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ARTICLE

A machine learning Automated Recommendation
Tool for synthetic biology
Tijana Radivojević 1,2,3, Zak Costello1,2,3, Kenneth Workman 1,3,4 & Hector Garcia Martin 1,2,3,5✉

Synthetic biology allows us to bioengineer cells to synthesize novel valuable molecules such

as renewable biofuels or anticancer drugs. However, traditional synthetic biology approaches

involve ad-hoc engineering practices, which lead to long development times. Here, we pre-

sent the Automated Recommendation Tool (ART), a tool that leverages machine learning and

probabilistic modeling techniques to guide synthetic biology in a systematic fashion, without

the need for a full mechanistic understanding of the biological system. Using sampling-based

optimization, ART provides a set of recommended strains to be built in the next engineering

cycle, alongside probabilistic predictions of their production levels. We demonstrate the

capabilities of ART on simulated data sets, as well as experimental data from real metabolic

engineering projects producing renewable biofuels, hoppy flavored beer without hops, fatty

acids, and tryptophan. Finally, we discuss the limitations of this approach, and the practical

consequences of the underlying assumptions failing.
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Metabolic engineering1 enables us to bioengineer cells to
synthesize novel valuable molecules such as renewable
biofuels2,3, or anticancer drugs4. The prospects of

metabolic engineering to have a positive impact in society are on
the rise, as it was considered one of the “Top Ten Emerging
Technologies” by the World Economic Forum in 20165. Fur-
thermore, an incoming industrialized biology is expected to
improve most human activities: from creating renewable bio-
products and materials, to improving crops and enabling new
biomedical applications6.

However, the practice of metabolic engineering has been far
from systematic, which has significantly hindered its overall
impact7. Metabolic engineering has remained a collection of
useful demonstrations rather than a systematic practice based on
generalizable methods. This limitation has resulted in very long
development times: for example, it took 150 person-years of effort
to produce the antimalarial precursor artemisinin by Amyris; and
575 person-years of effort for Dupont to generate propanediol8,
which is the base for their commercially available Sorona fabric9.

Synthetic biology10 aims to improve genetic and metabolic
engineering by applying systematic engineering principles to
achieve a previously specified goal. Synthetic biology encom-
passes, and goes beyond, metabolic engineering: it also involves
non-metabolic tasks such as gene drives able to extinguish
malaria-bearing mosquitoes11 or engineering microbiomes to
replace fertilizers12. This discipline is enjoying an exponential
growth, as it heavily benefits from the byproducts of the genomic
revolution: high-throughput multi-omics phenotyping13,14,
accelerating DNA sequencing15 and synthesis capabilities16, and
CRISPR-enabled genetic editing17. This exponential growth is
reflected in the private investment in the field, which has total-
led ~$12B in the 2009–2018 period and is rapidly accelerating
(~$2B in 2017 to ~$4B in 2018)18.

One of the synthetic biology engineering principles used to
improve metabolic engineering is the Design-Build-Test-Learn
(DBTL19,20) cycle—a loop used recursively to obtain a design that
satisfies the desired specifications (e.g., a particular titer, rate,
yield or product). The DBTL cycle’s first step is to design (D) a
biological system expected to meet the desired outcome. That
design is built (B) in the next phase from DNA parts into an
appropriate microbial chassis using synthetic biology tools. The
next phase involves testing (T) whether the built biological system
indeed works as desired in the original design, via a variety of
assays: e.g., measurement of production or/and omics (tran-
scriptomics, proteomics, metabolomics) data profiling. It is
extremely rare that the first design behaves as desired, and further
attempts are typically needed to meet the desired specification.
The Learn (L) step leverages the data previously generated to
inform the next Design step so as to converge to the desired
specification faster than through a random search process.

The Learn phase of the DBTL cycle has traditionally been the
most weakly supported and developed20, despite its critical
importance to accelerate the full cycle. The reasons are multiple,
although their relative importance is not entirely clear. Arguably,
the main drivers of the lack of emphasis on the L phase are: the
lack of predictive power for biological systems behavior21, the
reproducibility problems plaguing biological experiments3,22–24,
and the traditionally moderate emphasis on mathematical train-
ing for synthetic biologists.

Machine learning (ML) arises as an effective tool to predict
biological system behavior and empower the Learn phase, enabled
by emerging high-throughput phenotyping technologies25. By
learning the underlying regularities in experimental data,
machine learning can provide predictions without a detailed
mechanistic understanding. Training data are used to statistically
link an input (i.e., features or independent variables) to an output

(i.e., response or dependent variables) through models that are
expressive enough to represent almost any relationship. After this
training, the models can be used to predict the outputs for inputs
that the model has never seen before. Machine learning has been
used to, e.g., predict the use of addictive substances and political
views from Facebook profiles26, automate language translation27,
predict pathway dynamics28, optimize pathways through trans-
lational control29, diagnose skin cancer30, detect tumors in breast
tissues31, predict DNA and RNA protein-binding sequences32,
and drug side effects33. However, the practice of machine learning
requires statistical and mathematical expertise that is scarce, and
highly competed for ref. 34.

Here, we provide a tool that leverages machine learning for
synthetic biology’s purposes: the Automated Recommendation Tool
(ART, Fig. 1). ART combines the widely used and general-purpose
open-source scikit-learn library35 with a Bayesian36 ensemble
approach, in a manner that adapts to the particular needs of syn-
thetic biology projects: e.g., a low number of training instances,
recursive DBTL cycles, and the need for uncertainty quantification.
The data sets collected in the synthetic biology field (<100 instances)
are typically not large enough to allow for the use of deep learning,
so this technique is not currently used in ART. However, once high-
throughput data generation14,37 and automated data collection38

capabilities are widely used, we expect data sets of thousands, tens of
thousands, and even more instances to be customarily available,
enabling deep learning capabilities that can also leverage ART’s
Bayesian approach. In general, ART provides machine learning
capabilities in an easy-to-use and intuitive manner, and is able to
guide synthetic biology efforts in an effective way.

