
UCLA
UCLA Electronic Theses and Dissertations

Title
Finger-powered Digital Microfluidics for Micro Droplet Manipulation

Permalink
https://escholarship.org/uc/item/1j47t4fz

Author
Peng, Cheng

Publication Date
2017

Supplemental Material
https://escholarship.org/uc/item/1j47t4fz#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1j47t4fz
https://escholarship.org/uc/item/1j47t4fz#supplemental
https://escholarship.org
http://www.cdlib.org/


 

UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

 

Finger-powered Digital Microfluidics for  

Micro Droplet Manipulation 

 

 

 

A dissertation submitted in partial satisfaction of the  

requirements for the degree Doctor of Philosophy  

in Mechanical Engineering 

 

by 

 

Cheng Peng 

 

 

 

 

2017 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Cheng Peng 

2017 



ii 

 

 

ABSTRACT OF THE DISSERTATION 

 

 

Finger-powered Digital Microfluidics for  

Micro Droplet Manipulation  

 

by  

Cheng Peng 

Doctor of Philosophy in Mechanical Engineering 

 University of California, Los Angeles, 2017  

Professor Yongho Ju, Chair  

 

Microfluidic devices that do not require bulky peripheral hardware, such as pumps and 

external battery/power supplies, are a suitable technology for portable applications in resource-

constrained settings, such as point-of-care (POC) diagnosis in developed countries, 

environmental monitoring, and on-site forensic analysis, etc. The existing portable microfluidic 

devices are mostly based on microchannel structures, in which the pre-defined channels limit 

their functional flexibility, rendering them difficult to scale up. Digital microfluidics, on the 

other hand, can tackle this problem since they deal with discrete droplets individually and can 

therefore provide more on-demand flexibility and versatility. Most digital microfluidic devices, 

however, require external electric power sources. 
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We first propose finger-powered digital microfluidic (F-DMF) based on electrowetting on 

dielectric (EWOD). Instead of requiring an external power supply, our F-DMF uses piezoelectric 

elements to convert the mechanical energy produced by human fingers into electric voltage 

pulses for droplet manipulation. The voltage outputs of piezoelectric element mounted in 

cantilever beam configuration are studied theoretically and experimentally. Using this energy 

conversion scheme, the basic modes of droplet operations, such as droplet transport, splitting, 

and merging on EWOD devices are confirmed. The key assay steps involved in glucose 

detection and immunoassay are also successfully performed using F-DMF-EWOD.  

Exploiting the same energy conversion scheme, F-DMF based on the electrophoretic 

transport of discrete droplets (EPD), which has the potential to overcome pinning and surface 

contamination often encountered in EWOD, is then presented. Successful EPD actuation, 

however, requires the piezoelectric elements to provide both sufficient charge and voltage pulse 

duration. These requirements are quantified using numerical models to predict the electrical 

charges induced on the droplets and the subsequent electrophoretic forces. The transport and 

merging of aqueous droplets as well as direct manipulation of body fluids is experimentally 

demonstrated using F-EPD-DMF. Further, a mechanical system and an efficient pin-assignment 

scheme are explored to facilitate the practical implementation of pre-programmed and functional 

actuation of droplets in the EPD-based system.   

For the second part of this thesis, one practical issue in digital microfluidics biochip (DMFB) 

design is discussed: the droplet routing problem, which largely decides the performance and 

correctness of the system. The problem is formulated to a multi-agent path finding problem 

(MAPF) and an approximate algorithm based on Independent Detection (ID) is applied to solve 
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the problem. The modified ID algorithm shows promising performance on selected benchmark 

problems with medium number of droplets (≤12). Overall, it achieves better timing result (~15% 

reduction) and total routing length (~50% reduction) with no compromise in fault tolerance 

(indicated by the total number of used cells), when compared with the previous best known 

results.  
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Chapter 1 Introduction 

 

1.1 Portable Microfluidic Devices 

1.1.1 Motivation 

 

Microfluidics refers to the technology of manipulating fluids at sub-millimeter length scales. 

It offers the advantages of low-volume sample consumption, high-throughput fluidic handling, 

and miniaturization, compared with conventional laboratory tests [1], [2]. Microfluidic devices 

that do not require external hardware have garnered significant attention as a suitable technology 

for a wide range of portable applications, such as point-of-care (POC) diagnostics in resource-

constraint settings [3], wearable monitoring devices [4], on-site environmental analysis [5], and 

forensic analysis [6], [7], where a central laboratory and trained workers, as well as access to a 

reliable electric supply are unavailable.  

However, the powering for various microfluidic components often required for fluidic 

control, such as micropump, microvalve, micromixer, and micro-separator, is becoming a major 

engineering challenge for portable applications [8]. Therefore, a fluid manipulation mechanism 

that does not require external pumping systems, power supplies, or other external support 

equipment is the key to the successful development of portable microfluidics. 
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1.1.2 Existing Portable Microfluidic Devices  

 

The majority of existing portable microfluidic devices are based on microchannel structures, 

and can be categorized into three types based on their fluid pumping schemes: “passive” 

pumping, “active” pumping powered by battery, and powered by energy obtained from the 

surrounding environment (including human) [8].  

 

Passive pumping  

Capillary action is the ability of a liquid to flow in narrow channels without the help of 

external force and is a popular mechanism, which is widely exploited in passive pumping. For 

example, paper-based microfluidic devices use capillary action to guide fluids along the 

patterned “channel” on paper (Figure 1.1(a)). Recent studies further improved the fluid handling 

accuracy of paper-based microfluidics through the use of different components, including a 

magnetic-valve for timed fluidic control [9] and a delay valve made with sugar for the sequential 

delivery of fluids [10]. Using these fluidic components, various biomedical applications of 

paper-based microfluidics, such as the quantification of the nitrite levels in saliva [11] and the 

separation of hemolysis-free blood plasma [12], have been demonstrated. As an alternative to 

paper, different materials have also been proposed to improve the mixing further [13-15].   

Degas-driven flow is another passive pumping mechanism that takes advantage of the free 

volume of PDMS. The potential energy of the evacuated PDMS drives the absorption of air in 
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the sealed side of the microchannel, and thus pumps the fluid in the channel, as shown in Figure 

1.1(b)[16-18].   

 

 

Figure 1.1 (a): Paper patterned with photoresist to actuate the fluid through capillary action and 

to carry out glucose assay [19]; (b): Schematic of a degas-driven microfluidic chip device for on-

chip blood separation [17].   

 

Active pumping powered by battery 

Sometimes, active microfluidic components are necessary for precise fluid handling, which is 

required for certain bio-medical assays to achieve high precision and efficient reactions [8]. 

Developing low power consumption components that can be powered by the on-chip battery is 
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one way to pursue this goal. For example, solenoid actuators and electro-osmosis (EO) pumps 

powered by a small powering unit are implemented on chips as valves and pumps for fluid 

injection and control [20] (Figure 1.2(a)). Similarly, a handheld microfluidic device 

incorporating multiple elastomeric microvalves and powered by a 9-V battery was demonstrated 

for horseradish peroxidase (HRP) amplification (Figure 1.2(b)) [21]. The use of battery to power 

the microsyringe pumps integrated in the portable system for fluid actuation, has also been 

reported [22].  

Another interesting method for eliminating the bulky pumping system is to use centrifugal 

force, generated by the rotation of the microfluidic disk [23], [24]. These systems usually depend 

on a step motor for actuation, which can be potentially powered by a battery for portable 

applications. 

 

 

Figure 1.2 (a): A portable microfluidic device for potential parallel cell analysis. A lower power 

consumption is achieved with 10 solenoid actuators as valves and several electro-osmosis (EO) 
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pumps for fluid control [20]; (b): Schematic of a battery operated microfluidic system employing 

elastomeric valves for fluidic control [21]. 

 

 

Active pumping powered by environment/human 

Reducing the power consumption can hardly be the ultimate solution, if the key components 

of microfluidics are to be adopted [8]. Energy conversion modules, combining various energy 

harvesters with a small rechargeable battery or other energy storage system, have been reported 

to replace the traditional  battery for autonomous power supply [25], [26]. Table 1.1 summarizes 

the common types of energy sources, the approximate magnitude of the returned power, and their 

corresponding advantages/disadvantages [25], [26]. It is shown that vibration-based mechanical 

energy is more accessible than solar and thermal energy. As an example, the energy harvested 

from the movement of human body with a triboelectric nanogenerator is used to charge the 

lithium battery that powers glucose biosensors and water/ethanol detectors [27], [28]. 

 

Table 1.1: Source and harvested power for different energy sources  [25], [26]. 

Source Harvested Power Advantage/disadvantage 

Ambient light  High power 

  Indoor ~ 10 𝜇𝑊/𝑐𝑚2 

  Outdoor ~ 10 𝑚𝑊/𝑐𝑚2 

Vibration/kinetic (Human) ~ 4 𝜇𝑊/𝑐𝑚2 High accessibility 

Thermoelectric (Human)  ~ 30 𝜇𝑊/𝑐𝑚2 Environmental dependent 

Fuel cells  ~ 50 𝜇𝑊/𝑐𝑚2  In vitro 
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Energy conversion modules can also be used in POC devices to charge the battery, or even 

better, to directly manipulate fluids through various energy forms. A “light-driven” flow exploits 

the change in wettability of a polymer material with temperature, to pump and control fluids. The 

temperature difference is generated by the ambient light (Figure 1.3(a)) [29]. Moreover, the 

mechanical energy of the human body is directly used to provide the hydraulic pressure for fluid 

pumping in microchannels. Figure 1.3(b) shows a finger-powered device for continuous droplet 

formation and transportation [30]–[32].  Figure 1.3(c) illustrates a novel spring-driven 

mechanical actuator for the automation of fluid control in a lateral-flow based cassette through 

the opening/closing of a series of pre-evacuated air pouches [33]. A reprogrammable punch-card 

based portable microfluidic device has also been designed for low-cost and reconfigurable 

applications [34].  

 

Figure 1.3 (a): “Light-driven” microfluidics for continuous-flow PCR, which exploits the change 

in wettability of a polymer material with temperature [29]; (b): Finger-powered droplet 
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microfluidic device based on hydraulic pressure, having an integrated deformable chamber that 

can be activated by a human finger press to pump multiple streams of fluids [32]; (c): A timer-

actuated immunoassay cassette for biomarker detection in oral fluids. When the dial rotates 

under spring-force, the actuation balls pushes the on-chip air pouches to drive the fluids in the 

lateral flow chips [33]. 

 

 

1.2 Digital Microfluidics (DMF) 

1.2.1 Digital-microfluidics and Applications 

 

Digital microfluidics (DMF) is an intriguing alternative to channel-based (continuous) 

microfluidics, though most of the existing portable microfluidics are based on the latter. Digital 

microfluidics use discrete droplets to perform fluidic functions and possesses several salient 

features that are not present in continuous microfluidics. One is to allow various processes to 

perform in parallel within an often-compact design, providing better capability to scale up. The 

other is its reconfigurability, which allows researchers to design a diverse set of biomedical 

assays using one chip for the most part, offering more flexibility. 

The most prominent example of DMF is electro-wetting on dielectric (EWOD) [35]. Figure 

1.4(a) shows a typical EWOD device in closed configuration; the bottom substrate is patterned 

with electrodes (normally Au) using photolithography, and followed by a dielectric layer and a 

hydrophobic layer. A droplet is sandwiched between the top and bottom plates, and the top plate 

is usually coated with conductive ITO followed by a hydrophobic layer. The actuation force for 
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the droplet is provided by the change in surface tension between the polarized/conductive droplet 

and the dielectric layer, which is often coated with a hydrophobic layer, when a voltage is 

applied between the two. Recently, EWOD is being widely used in many biomedical 

applications, including immunoassays (e.g. ELISA) [36-39], DNA-based applications (e.g. PCR) 

[40], [41], cell-based applications [42], [43], and chemical and enzymatic reactions (e.g. glucose) 

[44-46], [47]. A compact EWOD system has also been developed for point-of-care (POC) 

diagnostics, though it still requires DC plugin (Figure 1.4(b)) [48]. 

Other techniques of DMF include dielectrophoresis (DEP) [49], surface acoustic waves [50], 

magnetic force [51], [52], and thermocapillary force [53], the details of which are introduced 

elsewhere. For most DMF, however, an external powering unit is necessary for droplet actuation 

and control. 

 

 

Figure 1.4 (a): Electrowetting on dielectric (EWOD) in closed configuration [54]; (b): A compact 

digital microfluidic platform for point of care (POC) testing [48]. 
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1.2.2 Design Automation for DMFB 

 

The digital microfluidic biochips (DMFB) design process refers to the conversion of 

biomedical protocols to an efficient chip design, through a series of sub-phases such as 

scheduling, resource placement, droplet routing (motion planning), pin assignment, and wire 

routing, etc. [55], [56]. 

Droplet routing is a key design issue for performing a large number of operations on a 2D 

biochip. The goal is to transport each droplet from its start position to the goal position, while 

ensuring that the droplets in motion do not accidentally collide with one another or with any 

functional modules on the chip. Many droplet routing methods have been developed since last 

decade, partially taking advantage of the strategies used in very-large-scale-integration (VLSI). 

Some of the early efforts include a two-stage algorithm that utilizes maze routing followed by 

random selection and re-scheduling for the selected paths [57]. A prioritized A* search is 

reported by identifying the problem’s resemblance to the multi-agent path problem (MAPF), and 

arbitrarily assigns priority to each droplet [58]. Many of the recent algorithms further improve 

the routing performance as well as the ability to solve harder problems with larger cardinality 

(evaluated by the number of droplets). A high-performance droplet routing algorithm based on 

bypassibility was reported, in which the droplet with high bypassibility is routed first and the 

possible deadlocks are solved by backing off some droplets followed by a final compaction step 

[59]. The global moving vector was proposed together with an entropy-based function for 

determining the routing order; the reported results show further reduction in the latest arrival 

time and the used cells  [60]. A novel algorithm for concurrent path allocation to multiple 
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droplets based on the Soukup’s routing algorithm was also discussed, showing quite encouraging 

results [61]. In addition, a two-phase routing was proposed by defining a new metric of 

Interfering Index (IInet) and routed droplet with low IInet in the first phase, and another metric 

Routable Ratio (RR) for routing the remaining droplets in the second phase [62]. The test cases, 

however, are limited to problems with small cardinality. Whereas the algorithms mentioned 

above lead to heuristic results, “exact” methods targeting optimal solutions have also been 

reported. The latter mainly tackles the problem by formulating it to an Integer Linear 

Programming (ILP) problem [63-65] or a Boolean satisfiability (SAT) problem [66], [67].  

Further efforts have also been made to tackle the problem of cross-contamination in routing 

heterogeneous droplets [68-71].  

Another design issue of great practical importance is the efficient pin assignment (electrode 

addressing), which allows one pin to control multiple electrodes on a chip, thus significantly 

reducing the number of electrical interconnects and manufacturing difficulty. Given the droplet 

routing results, both broadcast addressing [72] and trace-based-partition method [73] can be used 

to reduce the number of pins needed, compared with the more straight-forward direct addressing 

strategy. Broadcasting addressing aims to group compatible electrodes together by examining its 

activation sequence. On the other hand, trace-based-partition method is based on the “Connet-5” 

algorithm, which automatically partitions the microfluidic array and each pin is assigned to one 

partition [73] (Figure 1.5(a)). Cross-referencing is another strategy used specifically for EWOD 

pin assignment, where an electrode on the microfluidic array is connected to two pins, one 

corresponding to a row and the other to a column (Figure 1.5(b)). Therefore, multiple droplets 

can be activated simultaneously on a cross-referenced EWOD chip. This method, however, is 
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prone to unintentional droplet manipulation and high power consumption [74], [75]. In addition, 

a general-purpose pin assignment algorithm, which is not application specific, was developed in 

[76], [77]. 

It is also noticed that by combining two or more synthesis processes in the design stage, more 

optimal solutions can be found. For example, three objective functions including the total 

number of control pins, electrode usages, and routing completion time are considered 

simultaneously for co-optimization by combining the droplet routing and pin assignment stages 

[78], [79]. ILP has also been presented to solve the pin-constraint routing for DMFB in problems 

with small cardinality [80], [81].  

 

 

 

Figure 1.5 (a): Partition and pin assignment results for the multiplexed bioassay using droplet 

trace based array partitioning techniques and “Connect 5” algorithm [73]; each color represents 

one partition and the number indicates the different pins assigned; (b): Cross-referencing for pin 

assignment, droplet 1, 2, and 3 are activated simultaneously by one couple of the electrode, and 

droplet 4 indicates false inference [74].  
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1.3 Scope of Research 

 

The present work investigates finger-powered digital microfluidics for fluid manipulation 

and one practical problem in the DMFB design: the droplet routing problem. 

Chapter 2 presents electrowetting-on-dielectric (EWOD) digital microfluidics, which is 

powered by the electric energy converted from the mechanical energy of human finger press, 

through an array of piezoelectric elements. The output voltage of the piezoelectric element under 

different bending angles is characterized both theoretically and experimentally. EWOD devices 

of different thickness are then fabricated using the standard photolithography technique, and 

their actuation voltages are measured experimentally. Using finger actuation, the basic modes of 

droplet manipulation, such as transport, merging, and splitting are demonstrated, and key steps of 

bioassays are performed on EWOD devices. 

Chapter 3 explores the electrophoretic transport of discrete droplets (EPD) powered by the 

human finger, exploiting the same energy conversion scheme as in Chapter 2. Finite element 

models are developed to predict the induced droplet charges and the subsequent electrophoretic 

force for a range of droplet sizes, electrode pitches, and actuation voltages, which are anticipated 

in typical microfluidics applications. The model helps in establishing the engineering criteria for 

successful EPD actuation. The EPD actuation of various aqueous and body fluids powered by 

human finger are experimentally demonstrated. Further, an auxiliary mechanical system is 

developed to facilitate the control of simultaneous deflection of multiple piezoelectric elements 

for practical implementation. The efficient pin-assignment scheme is further investigated, 

specifically for the EPD in our application to reduce the number of piezoelectric elements 
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required. Both strategies are adopted for the experimental demonstration of the pre-programmed 

functional actuation of droplets on a 4×4 base electrode matrix. 

Chapter 4 discusses a droplet routing algorithm based on Independent Detection (ID) to 

reduce the assay execution complexity (time), which is critical to the implementation of 

proposed portable devices. The problem of concurrent droplet routing on digital microfluidic 

chips is formulated to a multi-agent path-finding problem, with cost functions consisting of the 

total routing length and used cells. An approximate version of the original ID algorithm is 

implemented to solve selected hard test benchmarks with medium number of droplets. Finally, 

the key evaluation metrics including the latest arrival time and used cells are reported, and our 

results are compared with those of the state-of-the-art algorithms.  
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Chapter 2 EWOD (Electrowetting on Dielectric) 

Digital Microfluidics Powered by Finger 

Actuation 

 

 

2.1 Introduction 

 

The electrowetting on dielectric (EWOD) phenomenon is one of the most promising 

actuation mechanisms used in DMF. The basic fluidic operations such as droplet transporting, 

splitting, and mixing have been extensively studied through experiments and 

numerical/analytical models in previous literatures [82][83][84]–[86] [87]. However, the current 

EWOD devices still require an external high-voltage supply and switching circuitry, which 

entails custom development to realize compact systems.   

In this chapter, the finger-actuated digital microfluidics (F-DMF) based on the manipulation 

of discrete droplets via the EWOD phenomenon is reported. Instead of utilizing an external 

power supply, F-DMF-EWOD uses piezoelectric elements to convert the mechanical energy 

produced by human fingers into electric voltage pulses for droplet actuation. Figure 2.1 

schematically illustrates one possible implementation of our device concept, which uses an array 

of piezoelectric elements to convert mechanical energy pulses provided by human fingers into 

voltage pulses. Using this scheme, basic modes of droplet manipulation, such as transporting, 
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splitting, and merging of water droplets were performed. Furthermore, to demonstrate its 

capability for biomedical applications, the key assay steps involved in glucose detection and an 

immunoassay were successfully performed.  

 

 

 

Figure 2.1: Schematic of one possible implementation of the finger-actuated digital microfluidic 

platform. The piezoelectric elements convert the mechanical energy imparted by human fingers 

into electrical energy to actuate the droplets confined between two parallel plates, through the 

EWOD phenomenon. 

 

2.2 EWOD Device 

2.2.1 Device Design and Fabrication 

 

To successfully manipulate micro-droplets using EWOD, voltage pulses of sufficient 

amplitude must be generated to overcome the capillary (contact-line hysteresis), inertial, and 
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viscous forces. The EWOD-induced contact angle change is related to the applied voltage by the 

Lippmann-Young equation: 

 

𝑐𝑜𝑠𝜃(𝑉) − 𝑐𝑜𝑠𝜃0 =
𝜀0𝜀

2𝛾𝐿𝐺𝑡
𝑉2            (2.1) 

 

where 𝜃0 denotes the equilibrium contact angle at V = 0V,  𝜀0 is the permittivity of vacuum, 𝜀 is 

the dielectric constant of the dielectric layer separating the droplet from the electrode, t is its 

thickness, and 𝛾𝐿𝐺 is the surface tension between the droplet and the surroundings. Since the 

contact angle change represents the actuation force along the surface, the higher the applied 

voltage, the stronger the actuation force that will drive the droplet against the above-mentioned 

resistant forces. As the capillary resistance that originates from the contact angle hysteresis of an 

aqueous droplet surrounded in air (as opposed to the popular oil environment) is larger than the 

inertial or viscous resistance in most cases, the performance of EWOD devices is often measured 

in the air environment without resorting to the filler oil or oil impregnation [87]. To manipulate 

water droplets in air, typical EWOD devices require voltage source of about 40 V [82].     

 Figure 2.2 shows the schematic of the cross section of our EWOD device, when a single 

droplet is being actuated. Our EWOD devices consist of two parallel glass plates that were 

separated by approximately 100 𝜇m. The bottom glass plate contains an array of 1×1 mm2 gold 

electrodes, which was fabricated using standard micro-fabrication processes. A 20-nm Cr/100-

nm Au layer was first deposited on a glass wafer and the layer was patterned by wet etching. A 

dielectric layer of silicon nitride was then deposited by PECVD (plasma enhanced chemical 

vapor deposition). Next a solution of Teflon® AF (2% wt/wt in Fluorinert FC-40) was spin 
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coated at 2000 rpm for 30 s, and it was baked at 180 °C for 10 min to obtain a ~100 nm-thick 

hydrophobic topcoat. A shadow mask was used to define the electrical contact pads. The top 

glass plate was coated with a transparent conductive ITO (indium tin oxide, <15 ohm/square) 

layer to form a counter electrode for EWOD. The counter electrode was also coated with a ~100 

nm-thick layer of Teflon®. Figure 2.3 shows the optical image of the assembled EWOD device 

from the top. The EWOD electrodes on the bottom plate are connected individually to larger 

electrical contact pads to facilitate soldering or other wired connections to the piezoelectric 

elements. A silver paste was used to make an electrical connection between the counter electrode 

on the top plate to the ground.  

 

 

Figure 2.2: Cross section of the assembled EWOD device, illustrating the top plate with the 

transparent conductive ITO layer and the bottom plate with the metal electrode array. 
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Figure 2.3: Top view of an assembled EWOD microfluidic device and an enlarged optical image 

of a part of the bottom EWOD electrode array. The overall dimension of the device is ~ 6 × 2.5 

cm2. 

 

 

Due to the finite energy-conversion efficiency of our piezoelectric elements and the safety 

consideration for portable applications, a low actuation threshold voltage, and therefore a thin 

dielectric layer is desired. However, a thin dielectric layer is less robust and prone to pinholes 

and other defects, which lead to electrolysis-induced failure of the EWOD devices. The dielectric 

layer thickness is further limited by the capacitance allowed per EWOD electrode, which must 

be kept below that of the piezoelectric element to minimize the voltage dividing effect. With the 

above considerations in mind, SiNx layers of thicknesses ranging from 0.8 𝜇m to 2.5 𝜇m were 

examined as our dielectric layers. The estimated capacitance was approximately 60pF per 
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electrode for the EWOD devices with a 0.8 𝜇m-thick dielectric layer, which is much smaller than 

that of the piezoelectric element (~ 1nF).  

Another feature of our designed EWOD devices is that the entire voltage drop can be 

considered to be across the dielectric layer, due to the much smaller thickness of the hydrophobic 

coating layer compared with that of the dielectric layer in series connection; the voltage drop 

across the hydrophobic coating layer can be ignored.  

 

 

2.2.2 EWOD Actuation Voltage 

 

To characterize the threshold actuation voltage required for EWOD actuation as a function of 

the dielectric layer thickness, an external programmable power source was used to apply 

precisely defined voltage pulses. A water droplet of ~ 0.3 𝜇L in volume was spotted onto the 

EWOD device and subsequently split into two nominally identical daughter droplets. After one 

of these droplets was positioned on one of the electrodes, the amplitude of the voltage pulse 

applied to the adjacent electrode was gradually increased until the droplet was successfully 

transported.  

The threshold actuation voltage was recorded for each dielectric layer thickness and the 

results are plotted in Figure 2.4 (symbols). The solid line in Figure 2.4 indicates the voltages 

required theoretically (Equation 2.1) for the contact angle to change from 120° to 70°, which is 

an empirically determined range for droplet actuation in the given EWOD device. In general, the 

threshold actuation voltage increases with the increase in dielectric layer thickness. For EWOD 
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devices with a PECVD SiNx dielectric layer with a thickness of ~ 2.5 𝜇m, a voltage as large as 

70 V is required for successful actuation of a water droplet.  

 

 

Figure 2.4: Threshold actuation voltage of a water droplet on EWOD devices as a function of the 

thickness of PECVD SiNx dielectric layers. 

