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ABSTRACT OF THE THESIS 

 

Proteomic and Epigenetic Biomarker Discovery to 

Predict Health-Related Lifestyle Traits 

 

by 

 

Joshua Zachary Manickam 

 

Master of Science in Bioinformatics 

University of California, Los Angeles, 2024 

Professor Matteo Pellegrini, Chair 

 

Epigenetics and proteomics have emerged as powerful fields with the potential to transform our 

understanding of the relationship between lifestyle factors and health outcomes. This paper utilizes 

data from an exploratory, cross-sectional study conducted by Prosper DNA Inc. to identify 

proteomic and epigenetic biomarkers that can predict clinical lifestyle traits related to individual 

health. The study collected data from two groups, one representing healthy individuals and the 

other of unhealthy individuals with specific lifestyle characteristics. Imputation, Principal 

Component Analysis (PCA), and correlation analysis were performed on the proteomic and 
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methylation data, which resulted in 10 principal components (PCs) each and 3 correlation matrices. 

Linear regression models were developed using proteomic or methylation PCs as predictors for 

each lifestyle trait. The models were evaluated using Leave-One-Out-Cross-Validation and 

Pearson correlation coefficient (r) to determine significance and confirm the accuracy of the 

models. 19 significant proteomic models and 28 significant methylation models were identified. 

Notably, 15 models across the proteomic and methylation models were directly associated with 

the original selection criteria, such as body mass index (BMI), fitness, and dietary habits. Through 

a correlation analysis, PC3, PC9, and PC9 of the proteomic PCs and MPC1, MPC3, and MPC4 of 

the methylation PCs were selected for PC loading analysis based on the strength and significance 

of the correlation between a given PC and the traits associated with the biomarkers. The most 

influential proteins and CpG sites were extracted from the loading and passed through STRING 

and Cistrome, respectively, to gather protein network information and transcription factor 

information.  For the proteomic PCs, the proteins were involved in networks relating to platelet 

activation/coagulation, inflammatory response, and the regulation of proteolytic activity. For the 

methylation PCs, the transcription factors that bind to the CpG sites showed some relation to 

adipogenesis and tumor suppression. Future steps should include deeper analyses of the individual 

proteins, CpG sites, and transcription factors to provide concrete validation for the trends observed 

in this study.  
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1. INTRODUCTION 

 Epigenetics and proteomics are two rapidly expanding fields that have the potential to 

revolutionize our understanding of the relationship between lifestyle factors and health 

outcomes. Epigenetic modifications, such as DNA methylation, can be influenced by a range of 

environmental and lifestyle factors and have been shown to play a critical role in the 

development of various diseases. Similarly, proteomic data, which provides a comprehensive 

snapshot of the proteins present in a biological sample, can reveal important insights into the 

molecular mechanisms underlying disease development and progression. In addition to 

monitoring disease progression, proteomic data can also provide an understanding of the effect 

of lifestyle factors on protein abundance in the blood. Much like DNA methylation, lifestyle 

factors have been shown to play a role in proteomic changes. For instance, in a 2021 study 

analyzing proteomic biomarkers related to cardiovascular disease, the researchers found 

statistically significant associations between 60 proteins with smoking, 30 proteins with alcohol 

consumption, and 5 proteins with physical activity (Corlin et al. 2021). Research such as these 

studies exemplifies the value of analyzing proteomic data and can motivate future studies. 

 This was the primary motivation behind an explorational, cross-sectional study conducted 

by Prosper DNA Inc., a biotechnology company specializing in epigenetic analysis, that 

compared epigenetics and global proteomics outcomes in two groups (n=50 each) varying widely 

in selected lifestyle factors. In particular, they sought to understand the molecular drivers of 

lifestyle traits related to an individual's health, such as body mass index (BMI), diet, exercise, 

etc. To accomplish this, they gathered data from individuals across two groups with no current 

chronic or infectious disease history. The Lifestyle group consisted of 50 “healthy” individuals 
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who were not overweight or obese (BMI < 25 kg/m2), non-smokers for at least three years prior, 

and a healthy dietary pattern. The Control group consisted of 50 “unhealthy individuals” who 