The efficacy of ART in guiding synthetic biology is showcased
through five different examples: one test case using simulated
data, three cases where we leveraged previously collected
experimental data from real metabolic engineering projects, and a
final case where ART is used to guide a bioengineering effort to
improve productivity. In the synthetic case and the three
experimental cases where previous data are leveraged, we mapped
one type of –omics data (targeted proteomics in particular) to
production. In the case of using ART to guide experiments, we
mapped promoter combinations to production. In all cases, the
underlying assumption is that the input (–omics data or promoter
combinations) is predictive of the response (final production),
and that we have enough control over the system so as to produce
any new recommended input. The test case permits us to explore
how the algorithm performs when applied to systems that present
different levels of difficulty when being “learnt”, as well as the
effectiveness of using several DTBL cycles. The real metabolic
engineering cases involve data sets from published metabolic
engineering projects: renewable biofuel production39, yeast
bioengineering to recreate the flavor of hops in beer40, and fatty
alcohols synthesis41. These projects illustrate what to expect
under different typical metabolic engineering situations: high/low
coupling of the heterologous pathway to host metabolism, com-
plex/simple pathways, high/low number of conditions, high/low
difficulty in learning pathway behavior. Finally, the fifth case uses
ART in combination with genome-scale models to improve
tryptophan productivity in yeast by 106% from the base strain,
and is published in parallel42 as the experimental counterpart to
this article. We find that ART’s ensemble approach can suc-
cessfully guide the bioengineering process even in the absence of
quantitatively accurate predictions (see e.g., the “Improving the
production of renewable biofuel” section). Furthermore, ART’s
ability to quantify uncertainty is crucial to gauge the reliability of
predictions and effectively guide recommendations towards the
least known part of the phase space. These experimental meta-
bolic engineering cases also illustrate how applicable the under-
lying assumptions are, and what happens when they fail.
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In sum, ART provides a tool specifically tailored to the syn-
thetic biologist’s needs in order to leverage the power of machine
learning to enable predictable biology. This combination of syn-
thetic biology with machine learning and automation has the
potential to revolutionize bioengineering25,43,44 by enabling
effective inverse design (i.e., the capability to design DNA to meet
a specified phenotype: a biofuel productivity rate, for example).
We have made a special effort to write this paper to be accessible
to both the machine learning and synthetic biology readership,
with the intention of providing a much-needed bridge between
these two very different collectives. Hence, we have emphasized
explaining basic machine learning and synthetic biology concepts,
since they might be of use to a part of the readership.

Results
Key capabilities. ART leverages machine learning to improve
the efficacy of bioengineering microbial strains for the

production of desired bioproducts (Fig. 1). ART gets trained on
available data (including all data from previous DBTL cycles) to
produce a model (Fig. 2) capable of predicting the response
variable (e.g., production of the jet fuel limonene) from the
input data (e.g., proteomics data, or any other type of data that
can be expressed as a vector). Furthermore, ART uses this
model to recommend new inputs (e.g., proteomics profiles,
Fig. 3) that are predicted to reach our desired goal (e.g.,
improve production). As such, ART bridges the Learn and
Design phases of a DBTL cycle.

ART can import data directly from Experimental Data Depo45, an
online tool where experimental data and metadata are stored in a
standardized manner. Alternatively, ART can import EDD-style .csv
files, which use the nomenclature and structure of EDD exported
files (see the “Importing a study” section in Supplementary
Information).

By training on the provided data set, ART builds a predictive
model for the response as a function of the input variables

Input
(level-0 data)

M machine learning
models

(level-0 learners)

Output from level-0 learners
/ input for level-1 learner

(level-1 data)

Bayesian
ensemble model
(level-1 learner)

Response

Predictive distribution

(y )(x )

f1 z1

w1

w1 w2 wM

w2

wM

zMfM

Fig. 2 ART provides a probabilistic predictive model of the response. ART combines several machine learning models from the scikit-learn library with a
Bayesian approach to predict the probability distribution of the output. The input to ART is proteomics data (or any other input data in vector format:
transcriptomics, gene copy, etc.), which we call level-0 data. This level-0 data is used as input for a variety of machine learning models from the scikit-learn
library (level-0 learners) that produce a prediction of production for each model (zi). These predictions (level-1 data) are used as input for the Bayesian
ensemble model (level-1 learner), which weights these predictions differently depending on its ability to predict the training data. The weights wi and the
variance σ are characterized through probability distributions, giving rise to a final prediction in the form of a full probability distribution of response levels.
This probabilistic model is the “Predictive model” depicted in Fig. 1.
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Fig. 1 ART provides predictions and recommendations for the next cycle. ART uses experimental data (input and responses in the left side) to (i) build a
probabilistic predictive model that predicts response (e.g., production) from input variables (e.g., proteomics), and (ii) uses this model to provide a set of
recommended inputs for the next experiment (new input) that will help reach the desired goal (e.g., increase response/production). The input phase space,
in this case, is composed of all the possible combinations of protein expression levels (or transcription levels, promoters,... for other cases). The predicted
response for the recommended inputs is characterized as a full probability distribution, effectively quantifying prediction uncertainty. Instances refer to
each of the different examples of input and response used to train the algorithm (e.g., each of the different strains and/or conditions, that lead to different
production levels because of different proteomics profiles). See Fig. 2 for details on the predictive model and Fig. 3 for details on the recommendation
strategy. An example of the output can be found in Supplementary Fig. 5.
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(Fig. 2). Rather than predicting point estimates of the response
variable, ART provides the full probability distribution of the
predictions (i.e., the distribution for all possible outcomes for the
response variable and their associated probability values). This
rigorous quantification of uncertainty enables a principled way to
test hypothetical scenarios in-silico, and to guide the design of
experiments in the next DBTL cycle. The Bayesian framework
chosen to provide the uncertainty quantification is particularly
tailored to the type of problems most often encountered in
metabolic engineering: sparse data which is expensive and time-
consuming to generate.

With a predictive model at hand, ART can provide a set of
recommendations expected to produce the desired outcome, as
well as probabilistic predictions of the associated response
(Fig. 3). ART supports the following typical metabolic engineer-
ing objectives: maximization of the production of a target
molecule (e.g., to increase Titer, Rate, and Yield, TRY), its
minimization (e.g., to decrease the toxicity), as well as
specification objectives (e.g., to reach a specific level of a target
molecule for a desired beer taste profile40). Furthermore, ART
leverages the probabilistic model to estimate the probability that
at least one of the provided recommendations is successful (e.g.,
it improves the best production obtained so far), and derives how
many strain constructions would be required for a reasonable
chance to achieve the desired goal.

Although ART can be applied to the problems with multiple
output variables of interest, it currently supports only the same
type of objective for all output variables. Hence, it does not yet
support the maximization of one target molecule along with the
minimization of another (see “Success probability calculation” in
Supplementary Information).

Using simulated data to test ART. Synthetic data sets allow us to
test how ART performs when confronted by problems of different
difficulty and dimensionality, as well as gauge the effectiveness of
the experimental design of the initial training set and the avail-
ability of training data. In this case, we tested the performance of
ART for 1–10 DBTL cycles, three problems of increasing diffi-
culty (FE, FM, and FD, see Fig. 4), and three different dimensions
of input space (D = 2, 10, and 50, Fig. 5). We simulated the DBTL
processes by starting with a training set given by 16 instances
(Fig. 1), obtained from Fig. 4 functions. Different instances, in
this case, may represent different engineered strains or different
induction or fermentation conditions for a particular strain. The
choice of initial training set is very important (Supplementary
Fig. 3).

