need agent"

 return MultiAgentState.fromProblemIns(problemInstance)

 else:

 assert False, 'Not implement violation first.'

 def visualizePath(self, problemInstance):

 """

 :param problemInstance:

 :return:

 """

 import copy

 # deep copy to prevent changing of map content

 mapContent =

copy.deepcopy(problemInstance.getMap().getContent())

 pathList = self.getPath()

 for state in pathList:

 for singleState in state.getSingleAgents():

 x = singleState.getCoord().getNode().getPosition()[0]

 y = singleState.getCoord().getNode().getPosition()[1]

 mapContent[y][x] = str(singleState.getAgentId())

 for i in mapContent:

 print(' '.join(i))

…/SingleAgent/Solver/Astar/ODAStar.py

103

from GeneticAStar import GeneticAStar

from SingleAgent.States.ODState import ODState

from SingleAgent.States.ODState_2 import ODState_2

from SingleAgent.States.SingleAgentState import SingleAgentState

class ODAStar(GeneticAStar):

 def __init__(self):

 """

 init _openList, _closeList and _goalState

 """

 super(ODAStar, self).__init__()

 def createRoot(self, problemInstance):

 assert len(problemInstance.getAgents()) >= 1, "Need agent"

 # if len(problemInstance.getAgents()) == 1:

 # return

SingleAgentState.fromProblemIns(problemInstance.getAgents()[0].getId()

, problemInstance)

 # else:

 if not self._ignoreCost:

 return ODState.fromProblemIns(problemInstance)

 else:

 return ODState_2.fromProblemIns(problemInstance)

 def visualizePath(self, problemInstance):

 """ print path in map

 :param problemInstance:

 :return:

 """

 import copy

 # deep copy to prevent changing of map content

 mapContent =

copy.deepcopy(problemInstance.getMap().getContent())

 pathList = self.getPath()

 for state in pathList:

 if isinstance(state, ODState):

 for singleState in state.getSingleAgents():

 x =

singleState.getCoord().getNode().getPosition()[0]

 y =

singleState.getCoord().getNode().getPosition()[1]

 mapContent[y][x] = str(singleState.getAgentId())

 elif isinstance(state, SingleAgentState):

 x = state.getCoord().getNode().getPosition()[0]

 y = state.getCoord().getNode().getPosition()[1]

 mapContent[y][x] = str(state.getAgentId())

 for i in mapContent:

 print(' '.join(i))

104

…/SingleAgent/Solver/Astar/TDHeuristic.py

from SingleAgent.Utilities.ProblemInstance import ProblemInstance

from SingleAgent.Utilities.Agent import Agent

from SingleAgent.Solver.AStar.BreadthFirstSearch import

BreadthFirstSearch

from SingleAgent.Utilities.Util2 import Util2

class TDHeuristic(object):

 def __init__(self, problemInstance):

 nAgent = len(problemInstance.getAgents())

 self._nsize = problemInstance.getGraph().getSize()

 self._idTable = {}

 # lookupTable[self._idTable[ID]][index] is the distance

 self._lookupTable = [[0 for i in range(self._nsize *

self._nsize)] for j in range(nAgent)]

 self._init(problemInstance)

 print("TDHeuristic initialized, size: {0} x

{1}".format(len(self._lookupTable), len(self._lookupTable[0])))

 def _init(self, problemInstance):

 """

 ID needs to be ranged from 0 to n

 :param problemInstance:

 :return:

 """

 goals = problemInstance.getGoals()

 k = 0

 for ID, goalPos in goals.items():

 newagent = Agent(ID, goalPos, None,

problemInstance.findAgent(ID).getCost()) # fake goal position

 newProblem = ProblemInstance(problemInstance.getGraph(),

[newagent])

 bfs = BreadthFirstSearch()

 bfs.simpleSolve(newProblem)

 position, distance = bfs.finalList()

 for i in range(len(position)):

 index = Util2().posToIndex(position[i], self._nsize)

 self._lookupTable[k][index] = distance[i]

 self._idTable[ID] = k

 k += 1

 def trueDistance(self, agentId, pos):

 index = Util2().posToIndex(pos, self._nsize)

105

 return self._lookupTable[self._idTable[agentId]][index]

 def nAgent(self):

 return len(self._lookupTable)

…/SingleAgent/Solver/IDSolver/EnhancedID.py

import pickle

import sys

import os

from IndependentDetection import IDSolver

from SingleAgent.Utilities.ProblemInstance import ProblemInstance

from SingleAgent.Solver.Utils import Util

from SingleAgent.Utilities.Util2 import Util2

class EnhandcedID(IDSolver):

 def __init__(self, solver, maxGroupSize):

 super(EnhandcedID, self).__init__(solver)

 self._mgs = maxGroupSize

 self._conflictInPast = []

 self._dir = None

 self._cost = 3

 self._total = True

 def solve2(self, problemInstance, root, cost, total=True):

 self._cost = cost

 self._total = total

 if total:

 self._dir = root + 'maxg{0}_{1}t'.format(self._mgs, cost)

 else:

 self._dir = root + 'maxg{0}_{1}'.format(self._mgs, cost)

 self._initialProblem = problemInstance

 if len(self._problemList) == 0:

 # start from scratch

 if not self.populatePath(self._initialProblem):

 return False

 self.save(self._dir, 'initial')

 for i in range(len(self.paths())):

 if self.paths()[i] is not None:

 self.solver().getCAT().addPath(self.paths()[i], i)

 self.solver().getUsedTable().addPath(self.paths()[i],

i)

 index = 0

106

 count = 0

 while index < len(self._pathList):

 conflict = Util().conflict(index, 0, self._pathList)

 if conflict is None or conflict.isEmpty():

 index += 1

 else:

 swallowed = False

 if not self.enhanced_resolveConflict(conflict,

swallowed):

 return False

 # ======= for debugging ==========

 # else:

 # return True

 # ======= end ===========

 if not swallowed:

 # does not swallow

 index = min(conflict.getGroup1(),

conflict.getGroup2())

 # index = 0

 print("-> Go to index: {0}".format(index))

 else:

 print("-> Swallowed, index: {0}".format(index))

 if conflict is not None and not conflict.isEmpty():

 self.save(self._dir, str(count) + str(conflict))

 count += 1

 elif conflict is None and index == len(self._pathList)-1:

 # === check if last change does not make new

violations ===

 self.save(self._dir, 'solution')

 count += 1

 # ==== record final result =====

 totalCost, usedElectrode, finalPath =

Util().mergePaths(self._pathList, problemInstance)

 if not self.correctcheck(finalPath):

 print("=== Final check is wrong answer! ===")

 headline = "(Wrong)total cost: {0}, used electrode: {1}

\n".format(totalCost, usedElectrode)

 strPath = self.strPath(finalPath)

 print(headline + strPath + '\n')

 # write result to file

 self.recordResult(headline, strPath)

 else:

 # write result

 headline = "total cost: {0}, used electrode: {1}

\n".format(totalCost, usedElectrode)

 strPath = self.strPath(finalPath)

107

 print(headline + strPath + '\n')

 # write result to file

 self.recordResult(headline, strPath)

 return True

 """ ============ file IO ==============="""

 def recordResult(self, headline, strPath):

 f = open('{0}/result.txt'.format(self._dir), 'a+')

 f.write(headline + strPath + '\n')

 f.close()

 def strPath(self, pathList):

 """print paths"""

 strout = ''

 for t, singleAgents in enumerate(pathList):

 strout += "TimeStep: {0}".format(t)

 gValue = 0

 hValue = 0

 for singleAgent in singleAgents:

 gValue += singleAgent.gValue()

 hValue += singleAgent.hValue()

 strout += '; ' + str(singleAgent)

 strout += '; gValue: {0}; hValue: {1} \n '.format(gValue,

hValue)

 return(strout)

 def save(self, fileDir, filename):

 """save pathlist, problemlist, conflictInPast"""

 sys.setrecursionlimit(20000)

 if not

os.path.exists(os.path.dirname('{0}/{1}.pickle'.format(fileDir,

filename))):

os.makedirs(os.path.dirname('{0}/{1}.pickle'.format(fileDir,

filename)))

 with open('{0}/{1}.pickle'.format(fileDir, filename),

 'wb') as f1:

 pickle.dump(self.paths(), f1)

 pickle.dump(self.problems(), f1)

 pickle.dump(self._conflictInPast, f1)

 def read(self, fileDir, filename):

 """

 :param fileDir:

 :param filename: '0_1', 'initial', 'solution'

108

 :return:

 """

 with open('{0}/{1}.pickle'.format(fileDir, filename), 'rb') as

f1:

 self._pathList = pickle.load(f1)

 self._problemList = pickle.load(f1)

 self._conflictInPast = pickle.load(f1)

 # fill solver() cat and usedtable in self.solve()

 """ =============================

 """

 def populatePath(self, problemInstance):

 """

 clear solver() tables, populate problemList, pathList

 """

 # from random import shuffle

 # ===== clear solver() tables ===

 self.clearSolver()

 # ===== clear ProblemList and shuffle ===

 self._problemList[:] = []

 for agent in self._initialProblem.getAgents():

 # problemInstance requires _singleAgents a list!

self._problemList.append(ProblemInstance(self._initialProblem.getGraph

(), [agent]))

 # ===== clear PathList =====

 self._pathList[:] = []

 if not self.solveInitialProblem():

 return False

 self.clearSolver()

 # self._conflictInPast = [[False for i in

range(len(self.paths()))] for j in range(len(self.paths()))]

 self._conflictInPast = [[False for i in

range(len(problemInstance.getAgents()))]

 for j in range(len(self.paths()))]

 return True

 def solveInitialProblem(self):

 # first iteration

 self.solver().setIgnore(False)

 for ith, problem in enumerate(self._problemList):

 if not self.solver().solve(problem, self._dir, 10000,

True):

 return False

 self.solver().getCAT().addPath(self.solver().getPath(),

ith)

self.solver().getUsedTable().addPath(self.solver().getPath(), ith)

109

 self._pathList.append(self.solver().getPath())

 # second iteration

 for ith, problem in enumerate(self._problemList):

 self.solver().getCAT().deletePath(self._pathList[ith],

ith)

self.solver().getUsedTable().deletePath(self._pathList[ith], ith)

 if not self.solver().solve(problem, self._dir, 10000,

True):

 return False

 self.solver().getCAT().addPath(self.solver().getPath(),

ith)

self.solver().getUsedTable().addPath(self.solver().getPath(), ith)

 self._pathList[ith] = self.solver().getPath()

 # ==== for fix bug ===

 self.solver().visualizePath(problem)

 print("total Conflict:

{0}".format(self.solver().getPath()[-1].conflictViolations()))

 # ==== end ===

 return True

 def enhanced_resolveConflict(self, conflict, swallowed):

 """

 resolve conflict

 :param conflict: new conflict include ids

 :return:

 """

 print("\n==== Resolve Conflict {0} {1}

====".format(conflict.getGroup1(), conflict.getGroup2()))

 # ===== debug: print conflictInPast ===

 # for line in self._conflictInPast:

 # print(line)

 # ======== end =====

 faster = conflict.getGroup1()

 slower = conflict.getGroup2()

 fastera = conflict.getAgent1()

 slowera = conflict.getAgent2()

 if sum(self._conflictInPast[faster]) >

sum(self._conflictInPast[slower]):

 faster, slower = slower, faster

 fastera, slowera = slowera, fastera

 elif sum(self._conflictInPast[faster]) ==

sum(self._conflictInPast[slower]):

 if Util().pathLength(self.paths()[faster]) >

Util().pathLength(self.paths()[slower]):

110

 faster, slower = slower, faster

 fastera, slowera = slowera, fastera

 totalSize = len(self._problemList[faster].getAgents()) +

len(self._problemList[slower].getAgents())

 oversize = totalSize > self._mgs

 newPath = None

 # === replan group[faster] ====

 print("\n==Replan faster {0}==".format(faster))

 if not self._conflictInPast[faster][slowera]:

 self.solver().getCAT().deletePath(self._pathList[faster],

faster)

self.solver().getUsedTable().deletePath(self._pathList[faster],

faster)

self.solver().getReservation().reservePath(self._pathList[slower])

 newpath = self.findAlternativePath(faster, slower,

oversize)

 self.solver().getReservation().clear()

 if newpath is not None:

 # success

 print("@@Find new path for group {0}".format(faster))

 self._conflictInPast[faster][slowera] = True

 self._pathList[faster] = newpath

 self.solver().getCAT().addPath(newpath, faster)

 self.solver().getUsedTable().addPath(newpath, faster)

 return True

 else:

 # not success

 print("@@Failed replan faster {0}".format(faster))

 self.solver().getCAT().addPath(self._pathList[faster],

faster)

self.solver().getUsedTable().addPath(self._pathList[faster], faster)

 # === replan group[slower] ====

 print("\n==Replan slower {0}==".format(slower))

 if not self._conflictInPast[slower][fastera]:

 self.solver().getCAT().deletePath(self._pathList[slower],

slower)

self.solver().getUsedTable().deletePath(self._pathList[slower],

slower)

self.solver().getReservation().reservePath(self._pathList[faster])

 newpath = self.findAlternativePath(slower, faster,

oversize)

111

 self.solver().getReservation().clear()

 if newpath is not None:

 # success

 print("@@Find new path for group {0}".format(slower))

 self._conflictInPast[slower][fastera] = True

 self._pathList[slower] = newpath

 self.solver().getCAT().addPath(newpath, slower)

 self.solver().getUsedTable().addPath(newpath, slower)

 return True

 else:

 # not success

 print("@@Failed replan slower {0}".format(slower))

 self.solver().getCAT().addPath(self._pathList[slower],

slower)

self.solver().getUsedTable().addPath(self._pathList[slower], slower)

 # ==== swallow ===

 print("\n==Plan group together {0}, {1}==".format(faster,

slower))

 swallowed = True

 if totalSize > 4:

 print("Exceed MGS (4), fail to find path.")

 return False

 # does not exceed 4 droplets

 if oversize:

 self.solver().setIgnore(True)

 else:

 self.solver().setIgnore(False)