were overweight or obese (BMI > 25 kg/m2) with an unhealthy dietary pattern. Prosper's data 

came in 35 mL blood samples, questionnaires, body composition measurements, and strength 

tests. The questionnaires listed questions related to lifestyle habits, physical activity levels, and 

mood profiles. The body composition measurements recorded values like height, weight, waist 

circumferences, abdominal diameter, body fat (bioelectrical impedance or BIA), etc. The 

strength tests consisted of handgrip and leg/back strength dynamometer tests. Finally, proteomic 

data was gathered from the blood samples through global proteomics, and methylation data was 

developed through the bisulfite conversion and subsequent cytosine estimation from DNA 

extracted from blood, saliva, and buccal samples. The researchers utilized this proteomic 

information and extracted concentrations of 870 unique proteins from the 100 samples.  The 

methylation data was gathered in the form of beta values, which denote the percentage of 

methylation a particular CpG is subject to. They gathered beta values for over 130,000 sites and 

recorded them in a matrix separate from the proteomic data. 

Using the vast amount of information assembled by Prosper DNA, we were most curious 

about the development of proteomic and epigenetic biomarkers that can predict clinical lifestyle 

traits. To accomplish this, we will develop linear regression models for each lifestyle trait, 

utilizing either proteomic or methylation data as the predictors. The hope of this research is to 

discover significant proteins/methylation sites related to clinical lifestyle traits and eventually 

create informed hypotheses around the biological basis for the associations we observe. The 

discovery of biomarkers such as these can provide critical insight into some of the molecular 

drivers of health and uncover possible therapy targets for managing unfavorable lifestyle traits.  
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2. METHODS 

2.1. Data Pre-Processing 

 First, we received the data across 96 samples from Prosper DNA in the form of two 

datasets: the Prosper Proteomic Lifestyle Data and the Prosper Methylation Data. We split the 

first dataset into two since the lifestyle trait data and the proteomic data were on the same file. 

What resulted was a lifestyle trait data matrix with 94 traits across 96 samples and a proteomic 

data matrix with measurements of 882 proteins across 96 samples. The methylation data matrix 

consisted of measurements of methylation percentage across roughly 131,000 CpG sites. Using 

R, we used k-nearest-neighbors imputation to impute the missing data since the proteomic and 

lifestyle trait matrices had missing values (Gardner & Freitas, 2021). Following imputation, we 

performed principal component analysis (PCA) on the proteomic and methylation datasets. Since 

both datasets contained far more features than samples, PCA is essential for building 

generalizable models and avoiding overfitting the data (Pramoditha, 2021). To preserve the 

variability of the data while also avoiding the need for penalized regression, we shrunk each 

dataset down to 10 principal components (PCs) each, with the proteomic PCs denoted as PC1, 

PC2, PC3, etc., and the methylation PCs denoted as MPC1, MPC2, MPC3, etc.  

 

2.2. Correlation Analysis  

 The next step we undertook was the assembly of correlation matrices and their 

subsequent correlation plots. Using cor() in R, we computed three sets of correlation matrices 

and their graphical representations: the proteomic-lifestyle trait correlation matrix, the 
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methylation-lifestyle trait correlation matrix, and the methylation-proteomic correlation matrix. 

The first matrix correlated the proteomic PCs with traits, the second correlated methylation PCs 

with traits, and the third correlated proteomic PCs with methylation PCs. This step is essential in 

understanding the variance of the data. Since principal components are ordered by the amount of 

variance they explain from the original dataset, utilizing the correlation matrices and plots can 

provide insight into where the variation comes from and understand whether the PCs that 

produce the variation have strong associations with particular traits (Kumar, 2023).  