The initial input values were chosen as Latin Hypercube46

draws, which involves dividing the range of variables in each
dimension into equally probable intervals and then choosing
samples such that there is only one in each hyperplane (hyper-
row/hyper-column) defined by those intervals. This ensures that
the set of samples is representative of the variability of the input
phase space. A less careful choice of initial training data can
significantly hinder learning and production improvement
(Supplementary Fig. 3). In this regard, a list of factors to consider
when designing an experiment can be found in the “Designing
optimal experiments for machine learning” section in Supple-
mentary Information. We limited ourselves to the maximization
case and, at each DBTL cycle, generated 16 recommendations
that maximized the objective function given by Eq. (5). This
choice mimicked triplicate experiments in the 48 wells of
throughput of a typical automated fermentation platform47. We
employed a tempering strategy for the exploitation-exploration
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Fig. 3 ART chooses recommendations by sampling the modes of a surrogate function. The true response y (e.g., biofuel production to be optimized) is
shown as a function of the input x (e.g., proteomics data), as well as the expected response E(y) after several DBTL cycles (a), and its 95% confidence
interval (blue). Depending on whether we prefer to explore (c) the phase space where the model is least accurate or exploit (b) the predictive model to
obtain the highest possible predicted responses, we will seek to optimize a surrogate function G(x) (Eq. (5)), where the exploitation-exploration parameter
is α = 0 (pure exploitation), α = 1 (pure exploration) or anything in between. Parallel-tempering-based MCMC sampling (d) produces sets of vectors x
(colored dots) for different “temperatures”: higher temperatures (red) explore the full phase space, while lower temperature chains (blue) concentrate in
the nodes (optima) of G(x). The exchange between different “temperatures” provides more efficient sampling without getting trapped in local optima. Final
recommendations (upward-pointing blue arrows) to improve response are provided from the lowest temperature chain, and chosen such that they are not
too close to each other and to experimental data (at least 20% difference). These recommendations are the “Recommendations for next cycle” depicted in
Fig. 1. In this example, they represent protein expression levels that should be targeted to achieve predicted production levels. See Fig. 7 for an example of
recommended protein profiles and their experimental tests.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18008-4

4 NATURE COMMUNICATIONS |         (2020) 11:4879 | https://doi.org/10.1038/s41467-020-18008-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


parameter, i.e., assigned α = 0.9 at the start for an exploratory
optimization, and gradually decreased the value to α = 0 in the
final DBTL cycle for the exploitative maximization of the
production levels.

ART performance improves significantly as more data are
accrued with additional DTBL cycles. Whereas the prediction
error, given in terms of mean average error (MAE), remains
constantly low for the training set (i.e., ART is always able to
reliably predict data it has already seen), the MAE for the test data
(data ART has not seen) in general decreases markedly with the
addition of more DBTL cycles (Supplementary Fig. 4). The

exceptions are the most complicated problems: those exhibiting
highest dimensionality (D = 50), where MAE stays approximately
constant, and the difficult function FD, which exhibits a slower
decrease. Furthermore, the best production among the 16
recommendations obtained in the simulated process increases
monotonically with more DBTL cycles: faster for easier problems
and lower dimensions and more slowly for harder problems and
higher dimensions. Finally, the uncertainty in those predictions
decreases as more DBTL cycles proceed (Fig. 5). Hence, more
data (DBTL cycles) almost always translates into better predic-
tions and production. However, we see that these benefits are

20

a b c

50

0

–50

–100

–150

–200

–250

4

4

2

0

–2

–4

12
10

8
6

4
2

012
10

8
6

42
0

2
0

–2
–4

4
2

0
–2

–4

F
E

(x
)

F
M

(x
)

F
D
(x

)–20

–40

–60

–80

–100

10.0

10.0
x
1

x
1 x

1

x 2 x 2 x 2

7.5
5.0

2.5
0.0

–2.5
–5.0

7.5
5.0

2.5
0.0

–2.5
–5.0

0

Fig. 4 Synthetic data test functions for ART. These functions present different levels of difficulty to being “learnt”, and are used to produce synthetic data
and test ART’s performance (Fig. 5). a FEðxÞ ¼ � 1

d

Pd
i ðxi � 5Þ2 þ exp �P

ix
2
i

� �þ 25; b FMðxÞ ¼ 1
d

Pd
i x4i � 16x2i þ 5xi
� �

; c FDðxÞ ¼
Pd

i
ffiffiffiffi
xi

p
sinðxiÞ.

D=2 D=10 D=50

T
he

 h
ig

he
st

 p
ro

du
ct

io
n 

(y
)

(n
or

m
al

iz
ed

 to
 tr

ue
 o

pt
im

a) 1.0

0.5

0.0

–0.5

–1.0

1.0 1.0

0.8

0.6

0.4

0.2

0.0

15408

6

4

2

0

–2

30

20

10

0

–10

10

5

0

0.5

0.0

–0.5

–1.0
1 2 3 4 5 6

Mean predicted
Actual

7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 101 2

FE FM FD

3 4 5 6 7 8 9 101 2 3 4 5 6 7

Number of cycles Number of cycles Number of cycles
8 9 10

Fig. 5 ART performance improves significantly beyond the usual two DBTL cycles. Here we show the results of testing ART’s performance with synthetic
data obtained from functions of different levels of complexity (Fig. 4), different phase space dimensions (2, 10, and 50), and different amounts of training
data (DBTL cycles). The top row presents the results of the simulated metabolic engineering in terms of highest production achieved so far for each cycle
(as well as the corresponding ART predictions). The production increases monotonically with a rate that decreases as the problem is harder to learn, and
the dimensionality increases. The bottom row shows the uncertainty in ART’s production prediction, given by the standard deviation of the response
distribution (Eq. (2)). This uncertainty decreases markedly with the number of DBTL cycles, except for the highest number of dimensions. In each plot, lines
and shaded areas represent the estimated mean values and 95% confidence intervals, respectively, over ten repeated runs. Mean Absolute Error (MAE)
and training and test set definitions can be found in Supplementary Fig. 4.
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rarely reaped with only the two DBTL cycles customarily used in
metabolic engineering (see examples in the next sections): ART
(and ML in general) becomes only truly efficient when using 5–10
DBTL cycles.

Different experimental problems involve different levels of
difficulty when being learnt (i.e., being predicted accurately), and
this can only be assessed empirically. Low dimensional problems
can be easily learnt, whereas exploring and learning a 50-
dimensional landscape is very slow (Fig. 5). Difficult problems
(i.e., less monotonic landscapes) take more data to learn and
traverse than easier ones. We will showcase this point in terms of
real experimental data when comparing the biofuel project (easy)
versus the dodecanol project (hard) below. However, there is no
systematic way to decide a priori whether a given problem will be
easy or hard to learn—the only way to determine this is by
checking the improvements in prediction accuracy as more data
is added. In any case, a starting point of at least ~100 instances is
highly recommendable to obtain proper statistics.

Improving the production of renewable biofuel. The optimi-
zation of the production of renewable biofuel limonene through
synthetic biology will be our first demonstration of ART using
real-life experimental data. Renewable biofuels are almost carbon
neutral because they only release into the atmosphere the carbon
dioxide that was taken up in growing the plant biomass they are
produced from. Biofuels are seen as the most viable option for
decarbonizing sectors that are challenging to electrify, such as
heavy-duty freight and aviation48.