 # update conflictInPast

 for i in range(len(self._conflictInPast[faster])):

 self._conflictInPast[faster][i] = False

 return self.resolveConflict(faster, slower)

 def findAlternativePath(self, pathId1, pathId2, oversize):

 """

 find alternative for path1

 :param pathId:

 :param oversize:

 :return: path

 """

 # initialize costlimit->infinity large

 costLimit = 10000

 if oversize:

 self.solver().setIgnore(True)

 else:

 self.solver().setIgnore(False)

 costLimit = self.paths()[pathId1][-1].gValue()

112

 if self.solver().solve(self.problems()[pathId1], self._dir,

self._cost, self._total):

 newpath1 = self.solver().getPath()

 # ====== confirm newpath is no conflict ===========

 if self.haveConflict(newpath1, self.paths()[pathId2]):

 print("Replan failed conflict check.")

 self.solver().getReservation().clear()

 return None

 # ====== end ==========

 else:

 # failed to find alternative path

 return None

 newCost = newpath1[-1].gValue()

 if not oversize:

 if newCost <= costLimit:

 print("=== find new path, new cost: {0}

===".format(newCost))

 self.solver().printPath()

 return newpath1

 else:

 print("=== Failed to find same cost alternative path,

new cost {0} ===".format(newCost))

 return None

 else:

 print("=== find new path, new cost: {0}

===".format(newCost))

 self.solver().printPath()

 return newpath1

 def haveConflict(self, newpath1, path2):

 # ====== confirm newpath is no conflict ===========

 haveConflict = False

 tempPaths = [newpath1, path2]

 tempConflict = Util().conflict(0, 0, tempPaths)

 if tempConflict is not None:

 print(tempConflict)

 haveConflict = True

 assert tempConflict is None or tempConflict.getTimeStep() == 1

 tempConflict = Util().conflict(1, 0, tempPaths)

 if tempConflict is not None:

 print(tempConflict)

 haveConflict = True

 assert tempConflict is None or tempConflict.getTimeStep() == 1

 return haveConflict

 def resolveConflict(self, id1, id2):

 # update _problemList[id1]

 self._problemList[id1].join(self._problemList[id2])

113

 # exclude paths for id1 and id2 for cat and UsedTable

 self.solver().getUsedTable().deletePath(self.paths()[id1],

id1)

 self.solver().getUsedTable().deletePath(self.paths()[id2],

id2)

 self.solver().getCAT().deletePath(self.paths()[id1], id1)

 self.solver().getCAT().deletePath(self.paths()[id2], id2)

 if not self.solver().solve(self._problemList[id1], self._dir,

self._cost, self._total):

 return False

 print("\nFind path for new group.")

 self.solver().printPath()

 self._pathList[id1] = self._solver.getPath()

 self._problemList[id2] = None

 self._pathList[id2] = None

 # update new paths for cat and usedtable

 self.solver().getCAT().addPath(self.paths()[id1], id1)

 self.solver().getUsedTable().addPath(self.paths()[id1], id1)

 return True

 def updateConflictPast(self, id):

 # set all index from id and to id to false

 self._conflictInPast[id] = [False for i in

range(len(self.paths()))]

 for i in range(len(self._conflictInPast)):

 self._conflictInPast[i][id] = False

 def clearSolver(self):

 self.solver().getReservation().clear()

 self.solver().getCAT().clear()

 self.solver().getUsedTable().clear()

def generateProblem(filename):

 from SingleAgent.Utilities.Agent import Agent

 from SingleAgent.Utilities.Graph import Graph

 from SingleAgent.Utilities.ProblemMap import ProblemMap

 size, block, agentNum, agentList = Util2().readTestFile(filename)

 graph = Graph(ProblemMap(size, block))

 agent = [Agent(x[0], x[1], x[2], 1) for x in agentList]

 problem = ProblemInstance(graph, agent)

 return problem

114

def main():

 import time

 from SingleAgent.Solver.AStar.ODAStar import ODAStar

 from SingleAgent.Utilities.ProblemInstance import ProblemInstance

 from SingleAgent.Utilities.Agent import Agent

 from SingleAgent.Utilities.Graph import Graph

 from SingleAgent.Utilities.ProblemMap import ProblemMap

 sys.setrecursionlimit(30000)

 print("============== test case ================")

 graph1 = Graph(ProblemMap(14, {(2, 5): (5, 2),

 (0, 10): (5, 16),

 (7, 1): (2, 5),

 (8, 6): (4, 2)

 }))

 for i in range(1, 101, 20):

 agent1 = [Agent(0, (0, 4), (0, 9), 1),

 Agent(1, (0, 6), (3, 0), 1),

 Agent(2, (0, 2), (9, 4), 1),

 Agent(3, (13, 6), (4, 2), 1),

 Agent(4, (13, 0), (1, 3), 1),

 Agent(5, (6, 9), (12, 7), i)

]

 testProblem1 = ProblemInstance(graph1, agent1)

 filename = 'cost_test_agent6_{0}'.format(i)

 saveRoot =

'/Users/chengpeng/Documents/MTSL/ElectrodeDesgin/Result2/{0}/'.format(

filename)

 if not os.path.exists(os.path.dirname(saveRoot)):

 os.makedirs(os.path.dirname(saveRoot))

 for mgs in range(1, 4):

 solver1 = EnhandcedID(ODAStar(), mgs)

 if not solver1.solve2(testProblem1, saveRoot, 3, True):

 print("Failed to solve problem {0} with cost

{1}".format(filename, 3))

if __name__ == ‘__main__’:

main()

…/SingleAgent/Solver/IDSolver/independentDetection.py

115

import copy

import pickle

import sys

from SingleAgent.Solver.AStar.ODAStar import ODAStar

from SingleAgent.Solver.ConstraintSolver import ConstraintSolver

from SingleAgent.Utilities.ProblemInstance import ProblemInstance

from SingleAgent.Solver.Utils import Util

from SingleAgent.Utilities.Util2 import Util2

class IDSolver(ConstraintSolver):

 def __init__(self, solver):

 """ _reservation, _cat

 _pathList: n

 _problemList: n

 """

 super(IDSolver, self).__init__()

 self._pathList = []

 self._problemList = []

 self._solver = solver

 self._initialProblem = None

 def solve(self, problemInstance, fileDir):

 """

 :param problemInstance:

 :param fileDir: save direction for intermediate result

 :return:

 """

 # initial problemInstance

 self._initialProblem = problemInstance

 # self.save(fileDir, 'initialProblem')

 # fill pathList

 if len(self._pathList) == 0:

 if not self.populatePath(self._initialProblem):

 return False

 self.save(fileDir, 'initial')

 for i in range(len(self.paths())):

 if self.paths()[i] is not None:

 self.solver().getCAT().addPath(self.paths()[i], i)

 self.solver().getUsedTable().addPath(self.paths()[i],

i)

 index = 0

 while index < len(self._pathList):

 conflict = Util().conflict(index, 0, self._pathList)

 if conflict is None:

 index += 1

 else:

116

 if not self.resolveConflict(conflict.getGroup1(),

conflict.getGroup2()):

 print("fail to find new path")

 return False

 if conflict is not None:

 self.save(fileDir,

'{0}_{1}'.format(conflict.getGroup1(), conflict.getGroup2()))

 else:

 self.save(fileDir, 'solution')

 return True

 def resolveConflict(self, id1, id2):

 # print("resolve conflict for group: {0}, {1}".format(id1,

id2))

 # update _problemList[id1]

 self._problemList[id1].join(self._problemList[id2])

 # exclude paths for id1 and id2 for cat and UsedTable

 self.solver().getUsedTable().deletePath(self.paths()[id1],

id1)

 self.solver().getUsedTable().deletePath(self.paths()[id2],

id2)

 self.solver().getCAT().deletePath(self.paths()[id1], id1)

 self.solver().getCAT().deletePath(self.paths()[id2], id2)

 # otherPathList = self._pathList[:]

 # otherPathList[id1] = None

 # otherPathList[id2] = None

 if not self.solver().solve(self._problemList[id1]):

 return False

 self.solver().printPath()

 self._pathList[id1] = self._solver.getPath()

 self._problemList[id2] = None

 self._pathList[id2] = None

 # update new paths for cat and usedtable

 self.solver().getCAT().addPath(self.paths()[id1], id1)

 self.solver().getUsedTable().addPath(self.paths()[id1], id1)

 return True

 def populatePath(self, problemInstance):

 for agent in problemInstance.getAgents():

 # problemInstance requires _singleAgents a list!!

self._problemList.append(ProblemInstance(problemInstance.getGraph(),

[agent]))

 for problem in self._problemList:

117

 # use solver without initializing cat and used table

 if not self.solver().solve(problem):

 return False

 self._pathList.append(self._solver.getPath())

 return True

 def solver(self):

 return self._solver

 def paths(self):

 return self._pathList

 def problems(self):

 return self._problemList

 def getPath(self):

 """ get list of states as path"""

 _, _, finalPath = Util().mergePaths(self._pathList)

 return finalPath

 """ ================== Auxiliary functions

==========================

 """

 def printPath(self):

 """print paths"""

 for t, singleAgents in enumerate(self.getPath()):

 strout = "TimeStep: {0}".format(t)

 gValue = 0

 hValue = 0

 for singleAgent in singleAgents:

 gValue += singleAgent.gValue()

 hValue += singleAgent.hValue()

 strout +='; ' + str(singleAgent)

 strout += '; gValue: {0}; '.format(gValue) + 'hValue:

{0}.'.format(hValue)

 print(strout)

 def visualizePath(self, problemInstance):

 """ print path in map

 :param problemInstance:

 :return:

 """

 # deep copy to prevent changing of map content

 mapContent =

copy.deepcopy(problemInstance.getMap().getContent())

 pathList = self.getPath()

 for singleAgents in pathList:

118

 for singleState in singleAgents:

 x = singleState.getCoord().getNode().getPosition()[0]

 y = singleState.getCoord().getNode().getPosition()[1]

 mapContent[y][x] = str(singleState.getAgentId())

 for i in mapContent:

 print(' '.join(i))

 def correctcheck(self, pathList):

 """ Check if fluid constraints (static and dynamic) are

violated

 :param pathList:

 :return:

 """

 for ith, state in enumerate(pathList):

 if ith != 0:

 prestate = pathList[ith - 1]

 else:

 prestate = None

 if ith == len(pathList) - 1:

 poststate = None

 else:

 poststate = pathList[ith + 1]

 for i in range(len(state)):

 agent1 = state[i]

 for j in range(0, len(state)):

 if j != i:

 agent2 = state[j]

 if

Util2().withinDis(agent1.getCoord().getNode(),

agent2.getCoord().getNode()):

 print("=== solution is WRONG ===")

 return False

 if prestate is not None:

 for j in range(0, len(prestate)):

 if j != i:

 agent2 = prestate[j]

 if

Util2().withinDis(agent1.getCoord().getNode(),

agent2.getCoord().getNode()):

 print("=== solution is WRONG ===")

 return False

 if poststate is not None:

 for j in range(0, len(poststate)):

 if j != i:

 agent2 = poststate[j]

 if

Util2().withinDis(agent1.getCoord().getNode(),

agent2.getCoord().getNode()):

119

 print("=== solution is WRONG ===")

 return False

 print("== solution is CORRECT ==")

 return True

 def __str__(self):

 return "IDSolver"

 """ ================== pickle/IO ==========================

 """

 def save(self, fileDir, filename):

 sys.setrecursionlimit(20000)

 with open('{0}/{1}.pickle'.format(fileDir, filename), 'wb') as

f1:

 pickle.dump(self._pathList, f1)

 pickle.dump(self._problemList, f1)

 def read(self, fileDir, filename):

 """

 :param fileDir:

 :param filename: '0_1', 'initial', 'solution'

 :return:

 """

 with open('{0}/{1}.pickle'.format(fileDir, filename), 'rb') as

f1:

 self._pathList = pickle.load(f1)

 self._problemList = pickle.load(f1)

 # fill solver() cat and usedtable in self.solve()

120

…/SingleAgent/Solver/constraintSolver.py

import abc

from SingleAgent.Solver.UsedTable import UsedTable

from SingleAgent.Solver.ConflictAvoidanceTable import

ConflictAvoidanceTable

from SingleAgent.Solver.Reservation import Reservation

class ConstraintSolver(object):

 __metaclass__ = abc.ABCMeta

 def __init__(self):

 """

 _reservation: {coord, previous coord}

 _visitTable: {coord, [group]}

 """

 self._reservation = Reservation()

 self._cat = ConflictAvoidanceTable()

 self._usedTable = UsedTable()

 def getReservation(self):

 return self._reservation

 def setReservation(self, reservation):

 self._reservation = reservation

 def getCAT(self):

 return self._cat

 def setCAT(self, catTable):

 self._cat = catTable

 def getUsedTable(self):

 return self._usedTable

 def setUsedTable(self, usedTable):

 self._usedTable = usedTable

 @abc.abstractmethod

 def getPath(self):

 """get list of states as path"""

 @abc.abstractmethod

 def printPath(self):

 """print found paths"""

121

…/SingleAgent/Solver/reservation.py

from SingleAgent.Utilities.Coordinate import Coordinate

class Reservation(object):

 """

 No implementation of deletePath, only reserve one path

 """

 def __init__(self):

 """

 _reservedCoordinates: set(coord)

 _agentDestinations: set(pos)

 """

 self._reservedCoordinates = set([])

 self._agentDestinations = set([])

 self._lastTimeStep = 0

 def isEmpty(self):

 return len(self._reservedCoordinates) == 0 and

len(self._agentDestinations) == 0

 def reservedCoordinates(self):

 return self._reservedCoordinates

 def agentDestinations(self):

 return self._agentDestinations

 def reservePath(self, path):

 """

 Can only reserve one path for this implementation

 :param path:

 :return:

 """

 if not self.isEmpty():

 self.clear()

 for i in range(len(path)):

 state = path[i]

 for s in state.getSingleAgents():

 self.reserveSingleAgent(s)

 # add destination state

 last = path[-1]

 for s in last.getSingleAgents():

 self.reserveDestination(s.getCoord())

 def reserveSingleAgent(self, s):

 """

 reserve coord for singleAgent and neighbor coordinates

 :param s:

122

 :return:

 """

 # add itself

 coord = s.getCoord()

 self._reservedCoordinates.add(coord)

 if coord.getTimeStep() > 0:

 coord2 = Coordinate(coord.getTimeStep() - 1,

coord.getNode())

 self._reservedCoordinates.add(coord2)

 coord2 = Coordinate(coord.getTimeStep() + 1, coord.getNode())

 self._reservedCoordinates.add(coord2)

 # add neighbor nodes

 for node in coord.getNode().get_neighbor():

 if node is not None:

 neighborCoord = Coordinate(coord.getTimeStep(), node)

 self._reservedCoordinates.add(neighborCoord)

 if coord.getTimeStep() > 0:

 neighborCoord = Coordinate(coord.getTimeStep() -

1, node)

 self._reservedCoordinates.add(neighborCoord)

 neighborCoord = Coordinate(coord.getTimeStep() + 1,

node)

 self._reservedCoordinates.add(neighborCoord)

 def reserveDestination(self, coord):

 """

 Aadd coord and neighboring coord to self._agentDestinations

 :param coord:

 :return:

 """

 self._lastTimeStep = coord.getTimeStep()

 self._agentDestinations.add(coord.getNode().getPosition())

 for node in coord.getNode().get_neighbor():

 if node is not None:

 self._agentDestinations.add(node.getPosition())

 def isValid(self, state):

 """

 Check if ODState not-violates reservations

 :param state:

 :return:

 """

 # check state violates reservedCoordinates

 if self.isEmpty():

 return True

 for s in state.getSingleAgents():

 thisCoord = s.getCoord()

 if thisCoord in self._reservedCoordinates:

 return False

123

 # check state not violates destination

 thisPos = thisCoord.getNode().getPosition()

 thisTimeStep = thisCoord.getTimeStep()

 if thisPos in self._agentDestinations:

 if self._lastTimeStep <= thisTimeStep:

 return False

 return True

 def freeReservation(self, path):

 """not implemented """

 return

 def getLastTimeStep(self):

 return self._lastTimeStep

 def clear(self):

 self._reservedCoordinates.clear()

 self._agentDestinations.clear()

 self._lastTimeStep = 0

124

…/SingleAgent/Solver/conflictAvoidanceTable.py

from SingleAgent.Utilities.Coordinate import Coordinate

class ConflictAvoidanceTable(object):

 def __init__(self):

 """

 _agentDestination: {position: {id, timeStep}}

 """

 self._groupOccupantTable = {}

 self._agentDestination = {}

 self._groupToAgentIndex = {}

 self._initial = False

 # self._earlistConflictWhileAdding = None

 def getSize(self):

 return len(self._groupOccupantTable),

len(self._agentDestination)

 def groupOccupantTable(self):

 return self._groupOccupantTable

 def agentDestination(self):

 return self._agentDestination

 def isInitialized(self):

 return self._initial

 def isEmpty(self):

 return len(self._groupOccupantTable) == 0 and

len(self._agentDestination) == 0

 def violation(self, state):

 """ return num of violation in state

 :param state:

 :return:

 """

 movenext = state.getMoveNext()

 if movenext == 0:

 index = len(state.getSingleAgents())

 else:

 index = movenext

 res = 0

 for s in state.getSingleAgents()[0: index]:

 res += self._violationSingleState(s)

 return res

125

 def _violationSingleState(self, singleAgentState):

 """

 return set of violation groups

 :param singleAgentState:

 :return:

 """

 coordList = []

 coord = singleAgentState.getCoord()

 coordList.append(coord)

 coordList.append(Coordinate(coord.getTimeStep() + 1,

coord.getNode()))

 coordList.append(Coordinate(coord.getTimeStep() - 1,

coord.getNode()))

 # violation in groupOccupantTable

 conflictGroup = set([])

 for coord in coordList:

 if coord in self._groupOccupantTable:

 conflictGroup |= self._groupOccupantTable[coord]

 # violation in destination

 pos = coord.getNode().getPosition()

 if pos in self._agentDestination:

 preDic = self._agentDestination[pos]

 for id, t in preDic.items():

 if coord.getTimeStep() >= t - 1:

 conflictGroup |= set([id])

 conflictGroup = list(conflictGroup)

 totalconflict = 0

 for group in conflictGroup:

 totalconflict += len(self._groupToAgentIndex[group])

 return totalconflict

 def addPath(self, path, id):

 """

 :param path:

 :return:

 """

 # print("cat add path {0}".format(id))

 self._initial = True

 self._groupToAgentIndex[id] = [x.getAgentId() for x in

path[0].getSingleAgents()]

 # paths include only OD states

 for i in range(len(path)):

 state = path[i]

 # newPositions = [None for i in

range(len(state.getSingleAgents()))]

 for s in state.getSingleAgents():

 self._addSingleAgentState(s, id)

126

 # add destination state

 last = path[-1]

 for s in last.getSingleAgents():

 self._addDestination(s.getCoord(), id)

 def _addSingleAgentState(self, s, id):

 # add itself

 coord = s.getCoord()

 self._addCoordinate(coord, id)

 # add neighbor nodes

 for node in coord.getNode().get_neighbor():

 if node is not None:

 neighborCoord = Coordinate(coord.getTimeStep(), node)

 self._addCoordinate(neighborCoord, id)

 def _addCoordinate(self, coord, id):

 if coord not in self._groupOccupantTable:

 self._groupOccupantTable[coord] = set([id])

 else:

 self._groupOccupantTable[coord].add(id)

 def _addDestination(self, coord, id):

 self._addDestinationCoord(coord, id)

 for node in coord.getNode().get_neighbor():

 if node is not None:

 newCoord = Coordinate(coord.getTimeStep(), node)

 self._addDestinationCoord(newCoord, id)

 def _addDestinationCoord(self, coordinate, id):

 thisPos = coordinate.getNode().getPosition()

 thisTimeStep = coordinate.getTimeStep()

 if thisPos not in self._agentDestination:

 self._agentDestination[thisPos] = {id: thisTimeStep}

 else:

 preDic = self._agentDestination[thisPos]

 if id not in preDic:

 preDic[id] = thisTimeStep

 elif preDic[id] > thisTimeStep:

 preDic[id] = thisTimeStep

 def deletePath(self, path, id):

 """

 :param path:

 :return:

 """

 # print("cat delete path {0}".format(id))

 del self._groupToAgentIndex[id]

 # delete states in paths

 for i in range(len(path)):

127

 state = path[i]

 for s in state.getSingleAgents():

 self._deleteSingleAgentState(s, id)

 # delete destination state

 last = path[-1]

 for s in last.getSingleAgents():

 self._deleteDestination(s.getCoord(), id)

 def _deleteSingleAgentState(self, s, id):

 coord = s.getCoord()

 self._deleteCoordinate(coord, id)

 for node in coord.getNode().get_neighbor():

 neighborCoord = Coordinate(coord.getTimeStep(), node)

 self._deleteCoordinate(neighborCoord, id)

 def _deleteCoordinate(self, coord, id):

 if coord in self._groupOccupantTable:

 if id in self._groupOccupantTable[coord]:

 self._groupOccupantTable[coord].remove(id)

 if len(self._groupOccupantTable[coord]) == 0:

 del self._groupOccupantTable[coord]

 def _deleteDestination(self, coord, id):

 self._deleteDestinationCoord(coord, id)

 for node in coord.getNode().get_neighbor():

 if node is not None:

 newCoord = Coordinate(coord.getTimeStep(), node)

 self._deleteDestinationCoord(newCoord, id)

 def _deleteDestinationCoord(self, coordinate, id):

 thisPos = coordinate.getNode().getPosition()

 if thisPos in self._agentDestination:

 preDic = self._agentDestination[thisPos]

 if id in preDic:

 del preDic[id]

 if len(preDic) == 0:

 del self._agentDestination[thisPos]

 def clear(self):

 self._groupOccupantTable.clear()

 self._agentDestination.clear()

 self._groupToAgentIndex.clear()

 self._initial = False

…/SingleAgent/Solver/UsedTable.py

class UsedTable(object):

 def __init__(self):

128

 """

 cellTable: {

 """

 self._cellTable = {}

 self._initial = False

 def isInitialized(self):

 return self._initial

 def isEmpty(self):

 return len(self._cellTable) == 0

 def addPath(self, path, id):

 # print("usedTable add path {0}".format(id))

 self._initial = True

 for i in range(len(path)):

 thisState = path[i]

 for s in thisState.getSingleAgents():

 pos = s.getCoord().getNode().getPosition()

 if pos not in self._cellTable:

 self._cellTable[pos] = set([id])

 else:

 self._cellTable[pos].add(id)

 def deletePath(self, path, id):

 # print("usedTable delete path {0}".format(id))

 if path is None:

 return

 for i in range(len(path)):

 thisState = path[i]

 for s in thisState.getSingleAgents():

 pos = s.getCoord().getNode().getPosition()

 if pos in self._cellTable and id in

self._cellTable[pos]:

 self._cellTable[pos].remove(id)

 if len(self._cellTable[pos]) == 0:

 del self._cellTable[pos]

 def toList(self, size):

 cellList = [0 for i in range(size*size)]

 for pos, _ in self._cellTable.items():

 cellList[pos[0] * size + pos[1]] = 1

 return cellList

 def getSize(self):

 return len(self._cellTable)

 def cellTable(self):

129

 return self._cellTable

 def clear(self):

 self._cellTable.clear()

 self._initial = False

 def __str__(self):

 return 'a cellTable dictionary'

…/SingleAgent/Solver/Utils.py

from SingleAgent.Utilities.Conflict import Conflict

class Util(object):

 def conflict(self, index, startIndex, pathList):

 """ return conflict if exists

 :param index: index of path to be checked

 :param startIndex:

 :param pathList: list of paths

 :return:

 """

 thisPath = pathList[index]

 if thisPath is None:

 return None

 for i in range(startIndex, len(pathList)):

 if i != index and pathList[i] is not None:

 path = pathList[i]

 # iterate over each time step

 for t in range(len(thisPath)):

 isGoalState = False

 thisState = thisPath[t]

 if t > len(path) - 1:

 compareState = path[-1]

 isGoalState = True

 else:

 compareState = path[t]

 conflict = Conflict(t, index, i, None, None)

 if self.conflictState2(thisState, compareState,

isGoalState, conflict):

 # return earliest conflict of thisPath and

pathList

 return conflict

 return None

 def conflictState2(self, thisState, compareState, isGoal,

conflict):

130

 """

 return first conflict found include agentId if conflict

exists, more efficient should include

 all conflicts between these two OD states

 :param thisState:

 :param compareState:

 :param isGoal: if compare state is goal state

 :param conflict: changed conflict

 :return:

 """

 for thisS in thisState.getSingleAgents():

 thisP = thisS.getCoord().getNode().getPosition()

 for compareS in compareState.getSingleAgents():

 compareP = set([])

 # current position and neighbor

compareP.add(compareS.getCoord().getNode().getPosition())

 for node in

compareS.getCoord().getNode().get_neighbor():

 if node is not None:

 compareP.add(node.getPosition())

 # previous position and neighbor

 if not isGoal and compareS.predecessor() is not None:

compareP.add(compareS.predecessor().getCoord().getNode().getPosition()

)

 for node in

compareS.predecessor().getCoord().getNode().get_neighbor():

 if node is not None:

 compareP.add(node.getPosition())

 if thisP in compareP:

 conflict.setAgent(thisS.getAgentId(),

compareS.getAgentId())

 return True

 for thisS in compareState.getSingleAgents():

 thisP = thisS.getCoord().getNode().getPosition()

 for compareS in thisState.getSingleAgents():

 compareP = set([])

 # current position and neighbor

compareP.add(compareS.getCoord().getNode().getPosition())

 for node in

compareS.getCoord().getNode().get_neighbor():

 if node is not None:

 compareP.add(node.getPosition())

 # previous position and neighbor

 if compareS.predecessor() is not None:

131

compareP.add(compareS.predecessor().getCoord().getNode().getPosition()

)

 for node in

compareS.predecessor().getCoord().getNode().get_neighbor():

 if node is not None:

 compareP.add(node.getPosition())

 if thisP in compareP:

 conflict.setAgent(compareS.getAgentId(),

thisS.getAgentId())

 return True

 return False

 def conflictState(self, thisState, compareState, isGoal):

 """ check if two states have time conflict

 :param thisState:

 :param compareState:

 :return: bool

 """

 from SingleAgent.States import ODState

 assert isinstance(thisState, ODState.ODState)

 assert isinstance(compareState, ODState.ODState)

 thisSingleAgents = thisState.getSingleAgents()

 compareSingleAgents = compareState.getSingleAgents()

 thisPos = [state.getCoord().getNode() for state in

thisSingleAgents]

 comparePos = [state.getCoord().getNode() for state in

compareSingleAgents]

 if self._conflictStateHelper(thisSingleAgents, comparePos,

isGoal=False) or \

 self._conflictStateHelper(compareSingleAgents,

thisPos, isGoal):

 return True

 else:

 return False

 def _conflictStateHelper(self, singleAgents, comparePos, isGoal):

 for s in singleAgents:

 staticCons = s.getCoord().getNode().get_neighbor()

 if s.isRoot() or isGoal is True:

 prohibit = set(staticCons)

 else:

 dynamicCons =

s.predecessor().getCoord().getNode().get_neighbor()

 prohibit = set(staticCons) | set(dynamicCons)

 prohibit.add(s)

 if not prohibit.isdisjoint(set(comparePos)):

 # print(singleAgents[0])

132

 # print(singleAgents[0].getCoord())

 return True

 return False

 def mergePaths(self, pathList, problemInstance):

 """ generate paths for IDSolver

 :param pathList:

 :return: list of list of singleAgents

 """

 paths = filter(lambda x: x is not None, pathList)

 longestLength = self.getLongestPath(paths)

 mergedList = [[] for i in range(longestLength)]

 usedElectrode = set([])

 startOrGoal = problemInstance.startandGoalPosition()

 for t in range(longestLength):

 for path in paths:

 if t < len(path):

 state = path[t]

 else:

 state = path[-1]

 for singleAgent in state.getSingleAgents():

 mergedList[t].append(singleAgent)

 if singleAgent.getCoord().getNode().getPosition()

not in startOrGoal:

usedElectrode.add(singleAgent.getCoord().getNode().getPosition())

 totalCost = 0

 for path in pathList:

 if path is not None:

 state = path[-1]

 totalCost += state.gValue()

 return totalCost, len(usedElectrode), mergedList

 def getLongestPath(self, pathList):

 r = 0

 for path in pathList:

 if path is not None and len(path) > r:

 r = len(path)

 return r

 def pathLength(self, path):

 reversed = path[::-1]

 i = 0

 while i < len(reversed) - 1:

 if reversed[i] == reversed[i+1]:

 i += 1

 else:

 break

 return len(path)-i-1

133

…/SingleAgent/States/__init__.py

__all__ = ["MultiAgentState","ODState","SingleAgentState", "State"]

…/SingleAgent/States/State.py

import abc

class State(object):

 __metaclass__ = abc.ABCMeta

 def __init__(self, backPointer):

 """

 :param backPointer:

 """

 self._gValue = None

 self._hValue = None

 self._backPointer = backPointer

 self._conflictViolations = 0

 self._usedElectrode = 0

 def predecessor(self):

 return self._backPointer

 def gValue(self):

 return self._gValue

 def hValue(self):

 return self._hValue

 def fValue(self):

 return self.gValue() + self.hValue()

 def usedElectrode(self):

 return self._usedElectrode

 def conflictViolations(self):

 return self._conflictViolations

 def isRoot(self):

 return self._backPointer is None

 """================== astar functions =================

 """

 @abc.abstractmethod

134

 def expand(self, problemInstance):

 """

 expand current state according to problemInstance

 :param problemInstance:

 :return: a list if states

 """

 @abc.abstractmethod

 def goalTest(self, problemInstance):

 """

 test if state is goal state

 :param problemInstance:

 :return:

 """

 @abc.abstractmethod

 def timeStep(self):

 """return timestep of this state"""

 """=========== functions to update member variables =========

 """

 @abc.abstractmethod

 def setHeuristic(self, mode, input):

 """

 Set hValue

 :param problemInstance:

 :return:

 """

 @abc.abstractmethod

 def calculateCost(self, problemInstance):

 """

 Calcualte gValue

 :return:

 """

 @abc.abstractmethod

 def updateCATViolations(self, cat):

 """

 update _conflictViolations

 :param cat:

 :return:

 """

 @abc.abstractmethod

 def updateUsedElectrode(self, table, nsize):

 """

 udpate _usedElectrode

 :param table:

 :return:

 """

 """================= functions to compare ===============

135

 """

 @abc.abstractmethod

 def __eq__(self, other):

 """

 for comparable object

 :param other:

 :return: bool

 """

 def __ne__(self, other):

 return not self.__eq__(other)

 @abc.abstractmethod

 def __hash__(self):

 """

 for hash value

 :return:

 """

 def __lt__(self, other):

 """Compare two state for priority queue

 Breaking tie considers smaller hValue

 :param other: same candidate state

 :return:

 """

 """

 TODO: break tie considering _usedElectrode (visitTable)

 ; and _conflictViolations (CAT)

 """

 assert other is not None, "State can not compare with None

type"

 assert not other.hValue() is None or self.hValue() is None,

'set hvalue first.'

 dif = self.gValue() - other.gValue() + self.hValue() -

other.hValue()

 # breaking tie considering hValue

 if dif == 0:

 dif2 = self.conflictViolations() -

other.conflictViolations()

 if dif2 == 0:

 return self.usedElectrode() - other.usedElectrode() <

0

 else:

 return dif2 < 0

 # return self.hValue() - other.hValue() < 0

 else:

 return dif < 0

136

…/SingleAgent/States/SingleAgentState.py

from State import State

from SingleAgent.Constants import *

from SingleAgent.Utilities.Coordinate import Coordinate

from SingleAgent.Utilities.ProblemInstance import ProblemInstance

from SingleAgent.Utilities.Node import Node

from SingleAgent.Utilities.Util2 import Util2

class SingleAgentState(State):

 def __init__(self, agentId, currentNode, backPointer,

problemInstance):

 """

 :param agentId:

 :param currentNode: Agent position

 :param backPointer: Agent predecessor

 :param problemInstance:

 """

 assert isinstance(backPointer, State) or backPointer is None,

"para 2 class is not State"

 assert isinstance(problemInstance, ProblemInstance), "para 3

class is not ProblemInstance"

 assert isinstance(currentNode, Node), "para 1 class is not

Node. \n{0}".format(currentNode)

 super(SingleAgentState, self).__init__(backPointer)

 self._agentId = agentId

 self._coord = None

 self._stepCost = problemInstance.findAgent(agentId).getCost()

 self._initializeCoord(currentNode)

 self.calculateCost(problemInstance) # update gValue

 @classmethod

 def fromProblemIns(cls, agentId, problemInstance):

 """ construct single state based on agentId

 :param problemInstance:

 """

 # if only have one agent, assign agentId to that agent's id

 if len(problemInstance.getAgents()) == 1:

 targetAgent = problemInstance.getAgents()[0]

 agentId = targetAgent.getId()

 else:

 targetAgent = problemInstance.findAgent(agentId)

 startPosition = targetAgent.getStart()

 startNode =

problemInstance.getGraph().getNode()[startPosition[0]][startPosition[1

]]

137

 return cls(agentId, startNode, None, problemInstance)

 def _initializeCoord(self, node):

 if self.predecessor() is not None:

 self._coord =

Coordinate(self.predecessor().getCoord().getTimeStep() + 1, node)

 else:

 self._coord = Coordinate(0, node)

 def getCoord(self):

 return self._coord

 def getAgentId(self):

 return self._agentId

 """ ============ functions to update member variable ==========

 """

 def calculateCost(self, problemInstance):

 if self.predecessor() is None:

 self._gValue = 0

 return

 if self == self.predecessor():

 if self.goalTest(problemInstance):

 self._gValue = self.predecessor().gValue()

 else:

 self._gValue = self.predecessor().gValue() +

self._stepCost # change stay cost

 else:

 self._gValue = self.predecessor().gValue() +

self._stepCost # cost is changed

 def setHeuristic(self, mode, input):

 """

 :param mode: manhatten or trueDistance

 :param problemInstanceOrHeuristic:

 :return:

 """

 if mode == "manhatten":

 assert isinstance(input, ProblemInstance), "Manhatten

require problemInstance"

 problemInstance = input

 goalPos = problemInstance.getGoals()[self._agentId]

 self._hValue =

self._mDistance(self._coord.getNode().getPosition(), goalPos) *

self._stepCost

 elif mode == "trueDistance":

 # assert isinstance(input, TDHeuristic), "trueDis require

TDHeuristic, {0}, {1}".format(type(input), input)

 heuristic = input

138

 self._hValue = heuristic.trueDistance(self.getAgentId(),

self.getCoord().getNode().getPosition())

 # print("set true distance: {0}".format(self._hValue))

 elif mode == "constant":

 assert isinstance(input, int)

 self._hValue = input

 else:

 assert False, "unknown heuristic"

 def updateCATViolations(self, cat):

 """ not implemented"""

 # newViolation = cat.violation(self)

 # self._conflictViolations =

self.predecessor().ConflictViolations() + newViolation

 return

 def updateUsedElectrode(self, usedTable, nsize):

 """ not implemented"""

 # tempTable = usedTable.toList(nsize)

 # nsize = usedTable.getSize()

 #

 # current = self

 # while current is not None:

 # index =

Util2().posToIndex(current.getCoord().getNode().getPosition(), nsize)

 # tempTable[index] = 1

 # current = current.predecessor()

 # self._usedElectrode = sum(tempTable)

 return

 def goalSingleAgent(self, problemInstance):

 return SingleAgentState(self._agentId, self._coord.getNode(),

self, problemInstance)

 def getStepCost(self):

 return self._stepCost

 """============ functions for astar ==========

 """

 def expand(self, problemInstance):

 """

 TODO: a list of singleAgentStates corresponding to its

neighbors(valid neighbors)

 :param problemInstance:

 :return:

 """

 stateList = []

 stateList.append(self.waitState(problemInstance))

139

 for posNode in self._coord.getNode().get_Four():

 if posNode is not None:

 assert isinstance(posNode, Node), "Expanding: neighbor

is not Node type"

 newState = SingleAgentState(self._agentId, posNode,

self, problemInstance)

 stateList.append(newState)

 return stateList

 def _mDistance(self, a, b):

 return abs(a[0] - b[0]) + abs(a[1] - b[1])

 def waitState(self, problemInstance):

 """

 add wait state to state

 :param problemInstance:

 :return: singleAgentState corresponding to wait

 """

 return SingleAgentState(self._agentId, self._coord.getNode(),

self, problemInstance)

 def goalTest(self, problemInstance):

 # problemInstance can be multiple/single

 return self._coord.getNode().getPosition() ==

problemInstance.getGoals()[self._agentId]

 def timeStep(self):

 return self.getCoord().getTimeStep()

 """============ functions for compare ==========

 """

 def __eq__(self, other):

 """

 AgentId, Coordinate.Node (position and type)

 :param other:

 :return:

 """

 if other is None:

 if self is not None:

 return False

 if type(self) != type(other):

 return False

 if self.getAgentId() != other.getAgentId():

 return False

 if other.getCoord() is None:

 if self.getCoord() is not None:

 return False

 else:

140

 return True

 if other.getCoord().getNode() != self.getCoord().getNode():

 return False

 return True

 def __hash__(self):

 prime = 31

 res = 1

 if self._coord is None:

 return 0

 else:

 res = prime * res + hash(self._coord.getNode()) * prime +

hash(self._agentId)

 return res

 def __str__(self):

 return "{0}: ".format(self._agentId) + "{0}

".format(self._coord.getNode().getPosition()) \

 + "g: {0}".format(self.gValue())

 # return "ID{0}: ".format(self._agentId) + "pins: {0},

".format(self._extraPins) \

 # + "{0}".format(self._coord.getNode().getPosition())

…/SingleAgent/States/MultiAgentState.py

import math

from State import State

from SingleAgentState import SingleAgentState

from SingleAgent.Utilities.ProblemInstance import ProblemInstance

from SingleAgent.Utilities.Agent import Agent

from SingleAgent.Utilities.Graph import Graph

from SingleAgent.Utilities.ProblemMap import ProblemMap

from SingleAgent.Utilities.Util2 import Util2

class MultiAgentState(State):

 def __init__(self, backPointer, singleAgents, problemInstance):

 """

 :param backPointer:

 :param singleAgents: List of singleAgentStates

 :param problemInstance:

 """

 # :param costFunction:

 assert isinstance(backPointer, State) or backPointer is None

 assert isinstance(problemInstance, ProblemInstance)

 assert isinstance(singleAgents, list)

141

 super(MultiAgentState, self).__init__(backPointer)

 self._singleAgents = singleAgents

 self.calculateCost(problemInstance)

 @classmethod

 def fromProblemIns(cls, problemInstance):

 numAgents = len(problemInstance.getAgents())

 singleAgents = []

 for i in range(numAgents):

 agentId = problemInstance.getAgents()[i].getId()

singleAgents.append(SingleAgentState.fromProblemIns(agentId,

problemInstance))

 return cls(None, singleAgents, problemInstance)

 def getSingleAgents(self):

 return self._singleAgents

 """ ============ functions to update member variable ==========

 """

 def calculateCost(self, problemInstance):

 self._gValue = 0

 if self.predecessor() is None:

 return

 for singleState in self._singleAgents:

 self._gValue += singleState.gValue()

 def setHeuristic(self, mode, input):

 self._hValue = 0

 for singleState in self._singleAgents:

 singleState.setHeuristic(mode, input) # first set

heuristic for each singleAgentState

 self._hValue += singleState.hValue()

 def updateCATViolations(self, cat):

 # if cat.violation(self):

 # newViolation = 1

 # else:

 # newViolation = 0

 if self.predecessor() is None:

 self._conflictViolations = cat.violation(self)

 else:

 self._conflictViolations =

self.predecessor().conflictViolations() + cat.violation(self)

 def updateUsedElectrode(self, table, nsize):

 tempList = table.toList(nsize)

142

 current = self

 while current is not None:

 for singleAgent in current.getSingleAgents():

 index =

Util2().posToIndex(singleAgent.getCoord().getNode().getPosition(),

nsize)

 tempList[index] = 1

 current = current.predecessor()

 self._usedElectrode = sum(tempList)

 """ ============ functions for astar ==========

 """

 def expand(self, problemInstance):

 """ return valid next states

 :param problemInstance:

 :return:

 """

 candidateList = []

 for singleState in self._singleAgents:

 singleStateNeighborList =

singleState.expand(problemInstance)

 if len(singleStateNeighborList) == 0:

 # print("No candiate singleState for state:

{0}".format(singleState))

 return []

 candidateList.append(singleStateNeighborList) # every

candidate list is none empty

 candidateStateList = self.listProduct(candidateList)

 validStates = []

 for multiState in candidateStateList:

 if self.isValid(multiState): # a shallow copy to prevent

change of multistate

 validStates.append(MultiAgentState(self, multiState,

problemInstance))

 return validStates

 def isValid(self, mstate, StaticOnly = False):

 """check if multiagent states is valid (no collision

static/dynamic)

 :param mstate: a list of singleAgents states

 :return:

 """

 if len(mstate) == 1:

 return True # only one agent

 for s in mstate:

 assert isinstance(s, SingleAgentState)

 left = [item.getCoord().getNode() for item in mstate] #

143

copy to prevent changing of mstate

 left.remove(s.getCoord().getNode())

 staticCons = s.getCoord().getNode().get_neighbor()

 if s.isRoot() or StaticOnly:

 prohibit = set(staticCons)

 else:

 dynamicCons =

s.predecessor().getCoord().getNode().get_neighbor()

 prohibit = set(staticCons) | set(dynamicCons)

 prohibit.add(s)

 if not prohibit.isdisjoint(set(left)):

 # print("invalid state: {0} ".format(mstate))

 return False

 return True

 def listProduct(self, alist):

 """