 

 

During droplet splitting (cutting), the droplet is elongated in the longitudinal direction due to 

the actuation by the electrodes on the two sides. The middle electrode is non-activated to keep it 

non-wetting and the droplet pinches in the middle, as shown in Figure 2.5. The physical 

parameters describing the process can be expressed as:  

 

𝑅2

𝑅1
= 1 − (

𝑅2

𝑑
)

𝜀0𝜀𝑉𝑑
2

2𝛾𝐿𝐺𝑡
                              (2.2) 
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where d is the distance between the top and bottom plates, R1 and R2 are the principal radii of 

curvature as shown in Figure 2.5. At the splitting point, R1 = -R2, and the critical d/R2 was 

calculated for various dielectric thicknesses, and the corresponding actuation voltages measured 

above. The result shows that the critical d is ~ 200 𝜇m, which is much larger than our separation 

of ~ 100 𝜇m. Therefore, with actuation voltages exceeding the minimum values calculated 

above, successful splitting of droplets is expected on our EWOD devices.  

 

 

Figure 2.5: Droplet configuration for splitting [82]. 

 

 

2.3 Mechanical Energy Conversion 

2.3.1 Piezoelectricity and Material Selection 

 

When subjected to an external stress, the internal structure of piezoelectric material can be 

deformed, causing the separation of the positive and negative centers of the molecules and 

generating dipoles, as shown in Figure 2.6. The generated polarization forms an electric field, 
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and the process converts the mechanical energy of the material deformation into electrical 

energy. Specifically, when electrodes are coated on two sides of the piezoelectric material, an 

electric voltage will be developed due to the free charge on the surfaces when deformation is 

generated [88].  

 

 

Figure 2.6: Separation of the positive and negative centers of the molecules under deformation in 

piezoelectric material. The facing polarities inside the material are mutually cancelled, leaving 

free charge on the surface [88].  

  

 

Two common types of piezoelectric materials are ceramics and polymers. Traditionally, 

ceramics such as lead zirconate titanate (PZT) have been widely used for mechanical energy 

harvesting. However, one disadvantage of most ceramic materials is its extreme brittleness [28]. 

Moreover, for our finger-actuation application, the magnitude of force that can be imparted 

directly from human finger is limited. Therefore, materials with large piezoelectric constant g31 

(3 indicates the common polarization direction), which is proportional to the ratio of the open-
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circuit voltage to the magnitude of the applied force in the x direction, are preferred. Therefore, 

PVDF (polyvinylidene fluoride), which is one of the most commonly used polymer piezoelectric 

materials, was chosen due to its large piezoelectric constant (~ 5 times higher than PZT [89]) as 

well as better reliability compared to ceramic materials.  

 

 

2.3.2 Modeling of Voltage Output 

 

Piezoelectric elements of 13×25 mm2 were used to convert the mechanical energy input by 

human fingers into voltage pulses to actuate the micro-droplets in our EWOD DMF devices.  

Each piezoelectric element consists of a PVDF layer of thickness 28 𝜇m (piezoelectric layer) 

laminated on a polyester layer of thickness 125 𝜇m (substrate layer), as illustrated in Figure 

2.7(a), to maximize the average strain in the piezoelectric layer and hence its output voltage. The 

length of the piezoelectric layer Lp is approximately 20.5 mm.  
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Figure 2.7: (a) Cross section of the main functional layers of a laminated piezoelectric element 

used in the present study; (b) Definitions of the length Lp and the bending angle 𝛼. 

 

Each piezoelectric element was modeled as a Euler-Bernoulli beam. The element (beam) is 

mounted vertically with the clamped end fixed. The bending angle 𝛼(𝑠) is defined as the rotation 

of the piezoelectric element beam, measured in radians at a distance s from the fixed end, as 

illustrated in Figure 2.7(b). For a single piezoelectric element, the open circuit voltage can be 

expressed as [90]: 

 

𝑉0 = 
𝑒31ℎ𝑝

𝜀𝑠
𝑆1                         (2.3) 

 

Here, e31 is the electromechanical coupling coefficient of the piezoelectric layer, 𝜀𝑠  is the 

permittivity of the piezoelectric layer under constant strain, and hp is the thickness of the 

piezoelectric layer. The average strain, 𝑆1̅, is defined as: 
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where h1 and h2 are the distances from the neutral axis of the entire beam to the bottom and top 

of the piezoelectric layer, respectively; 𝛼𝑡𝑖𝑝 and 𝛼0 are the bending angle 𝛼(𝑠) at the tip and at 

the starting end of the piezoelectric layer, respectively (Figure 2.7(b)).   

To characterize the energy conversion capability of our piezoelectric elements, the open-

circuit voltage outputs were measured using an electrometer of input impedance >200 TΩ. 

Optical images of the side views of the element were captured to extract the bending angles 

along the beam.    

Figure 2.8 shows the measured and predicted output voltages as a function of the tip bending 

angle 𝛼𝑡𝑖𝑝 for a single piezoelectric element. The prediction (straight line) agrees reasonably well 

with the experimental results (symbols) over the entire range. Output voltages greater than 40 V, 

which is sufficient to actuate a water droplet reliably in the EWOD device with a ~ 0.8 𝜇m-thick 

SiNx dielectric layer, can be generated at tip bending angles greater than 80°. However, larger 

deformations may not be desirable for field operations and may lead to the degradation of the 

piezoelectric elements. The forces required to achieve bending angles of 36°, 70°, and 108° were 

estimated to be approximately 0.06, 0.12, and 0.18 N, respectively.   
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Figure 2.8: Open-circuit output voltages of a single piezoelectric element as a function of the tip 

bending angle 𝛼𝑡𝑖𝑝.   

 

If needed, multiple piezoelectric elements may be connected electrically in series and 

mechanically in parallel to increase the output voltage, while limiting the required deflection to 

an acceptable range. Figure 2.9 shows the total output voltage of single and two or three 

piezoelectric elements connected in series. The results are shown for three different bending 

angles of 15°, 45°, and 90°. At relatively small tip bending angles (~15°), the total voltage output 

increases linearly with each additional piezoelectric element. At larger tip bending angles (45° 

and 90°), adding more elements does not lead to a proportionate increase in the output voltage. 

This could be due to asynchronous bending and finite leakage currents. It is also reported that the 

parasitic capacitances formed by the insulation layers and derived from peripheral circuitry 

degrade the output voltages, setting a limit to the maximum output voltage with increasing 

number of elements in series connection [91].  Nevertheless, it was demonstrated that the output 
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voltages on the order of 100 V can be reliably generated using piezoelectric elements connected 

in series with tip bending angles <90°. 

 

 

Figure 2.9: Total voltage outputs from multiple piezoelectric elements connected in series under 

different tip bending angles. 

 

 

2.4 Basic Droplet Operations 

 

Next, the successful finger-powered actuation of water droplets on EWOD devices with 0.8 

𝜇m-thick PECVD SiNx dielectric layers is demonstrated. An array of single piezoelectric 

elements was used to convert the mechanical energy into voltage pulses. Figure 2.10 shows the 

optical images of a single water droplet (~ 0.15 𝜇L) being transported over adjacent electrodes 
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through a sequence of finger-driven deflection of the piezoelectric elements. To prevent droplets 

from being trapped on an inactive zone between the two adjacent electrodes, the release of the 

previously bent piezoelectric element is delayed while deflecting the neighboring element. For 

example, with reference to Figure 2.10, Element 2 was not entirely released when Element 3 was 

deflected, so that the front contact line of the droplet would stay across the gap between 

Electrodes 2 and 3. For such a delayed release, a holding force of approximately 0.06 N is 

sufficient. 

 

 

Figure 2.10: Finger-actuated EWOD transport of a water droplet, where the actuation voltage 

pulses were provided by bending a series of piezoelectric elements. 
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The droplet splitting was demonstrated by simultaneously deflecting two non-adjacent 

piezoelectric elements, while keeping the middle one non-deflected. Figure 2.11(a) illustrates the 

splitting of a water droplet (~ 0.3 𝜇L) into two daughter droplets of similar sizes through the 

simultaneous deflection of element 1 and 3. When the splitting was in order, the droplet was 

elongated in the longitudinal direction by the wetting force exerted at the two ends, while the 

middle was kept non-wetting, as shown in Figure 2.11(a). The actuation voltage on either side 

was approximately 40–50 V, produced by one single piezoelectric element with a bending angle 

<90°. For a large droplet that covers multiple electrodes, asymmetric splitting can also be 

achieved by simultaneously deflecting a set of piezoelectric elements connected to the electrodes 

in an asymmetric manner, for example, elements 1 and 3, 4.  

Figure 2.11(b) shows the merging of two droplets of similar sizes by asynchronous bending 

and the release of three piezoelectric elements (2, 4, and 3). 
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(a) 

 
      (b) 

Figure 2.11 (a): Finger-actuated EWOD droplet splitting. The piezoelectric elements 1 and 3 are 

bent simultaneously for splitting; (b): Finger-actuated EWOD droplet merging. 

 

 

2.5 Application to Biological Assays 

 

As proof of principle demonstration of the biological applications of our F-DMF based on 

EWOD, the basic steps of glucose detection and immunoassay were performed. In these 

experiments, where higher EWOD voltages are necessary to actuate the droplets, silicon nitride 

layers of thickness 2.5 𝜇m were used, because they help prevent electrolysis of water under the 

low-frequency (~1 Hz) finger-driven actuation scheme. Two piezoelectric elements, connected in 

series, were used to provide an actuation voltage of up to 100 V.  
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Glucose detection was demonstrated based on enzymatic oxidation, in which the color of an 

assay solution changes from clear to brown in the presence of glucose. Since the reagent solution 

may chemically attack the hydrophobic coatings, both the upper plate and bottom substrate of 

our EWOD devices were pre-treated with silicone oil. The reagent solution was prepared by 

adding 0.8 mL of o-Dianisidine Reagent to an amber bottle containing 39.2 mL of 1:5 

horseradish peroxidase/glucose oxidase solution (15 units of protein per mL of solution). A 

droplet of 1mg/mL standard glucose solution and another one of reagent solution (both of 

approximately 0.15 𝜇L) were spotted onto the bottom plate and covered with the top plate. The 

reagent droplet was then transported towards the glucose sample droplet and merged, as shown 

in Figure 2.12(b-d). An optical image was taken to verify the color change, which is indicative of 

the successful enzymatic oxidation reaction. Brown color was observed to start developing after 

the merging and was fully developed after a 5-min incubation, as shown in Figure 2.12(e).  
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Figure 2.12: Snapshots of sample and reagent droplet during a glucose assay and enzyme 

catalyzed formation of colored product. 

 

Next, an immunoassay-related enzyme-based colorimetric reaction was performed using the 

F-DMF-EWOD. 5-bromo-4-chloro-3-indolyl blue tetrazolium (BCIP/NBT) is a commonly used 

substrate for alkaline phosphate (ALP). In our experiment, the enzyme substrate was used to 

detect the ALP conjugated antibody. This mimicked the last step of signal detection and 

amplification in the ALP-based colorimetric ELISA [92]. To prepare the experiment, ALP 

conjugated IgG antibody (2.5mg/mL) was first diluted to approximately 13 𝜇g/mL. The antibody 

was immobilized on the upper plate of our EWOD device by manual pipetting of ~500 nL of the 

diluted solution. The upper plate was chosen due to the smaller interference with actuation, 

compared with the bottom plate. The spots were allowed to air-dry before use. Approximately 

0.15-µL aliquots of enzyme substrate (BCIP/NBT) solution (BCIP: 0.15 mg mL-1, NBT: 0.3 mg 

mL-1, Tris Buffer: 100 mM, and MgCl2: 5 mM) was loaded onto the bottom plate of the EWOD 
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device, as shown in Figure 2.13(a). Voltage pulses provided by finger-driven actuation were then 

used to move the sample droplet towards the immobilized antibody spot, as illustrated in Figure 

2.13(b-c). After ~5-minute incubation, black-purple precipitates were confirmed to be produced 

(Figure 2.13(d)), indicating the detection of the ALP-conjugated antibody.  

 

 

 

Figure 2.13: (a)-(c) Frames from a video depicting a droplet of BCIP/NBT enzyme solution 

transported towards immobilized antibody spot upon finger actuation and (d) purple precipitation 

observed indicating the detection of the ALP conjugated antibody. 

 

 

 

 



34 

 

2.6 Summary 

 

In this chapter, finger-actuated digital microfluidics based on the EWOD phenomenon was 

demonstrated using piezoelectric energy conversion of human power. The generation of voltage 

pulses of amplitudes >100 V were demonstrated using laminated polymer piezoelectric elements 

connected in series. Using this scheme, the basic EWOD droplet operations such as droplet 

transport, splitting, and merging were confirmed, and an implementation of the basic assay steps 

in glucose detection and immunoassay were demonstrated. Due to the low-frequency nature of 

finger actuation, a relatively thick dielectric layer was used to help prevent possible electrolysis. 

This work offers a promising solution for expanded applications of EWOD-based digital 

microfluidics in portable systems. 
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Chapter 3 Finger-powered Electrophoretic 

Transport of Discrete Droplets for Portable 

Digital Microfluidics 

 

3.1 Introduction 

 

Electrophoretic control of discrete droplets (EPD) is a promising alternative approach for 

digital microfluidics.  EPD utilizes the rapid charging of conductive droplets by adjacent 

electrodes and their subsequent electrophoretically induced motion [93], [94]. Both the droplet 

and electrodes are typically immersed in a dielectric fluid.  This is advantageous, because EPD 

minimizes direct liquid-solid contacts, compared with other droplet actuation methods such as 

EWOD [87], thermomechanical [53], and surface acoustic wave (SAWs)-driven [95] actuations. 

  Previous studies of EPD investigated the electrophoretic force and the resulting trajectories 

of a droplet suspended between parallel plates or other macroscale electrodes [96-98].  EPD is 

typically thought to require very high voltages [99], making it ill-suited for portable applications.  

However, actuation voltages can be reduced to well below 500 V through miniaturization.  

In this chapter, the finger-powered EPD digital microfluidics is introduced using a similar 

energy conversion scheme. An array of piezoelectric elements is connected in parallel to the 

electrodes immersed in dielectric fluids, as shown in Figure 3.1. When deflected by human 

fingers, the piezoelectric elements establish an electric field across adjacent EP electrodes to 
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charge and actuate a droplet via electrophoretic force. The numerical models and their 

experimental validation are reported, to help develop design criteria for successful droplet 

actuation. The transport and merging of aqueous as well as various body fluids are 

experimentally demonstrated using our finger-powered EPD. Next, to facilitate practical system-

level implementation of our concept, a mechanical system is designed and developed to facilitate 

controlled deflection of multiple piezoelectric elements. An efficient pin assignment scheme to 

reduce the number of piezoelectric elements required for practical purposes, is also explored. 

The pre-programmed functional actuation of droplets on a 4×4 base electrode matrix, integrating 

our mechanical system and the pin assignment scheme, is experimentally demonstrated. 

 

 

 

Figure 3.1: Schematic illustration of one implementation of our finger-powered EPD device. An 

electric field is established across adjacent EP electrodes when the corresponding piezoelectric 

elements are deflected by human fingers (or finger-powered mechanical levers in an auxiliary 

mechanical system). 
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3.2 Experimental Setup 

 

The device, schematically illustrated in Figure 3.1, was used to study finger-powered EPD 

operations. A transparent acrylic cell is filled with two immiscible dielectric liquids. The two 

liquids are chosen to have densities and surface tensions such that the spherical aqueous droplets 

stay near the interface of the two liquids. In this study, silicone oil (DC 200F, 𝜐 = 5 cSt, σ = 10-13 

S/m, ε = 2.8 ε0) and Fluorinert FC-40 (ε = 1.9 ε0) were chosen. Insulated copper electrodes of 

diameter ~0.18 mm are assembled to form an array with pitch distance p. The top surfaces of the 

electrodes are exposed to allow for droplet charging. Aqueous droplets are placed inside the cell 

using a micropipette (Eppendorf, 0.1-2.5 μL). Different kinds of aqueous droplets are tested, 

including those of DI water (𝜌 = 0.1–1 MΩ), human body fluids (saliva and urine), and a sodium 

hydroxide solution, covering pH values from 5.6 to 9.  

The actuation unit consists of laminated polymeric piezoelectric elements (Measurement 

Specialist, LDT Series) with active layers (Polyvinylidene fluoride) of thickness 28 μm and size 

1.3×2.5 cm2. A pair of piezoelectric elements are connected in series to increase the voltage 

output. The negative terminal of each piezoelectric unit is grounded, while the positive terminal 

is connected to each individual EP electrode, as shown in Figure 3.2. With this arrangement, 

when the adjacent units are deflected in opposite directions, a voltage differential of 

approximately 200 V can be generated across the two EP electrodes (see Section 2.3.2). This 

output is then used to charge a droplet and establish an electric field necessary for droplet 

actuation. 
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Figure 3.2: Electrical connections used to link the piezoelectric elements to the EP electrodes. 

 

 

3.3 Droplet Charging and Actuation 

3.3.1 Modeling of Induced Droplet Charge and Electrophoretic Force 

 

For the successful transport of a droplet across adjacent EP electrodes, the piezoelectric 

elements need to provide sufficient charges and electric bias to generate appropriate 

electrophoretic forces. First, finite element models were developed to predict the induced droplet 

charges and the resulting electrophoretic force for a range of droplet sizes, electrode pitches, and 

actuation voltages anticipated in typical microfluidic applications.   

Figure 3.3 illustrates our simulation domain and boundary conditions. Two cylindrical 

electrodes of radius rc and pitch p and a spherical droplet of radius r were immersed in a 

dielectric fluid (Fluid 1). A second fluid of a higher density (Fluid 2) was used to separate the 

droplet from the solid surface at the bottom.  The electrodes protrude into Fluid 1 by a finite gap 
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of h. The dielectric constants of the two fluids are denoted as ε1 and ε2, respectively. A DC 

voltage of magnitude Vp is applied to Electrode 2 while Electrode 1 is grounded.   

The droplet is initially in contact with the upper surface of Electrode 1. The droplet quickly 

reaches an equipotential state with the electrode, with electric charges of the same polarity 

distributed over the droplet surface. It is assumed that the droplet takes the maximum 

equilibrium charges before it leaves the charging electrode. A further discussion of this 

assumption is provided in Appendix 3-A. The charged droplet then detaches from the electrode 

under repulsive electrophoretic force acting on the acquired charges. The parameter dx is defined 

as the location of the droplet center from its charging electrode (Electrode 1) along the x-axis.  

The electric field E= -∇ V is obtained by solving the Laplace equation in both the upper and 

lower dielectric fluids: 

 

∇2𝑉 =  0                                   (3.1) 

 

The free charge density is set to be 0 in the dielectric fluids.  
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Figure 3.3: Finite element model used to predict the electric charges acquired by a droplet 

suspended between two biased electrodes and the resulting electrophoretic force.  

 

 

The droplet is initially in contact with Electrode 1, and the following boundary conditions are 

specified. 

 

𝑉 = 0              on Electrode 1                (3.2) 

𝑉 =  𝑉𝑛            on Electrode 2                (3.3) 

𝑉d = 0             on droplet surface           (3.4) 

 

At the outer boundaries, the zero charge or symmetry boundary condition is specified. 

 

𝜀
𝜕𝑉

𝜕𝑛
= 0                                              (3.5) 
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Once the electric field E is obtained, the total charge Qeq of the droplet is calculated by 

integrating the electric displacement over the droplet surface Sd: 

 

𝑄𝑒𝑞 = 𝜀 ∫ 𝐸⃗ 𝑑𝑆                                   (3.6) 

 

The lateral electrophoretic force Fe along the x-axis is calculated by integrating the Maxwell 

stress tensor over Sd: 

 

𝐹𝑒 =
𝜀

2
∫𝐸𝑛

2𝑐𝑜𝑠𝜃 𝑑𝑆                            (3.7) 

 

Here En is the electric field normal to the droplet surface and 𝜃 is the angle between the surface 

normal vector and the x-axis. 

Next, the electrophoretic force acting on the droplet at different positions between the two 

adjacent electrodes is determined, assuming that the total droplet surface charge is equal to that 

obtained in Eq. (3.6): Q = Qeq.  As the droplet moves, the electric field distribution is modified 

(E’). The Laplace equation for each droplet location is solved to determine E’ and then the 

electrophoretic force is calculated using Eq. (3.7) under this new electric field distribution. 
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3.3.2 Results and Discussion 

3.3.2.1 Droplet charges  

 

Figure 3.4 shows the predicted equilibrium charges Qeq for various combinations of droplet 

sizes and electrode pitches under an actuation voltage of 200 V. The droplet radius r was varied 

from 0.2 to 1 mm and the electrode pitch p from 2 to 8 mm. The actuation voltage of 200 V is 

chosen to be comparable to outputs from commercial piezoelectric elements used in this study.   
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Figure 3.4: Predicted droplet equilibrium charge Qeq as a function of the droplet size under an 

electrode bias voltage Vp of 200 V. The results are shown for different electrode pitches, varying 

from 2 to 8 mm.  
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The predicted charges are in the range of a few to a few tens of picocoulombs. These 

translate into equivalent capacitances of approximately 10-2 to 10-1 pF (given an applied voltage 

of 200 V) for our droplet/electrode system. To provide sufficient charges to the droplet while 

maintaining the electric bias field during droplet transportation, the capacitance of the 

piezoelectric elements must be much larger than this value. This represents one criterion, in 

terms of the minimum capacitance, in designing piezoelectric elements.    

The capacitance of our piezoelectric elements currently used is approximately 1.3 nF, more 

than 4 orders of magnitude greater than the equivalent capacitances of the droplet/electrodes. The 

amount of charge generated by our piezoelectric elements at an output voltage of 200 V 

(approximately 2.6 x 10-7 C) is likewise more than 4 orders larger than the amount of charges 

acquired by the droplet. As a result, the flow of charges from the piezoelectric elements to the 

droplet would have minimal effect on the electrode bias voltages. The actuation voltages may 

therefore be approximated as a constant equal to the open circuit output voltage of the 

piezoelectric elements. 

For reference, Table 3.1 lists the estimated capacitances per unit area for two common types 

of piezoelectric elements with two different thicknesses [100], [101].   

 

Table 3.1: Capacitances of typical piezoelectric elements per unit area. 

Material 
Relative 

permittivity 

Film thickness 

(μm) 

Capacitance 

per unit area 

(pF /mm2) 

PVDF 12.4 25 4.4 

PVDF 12.4 100 1.1 

PZT-5A 1600 25 531 

PZT-5A 1600 100 132 
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Figure 3.4 also reveals that, for a given droplet size, the total amount of charge decreases 

with increasing electrode pitches or decreasing nominal electric fields Enom  under a constant bias 

voltage. The nominal electric field is defined as Enom = Vp/p. This is expected since the 

equilibrium droplet charges depend on the electric displacement on the droplet surface, which is 

in turn proportional to the electric field strength. It is also noted that the droplet surface charge 

density decreases rapidly with increase in droplet sizes, resulting in a nearly linear increase in the 

total droplet charges with the droplet radius. This is in part because droplet charging is governed 

primarily by non-uniform electric fields in the immediate vicinity of the electrode tip, whose 

magnitudes decrease rapidly with distance from the electrode tip. 

To illustrate these points further, consider the case of a droplet of radius r suspended between 

two large parallel plate electrodes. The amount of equilibrium charges under this configuration 

Qparallel is given by: 

 

𝑄parallel = 
𝜋

6
(4𝜋𝑟2)𝜀𝐸.                 (3.8) 

 

The predicted droplet charges are plotted for various combinations of droplet sizes and 

electrode pitches in Figure 3.5, for Enom = 0.01 MV/m, 0.1 MV/m, and 1 MV/m. The normalized 

charges are approximately inversely proportional to the normalized droplet radius for the 

electrode and the geometric parameters of the droplet considered in the present study. This is 

consistent with the nearly linear relation between the amount of droplet charges and the droplet 

radius observed in Figure 3.4. 
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Figure 3.5: Normalized equilibrium droplet charge is approximately inversely proportional to the 

normalized droplet radius r under combinations of geometric parameters examined in the present 

study. 

 

 

3.3.2.2 Charge dissipation time 

 

For the successful actuation of a droplet through electrophoretic force, the charge acquired 

and carried by the droplet and the electric field established by our piezoelectric elements between 

the neighboring EPD electrodes must be maintained over the actuation process. The relaxation of 

electric charges carried by a droplet is governed by the charge dissipation through the 

surrounding dielectric liquid: 



46 

 

 

𝑄(𝑡) = 𝑄0𝑒
−

𝑡

𝜏𝑟                           (3.9) 

 

 𝜏𝑟 = 𝜀/𝜎                                    (3.10) 

 

Here 𝜏𝑟 is the relaxation time constant, and is equal to the ratio between the permittivity and 

conductivity of the material. The estimated value of 𝜏𝑟 for silicone oil is >200 s.  

To estimate the discharge time across the piezoelectric element due to finite leakage, the 

element is modeled as a capacitor (C ~ 0.8 nF) connected in parallel with a resistor of resistance 

R. The voltage decay can then be described as: 

 

𝑉(𝑡) = 𝑉0𝑒
−𝑡/𝑅𝐶                         (3.11) 

 

The resistance R was measured using a source meter.  

Figure 3.6 shows the measured I-V curves under sourcing voltages ranging from 0 to 120 V. 

The resistance R obtained from the linear fit is ~4×1010 Ω. The theoretical discharge time 

constant 𝜏𝑝 is then ~30 s, which is smaller than 𝜏𝑟, and is thus is expected to dominate.  
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Figure 3.6: I-V curve for piezoelectric element resistance measurement. 