Limonene is a molecule that can be chemically converted to
several pharmaceutical and commodity chemicals49. If hydroge-
nated, it displays characteristics that are ideal for next-generation
jet-biofuels and fuel additives that enhance cold weather
performance50,51. Limonene has been traditionally obtained from
plant biomass, as a byproduct of orange juice production, but
fluctuations in availability, scale, and cost limit its use as biofuel52.
The insertion of the plant genes responsible for the synthesis of
limonene in a host organism (e.g., a bacteria), however, offers a
scalable and cheaper alternative through synthetic biology.
Limonene has been produced in E. coli through an expansion of
the celebrated mevalonate pathway (Fig. 1a in ref. 53), used to
produce the antimalarial precursor artemisinin54 and the biofuel
farnesene55, and which forms the technological base on which the
company Amyris was founded (valued ~$300M ca. 2019). This
version of the mevalonate pathway is composed of seven genes
obtained from such different organisms as S. cerevisiae, S. aureus,
and E. coli, to which two genes have been added: a geranyl-
diphosphate synthase and a limonene synthase obtained from the
plants A. grandis and M. spicata, respectively.

For this demonstration, we use historical data from ref. 39,
where 27 different variants of the pathway (using different
promoters, induction times and induction strengths) were built.
Data collected for each variant involved limonene production and
protein expression for each of the nine proteins involved in the
synthetic pathway. These data were used to feed Principal
Component Analysis of Proteomics (PCAP)39, an algorithm
using the principal component analysis to suggest new pathway
designs. The PCAP recommendations used to engineer new
strains, resulting in a 40% increase in production for limonene,
and 200% for bisabolene (a molecule obtained from the same base
pathway). This small amount of available instances (27) to train
the algorithms is typical of synthetic biology/metabolic engineer-
ing projects. Although we expect automation to change the
picture in the future25, the lack of large amounts of data has
determined our machine learning approach in ART (i.e., no deep
neural networks).

ART is able to not only recapitulate the successful predictions
obtained by PCAP improving limonene production, but also
improves significantly on this method. Firstly, ART provides a
quantitative prediction of the expected production in all of the
input phase space, rather than qualitative recommendations.
Secondly, ART provides a systematic method that is automated,
requiring no human intervention to provide recommendations.
Thirdly, ART provides uncertainty quantification for the predic-
tions, which PCAP does not. In this case, the training data for
ART are the concentrations for each of the nine proteins in the
heterologous pathway (input), and the production of limonene
(response). The objective is to maximize limonene production.
We have data for two DBTL cycles, and we use ART to explore
what would have happened if we have used ART instead of PCAP
for this project.

We used the data from DBLT cycle 1 to train ART and
recommend new strain designs (i.e., protein profiles for the
pathway genes, Fig. 6). The model trained with the initial 27
instances provided reasonable cross-validated predictions for the
production of this set (R2 = 0.44), as well as the three strains
which were created for DBTL cycle 2 at the behest of PCAP
(Fig. 6). This suggests that ART would have easily recapitulated
the PCAP results. Indeed, the ART recommendations are very
close to the PCAP recommendations (Fig. 7). Interestingly, we see
that while the quantitative predictions of each of the individual
models were not very accurate, they all signaled towards the right
direction in order to improve production, showing the impor-
tance of the ensemble approach (Fig. 7). Hence, we see that ART
can successfully guide the bioengineering process even in the
absence of quantitatively accurate predictions.

Training ART with experimental results from DBTL cycles 1
and 2 results in even better predictions (R2 = 0.61), highlighting
the importance of the availability of large amounts of data to train
ML models. This new model suggests new sets of strains
predicted to produce even higher amounts of limonene.
Importantly, the uncertainty in predicted production levels is
significantly reduced with the additional data points from cycle 2.

Brewing hoppy beer without hops by bioengineering yeast. Our
second example involves bioengineering yeast (S. cerevisiae) to
produce hoppy beer without the need for hops40. To this end, the
ethanol-producing yeast used to brew the beer, was modified to
also synthesize the metabolites linalool (L) and geraniol (G),
which impart hoppy flavor (Fig. 2 in ref. 40). Synthesizing linalool
and geraniol through synthetic biology is economically advanta-
geous because growing hops is water and energetically intensive,
and their taste is highly variable from crop to crop. Indeed, a
startup (Berkeley Brewing Science, https://www.crunchbase.com/
organization/berkeley-brewing-science#section-overview) was
generated from this technology.

ART is able to efficiently provide the proteins-to-production
mapping that required three different types of mathematical
models in the original publication, paving the way for a
systematic approach to beer flavor design. The challenge is
different in this case as compared to the previous example
(limonene): instead of trying to maximize production, the goal is
to reach a particular level of linalool and geraniol so as to match a
known beer tasting profile (e.g., Pale Ale, Torpedo or Hop
Hunter, Fig. 8). ART can provide this type of recommendations,
as well. For this case, the inputs are the expression levels for the
four different proteins involved in the pathway, and the response
is the concentrations of the two target molecules (L and G), for
which we have desired targets. We have data for two DBTL cycles
involving 50 different strains/instances (19 instances for the first
DBTL cycle and 31 for the second one, Fig. 8). As in the previous
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case, we use this data to simulate the outcomes we would have
obtained in case ART had been available for this project.

The first DBTL cycle provides a very limited number of 19
instances to train ART, which performs passably on this training
set, and poorly on the test set provided by the 31 instances from
DBTL cycle 2 (Fig. 8). Despite this small amount of training data,
the model trained in DBTL cycle 1 is able to recommend new
protein profiles that are predicted to reach the Pale Ale target
(Fig. 8). Similarly, this DBTL cycle 1 model was almost able to
reach (in predictions) the L and G levels for the Torpedo beer,
which will be finally achieved in DBTL cycle 2 recommendations,
once more training data is available. For the Hop Hunter beer,
recommendations from this model were not close to the target.

The model for the second DBTL cycle leverages the full 50
instances from cycles 1 and 2 for training and is able to provide
recommendations predicted to attain two out of three targets. The
Pale Ale target L and G levels were already predicted to be
matched in the first cycle; the new recommendations are able to
maintain this beer profile. The Torpedo target was almost
achieved in the first cycle, and is predicted to be reached in the
second cycle recommendations. Finally, Hop Hunter target L and
G levels are very different from the other beers and cycle 1 results,
so neither cycle 1 or 2 recommendations can predict protein
inputs achieving this taste profile. ART has only seen two

instances of high levels of L and G and cannot extrapolate well
into that part of the metabolic phase space. ART’s exploration
mode, however, can suggest experiments to explore this space.