 [[s1 s2 s3], [m1 m2]] every element is None-empty list

 [[si s2], []] => []

 [[]] => [[]]

 catesian product of list elements

 :param alist: list of list of elements [[s1 s2 s3] [m1 m2]]

 :return: list of lists of elements

 """

 assert len(alist) >= 1, "Cannot product None (list)"

 if len(alist) == 1:

 res = []

 for element in alist[0]:

 res.append([element])

 return res

 res = []

 for comb in self.listProduct(alist[0:-1]):

 for element in alist[-1]:

 res.append(comb + [element])

 return res

 def goalTest(self, problemInstance):

 for singleState in self._singleAgents:

 if not singleState.goalTest(problemInstance):

 return False

 return True

 def timeStep(self):

 return self._singleAgents[0].timeStep()

144

 """============ functions for compare ==========

 """

 def __eq__(self, other):

 """

 each single agent: ID, getCoord.getNode (type and p)

 :param other:

 :return:

 """

 if (other is None) or (not isinstance(other,

MultiAgentState)):

 return False

 if len(self._singleAgents) != len(other.getSingleAgents()):

 return False

 for i in range(len(self._singleAgents)):

 if self._singleAgents[i] != other.getSingleAgents()[i]:

 return False

 return True

 def __hash__(self):

 prime = 31

 res = 1

 if self._singleAgents is None or len(self._singleAgents) == 0:

 return 0

 for singleAgent in self._singleAgents:

 res = prime * res + hash(singleAgent) * prime

 return res

 def __str__(self):

 res = "T: {0}, gValue: {1}, hValue: {2}, violations: {3},

electrode: {4}, ".format(self.timeStep(), self._gValue, self._hValue,

self._conflictViolations, self._usedElectrode)

 for singleState in self._singleAgents:

 res += str(singleState)

 res += '; '

 return res

…/SingleAgent/States/ODState.py

from MultiAgentState import MultiAgentState

from SingleAgentState import SingleAgentState

from SingleAgent.Utilities.ProblemInstance import ProblemInstance

from SingleAgent.Utilities.Agent import Agent

from SingleAgent.Utilities.Graph import Graph

from SingleAgent.Utilities.ProblemMap import ProblemMap

from SingleAgent.Utilities.Util2 import Util2

145

class ODState(MultiAgentState):

 def __init__(self, backPointer, singleAgents, problemInstance,

moveNext, preState):

 """

 _restrictDir: to-move droplets cannot move to spots occupied

by other droplets in last

 step

 :param backPointer:

 :param singleAgents: list of singleAgents

 :param problemInstance:

 :param moveNext: next agent to move

 :param preState: previous intermediate state

 :param direction: so far assigned directions

 """

 super(ODState, self).__init__(backPointer, singleAgents,

problemInstance)

 self._moveNext = moveNext

 self._preState = preState

 # no restriction by previous

 self._restrictDir = [[] for i in range(0,

len(self._singleAgents))]

 self._updateRestrictDir()

 @classmethod

 def fromProblemIns(cls, problemInstance):

 numAgents = len(problemInstance.getAgents())

 singleAgents = []

 for i in range(numAgents):

 agentId = problemInstance.getAgents()[i].getId()

singleAgents.append(SingleAgentState.fromProblemIns(agentId,

problemInstance))

 return cls(None, singleAgents, problemInstance, 0, None)

 def _updateRestrictDir(self):

 """ update self.allowDir using predecessor

 """

 if self.predecessor() is None or self.isStandard():

 return

 for i in range(self._moveNext, len(self._singleAgents)):

 restrict = [x.getCoord().getNode() for x in

self.predecessor().getSingleAgents()]

 del restrict[i] # do not count itself

 possibleNodes =

self._singleAgents[i].getCoord().getNode().get_Four()[:]

 for direction, nextNode in enumerate(possibleNodes):

 if (nextNode is not None) and (not

set(nextNode.get_neighbor()).isdisjoint(restrict)):

146

 self._restrictDir[i].append(direction)

 """ ============ functions to update member variable ==========

 """

 """ ============ functions for astar ==========

 """

 def expand(self, problemInstance):

 """ return valid next states (intermediate/standard)

 :param problemInstance:

 :return: newODStates

 """

 currentAgent = self._singleAgents[self._moveNext]

 newSingleStates = currentAgent.expand(problemInstance)

 if newSingleStates is None or len(newSingleStates) == 0:

 return []

 newODStates = []

 for s in newSingleStates:

 mAgents = self._singleAgents[:]

 mAgents[self._moveNext] = s

 if self._moveNext == 0:

 newODStates.append(ODState(self, mAgents,

problemInstance, self.getNewMoveNext(), self))

 else:

 newODStates.append(ODState(self.predecessor(),

mAgents, problemInstance, self.getNewMoveNext(), self))

 validStates = filter(lambda x: self.isValid(x), newODStates)

 return validStates

 def isValid(self, s, StaticOnly = False):

 """ check dynamic and static fluid constraint

 :param s: OD state

 :param StaticOnly:

 :return:

 """

 assert isinstance(s, ODState)

 # standard state

 if s.isStandard():

 return super(ODState, self).isValid(s.getSingleAgents())

 # intermediate state

 movedAgents = s.getSingleAgents()[0:self._moveNext]

 if not super(ODState, self).isValid(movedAgents):

 return False

 if not super(ODState, self).isValid(s.getSingleAgents(),

True):

 return False

 return True

147

 def goalTest(self, problemInstance):

 if not self.isStandard():

 return False

 return super(ODState, self).goalTest(problemInstance)

 def generateNextGoal(self, problemInstance):

 newAgents = [s.goalSingleAgent(problemInstance) for s in

self._singleAgents]

 return ODState(self, newAgents, problemInstance, 0, self)

 """ ============ auxillary ==========

 """

 def isStandard(self):

 return self._moveNext == 0

 def getNewMoveNext(self):

 if self._moveNext == len(self._singleAgents) - 1:

 newMoveNext = 0

 else:

 newMoveNext = self._moveNext + 1

 return newMoveNext

 def getMoveNext(self):

 return self._moveNext

 def getPreState(self):

 return self._preState

 def getRestricDir(self):

 return self._restrictDir

 def isStay(self, compareState):

 if compareState is None or not isinstance(compareState,

ODState):

 return False

 if not super(ODState, self).__eq__(compareState):

 return False

 return True

 """ ============ functions for compare ==========

 """

 def __eq__(self, other):

 """Compare: each single agent: ID, getCoord.getNode (type and

position)

 moveNext and all possible moves of unassigned agents

 :param other:

 :return:

 """

148

 if other is None or not isinstance(other, ODState):

 return False

 if not super(ODState, self).__eq__(other):

 return False

 if self._moveNext != other.getMoveNext():

 return False

 return str(self._restrictDir) == str(other.getRestricDir())

 def __hash__(self):

 return super(ODState, self).__hash__() + 23 *

hash(self._moveNext) + hash(str(self._restrictDir))

 def __str__(self):

 res = super(ODState, self).__str__()

 res += '; moveNext: {0}.'.format(self._moveNext)

 return res

…/SingleAgent/States/ODState2.py

from ODState import ODState

from SingleAgentState import SingleAgentState

class ODState_2(ODState):

 def __init__(self, backPointer, singleAgents, problemInstance,

moveNext, preState):

 super(ODState_2, self).__init__(backPointer, singleAgents,

problemInstance, moveNext, preState)

 @classmethod

 def fromProblemIns(cls, problemInstance):

 numAgents = len(problemInstance.getAgents())

 singleAgents = []

 for i in range(numAgents):

 agentId = problemInstance.getAgents()[i].getId()

singleAgents.append(SingleAgentState.fromProblemIns(agentId,

problemInstance))

 return cls(None, singleAgents, problemInstance, 0, None)

 def expand(self, problemInstance):

 """ return valid next states (intermediate/standard)

 :param problemInstance:

 :return: newODStates

 """

 currentAgent = self._singleAgents[self._moveNext]

 newSingleStates = currentAgent.expand(problemInstance)

 if newSingleStates is None or len(newSingleStates) == 0:

149

 return []

 newODStates = []

 for s in newSingleStates:

 mAgents = self._singleAgents[:]

 mAgents[self._moveNext] = s

 if self._moveNext == 0:

 newODStates.append(ODState_2(self, mAgents,

problemInstance, self.getNewMoveNext(), self))

 else:

 newODStates.append(ODState_2(self.predecessor(),

mAgents, problemInstance, self.getNewMoveNext(), self))

 validStates = filter(lambda x: self.isValid(x), newODStates)

 return validStates

 def generateNextGoal(self, problemInstance):

 newAgents = [s.goalSingleAgent(problemInstance) for s in

self._singleAgents]

 return ODState_2(self, newAgents, problemInstance, 0, self)

 def setConflict(self, num):

 """helper function to debug"""

 self._conflictViolations = num

 def setgvalue(self, num):

 """helper function to debug"""

 self._gValue = num

 def __lt__(self, other):

 """Compare two state for priority queue

 Breaking tie considers smaller hValue

 :param other: same candidate state

 :return:

 """

 """

 TODO: break tie considering _usedElectrode (visitTable)

 ; and _conflictViolations (CAT)

 """

 assert other is not None, "State can not compare with None

type"

 assert isinstance(other, ODState_2), 'type of other state:

{0}'.format(type(other))

 if other.hValue() is None or self.hValue() is None:

 print("set Heuristic Value first")

 return None

 dif = self.conflictViolations() - other.conflictViolations()

 dif2 = self.gValue() - other.gValue() + self.hValue() -

other.hValue()

150

 dif3 = self.usedElectrode() - other.usedElectrode()

 # breaking tie considering hValue

 if dif == 0:

 if dif2 == 0:

 return dif3 < 0

 else:

 return dif2 < 0

 # return self.hValue() - other.hValue() < 0

 else:

 return dif < 0

 # return dif < 0

…/SingleAgent/Utilities/__init__.py

…/SingleAgent/Utilities/Agent.py

class Agent(object):

 def __init__(self, id, start, goal, step_cost):

 """ start and goal are (x,y) in the graph"""

 self._id = id

 self._start = start

 self._goal = goal

 self._stepCost = step_cost

 def getId(self):

 return self._id

 def getStart(self):

 return self._start

 def getGoal(self):

 return self._goal

 def getCost(self):

 return self._stepCost

 def __lt__(self, other):

 return self._id < other.getId()

…/SingleAgent/Utilities/Conflict.py

class Conflict(object):

 def __init__(self, timeStep, group1, group2, agent1, agent2):

 self._timeStep = timeStep

 self._group1 = group1

151

 self._group2 = group2

 self._agent1 = agent1

 self._agent2 = agent2

 def getTimeStep(self):

 return self._timeStep

 def getGroup1(self):

 return self._group1

 def getGroup2(self):

 return self._group2

 def getAgent1(self):

 return self._agent1

 def getAgent2(self):

 return self._agent2

 def setAgent(self, agent1, agent2):

 self._agent1 = agent1

 self._agent2 = agent2

 def setGroup(self, group1, group2):

 self._group1 = group1

 self._group2 = group2

 def isEmpty(self):

 if self._agent1 is None:

 return True

 else:

 return False

 def __str__(self):

 return "g{0}_{1}t{2}".format(self._group1, self._group2,

self._timeStep)

 def __eq__(self, other):

 """ Compares timeStep, group1 and group2

 :param other:

 :return:

 """

 if other is None or type(self) != type(other):

 return False

 if self._timeStep != other.getTimeStep():

 return False

 if self._group1 != other.getGroup1() or self._group2 !=

other.getGroup2():

 return False

152

 if self._agent1 != other.getAgent1() or self._agent2 !=

other.getAgent2():

 return False

 return True

…/SingleAgent/Utilities/Coordinate.py

from Node import Node

class Coordinate(object):

 def __init__(self, timeStep, node):

 self.__timeStep = timeStep

 self.__node = node

 def getTimeStep(self):

 return self.__timeStep

 def getNode(self):

 return self.__node

 def setTimeStep(self, timeStep):

 self.__timeStep = timeStep

 def __eq__(self, other):

 """

 Node + timeStep

 :param other:

 :return:

 """

 if other is None:

 if self.__node is not None:

 return False

 else:

 return True

 if type(self) != type(other):

 return False

 if other.getNode() is None:

 return False

 if other.getNode() != self.__node:

 return False

 if other.getTimeStep() != self.__timeStep:

 return False

 return True

 def __hash__(self):

 """

 Node + timeStep

 :return:

153

 """

 prime = 31

 result = 1

 if self.__node is None:

 result = prime * result

 else:

 result = prime * result + hash(self.__node)

 result = prime * result + hash(self.__timeStep)

 return result

 def __str__(self):

 s1 = "timeStep: {0}, ".format(self.__timeStep)

 s2 = "Node: ({0})".format(str(self.__node))

 return "Coordinate: " + s1 + ' ' + s2

…/SingleAgent/Utilities/Graph.py

from Node import Node

from ProblemMap import ProblemMap

from SingleAgent.Constants import *

class Graph:

 def __init__(self, problemMap):

 """ nodes' neighbor generated in graph

 __nodes: (n-1) x (n-1), (x,y) for position (x,y) in the map,

None of (x,y) is block/out

 :param problemMap: 2D matrix of string

 """

 self.__size = problemMap.getSize()

 self.__map = problemMap

 self.__nodes = [[None for i in range(self.__size)] for j in

range(self.__size)]

note: nodes[0][1]._position = (0,1)

 self.__generateGraph()

 def __generateGraph(self):

 """ populate nodes list with nodes, populate nodes neighbors

 """

 for r in range(self.__size):

 for c in range(self.__size):

 if self.__map.getContent()[r][c] != '#':

 self.__nodes[c][r] = Node((c, r)) # does not tell

border electrode

 # populate neighbor nodes

 for i in range(self.__size):

 for j in range(self.__size):

 currentNode = self.__nodes[i][j]

154

 if currentNode is not None:

 self.__populateNeighbor(currentNode)

 # populate node neighbor4 and neighbor8

 def __populateNeighbor(self, node):

 """

 :param node: center Node

 :return:

 """

 if node is None:

 return

 current = node.getPosition()

 if self.__map.isNodeValid((current[0], current[1] - 1)):

 up = self.__nodes[current[0]][current[1] - 1]

 node.add_Four(Position.UP, up)

 if self.__map.isNodeValid((current[0] + 1, current[1])):

 right = self.__nodes[current[0] + 1][current[1]]

 node.add_Four(Position.RIGHT, right)

 if self.__map.isNodeValid((current[0], current[1] + 1)):

 down = self.__nodes[current[0]][current[1] + 1]

 node.add_Four(Position.DOWN, down)

 if self.__map.isNodeValid((current[0] - 1, current[1])):

 left = self.__nodes[current[0] - 1][current[1]]

 node.add_Four(Position.LEFT, left)

 if self.__map.isNodeValid((current[0] + 1, current[1] - 1)):

 node.add_Eight(Position.UPRIGHT, self.__nodes[current[0] +

1][current[1] - 1])

 if self.__map.isNodeValid((current[0] + 1, current[1] + 1)):

 node.add_Eight(Position.DOWNRIGHT, self.__nodes[current[0]

+ 1][current[1] + 1])

 if self.__map.isNodeValid((current[0] - 1, current[1] + 1)):

 node.add_Eight(Position.DOWNLEFT, self.__nodes[current[0]

- 1][current[1] + 1])

 if self.__map.isNodeValid((current[0] - 1, current[1] - 1)):

 node.add_Eight(Position.UPLEFT, self.__nodes[current[0] -

1][current[1] - 1])

 def getSize(self):

 return self.__size

 def getNode(self):

 return self.__nodes

 def getMap(self):

 return self.__map

 def plotGraph(self):

 self.__map.plotMap()

155

…/SingleAgent/Utilities/IClosedList.py

import abc

class ICLosedList(object):

 __metaclass__ = abc.ABCMeta

 @abc.abstractmethod

 def contains(self, state):

 """

 return if state is in the list

 :return:

 """

 def add(self, state):

 """

 add state to list

 :param state:

 :return:

 """

 def clear(self):

 """

 clear list

 :return:

 """

…/SingleAgent/Utilities/Node.py

class Node(object):

 def __init__(self, position):

 """

 :param type: string for wall/block/. etc.