 

 

This estimation was further confirmed by directly measuring the voltage decay curves. The 

piezoelectric element was deflected to a pre-selected bending angle and the resulting open circuit 

voltage output was measured as a function of time using an electrometer of input impedance  > 

200 TΩ. The measurements were then repeated at different bending angles, and hence output 

voltages. 

Figure 3.7 shows the temporal variations in the output voltage from a piezoelectric element 

for different bending angles in the log scale. The average measured time constant 𝜏𝑝 was 27.5 s 

with a standard deviation of 5.8 s, which is consistent with the value estimated from the 

resistance and capacitance of the piezoelectric elements.  
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Figure 3.7: Decaying voltage output from a single piezoelectric element with increasing time. 

 

 

3.3.2.3 Droplet velocity and electrophoretic force 

 

To establish the baselines, experiments were conducted, in which the droplets were actuated 

using an external power supply. The droplet translational motions were recorded using a digital 

camera at 30 fps. The instantaneous droplet velocities at different positions between the 

electrodes were calculated through image analyses using ImageJ®. Each calculated velocity 

represents the average value over five independent trials (N = 5) performed under nominally 

identical bias voltage and geometric parameters. The estimated errors e, indicated by the error 

bars in this and subsequent figures, account for both the random error (SN), as estimated from the 

standard deviations at the 95% confidence level, and the uncertainty in the measured droplet 

positions due to the finite spatial resolution of our imaging system. 
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𝑒 =  √𝑆𝑁
2 + 𝑢2                                                (3.12) 

 

The measured droplet velocities were compared with the so-called droplet terminal 

velocities, which were obtained by equating the predicted electrophoretic force at each droplet 

location to the steady-state drag force. The steady-state drag force Fx of a droplet moving parallel 

to a horizontal surface at a constant velocity U can be determined from [102], [103]: 

 

𝐹𝑥 = 6𝜋𝜇𝑟𝑈𝑓                                                      (3.13) 

  

𝑓 = (
8

15
+

64

375
 𝜖) log (

2

𝜖
) + 0.5846                     (3.14) 

 

where μ is the viscosity of the surrounding dielectric fluid after correcting for the finite viscosity 

of the liquid droplet, r is the radius of the droplet, and ϵ is the ratio of the gap h (shown in Figure 

3.3) to the droplet radius r.  

In Figure 3.8, the filled symbols represent the measured instantaneous velocities of the 

droplets under three actuation voltages: 150 V, 200 V, and 250 V. These voltage values were 

chosen to be comparable to the outputs from our piezoelectric elements. The droplet radius was 

0.63 mm and the electrode pitch was 1.76 mm. The lines correspond to the predicted droplet 

terminal velocities at different positions between the electrodes.  

The predicted terminal velocities agree reasonably well with the experimentally measured 

velocities in the middle sections (0.3 < dx/p < 0.7) for actuation voltages of 150 V and 200 V. 
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They deviate from the experimental data near the starting and terminal electrodes. This is mainly 

due to the fact that our steady-state model ignores the finite inertia of the droplets and the 

dynamic variations in droplet charges due to finite leakage. The model overpredicts the velocities 

at the highest actuation voltage (250 V) due to the incomplete initial droplet charging, as further 

discussed later in the section. The droplet translational velocity decreases quite substantially with 

decreasing bias voltages due to the combined effect of smaller droplet charges and smaller 

electric fields. For all the cases shown in Figure 3.8, the droplet velocity increases with dx /p. 

That is, a larger electrophoretic force acts on the droplet as it approaches the terminal electrode 

of the opposite polarity, than it does as it departs from the charging electrode of the same 

polarity. 

Aqueous droplets are also successfully actuated when the electrodes are biased using the 

piezoelectric elements. The measured droplet translational velocities, marked as the crosses in 

Figure 3.8, are similar to those obtained at 200 V using an external power supply.  

The total droplet transit time across the two electrodes was <1 s for all the cases studied here. 

The voltage applied by the piezoelectric elements may be assumed to remain constant only when 

this total droplet transit time is much less than the discharging time of the piezoelectric elements. 

This consideration leads to a second criterion for reliable transport of droplets using our 

piezoelectric actuation scheme: the droplet transit time (between the electrode pairs) must be 

sufficiently short when compared with both the discharging time of the piezoelectric elements 

and the charge relaxation time of the dielectric medium. In our piezoelectric elements, the RC 

time constant is estimated to be 30 s from their measured electrical capacitance and resistance. 
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The estimated value of 𝜏𝑟 for the silicone oil used in the present study is >200 s, which is much 

larger than the RC time constant of the piezoelectric elements (see Section 3.3.2.2).  
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Figure 3.8: Measured (symbols) and predicted (lines) droplet velocities as a function of the 

normalized distance from the charging electrode under different applied voltages. The electrode 

pitch p = 1.76 mm and the droplet radius r = 0.63 mm. 

 

Next, the experiments were repeated for different values of the electrode pitch. In  

Figure 3.9, the solid lines show the predicted terminal velocities of droplets having a radius 

of 0.7 mm at an electrode bias voltage of 200 V. The electrode pitch p is varied from 2.2 to 5.9 

mm. The predicted droplet terminal velocity decreases rapidly with the increasing pitches. The 

droplets were also successfully actuated with the piezoelectric elements for the electrode pitches 

of 2.2 and 3.34 mm. The measured translational velocities are plotted as filled symbols in 
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Figure 3.9. For the largest pitch (5.9 mm), the droplet transit time approaches the discharge 

time of the piezoelectric elements and a stable actuation voltage cannot be maintained. To help 

further discuss our results, an external power supply was used to obtain the droplet velocities for 

the case with the largest electrode pitch. 

Figure 3.9 also shows that the spatial variations in the local droplet velocity along dx 

qualitatively differ for different electrode pitches. For a large electrode pitch of 5.9 mm, the local 

droplet velocity stays relatively constant for 0.3 < dx/p < 0.7. In contrast, for the smaller pitches, 

the local droplet velocity increases monolithically with dx/p, as the droplet continues to spatially 

“sample” highly non-uniform electric fields near the electrodes.  

 

 

Figure 3.9: Variations in the local droplet translational velocity for different values of the 

electrode pitch. The actuation voltage is fixed at 200 V and the droplet radius is fixed at 0.7 mm. 
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Note that the above results were obtained by varying the electrode pitch for a fixed droplet 

radius. Alternatively, we may consider cases where the droplet radius is varied at the same time 

such that the ratio of the droplet radius to the electrode pitch r/p stays constant. In this case, the 

spatial variations in the local droplet velocity along x remain qualitatively similar for different 

electrode pitches considered in the present study.  Representative simulation results for r/p = 0.1 

are presented in Appendix 3-B.  

Next, the droplet velocities at the mid-point between the two electrodes was determined as a 

function of the droplet radius, while keeping r/p constant (approximately 0.33). The experiments 

were repeated for three different bias voltages: 200 V, 250 V, and 300 V. The filled symbols in 

Figure 3.10 are the measured values, which agree reasonably well with the predicted terminal 

velocities (lines). With r/p being kept constant, the droplet velocity decreases with increase in 

droplet sizes, as the nominal electric field and charge density at the droplet surface decrease. For 

the largest droplet of radius 1.1 mm, the piezoelectric actuation is insufficient due in part to a 

large transit time and in part to a large droplet inertia.  

At high actuation voltages (250 V and 300 V in Figure 3.10), it should be noted that the 

measured velocities are lower than the predicted values for smaller droplet sizes (and electrode 

pitches). Similar overprediction is also noted in Figure 3.8 at an actuation voltage of 250 V. One 

possible origin of these discrepancies is a partial or incomplete charging of droplets under high 

electric fields present in these situations. That is, the actual amount of droplet charges is less than 

Qeq, which in turn leads to reduced electrophoretic force. 

For a droplet with finite conductivity, a finite charging time is necessary for the droplet to 

reach equipotential with the charging electrode. If the droplet leaves the electrodes within this 
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charging period, then the droplet will acquire only a fraction of Qeq. The charging time is a 

function of the conductivity of the droplet, the dielectric properties of the fluids, and the contact 

area between the droplet and the charging electrode. Transient numerical simulations were used 

to estimate the charging time, and were found to be on the order of a few to a few tens of 

milliseconds for aqueous droplets of the sizes and electrical properties used in the present study 

(see Appendix 3-A). This is comparable to or larger than previously estimated contact times at 

local electric fields of approximately 3 kV/cm [104], [105]. Therefore, it is expected that the 

droplet is only partially charged before it is detached from the charging electrode under the high 

bias voltages. This in turn leads to decreased electrophoretic forces and hence smaller droplet 

translation velocities. 
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Figure 3.10: Variations in the droplet velocity at the middle point between the electrodes (x/p = 

0.5) for four different droplet radii and three different actuation voltages. The r/p ratio is kept 

constant at 0.33 for all the cases. 

 

 

3.4 Droplet Transport and Merging 

 

By satisfying the design criterion for successful EPD actuation, the droplet transport and 

merging is demonstrated using finger-powered EPD DMF. Figure 3.11 shows the time-sequence 

optical images of a single water droplet having a volume of approximately 2 μL being 

transported between adjacent electrodes through a sequence of finger-powered ECD actuations. 

The electrode pitch p is ~ 2.08 mm and the droplet radius r is ~ 0.78 mm. To transport a droplet 

in a desired direction, one needs to sequentially alternate the relative polarities of the electrode 



56 

 

pairs. For example, referring to Figure 3.11 (c) to (d), the polarities of Electrode 1 and 3 are 

interchanged when the droplet reaches the nearest approaching electrode (Electrode 2). This 

allows the positively charged droplet on Electrode 2 to continue moving to Electrode 3. 

 

 

 

Figure 3.11:  Time sequence showing continuous droplet transport by finger-powered EPD. The 

droplet volume is approximately 2 μL and the electrode pitch is 2.08 mm. The r/p ratio is ~ 0.37. 

 

Figure 3.12(A) shows the merging of two DI water droplets using the same electrode 

configuration as above. The two droplets were oppositely charged in advance. The transparent 

droplet on the left was positively charged on Electrode 2, whereas the dyed droplet on the right 

was negatively charged on Electrode 3. When actuated to approach each other, the two droplets 

merge almost instantaneously upon contact through electrostatic interaction.  



57 

 

Enhanced internal mixing can be achieved by continuously transporting the droplet back and 

forth between the two electrodes and thereby inducing internal flows. This can be achieved 

readily in EPD microfluidics by simply maintaining the electrode bias, that is, by keeping the 

piezoelectric elements bent. The oscillatory motion is maintained, because the polarity of the 

droplet keeps reversing as the droplet alternatingly contacts one of the two electrodes. Enhanced 

mixing can be observed by mixing a dyed droplet with a clear droplet (Figure 3.12 (B)) with or 

without the sustained electrode bias (EPD enhanced vs static). The mixing time is reduced by 

approximately 30%. Further reduction in the mixing time may be achieved by breaking the 

symmetry and stirring more chaotic flows inside the droplet using a 2D array of electrodes rather 

than a linear array [106].  
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Figure 3.12 (A): Time sequence showing the merging of two oppositely charged droplets; (B): 

Mixing by pure diffusion (upper) compared with enhanced mixing using EPD actuation (lower). 

The radius of the merged droplet is ~ 0.75 mm. 

 

 

One important challenge in the biomedical application of microfluidics originates from high 

viscosities, extreme pH values, or other unusual properties of the samples such as body fluids. 

Figure 3.13 shows the successful transport of droplets of human body fluids (saliva and urine) 

and an alkaline solution across three electrodes. The pH values for these droplets varies from 5.8 

(human urine) to 9 (sodium hydroxide solution). 
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Figure 3.13: Sequential images of a saliva droplet, a urine droplet, and a NaOH droplet 

transported via finger-powered EPD. The droplet radius is ~0.7 mm and the droplet-radius to 

electrode-pitch ratio (r/p) is approximately 0.4.   

 

 

3.5 Towards Practical System Implementation 

3.5.1 Mechanical System for Programmed Operations 

 

Relying on just human fingers to deflect multiple piezoelectric elements precisely in a 

complex sequence is not a realistic method for the practical implementation of our concept. To 

convert finger (or hand) motions into a sequence of controlled and reproducible deflections of 
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the piezoelectric elements, a finger/hand-rotated drum system is proposed. Its design, shown in 

Figure 3.14, consists of a drum and an array of mechanical levers, all printed by high-resolution 

3D printing. This design is analogous to that of a music box where pins (or embossed 

protrusions) formed on a cylinder are used to pluck an array of cantilever beams in a specific 

sequence. On the surface of the drum, there is a set of protrusions at pre-programmed locations. 

The surface of the drum is patterned like a toothed-gear, so that reusable plastic protrusions can 

be placed at desired locations. The mechanical levers are mounted in a see-saw configuration 

using a common shaft on a fixed fulcrum. One end of each lever is linked mechanically to the 

piezoelectric elements. As the drum is rotated manually, the protrusions push down on the 

mechanical levers, which in turn deflect the corresponding piezoelectric elements. 

 

 

 

Figure 3.14: Finger/hand-rotated drum system, consisting of a drum with protrusions and an 

array of mechanical levers mounted in a see-saw configuration. One end of each lever is linked 

mechanically to a piezoelectric element. In this particular device, the outer diameter of the drum 
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is approximately 6 cm; the width and height of each protrusion are 3 mm; the length of the levers 

is approximately 10 cm; and the lever ratio is approximately 1:7.  

 

The consistency of the voltage pulses generated using the mechanical drum system was 

experimentally examined. Each piezoelectric element unit consists of two piezoelectric elements 

connected electrically in series and mechanically to the same lever.  The drum is rotated at 

approximately 100 degrees/second, resulting in voltage pulses of duration approximately 0.1 s. 

This duration is comparable to the typical droplet transit times across two adjacent electrodes.  

Figure 3.15 shows the voltage pulses measured during repetitive deflections of one of the 

piezoelectric units. 

Table 3.2 summarizes the results obtained from three independent piezoelectric element 

units. The results show that our drum system provides fairly consistent voltage pulses (standard 

deviations of approximately 4%) with smaller amplitude variations than human fingers. 
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Figure 3.15: Voltage outputs from a single piezoelectric element unit over multiple deflections 

(A) by the mechanical drum system; (B) by a human finger. The solid red lines indicate the 

average voltage outputs and the dotted red lines represent one standard deviation. 
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Table 3.2: Measured voltage pulse outputs from 3 independent piezoelectric element units over 

100 deflections either by the drum system or by human fingers. 

Unit Voltage (V) by drum Voltage (V) by finger 

1 90.2 ± 3.4 87.4 ± 7.9 

2 97.2 ± 1.6 99.8 ± 7.3 

3 93.8 ± 2.6 90.5 ± 6.3 

 
 

 

 

3.5.2 Base Electrode Matrix and Electric Connection Schemes 

 

The number of piezoelectric elements that can be used in practical portable EPD devices is 

limited. A base electrode matrix and its connection scheme were explored to realize different 

microfluidic functions using minimum numbers of piezoelectric elements. Similar schemes were 

explored for EWOD digital microfluidics [73]. The electric polarities of the electrodes, however, 

were not fixed in those studies, as they implicitly assumed the availability of external power 

supplies/switching circuits. In contrast, in our finger-powered EPD microfluidics, the polarity of 

each piezoelectric element unit is pre-fixed to facilitate their mechanical integration. 

For a square electrode matrix of size n×n (n > 3), the minimum number of piezoelectric 

element units necessary to actuate a droplet located at any given position in any of the four 

independent directions (up, right, down, or left) is 8 (see proof in Appendix 3-C).  Figure 

3.16(A) shows one design of a base electrode matrix of size 4×4. Even numbers (red) are used to 

label the electrodes connected to the four piezoelectric elements of positive polarity, while odd 

numbers (blue) are used to label the electrodes connected to the remaining four piezoelectric 

elements of negative polarity. Figure 3.16(B) shows sample droplet transport paths that can be 
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achieved using the base electrode matrix. Other possible path designs for operations such as 

droplet merging and storage are provided in the Supplementary Information in the corresponding 

paper. This basic matrix can be replicated multiple times (Figure 3.16(C)). A minimum of 8 

piezoelectric elements may be used to actuate a droplet across a larger electrode matrix or to 

perform an identical set of actuations for multiple droplets in parallel (Figure 3.16(D)).  

 

 

Figure 3.16: (A) Base electrode matrix of size 4×4; (B) Example droplet actuation paths that can 

be realized using the 4×4 base electrode matrix; (C) By replicating the base electrode matrix, one 
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can power a larger electrode matrix using 8 piezoelectric element units; (D) Parallel execution of 

a set of identical operations on 4 droplets. 

 

 

Electrically connecting multiple electrodes to a single piezoelectric element unit allows 

significant reduction in the number of piezoelectric elements, and hence the size and cost of the 

overall system. However, the interference among these electrodes may present a potential issue.   

To quantify the interfering influence of adjacent electrodes, additional numerical simulations 

were conducted. Figure 3.17 shows the predicted interfering forces at various positions between 

two driving electrodes for different values of r/p ratio under a typical electric field strength used 

in our experiments. The normalized magnitude of the interfering forces is larger for larger 

droplets (larger radius-to-electrode pitch ratios) and for smaller electric fields. For all the cases 

that were calculated, the magnitude of the predicted interfering forces was less than 10% of the 

main driving force for electric fields as small as 0.16 MV/m and r/p ratios as large as 0.45.   
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Figure 3.17:  Predicted normalized interfering forces at different positions between two driving 

electrodes under different values of the ratio between the droplet radius and the electrode pitch, 

r/p, showing that the magnitude of interfering forces is less than 10% of the main driving force 

under typical actuation conditions used in the present study. 

 

 

3.5.3 Pre-programmed Functional Actuation of Droplets 

 

Finally, our 4×4 base electrode matrix, which is connected to 8 independent piezoelectric 

element units, was experimentally tested. The units were deflected in pre-programmed sequences 

using our mechanical drum system. Sequential droplet actuations were successfully 

demonstrated over multiple paths covering different electrode sites on the matrix. Figure 3.18(A) 

shows the snap shot images for the linear transport of the droplet for two typical paths, and 
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Figure 3.18(B) shows the snap shot images for the merging of two droplets and the subsequent 

enhanced mixing. The corresponding videos are also provided in the Electronic Supplementary 

Material. 
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Figure 3.18: (A) Demonstration of droplet actuation along different paths on the base 4×4 

electrode matrix, which is connected to 8 piezoelectric element units; (B): Demonstration of the 

merging and subsequent enhanced mixing of two droplets on the base electrode matrix. 

 

3.6 Summary 

 

In this chapter, the finger-powered electrophoretic transport of droplets (EPD) for digital 

microfluidics was demonstrated. The mechanical energy provided by human fingers can be 

converted using an array of piezoelectric elements into sufficient electrical energy to charge and 

electrophoretically actuate the droplets.  

Numerical models for the electrical charging of the droplet and the resulting electrophoretic 

forces were developed and experimentally validated to establish the design criteria for finger-

powered EPD actuation. The capacitance of the piezoelectric elements needs to be much larger 

than the droplet/electrode system, and the droplet transit time (across two electrodes) needs to be 

sufficiently smaller than the discharge time of the piezoelectric elements. The latter in turn limits 

the electrode pitch. The linear transport and merging of aqueous droplets were successfully 

demonstrated directly using finger actuation. The transport of human body fluids, such as saliva 

and urine droplets, was also demonstrated. 

To facilitate the practical implementation of portable microfluidic devices based on our 

approach, a finger/hand-rotated drum system was designed to reliably control the deflections of 

multiple piezoelectric elements in a pre-programmed manner. A pin assignment scheme to 

implement different microfluidic functions while using a minimum number of piezoelectric 
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elements was reported. Multiple pre-programmed droplet actuations were demonstrated using 

our integrated system, which consists of a 4×4 base electrode matrix and a mechanical drum with 

protrusions. This work establishes the engineering foundation for the systematic design and 

implementation of finger-powered EPD devices for portable microfluidic applications.   
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Appendix 3-A 

 

In the main text in this chapter, it was assumed that the droplet acquires maximum 

equilibrium charges before it is detached from the charging electrode. To examine the validity of 

this assumption, the transient charging process for an aqueous droplet is directly simulated.  

The model is shown schematically in Figure 3.19. A spherical droplet of radius R, 

conductivity σ, and permittivity εi is in contact with one of the electrodes through a contact area 

A. The droplet and electrodes are immersed in a dielectric oil. Subscripts “i,” “o,” and “s” are 

used to label the variables associated with the region inside the droplet, in the surrounding oil, 

and at the droplet interface, respectively. The electrical charges are assumed to be transported by 

Ohmic volume conduction within the droplet. It is also assumed that all the dielectric properties 

are constant. 

 

 

Figure 3.19: Schematic illustration of the model used for the simulation of transient droplet 

charging. 
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The transient continuity equation is solved: 

 

𝜕𝜌𝑠
(𝑡+1) 

𝜕𝑡
+ ∇ ∙  𝐽 (𝑡) = 0                   (3.15) 

 

The current density is related to the electric field within the droplet: 

 

𝐽 (𝑡) = 𝜎𝐸⃗ (𝑡) = −𝜎∇𝑉(𝑡)                       (3.16) 

 

At each time t, the electric field 𝐸(𝑡) = −∇𝑉(𝑡) is obtained by solving the Laplace equation: 

 

∇2𝑉(𝑡) =  0                                             (3.17) 

 

The boundary conditions are: 

• Constant electric potentials at the two electrode surfaces: 

 

𝑉 = 0             on Electrode 1                    (3.18) 

𝑉 =  𝑉𝑛        on Electrode 2                       (3.19) 

 

• Continuity of the electrostatic displacement vector across the droplet surface, where 𝜌𝑠 is 

the surface charge density: 
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𝜀𝑜
𝜕𝑉𝑜

(𝑡)

𝜕𝑛
− 𝜀𝑖

𝜕𝑉𝑖
(𝑡)

𝜕𝑛
= 𝜌𝑠

(𝑡)                       (3.20) 

      

• Symmetry boundary conditions on the outer boundaries: 

 

    𝜀𝑜
𝜕𝑉

𝜕𝑛
= 0                                                (3.21) 

 

        The total charge at any given time t is obtained by integrating the surface charge density on 

the droplet surface Sd. The predicted temporal evolution of the amount of charges on the droplet 

is shown in Figure 3.20. The droplet radius is 0.63 mm, electrode pitch is 1.76 mm, and applied 

voltage is 100 V. The results are presented for three different contact areas A: 2.5×10-2 mm2, 

5×10-3 mm2, and 2.5×10-3 mm2.  The largest value is equal to the area of the top surface of the 

electrode in our study, and the others to 1/5 and 1/10 of that value. The droplet charges approach 

the maximum (in magnitude) equilibrium value at different rates, depending on the contact area. 

The estimated charging times range from a few milliseconds to tens of milliseconds, increasing 

with a decrease in the contact area. 
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Figure 3.20: Predicted temporal evolution of the droplet charges for three different droplet-

electrode contact areas. 

 

 

Appendix 3-B 

 

   Figure 3.21 shows the predicted terminal velocities (in log scale) for a fixed r/p ratio of 0.1, 

under a bias voltage of 200 V. The droplet radius is varied from 0.2 to 0.8 mm and the electrode 

pitch from 2 to 8 mm. Note that the spatial variations in the local droplet velocity with increasing 

traveling distance (dx/p) are qualitatively similar for all the cases that were simulated. 
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Figure 3.21: Predicted terminal velocities of electrophoretically actuated droplets with a fixed 

value of r/p = 0.1 for different combinations r and p.  

 

 

Appendix 3-C 

 

For a square electrode matrix of size n × n (with n > 3), we first show that the minimum 

number of piezoelectric elements necessary to actuate a droplet at any given position in any of 

the four independent directions (up, right, down, or left) is 8. (i, j) is used to indicate the row and 

column of each electrode, c(i, j) ⊂ {+,−} to indicate its polarity, and p(i, j) to indicate the 

piezoelectric element connected to that electrode. 

 

1. Consider electrode (i, j), where 𝑖 ≠ 0 , 𝑗 ≠ 0, 𝑖 ≠ 𝑛, 𝑗 ≠ 𝑛. This center electrode is surrounded 

by four adjacent electrodes: (i-1, j), (i, j+1), (i+1, j), and (i, j-1), corresponding to each of the 
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four directions of possible linear droplet actuation. Here, Ω is used to represent the set of 

piezoelectric elements connected to these 4 surrounding electrodes:  

 

Ω = {𝑝(𝑖 − 1, 𝑗), 𝑝(𝑖, 𝑗 + 1), 𝑝(𝑖 + 1, 𝑗), 𝑝(𝑖, 𝑗 − 1)}. 

 

2. For the EPD actuation of a droplet initially located at (i, j), the destination electrode must have 

the opposite polarity.  That is, we must have c(i-1, j) = c(i, j+1) = c(i+1, j) = c(i, j-1) = -c(i, j). In 

other words, the four electrodes centered around one common electrode must have the same 

polarity, opposite to that of the center electrode. 

 

3. Dummy electrode with no electric connection to a piezoelectric element is not allowed in the 

matrix. 

 

4. It is first proved that min (|Ω|) = 4. Let us assume that for a particular center electrode m, |Ωm| 

< 4.  At least 2 of the adjacent electrodes would then be connected to the same piezoelectric 

elements. Interference would occur when a droplet initially located on the center electrode m is 

to be actuated to one of these adjacent electrodes.  Therefore, we must ensure that |Ω| ≥ 4 for any 

center electrode. 