Quantifying the prediction uncertainty is of fundamental
importance to gauge the reliability of the recommendations,
and the full process through several DBTL cycles. In the end, the
fact that ART was able to recommend protein profiles predicted
to match the Pale Ale and Torpedo taste profiles only indicate
that the optimization step (see the “Optimization-suggesting next
steps” section) works well. The actual recommendations, how-
ever, are only as good as the predictive model. In this regard, the
predictions for L and G levels shown in Fig. 8 (right side) may
seem deceptively accurate, since they are only showing the
average predicted production. Examining the full probability
distribution provided by ART shows a very broad spread for the L
and G predictions (much broader for L than G, Supplementary
Fig. 6). These broad spreads indicate that the model still has not
converged and that recommendations will probably change
significantly with new data. Indeed, the protein profile recom-
mendations for the Pale Ale changed markedly from DBTL cycle
1–2, although the average metabolite predictions did not (left
panel of Supplementary Fig. 7). All in all, these considerations
indicate that quantifying the uncertainty of the predictions is
important to foresee the smoothness of the optimization process.
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Fig. 6 ART provides effective recommendations to improve biofuel production. We used the first DBTL cycle data (a) to train ART and recommend new
protein targets with predicted production (c). The ART recommendations were very similar to the protein profiles that eventually led to a 40% increase in
production (Fig. 7). ART predicts mean production levels for the second DBTL cycle strains (d), which are very close to the experimentally measured values
(three blue points in b). Adding those three points from DBTL cycle 2 provides a total of 30 strains for training (e) that lead to recommendations predicted
to exhibit higher production and narrower distributions (g). Uncertainty for predictions is shown as probability distributions for recommendations (c, g)
and violin plots for the cross-validated predictions (b, f). The cross-validation graphs (present in Figs. 8, 9 and Supplementary Figs. 8, 9, too) represent an
effective way of visualizing prediction accuracy for data the algorithm has not yet seen. The closer the points are to the diagonal line (predictions matching
observations) the more accurate the model. The training data are randomly subsampled into partitions, each of which is used to validate the model trained
with the rest of the data. The black points and the violins represent the mean values and the uncertainty in predictions, respectively. R2 and mean absolute
error (MAE) values are only for cross-validated mean predictions (black data points).
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At any rate, despite the limited predictive power afforded by the
cycle 1 data, ART recommendations guide metabolic engineering
effectively. For both of the Pale Ale and Torpedo cases, ART
recommends exploring parts of the proteomics phase space that
surround the final protein profiles, which were deemed close enough
to the desired targets in the original publication. Recommendations
from cycle 1 and initial data (green and red in Supplementary Fig. 7)
surround the final protein profiles obtained in cycle 2 (orange in
Supplementary Fig. 7). Finding the final protein target becomes,
then, an interpolation problem, which is much easier to solve than
an extrapolation one. These recommendations improve as ART
becomes more accurate with more DBTL cycles.

Improving dodecanol production. The final example is one of
failure (or at least a mitigated success), from which as much can
be learnt as from the previous successes. Ref. 41 used machine
learning to drive two DBTL cycles to improve the production of
1-dodecanol in E. coli, a medium-chain fatty acid used in deter-
gents, emulsifiers, lubricants, and cosmetics. This example
illustrates the case in which the assumptions underlying this
metabolic engineering and modeling approach (mapping pro-
teomics data to production) fail. Although a ~20% production
increase was achieved, the machine learning algorithms were not
able to produce accurate predictions with the low amount of data
available for training, and the tools available to reach the desired
target protein levels were not accurate enough.

This project consisted of two DBTL cycles comprising 33 and
21 strains, respectively, for three alternative pathway designs (Fig.
1 in ref. 41, Supplementary Table 4). The use of replicates
increased the number of instances available for training to 116
and 69 for cycles 1 and 2, respectively. The goal was to modulate

the protein expression by choosing Ribosome Binding Sites
(RBSs, the mRNA sites to which ribosomes bind in order to
translate proteins) of different strengths for each of the three
pathways. The idea was for the machine learning to operate on a
small number of variables (~3 RBSs) that, at the same time,
provided significant control over the pathway. As in previous
cases, we will show how ART could have been used in this
project. The input for ART, in this case, consists of the
concentrations for each of three proteins (different for each of
the three pathways), and the goal was to maximize 1-dodecanol
production.

The first challenge involved the limited predictive power of
machine learning for this case. This limitation is shown by ART’s
completely compromised prediction accuracy (Fig. 9). We
hypothesize the causes to be twofold: a small training set and a
strong connection of the pathway to the rest of host metabolism.
The initial 33 strains (116 instances) were divided into three
different designs (50, 31, and 35 instances, Supplementary
Table 4), decimating the predictive power of ART (Fig. 9 and
Supplementary Figs. 8 and 9). Now, it is complicated to estimate
the number of strains needed for accurate predictions because
that depends on the complexity of the problem to be learnt (see
the “Using simulated data to test ART” section). In this case, the
problem is harder to learn than the previous two examples: the
mevalonate pathway used in those examples is fully exogenous
(i.e., built from external genetic parts) to the final yeast host and
hence, free of the metabolic regulation that is certainly present for
the dodecanol producing pathway. The dodecanol pathway
depends on fatty acid biosynthesis which is vital for cell survival
(it produces the cell membrane), and has to be therefore tightly
regulated56. We hypothesize that this characteristic makes it more
difficult to learn its behavior by ART using only dodecanol
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synthesis pathway protein levels (instead of adding also proteins
from other parts of host metabolism).

A second challenge, compounding the first one, involves the
inability to reach the target protein levels recommended by ART to
increase production. This difficulty precludes not only bioengineer-
ing, but also testing the validity of the ART model. For this project,
both the mechanistic (RBS calculator57,58) and machine learning-
based (EMOPEC59) tools proved to be very inaccurate for
bioengineering purposes: e.g., a prescribed sixfold increase in
protein expression could only be matched with a twofold increase.
Moreover, non-target effects (i.e., changing the RBS for a gene
significantly affects protein expression for other genes in the
pathway) were abundant, further adding to the difficulty. Although
unrelated directly to ART performance, these effects highlight the
importance of having enough control over ART’s input (proteins in
this case) to obtain satisfactory bioengineering results.

A third, unexpected, challenge was the inability of constructing
several strains in the Build phase due to toxic effects engendered
by the proposed protein profiles (Supplementary Table 4). This
phenomenon materialized through mutations in the final plasmid
in the production strain or no colonies after the transformation.
The prediction of these effects in the Build phase represents an
important target for future ML efforts, in which tools like ART
can have an important role. A better understanding of this
phenomenon may not only enhance bioengineering but also
reveal new fundamental biological knowledge.

These challenges highlight the importance of carefully
considering the full experimental design before leveraging
machine learning to guide metabolic engineering.

Discussion
ART is a tool that not only provides synthetic biologists easy
access to machine learning techniques, but can also systematically
guide bioengineering and quantify uncertainty. ART takes as
input a set of training instances, which consist of a set of vectors
of measurements (e.g., a set of proteomics measurements for
several proteins, or transcripts for several genes) along with their
corresponding systems responses (e.g., associated biofuel pro-
duction) and provides a predictive model, as well as recom-
mendations for the next round (e.g., new proteomics targets
predicted to improve production in the next round, Fig. 1).