 :param position: tuple for the (x,y)

 neighborFour: Valid 4 neighbors

 neighborEight: valid 8 neighbors

 """

 self.__position = position

 self.__neighborFour = [None for i in range(4)]

 self.__neighborEight = [None for i in range(4)]

 def add_Four(self, index, newNode):

 self.__neighborFour[index] = newNode

156

 def add_Eight(self, index, newNode):

 self.__neighborEight[index] = newNode

 def get_Four(self):

 return self.__neighborFour

 def get_Eight(self):

 return self.__neighborEight

 def get_neighbor(self):

 return self.__neighborFour + self.__neighborEight

 def getPosition(self):

 return self.__position

 def __hash__(self):

 return hash(self.__position)

 def __eq__(self, other):

 if other is None or type(self) != type(other):

 return False

 if self.__position != other.getPosition():

 return False

 return True

 def __ne__(self, other):

 return not self.__eq__(other)

 def __str__(self):

 return "Pos: {0}".format(self.__position)

 def __getstate__(self):

 return self.__dict__

 def __setstate__(self, d):

 self.__dict__ = d

…/SingleAgent/Utilities/ProblemInstance.py

import copy

from Graph import Graph

from Agent import Agent

from ProblemMap import ProblemMap

from Util2 import Util2

class ProblemInstance(object):

 def __init__(self, graph, agents):

157

 """

 _goals: {agentId: (x, y)}

 :param graph:

 :param agents: list of Agents, example [Agent(0,

(1,1),(10,10), 1)]

 """

 self.__graph = graph

 self.__agents = agents

 self.__goals = {}

 self.__initiateGoals()

 assert self.__duplicateGoalsOrStarts() == False, "Agent

initial or goal positions duplicates."

 def __initiateGoals(self):

 self.__goals.clear()

 for agent in self.__agents:

 self.__goals[agent.getId()] = agent.getGoal()

 def __duplicateGoalsOrStarts(self):

 """ check if have duplicates

 :return: True or False

 """

 """ Merge operation? """

 for i in range(len(self.__agents)):

 for j in range(i+1, len(self.__agents)):

 agent1 = self.__agents[i]

 agent2 = self.__agents[j]

 if Util2().withinDis(agent1.getStart(),

agent2.getStart()) or \

 Util2().withinDis(agent1.getGoal(),

agent2.getGoal()):

 return True

 return False

 def join(self, otherInstance):

 """ merge self with otherInstance

 :param otherInstance:

 :return: new problem instance

 """

 for agent in otherInstance.getAgents():

 self.__agents.append(agent)

 self.__goals[agent.getId()] = agent.getGoal()

 assert self.__duplicateGoalsOrStarts() == False, "Agent

initial or goal positions duplicates."

 def addAgent(self, agent):

 if isinstance(agent, list):

 self.__agents += agent

 for s in agent:

158

 self.__goals[s.getId()] = s.getGoal()

 elif isinstance(agent, Agent):

 self.__agents += [agent]

 self.__goals[agent.getId()] = agent.getGoal()

 assert self.__duplicateGoalsOrStarts() == False, "Agent

initial or goal positions duplicates."

 def removeAgent(self, agentId):

 """TODO: """

 if isinstance(agentId, int):

 pass

 def findAgent(self, agentId):

 """return agent = agentId"""

 for agent in self.__agents:

 if agent.getId() == agentId:

 return agent

 def getAgents(self):

 return self.__agents

 def getGraph(self):

 return self.__graph

 def getMap(self):

 return self.getGraph().getMap()

 def getGoals(self):

 return self.__goals

 def startandGoalPosition(self):

 """

 :return: set of start and goal positions

 """

 pos = set([])

 for agent in self.__agents:

 pos.add(agent.getStart())

 pos.add(agent.getGoal())

 return pos

 def plotProblem(self):

 """

 graph + agents for visualization

 :return:

 """

 mapContent = copy.deepcopy(self.getMap().getContent())

 for agent in self.__agents:

 mapContent[agent.getStart()[1]][agent.getStart()[0]] =

str(agent.getId())

159

 mapContent[agent.getGoal()[1]][agent.getGoal()[0]] =

str(agent.getId())

 for i in mapContent:

 print(' '.join(i))

 # print('\n')

…/SingleAgent/Utilities/ProblemMap.py

from SingleAgent.Constants import *

class ProblemMap(object):

 # constructor for known content (a 2D matrix of string)

 def __init__(self, nsize, block):

 """

 __content: (n+1) x (n+1) of chars

 :param height:

 :param width:

 :param block: dictionary {(x,y), (m,n)}

 """

 self.__size = nsize + 1

 self.__content = []

 assert isinstance(block, dict)

 self._generateMap(block)

 def _generateMap(self, block):

 res = [[Symbols.BLANK for i in range(self.__size)] for j in

range(self.__size)]

 # wall *

 for i in range(self.__size):

 res[i][0] = Symbols.WALL

 res[i][self.__size - 1] = Symbols.WALL

 for j in range(self.__size):

 res[0][j] = Symbols.WALL

 res[self.__size - 1][j] = Symbols.WALL

 # add blocks #

 for pos, size in block.items():

 for i in range(size[1]):

 for j in range(size[0]):

 x = pos[0] + i

 y = pos[1] + j

 if self._existCell(pos) and not

self.__outOfBorder((x, y)):

 res[y][x] = Symbols.BLOCK

 self.__content = res

160

 def _existCell(self, pos):

 if pos[0] == self.__size - 1 or pos[1] == self.__size - 1:

 return False

 else:

 return True

 def __outOfBorder(self, position):

 return position[0] > self.__size - 1 or position[1] >

self.__size - 1 or position[0] < 0 or position[1] < 0

 # visualize the generated map

 def plotMap(self):

 for i in self.__content:

 print(' '.join(i))

 def getSize(self):

 return self.__size - 1

 def isNodeValid(self, position):

 """

 check if the position is occupied or out of bound

 :param position: (x,y)

 :return: bool

 """

 if position[0] < 0 or position[1] < 0:

 return False

 if position[0] >= self.__size - 1 or position[1] >=

self.__size - 1:

 return False

 if self.__content[position[1]][position[0]] == '#':

 return False

 return True

 def getContent(self):

 return self.__content

…/SingleAgent/Utilities/StateClosedList.py

from IClosedList import ICLosedList

from SingleAgent.Utilities.ProblemInstance import ProblemInstance

from SingleAgent.Utilities.Node import Node

from SingleAgent.Utilities.Agent import Agent

from SingleAgent.Utilities.Graph import Graph

from SingleAgent.Utilities.ProblemMap import ProblemMap

class StateClosedList(ICLosedList):

 def __init__(self):

161

 self._closeSet = dict()

 def contains(self, state):

 from SingleAgent.States.State import State

 assert isinstance(state, State), "ClosedList contains requires

state class"

 if state not in self._closeSet:

 return False

 preState = self._closeSet[state]

 if state < preState:

 del self._closeSet[preState]

 return False

 return True

 def add(self, state):

 """ rewrite state

 """

 from SingleAgent.States.State import State

 assert isinstance(state, State), "ClosedList add requires

state class"

 self._closeSet[state] = state

 def delete(self, state):

 assert state in self._closeSet, 'state not in StateClosedList,

\n{0}'.format(state)

 del self._closeSet[state]

 def clear(self):

 self._closeSet.clear()

 def getClosedList(self):

 return self._closeSet

 def empty(self):

 return len(self._closeSet) == 0

 def size(self):

 return len(self._closeSet)

 def __str__(self):

 res = ''

 for key, value in self._closeSet.items():

 res += str(key) + '\n'

 return res

…/SingleAgent/Utilities/Util2.py

162

class Util2(object):

 def oppositeDir(self, dir):

 if dir == 0:

 return 2

 elif dir == 2:

 return 0

 elif dir == 1:

 return 3

 elif dir == 3:

 return 1

 def moveDir(self, preNode, nextNode):

 """find moving direction of preNode -> nextNode"""

 pos1 = preNode.getPosition()

 pos2 = nextNode.getPosition()

 if pos1[0] == pos2[0] and pos1[1] == pos2[1]:

 return 0

 elif pos1[1] - pos2[1] == 1:

 return 1

 elif pos1[0] - pos2[0] == -1:

 return 2

 elif pos1[1] - pos2[1] == -1:

 return 3

 elif pos1[0] - pos2[0] == 1:

 return 4

 return None

 def withinDis(self, node1, node2):

 if isinstance(node1, tuple):

 return abs(node1[0] - node2[0]) < 2 and abs(node1[1] -

node2[1]) < 2

 else:

 return abs(node1.getPosition()[0] -

node2.getPosition()[0]) < 2 \

 and abs(node1.getPosition()[1] -

node2.getPosition()[1]) < 2

 def posToIndex(self, pos, nsize):

 return pos[0] * nsize + pos[1]

 def indexToPos(self, index, nsize):

 x = index // nsize

 y = index % nsize

 return (x,y)

 # ================= Functions IO ================

 def readTestFile(self, filename):

 """

 extract probleminstance parameters from file

163

 :param filename:

 :return: size, block, agentlist

 """

 size = 0

 agentNum = 0

 block = {}

 agentList = []

 f = open(filename, 'r')

 for line in f:

 if line[0] != '#':

 c = line.split(' ')

 if c[0] == 'grid':

 size = int(line[5:7])

 elif c[0] =='block':

 block[(int(c[2]), int(c[1]))] = (int(c[3]) -

int(c[1]) + 1, int(c[4]) - int(c[2]) + 1)

 elif c[0] == 'nets':

 agentNum = int(c[1])

 elif c[0] == 'net' or c[0] == 'xet':

 print(c)

 agentList.append([int(c[1]), (int(c[3]),

int(c[2])), (int(c[6]), int(c[5]))])

 f.close()

 print(size)

 print(block)

 print(agentNum)

 print(agentList)

 return size, block, agentNum, agentList

…/SingleAgent/Constants/__init__.py

__all__ = ["Block","Symbols","costs", "Position"]

…/SingleAgent/Constants/Block.py

SMALL = 1

MEDIUM = 2

LARGE = 4

…/SingleAgent/Constants/costs.py

STAY = 1

164

…/SingleAgent/Constants/Position.py

UP = 0

RIGHT = 1

DOWN = 2

LEFT = 3

UPRIGHT = 0

DOWNRIGHT = 1

DOWNLEFT = 2

UPLEFT = 3

STAY = 4

…/SingleAgent/Constants/Symbols.py

WALL = '*'

BLOCK = '#'

BLANK = '.'

AGENTSTART = '@'

AGENTGOAL = '&'

165

Chapter 5 Summary and Recommendations

This work demonstrates finger-powered digital microfluidics based on EWOD and EPD for

portable applications. The voltage output of single/multiple piezoelectric elements in series

connection were characterized under different bending angles for powering digital microfluidic

devices. EWOD devices of various thicknesses were designed and fabricated. The basic modes

of droplet manipulation such as droplet transport, merging, and splitting using finger-powered

EWOD DMF were confirmed. The basic assay steps of glucose detection and immunoassay were

also implemented. To overcome the pinning and surface contamination of EWOD, the same

energy conversion scheme was applied to an alternative fluidic manipulation paradigm:

electrophoretic transport of discrete droplets (EPD). To establish the design criteria for finger-

powered EPD, numerical models for predicting the induced droplet charges and subsequent

electrophoretic forces for various droplet sizes and electrode pitches were developed and

experimentally validated. The transport of aqueous droplets, as well as the direct manipulation of

body fluids, were demonstrated using the finger-powered EPD. Further, a mechanical hand-

rotated drum system and an efficient pin assignment method was integrated into the final system

to demonstrate pre-programmed functional droplet actuation.

In addition, an OD+ID based droplet router was implemented to solve one of the practical

problems in microfluidic chip design: droplet routing problem. The routing results on selected

hard benchmarks show that our algorithm achieves better timing result (latest arrival time), fault

tolerance (number of used cells), as well as total routing cost, compared with the previous best

166

known results. The algorithm also provides a flexible approach to routing droplets of different

routing costs (due to different values of viscosity, pH, etc.) while minimizing the total routing

cost.