 

5. For a matrix of any size greater than 3×3, there are at least two adjacent center electrodes, 

denoted as A and B.  In Steps 2 and 4, it is already shown that |ΩA| ≥ 4 and |ΩB| ≥ 4, and that the 

piezoelectric elements in each set must each have the same polarity. Since the polarities of 
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electrodes A and B themselves must be opposite (one electrode is adjacent to the other), so do 

the piezoelectric elements in the two sets. That is, ΩA ∩ ΩB = ∅. Therefore, |ΩA∪ΩB| = 8. 
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Chapter 4 Droplet Routing Using Independence 

Detection (ID) and Operator Decomposition (OD) 

Algorithm 

 

 

4.1 Introduction 

 

The minimization of assay completion time, i.e., the maximization of throughput is essential 

for portable applications, where sensors can provide early detection and warning. The demands 

for parallel execution of multiple droplets to achieve this also enables more efficient 

implementation given our proposed mechanical actuation scheme in portable device. Droplet 

routing is one of the key steps in digital microfluidic biochip (DMFB) design to optimize assay 

execution. The goal of droplet routing in a DMFB is to find an efficient route for each droplet 

from its source to the target, while optimizing the design targets and satisfying the fluidic 

constraints. In Section 1.2.2, various droplet routing methods were reviewed, which are used to 

minimize the latest arrival time (Tla), number of used cells (# cells), or total routing length [57], 

[58], [60], [61], [107]–[109]. Most of these methods are based on the decoupled approach, 

resulting in sub-optimal solutions. The Integer Linear Programming (ILP) or Boolean 

satisfiability (SAT) based methods, though aiming to find optimal solutions, are computationally 
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expensive, and are only utilized for solving relatively easy problems with cardinality less than 5 

[64], [110], [111].  

To tackle this dilemma, it is noticed that droplet routing in DMFS is closely related to the 

multi-agent path finding problem (MAPF) [58]. Previous works on MAPF mainly consists of 

two types of approaches: the decoupled approach and the centralized approach. The decoupled 

approaches are mostly based on a reservation system, in which a reservation is placed on the 

required location and time slots for the droplet that has already been routed [112]. Other 

decoupled approaches allow agents at a given location to move only in a designated direction, 

similar to establishing a traffic law [113]. The decoupled approaches are often faster to solve and 

have better scalability. The centralized methods, however, plan the agents globally and often lead 

to a solution with completeness and optimality. A complete coupled algorithm combining 

Operator Decomposition (OD) with Independence Detection (ID) is proposed in [114] (referred 

to as OD+ID, hereafter), where the agents are divided into small groups, and the optimal 

solutions for the subgroups are found and finally merged. A novel increasing cost tree search 

(ICTS) is proposed in [115], where the high-level phase searches the increasing cost tree for a set 

of cost (per agent), and the low-level phase plans route for every agent under the cost constraint 

given in the high-level phase. A similar idea of Conflict Based Search (CBS) is proposed in 

[116], [117], where a constraint-tree (CT) is created and each node in the CT carries the 

constraints on time and location for each agent. New paths satisfying the constraints given by the 

node are found through a search algorithm. The performance of centralized algorithms depend on 

the given problem instance, such as the graph size and topology, the number of agents and 

branching factor, etc. [116]. 
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In this paper, the droplet routing problem is formulated to an MAPF problem, with a cost 

function consisting of the total routing cost (length) and the total number of used cells. One of 

the centralized algorithms, OD+ID [114] is then applied with necessary modifications to solve 

the problem. Here, our discussions are limited to EWOD routing problems. However, the same 

algorithm can be applied to EPD with minor changes. The modified OD+ID algorithm shows 

promising performance on test benchmarks with medium number of droplets. It enhances the 

quality of results in terms of the latest arrival time, the total routing cost (length), as well as the 

total number of used cells, when compared with previous state-of-the-art droplet routers. In 

addition, the algorithm also provides an easy approach to handle the routing of droplets with 

different routing costs, for example, due to its different viscosity, pH values, etc. 

 

 

4.2 Problem Formulation 

4.2.1 Objective function 

 

The main objective of the droplet routing problem is to transport all the droplets successfully 

from their start positions to their destinations with minimum routing cost (Ltot), i.e., the sum of 

routing costs for all droplets [58]. As droplets are routed in a concurrent fashion, some literatures 

alternatively minimize the latest arrival time (Tla) for all the routed droplets [57], [59]–[61], 

[107]. In addition, it is ideal to minimize the number of cells used (# cells) in assay operations, 

for fault tolerance. In this paper, we primarily consider the total routing length Ltot as well as the 

number of used cells (# cells), while indirectly minimizing Tla., because the former reflects the 
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optimality of the routing solution in general and provides flexibility to assign different costs to 

droplets of different types. The droplet routing problem can thus be formulated as follows.  

Given n droplets 𝐷 = {𝑑1 , 𝑑2 , … , 𝑑𝑛 }, their start locations and destinations as well as the 

locations of the other functional modules (blockages) in different time slots, route all droplets 

from their starts to their destinations while minimizing {Ltot , # cells}, under fluidic and design 

constraints. 

 

 

4.2.2 Fluidic Constraint 

 

During concurrent routing of multiple droplets, a minimum spacing needs to be maintained 

between the droplets themselves as well as between the droplets and the functional modules on 

the chip, to avoid unwanted merging. For a functional module, a segregation region (usually one 

electrode distance) is added to the surrounding to separate them from the designed droplet routes. 

Let 𝐷𝑖 and 𝐷𝑗  denote two distinct droplets to be routed, and  𝑋𝑖(𝑡), 𝑌𝑖(𝑡) be the two coordinates 

of droplet 𝐷𝑖 on the microfluidic 2-D array at time t. To prevent the two droplets from accidental 

merging, the following fluidic constraints must be satisfied. 

 

|𝑋𝑖(𝑡) − 𝑋𝑗(𝑡)|  ≥ 2  or |𝑌𝑖(𝑡) − 𝑌𝑗(𝑡)|  ≥ 2                                        (4.1) 

|𝑋𝑖(𝑡 + 1) − 𝑋𝑗(𝑡)|  ≥ 2  or |𝑌𝑖(𝑡 + 1) − 𝑌𝑗(𝑡)|  ≥ 2                           (4.2) 

|𝑋𝑖(𝑡) − 𝑋𝑗(𝑡 + 1)|  ≥ 2  or  |𝑌𝑖(𝑡) − 𝑌𝑗(𝑡 + 1)|  ≥ 2                           (4.3) 
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where Eq. (4.1) is static fluidic constraint, indicating that if one electrode is occupied by a 

droplet at time t, there will be no droplets on the adjacent eight electrodes at time t. Eq. (4.2–4.3) 

are the dynamic fluidic constraints, requiring that the activated cell for 𝐷𝑖 at the next time step 

cannot be adjacent to the currently activated cell of 𝐷𝑗 . The reason is that when more than one 

electrode surrounding 𝐷𝑗  are activated, 𝐷𝑗  may result in unpredicted movement.  

 

 

4.3 Modified OD+ID algorithm 

4.3.1 Preliminaries 

 

Operator Decomposition (OD)    

In standard A* algorithm with n droplets to be routed, the node expansion results in 5𝑛 

nodes, where each droplet can and must choose one of the following directions {N, E, W, S, 

wait} to move to the next time step. Operator Decomposition (OD) decomposes the standard 

operator in A* by using another representation of the search space, allowing only one droplet to 

move at each state and takes n intermediate states to advance to the next time step, thus reducing 

the branching factor from 5𝑛 to 5n [114]. It significantly reduces the number of searched states 

compared with that of standard A*, since the intermediate state with higher costs are not 

expanded. OD is thus adopted in our algorithm to replace the standard A* operator. More 

detailed description of OD can be found in [114].  

 

 



82 

 

Heuristic function 

In A* search, a heuristic function is used to estimate the remaining cost of transporting a 

droplet to its goal state. A good heuristic can reduce the search space and effectively speed up 

the searching process. In this paper, the shortest path of each cell on the microfluidic 2D array to 

all the destination cells of all droplets is pre-calculated using the standard breadth-first search, 

and the results are stored and used as the heuristic function. 

 

 

4.3.2 Approximate algorithm based on ID+OD 

 

Independence Detection 

First, the independence detection (ID) in [114] is reviewed, as it is applied in this paper as the 

high-level algorithm to solve the routing problem. The pseudocode for ID implementation is 

provided in Table 4.1. ID first solves each droplet routing problem independently using standard 

A* algorithm (Table 4.1, line 1-2). Whenever a conflict is found between the two groups i and j 

that violates any fluidic constraint, and those two groups were not resolved for conflict 

previously, ID attempts to re-plan a path for one of the two groups (for example, group j). In 

doing so, ID first “reserves” the path for group i by placing reservations on the required positions 

and time slot in Reservation, and then a modified A* search is used to find an alternative path for 

group j without any violation to those time slots and positions already reserved in Reservation. 

(The details of modified A* search is explained later in this section). To guarantee the optimality 

of the solution, the cost of the newly re-planned path should be equal to the original cost. 
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Similarly, the route for group i is re-planned while reserving the original route of group j if the 

previous attempt fails (Table 4.1, line 11-20). Finally, if both the attempts fail, or if the two 

conflict groups were resolved for conflict before, the two groups are merged to a new group, and 

the new merged problem is solved using the modified A* search (Table 4.1, line 24). This whole 

process is repeated until no conflicts are found between any two groups, i.e., an optimal solution 

is found for the original problem.  

The standard ID in [114] is complete and optimal in terms of minimizing the total path length 

(Ltot). However, in our routing problems, more “congestions” are encountered, and independent 

groups are found to be easily merged into a new group in our preliminary experiments. For some 

hard test cases, the cardinality of the newly merged group can easily exceed 5, resulting in 

excessive computational time and demands for memory to solve the merged problem. Therefore, 

an approximate algorithm derived from standard ID is adopted, similar to that proposed in [114]. 

The standard ID has two constraints: Firstly, the re-planned path has a cost limit that does not 

exceed that of the original path (Table 4.1, line 14, 19). Secondly, the modified A* algorithms 

expand the nodes in a non-decreasing order of the cost function f, which is determined by the 

total path length (Ltot), breaking ties using future conflicts with other groups and used cells. In 

the approximate algorithms, a maximum group size (MGS) is introduced as an input parameter, 

and the two constraints are dropped dynamically when the merging of the two conflict groups 

results in a group size larger than MGS (Table 4.1, line 8-10). Specifically, by dropping the 

second constraint, the nodes are expanded in a non-increasing order of future conflicts, resulting 

in less merging of groups and iterations in the future. Since the time for searching is determined 

by the re-planning of the group with the largest number of droplets, dropping both constraints 
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helps increase the computation speed while sacrificing the optimality of the solution. To 

calculate the future conflicts, a conflictAvoidanceTable (Table 4.1, line 13, 18) is used to register 

the positions and required time slots for all the other routes except the one under re-planning. 

 

Table 4.1: Independence Detection (approximate algorithm) 

Algorithm 1: Independence Detection 

1: Assign each droplet to a group; 

2: Plan a path for each group using standard A* search; 

3: Initialize conflict table to record conflict groups having been resolved; 

4: WHILE i is not the last group 

5: IF no conflict of group i with any other group 

6:      i ← i + 1; CONTINUE; 

7:        i, j ← conflict groups;   //conflict exists between group i and j// 

8:        IF MGS ≥ group_size(i) + group_size(j) 

9:              f ← set future conflict as priority; 

10:        ELSE   f ← set total path length as priority; 

11:        IF group i and j have not conflict before (according to conflict table) 

12:              Fill Reservation table with path of group i; 

13:              Fill ConflictAvoidanceTable with all other paths except group j; 

14:              Find alternative path for group j using modified A* search; 

15:              i ← min(i, j); CONTINUE; 

16:             IF failed to find alternative path for j 

17:                    Fill Reservation table with path of group j; 

18:                    Fill ConflictAvoidanceTable with all other paths except group i; 

19:                    Find alternative path for group i using modified A* search; 

20:                    i ← min(i, j); CONTINUE; 
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21:        Merge i and j into one new group; 

22:        Re-plan path for the new group without Reservation; 

23:        Update conflict table; 

24:        i ← new group index; 

25: RETURN final paths for all groups; 

 

 

Modified A* search based on OD 

The pseudo code for modified A* search algorithm used for low-level path search is 

summarized in Table 4.2. In the standard A* algorithm, two sets are maintained: Open list and 

Closed list. The Open list is usually implemented using a priority queue to store the states that 

need to be expanded and the Closed list stores all the states that have been expanded previously, 

thus cutting off the redundant search space. The Open list contains one state initially: the start 

state As, which is determined by the starting positions of all the droplets; the Closed list starts 

empty (Table 4.2, line 1). A* search then tries to find a series of legal transition states to connect 

the start state As to the goal state Ag, essentially converting the routing problem into a graph 

searching problem. 

As mentioned previously, Reservation stores the positions and corresponding time slots 

occupied by the droplets of the conflict group, and ConflictAvoidanceTable stores the positions 

and time slots occupied by all the other droplets. When new states are generated by moving one 

agent, those that are neither in violation with Reservation nor previously expanded (in Closed or 

Open list) are then added to the Open list (Table 4.2, line 15, 22, 23). Various state attributes (up 
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to this state) such as the routing cost (length), used cells, and number of future conflicts with the 

other already-planned routes are also calculated (Table 4.2, line 16-20). 

At each iteration, the most “promising” state is popped from Open list, depending on the cost 

function f and whether approximate search is adopted (Table 4.2, line 20). For optimal solutions, 

f is first determined by the total path length (cost), and breaking ties using the number of conflict 

and used cells ensures that the algorithm returns the path with smallest future conflicts and used 

cells among all the optimal solutions, with the smallest path cost (length). For approximate 

search, however, f is non-decreasing with future conflicts, and breaking ties using the total path 

cost (length) and used cells to avoid merging of groups provides a solution faster. The key 

modification compared with standard A* is highlighted in blue in Table 4.2. 

 

 

Table 4.2: Modified A* search 

Algorithm 2: Modified A* search 

1: As ← start state;  Ag ← goal state; 

2: Reservation ← reserved routs; conflictAvoidanceTable ← all other routs; 

3: Open ← {As}; Closed ←{ } 

4: WHILE Open ≠  ∅, BEGIN 

5:   s ← pop state from Open with smallest f; 

6:      IF s = Ag      // reach goal state 

7:           IF s. longest_time≥ Reservation.longest_time 

8:                RETURN s and the path; 

9:           ELSE 

10:                 s’ ← s with time step + 1 and other remains the same; 

11:                 Put s’ into Open if s’ does not conflict with Reservation; 

12:      ELSE 
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13:          children ← assign valid moves to one agent in s;  // use OD state// 

14:          For each q in children 

15:               IF q has conflict with Reservation, CONTINUE; 

16:               q.g ← s.g + cost for last step; 

17:               q.h ← cost from q to goal position; 

18:               q.used_electrode ← used electrodes of all steps in planned path until q; 

19:               q.conflict ← all conflicts with conflictAvoidanceTable until q; 

20:               q.f  = f (q.g + q.h, q.used_electrode, q.conflict); 

21:               q.predecessor ← s; 

22:               IF q’ in Open and Closed such that q = q’ and q.f < q’f,  CONTINUE; 

23:               Put q to Open; 

24:          End For 

25:          Add s to Closed; 

26:      End IF  

27: RETURN ∅ 

 

 

4.4 Results 

 

The ID-based droplet router was implemented in Python language on an 8-GHz Mac 

machine with 8 GB memory. To avoid long computation time (>2 h), we used MGS = 1. The 

experiments were performed on various benchmark suites, including four of the difficult cases in 

[59] (test 1-4), seven of the difficult cases in [60] (test a-g), and one bioassay: in vitro_1 [57], 

[59], [60]. The maximum number of droplets was 12 for all the chosen cases; however, problems 

with more droplets may be solved in a reasonable time with improved hardware.  

Table 4.3 describes the size of the microfluidic array, the number of droplets (#D) to be 

routed, and the block area (#Blk) for each benchmark case. The routing results including the 
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latest arrival time (Tla) and total number of used cells (#cells) were compared with those of the 

state-of-the-art algorithms [59]–[61]. The cells denoted by “-” are either failed or untested cases 

by the corresponding algorithms. For the sake of convenience, the results of fast route algorithm 

[60] was used as the base line for the comparison. Among all the algorithms, the novel droplet 

routing algorithm [61] resulted in the shortest Tla  on average, at the expense of a 15% increase in 

the number of used cells compared with the baseline algorithm. For all the solved cases, the 

average Tla of the high-performance algorithm [59] was 2.56 times that of the baseline algorithm. 

The proposed algorithm decreases the average Tla by ~15% without increasing the number of 

used cells (~5% decrease), as highlighted in red in Table 4.3. It is also shown that our 

implemented algorithm achieves 100% routing completion for all the chosen cases with medium 

number of droplets. Overall, the results show that our algorithm can achieve better timing result 

and fault tolerance compared with the best-known algorithms on problems with medium number 

of droplets. 

In addition, due to the lack of reporting of total routing cost (length) for most of the 

algorithms mentioned above, only the total routing length was compared with those reported in 

[59] for the solved cases (Test 1 and 4). The results show that our algorithm successfully reduces 

the total routing length by more than 50%, indicating a large improvement in overall routing 

efficiency.  
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Table 4.3: Experimental results for selected test benchmarks. 

Benchmark Suite High-

Performance[59] 

Fast Route 

[60] 

Novel 

Routing[61] 

Ours 

name size #D #Blk Tla #cells Tla #cells Tla #cells Tla #cells 

Test 1 12x12 12 23 100 67 39 73 23 63 28 75 

Test 2 12x12 12 25 -   - 47 65 21 60 28 69 

Test 3 12x12 12 28 - - 41 48 22 73 33 75 

Test 4 12x12 12 31 70 64 38 71 26 109 32 63 

Test a 13x13 6 69 - - 17 51 - - 15 38 

Test b 13x13 5 53 - - 13 33 - - 13 34 

Test c 16x16 7 95 29 74 24 61 - - 20 67 

Test d 16x16 9 133 - - 27 87 - - 28 56 

Test e 24x24 10 173 38 170 38 128 - - 38 117 

Test f 24x24 12 215 - - 45 129 - - 32 139 

Test g 32x32 6 485 - - 39 121 - - 39 121 

Total    2.56 0.92 1 1 0.6 1.15 0.86 0.95 

 

 

Table 4.4 compares the results of the baseline algorithm [60] and that of ours for in vitro_1 

bioassay, which involves 11 sub-problems. The maximum latest arrival time (Max. Tla), average 

latest arrival time (Avg. Tla), and total number of used cells (#cells) among all the sub-problems 

are summarized. Due to the relative small number of droplets in all the sub problems (<7), the 
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improvement of our algorithm over [60] for Max. Tla and #cells are not significant. However, we 

can see a 20% reduction in Avg. Tla. Therefore, our algorithm also performs well on relatively 

easy bioassays with fewer droplets. 

 

Table 4.4: Results for in vitro compared with [60] 

 [60] Ours 

name size #D #Sub Max. 

Tla 

Avg. 

Tla 

#cells Max. 

Tla 

Avg. 

Tla 

#cells 

in 

vitro 

16x16 28 11 18 12.47 231 17 10.43 229 

  

 

 

Figure 4.1 illustrates the routing result of one example test problem with 6 droplets. The start 

and goal positions of the droplets are marked as squares in different colors; the blockages are 

indicated by the blue blocks, and the resulted routes for different droplets are marked in red 

arrows. The stalls of droplets are denoted by “s” on the corresponding cells along the routes. 
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Figure 4.1: Sample droplet routing diagram with 6 droplets. The start and goal positions for all 

droplets are indicated by squares of green and orange, respectively; blockages are indicated by 

blue squares and resulted routes are marked using red arrows.  

 

 

One advantage of our model is its ability to assign different cost to droplets of different types 

(pH, viscosity, etc.), by including the total routing length (cost) in our objective function. By 

varying the routing cost of the droplets, for example, by increasing the cost per step for a certain 

droplet from unit 1 to 10, we can prioritize the optimization for that droplet route at the expense 

of increasing total cost. Figure 4.2(a) and (b) demonstrate the re-routing results for droplet 4 and 

5 for the same test case as in Figure 4.1, with routing cost set at 1 (dashed line) and 10 (solid 

line), respectively. The increased routing cost reduces the route length for that droplet. Table 4.5 

lists the reduction in route lengths for different droplets in the same test case by increasing their 

routing cost from 1 to 10. Droplets 3 and 6 were not included, since their routes were already at 
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the optimal level in the original solution, as shown in Figure 4.1. Therefore, no further 

improvement can be made when the routing costs are increased.  

 

       

Figure 4.2: Routing results for (a): droplet 4 and (b): droplet 5 in sample test problem after 

increasing the routing cost from 1 to 10; solid line is the new route and dashed line is the original 

route. 

 

 

Table 4.5: Reduction of droplet routing length for sample test problem with increasing routing 

cost. 

No. 

Droplet 

Original length 

(Cost = 1) 

New length 

(Cost = 10) 

Reduction 

1 13 12 7.96% 

2 12 11 9.09% 

4 17 13 23.53% 

5 15 12 20.00% 

 15.1% 
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4.5 Summary 

 

A droplet routing algorithm was implemented based on independence detection (ID) and 

operator decomposition (OD) to solve the routing problem in DMFB design. The basic ID 

functions by first dividing the droplets into independent groups and then routing them separately. 

The results are then merged sequentially and when conflict between two groups are found, the 

two conflict groups are merged as a new group, and legitimate paths for the new group is 

searched. To increase the computation speed, several constraints were dropped from the basic 

ID, resulting in an approximate algorithm for droplet routing on DMFB. 

Experiments on selected benchmarks demonstrate that our algorithm can achieve 100% 

routing completion for problems with medium number of droplets (≤12). Overall, the routing 

results show that our algorithm achieve better timing result and fault tolerance compared with the 

previous best-known results. In addition, the algorithm provides a flexible approach to route the 

droplets of different routing costs, while minimizing the total routing cost. All the Python codes 

used to obtain the results in this paper are available in Appendix 4-A and online at: 

https://github.com/sophiapeng0426/MAPF.  

  

https://github.com/sophiapeng0426/MAPF
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Appendix 4-A Source Code for droplet routing 

Example to run …/SingleAgent/Solver/IDSolver/EnhancedID.py: 

fileroot = '/Users/chengpeng/Documents/MTSL/ElectrodeDesgin/DMFB' 

# filename1 = 'test_12_12' 

# filename1 = 'benchmark_' 

filename1 = 'in-vitro_2.' 

for i in range(1, 2): 

    # filename = filename1 + '{0}_minsik'.format(i) 

    # filename = filename1 + '_{0}.in'.format(i) 

    filename = filename1 + '{0}'.format(i) 

    saveRoot = 

'/Users/chengpeng/Documents/MTSL/ElectrodeDesgin/Result/{0}/'.format(f

ilename)d 

    if not os.path.exists(os.path.dirname(saveRoot)): 

        os.makedirs(os.path.dirname(saveRoot)) 

 

    testProblem = generateProblem(os.path.join(fileroot, filename)) 

    testProblem.plotProblem() 

    # save probleminstance 

    with open(saveRoot + 'InitialProblem.pickle', 'wb') as f: 

        pickle.dump(testProblem, f) 

 

    f = open('{0}/discription.txt'.format(saveRoot), 'a+') 

    f.write('agent num: {0}'.format(len(testProblem.getAgents()))) 

    f.close() 

 

Sample input file: 

grid 13 13 500 

 

blk target = 115.2 

#0 

block 1 2 3 3 

#1 

block 0 6 3 8 

#2 

block 1 11 3 12 

#3 

block 5 3 7 7 

#4 

block 6 9 9 11 

#5 

block 9 3 10 4 

#6 

block 11 1 12 2 
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#7 

block 11 6 12 7 

#8 

block 11 10 12 12 

 

blk real = 175 

nets 6 

net 0 0 12 0 4 8 8 

net 1 10 6 0 0 5 11 

net 2 4 9 0 0 1 11 

net 3 0 3 0 10 0 13 

net 4 8 0 0 9 7 8 

net 5 10 12 0 7 8 7 

 

The following contains all classes used to solve droplet routing 

problems in this paper: 

…/SingleAgent/Solver/Astar/GeneticAStar.py 

from Queue import PriorityQueue 

from SingleAgent.Solver.ConstraintSolver import ConstraintSolver 

from SingleAgent.Utilities.StateClosedList import StateClosedList 

from SingleAgent.Utilities.ProblemInstance import ProblemInstance 

 

 

class GeneticAStar(ConstraintSolver): 

    def __init__(self): 

        """ 

        _openList: priority queue 

        _closeList: stateCloseList 

        _goalState: result goal state (used for reconstruct path) 

        """ 

        super(GeneticAStar, self).__init__() 

        self._openList = PriorityQueue() 

        self._closeList = StateClosedList() 

        self._goalState = None 

        self._heuristic = None 

        self._ignoreCost = False 

 

    def solve(self, problemInstance, fileroot, cost, total): 

        """ updated solve 

        :param problemInstance: 

        :param root: 

        :param cost: 

        :param total: 

        :return: 

        """ 

        import os 
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        import time 

 

        startTime = time.time() 

        assert isinstance(problemInstance, ProblemInstance), 

"Initialize solve function require problemInstance" 

 

        self.init(problemInstance) 

 

        # ====== for debug =========== 

        # alist = [str(x.getId()) for x in 

problemInstance.getAgents()] 

        # name = '_'.join(alist) 

        # dirname = fileroot + '/log/' 

        # # dirname = 

'/Users/chengpeng/Documents/MTSL/ElectrodeDesgin/Result/test_16_16_1/l

og3.5t/' 

        # if not os.path.exists(os.path.dirname(dirname)): 

        #     os.makedirs(os.path.dirname(dirname)) 

        # f = open('{0}{1}.txt'.format(dirname, name), 'a') 

        # f.write(dirname) 

        # ===== end ====== 

 

        maxgValue = 0 

        if total: 

            for agent in problemInstance.getAgents(): 

                maxgValue += agent.getCost()* 

problemInstance.getGraph().getSize() * cost 

                # maxgValue = maxgValue * self._heuristic.nAgent() 

 

        print("max cost: {0}".format(maxgValue)) 

        # f.write("max cost: {0}\n".format(maxgValue)) 

 

        root = self.createRoot(problemInstance) 

        self.setHeuristic(root, 'trueDistance', self._heuristic) 

        self._setTables(root, problemInstance) 

        self._openList.put(root) 

 

        elapse = 0 

        while not self._openList.empty() and self._closeList.size() < 

500000 and elapse < 1800: 

            elapse = time.time() - startTime 

            currentState = self._openList.get() 

 

            if self._closeList.size() % 10000 == 0: 

                toPrint = True 

            else: 

                toPrint = False 

 

            if toPrint: 
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                print("\nOpenList size: {0};  closedList size ~: 

{1}".format(self._openList.qsize(), 

                                                                           

self.closeList().size())) 

 

                print("timeStep: {0}, pop: 

{1}".format(currentState.timeStep(), currentState)) 

            # f.write("\nOpenList size: {0};  closedList size ~: 

{1}".format(self._openList.qsize(), 

            #                                                   

self.closeList().size())) 

            # f.write("\ntimeStep: {0}, pop: 

{1}\n".format(currentState.timeStep(), currentState)) 

 

            self._closeList.add(currentState) 

 

            # reach goal state 

            if self.isGoal(currentState, problemInstance): 

                if currentState.timeStep() >= 

self.getReservation().getLastTimeStep(): 

                    self._goalState = currentState 

                    return True 

                else: 

                    nextgoal = 

currentState.generateNextGoal(problemInstance) 

                    if self.getReservation().isValid(nextgoal): 

                        print("put back {0}, timestep: {1} 

".format(nextgoal, nextgoal.timeStep())) 

                        # f.write("put back {0}, timestep: 

{1}\n".format(nextgoal, nextgoal.timeStep())) 

 

                        self.setHeuristic(nextgoal, 'trueDistance', 

self._heuristic) 

                        self._setTables(nextgoal, problemInstance) 

                        self._openList.put(nextgoal) 

                    else: 

                        # delete goal in closelist 

                        self._closeList.delete(currentState) 

                        # ====== experiment with deleting all ======== 

                        # preS = currentState.getPreState() 

                        # while preS is not None: 

                        #     if preS in 

self._closeList.getClosedList(): 

                        #         self._closeList.delete(preS) 

                        #     preS = preS.getPreState() 

                        # ======== end ========== 

                        print("Conflict with reservation, do not put 

back.") 