 

2.3. Linear Regression Model-Building, Selection, and Analysis 

 The next step involved building linear regression models for each trait, utilizing either 

proteomic or methylation PCs as predictors and the specific lifestyle trait as the response 

variable. This step would produce a total of 188 models: 94 models that predict lifestyle traits 

from the ten proteomic PCs and 94 that predict lifestyle traits from the 10 methylation PCs. Due 

to the small sample size, we opted to use Leave-One-Out-Cross-Validation (LOOCV) to validate 

and evaluate the performance of each model while maintaining the robustness across the models 

(Brownlee, 2020). As is common practice in the field of genetics and epigenetics, we evaluated 

our models using the Pearson Correlation Coefficient ® found by compiling the predictions 

gathered from LOOCV and correlating them to the actual values from the original datasets 

(Waldman, 2019). The cutoff we decided to use regarding the r value in selecting significant 

models was 0.3. We validated the significance by calculating the p-value of the r-value of each 

selected model. Given our sample size and our r-value cutoff, the p-value is always guaranteed to 

be less than 0.05 if the r-value is greater than or equal to 0.3, which does indicate that a particular 
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model is significant and is worthy of further analysis (Tredennick et al. 2021). Once we 

organized lists of valid proteomic and methylation models, we produced scatterplots for each 

model, plotting the predicted values against the actual values to visualize how closely our model 

predictions reflect the original data. This step would also allow us to analyze the data's spread 

and determine the quality and quantity of the data.  

 

2.4. Principal Component Analysis 

We inspected the loading matrices of influential PCs to identify which sets of proteins or 

CpG sites might contribute to changes in the lifestyle traits that our selected biomarkers model. 

To accomplish this, we started by computing the correlation coefficients between every PC and 

every selected lifestyle trait and developing heatmaps with hierarchical clustering. This was done 

for both sets of models, and it allowed us to identify influential PCs, characterize correlations 

between traits and PCs as positive or negative, and visualize natural groupings produced by the 

hierarchical clustering. We also created a grid of p-values of all the resulting correlation 

coefficients to mark correlations as significant if the p-value does not exceed the 0.05 threshold. 

Once we identified the most influential PCs, we inspected the loading matrices and separated 

the entries based on the sign of their PC weight value. The sign of a given PC weight indicates 

the association of that site or protein with the PC it is contained within. For instance, an increase 

in the concentration of a protein with a negative loading weight results in a decrease in the 

overall PC value. By separating the entries and organizing the resulting data frames in order of 

descending absolute value, we were able to understand which proteins or CpG sites were 

influential and whether they were positively/negatively associated with a given PC. As such, the 
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subsequent analyses of these proteins and CpG sites would be performed separately on the 

negative and positive lists.  

 

2.5. Transcription Factor Analysis using Cistrome 

The Cistrome Project is a web-based, bioinformatic hub of transcription factor binding and 

histone modification data. It provides access to a range of tools, such as the CistromeDB Toolkit, 

that can construct a list of transcription factors that have significant binding overlap with the 

peak set submitted by the user. This peak set we submitted came in the form of a BED file that 

hosted the following information: 

1. Chromosome number (chr1, chrX, etc) 

2. Start position of the segment 

3. End position of the segment 

This information was taken from the methylation PC loading matrices. Since the loading 

matrices contain the column names of the original methylation matrix, we were able to extract 

the influential CpG sites from the loading matrices. The sites came in the format “chr1_123456”, 

with the chromosome number and start position being clear. The end position was denoted as the 

start position+1. Once we aggregated that information, we assembled BED files for the PCs of 

interest, using the top 200 sites with the highest absolute value for both the negative and positive 

lists. We then submitted these files to Cistrome for analysis and received GIGGLE plots for each 

submission. The CistromeDB Toolkit makes use of GIGGLE software, which searches the 

Cistrome database to find ChIP-Seq, DNase-seq, or ATAC-seq samples that are similar to the set 

of binding sites submitted by the user and returns a list and plot of transcription factors that are 
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likely to bind to those sites. A transcription with a higher GIGGLE score, corroborated by 

multiple samples in the database, is expected to bind to sites in the peak set. Thus, for each 

methylation PC of interest, we were able to find transcription factors that bind to sites that are 

positively associated with the PC and negatively associated with the PC. We then took the results 

from Cistrome and analyzed the plots to determine which transcription factors are likely 

involved in each set of sites. We prioritized the transcription factors with the highest GIGGLE 

scores and those with multiple samples. Using NCBI and conducting literature searches, we 

characterized each transcription factor of interest based on its function (predicted or known) and 

possible associations with various diseases. 