The following recommendations are made for future research on finger-powered digital

microfluidic devices.

1. The basic functions of transport and merging in EPD are established in this work.

However, for implementation of full bioassays, other fluidic functions such as droplet

splitting are necessary. A reliable splitting mechanism needs to be developed and

integrated into the current EPD. Alternatively, EPD can function as the transportation

unit in an integrated digital microfluidic solution, which may combine multiple droplet

actuation mechanisms such as EWOD and surface acoustic wave. In the latter scenario, a

proper intermediate component for connecting the different functional units needs to be

developed.

2. To further improve the reliability of EPD and reduce the accidental sticking on

electrodes, shorter touching time, smaller touching area, as well as a hydrophobic solid

surface are desirable. Therefore, more research can be done on suitable material selection

and fabrication methods of EPD electrodes.

3. With a few additional functions added to our current droplet routing algorithm based on

ID, 3-net problems (including droplet merging and splitting) may be solved directly

within the algorithm.

167

Reference

[1] L. Gervais, N. De Rooij, and E. Delamarche, “Microfluidic chips for point-of-care

immunodiagnostics,” Adv. Mater., vol. 23, no. 24, 2011.

[2] E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of

microfluidics in biomedical research.,” Nature, vol. 507, no. 7491, pp. 181–9, 2014.

[3] M. Rohan, “Point-of-Care Diagnostics Market worth 36.96 Billion USD by 2021,”

Markets and Markets. [Online]. Available:

http://www.marketsandmarkets.com/PressReleases/point-of-care-diagnostic.asp.

[Accessed: 05-Feb-2017].

[4] Y. S. Zhang et al., “Google Glass-Directed Monitoring and Control of Microfluidic

Biosensors and Actuators.,” Sci. Rep., vol. 6, p. 22237, 2016.

[5] N. Meredith, C. Quinn, D. Cate, T. Reilly, J. Volckens, and C. Henry, “Paper-Based

Analytical Devices for Environmental Analysis,” Analyst, vol. 141, pp. 1874–1887, 2016.

[6] B. Bruijns, A. van Asten, R. Tiggelaar, and H. Gardeniers, “Microfluidic devices for

forensic DNA analysis: A review,” Biosensors, vol. 6, no. 3, pp. 1–35, 2016.

[7] S. Jovanovich et al., “Developmental validation of a fully integrated sample-to-profile

rapid human identification system for processing single-source reference buccal samples,”

Forensic Sci. Int. Genet., vol. 16, pp. 181–194, 2015.

168

[8] S. Choi, “Powering point-of-care diagnostic devices,” Biotechnol. Adv., vol. 34, no. 3, pp.

321–330, 2016.

[9] P. Zwanenburg, X. Li, and X. Y. Liu, “Magnetic valves with programmable timing

capability for fluid control in paper-based microfluidics,” Proc. IEEE Int. Conf. Micro

Electro Mech. Syst., pp. 253–256, 2013.

[10] D.-H. Kim et al., “Dissolvable films of silk fibroin for ultrathin conformal bio-integrated

electronics.,” Nat. Mater., vol. 9, no. 6, pp. 511–7, 2010.

[11] S. A. Bhakta, R. Borba, M. Taba, C. D. Garcia, and E. Carrilho, “Determination of nitrite

in saliva using microfluidic paper-based analytical devices,” Anal. Chim. Acta, vol. 809,

pp. 117–122, 2014.

[12] J. H. Son et al., “Hemolysis-free blood plasma separation.,” Lab Chip, vol. 14, no. 13, pp.

2287–92, 2014.

[13] L. Gervais and E. Delamarche, “Toward one-step point-of-care immunodiagnostics using

capillary-driven microfluidics and PDMS substrates.,” Lab Chip, vol. 9, no. 23, pp. 3330–

3337, 2009.

[14] D. Juncker et al., “Autonomous Microfluidic Capillary System,” vol. 74, no. 24, pp. 1–6,

2003.

[15] K. K. Lee and C. H. Ahn, “A new on-chip whole blood/plasma separator driven by

asymmetric capillary forces.,” Lab Chip, vol. 13, no. 16, pp. 3261–7, 2013.

169

[16] I. K. Dimov et al., “Stand-alone self-powered integrated microfluidic blood analysis

system (SIMBAS),” Lab Chip, vol. 11, no. 5, pp. 845–850, 2011.

[17] I. K. Dimov et al., “Stand-alone self-powered integrated microfluidic blood analysis

system (SIMBAS),” Lab Chip, vol. 11, no. 5, pp. 845–850, 2011.

[18] F. B. Myers, R. H. Henrikson, J. Bone, and L. P. Lee, “A Handheld Point-of-Care

Genomic Diagnostic System,” PLoS One, vol. 8, no. 8, 2013.

[19] A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, “Patterned paper as a

platform for inexpensive, low-volume, portable bioassays,” Angew. Chemie - Int. Ed., vol.

46, no. 8, pp. 1318–1320, 2007.

[20] K. Miyamoto, R. Yamamoto, K. Kawai, and S. Shoji, “Stand-alone microfluidic system

using partly disposable PDMS microwell array for high throughput cell analysis,” in

Sensors and Actuators, A: Physical, vol. 188, pp. 133–140, 2012.

[21] K. A. Addae-Mensah, Y. K. Cheung, V. Fekete, M. S. Rendely, and S. K. Sia, “Actuation

of elastomeric microvalves in point-of-care settings using handheld, battery-powered

instrumentation.,” Lab Chip, vol. 10, pp. 1618–1622, 2010.

[22] Y. Lan et al., “Polyoxometalate-based metal-organic framework-derived hybrid

electrocatalysts for highly efficient hydrogen evolution reaction,” J. Mater. Chem. A

Mater. energy Sustain., vol. 0, pp. 1–6, 2013.

170

[23] C.-H. Shih, H.-C. Wu, C.-Y. Chang, W.-H. Huang, and Y.-F. Yang, “An enzyme-linked

immunosorbent assay on a centrifugal platform using magnetic beads.,” Biomicrofluidics,

vol. 8, no. 5, p. 52110, 2014.

[24] S. Z. Andreasen et al., “Integrating Electrochemical Detection with Centrifugal

Microfluidics for Real-Time and Fully Automated Sample Testing,” RSC Adv, vol. 5, no.

22, pp. 17187–17193, 2015.

[25] R. J. M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, and R. Mertens, “Micropower

energy harvesting,” Solid. State. Electron., vol. 53, no. 7, pp. 684–693, 2009.

[26] J. Olivo, S. Carrara, G. De Micheli, and G. De Micheli, “Energy Harvesting and Remote

Powering for Implantable Biosensors,” IEEE Sens. J., vol. 11, no. 7, pp. 1573–1586,

2011.

[27] H. Zhang et al., “Triboelectric nanogenerator as self-powered active sensors for detecting

liquid/gaseous water/ethanol,” Nano Energy, vol. 2, no. 5, pp. 693–701, 2013.

[28] H. Zhang, Y. Yang, T. C. Hou, Y. Su, C. Hu, and Z. L. Wang, “Triboelectric

nanogenerator built inside clothes for self-powered glucose biosensors,” Nano Energy,

vol. 2, no. 5, pp. 1019–1024, 2013.

[29] L. Jiang, M. Mancuso, and D. Erickson, “Light-Driven Microfluidics Towards Solar-

Powered Point-of-Care Diagnostics,” in 16th International Conference on Miniaturized

Systems for Chemistry and Life Sciences, pp. 1333–1335, 2012

171

[30] K. Iwai, R. D. Sochol, L. P. Lee, and L. Lin, “Finger-Powered Bead-in-Droplet

Microfluidic System for Point-of-Care Diagnostics,” Proc. IEEE 25th Int. Conf. Micro

Electro Mech. Syst., pp. 949–952, 2012.

[31] K. Iwai, R. D. Sochol, and L. Lin, “Finger-powered, pressure-driven microfluidic pump,”

Proc. IEEE Int. Conf. Micro Electro Mech. Syst., pp. 1131–1134, 2011.

[32] K. Iwai, A. T. Higa, R. D. Sochol, and L. Lin, “Finger-powered microdroplet generator,”

Proc. 16th Int. Solid-State Sensors, Actuators Microsystems Conf., pp. 230–233, 2011.

[33] C. Liu et al., “ATimer-Actuated, Immunoassay Cassette for Detecting Molecular Markers

in Oral Fluids,” Lab Chip, vol. 36, no. 3, pp. 490–499, 2010.

[34] G. Korir and M. Prakash, “Punch Card Programmable Microfluidics,” PLoS One, vol. 10,

no. 3, pp. e0115993, Mar. 2015.

[35] E. Samiei et al., “A review of digital microfluidics as portable platforms for lab-on a-chip

applications,” Lab Chip, vol. 16, no. 13, pp. 2376–2396, 2016.

[36] M. H. Shamsi, K. Choi, A. H. C. Ng, and A. R. Wheeler, “A digital microfluidic

electrochemical immunoassay,” Lab Chip, vol. 14, no. 3, pp. 547–54, 2014.

[37] A. H. C. Ng et al., “Digital Micro fluidic Magnetic Separation for Particle-Based

Immunoassays,” Anal. Chem., vol. 84, pp. 8805–12, 2012.

[38] E. M. Miller, A. H. C. Ng, U. Uddayasankar, and A. R. Wheeler, “A digital microfluidic

approach to heterogeneous immunoassays,” Anal. Bioanal. Chem., vol. 399, no. 1, pp.

337–345, 2011.

172

[39] A. H. C. Ng, U. Uddayasankar, and A. R. Wheeler, “Immunoassays in microfluidic

systems,” Anal. Bioanal. Chem., vol. 397, no. 3, pp. 991–1007, 2010.

[40] Y.-J. Liu, D.-J. Yao, H.-C. Lin, W.-Y. Chang, and H.-Y. Chang, “DNA ligation of

ultramicro volume using an EWOD microfluidic system with coplanar electrodes,” J.

Micromechanics Microengineering, vol. 18, no. 4, p. 45017, 2008.

[41] Y.-H. Chang, G.-B. Lee, F.-C. Huang, Y.-Y. Chen, and J.-L. Lin, “Integrated polymerase

chain reaction chips utilizing digital microfluidics.,” Biomed. Microdevices, vol. 8, no. 3,

pp. 215–25, Sep. 2006.

[42] I. Barbulovic-Nad, H. Yang, P. S. Park, and A. R. Wheeler, “Digital microfluidics for cell-

based assays,” Lab Chip, vol. 8, no. 4, pp. 519–26, 2008.

[43] I. A. Eydelnant et al., “Virtual microwells for digital microfluidic reagent dispensing and

cell culture,” Lab Chip, vol. 12, no. 4, pp. 750–757, 2012.

[44] V. Srinivasan, V. K. Pamula, and R. B. Fair, “An integrated digital microfluidic lab-on-a-

chip for clinical diagnostics on human physiological fluids.,” Lab Chip, vol. 4, no. 4, pp.

310–315, 2004.

[45] M. J. Jebrail et al., “A digital microfluidic method for dried blood spot analysis,” Lab

Chip, vol. 11, no. 19, pp. 3218–3224, 2011.

[46] V. Srinivasan, V. K. Pamula, and R. B. Fair, “Droplet-based microfluidic lab-on-a-chip

for glucose detection,” Anal. Chim. Acta, vol. 507, no. 1, pp. 145–150, 2004.

173

[47] V. K. Bhutani, M. Kaplan, B. Glader, M. Cotten, J. Kleinert, and V. Pamula, “Point-of-

Care Quantitative Measure of Glucose-6-Phosphate Dehydrogenase Enzyme Deficiency.,”

Pediatrics, vol. 136, no. 5, pp. 2015-2122, 2015.

[48] R. Sista et al., “Development of a digital microfluidic platform for point of care testing,”

Lab Chip, vol. 8, no. 12, p. 2091, 2008.

[49] S.-K. Fan, T.-H. Hsieh, and D.-Y. Lin, “General digital microfluidic platform

manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.,”

Lab Chip, vol. 9, no. 9, pp. 1236–1242, 2009.

[50] Z. Guttenberg et al., “Planar chip device for PCR and hybridization with surface acoustic

wave pump.,” Lab Chip, vol. 5, no. 3, pp. 308–17, 2005.

[51] A. A. García et al., “Magnetic movement of biological fluid droplets,” J. Magn. Magn.

Mater., vol. 311, no. 1, pp. 238–243, 2007.

[52] E. Bormashenko, R. Pogreb, Y. Bormashenko, A. Musin, and T. Stein, “New

investigations on ferrofluidics: Ferrofluidic marbles and magnetic-field-driven drops on

superhydrophobic surfaces,” Langmuir, vol. 24, no. 21, pp. 12119–12122, 2008.

[53] V. Miralles, A. Huerre, H. Williams, B. Fournié, and C. Jullien, “A versatile technology

for droplet-based microfluidics: thermomechanical actuation,” Lab Chip, vol. 15, no. 9,

pp. 2133–2139, 2015.

[54] L. Malic et al., “Integration and detection of biochemical assays in digital microfluidic

LOC devices,” Lab Chip, vol. 10, no. 4, pp. 418–431, 2010.

174

[55] T.-Y. Ho, “Design automation for digital microfluidic biochips,” IPSJ Trans. Syst. LSI

Des. Methodol., vol. 7, pp. 16–26, 2014.

[56] Tsung-Yi Ho, K. Chakrabarty, and P. Pop, “Digital microfluidic biochips: Recent research

and emerging challenges,” Proc. 9th Int. Conf. Hardware/Software Codesign Syst. Synth.

(CODES+ISSS), pp. 335–343, 2011.

[57] Fei Su, W. Hwang, and K. Chakrabarty, “Droplet Routing in the Synthesis of Digital

Microfluidic Biochips,” Proc. Des. Autom. Test Eur. Conf., vol. 1, pp. 1–6, 2006.

[58] K. F. Böhringer and S. Member, “Modeling and Controlling Parallel Tasks in Droplet-

Based Microfluidic Systems,” Proc. Computer-Aided Design, 2006, vol. 25, no. 2, pp.

334–344.