                        # f.write("Conflict with reservation, do not 
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put back.\n") 

 

            # not reach goal state 

            else: 

                potentialStates = currentState.expand(problemInstance) 

                for s in potentialStates: 

                    self.setHeuristic(s, 'trueDistance', 

self._heuristic) 

                    self._setTables(s, problemInstance) 

                    # ======== each agent maxCost ====== 

                    lessValue = True 

                    if not total: 

                        for singleS in s.getSingleAgents(): 

                            if singleS.fValue() > 

problemInstance.getGraph().getSize() * cost * singleS.getStepCost(): 

                                lessValue = False 

                    else: 

                        lessValue = s.gValue() + s.hValue() < 

maxgValue 

                    # ========= end ============ 

                    if self.getReservation().isValid(s): 

                        if lessValue: 

                            if toPrint: 

                                print(s) 

                            # f.write(str(s) + '\n') 

                            # agents stays 

                            if not self._closeList.contains(s): 

                                self._openList.put(s) 

                                self._closeList.add(s) 

                                if toPrint: 

                                    print("add to openlist/closelist") 

                                # f.write("add to 

openlist/closelist\n") 

                            elif s.isStay(currentState): 

                                self._openList.put(s) 

                                if toPrint: 

                                    print("add to openlist") 

                                # f.write("add to openlist\n") 

                    else: 

                        if toPrint: 

                            print(s) 

                        # f.write(str(s) + "obey violations\n") 

        # f.close() 

        return False 

 

    def init(self, problemInstance): 

        """ 

        :param problemInstance: 

        :param pathList: 
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        :return: 

        """ 

        from TDHeuristic import TDHeuristic 

        while not self._openList.empty(): 

            self._openList.get() 

        self._closeList.clear() 

        self._goalState = None 

        # init TDHeuristic 

        self._heuristic = TDHeuristic(problemInstance) 

 

    def setIgnore(self, tf): 

        if tf: 

            print("AStarSolver set violation free as priority.") 

        else: 

            print("AStarSolver set cost as priority.") 

        self._ignoreCost = tf 

 

    def getHeuristicTable(self): 

        return self._heuristic 

 

    def setHeuristic(self, s, mode, input): 

        s.setHeuristic(mode, input) 

 

    def _setTables(self, s, problemInstance): 

        """ 

        set s._conflictViolations and s._usedElectrode 

        :param s: multiagentstate or ODstate, not implemented for 

single agentstate 

        :return: 

        """ 

        nsize = problemInstance.getGraph().getSize() 

        # if self.getUsedTable().isInitialized() is True: 

        s.updateUsedElectrode(self.getUsedTable(), nsize) 

        if self.getCAT().isEmpty() is False: # 

self.getCAT().isInitialized() is True and 

            s.updateCATViolations(self.getCAT()) 

 

    def isGoal(self, s, problemInstance): 

        return s.goalTest(problemInstance) 

 

    def getPath(self): 

        """ Get list of states as paths 

        :return: 

        """ 

        pathList = [] 

        if self._goalState is None: 

            return pathList 

 

        s = self._goalState 
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        while s is not None: 

            pathList.append(s) 

            s = s.predecessor() 

        return pathList[::-1] 

 

    def printPath(self): 

        """ 

        :return: print list of states as path 

        """ 

        pathList = self.getPath() 

        if len(pathList) == 0: 

            print("No path to print") 

        for s in pathList: 

            print(s) 

 

    def closeList(self): 

        return self._closeList 

 

    def createRoot(self, problemInstance): 

        """create root node for AStar solver""" 

        pass 

 

    def __str__(self): 

        return "AStar" 

 

…/SingleAgent/Solver/Astar/BreadthFirstSearch.py 

from GeneticAStar import GeneticAStar 

 

 

class BreadthFirstSearch(GeneticAStar): 

    def __init__(self): 

        super(BreadthFirstSearch, self).__init__() 

 

    def simpleInit(self): 

        if self._ignoreCost: 

            self.setIgnore(False) 

 

        while not self._openList.empty(): 

            self._openList.get() 

        self._closeList.clear() 

        self._goalState = None 

 

    def createRoot(self, problemInstance): 

        from SingleAgent.States.SingleAgentState import 

SingleAgentState 

 

        assert len(problemInstance.getAgents()) == 1, 'breadthfirst 
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input > 1 agent problemInstance' 

        agentid = problemInstance.getAgents()[0].getId() 

        return SingleAgentState.fromProblemIns(agentid, 

problemInstance) 

 

    def simpleSolve(self, problemInstance): 

        self.simpleInit() 

 

        root = self.createRoot(problemInstance) 

        self.setConsHeuristic(root, 0) 

 

        self._openList.put(root) 

        self._closeList.add(root) 

 

        while not self._openList.empty(): 

            currentState = self._openList.get() 

            self._closeList.add(currentState) 

 

            potentialStates = currentState.expand(problemInstance) 

            for s in potentialStates: 

                self.setConsHeuristic(s, 0) 

                if not self._closeList.contains(s): 

                    self._openList.put(s) 

                    self._closeList.add(s) 

        return True 

 

    def setConsHeuristic(self, s, cons): 

        s.setHeuristic('constant', cons) 

 

    def finalList(self): 

        position = [] 

        distance = [] 

        for state, _ in self.closeList().getClosedList().items(): 

            position.append(state.getCoord().getNode().getPosition()) 

            distance.append(state.gValue()) 

        return position, distance 

 

 

…/SingleAgent/Solver/Astar/SingleAgentAStar.py 

from GeneticAStar import GeneticAStar 

from SingleAgent.States.SingleAgentState import SingleAgentState 

 

 

class SingleAgentAStar(GeneticAStar): 

    def __init__(self): 

        super(SingleAgentAStar, self).__init__() 
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    def createRoot(self, problemInstance): 

        if not self._ignoreCost: 

            assert len(problemInstance.getAgents()) == 1, "Not a 

singleAgent problemInstance" 

            return SingleAgentState.fromProblemIns(0, problemInstance) 

        else: 

            assert False, 'Not implement violation first.' 

 

 

…/SingleAgent/Solver/Astar/MultiAgentAStar.py 

from GeneticAStar import GeneticAStar 

from SingleAgent.States.MultiAgentState import MultiAgentState 

 

 

class MultiAgentAStar(GeneticAStar): 

    def __init__(self): 

        super(MultiAgentAStar, self).__init__() 

 

    def createRoot(self, problemInstance): 

        if not self._ignoreCost: 

            assert len(problemInstance.getAgents()) >= 1, "Need agent" 

            return MultiAgentState.fromProblemIns(problemInstance) 

        else: 

            assert False, 'Not implement violation first.' 

 

    def visualizePath(self, problemInstance): 

        """ 

        :param problemInstance: 

        :return: 

        """ 

        import copy 

        # deep copy to prevent changing of map content 

        mapContent = 

copy.deepcopy(problemInstance.getMap().getContent()) 

        pathList = self.getPath() 

        for state in pathList: 

            for singleState in state.getSingleAgents(): 

                x = singleState.getCoord().getNode().getPosition()[0] 

                y = singleState.getCoord().getNode().getPosition()[1] 

                mapContent[y][x] = str(singleState.getAgentId()) 

        for i in mapContent: 

            print(' '.join(i)) 

 

…/SingleAgent/Solver/Astar/ODAStar.py 
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from GeneticAStar import GeneticAStar 

from SingleAgent.States.ODState import ODState 

from SingleAgent.States.ODState_2 import ODState_2 

from SingleAgent.States.SingleAgentState import SingleAgentState 

 

 

class ODAStar(GeneticAStar): 

    def __init__(self): 

        """ 

        init _openList, _closeList and _goalState 

        """ 

        super(ODAStar, self).__init__() 

 

    def createRoot(self, problemInstance): 

        assert len(problemInstance.getAgents()) >= 1, "Need agent" 

        # if len(problemInstance.getAgents()) == 1: 

        #     return 

SingleAgentState.fromProblemIns(problemInstance.getAgents()[0].getId()

, problemInstance) 

        # else: 

        if not self._ignoreCost: 

            return ODState.fromProblemIns(problemInstance) 

        else: 

            return ODState_2.fromProblemIns(problemInstance) 

 

        def visualizePath(self, problemInstance): 

        """ print path in map 

        :param problemInstance: 

        :return: 

        """ 

        import copy 

        # deep copy to prevent changing of map content 

        mapContent = 

copy.deepcopy(problemInstance.getMap().getContent()) 

        pathList = self.getPath() 

        for state in pathList: 

            if isinstance(state, ODState): 

                for singleState in state.getSingleAgents(): 

                    x = 

singleState.getCoord().getNode().getPosition()[0] 

                    y = 

singleState.getCoord().getNode().getPosition()[1] 

                    mapContent[y][x] = str(singleState.getAgentId()) 

            elif isinstance(state, SingleAgentState): 

                x = state.getCoord().getNode().getPosition()[0] 

                y = state.getCoord().getNode().getPosition()[1] 

                mapContent[y][x] = str(state.getAgentId()) 

        for i in mapContent: 

            print(' '.join(i)) 
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…/SingleAgent/Solver/Astar/TDHeuristic.py 

from SingleAgent.Utilities.ProblemInstance import ProblemInstance 

from SingleAgent.Utilities.Agent import Agent 

from SingleAgent.Solver.AStar.BreadthFirstSearch import 

BreadthFirstSearch 

from SingleAgent.Utilities.Util2 import Util2 

 

 

class TDHeuristic(object): 

    def __init__(self, problemInstance): 

        nAgent = len(problemInstance.getAgents()) 

        self._nsize = problemInstance.getGraph().getSize() 

        self._idTable = {} 

 

        # lookupTable[self._idTable[ID]][index] is the distance 

        self._lookupTable = [[0 for i in range(self._nsize * 

self._nsize)] for j in range(nAgent)] 

        self._init(problemInstance) 

        print("TDHeuristic initialized, size: {0} x 

{1}".format(len(self._lookupTable), len(self._lookupTable[0]))) 

 

    def _init(self, problemInstance): 

        """ 

        ID needs to be ranged from 0 to n 

        :param problemInstance: 

        :return: 

        """ 

        goals = problemInstance.getGoals() 

 

        k = 0 

        for ID, goalPos in goals.items(): 

            newagent = Agent(ID, goalPos, None, 

problemInstance.findAgent(ID).getCost())  # fake goal position 

            newProblem = ProblemInstance(problemInstance.getGraph(), 

[newagent]) 

 

            bfs = BreadthFirstSearch() 

            bfs.simpleSolve(newProblem) 

            position, distance = bfs.finalList() 

            for i in range(len(position)): 

                index = Util2().posToIndex(position[i], self._nsize) 

                self._lookupTable[k][index] = distance[i] 

                self._idTable[ID] = k 

            k += 1 

 

    def trueDistance(self, agentId, pos): 

        index = Util2().posToIndex(pos, self._nsize) 
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        return self._lookupTable[self._idTable[agentId]][index] 

 

    def nAgent(self): 

        return len(self._lookupTable) 

 

…/SingleAgent/Solver/IDSolver/EnhancedID.py 

import pickle 

import sys 

import os 

from IndependentDetection import IDSolver 

from SingleAgent.Utilities.ProblemInstance import ProblemInstance 

from SingleAgent.Solver.Utils import Util 

from SingleAgent.Utilities.Util2 import Util2 

 

 

class EnhandcedID(IDSolver): 

    def __init__(self, solver, maxGroupSize): 

        super(EnhandcedID, self).__init__(solver) 

        self._mgs = maxGroupSize 

 

        self._conflictInPast = [] 

        self._dir = None 

        self._cost = 3 

        self._total = True 

 

    def solve2(self, problemInstance, root, cost, total=True): 

        self._cost = cost 

        self._total = total 

        if total: 

            self._dir = root + 'maxg{0}_{1}t'.format(self._mgs, cost) 

        else: 

            self._dir = root + 'maxg{0}_{1}'.format(self._mgs, cost) 

 

        self._initialProblem = problemInstance 

        if len(self._problemList) == 0: 

            # start from scratch 

            if not self.populatePath(self._initialProblem): 

                return False 

        self.save(self._dir, 'initial') 

 

        for i in range(len(self.paths())): 

            if self.paths()[i] is not None: 

                self.solver().getCAT().addPath(self.paths()[i], i) 

                self.solver().getUsedTable().addPath(self.paths()[i], 

i) 

 

        index = 0 
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        count = 0 

        while index < len(self._pathList): 

            conflict = Util().conflict(index, 0, self._pathList) 

            if conflict is None or conflict.isEmpty(): 

                index += 1 

            else: 

                swallowed = False 

                if not self.enhanced_resolveConflict(conflict, 

swallowed): 

                    return False 

                # ======= for debugging ========== 

                # else: 

                #     return True 

                # ======= end =========== 

                if not swallowed: 

                    # does not swallow 

                    index = min(conflict.getGroup1(), 

conflict.getGroup2()) 

                    # index = 0 

                    print("-> Go to index: {0}".format(index)) 

                else: 

                    print("-> Swallowed, index: {0}".format(index)) 

 

            if conflict is not None and not conflict.isEmpty(): 

                self.save(self._dir, str(count) + str(conflict)) 

                count += 1 

            elif conflict is None and index == len(self._pathList)-1: 

                # === check if last change does not make new 

violations === 

                self.save(self._dir, 'solution') 

                count += 1 

 

        # ==== record final result ===== 

        totalCost, usedElectrode, finalPath = 

Util().mergePaths(self._pathList, problemInstance) 

 

        if not self.correctcheck(finalPath): 

            print("=== Final check is wrong answer! ===") 

            headline = "(Wrong)total cost: {0}, used electrode: {1} 

\n".format(totalCost, usedElectrode) 

            strPath = self.strPath(finalPath) 

            print(headline + strPath + '\n') 

            # write result to file 

            self.recordResult(headline, strPath) 

        else: 

            # write result 

            headline = "total cost: {0}, used electrode: {1} 

\n".format(totalCost, usedElectrode) 

            strPath = self.strPath(finalPath) 
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            print(headline + strPath + '\n') 

            # write result to file 

            self.recordResult(headline, strPath) 

        return True 

 

    """ ============ file IO ===============""" 

    def recordResult(self, headline, strPath): 

        f = open('{0}/result.txt'.format(self._dir), 'a+') 

        f.write(headline + strPath + '\n') 

        f.close() 

 

    def strPath(self, pathList): 

        """print paths""" 

        strout = '' 

        for t, singleAgents in enumerate(pathList): 

            strout += "TimeStep: {0}".format(t) 

            gValue = 0 

            hValue = 0 

 

            for singleAgent in singleAgents: 

                gValue += singleAgent.gValue() 

                hValue += singleAgent.hValue() 

 

                strout += '; ' + str(singleAgent) 

            strout += '; gValue: {0}; hValue: {1} \n '.format(gValue, 

hValue) 

        return(strout) 

 

    def save(self, fileDir, filename): 

        """save pathlist, problemlist, conflictInPast""" 

        sys.setrecursionlimit(20000) 

 

        if not 

os.path.exists(os.path.dirname('{0}/{1}.pickle'.format(fileDir, 

filename))): 

            

os.makedirs(os.path.dirname('{0}/{1}.pickle'.format(fileDir, 

filename))) 

 

        with open('{0}/{1}.pickle'.format(fileDir, filename), 

                  'wb') as f1: 

            pickle.dump(self.paths(), f1) 

            pickle.dump(self.problems(), f1) 

            pickle.dump(self._conflictInPast, f1) 

 

    def read(self, fileDir, filename): 

        """ 

        :param fileDir: 

        :param filename: '0_1', 'initial', 'solution' 
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        :return: 

        """ 

        with open('{0}/{1}.pickle'.format(fileDir, filename), 'rb') as 

f1: 

            self._pathList = pickle.load(f1) 

            self._problemList = pickle.load(f1) 

            self._conflictInPast = pickle.load(f1) 

            # fill solver() cat and usedtable in self.solve() 

 

    """ ============================= 

    """ 

    def populatePath(self, problemInstance): 

        """ 

        clear solver() tables, populate problemList, pathList 

        """ 

        # from random import shuffle 

        # ===== clear solver() tables === 

        self.clearSolver() 

        # ===== clear ProblemList and shuffle === 

        self._problemList[:] = [] 

        for agent in self._initialProblem.getAgents(): 

            # problemInstance requires _singleAgents a list! 

            

self._problemList.append(ProblemInstance(self._initialProblem.getGraph

(), [agent])) 

        # ===== clear PathList ===== 

        self._pathList[:] = [] 

        if not self.solveInitialProblem(): 

            return False 

        self.clearSolver() 

 

        # self._conflictInPast = [[False for i in 

range(len(self.paths()))] for j in range(len(self.paths()))] 

        self._conflictInPast = [[False for i in 

range(len(problemInstance.getAgents()))] 

                                for j in range(len(self.paths()))] 

        return True 

 

    def solveInitialProblem(self): 

        # first iteration 

        self.solver().setIgnore(False) 

        for ith, problem in enumerate(self._problemList): 

            if not self.solver().solve(problem, self._dir, 10000, 

True): 

                return False 

            self.solver().getCAT().addPath(self.solver().getPath(), 

ith) 

            

self.solver().getUsedTable().addPath(self.solver().getPath(), ith) 
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            self._pathList.append(self.solver().getPath()) 

        # second iteration 

        for ith, problem in enumerate(self._problemList): 

            self.solver().getCAT().deletePath(self._pathList[ith], 

ith) 

            

self.solver().getUsedTable().deletePath(self._pathList[ith], ith) 

            if not self.solver().solve(problem, self._dir, 10000, 

True): 

                return False 

 

            self.solver().getCAT().addPath(self.solver().getPath(), 

ith) 

            

self.solver().getUsedTable().addPath(self.solver().getPath(), ith) 

            self._pathList[ith] = self.solver().getPath() 

            # ==== for fix bug === 

            self.solver().visualizePath(problem) 

            print("total Conflict: 

{0}".format(self.solver().getPath()[-1].conflictViolations())) 

            # ==== end  === 

        return True 

 

 

    def enhanced_resolveConflict(self, conflict, swallowed): 

        """ 

        resolve conflict 

        :param conflict: new conflict include ids 

        :return: 

        """ 

        print("\n==== Resolve Conflict {0} {1} 

====".format(conflict.getGroup1(), conflict.getGroup2())) 

        # ===== debug: print conflictInPast === 

        # for line in self._conflictInPast: 

        #     print(line) 

        # ======== end  ===== 

        faster = conflict.getGroup1() 

        slower = conflict.getGroup2() 

        fastera = conflict.getAgent1() 

        slowera = conflict.getAgent2() 

 

        if sum(self._conflictInPast[faster]) > 

sum(self._conflictInPast[slower]): 

            faster, slower = slower, faster 

            fastera, slowera = slowera, fastera 

        elif sum(self._conflictInPast[faster]) == 

sum(self._conflictInPast[slower]): 

            if Util().pathLength(self.paths()[faster]) > 

Util().pathLength(self.paths()[slower]): 
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                faster, slower = slower, faster 

                fastera, slowera = slowera, fastera 

 

        totalSize = len(self._problemList[faster].getAgents()) + 

len(self._problemList[slower].getAgents()) 

        oversize = totalSize > self._mgs 

        newPath = None 

 

        # === replan group[faster] ==== 

        print("\n==Replan faster {0}==".format(faster)) 

        if not self._conflictInPast[faster][slowera]: 

            self.solver().getCAT().deletePath(self._pathList[faster], 

faster) 

            

self.solver().getUsedTable().deletePath(self._pathList[faster], 

faster) 

            

self.solver().getReservation().reservePath(self._pathList[slower]) 

            newpath = self.findAlternativePath(faster, slower, 

oversize) 

            self.solver().getReservation().clear() 

            if newpath is not None: 

                # success 

                print("@@Find new path for group {0}".format(faster)) 

                self._conflictInPast[faster][slowera] = True 

                self._pathList[faster] = newpath 

                self.solver().getCAT().addPath(newpath, faster) 

                self.solver().getUsedTable().addPath(newpath, faster) 

                return True 

            else: 

                # not success 

                print("@@Failed replan faster {0}".format(faster)) 

                self.solver().getCAT().addPath(self._pathList[faster], 

faster) 

                

self.solver().getUsedTable().addPath(self._pathList[faster], faster) 

 

        # === replan group[slower] ==== 

        print("\n==Replan slower {0}==".format(slower)) 

        if not self._conflictInPast[slower][fastera]: 

            self.solver().getCAT().deletePath(self._pathList[slower], 

slower) 

            

self.solver().getUsedTable().deletePath(self._pathList[slower], 

slower) 

            

self.solver().getReservation().reservePath(self._pathList[faster]) 

            newpath = self.findAlternativePath(slower, faster, 

oversize) 
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            self.solver().getReservation().clear() 

            if newpath is not None: 

                # success 

                print("@@Find new path for group {0}".format(slower)) 

                self._conflictInPast[slower][fastera] = True 

                self._pathList[slower] = newpath 

                self.solver().getCAT().addPath(newpath, slower) 

                self.solver().getUsedTable().addPath(newpath, slower) 

                return True 

            else: 

                # not success 

                print("@@Failed replan slower {0}".format(slower)) 

                self.solver().getCAT().addPath(self._pathList[slower], 

slower) 

                

self.solver().getUsedTable().addPath(self._pathList[slower], slower) 

 

        # ==== swallow === 

        print("\n==Plan group together {0}, {1}==".format(faster, 

slower)) 

        swallowed = True 

        if totalSize > 4: 

            print("Exceed MGS (4), fail to find path.") 

            return False 

        # does not exceed 4 droplets 

        if oversize: 

            self.solver().setIgnore(True) 

        else: 

            self.solver().setIgnore(False) 

        # update conflictInPast 

        for i in range(len(self._conflictInPast[faster])): 

            self._conflictInPast[faster][i] = False 

        return self.resolveConflict(faster, slower) 

 

    def findAlternativePath(self, pathId1, pathId2, oversize): 

        """ 

        find alternative for path1 

        :param pathId: 

        :param oversize: 

        :return: path 

        """ 

        # initialize costlimit->infinity large 

        costLimit = 10000 

        if oversize: 

            self.solver().setIgnore(True) 

        else: 

            self.solver().setIgnore(False) 

            costLimit = self.paths()[pathId1][-1].gValue() 

 



112 

 

        if self.solver().solve(self.problems()[pathId1], self._dir, 

self._cost, self._total): 

            newpath1 = self.solver().getPath() 

            # ====== confirm newpath is no conflict =========== 

            if self.haveConflict(newpath1, self.paths()[pathId2]): 

                print("Replan failed conflict check.") 

                self.solver().getReservation().clear() 

                return None 

            # ====== end ========== 

        else: 

            # failed to find alternative path 

            return None 

 

        newCost = newpath1[-1].gValue() 

        if not oversize: 

            if newCost <= costLimit: 

                print("=== find new path, new cost: {0} 

===".format(newCost)) 

                self.solver().printPath() 

                return newpath1 

            else: 

                print("=== Failed to find same cost alternative path, 

new cost {0} ===".format(newCost)) 

                return None 

        else: 

            print("=== find new path, new cost: {0} 

===".format(newCost)) 

            self.solver().printPath() 

            return newpath1 

 

    def haveConflict(self, newpath1, path2): 