 

2.6. Protein Network Analysis using STRING  

 We used the STRING database for the proteomic PCs to identify which biological 

networks the proteins in the loading matrices may be involved in. This would allow us to 

biologically ascertain differences between healthy and unhealthy people at the protein network 

level. The process to extract the protein names from the ordered negative and positive data 

frames of each influential PC remains largely the same, aside from converting the data into a 

BED file. STRING’s input only requires submitting a list of valid protein identifiers, which the 

loading matrices already held. It was a simple task of extracting the top 100 proteins and running 

them through STRING. Following submission, we visualized the potential networks that our 

significant proteins were involved in. We also received lists of GO terms corresponding to 

various biological processes these networks may represent. Since STRING produces a large 

number of potential networks, we focused on GO terms with the lowest false discovery rates 
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(FDR). Utilizing FDR as a filtering measure allowed us to recognize patterns within the protein 

sets and patterns across PCs. 

 

3. RESULTS 

3.1. 19 Significant Proteomic Models 

 

Figure 1: This is the list of valid proteomic models and their associated r values. 

 They begin with an arbitrary identifier (‘lm_’) and are followed by  

the specific trait that the proteomic PCs are predicting 

 

Of the 94 proteomic models we produced, 19 satisfied the r ≥ 0.3 threshold. Figure 1 lists 

the traits that are significantly associated with proteomic PCs. Out of these significant models, 7 

models directly related to the selection criteria outlined in the original Prosper DNA study: BMI, 

Fat Mass, Fat Mass Index (FMI), Fitness, Body Fat Percentage, Years of Exercise, and Fruit and 
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Vegetable Intake (FRUIT_AND_VEGE). For this paper, we highlighted two proteomic models 

in green to provide examples of the performance of our models of interest. These models directly 

relate to the selection criteria mentioned previously. Figures 2 and 3 below depict the scatterplots 

that compare the predicted values against the actual values of the BMI and FITNESS models. 

 

 

Figure 2: Performance of Proteomic PCs vs BMI model 
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Figure 3: Performance of Proteomic PCs vs FITNESS model 

 

 Figures 4 and 5 below depict the model summaries of the models we decided to highlight. 

Regarding the statistics below, the Estimate column holds the β, or the coefficient, to be 

multiplied by the value of a particular PC within the linear regression model. The magnitude and 

the sign determine how much a given PC influences change in the model and in which direction 

change is applied, respectively (negatively or positively). The ‘*’ in the rightmost column 

indicates the significance level of the β estimate. More ‘*’ denotes a low p-value. In Figure 4, the 

highest magnitude β estimate was attached to PC9 and had one of the lowest p-values. In Figure 

5, the highest magnitude β estimate was attached to PC3 and had one of the lowest p-values.  
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Figure 4: BMI model summary. The highlighted PC9 is the  

highest magnitude PC in this model 

 

 

Figure 5: FITNESS model summary. The highlighted PC3 is the  

highest magnitude PC in this model 
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3.2. 28 Significant Methylation Models 

 

Figure 6: This is the list of valid methylation models and their associated r values.  

They begin with an arbitrary identifier (‘Mlm_’) and are followed  

by the specific trait that the methylation PCs are predicting. 

 

 For the methylation biomarkers, 28 of the models we produced satisfied the r value ≥ 0.3 

threshold, and these models are listed in Figure 6. Of these selected models, 8 models directly 

related to the original selection criteria: BMI, Fat Mass, Free Fat Mass/Free Fat Mass Index 

(FFM/FFMI), Body Fat Percentage, FMI, Exercise Frequency (EXERCFREQ), Red Meat Intake 

(REDMEAT), and Weight (kg). As with the proteomic models, we highlighted just two 

methylation biomarkers that pertain to the selection criteria: the methylation BMI model and the 
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methylation EXERCFREQ model. Figures 7 and 8 are the corresponding scatterplots of these 

models. 