ART combines the methods from the scikit-learn library with a
Bayesian ensemble approach and MCMC sampling, and is opti-
mized for the conditions encountered in metabolic engineering:
small sample sizes, recursive DBTL cycles and the need for
uncertainty quantification. ART’s approach involves an ensemble
where the weight of each model is considered a random variable
with a probability distribution inferred from the available data.
Unlike other approaches, this method does not require the
ensemble models to be probabilistic in nature, hence allowing us
to fully exploit the popular scikit-learn library to increase
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Fig. 8 ART produces effective recommendations to bioengineer yeast to produce hoppy beer. The 19 instances in the first DBTL cycle (a) were used to
train ART, but it did not show an impressive predictive power (particularly for L (b)). In spite of it, ART is still able to recommend protein profiles predicted
to reach the Pale Ale (PA) target flavor profile, and others that were close to the Torpedo (T) metabolite profile (c green points showing mean predictions).
Adding the 31 strains for the second DBTL cycle (d, e) improves predictions for G but not for L (f). The expanded range of values for G & L provided by
cycle 2 allows ART to recommend profiles which are predicted to reach targets for both beers (g), but not Hop Hunter (HH). Hop Hunter displays a very
different metabolite profile from the other beers, well beyond the range of experimentally explored values of G and L, making it impossible for ART to
extrapolate that far. Notice that none of the experimental data (red crosses) matched exactly the desired targets (black symbols), but the closest ones
were considered acceptable. R2 and mean absolute error (MAE) values are for cross-validated mean predictions (black data points) only. Bars indicate
95% credible interval of the predictive posterior distribution.
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accuracy by leveraging a diverse set of models. This weighted
ensemble model produces a simple, yet powerful, approach to
quantify uncertainty (Fig. 6), a critical capability when dealing
with small data sets and a crucial component of AI in biological
research60. While ART is adapted to synthetic biology’s special
needs and characteristics, its implementation is general enough
that it is easily applicable to other problems of similar char-
acteristics. ART is perfectly integrated with the Experiment Data
Depot45 and the Inventory of Composable Elements61, forming
part of a growing family of tools that standardize and democratize
synthetic biology.

We have showcased the use of ART in a case with synthetic
data sets, three real metabolic engineering cases from the pub-
lished literature, and a final case where ART is used to guide a
bioengineering effort to improve productivity. The synthetic data
case involves data generated for several production landscapes of
increasing complexity and dimensionality. This case allowed us to
test ART for different levels of difficulty of the production
landscape to be learnt by the algorithms, as well as different
numbers of DBTL cycles. We have seen that while easy land-
scapes provide production increases readily after the first cycle,
more complicated ones require >5 cycles to start producing
satisfactory results (Fig. 5). In all cases, results improved with the
number of DBTL cycles, underlying the importance of designing
experiments that continue for ~10 cycles rather than halting the
project if results do not improve in the first few cycles.

The demonstration cases using previously published real data
involve engineering E. coli and S. cerevisiae to produce the
renewable biofuel limonene, synthesize metabolites that produce
hoppy flavor in beer, and generate dodecanol from fatty acid
biosynthesis. Although we were able to produce useful recom-
mendations with as low as 27 (limonene, Fig. 6) or 19 (hopless
beer, Fig. 8) instances, we also found situations in which larger
amounts of data (50 instances) were insufficient for meaningful
predictions (dodecanol, Fig. 9). It is impossible to determine a
priori how much data will be necessary for accurate predictions,
since this depends on the difficulty of the relationships to be
learnt (e.g., the amount of coupling between the studied pathway
and host metabolism). However, one thing is clear—two DBTL
cycles (which was as much as was available for all these examples)
are rarely sufficient for guaranteed convergence of the learning
process. We do find, though, that accurate quantitative predic-
tions are not required to effectively guide bioengineering—our
ensemble approach can successfully leverage qualitative agree-
ment between the models in the ensemble to compensate for the
lack of accuracy (Fig. 7). Uncertainty quantification is critical to
gauge the reliability of the predictions (Fig. 6), anticipate the
smoothness of the recommendation process (Supplementary
Figs. 6 and 7), and effectively guide the recommendations
towards the least understood part of the phase space (exploration
case, Fig. 3). We have also explored several ways in which the
current approach (mapping proteomics data to production) can
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Fig. 9 ART’s predictive power is heavily compromised in the dodecanol case. Although the 50 instances available for cycle 1 of pathway 1 (a) almost
double the 27 available instances for the limonene case (Fig. 6), the predictive power of ART is heavily compromised (R2 = −0.29 for cross-validation, b)
by the scarcity of data and, we hypothesize, the strong tie of the pathway to host metabolism (fatty acid production). The poor predictions for the test data
from cycle 2 (in blue) confirm the lack of predictive power. Adding data from both cycles (d, e) improves predictions notably (f). These data and model
refer to the first pathway in Fig. 1B from ref. 41. The cases for the other two pathways produce similar conclusions (Supplementary Figs. 8 and 9).
Recommendations provided in panels c and g. R2 and mean absolute error (MAE) values are only for cross-validated mean predictions (black data points).
Bars indicate 95% credible interval of the predictive posterior distribution.
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fail when the underlying assumptions break down. Among the
possible pitfalls is the possibility that recommended target protein
profiles cannot be accurately reached, since the tools to produce
specified protein levels are still imperfect; or because of biophy-
sical, toxicity or regulatory reasons. These areas need further
investment in order to accelerate bioengineering and make it
more reliable, hence enabling the design to a desired specification.
Also, it is highly recommendable to invest time in part char-
acterization, pathway modularization, and experimental design to
fully maximize the effectiveness of ART, and data-driven
approaches in general (see the “Designing optimal experiments
for machine learning” section in Supplementary Information for
more details).

ART has also been used to guide metabolic engineering efforts
to improve tryptophan productivity in yeast, as shown in the
experimental counterpart of this publication42. In this project,
genome-scale models were used to pinpoint which reactions
needed optimization in order to improve tryptophan production.
ART was then leveraged to choose which promoter combinations
for the five chosen reactions would increase productivity. ART’s
recommendations resulted in a 106% increase in a productiv-
ity proxy with respect to the initial base strain. We would expect
further increases if more DTBL cycles were to be applied beyond
the initial two (see the “Using simulated data to test ART” sec-
tion). This project showcases how ART can successfully guide
bioengineering processes to increase productivity, a critical pro-
cess metric62 for which few systematic optimization methods
exist. Furthermore, this project also demonstrates a case in which
genetic parts (promoters) are recommended, instead of pro-
teomics profiles as we did in the current paper. This approach has
the advantage that it fully bridges the Learn and Design phases of
the DBTL cycle, but it has the disadvantage that it may not fully
explore the protein phase space (e.g., in case all promoters
available are weak for a given protein).

Although ART is a useful tool in guiding bioengineering, it
represents just an initial step in applying machine learning to
synthetic biology. Future improvements under consideration
include adding a pathway cost ($) function, classification pro-
blems, new optimization methods (e.g., to include the case of
discrete input variables), the covariance of level-0 models into the
ensemble model, input space errors into learners, and previous
biological knowledge. These may not be the preferred list of
improvements for every user, so ART’s dual license allows for
modification by third parties for research purposes, as long as the
modifications are offered to the original repository. Hence, users
are encouraged to enhance it in ways that satisfy their needs. A
commercial use license is also available (see below for details).

ART provides effective decision-making in the context of
synthetic biology and facilitates the combination of machine
learning and automation that might disrupt synthetic biology25.
Combining ML with recent developments in macroscale lab
automation47,63, microfluidics38,64–66, and cloud labs67 may
enable self-driving laboratories43,44, which augment automated
experimentation platforms with artificial intelligence to facilitate
autonomous experimentation. We believe that fully leveraging AI
and automation can catalyze a similar step forward in synthetic
biology as CRISPR-enabled genetic editing, high-throughput
multi-omics phenotyping, and exponentially growing DNA
synthesis capabilities have produced in the recent past.