        # ====== confirm newpath is no conflict =========== 

        haveConflict = False 

        tempPaths = [newpath1, path2] 

        tempConflict = Util().conflict(0, 0, tempPaths) 

        if tempConflict is not None: 

            print(tempConflict) 

            haveConflict = True 

        assert tempConflict is None or tempConflict.getTimeStep() == 1 

        tempConflict = Util().conflict(1, 0, tempPaths) 

        if tempConflict is not None: 

            print(tempConflict) 

            haveConflict = True 

        assert tempConflict is None or tempConflict.getTimeStep() == 1 

        return haveConflict 

 

    def resolveConflict(self, id1, id2): 

        # update _problemList[id1] 

        self._problemList[id1].join(self._problemList[id2]) 
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        # exclude paths for id1 and id2 for cat and UsedTable 

        self.solver().getUsedTable().deletePath(self.paths()[id1], 

id1) 

        self.solver().getUsedTable().deletePath(self.paths()[id2], 

id2) 

        self.solver().getCAT().deletePath(self.paths()[id1], id1) 

        self.solver().getCAT().deletePath(self.paths()[id2], id2) 

 

        if not self.solver().solve(self._problemList[id1], self._dir, 

self._cost, self._total): 

            return False 

 

        print("\nFind path for new group.") 

        self.solver().printPath() 

 

        self._pathList[id1] = self._solver.getPath() 

        self._problemList[id2] = None 

        self._pathList[id2] = None 

 

        # update new paths for cat and usedtable 

        self.solver().getCAT().addPath(self.paths()[id1], id1) 

        self.solver().getUsedTable().addPath(self.paths()[id1], id1) 

        return True 

 

     

    def updateConflictPast(self, id): 

        # set all index from id and to id to false 

        self._conflictInPast[id] = [False for i in 

range(len(self.paths()))] 

        for i in range(len(self._conflictInPast)): 

            self._conflictInPast[i][id] = False 

 

    def clearSolver(self): 

        self.solver().getReservation().clear() 

        self.solver().getCAT().clear() 

        self.solver().getUsedTable().clear() 

 

 

def generateProblem(filename): 

    from SingleAgent.Utilities.Agent import Agent 

    from SingleAgent.Utilities.Graph import Graph 

    from SingleAgent.Utilities.ProblemMap import ProblemMap 

 

    size, block, agentNum, agentList = Util2().readTestFile(filename) 

    graph = Graph(ProblemMap(size, block)) 

    agent = [Agent(x[0], x[1], x[2], 1) for x in agentList] 

    problem = ProblemInstance(graph, agent) 

    return problem 
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def main(): 

    import time 

    from SingleAgent.Solver.AStar.ODAStar import ODAStar 

    from SingleAgent.Utilities.ProblemInstance import ProblemInstance 

    from SingleAgent.Utilities.Agent import Agent 

    from SingleAgent.Utilities.Graph import Graph 

    from SingleAgent.Utilities.ProblemMap import ProblemMap 

 

    sys.setrecursionlimit(30000) 

 

    print("============== test case ================") 

    graph1 = Graph(ProblemMap(14, {(2, 5): (5, 2), 

                                   (0, 10): (5, 16), 

                                   (7, 1): (2, 5), 

                                   (8, 6): (4, 2) 

                                   })) 

 

    for i in range(1, 101, 20): 

        agent1 = [Agent(0, (0, 4), (0, 9), 1), 

                  Agent(1, (0, 6), (3, 0), 1), 

                  Agent(2, (0, 2), (9, 4), 1), 

                  Agent(3, (13, 6), (4, 2), 1), 

                  Agent(4, (13, 0), (1, 3), 1), 

                  Agent(5, (6, 9), (12, 7), i) 

                  ] 

        testProblem1 = ProblemInstance(graph1, agent1) 

        filename = 'cost_test_agent6_{0}'.format(i) 

        saveRoot = 

'/Users/chengpeng/Documents/MTSL/ElectrodeDesgin/Result2/{0}/'.format(

filename) 

        if not os.path.exists(os.path.dirname(saveRoot)): 

            os.makedirs(os.path.dirname(saveRoot)) 

 

        for mgs in range(1, 4): 

            solver1 = EnhandcedID(ODAStar(), mgs) 

            if not solver1.solve2(testProblem1, saveRoot, 3, True): 

                print("Failed to solve problem {0} with cost 

{1}".format(filename, 3)) 

 

if __name__ == ‘__main__’: 

main() 

 

 

…/SingleAgent/Solver/IDSolver/independentDetection.py 
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import copy 

import pickle 

import sys 

from SingleAgent.Solver.AStar.ODAStar import ODAStar 

from SingleAgent.Solver.ConstraintSolver import ConstraintSolver 

from SingleAgent.Utilities.ProblemInstance import ProblemInstance 

from SingleAgent.Solver.Utils import Util 

from SingleAgent.Utilities.Util2 import Util2 

 

 

class IDSolver(ConstraintSolver): 

    def __init__(self, solver): 

        """ _reservation, _cat 

            _pathList: n 

            _problemList: n 

        """ 

        super(IDSolver, self).__init__() 

        self._pathList = [] 

        self._problemList = [] 

        self._solver = solver 

        self._initialProblem = None 

 

    def solve(self, problemInstance, fileDir): 

        """ 

        :param problemInstance: 

        :param fileDir: save direction for intermediate result 

        :return: 

        """ 

        # initial problemInstance 

        self._initialProblem = problemInstance 

        # self.save(fileDir, 'initialProblem') 

        # fill pathList 

        if len(self._pathList) == 0: 

            if not self.populatePath(self._initialProblem): 

                return False 

        self.save(fileDir, 'initial') 

 

        for i in range(len(self.paths())): 

            if self.paths()[i] is not None: 

                self.solver().getCAT().addPath(self.paths()[i], i) 

                self.solver().getUsedTable().addPath(self.paths()[i], 

i) 

 

        index = 0 

        while index < len(self._pathList): 

            conflict = Util().conflict(index, 0, self._pathList) 

            if conflict is None: 

                index += 1 

            else: 
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                if not self.resolveConflict(conflict.getGroup1(), 

conflict.getGroup2()): 

                    print("fail to find new path") 

                    return False 

            if conflict is not None: 

                self.save(fileDir, 

'{0}_{1}'.format(conflict.getGroup1(), conflict.getGroup2())) 

            else: 

                self.save(fileDir, 'solution') 

        return True 

 

    def resolveConflict(self, id1, id2): 

        # print("resolve conflict for group: {0}, {1}".format(id1, 

id2)) 

        # update _problemList[id1] 

        self._problemList[id1].join(self._problemList[id2]) 

        # exclude paths for id1 and id2 for cat and UsedTable 

        self.solver().getUsedTable().deletePath(self.paths()[id1], 

id1) 

        self.solver().getUsedTable().deletePath(self.paths()[id2], 

id2) 

        self.solver().getCAT().deletePath(self.paths()[id1], id1) 

        self.solver().getCAT().deletePath(self.paths()[id2], id2) 

 

        # otherPathList = self._pathList[:] 

        # otherPathList[id1] = None 

        # otherPathList[id2] = None 

        if not self.solver().solve(self._problemList[id1]): 

            return False 

 

        self.solver().printPath() 

 

        self._pathList[id1] = self._solver.getPath() 

        self._problemList[id2] = None 

        self._pathList[id2] = None 

 

        # update new paths for cat and usedtable 

        self.solver().getCAT().addPath(self.paths()[id1], id1) 

        self.solver().getUsedTable().addPath(self.paths()[id1], id1) 

        return True 

 

    def populatePath(self, problemInstance): 

        for agent in problemInstance.getAgents(): 

            # problemInstance requires _singleAgents a list!! 

            

self._problemList.append(ProblemInstance(problemInstance.getGraph(), 

[agent])) 

 

        for problem in self._problemList: 
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            # use solver without initializing cat and used table 

            if not self.solver().solve(problem): 

                return False 

            self._pathList.append(self._solver.getPath()) 

        return True 

 

    def solver(self): 

        return self._solver 

 

    def paths(self): 

        return self._pathList 

 

    def problems(self): 

        return self._problemList 

 

    def getPath(self): 

        """ get list of states as path""" 

        _, _, finalPath = Util().mergePaths(self._pathList) 

        return finalPath 

 

    """ ================== Auxiliary functions 

========================== 

    """ 

    def printPath(self): 

        """print paths""" 

        for t, singleAgents in enumerate(self.getPath()): 

            strout = "TimeStep: {0}".format(t) 

            gValue = 0 

            hValue = 0 

 

            for singleAgent in singleAgents: 

                gValue += singleAgent.gValue() 

                hValue += singleAgent.hValue() 

 

                strout +='; ' + str(singleAgent) 

            strout += '; gValue: {0}; '.format(gValue) + 'hValue: 

{0}.'.format(hValue) 

            print(strout) 

 

    def visualizePath(self, problemInstance): 

        """ print path in map 

        :param problemInstance: 

        :return: 

        """ 

        # deep copy to prevent changing of map content 

        mapContent = 

copy.deepcopy(problemInstance.getMap().getContent()) 

        pathList = self.getPath() 

        for singleAgents in pathList: 
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            for singleState in singleAgents: 

                x = singleState.getCoord().getNode().getPosition()[0] 

                y = singleState.getCoord().getNode().getPosition()[1] 

                mapContent[y][x] = str(singleState.getAgentId()) 

        for i in mapContent: 

            print(' '.join(i)) 

 

    def correctcheck(self, pathList): 

        """ Check if fluid constraints (static and dynamic) are 

violated 

        :param pathList: 

        :return: 

        """ 

        for ith, state in enumerate(pathList): 

            if ith != 0: 

                prestate = pathList[ith - 1] 

            else: 

                prestate = None 

            if ith == len(pathList) - 1: 

                poststate = None 

            else: 

                poststate = pathList[ith + 1] 

 

            for i in range(len(state)): 

                agent1 = state[i] 

                for j in range(0, len(state)): 

                    if j != i: 

                        agent2 = state[j] 

                        if 

Util2().withinDis(agent1.getCoord().getNode(), 

agent2.getCoord().getNode()): 

                            print("=== solution is WRONG ===") 

                            return False 

                if prestate is not None: 

                    for j in range(0, len(prestate)): 

                        if j != i: 

                            agent2 = prestate[j] 

                            if 

Util2().withinDis(agent1.getCoord().getNode(), 

agent2.getCoord().getNode()): 

                                print("=== solution is WRONG ===") 

                                return False 

                if poststate is not None: 

                    for j in range(0, len(poststate)): 

                        if j != i: 

                            agent2 = poststate[j] 

                            if 

Util2().withinDis(agent1.getCoord().getNode(), 

agent2.getCoord().getNode()): 
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                                print("=== solution is WRONG ===") 

                                return False 

        print("== solution is CORRECT ==") 

        return True 

 

    def __str__(self): 

        return "IDSolver" 

 

    """ ================== pickle/IO ========================== 

    """ 

    def save(self, fileDir, filename): 

        sys.setrecursionlimit(20000) 

 

        with open('{0}/{1}.pickle'.format(fileDir, filename), 'wb') as 

f1: 

            pickle.dump(self._pathList, f1) 

            pickle.dump(self._problemList, f1) 

 

    def read(self, fileDir, filename): 

        """ 

        :param fileDir: 

        :param filename: '0_1', 'initial', 'solution' 

        :return: 

        """ 

        with open('{0}/{1}.pickle'.format(fileDir, filename), 'rb') as 

f1: 

            self._pathList = pickle.load(f1) 

            self._problemList = pickle.load(f1) 

            # fill solver() cat and usedtable in self.solve() 
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…/SingleAgent/Solver/constraintSolver.py 

import abc 

from SingleAgent.Solver.UsedTable import UsedTable 

from SingleAgent.Solver.ConflictAvoidanceTable import 

ConflictAvoidanceTable 

from SingleAgent.Solver.Reservation import Reservation 

 

 

class ConstraintSolver(object): 

    __metaclass__ = abc.ABCMeta 

 

    def __init__(self): 

        """ 

        _reservation: {coord, previous coord} 

        _visitTable: {coord, [group]} 

 

        """ 

        self._reservation = Reservation() 

        self._cat = ConflictAvoidanceTable() 

        self._usedTable = UsedTable() 

 

    def getReservation(self): 

        return self._reservation 

 

    def setReservation(self, reservation): 

        self._reservation = reservation 

 

    def getCAT(self): 

        return self._cat 

 

    def setCAT(self, catTable): 

        self._cat = catTable 

 

    def getUsedTable(self): 

        return self._usedTable 

 

    def setUsedTable(self, usedTable): 

        self._usedTable = usedTable 

 

    @abc.abstractmethod 

    def getPath(self): 

        """get list of states as path""" 

 

    @abc.abstractmethod 

    def printPath(self): 

        """print found paths""" 
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…/SingleAgent/Solver/reservation.py 

from SingleAgent.Utilities.Coordinate import Coordinate 

 

 

class Reservation(object): 

    """ 

    No implementation of deletePath, only reserve one path 

    """ 

    def __init__(self): 

        """ 

        _reservedCoordinates: set(coord) 

        _agentDestinations: set(pos) 

        """ 

        self._reservedCoordinates = set([]) 

        self._agentDestinations = set([]) 

        self._lastTimeStep = 0 

 

    def isEmpty(self): 

        return len(self._reservedCoordinates) == 0 and 

len(self._agentDestinations) == 0 

 

    def reservedCoordinates(self): 

        return self._reservedCoordinates 

 

    def agentDestinations(self): 

        return self._agentDestinations 

 

    def reservePath(self, path): 

        """ 

        Can only reserve one path for this implementation 

        :param path: 

        :return: 

        """ 

        if not self.isEmpty(): 

            self.clear() 

        for i in range(len(path)): 

            state = path[i] 

            for s in state.getSingleAgents(): 

                self.reserveSingleAgent(s) 

        # add destination state 

        last = path[-1] 

        for s in last.getSingleAgents(): 

            self.reserveDestination(s.getCoord()) 

 

    def reserveSingleAgent(self, s): 

        """ 

        reserve coord for singleAgent and neighbor coordinates 

        :param s: 
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        :return: 

        """ 

        # add itself 

        coord = s.getCoord() 

        self._reservedCoordinates.add(coord) 

        if coord.getTimeStep() > 0: 

            coord2 = Coordinate(coord.getTimeStep() - 1, 

coord.getNode()) 

            self._reservedCoordinates.add(coord2) 

        coord2 = Coordinate(coord.getTimeStep() + 1, coord.getNode()) 

        self._reservedCoordinates.add(coord2) 

        # add neighbor nodes 

        for node in coord.getNode().get_neighbor(): 

            if node is not None: 

                neighborCoord = Coordinate(coord.getTimeStep(), node) 

                self._reservedCoordinates.add(neighborCoord) 

                if coord.getTimeStep() > 0: 

                    neighborCoord = Coordinate(coord.getTimeStep() - 

1, node) 

                    self._reservedCoordinates.add(neighborCoord) 

                neighborCoord = Coordinate(coord.getTimeStep() + 1, 

node) 

                self._reservedCoordinates.add(neighborCoord) 

 

    def reserveDestination(self, coord): 

        """ 

        Aadd coord and neighboring coord to self._agentDestinations 

        :param coord: 

        :return: 

        """ 

        self._lastTimeStep = coord.getTimeStep() 

        self._agentDestinations.add(coord.getNode().getPosition()) 

        for node in coord.getNode().get_neighbor(): 

            if node is not None: 

                self._agentDestinations.add(node.getPosition()) 

 

    def isValid(self, state): 

        """ 

        Check if ODState not-violates reservations 

        :param state: 

        :return: 

        """ 

        # check state violates reservedCoordinates 

        if self.isEmpty(): 

            return True 

        for s in state.getSingleAgents(): 

            thisCoord = s.getCoord() 

            if thisCoord in self._reservedCoordinates: 

                return False 
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            # check state not violates destination 

            thisPos = thisCoord.getNode().getPosition() 

            thisTimeStep = thisCoord.getTimeStep() 

            if thisPos in self._agentDestinations: 

                if self._lastTimeStep <= thisTimeStep: 

                    return False 

        return True 

 

    def freeReservation(self, path): 

        """not implemented """ 

        return 

 

    def getLastTimeStep(self): 

        return self._lastTimeStep 

 

    def clear(self): 

        self._reservedCoordinates.clear() 

        self._agentDestinations.clear() 

        self._lastTimeStep = 0 
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…/SingleAgent/Solver/conflictAvoidanceTable.py 

from SingleAgent.Utilities.Coordinate import Coordinate 

 

 

class ConflictAvoidanceTable(object): 

    def __init__(self): 

        """ 

        _agentDestination: {position: {id, timeStep}} 

        """ 

        self._groupOccupantTable = {} 

        self._agentDestination = {} 

        self._groupToAgentIndex = {} 

        self._initial = False 

        # self._earlistConflictWhileAdding = None 

 

    def getSize(self): 

        return len(self._groupOccupantTable), 

len(self._agentDestination) 

 

    def groupOccupantTable(self): 

        return self._groupOccupantTable 

 

    def agentDestination(self): 

        return self._agentDestination 

 

    def isInitialized(self): 

        return self._initial 

 

    def isEmpty(self): 

        return len(self._groupOccupantTable) == 0 and 

len(self._agentDestination) == 0 

 

    def violation(self, state): 

        """ return num of violation in state 

        :param state: 

        :return: 

        """ 

        movenext = state.getMoveNext() 

        if movenext == 0: 

            index = len(state.getSingleAgents()) 

        else: 

            index = movenext 

        res = 0 

        for s in state.getSingleAgents()[0: index]: 

            res += self._violationSingleState(s) 

        return res 
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    def _violationSingleState(self, singleAgentState): 

        """ 

        return set of violation groups 

        :param singleAgentState: 

        :return: 

        """ 

        coordList = [] 

        coord = singleAgentState.getCoord() 

        coordList.append(coord) 

        coordList.append(Coordinate(coord.getTimeStep() + 1, 

coord.getNode())) 

        coordList.append(Coordinate(coord.getTimeStep() - 1, 

coord.getNode())) 

        # violation in groupOccupantTable 

        conflictGroup = set([]) 

        for coord in coordList: 

            if coord in self._groupOccupantTable: 

                conflictGroup |= self._groupOccupantTable[coord] 

 

        # violation in destination 

        pos = coord.getNode().getPosition() 

        if pos in self._agentDestination: 

            preDic = self._agentDestination[pos] 

            for id, t in preDic.items(): 

                if coord.getTimeStep() >= t - 1: 

                    conflictGroup |= set([id]) 

 

        conflictGroup = list(conflictGroup) 

        totalconflict = 0 

        for group in conflictGroup: 

            totalconflict += len(self._groupToAgentIndex[group]) 

        return totalconflict 

 

    def addPath(self, path, id): 

        """ 

        :param path: 

        :return: 

        """ 

        # print("cat add path {0}".format(id)) 

        self._initial = True 

        self._groupToAgentIndex[id] = [x.getAgentId() for x in 

path[0].getSingleAgents()] 

        # paths include only OD states 

        for i in range(len(path)): 

            state = path[i] 

            # newPositions = [None for i in 

range(len(state.getSingleAgents()))] 

            for s in state.getSingleAgents(): 

                self._addSingleAgentState(s, id) 
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        # add destination state 

        last = path[-1] 

        for s in last.getSingleAgents(): 

            self._addDestination(s.getCoord(), id) 

 

    def _addSingleAgentState(self, s, id): 

        # add itself 

        coord = s.getCoord() 

        self._addCoordinate(coord, id) 

        # add neighbor nodes 

        for node in coord.getNode().get_neighbor(): 

            if node is not None: 

                neighborCoord = Coordinate(coord.getTimeStep(), node) 

                self._addCoordinate(neighborCoord, id) 

 

    def _addCoordinate(self, coord, id): 

        if coord not in self._groupOccupantTable: 

            self._groupOccupantTable[coord] = set([id]) 

        else: 

            self._groupOccupantTable[coord].add(id) 

 

    def _addDestination(self, coord, id): 

        self._addDestinationCoord(coord, id) 

        for node in coord.getNode().get_neighbor(): 

            if node is not None: 

                newCoord = Coordinate(coord.getTimeStep(), node) 

                self._addDestinationCoord(newCoord, id) 

 

    def _addDestinationCoord(self, coordinate, id): 

        thisPos = coordinate.getNode().getPosition() 

        thisTimeStep = coordinate.getTimeStep() 

        if thisPos not in self._agentDestination: 

            self._agentDestination[thisPos] = {id: thisTimeStep} 

        else: 

            preDic = self._agentDestination[thisPos] 

            if id not in preDic: 

                preDic[id] = thisTimeStep 

            elif preDic[id] > thisTimeStep: 

                preDic[id] = thisTimeStep 

 

    def deletePath(self, path, id): 

        """ 

        :param path: 

        :return: 

        """ 

        # print("cat delete path {0}".format(id)) 

        del self._groupToAgentIndex[id] 

        # delete states in paths 

        for i in range(len(path)): 
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            state = path[i] 

            for s in state.getSingleAgents(): 

                self._deleteSingleAgentState(s, id) 

        # delete destination state 

        last = path[-1] 

        for s in last.getSingleAgents(): 

            self._deleteDestination(s.getCoord(), id) 

 

    def _deleteSingleAgentState(self, s, id): 

        coord = s.getCoord() 

        self._deleteCoordinate(coord, id) 

        for node in coord.getNode().get_neighbor(): 

            neighborCoord = Coordinate(coord.getTimeStep(), node) 

            self._deleteCoordinate(neighborCoord, id) 

 

    def _deleteCoordinate(self, coord, id): 

        if coord in self._groupOccupantTable: 

            if id in self._groupOccupantTable[coord]: 

                self._groupOccupantTable[coord].remove(id) 

                if len(self._groupOccupantTable[coord]) == 0: 

                    del self._groupOccupantTable[coord] 

 

    def _deleteDestination(self, coord, id): 

        self._deleteDestinationCoord(coord, id) 

        for node in coord.getNode().get_neighbor(): 

            if node is not None: 

                newCoord = Coordinate(coord.getTimeStep(), node) 

                self._deleteDestinationCoord(newCoord, id) 

 

    def _deleteDestinationCoord(self, coordinate, id): 

        thisPos = coordinate.getNode().getPosition() 

        if thisPos in self._agentDestination: 

            preDic = self._agentDestination[thisPos] 

            if id in preDic: 

                del preDic[id] 

                if len(preDic) == 0: 

                    del self._agentDestination[thisPos] 

 

    def clear(self): 

        self._groupOccupantTable.clear() 

        self._agentDestination.clear() 

        self._groupToAgentIndex.clear() 

        self._initial = False 

 

…/SingleAgent/Solver/UsedTable.py 

class UsedTable(object): 

    def __init__(self): 
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        """ 

        cellTable: { 

        """ 

        self._cellTable = {} 

        self._initial = False 

 

        def isInitialized(self): 

        return self._initial 

 

    def isEmpty(self): 

        return len(self._cellTable) == 0 

 

    def addPath(self, path, id): 

        # print("usedTable add path {0}".format(id)) 

        self._initial = True 

        for i in range(len(path)): 

            thisState = path[i] 

            for s in thisState.getSingleAgents(): 

                pos = s.getCoord().getNode().getPosition() 

                if pos not in self._cellTable: 

                    self._cellTable[pos] = set([id]) 

                else: 

                    self._cellTable[pos].add(id) 

 

    def deletePath(self, path, id): 

        # print("usedTable delete path {0}".format(id)) 

        if path is None: 

            return 

        for i in range(len(path)): 

            thisState = path[i] 

            for s in thisState.getSingleAgents(): 

                pos = s.getCoord().getNode().getPosition() 

                if pos in self._cellTable and id in 

self._cellTable[pos]: 

                    self._cellTable[pos].remove(id) 

                    if len(self._cellTable[pos]) == 0: 

                        del self._cellTable[pos] 

 

    def toList(self, size): 

        cellList = [0 for i in range(size*size)] 

        for pos, _ in self._cellTable.items(): 

            cellList[pos[0] * size + pos[1]] = 1 

        return cellList 

 

    def getSize(self): 

        return len(self._cellTable) 

 

    def cellTable(self): 
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        return self._cellTable 

 

    def clear(self): 

        self._cellTable.clear() 

        self._initial = False 

 

    def __str__(self): 

        return 'a cellTable dictionary' 

 

…/SingleAgent/Solver/Utils.py 

from SingleAgent.Utilities.Conflict import Conflict 

 

 

class Util(object): 

    def conflict(self, index, startIndex, pathList): 

        """ return conflict if exists 

        :param index: index of path to be checked 

        :param startIndex: 

        :param pathList: list of paths 

        :return: 

        """ 

        thisPath = pathList[index] 

        if thisPath is None: 

            return None 

        for i in range(startIndex, len(pathList)): 

            if i != index and pathList[i] is not None: 

                path = pathList[i] 

                # iterate over each time step 

                for t in range(len(thisPath)): 

                    isGoalState = False 

                    thisState = thisPath[t] 

                    if t > len(path) - 1: 

                        compareState = path[-1] 

                        isGoalState = True 

                    else: 

                        compareState = path[t] 

 

                    conflict = Conflict(t, index, i, None, None) 

                    if self.conflictState2(thisState, compareState, 

isGoalState, conflict): 

                        # return earliest conflict of thisPath and 

pathList 

                        return conflict 

        return None 

 

    def conflictState2(self, thisState, compareState, isGoal, 

conflict): 
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        """ 

        return first conflict found include agentId if conflict 

exists, more efficient should include 

        all conflicts between these two OD states 

        :param thisState: 

        :param compareState: 

        :param isGoal: if compare state is goal state 

        :param conflict: changed conflict 

        :return: 