 

Figure 7: Performance of Methylation PCs vs BMI model 

 

 

Figure 8: Performance of Methylation PCs vs EXERCFREQ model 
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 As previously mentioned, the analysis for the model summaries remains the same for the 

methylation models. Figures 9 and 10 depict the methylation model summaries for the BMI and 

EXERCFREQ models. The highest magnitude β value for the methylation BMI model is 

attached to MPC4 and has one of the lowest p-values associated with it. For the EXERCFREQ 

model, the highest magnitude β value is attached to MPC3 and has one of the lowest p-values. 

 

Figure 9: BMI model summary. The highlighted MPC4 is the  

highest magnitude PC in this model 

 

 

Figure 10: ESERCFREQ model summary. The highlighted MPC3 is the  

highest magnitude PC in this model 



   
 

   
 

15 

3.3. Principal Component-Trait Correlation Heatmaps and P-value Grids 

 

Figure 11: Correlation coefficient (r-value) heatmap of  

methylation PCs and traits with hierarchical clustering 

 

 

Figure 12: P-value of correlation coefficients grid to evaluate the significance of Figure 11. 

 Red indicates significance, and cell values are -log10(p-value) 
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 Analysis of Figure 11 indicates that MPC1, MPC3, and MP4, as suspected from the 

coefficient analysis, are the primary drivers across most of the proteomic biomarkers. MPC1 has 

significant correlations across several traits like FFM, Height, hemoglobin (HBG), etc. MPC3 

and MPC4 appear closely related and are inversely associated with traits such as BMI, 

EXERCFREQ, and Weight. There seems to be some natural grouping of traits and PCs as a 

result of the hierarchical clustering. Among the PCs, MPC1, MPC3, and MPC4 are closely 

related and exert the most influence across the models. For the traits, there is a positively 

correlated group from Leg/Back (kg) to Neutrophils (NE_ABS) and a negatively correlated 

group from BMI to Waist Circumference in meters (WCM). The p-value grid assures these PCs 

and groupings are significant and worth further analysis. As such, MPC1, MPC3, and MPC4 

were selected as candidates for deeper analysis in Cistrome. 

 

 

Figure 13: Correlation coefficient (r-value) heatmap of  

proteomic PCs and traits with hierarchical clustering 
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Figure 14: P-value of correlation coefficients grid to evaluate the significance of Figure 13. 

 Red indicates significance, and cell values are -log10(p-value) 

 

 For the proteomic PCs, PC3, PC9, and PC5 appear to be the most influential and 

significant PCs across most models. In particular, PC3 has significant correlations with every 

model. As with the methylation PCs, the hierarchical clustering revealed that the top 3 proteomic 

PCs were closely related.  There are some notable groupings among the traits as well, namely a 

cluster from HBG to VO2max that is negatively correlated with PC3 and PC9, a cluster from 

monocytes (MON_ABS) to NE_ABS that is negatively correlated with PC5, and a cluster from 

GROUP to FMI that is positively correlated with PC3. All these groups and PCs were again 

verified by the p-value grid, resulting in PC3, PC9, and PC5 being the PCs of interest to analyze 

through STRING.  
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3.4. Cistrome Results 

PC Transcription Factor 

MPC1 Positive: JARID2, EZH2, REST 

Negative: POLR2A, GABPA, BRPF3, ELK1 

MPC3 Positive: FOSL2, REPIN1, CLOCK 

Negative: RYBP, TRIM24, EZH2 

MPC4 Positive: H2AZ, SMARCA4, POLR2A 

Negative: EZH2, EP300 

Table 1: Methylation PCs and the transcription factors associated with the most  

influential negatively/positively associated with the PC 

  

After analyzing the GIGGLE plots produced by Cistrome, we compiled lists of 

transcription factors that likely bind to the important CpG sites embedded in the PC loadings. An 

interesting feature to note is that EZH2 appears in every PC. We cross-referenced these factors 

with NCBI and various medical journals to discern their functions, with the goal of uncovering 

some biological basis for the associations we observed.  

 

3.5. STRING Results 

The results from STRING include a table of biological processes associated with the 

networks developed by STRING and a protein network graph for each PC of interest. Unlike the 

methylation PCs, the negatively associated proteins of the proteomic PCs did not yield useful 

information across all three PCs of interest. Many biological processes predicted to be linked to 
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those networks were non-specific, relating to cell function, regulation, or metabolism. 