Methods
Learning from data via a novel Bayesian ensemble approach. Model selection is
a significant challenge in machine learning, since there is a large variety of models
available for learning the relationship between response and input, but none of
them is optimal for all learning tasks68. Furthermore, each model features hyper-
parameters (i.e., parameters that are set before the training process) that crucially

affect the quality of the predictions (e.g., number of trees for random forest or
degree of polynomials in polynomial regression), and finding their optimal values
is not trivial.

We have sidestepped the challenge of model selection by using an ensemble
model approach. This approach takes the input of various different models and has
them “vote” for a particular prediction. Each of the ensemble members is trained to
perform the same task and their predictions are combined to achieve an improved
performance. The examples of the random forest69 or the super learner algorithm70

have shown that simple models can be significantly improved by using a set of
them (e.g., several types of decision trees in a random forest algorithm). Ensemble
models typically either use a set of different models (heterogeneous case) or the
same models with different parameters (homogeneous case). We have chosen a
heterogeneous ensemble learning approach that uses reasonable hyperparameters
for each of the model types, rather than specifically tuning hyperparameters for
each of them.

ART uses a probabilistic ensemble approach where the weight of each ensemble
model is considered a random variable, with a probability distribution inferred from
the available data. Unlike other approaches71–74, this method does not require the
individual models to be probabilistic in nature, hence allowing us to fully exploit the
popular scikit-learn library to increase accuracy by leveraging a diverse set of models
(see “Related work and novelty of our ensemble approach” in Supplementary
Information). Our weighted ensemble model approach produces a simple, yet
powerful, way to quantify both epistemic and aleatoric uncertainty—a critical
capability when dealing with small data sets and a crucial component of AI in
biological research60. Here we describe our approach for the single response variable
problems, whereas the multiple variables case can be found in the “Multiple response
variables” section in Supplementary Information. Using a common notation in
ensemble modeling we define the following levels of data and learners (Fig. 2):

● Level-0 data (D) represent the historical data consisting of N known instances
of inputs and responses:

D ¼ fðxn; ynÞ; n ¼ 1; ¼ ;Ng; x 2 X � RD; y 2 R; ð1Þ
where x is the input comprised of D features (X is the input phase space,
Fig. 1) and y is the associated response variable. For the sake of cross-
validation, the level-0 data are further divided into validation (DðkÞ) and
training sets (Dð�kÞ). DðkÞ � D is the kth fold of a K-fold cross-validation
obtained by randomly splitting the set D into K almost equal parts, and
Dð�kÞ ¼ D n DðkÞ is the set D without the kth fold DðkÞ . Note that these sets do
not overlap and cover the full available data; i.e., DðkiÞ \ DðkjÞ ¼ ;; i≠ j and
∪ iDðkiÞ ¼ D.

● Level-0 learners (fm) consist of M base learning algorithms fm, m = 1, …, M
used to learn from level-0 training data Dð�kÞ. For ART, we have chosen the
following eight algorithms from the scikit-learn library: Random Forest,
Neural Network, Support Vector Regressor, Kernel Ridge Regressor, K-NN
Regressor, Gaussian Process Regressor, Gradient Boosting Regressor, as well as
TPOT (tree-based pipeline optimization tool75). TPOT uses genetic
algorithms to find the combination of the 11 different regressors and 18
different preprocessing algorithms from scikit-learn that, properly tuned,
provides the best achieved cross-validated performance on the training set
(https://github.com/EpistasisLab/tpot/blob/master/tpot/config/regressor.py)75.

● Level-1 data (DCV ) are data derived from D by leveraging cross-validated
predictions of the level-0 learners. More specifically, level-1 data are given by
the set DCV ¼ fðzn; ynÞ; n ¼ 1; ¼ ;Ng, where zn = (z1n…, zMn) are

predictions for level-0 data (xn 2 DðkÞ) of level-0 learners (f ð�kÞ
m ) trained on

observations which are not in fold k (Dð�kÞ), i.e.,
zmn ¼ f ð�kÞ

m ðxnÞ;m ¼ 1; ¼ ;M.
● The level-1 learner (F), or metalearner, is a linear weighted combination of

level-0 learners, with weights wm, m = 1, …, M being random variables that
are non-negative and normalized to one. Each wm can be interpreted as the
relative importance of model m in the ensemble. More specifically, given an
input x the response variable y is modeled as:

F : y ¼ wT fðxÞ þ ε; ε � Nð0; σ2Þ; ð2Þ
where w ¼ ½w1 ¼wM �T is the vector of weights such that ∑wm = 1, wm ≥ 0,
fðxÞ ¼ ½f 1ðxÞ¼ f MðxÞ�T is the vector of level-0 learners, and ε is a normally
distributed error variable with a zero mean and standard deviation σ. The
constraint ∑wm = 1 (i.e., that the ensemble is a convex combination of the base
learners) is empirically motivated but also supported by theoretical
considerations76. We denote the unknown ensemble model parameters as
θ ≡ (w, σ), constituted of the vector of weights and the Gaussian error
standard deviation. The parameters θ are obtained by training F on the level-1
data DCV only. However, the final model F to be used for generating
predictions for new inputs uses these θ, inferred from level-1 data DCV, and
the base learners fm, m = 1,…,M trained on the full original data set D, rather
than only on the level-0 data partitions Dð�kÞ . This follows the usual
procedure in developing ensemble learners77,78 in the context of stacking76.

Rather than providing a single point estimate of ensemble model parameters θ that
best fit the training data, a Bayesian model provides a joint probability distribution
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pðθjDÞ, which quantifies the probability that a given set of parameters explains the
training data. This Bayesian approach makes it possible to not only make predictions
for new inputs but also examine the uncertainty in the model. Model parameters θ are
characterized by full posterior distribution pðθjDÞ that is inferred from level-1 data.
Since this distribution is analytically intractable, we sample from it using the Markov
Chain Monte Carlo (MCMC) technique79, which samples the parameter space with a
frequency proportional to the desired posterior pðθjDÞ (see the “Markov Chain
Monte Carlo sampling” section in Supplementary Information).

The important point is that, as a result, instead of obtaining a single value as the
prediction for the response variable, the ensemble model produces a full
probabilistic distribution that takes into account the uncertainty in model
parameters. More precisely, for a new input x* (not present in D), the ensemble
model F provides the probability that the response is y, when trained with data D
(i.e., the full predictive posterior distribution):

pðyjx�;DÞ ¼
Z

pðyjx�; θÞpðθjDÞdθ ¼
Z

Nðy;wT f; σ2ÞpðθjDÞdθ: ð3Þ

where p(y∣x*, θ) is the predictive distribution of y given input x* and model
parameters θ (Eq. (2)), pðθjDÞ is the posterior distribution of model parameters
given data D, and f ≡ f(x*) for the sake of clarity.

ART is very different from, and produces more accurate predictions than,
Gaussian processes, a commonly used machine learning approach for outcome
prediction and new input recommendations43,80. ART and Gaussian process
regression81 (GPR) share their probabilistic nature, i.e., the predictions for both
methods are probabilistic. However, for GPR the prediction distribution is always
assumed to be a Gaussian, whereas ART does not assume any particular form of
the distribution and provides the full probability distribution (more details can be
found in the “Expected value and variance for ensemble model” section of
Supplementary Information). Moreover, ART is an ensemble model that includes
GPR as one of the base learners for the ensemble. Hence, ART will, by
construction, be at least as accurate as GPR (ART typically outperforms all its base
learners). As a downside, ART requires more computations than GPR, but this is
not a problem with the small data sets typically encountered in synthetic biology.