        """ 

        for thisS in thisState.getSingleAgents(): 

            thisP = thisS.getCoord().getNode().getPosition() 

            for compareS in compareState.getSingleAgents(): 

                compareP = set([]) 

                # current position and neighbor 

                

compareP.add(compareS.getCoord().getNode().getPosition()) 

                for node in 

compareS.getCoord().getNode().get_neighbor(): 

                    if node is not None: 

                        compareP.add(node.getPosition()) 

                # previous position and neighbor 

                if not isGoal and compareS.predecessor() is not None: 

                    

compareP.add(compareS.predecessor().getCoord().getNode().getPosition()

) 

                    for node in 

compareS.predecessor().getCoord().getNode().get_neighbor(): 

                        if node is not None: 

                            compareP.add(node.getPosition()) 

                if thisP in compareP: 

                    conflict.setAgent(thisS.getAgentId(), 

compareS.getAgentId()) 

                    return True 

 

        for thisS in compareState.getSingleAgents(): 

            thisP = thisS.getCoord().getNode().getPosition() 

            for compareS in thisState.getSingleAgents(): 

                compareP = set([]) 

                # current position and neighbor 

                

compareP.add(compareS.getCoord().getNode().getPosition()) 

                for node in 

compareS.getCoord().getNode().get_neighbor(): 

                    if node is not None: 

                        compareP.add(node.getPosition()) 

                # previous position and neighbor 

                if compareS.predecessor() is not None: 
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compareP.add(compareS.predecessor().getCoord().getNode().getPosition()

) 

                    for node in 

compareS.predecessor().getCoord().getNode().get_neighbor(): 

                        if node is not None: 

                            compareP.add(node.getPosition()) 

                if thisP in compareP: 

                    conflict.setAgent(compareS.getAgentId(), 

thisS.getAgentId()) 

                    return True 

        return False 

 

    def conflictState(self, thisState, compareState, isGoal): 

        """ check if two states have time conflict 

        :param thisState: 

        :param compareState: 

        :return: bool 

        """ 

        from SingleAgent.States import ODState 

        assert isinstance(thisState, ODState.ODState) 

        assert isinstance(compareState, ODState.ODState) 

 

        thisSingleAgents = thisState.getSingleAgents() 

        compareSingleAgents = compareState.getSingleAgents() 

        thisPos = [state.getCoord().getNode() for state in 

thisSingleAgents] 

        comparePos = [state.getCoord().getNode() for state in 

compareSingleAgents] 

 

        if self._conflictStateHelper(thisSingleAgents, comparePos, 

isGoal=False) or \ 

                self._conflictStateHelper(compareSingleAgents, 

thisPos, isGoal): 

            return True 

        else: 

            return False 

 

    def _conflictStateHelper(self, singleAgents, comparePos, isGoal): 

        for s in singleAgents: 

            staticCons = s.getCoord().getNode().get_neighbor() 

            if s.isRoot() or isGoal is True: 

                prohibit = set(staticCons) 

            else: 

                dynamicCons = 

s.predecessor().getCoord().getNode().get_neighbor() 

                prohibit = set(staticCons) | set(dynamicCons) 

            prohibit.add(s) 

            if not prohibit.isdisjoint(set(comparePos)): 

                # print(singleAgents[0]) 
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                # print(singleAgents[0].getCoord()) 

                return True 

        return False 

 

    def mergePaths(self, pathList, problemInstance): 

        """ generate paths for IDSolver 

        :param pathList: 

        :return: list of list of singleAgents 

        """ 

        paths = filter(lambda x: x is not None, pathList) 

        longestLength = self.getLongestPath(paths) 

        mergedList = [[] for i in range(longestLength)] 

        usedElectrode = set([]) 

        startOrGoal = problemInstance.startandGoalPosition() 

        for t in range(longestLength): 

            for path in paths: 

                if t < len(path): 

                    state = path[t] 

                else: 

                    state = path[-1] 

                for singleAgent in state.getSingleAgents(): 

                    mergedList[t].append(singleAgent) 

                    if singleAgent.getCoord().getNode().getPosition() 

not in startOrGoal: 

                        

usedElectrode.add(singleAgent.getCoord().getNode().getPosition()) 

        totalCost = 0 

        for path in pathList: 

            if path is not None: 

                state = path[-1] 

                totalCost += state.gValue() 

        return totalCost, len(usedElectrode), mergedList 

 

    def getLongestPath(self, pathList): 

        r = 0 

        for path in pathList: 

            if path is not None and len(path) > r: 

                r = len(path) 

        return r 

 

    def pathLength(self, path): 

        reversed = path[::-1] 

        i = 0 

        while i < len(reversed) - 1: 

            if reversed[i] == reversed[i+1]: 

                i += 1 

            else: 

                break 

        return len(path)-i-1 
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…/SingleAgent/States/__init__.py 

__all__ = ["MultiAgentState","ODState","SingleAgentState", "State"] 

 

…/SingleAgent/States/State.py 

import abc 

 

 

class State(object): 

    __metaclass__ = abc.ABCMeta 

 

    def __init__(self, backPointer): 

        """ 

        :param backPointer: 

        """ 

        self._gValue = None 

        self._hValue = None 

        self._backPointer = backPointer 

        self._conflictViolations = 0 

        self._usedElectrode = 0 

 

    def predecessor(self): 

        return self._backPointer 

 

    def gValue(self): 

        return self._gValue 

 

    def hValue(self): 

        return self._hValue 

 

    def fValue(self): 

        return self.gValue() + self.hValue() 

 

    def usedElectrode(self): 

        return self._usedElectrode 

 

    def conflictViolations(self): 

        return self._conflictViolations 

 

    def isRoot(self): 

        return self._backPointer is None 

 

    """================== astar functions ================= 

    """ 

    @abc.abstractmethod 
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    def expand(self, problemInstance): 

        """ 

        expand current state according to problemInstance 

        :param problemInstance: 

        :return: a list if states 

        """ 

 

    @abc.abstractmethod 

    def goalTest(self, problemInstance): 

        """ 

        test if state is goal state 

        :param problemInstance: 

        :return: 

        """ 

    @abc.abstractmethod 

    def timeStep(self): 

        """return timestep of this state""" 

 

    """=========== functions to update member variables ========= 

    """ 

    @abc.abstractmethod 

    def setHeuristic(self, mode, input): 

        """ 

        Set hValue 

        :param problemInstance: 

        :return: 

        """ 

    @abc.abstractmethod 

    def calculateCost(self, problemInstance): 

        """ 

        Calcualte gValue 

        :return: 

        """ 

    @abc.abstractmethod 

    def updateCATViolations(self, cat): 

        """ 

        update _conflictViolations 

        :param cat: 

        :return: 

        """ 

 

    @abc.abstractmethod 

    def updateUsedElectrode(self, table, nsize): 

        """ 

        udpate _usedElectrode 

        :param table: 

        :return: 

        """ 

    """================= functions to compare =============== 
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    """ 

    @abc.abstractmethod 

    def __eq__(self, other): 

        """ 

        for comparable object 

        :param other: 

        :return: bool 

        """ 

    def __ne__(self, other): 

        return not self.__eq__(other) 

 

    @abc.abstractmethod 

    def __hash__(self): 

        """ 

        for hash value 

        :return: 

        """ 

 

    def __lt__(self, other): 

        """Compare two state for priority queue 

        Breaking tie considers smaller hValue 

        :param other: same candidate state 

        :return: 

        """ 

        """ 

        TODO: break tie considering _usedElectrode (visitTable) 

            ; and _conflictViolations (CAT) 

        """ 

        assert other is not None, "State can not compare with None 

type" 

        assert not other.hValue() is None or self.hValue() is None, 

'set hvalue first.' 

 

        dif = self.gValue() - other.gValue() + self.hValue() - 

other.hValue() 

        # breaking tie considering hValue 

        if dif == 0: 

            dif2 = self.conflictViolations() - 

other.conflictViolations() 

            if dif2 == 0: 

                return self.usedElectrode() - other.usedElectrode() < 

0 

            else: 

                return dif2 < 0 

            # return self.hValue() - other.hValue() < 0 

        else: 

            return dif < 0 
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…/SingleAgent/States/SingleAgentState.py 

from State import State 

from SingleAgent.Constants import * 

from SingleAgent.Utilities.Coordinate import Coordinate 

from SingleAgent.Utilities.ProblemInstance import ProblemInstance 

from SingleAgent.Utilities.Node import Node 

from SingleAgent.Utilities.Util2 import Util2 

 

 

 

class SingleAgentState(State): 

    def __init__(self, agentId, currentNode, backPointer, 

problemInstance): 

        """ 

        :param agentId: 

        :param currentNode: Agent position 

        :param backPointer: Agent predecessor 

        :param problemInstance: 

        """ 

        assert isinstance(backPointer, State) or backPointer is None, 

"para 2 class is not State" 

        assert isinstance(problemInstance, ProblemInstance), "para 3 

class is not ProblemInstance" 

        assert isinstance(currentNode, Node), "para 1 class is not 

Node. \n{0}".format(currentNode) 

 

        super(SingleAgentState, self).__init__(backPointer) 

        self._agentId = agentId 

        self._coord = None 

        self._stepCost = problemInstance.findAgent(agentId).getCost() 

        self._initializeCoord(currentNode) 

        self.calculateCost(problemInstance)  # update gValue 

 

    @classmethod 

    def fromProblemIns(cls, agentId, problemInstance): 

        """ construct single state based on agentId 

        :param problemInstance: 

        """ 

        # if only have one agent, assign agentId to that agent's id 

        if len(problemInstance.getAgents()) == 1: 

            targetAgent = problemInstance.getAgents()[0] 

            agentId = targetAgent.getId() 

        else: 

            targetAgent = problemInstance.findAgent(agentId) 

        startPosition = targetAgent.getStart() 

        startNode = 

problemInstance.getGraph().getNode()[startPosition[0]][startPosition[1

]] 
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        return cls(agentId, startNode, None, problemInstance) 

 

    def _initializeCoord(self, node): 

        if self.predecessor() is not None: 

            self._coord = 

Coordinate(self.predecessor().getCoord().getTimeStep() + 1, node) 

        else: 

            self._coord = Coordinate(0, node) 

 

    def getCoord(self): 

        return self._coord 

 

    def getAgentId(self): 

        return self._agentId 

 

    """ ============  functions to update member variable ========== 

    """ 

    def calculateCost(self, problemInstance): 

        if self.predecessor() is None: 

            self._gValue = 0 

            return 

        if self == self.predecessor(): 

            if self.goalTest(problemInstance): 

                self._gValue = self.predecessor().gValue() 

            else: 

                self._gValue = self.predecessor().gValue() + 

self._stepCost  # change stay cost 

        else: 

            self._gValue = self.predecessor().gValue() + 

self._stepCost    # cost is changed 

 

    def setHeuristic(self, mode, input): 

        """ 

        :param mode: manhatten or trueDistance 

        :param problemInstanceOrHeuristic: 

        :return: 

        """ 

        if mode == "manhatten": 

            assert isinstance(input, ProblemInstance), "Manhatten 

require problemInstance" 

            problemInstance = input 

            goalPos = problemInstance.getGoals()[self._agentId] 

            self._hValue = 

self._mDistance(self._coord.getNode().getPosition(), goalPos) * 

self._stepCost 

        elif mode == "trueDistance": 

            # assert isinstance(input, TDHeuristic), "trueDis require 

TDHeuristic, {0}, {1}".format(type(input), input) 

            heuristic = input 
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            self._hValue = heuristic.trueDistance(self.getAgentId(), 

self.getCoord().getNode().getPosition()) 

            # print("set true distance: {0}".format(self._hValue)) 

        elif mode == "constant": 

            assert isinstance(input, int) 

            self._hValue = input 

        else: 

            assert False, "unknown heuristic" 

 

    def updateCATViolations(self, cat): 

        """ not implemented""" 

        # newViolation = cat.violation(self) 

        # self._conflictViolations = 

self.predecessor().ConflictViolations() + newViolation 

        return 

 

    def updateUsedElectrode(self, usedTable, nsize): 

        """ not implemented""" 

        # tempTable = usedTable.toList(nsize) 

        # nsize = usedTable.getSize() 

        # 

        # current = self 

        # while current is not None: 

        #     index = 

Util2().posToIndex(current.getCoord().getNode().getPosition(), nsize) 

        #     tempTable[index] = 1 

        #     current = current.predecessor() 

        # self._usedElectrode = sum(tempTable) 

        return 

 

    def goalSingleAgent(self, problemInstance): 

        return SingleAgentState(self._agentId, self._coord.getNode(), 

self, problemInstance) 

 

    def getStepCost(self): 

        return self._stepCost 

 

 

    """============  functions for astar ========== 

    """ 

    def expand(self, problemInstance): 

        """ 

        TODO: a list of singleAgentStates corresponding to its 

neighbors(valid neighbors) 

        :param problemInstance: 

        :return: 

        """ 

        stateList = [] 

        stateList.append(self.waitState(problemInstance)) 
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        for posNode in self._coord.getNode().get_Four(): 

            if posNode is not None: 

                assert isinstance(posNode, Node), "Expanding: neighbor 

is not Node type" 

                newState = SingleAgentState(self._agentId, posNode, 

self, problemInstance) 

                stateList.append(newState) 

        return stateList 

 

    def _mDistance(self, a, b): 

        return abs(a[0] - b[0]) + abs(a[1] - b[1]) 

 

    def waitState(self, problemInstance): 

        """ 

        add wait state to state 

        :param problemInstance: 

        :return: singleAgentState corresponding to wait 

        """ 

        return SingleAgentState(self._agentId, self._coord.getNode(), 

self, problemInstance) 

 

    def goalTest(self, problemInstance): 

        # problemInstance can be multiple/single 

        return self._coord.getNode().getPosition() == 

problemInstance.getGoals()[self._agentId] 

 

    def timeStep(self): 

        return self.getCoord().getTimeStep() 

 

    """============  functions for compare ========== 

    """ 

    def __eq__(self, other): 

        """ 

        AgentId, Coordinate.Node (position and type) 

        :param other: 

        :return: 

        """ 

        if other is None: 

            if self is not None: 

                return False 

        if type(self) != type(other): 

            return False 

        if self.getAgentId() != other.getAgentId(): 

            return False 

        if other.getCoord() is None: 

            if self.getCoord() is not None: 

                return False 

            else: 
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                return True 

        if other.getCoord().getNode() != self.getCoord().getNode(): 

            return False 

        return True 

 

    def __hash__(self): 

        prime = 31 

        res = 1 

        if self._coord is None: 

            return 0 

        else: 

            res = prime * res + hash(self._coord.getNode()) * prime + 

hash(self._agentId) 

            return res 

 

    def __str__(self): 

        return "{0}: ".format(self._agentId) + "{0} 

".format(self._coord.getNode().getPosition()) \ 

               + "g: {0}".format(self.gValue()) 

        # return "ID{0}: ".format(self._agentId) + "pins: {0}, 

".format(self._extraPins) \ 

        #        + "{0}".format(self._coord.getNode().getPosition()) 

 

 

…/SingleAgent/States/MultiAgentState.py 

import math 

from State import State 

from SingleAgentState import SingleAgentState 

from SingleAgent.Utilities.ProblemInstance import ProblemInstance 

from SingleAgent.Utilities.Agent import Agent 

from SingleAgent.Utilities.Graph import Graph 

from SingleAgent.Utilities.ProblemMap import ProblemMap 

from SingleAgent.Utilities.Util2 import Util2 

 

 

class MultiAgentState(State): 

    def __init__(self, backPointer, singleAgents, problemInstance): 

        """ 

        :param backPointer: 

        :param singleAgents: List of singleAgentStates 

        :param problemInstance: 

        """ 

        # :param costFunction: 

        assert isinstance(backPointer, State) or backPointer is None 

        assert isinstance(problemInstance, ProblemInstance) 

        assert isinstance(singleAgents, list) 
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        super(MultiAgentState, self).__init__(backPointer) 

        self._singleAgents = singleAgents 

        self.calculateCost(problemInstance) 

 

    @classmethod 

    def fromProblemIns(cls, problemInstance): 

        numAgents = len(problemInstance.getAgents()) 

        singleAgents = [] 

        for i in range(numAgents): 

            agentId = problemInstance.getAgents()[i].getId() 

            

singleAgents.append(SingleAgentState.fromProblemIns(agentId, 

problemInstance)) 

        return cls(None, singleAgents, problemInstance) 

 

    def getSingleAgents(self): 

        return self._singleAgents 

 

    """ ============  functions to update member variable ========== 

    """ 

    def calculateCost(self, problemInstance): 

        self._gValue = 0 

        if self.predecessor() is None: 

            return 

        for singleState in self._singleAgents: 

            self._gValue += singleState.gValue() 

 

    def setHeuristic(self, mode, input): 

        self._hValue = 0 

        for singleState in self._singleAgents: 

            singleState.setHeuristic(mode, input) # first set 

heuristic for each singleAgentState 

            self._hValue += singleState.hValue() 

 

    def updateCATViolations(self, cat): 

        # if cat.violation(self): 

        #     newViolation = 1 

        # else: 

        #     newViolation = 0 

        if self.predecessor() is None: 

            self._conflictViolations = cat.violation(self) 

        else: 

            self._conflictViolations = 

self.predecessor().conflictViolations() + cat.violation(self) 

 

    def updateUsedElectrode(self, table, nsize): 

        tempList = table.toList(nsize) 
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        current = self 

        while current is not None: 

            for singleAgent in current.getSingleAgents(): 

                index = 

Util2().posToIndex(singleAgent.getCoord().getNode().getPosition(), 

nsize) 

                tempList[index] = 1 

            current = current.predecessor() 

        self._usedElectrode = sum(tempList) 

 

    """ ============  functions for astar ========== 

    """ 

    def expand(self, problemInstance): 

        """ return valid next states 

 

        :param problemInstance: 

        :return: 

        """ 

        candidateList = [] 

        for singleState in self._singleAgents: 

            singleStateNeighborList = 

singleState.expand(problemInstance) 

            if len(singleStateNeighborList) == 0: 

                # print("No candiate singleState for state: 

{0}".format(singleState)) 

                return [] 

            candidateList.append(singleStateNeighborList) # every 

candidate list is none empty 

        candidateStateList = self.listProduct(candidateList) 

 

        validStates = [] 

        for multiState in candidateStateList: 

            if self.isValid(multiState):  # a shallow copy to prevent 

change of multistate 

                validStates.append(MultiAgentState(self, multiState, 

problemInstance)) 

        return validStates 

 

    def isValid(self, mstate, StaticOnly = False): 

        """check if multiagent states is valid (no collision 

static/dynamic) 

        :param mstate: a list of singleAgents states 

        :return: 

        """ 

        if len(mstate) == 1: 

            return True  # only one agent 

        for s in mstate: 

            assert isinstance(s, SingleAgentState) 

            left = [item.getCoord().getNode() for item in mstate]  # 
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copy to prevent changing of mstate 

            left.remove(s.getCoord().getNode()) 

            staticCons = s.getCoord().getNode().get_neighbor() 

 

            if s.isRoot() or StaticOnly: 

                prohibit = set(staticCons) 

            else: 

                dynamicCons = 

s.predecessor().getCoord().getNode().get_neighbor() 

                prohibit = set(staticCons) | set(dynamicCons) 

            prohibit.add(s) 

 

            if not prohibit.isdisjoint(set(left)): 

                # print("invalid state: {0} ".format(mstate)) 

                return False 

        return True 

 

    def listProduct(self, alist): 

        """ 

        [[s1 s2 s3], [m1 m2]] every element is None-empty list 

        [[si s2], []] => [] 

        [[]] => [[]] 

        catesian product of list elements 

        :param alist: list of list of elements [[s1 s2 s3] [m1 m2]] 

        :return: list of lists of elements 

        """ 

        assert len(alist) >= 1, "Cannot product None (list)" 

 

        if len(alist) == 1: 

            res = [] 

            for element in alist[0]: 

                res.append([element]) 

            return res 

 

        res = [] 

        for comb in self.listProduct(alist[0:-1]): 

            for element in alist[-1]: 

                res.append(comb + [element]) 

        return res 

 

    def goalTest(self, problemInstance): 

        for singleState in self._singleAgents: 

            if not singleState.goalTest(problemInstance): 

                return False 

        return True 

 

    def timeStep(self): 

        return self._singleAgents[0].timeStep() 
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    """============  functions for compare ========== 

    """ 

    def __eq__(self, other): 

        """ 

        each single agent: ID, getCoord.getNode (type and p) 

        :param other: 

        :return: 

        """ 

        if (other is None) or (not isinstance(other, 

MultiAgentState)): 

            return False 

        if len(self._singleAgents) != len(other.getSingleAgents()): 

            return False 

        for i in range(len(self._singleAgents)): 

            if self._singleAgents[i] != other.getSingleAgents()[i]: 

                return False 

        return True 

 

    def __hash__(self): 

        prime = 31 

        res = 1 

        if self._singleAgents is None or len(self._singleAgents) == 0: 

            return 0 

        for singleAgent in self._singleAgents: 

            res = prime * res + hash(singleAgent) * prime 

        return res 

 

    def __str__(self): 

        res = "T: {0}, gValue: {1}, hValue: {2}, violations: {3}, 

electrode: {4}, ".format(self.timeStep(), self._gValue, self._hValue, 

                                                    

self._conflictViolations, self._usedElectrode) 

        for singleState in self._singleAgents: 

            res += str(singleState) 

            res += '; ' 

        return res 

 

…/SingleAgent/States/ODState.py 

from MultiAgentState import MultiAgentState 

from SingleAgentState import SingleAgentState 

from SingleAgent.Utilities.ProblemInstance import ProblemInstance 

from SingleAgent.Utilities.Agent import Agent 

from SingleAgent.Utilities.Graph import Graph 

from SingleAgent.Utilities.ProblemMap import ProblemMap 

# from SingleAgent.Utilities.Util2 import Util2 
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class ODState(MultiAgentState): 

    def __init__(self, backPointer, singleAgents, problemInstance, 

moveNext, preState): 

        """ 

        _restrictDir: to-move droplets cannot move to spots occupied 

by other droplets in last 

            step 

        :param backPointer: 

        :param singleAgents: list of singleAgents 

        :param problemInstance: 

        :param moveNext: next agent to move 

        :param preState: previous intermediate state 

        :param direction: so far assigned directions 

        """ 

        super(ODState, self).__init__(backPointer, singleAgents, 

problemInstance) 

        self._moveNext = moveNext 

        self._preState = preState 

 

        # no restriction by previous 

        self._restrictDir = [[] for i in range(0, 

len(self._singleAgents))] 

        self._updateRestrictDir() 

 

    @classmethod 

    def fromProblemIns(cls, problemInstance): 

        numAgents = len(problemInstance.getAgents()) 

        singleAgents = [] 

        for i in range(numAgents): 

            agentId = problemInstance.getAgents()[i].getId() 

            

singleAgents.append(SingleAgentState.fromProblemIns(agentId, 

problemInstance)) 

        return cls(None, singleAgents, problemInstance, 0, None) 

 

    def _updateRestrictDir(self): 

        """ update self.allowDir using predecessor 

        """ 

        if self.predecessor() is None or self.isStandard(): 

            return 

        for i in range(self._moveNext, len(self._singleAgents)): 

            restrict = [x.getCoord().getNode() for x in 

self.predecessor().getSingleAgents()] 

            del restrict[i]  # do not count itself 

            possibleNodes = 

self._singleAgents[i].getCoord().getNode().get_Four()[:] 

            for direction, nextNode in enumerate(possibleNodes): 

                if (nextNode is not None) and (not 

set(nextNode.get_neighbor()).isdisjoint(restrict)): 
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                    self._restrictDir[i].append(direction) 

 

    """ ============  functions to update member variable ========== 

    """ 

 

    """ ============  functions for astar ========== 

    """ 

    def expand(self, problemInstance): 

        """ return valid next states (intermediate/standard) 

        :param problemInstance: 

        :return: newODStates 

        """ 

        currentAgent = self._singleAgents[self._moveNext] 

        newSingleStates = currentAgent.expand(problemInstance) 

        if newSingleStates is None or len(newSingleStates) == 0: 

            return [] 

 

        newODStates = [] 

        for s in newSingleStates: 

            mAgents = self._singleAgents[:] 

            mAgents[self._moveNext] = s 

 

            if self._moveNext == 0: 

                newODStates.append(ODState(self, mAgents, 

problemInstance, self.getNewMoveNext(), self)) 

            else: 

                newODStates.append(ODState(self.predecessor(), 

mAgents, problemInstance, self.getNewMoveNext(), self)) 

        validStates = filter(lambda x: self.isValid(x), newODStates) 

        return validStates 

 

    def isValid(self, s, StaticOnly = False): 

        """ check dynamic and static fluid constraint 

        :param s: OD state 

        :param StaticOnly: 

        :return: 

        """ 

        assert isinstance(s, ODState) 

        # standard state 

        if s.isStandard(): 

            return super(ODState, self).isValid(s.getSingleAgents()) 

        # intermediate state 

        movedAgents = s.getSingleAgents()[0:self._moveNext] 

        if not super(ODState, self).isValid(movedAgents): 

            return False 

        if not super(ODState, self).isValid(s.getSingleAgents(), 

True): 

            return False 

        return True 
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    def goalTest(self, problemInstance): 

        if not self.isStandard(): 

            return False 

        return super(ODState, self).goalTest(problemInstance) 

 

    def generateNextGoal(self, problemInstance): 

        newAgents = [s.goalSingleAgent(problemInstance) for s in 

self._singleAgents] 

        return ODState(self, newAgents, problemInstance, 0, self) 

 