Additionally, the FDR values associated were significantly higher than the positive counterparts, 

indicating weaker results. As such, we decided to focus our efforts solely on the positively 

associated proteins. 

3.5.1. PC3 

 

Table 2: Biological processes associated with the positive proteins in PC3.  

The colors correspond to the protein network. 
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Figure 15: Protein network of PC3 proteins 

 On the STRING website, we selected the results with the smallest FDR values and 

exported the resulting table. According to these results, most of the proteins seem to be 

involved in coagulation and platelet activation, as well as the inflammatory immune response 

in the form of complement activation, neutrophil migration, and acute-phase response. 
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3.5.2. PC5 

 

Table 3: Biological processes associated with the positive proteins in PC5. The colors correspond 

to the protein network 

 

Figure 16: Protein network of PC5 proteins 

 The PC5 proteins seem to be most involved with protein metabolism (regulation of 

peptidase and endopeptidase), specifically the negative regulation of protein metabolism. 

There are also some mentions of complement activation, but the vast majority of the results 

relate to protein metabolism.  
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3.5.3. PC9 

 

Table 4: Biological processes associated with the positive proteins in PC9. The colors correspond 

to the protein network 

 
Figure 17: Protein network of PC9 proteins 

The PC9 proteins appear to be involved in coagulation/platelet activation and inflammatory 

immune response. They also have some links to protein metabolism. This somewhat mirrors the 

results from the previous two PCs and provides more evidence that these three processes may be 
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responsible for some of the differences we observed between healthy and unhealthy people. The 

following section will explore analyzing these processes and their relation to health. 

 

4. DISCUSSION & FUTURE STEPS 

Through this study, we managed to develop 19 significant proteomic biomarkers and 28 

significant methylation biomarkers, both of which predict specific clinical lifestyle traits. Across 

both sets of biomarkers, 15 biomarkers pertain directly to our original selection criteria. This 

may suggest significant differences in methylation percentages and protein abundances between 

“healthy” and “unhealthy” individuals. The scatterplots shown previously and the remaining 

scatterplots we developed show clustering along the diagonal, indicating our models' good 

performance. Additionally, we have sets of PCs from all our valid models, both proteomic and 

methylation, that were strongly correlated with and highly significant to our models and the 

lifestyle traits. To understand the biological underpinnings of our models and provide more 

evidence of the validity of our biomarkers, we opted to study the loadings of these PCs. The 

proteomic PCs we chose to investigate more closely were PC3, PC5, and PC9, and the 

methylation PCs we decided to examine were MPC1, MPC3, and MPC4. From there, we 

extracted the necessary protein and CpG site information from the loading matrices of these PCs 

of interest to run through STRING and Cistrome, respectively. This provided lists of 

transcription factors that bind to influential CpG sites and lists of GO terms denoting biological 

networks/processes in which our proteins are involved. Analyzing these results was a crucial step 

in the broader context of characterizing the downstream effects of an unhealthy lifestyle. 
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4.1. Protein Network Analysis 

As stated, the major biological processes contributing to differences between healthy and 

unhealthy populations were blood coagulation and platelet activation, protein metabolism 

regulation, and inflammatory immune response. PC3 and PC9 proteins appear to be more 

specifically related to coagulation, platelet activities, and immune response, whereas PC5 

proteins were more related to protein metabolism. Looking more closely at PC3 of Figure 13, we 

see that it is strongly positively correlated with many traits relating to fat content and overall 

health, such as fat mass, FMI, body fat percentage, BMI, etc. It also positively correlates with 

platelet (PLT) concentration, which is bolstered by downstream GO term analysis. Since these 

traits are positively correlated, increases in PC values and their positively associated proteins 

result in increases in the trait. These positively associated proteins relate to platelet activation 

and coagulation, so we can deduce that these biological processes positively correlate with the 

traits listed above. This seems to compute with some existing studies regarding the connection 

between obesity and elevated platelet counts, although studies disagree on whether platelet 

activation is actually involved in obesity (Vauclard et al., 2023). Platelet activation markers such 

as PMP that increase with obesity and heightened expression levels of GPV1 (which is involved 

in platelet degranulation) are evidence of a positive correlation (Vauclard et al., 2023). It is also 

well known that obese individuals have an increased risk of thrombosis due to platelet activation 

(Vauclard et al., 2023). The results of our study seem to support the theory of a positive 

association between platelet activation and our obesity-related traits (fat mass, BMI, etc.). 