Optimization-suggesting next steps. The optimization phase leverages the pre-
dictive model described in the previous section to find inputs that are predicted to
bring us closer to our objective (i.e., maximize or minimize response, or achieve a
desired response level). In mathematical terms, we are looking for a set of Nr

suggested inputs xr 2 X ; r ¼ 1; ¼ ;Nr , that optimize the response with respect to
the desired objective. Specifically, we want a process that:

i. optimizes the predicted levels of the response variable;
ii. can explore the regions of input phase space (X in Eq. (1)) associated with

high uncertainty in predicting response, if desired;
iii. provides a set of different recommendations, rather than only one.

We are interested in exploring regions of input phase space associated with high
uncertainty, so as to obtain more data from that region and improve the model’s
predictive accuracy. Several recommendations are desirable because several
attempts increase the chances of success, and most experiments are done in parallel
for several conditions/strains.

In order to meet these three requirements, we define the optimization problem
formally as

argmax
x

GðxÞ
s:t:x 2 B

ð4Þ

where the surrogate function G(x) is defined as:

GðxÞ ¼
ð1� αÞEðyÞ þ αVarðyÞ1=2 ðmaximization caseÞ
�ð1� αÞEðyÞ þ αVarðyÞ1=2 ðminimization caseÞ

�ð1� αÞjjEðyÞ � y�jj22 þ αVarðyÞ1=2 ðspecification caseÞ

8>><
>>:

ð5Þ

depending on which mode ART is operating in (see the “Key capabilities” section).
Here, y* is the target value for the response variable, y = y(x), EðyÞ and Var(y)
denote the expected value and variance, respectively (see “Expected value and
variance for ensemble model” in Supplementary Information), jjxjj22 ¼

P
ix

2
i

denotes Euclidean distance, and the parameter α ∈ [0, 1] represents the
exploitation-exploration trade-off (see below). The constraint x 2 B characterizes
the lower and upper bounds for each input feature (e.g., protein levels cannot
increase beyond a given, physical, limit). These bounds can be provided by the user
(see details in the “Implementation” section in Supplementary Information);
otherwise, default values are computed from the input data as described in the
“Input space set B” section in Supplementary Information.

Requirements (i) and (ii) are both addressed by borrowing an idea from
Bayesian optimization82: optimization of a parametrized surrogate function which
accounts for both exploitation and exploration. Namely, our objective function
G(x) takes the form of the upper confidence bound83 given in terms of a weighted
sum of the expected value and the variance of the response (parametrized by α,
Eq. (5)). This scheme accounts for both exploitation and exploration: for the

maximization case, for example, for α = 1, we get G(x) = Var(y)1/2, so the
algorithm suggests next steps that maximize the response variance, thus exploring
parts of the phase space where our model shows high predictive uncertainty. For
α = 0, we get G(x) = E(y), and the algorithm suggests next steps that maximize the
expected response, thus exploiting our model to obtain the best response.
Intermediate values of α produce a mix of both behaviors. In our example below
using ART on simulated data we use a tempering strategy for α (see the “Using
simulated data to test ART” section), whereas in the three experimental cases we set
α = 0. In general, we recommend setting α to values slightly smaller than one for
early-stage DBTL cycles, thus allowing for more systematic exploration of the space
so as to build a more accurate predictive model in the subsequent DBTL cycles. If
the objective is purely to optimize the response, we recommend setting α = 0.

In order to address (iii), as well as to avoid entrapment in local optima and
search the phase space more effectively, we choose to solve the optimization
problem through sampling. More specifically, we draw samples from a target
distribution defined as

πðxÞ / expðGðxÞÞpðxÞ; ð6Þ
where pðxÞ ¼ UðBÞ can be interpreted as the uniform “prior” on the set B, and
expðGðxÞÞ as the ‘likelihood’ term of the target distribution. Sampling from π
implies optimization of the function G (but not reversely), since the modes of the
distribution π correspond to the optima of G. As we did before, we resort to
MCMC for sampling. The target distribution is not necessarily differentiable and
may well be complex. For example, if it displays more than one mode, as is often
the case in practice, there is a risk that a Markov chain gets trapped in one of them.
In order to make the chain explore all areas of high probability one can “flatten/
melt down” the roughness of the distribution by tempering. For this purpose, we
use the parallel-tempering algorithm84 for optimization of the objective function
through sampling, in which multiple chains at different temperatures are used for
exploration of the target distribution (Fig. 3).

Choosing recommendations for the next cycle is done by selecting from the
sampled inputs. After drawing a certain number of samples from π(x) we need to
choose recommendations for the next cycle, making sure that they are sufficiently
different from each other as well as from the input experimental data. To do so,
first we find a sample with optimal G(x) (note that G(x) values are already
calculated and stored). We only accept this sample as a recommendation if there is
at least one feature whose value is different by at least a factor γ (e.g., 20%
difference, γ = 0.2) from the values of that feature in all data points x 2 D.
Otherwise, we find the next optimal sample and check the same condition. This
procedure is repeated until the desired number of recommendations are collected,
and the condition involving γ is satisfied for all previously collected
recommendations and all data points. In case all draws are exhausted without
collecting the sufficient number of recommendations, we decrease the factor γ and
repeat the procedure from the beginning. Pseudo code for this algorithm can be
found in Algorithm 1 in Supplementary Information. The probability of success for
these recommendations is computed as indicated in the “Success probability
calculation” section in Supplementary Information.

Implementation. ART is implemented Python 3.6 and should be used under this
version (see below for software availability). Supplementary Fig. 1 represents the
main code structure and its dependencies to external packages. In the “Imple-
mentation” section of Supplementary Information, we provide an explanation for
the main modules and their functions.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
A reporting summary for this Article is available as a Supplementary Information file. The
experimental data can also be found in the Experiment Data Depot45, in the following
studies: Study Link Biofuel: https://public-edd.jbei.org/s/pcap/; Hopless beer: https://
public-edd.agilebiofoundry.org/s/hopless-beer/, https://public-edd.agilebiofoundry.org/s/
hopless-beer-cycle-2/; Dodecanol: https://public-edd.jbei.org/s/ajinomoto/. Freely
available accounts on public-edd.jbei.org and public-edd.agilebiofoundry.org are required
to view and download these studies. Source data are provided with this paper.

Code availability
ART is developed under Python 3.6 and relies on packages: seaborn 0.7.1, scikit-learn
0.20.2, pymc3 3.5, pandas 0.23.4, numpy 1.14.3, matplotlib 3.0.2, scipy 1.1.0, PTMCMC
Sampler 2015.2. ART’s dual license allows for free non-commercial use for academic
institutions. Modifications should be fed back to the original repository for the benefit of
all users. A separate commercial use license is available from Berkeley Lab (ipo@lbl.gov).
See https://github.com/JBEI/ART for software and licensing details.
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