[59] M. Cho and D. Z. Pan, “A High-Performance Droplet Routing Algorithm for Digital

Microfluidic Biochips,” in IEEE Transactions on Computer-Aided Design of Integrated

Circuits a nd Systems, 2008, vol. 27, no. 10, pp. 216–223.

[60] T. W. Huang and T. Y. Ho, “A fast routability-and performance-driven droplet routing

algorithm for digital microfluidic biochips,” in ICCD’09 Proceedings of the 2009 IEEE

international conference on Computer design, 2010, pp. 445–450.

[61] P. Roy, H. Rahaman, and P. Dasgupta, “A novel droplet routing algorithm for digital

microfluidic biochips,” in Proceedings of the 20th symposium on Great lakes symposium

on VLSI - GLSVLSI ’10, 2010, p. 441.

175

[62] S. Chakraborty, S. Chakraborty, C. Das, and P. Dasgupta, “Efficient two phase heuristic

routing technique for digital microfluidic biochip,” IET Comput. Digit. Tech., vol. 10, no.

5, pp. 233–242, 2016.

[63] P. Yuh, S. Sapatnekar, C. Yang, and Y. Chang, “A Progressive-ILP Based Routing

Algorithm for Cross-Referencing Biochips,” in DAC, pp. 284–289, 2008.

[64] J. W. Chang, S. H. Yeh, T. W. Huang, and T. Y. Ho, “An ilp-based routing algorithm for

pin-constrained EWOD chips with obstacle avoidance,” IEEE Trans. Comput. Des. Integr.

Circuits Syst., vol. 32, no. 11, pp. 1655–1667, 2013.

[65] Y. Zhao and K. Chakrabarty, “Co-optimization of droplet routing and pin assignment in

disposable digital microfluidic biochips,” Proc. 2011 Int. Symp. Phys. Des. - ISPD ’11, p.

69, 2011.

[66] O. Keszocze, R. Wille, T.-Y. Ho, and R. Drechsler, “Exact One-pass Synthesis of Digital

Microfluidic Biochips,” in DAC, 2014.

[67] P. H. Yuh, C. C. Y. Lin, T. W. Huang, T. Y. Ho, C. L. Yang, and Y. W. Chang, “A SAT-

based routing algorithm for cross-referencing biochips,” in International Workshop on

System Level Interconnect Prediction, SLIP, 2011, pp. 1–7.

[68] R. Bhattacharya, H. Rahaman, and P. Roy, “A new heterogeneous droplet routing

technique and its simulator to improve route performance in digital microfluidic

biochips,” in International Conference on Microelectronics, Computing and

Communication, 2016.

176

[69] P. Roy, P. Howlada, R. Bhattacharjee, and H. Rahaman, “A new cross contamination

aware routing method with intelligent path exploration in digital microfludics biochips,”

Proc. of IEEE DTIS, 2013.

[70] Y. Zhao and K. Chakrabarty, “Cross-contamination Avoidance Technique for Droplet

Routing in Digital Microfluidic Biochip,” in IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 31, no. 6, pp. 817–830, 2012.

[71] T.-W. Huang, C.-H. Lin, and T.-Y. Ho, “A Contamination Aware Droplet Routing

Algorithm for Digital Microfluidic Biochips,” in Proc. of the ICCAD, 2009, pp. 151–156.

[72] T. Xu and K. Chakrabarty, “Broadcast electrode-addressing for pin-constrained multi-

functional digital microfluidic biochips,” in Proceedings of the 45th Design Automation

Conference, 2008, p. 991.

[73] T. Xu and K. Chakrabarty, “Droplet-trace-based array partitioning and a pin assignment

algorithm for the automated design of digital microfluidic biochips,” Proc. Codes+Isss,

pp. 112–117, 2006.

[74] T. Xu and K. Chakrabarty, “A cross-referencing-based droplet manipulation method for

high-throughput and pin-constrained digital microfluidic arrays,” Proc. -Design, Autom.

Test Eur., pp. 552–557, 2007.

[75] T. Xu, S. Member, and K. Chakrabarty, “A Droplet-Manipulation Method for Achieving

Digital Microfluidic Biochips,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 27,

no. 11, pp. 1905–1917, 2008.

177

[76] Y. Luo and K. Chakrabarty, “Design of Pin-Constrained General-Purpose Digital

Microfluidic Biochips,” in IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2013, vol. 32, no. 9, pp. 1307–1320.

[77] Y. C. Lei, C. S. Hsu, J. D. Huang, and J. Y. Jou, “Chain-based pin count minimization for

general-purpose digital microfluidic biochips,” Proc. Asia South Pacific Des. Autom.

Conf. ASP-DAC, vol. 25–28–Janu, pp. 599–604, 2016.

[78] S. Chatterjee, H. Rahaman, and T. Samanta, “Multi-objective optimization algorithm for

efficient pin-constrained droplet routing technique in digital microfluidic biochip,” Proc. -

Int. Symp. Qual. Electron. Des. ISQED, pp. 252–257, 2013.

[79] R. Mukherjee, H. Rahaman, I. Banerjee, T. Samanta, and P. Dasgupta, “A heuristic

method for co-optimization of pin assignment and droplet routing in digital microfluidic

biochip,” Proc. IEEE Int. Conf. VLSI Des., pp. 227–232, 2012.

[80] Y. Zhao and K. Chakrabarty, “Simultaneous optimization of droplet routing and control-

pin mapping to electrodes in digital microfluidic biochips,” IEEE Trans. Comput. Des.

Integr. Circuits Syst., vol. 31, no. 2, pp. 242–254, 2012.

[81] C. C. Y. Lin and Y. W. Chang, “ILP-based pin-count aware design methodology for

microfluidic biochips,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 29, no. 9, pp.

1315–1327, 2010.

178

[82] S. K. Cho, H. Moon, and C.-J. J. Kim, “Creating, Transporting, Cutting, and Merging

Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits,” J.

Microelectromechanical Syst., vol. 12, no. 1, pp. 70–80, Feb. 2003.

[83] M. J. Schertzer, R. Ben-Mrad, and P. E. Sullivan, “Using capacitance measurements in

EWOD devices to identify fluid composition and control droplet mixing,” Sensors

Actuators, B Chem., vol. 145, no. 1, pp. 340–347, 2010.

[84] E. Samiei and M. Hoorfar, “Systematic analysis of geometrical based unequal droplet

splitting in digital microfluidics,” J. Micromechanics Microengineering, vol. 25, no. 5, p.

55008, 2015.

[85] J. Berthier, P. Dubois, P. Clementz, P. Claustre, C. Peponnet, and Y. Fouillet, “Actuation

potentials and capillary forces in electrowetting based microsystems,” Sensors Actuators,

A Phys., vol. 134, no. 2, pp. 471–479, 2007.

[86] S. W. Walker, S. W. Walker, B. Shapiro, and B. Shapiro, “Modeling the fluid dynamics of

electrowetting on dielectric(EWOD),” J. microelectromechanical Syst., vol. 15, no. 4, pp.

986–1000, 2006.

[87] W. C. Nelson and C. C. J. Kim, “Journal of Adhesion Science and Droplet Actuation by

(EWOD): A Review,” J. Adhes. Sci. Technol., vol. 26, no. August 2012, pp. 1747–1771,

2012.

[88] P. Lalieux, “PIEZOELECTRICITY,” 2013.

179

[89] W. H. Liew, M. S. Mirshekarloo, S. Chen, K. Yao, and F. E. H. Tay, “Nanoconfinement

induced crystal orientation and large piezoelectric coefficient in vertically aligned P(VDF-

TrFE) nanotube array,” Sci. Rep., vol. 5, p. 9790, 2015.

[90] N. G. Elvin and a. a. Elvin, “Large deflection effects in flexible energy harvesters,” J.

Intell. Mater. Syst. Struct., vol. 23, no. 13, pp. 1475–1484, 2012.

[91] K. Kanda, T. Saito, Y. Iga, K. Higuchi, and K. Maenaka, “Influence of parasitic

capacitance on output voltage for series-connected thin-film piezoelectric devices,”

Sensors (Switzerland), vol. 12, no. 12, pp. 16673–16684, 2012.

[92] H. Chen, J. Cogswell, C. Anagnostopoulos, and M. Faghri, “A fluidic diode, valves, and a

sequential-loading circuit fabricated on layered paper,” Lab Chip, vol. 12, no. 16, p. 2909,

2012.

[93] D. J. Im, M. M. Ahn, B. S. Yoo, D. Moon, D. W. Lee, and I. S. Kang, “Discrete

electrostatic charge transfer by the electrophoresis of a charged droplet in a dielectric

liquid,” Langmuir, vol. 28, no. 32, pp. 11656–11661, 2012.

[94] D. J. Im, J. Noh, D. Moon, and I. S. Kang, “Electrophoresis of a charged droplet in a

dielectric liquid for droplet actuation,” Anal. Chem., vol. 83, no. 13, pp. 5168–5174, 2011.

[95] M. Hase, S. N. Watanabe, and K. Yoshikawa, “Rhythmic motion of a droplet under a dc

electric field,” Phys. Rev. E, vol. 74, no. 4, p. 46301, 2006.

[96] S. Mhatre and R. M. Thaokar, “Drop motion, deformation, and cyclic motion in a non-

uniform electric field in the viscous limit,” Phys. Fluids, vol. 25, no. 7, p. 72105, 2013.

180

[97] A. M. Drews, M. Kowalik, and K. J. M. Bishop, “Charge and force on a conductive

sphere between two parallel electrodes: A Stokesian dynamics approach,” J. Appl. Phys.,

vol. 116, no. 7, p. 74903, 2014.

[98] C. P. Lee, H. C. Chang, and Z. H. Wei, “Charged droplet transportation under direct

current electric fields as a cell carrier,” Appl. Phys. Lett., vol. 101, no. 1, p. 14103, 2012.

[99] D. J. Im, B. S. Yoo, M. M. Ahn, D. Moon, and I. S. Kang, “Digital Electrophoresis of

Charged Droplets,” Anal. Chem., vol. 85, no. 8, pp. 4038–4044, 2013.

[100] M. Specialties, “Piezo Film Sensors Technical Manual,” Measurement Specialties, Inc.,

2006, online: https://www.sparkfun.com/datasheets/Sensors/Flex/MSI-techman.pdf.

[101] Hooker and M. W., Lockheed Martin Engineering and Sciences Co., 1998, “Properties of

PZT-Based Piezoelectric Ceramics Between -150 and 250 C,” rechived from:

https://ntrs.nasa.gov/search.jsp?R=19980236888.

[102] M. E. O’Neill and K. Stewartson, “On the slow motion of a sphere parallel to a nearby

plane wall,” J. Fluid Mech., vol. 27, no. 4, p. 705, 1967.

[103] A. J. Goldman, R. G. Cox, and H. Brenner, “Slow viscous motion of a sphere parallel to a

plane wall—I Motion through a quiescent fluid,” Chem. Eng. Sci., vol. 22, no. 4, pp. 637–

651, 1967.

[104] M. Hase, S. N. Watanabe, and K. Yoshikawa, “Rhythmic motion of a droplet under a dc

electric field,” Phys. Rev. E, vol. 74, no. 4, p. 46301, 2006.

181

[105] Y.-M. M. Jung, H.-C. C. Oh, and I. S. Kang, “Electrical charging of a conducting water

droplet in a dielectric fluid on the electrode surface,” J. Colloid Interface Sci., vol. 322,

no. 2, pp. 617–623, 2008.

[106] T. WARD and G. M. HOMSY, “Chaotic streamlines in a translating drop with a uniform

electric field,” J. Fluid Mech., vol. 547, no. 1, p. 215, 2006.

[107] P.-H. Y. P.-H. Yuh, C.-L. Y. C.-L. Yang, and Y.-W. C. Y.-W. Chang, “BioRoute: a

network-flow based routing algorithm for digital microfluidic biochips,” 2007 IEEE/ACM

Int. Conf. Comput. Des., pp. 752–757, 2007.

[108] P. Roy, H. Rahaman, R. Bhattacharya, and P. Dasgupta, “A best path selection based

parallel router for DMFBs,” Proc. - 2011 Int. Symp. Electron. Syst. Des. ISED 2011, pp.

176–181, 2011.

[109] P. Roy, H. Rahaman, and P. Dasgupta, “Two-level clustering-based techniques for

intelligent droplet routing in digital microfluidic biochips,” Integr. VLSI J., vol. 45, no. 3,

pp. 316–330, 2012.

[110] O. Keszocze, R. Wille, K. Chakrabarty, and R. Drechsler, “A general and exact routing

methodology for Digital Microfluidic Biochips,” 2015 IEEE/ACM Int. Conf. Comput.

Des. ICCAD 2015, pp. 874–881, 2016.

[111] T. W. Huang and T. Y. Ho, “A two-stage integer linear programming-based droplet

routing algorithm for pin-constrained digital microfluidic biochips,” IEEE Trans. Comput.

Des. Integr. Circuits Syst., vol. 30, no. 2, pp. 215–228, 2011.

182

[112] D. Silver, 2005, “Cooperative Pathfinding,”, In Young, R. M., and Laird, J. E., eds.,

AIIDE, 117–122. AAAI Press.

[113] K. C. Wang and A. Botea, “Fast and Memory-Efficient Multi-Agent Path finding,” in

Proc. ICAPS 2008, pp. 380–387, 2008.

[114] T. Standley, “Finding Optimal Solutions to Cooperative Pathfinding Problems,” in

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10),

2010, pp. 173–178.

[115] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The Increasing Cost Tree Search for

Optimal Multi-agent Pathfinding,” Artif. Intell., vol. 2, no. i, pp. 662–667, 2010.

[116] G. Sharon, R. Stern, A. Felner, and N. Sturtevant, “Conflict-Based Search For Optimal

Multi-Agent Path Finding,” Proc. Fifth Annu. Symp. Comb. Search, pp. 563–569, 2012.

[117] E. Boyarski, A. Felner, G. Sharon, and R. Stern, “Don’t Split , Try To Work It Out :

Bypassing Conflicts in Multi-Agent Pathfinding,” Int. Conf. Autom. Plan. Sched., pp. 47–

51, 2015.