    """ ============  auxillary ========== 

    """ 

    def isStandard(self): 

        return self._moveNext == 0 

 

    def getNewMoveNext(self): 

        if self._moveNext == len(self._singleAgents) - 1: 

            newMoveNext = 0 

        else: 

            newMoveNext = self._moveNext + 1 

        return newMoveNext 

 

    def getMoveNext(self): 

        return self._moveNext 

 

    def getPreState(self): 

        return self._preState 

 

    def getRestricDir(self): 

        return self._restrictDir 

 

    def isStay(self, compareState): 

        if compareState is None or not isinstance(compareState, 

ODState): 

            return False 

        if not super(ODState, self).__eq__(compareState): 

            return False 

        return True 

 

    """ ============  functions for compare ========== 

    """ 

    def __eq__(self, other): 

        """Compare: each single agent: ID, getCoord.getNode (type and 

position) 

                 moveNext and all possible moves of unassigned agents 

        :param other: 

        :return: 

        """ 
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        if other is None or not isinstance(other, ODState): 

            return False 

        if not super(ODState, self).__eq__(other): 

            return False 

        if self._moveNext != other.getMoveNext(): 

            return False 

        return str(self._restrictDir) == str(other.getRestricDir()) 

 

    def __hash__(self): 

        return super(ODState, self).__hash__() + 23 * 

hash(self._moveNext) + hash(str(self._restrictDir)) 

 

    def __str__(self): 

        res = super(ODState, self).__str__() 

        res += '; moveNext: {0}.'.format(self._moveNext) 

        return res 

 

     

…/SingleAgent/States/ODState2.py 

from ODState import ODState 

from SingleAgentState import SingleAgentState 

 

 

class ODState_2(ODState): 

    def __init__(self, backPointer, singleAgents, problemInstance, 

moveNext, preState): 

        super(ODState_2, self).__init__(backPointer, singleAgents, 

problemInstance, moveNext, preState) 

 

    @classmethod 

    def fromProblemIns(cls, problemInstance): 

        numAgents = len(problemInstance.getAgents()) 

        singleAgents = [] 

        for i in range(numAgents): 

            agentId = problemInstance.getAgents()[i].getId() 

            

singleAgents.append(SingleAgentState.fromProblemIns(agentId, 

problemInstance)) 

        return cls(None, singleAgents, problemInstance, 0, None) 

 

    def expand(self, problemInstance): 

        """ return valid next states (intermediate/standard) 

        :param problemInstance: 

        :return: newODStates 

        """ 

        currentAgent = self._singleAgents[self._moveNext] 

        newSingleStates = currentAgent.expand(problemInstance) 

        if newSingleStates is None or len(newSingleStates) == 0: 
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            return [] 

 

        newODStates = [] 

        for s in newSingleStates: 

            mAgents = self._singleAgents[:] 

            mAgents[self._moveNext] = s 

 

            if self._moveNext == 0: 

                newODStates.append(ODState_2(self, mAgents, 

problemInstance, self.getNewMoveNext(), self)) 

            else: 

                newODStates.append(ODState_2(self.predecessor(), 

mAgents, problemInstance, self.getNewMoveNext(), self)) 

        validStates = filter(lambda x: self.isValid(x), newODStates) 

        return validStates 

 

    def generateNextGoal(self, problemInstance): 

        newAgents = [s.goalSingleAgent(problemInstance) for s in 

self._singleAgents] 

        return ODState_2(self, newAgents, problemInstance, 0, self) 

 

    def setConflict(self, num): 

        """helper function to debug""" 

        self._conflictViolations = num 

 

    def setgvalue(self, num): 

        """helper function to debug""" 

        self._gValue = num 

 

    def __lt__(self, other): 

        """Compare two state for priority queue 

        Breaking tie considers smaller hValue 

        :param other: same candidate state 

        :return: 

        """ 

        """ 

        TODO: break tie considering _usedElectrode (visitTable) 

            ; and _conflictViolations (CAT) 

        """ 

        assert other is not None, "State can not compare with None 

type" 

        assert isinstance(other, ODState_2), 'type of other state: 

{0}'.format(type(other)) 

        if other.hValue() is None or self.hValue() is None: 

            print("set Heuristic Value first") 

            return None 

        dif = self.conflictViolations() - other.conflictViolations() 

        dif2 = self.gValue() - other.gValue() + self.hValue() - 

other.hValue() 
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        dif3 = self.usedElectrode() - other.usedElectrode() 

        # breaking tie considering hValue 

        if dif == 0: 

            if dif2 == 0: 

                return dif3 < 0 

            else: 

                return dif2 < 0 

            # return self.hValue() - other.hValue() < 0 

        else: 

            return dif < 0 

        # return dif < 0 

 

…/SingleAgent/Utilities/__init__.py 

 

…/SingleAgent/Utilities/Agent.py 

class Agent(object): 

    def __init__(self, id, start, goal, step_cost): 

        """ start and goal are (x,y) in the graph""" 

        self._id = id 

        self._start = start 

        self._goal = goal 

        self._stepCost = step_cost 

 

    def getId(self): 

        return self._id 

 

    def getStart(self): 

        return self._start 

 

    def getGoal(self): 

        return self._goal 

 

    def getCost(self): 

        return self._stepCost 

 

    def __lt__(self, other): 

        return self._id < other.getId() 

 

…/SingleAgent/Utilities/Conflict.py 

class Conflict(object): 

    def __init__(self, timeStep, group1, group2, agent1, agent2): 

        self._timeStep = timeStep 

        self._group1 = group1 
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        self._group2 = group2 

        self._agent1 = agent1 

        self._agent2 = agent2 

 

    def getTimeStep(self): 

        return self._timeStep 

 

    def getGroup1(self): 

        return self._group1 

 

    def getGroup2(self): 

        return self._group2 

 

    def getAgent1(self): 

        return self._agent1 

 

    def getAgent2(self): 

        return self._agent2 

 

    def setAgent(self, agent1, agent2): 

        self._agent1 = agent1 

        self._agent2 = agent2 

 

    def setGroup(self, group1, group2): 

        self._group1 = group1 

        self._group2 = group2 

 

    def isEmpty(self): 

        if self._agent1 is None: 

            return True 

        else: 

            return False 

 

    def __str__(self): 

        return "g{0}_{1}t{2}".format(self._group1, self._group2, 

self._timeStep) 

 

    def __eq__(self, other): 

        """ Compares timeStep, group1 and group2 

        :param other: 

        :return: 

        """ 

        if other is None or type(self) != type(other): 

            return False 

        if self._timeStep != other.getTimeStep(): 

            return False 

        if self._group1 != other.getGroup1() or self._group2 != 

other.getGroup2(): 

            return False 
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        if self._agent1 != other.getAgent1() or  self._agent2 != 

other.getAgent2(): 

            return False 

        return True 

 

…/SingleAgent/Utilities/Coordinate.py 

from Node import Node 

 

 

class Coordinate(object): 

    def __init__(self, timeStep, node): 

        self.__timeStep = timeStep 

        self.__node = node 

    def getTimeStep(self): 

        return self.__timeStep 

 

    def getNode(self): 

        return self.__node 

 

    def setTimeStep(self, timeStep): 

        self.__timeStep = timeStep 

 

    def __eq__(self, other): 

        """ 

        Node + timeStep 

        :param other: 

        :return: 

        """ 

        if other is None: 

            if self.__node is not None: 

                return False 

            else: 

                return True 

        if type(self) != type(other): 

            return False 

        if other.getNode() is None: 

            return False 

        if other.getNode() != self.__node: 

            return False 

        if other.getTimeStep() != self.__timeStep: 

            return False 

        return True 

 

    def __hash__(self): 

        """ 

        Node + timeStep 

        :return: 
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        """ 

        prime = 31 

        result = 1 

        if self.__node is None: 

            result = prime * result 

        else: 

            result = prime * result + hash(self.__node) 

        result = prime * result + hash(self.__timeStep) 

        return result 

 

    def __str__(self): 

        s1 = "timeStep: {0}, ".format(self.__timeStep) 

        s2 = "Node: ({0})".format(str(self.__node)) 

        return "Coordinate: " + s1 + ' ' + s2 

 

…/SingleAgent/Utilities/Graph.py 

from Node import Node 

from ProblemMap import ProblemMap 

from SingleAgent.Constants import * 

 

 

class Graph: 

    def __init__(self, problemMap): 

        """ nodes' neighbor generated in graph 

        __nodes: (n-1) x (n-1), (x,y) for position (x,y) in the map, 

None of (x,y) is block/out 

        :param problemMap: 2D matrix of string 

        """ 

        self.__size = problemMap.getSize() 

        self.__map = problemMap 

        self.__nodes = [[None for i in range(self.__size)] for j in 

range(self.__size)] 

#         note: nodes[0][1]._position = (0,1) 

        self.__generateGraph() 

 

    def __generateGraph(self): 

        """ populate nodes list with nodes, populate nodes neighbors 

        """ 

        for r in range(self.__size): 

            for c in range(self.__size): 

                if self.__map.getContent()[r][c] != '#': 

                    self.__nodes[c][r] = Node((c, r))  # does not tell 

border electrode 

        #  populate neighbor nodes 

        for i in range(self.__size): 

            for j in range(self.__size): 

                currentNode = self.__nodes[i][j] 
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                if currentNode is not None: 

                    self.__populateNeighbor(currentNode) 

 

    #  populate node neighbor4 and neighbor8 

    def __populateNeighbor(self, node): 

        """ 

        :param node: center Node 

        :return: 

        """ 

        if node is None: 

            return 

        current = node.getPosition() 

        if self.__map.isNodeValid((current[0], current[1] - 1)): 

            up = self.__nodes[current[0]][current[1] - 1] 

            node.add_Four(Position.UP, up) 

        if self.__map.isNodeValid((current[0] + 1, current[1])): 

            right = self.__nodes[current[0] + 1][current[1]] 

            node.add_Four(Position.RIGHT, right) 

        if self.__map.isNodeValid((current[0], current[1] + 1)): 

            down = self.__nodes[current[0]][current[1] + 1] 

            node.add_Four(Position.DOWN, down) 

        if self.__map.isNodeValid((current[0] - 1, current[1])): 

            left = self.__nodes[current[0] - 1][current[1]] 

            node.add_Four(Position.LEFT, left) 

        if self.__map.isNodeValid((current[0] + 1, current[1] - 1)): 

            node.add_Eight(Position.UPRIGHT, self.__nodes[current[0] + 

1][current[1] - 1]) 

        if self.__map.isNodeValid((current[0] + 1, current[1] + 1)): 

            node.add_Eight(Position.DOWNRIGHT, self.__nodes[current[0] 

+ 1][current[1] + 1]) 

        if self.__map.isNodeValid((current[0] - 1, current[1] + 1)): 

            node.add_Eight(Position.DOWNLEFT, self.__nodes[current[0] 

- 1][current[1] + 1]) 

        if self.__map.isNodeValid((current[0] - 1, current[1] - 1)): 

            node.add_Eight(Position.UPLEFT, self.__nodes[current[0] - 

1][current[1] - 1]) 

 

    def getSize(self): 

        return self.__size 

 

    def getNode(self): 

        return self.__nodes 

 

    def getMap(self): 

        return self.__map 

 

    def plotGraph(self): 

        self.__map.plotMap() 
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…/SingleAgent/Utilities/IClosedList.py 

import abc 

 

class ICLosedList(object): 

    __metaclass__ = abc.ABCMeta 

 

    @abc.abstractmethod 

    def contains(self, state): 

        """ 

        return if state is in the list 

        :return: 

        """ 

 

    def add(self, state): 

        """ 

        add state to list 

        :param state: 

        :return: 

        """ 

 

    def clear(self): 

        """ 

        clear list 

        :return: 

        """ 

 

…/SingleAgent/Utilities/Node.py 

class Node(object): 

    def __init__(self, position): 

        """ 

        :param type: string for wall/block/. etc. 

        :param position: tuple for the (x,y) 

        neighborFour: Valid 4 neighbors 

        neighborEight: valid 8 neighbors 

        """ 

        self.__position = position 

        self.__neighborFour = [None for i in range(4)] 

        self.__neighborEight = [None for i in range(4)] 

 

    def add_Four(self, index, newNode): 

        self.__neighborFour[index] = newNode 
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    def add_Eight(self, index, newNode): 

        self.__neighborEight[index] = newNode 

 

    def get_Four(self): 

        return self.__neighborFour 

 

    def get_Eight(self): 

        return self.__neighborEight 

 

    def get_neighbor(self): 

        return self.__neighborFour + self.__neighborEight 

 

    def getPosition(self): 

        return self.__position 

 

    def __hash__(self): 

        return hash(self.__position) 

 

    def __eq__(self, other): 

        if other is None or type(self) != type(other): 

            return False 

        if self.__position != other.getPosition(): 

            return False 

        return True 

 

    def __ne__(self, other): 

        return not self.__eq__(other) 

 

    def __str__(self): 

        return "Pos: {0}".format(self.__position) 

 

    def __getstate__(self): 

        return self.__dict__ 

 

    def __setstate__(self, d): 

        self.__dict__ = d 

 

…/SingleAgent/Utilities/ProblemInstance.py 

import copy 

from Graph import Graph 

from Agent import Agent 

from ProblemMap import ProblemMap 

from Util2 import Util2 

 

 

class ProblemInstance(object): 

    def __init__(self, graph, agents): 
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        """ 

        _goals: {agentId: (x, y)} 

        :param graph: 

        :param agents: list of Agents, example [Agent(0, 

(1,1),(10,10), 1)] 

        """ 

        self.__graph = graph 

        self.__agents = agents 

        self.__goals = {} 

        self.__initiateGoals() 

        assert self.__duplicateGoalsOrStarts() == False, "Agent 

initial or goal positions duplicates." 

 

    def __initiateGoals(self): 

        self.__goals.clear() 

        for agent in self.__agents: 

            self.__goals[agent.getId()] = agent.getGoal() 

 

    def __duplicateGoalsOrStarts(self): 

        """ check if have duplicates 

        :return: True or False 

        """ 

        """ Merge operation? """ 

        for i in range(len(self.__agents)): 

            for j in range(i+1, len(self.__agents)): 

                agent1 = self.__agents[i] 

                agent2 = self.__agents[j] 

                if Util2().withinDis(agent1.getStart(), 

agent2.getStart()) or \ 

                        Util2().withinDis(agent1.getGoal(), 

agent2.getGoal()): 

                    return True 

        return False 

 

    def join(self, otherInstance): 

        """ merge self with otherInstance 

        :param otherInstance: 

        :return: new problem instance 

        """ 

        for agent in otherInstance.getAgents(): 

            self.__agents.append(agent) 

            self.__goals[agent.getId()] = agent.getGoal() 

        assert self.__duplicateGoalsOrStarts() == False, "Agent 

initial or goal positions duplicates." 

 

    def addAgent(self, agent): 

        if isinstance(agent, list): 

            self.__agents += agent 

            for s in agent: 
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                self.__goals[s.getId()] = s.getGoal() 

        elif isinstance(agent, Agent): 

            self.__agents += [agent] 

            self.__goals[agent.getId()] = agent.getGoal() 

        assert self.__duplicateGoalsOrStarts() == False, "Agent 

initial or goal positions duplicates." 

 

    def removeAgent(self, agentId): 

        """TODO: """ 

        if isinstance(agentId, int): 

            pass 

 

    def findAgent(self, agentId): 

        """return agent = agentId""" 

        for agent in self.__agents: 

            if agent.getId() == agentId: 

                return agent 

 

    def getAgents(self): 

        return self.__agents 

 

    def getGraph(self): 

        return self.__graph 

 

    def getMap(self): 

        return self.getGraph().getMap() 

 

    def getGoals(self): 

        return self.__goals 

 

    def startandGoalPosition(self): 

        """ 

        :return: set of start and goal positions 

        """ 

        pos = set([]) 

        for agent in self.__agents: 

            pos.add(agent.getStart()) 

            pos.add(agent.getGoal()) 

        return pos 

 

    def plotProblem(self): 

        """ 

        graph + agents for visualization 

        :return: 

        """ 

        mapContent = copy.deepcopy(self.getMap().getContent()) 

        for agent in self.__agents: 

            mapContent[agent.getStart()[1]][agent.getStart()[0]] = 

str(agent.getId()) 
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            mapContent[agent.getGoal()[1]][agent.getGoal()[0]] = 

str(agent.getId()) 

        for i in mapContent: 

            print(' '.join(i)) 

            # print('\n') 

 

 

…/SingleAgent/Utilities/ProblemMap.py 

from SingleAgent.Constants import * 

 

 

class ProblemMap(object): 

    # constructor for known content (a 2D matrix of string) 

    def __init__(self, nsize, block): 

        """ 

        __content: (n+1) x (n+1) of chars 

        :param height: 

        :param width: 

        :param block: dictionary {(x,y), (m,n)} 

        """ 

        self.__size = nsize + 1 

        self.__content = [] 

        assert isinstance(block, dict) 

        self._generateMap(block) 

 

    def _generateMap(self, block): 

        res = [[Symbols.BLANK for i in range(self.__size)] for j in 

range(self.__size)] 

        # wall * 

        for i in range(self.__size): 

            res[i][0] = Symbols.WALL 

            res[i][self.__size - 1] = Symbols.WALL 

        for j in range(self.__size): 

            res[0][j] = Symbols.WALL 

            res[self.__size - 1][j] = Symbols.WALL 

        # add blocks # 

        for pos, size in block.items(): 

            for i in range(size[1]): 

                for j in range(size[0]): 

                    x = pos[0] + i 

                    y = pos[1] + j 

                    if self._existCell(pos) and not 

self.__outOfBorder((x, y)): 

                        res[y][x] = Symbols.BLOCK 

        self.__content = res 

 



160 

 

    def _existCell(self, pos): 

        if pos[0] == self.__size - 1 or pos[1] == self.__size - 1: 

            return False 

        else: 

            return True 

 

    def __outOfBorder(self, position): 

        return position[0] > self.__size - 1 or position[1] > 

self.__size - 1 or position[0] < 0 or position[1] < 0 

 

    # visualize the generated map 

    def plotMap(self): 

        for i in self.__content: 

            print(' '.join(i)) 

 

    def getSize(self): 

        return self.__size - 1 

 

    def isNodeValid(self, position): 

        """ 

        check if the position is occupied or out of bound 

        :param position: (x,y) 

        :return: bool 

        """ 

        if position[0] < 0 or position[1] < 0: 

            return False 

        if position[0] >= self.__size - 1 or position[1] >= 

self.__size - 1: 

            return False 

        if self.__content[position[1]][position[0]] == '#': 

            return False 

        return True 

 

    def getContent(self): 

        return self.__content 

 

…/SingleAgent/Utilities/StateClosedList.py 

from IClosedList import ICLosedList 

from SingleAgent.Utilities.ProblemInstance import ProblemInstance 

from SingleAgent.Utilities.Node import Node 

from SingleAgent.Utilities.Agent import Agent 

from SingleAgent.Utilities.Graph import Graph 

from SingleAgent.Utilities.ProblemMap import ProblemMap 

 

 

class StateClosedList(ICLosedList): 

    def __init__(self): 
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        self._closeSet = dict() 

 

    def contains(self, state): 

        from SingleAgent.States.State import State 

        assert isinstance(state, State), "ClosedList contains requires 

state class" 

        if state not in self._closeSet: 

            return False 

        preState = self._closeSet[state] 

        if state < preState: 

            del self._closeSet[preState] 

            return False 

                return True 

 

    def add(self, state): 

        """ rewrite state 

        """ 

        from SingleAgent.States.State import State 

        assert isinstance(state, State), "ClosedList add requires 

state class" 

        self._closeSet[state] = state 

 

    def delete(self, state): 

        assert state in self._closeSet, 'state not in StateClosedList, 

\n{0}'.format(state) 

        del self._closeSet[state] 

 

    def clear(self): 

        self._closeSet.clear() 

 

    def getClosedList(self): 

        return self._closeSet 

 

    def empty(self): 

        return len(self._closeSet) == 0 

 

    def size(self): 

        return len(self._closeSet) 

 

    def __str__(self): 

        res = '' 

        for key, value in self._closeSet.items(): 

            res += str(key) + '\n' 

        return res 

 

…/SingleAgent/Utilities/Util2.py 
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class Util2(object): 

    def oppositeDir(self, dir): 

        if dir == 0: 

            return 2 

        elif dir == 2: 

            return 0 

        elif dir == 1: 

            return 3 

        elif dir == 3: 

            return 1 

 

    def moveDir(self, preNode, nextNode): 

        """find moving direction of preNode -> nextNode""" 

        pos1 = preNode.getPosition() 

        pos2 = nextNode.getPosition() 

        if pos1[0] == pos2[0] and pos1[1] == pos2[1]: 

            return 0 

        elif pos1[1] - pos2[1] == 1: 

            return 1 

        elif pos1[0] - pos2[0] == -1: 

            return 2 

        elif pos1[1] - pos2[1] == -1: 

            return 3 

        elif pos1[0] - pos2[0] == 1: 

            return 4 

        return None 

 

    def withinDis(self, node1, node2): 

        if isinstance(node1, tuple): 

            return abs(node1[0] - node2[0]) < 2 and abs(node1[1] - 

node2[1]) < 2 

        else: 

            return abs(node1.getPosition()[0] - 

node2.getPosition()[0]) < 2 \ 

               and abs(node1.getPosition()[1] - 

node2.getPosition()[1]) < 2 

 

    def posToIndex(self, pos, nsize): 

        return pos[0] * nsize + pos[1] 

 

    def indexToPos(self, index, nsize): 

        x = index // nsize 

        y = index % nsize 

        return (x,y) 

 

    # ================= Functions IO ================ 

    def readTestFile(self, filename): 

        """ 

        extract probleminstance parameters from file 
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        :param filename: 

        :return: size, block, agentlist 

        """ 

        size = 0 

        agentNum = 0 

        block = {} 

        agentList = [] 

        f = open(filename, 'r') 

        for line in f: 

            if line[0] != '#': 

                c = line.split(' ') 

                if c[0] == 'grid': 

                    size = int(line[5:7]) 

                elif c[0] =='block': 

                    block[(int(c[2]), int(c[1]))] = (int(c[3]) - 

int(c[1]) + 1, int(c[4]) - int(c[2]) + 1) 

                elif c[0] == 'nets': 

                    agentNum = int(c[1]) 

                elif c[0] == 'net' or c[0] == 'xet': 

                    print(c) 

                    agentList.append([int(c[1]), (int(c[3]), 

int(c[2])), (int(c[6]), int(c[5]))]) 

        f.close() 

        print(size) 

        print(block) 

        print(agentNum) 

        print(agentList) 

        return size, block, agentNum, agentList 

 

…/SingleAgent/Constants/__init__.py 

__all__ = ["Block","Symbols","costs", "Position"] 

 

…/SingleAgent/Constants/Block.py 

SMALL = 1 

MEDIUM = 2 

LARGE = 4 

 

…/SingleAgent/Constants/costs.py 

STAY = 1 
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…/SingleAgent/Constants/Position.py 

UP = 0 

RIGHT = 1 

DOWN = 2 

LEFT = 3 

UPRIGHT = 0 

DOWNRIGHT = 1 

DOWNLEFT = 2 

UPLEFT = 3 

STAY = 4 

 

…/SingleAgent/Constants/Symbols.py 

WALL = '*' 

BLOCK = '#' 

BLANK = '.' 

AGENTSTART = '@' 

AGENTGOAL = '&' 
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Chapter 5 Summary and Recommendations 

 

This work demonstrates finger-powered digital microfluidics based on EWOD and EPD for 

portable applications. The voltage output of single/multiple piezoelectric elements in series 

connection were characterized under different bending angles for powering digital microfluidic 

devices. EWOD devices of various thicknesses were designed and fabricated. The basic modes 

of droplet manipulation such as droplet transport, merging, and splitting using finger-powered 

EWOD DMF were confirmed. The basic assay steps of glucose detection and immunoassay were 

also implemented. To overcome the pinning and surface contamination of EWOD, the same 

energy conversion scheme was applied to an alternative fluidic manipulation paradigm: 

electrophoretic transport of discrete droplets (EPD). To establish the design criteria for finger-

powered EPD, numerical models for predicting the induced droplet charges and subsequent 

electrophoretic forces for various droplet sizes and electrode pitches were developed and 

experimentally validated. The transport of aqueous droplets, as well as the direct manipulation of 

body fluids, were demonstrated using the finger-powered EPD. Further, a mechanical hand-

rotated drum system and an efficient pin assignment method was integrated into the final system 

to demonstrate pre-programmed functional droplet actuation. 

In addition, an OD+ID based droplet router was implemented to solve one of the practical 

problems in microfluidic chip design: droplet routing problem. The routing results on selected 

hard benchmarks show that our algorithm achieves better timing result (latest arrival time), fault 

tolerance (number of used cells), as well as total routing cost, compared with the previous best 
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known results. The algorithm also provides a flexible approach to routing droplets of different 

routing costs (due to different values of viscosity, pH, etc.) while minimizing the total routing 

cost.  

The following recommendations are made for future research on finger-powered digital 

microfluidic devices. 

1. The basic functions of transport and merging in EPD are established in this work. 

However, for implementation of full bioassays, other fluidic functions such as droplet 

splitting are necessary. A reliable splitting mechanism needs to be developed and 

integrated into the current EPD. Alternatively, EPD can function as the transportation 

unit in an integrated digital microfluidic solution, which may combine multiple droplet 

actuation mechanisms such as EWOD and surface acoustic wave. In the latter scenario, a 

proper intermediate component for connecting the different functional units needs to be 

developed.  

2. To further improve the reliability of EPD and reduce the accidental sticking on 

electrodes, shorter touching time, smaller touching area, as well as a hydrophobic solid 

surface are desirable. Therefore, more research can be done on suitable material selection 

and fabrication methods of EPD electrodes. 

3. With a few additional functions added to our current droplet routing algorithm based on 

ID, 3-net problems (including droplet merging and splitting) may be solved directly 

within the algorithm. 
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