Additionally, hemoglobin, VO2 max, exercise frequency, and fruit and vegetable intake are 

inversely related to PC1 and platelet activation. This makes intuitive sense since unhealthy 

people are less likely to exercise and typically have less balanced diets. On the molecular level, 
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regarding hemoglobin (and VO2 max since both are related to oxygen capacity), studies have 

found that lower hemoglobin concentrations promote platelet aggregation by the increased 

phosphorylation of signaling adapter proteins (Singhal et al. 2015).  

Despite the intuitive nature of the previous analysis, the role of the inflammatory immune 

system and complement system activation is less clear. PC3 proteins share a strong positive 

association with monocytes (MON_ABS), neutrophils (NE_ABS), and white blood cells (WBC), 

which is bolstered by the results from STRING that show our proteins operating in networks 

such as neutrophil migration, acute-phase inflammation, and complement activation as seen in 

Figure 15. This agrees with the existing consensus about the heightened levels of inflammation 

that exist in obese populations. Studies have implicated complement activation as a critical 

marker for obesity, detailing the activation of the alternative complement pathway by obesity-

induced adipose tissue, thereby creating factors that induce a pro-inflammatory state (Shim et al. 

2020). The analysis becomes unclear when examining the PC5 proteins. Figure 17 shows that 

many of these proteins are involved in regulating protein metabolism, specifically the negative 

regulation of proteolysis. This could explain the research detailing the lack of muscle quality of 

people with obesity when compared to their healthy counterparts and lend credence to the notion 

that obesity can sometimes be accompanied by lower rates of protein synthesis (Freitas and 

Katsanos, 2022). Since the PC5 proteins seem to promote negative regulation of proteolytic 

processes, increases in the PC5 proteins would result in less circulating protein being broken 

down and absorbed from the bloodstream.  

Consequently, fewer amino acids may be available to capture and reorganize for muscle 

synthesis. However, under this notion that the negative regulation of proteolytic processes is 

positively correlated with obesity, the inverse relationship between PC5 and the immune cells 
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(monocytes, white blood cells, and neutrophils) would contradict much of the existing 

understanding of the role of the immune system in obese individuals. Despite this, some 

evidence exists wherein neutrophil chemotaxis seems to decrease as the concentration of a pro-

inflammatory (complement system activating) peptide, C5a, increases. Since PC3 appears to 

capture the apparent positive interaction between immune cells and obesity, PC5 might capture 

the less likely yet significant interaction described above. However, evidence for this interaction 

is sparse at best and should only be considered within the context of the broader consensus. 

Further research may be required to uncover the true basis of some of these interactions.  

 

4.2. Transcription Factor Analysis 

 When observing the GIGGLE plots of both the positively and negatively associated CpG 

sites of our MPCs, we found that, for MPC1 and MPC3, the plots of their positively associated 

sites had significantly lower top scores. For instance, MPC3’s positive sites had a maximum 

GIGGLE score of 200, whereas the negative sites had a maximum score closer to 2000. Only 

MPC4 appeared to have high scores in both sets of sites. These scores indicate the similarity of 

our sites to existing ChIP-seq data within the Cistrome database, so prioritizing scores with high 

similarity was crucial. For the purposes of this paper, the transcription factors were examined 

under the traditional framework, which purports that increased methylation alters the shape of 

DNA molecules, thereby inhibiting the binding of transcription factors. 

 Of the transcription factors detailed in Table 1, we decided to more closely examine 

ELK1, EZH2, TRIM24, and RYBP due to the strength of their GIGGLE scores and their 

relevance to the purpose of our study. Most of the analysis focused on the MPC3 and MPC4 
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transcription factors since most of MP1’s transcription factors were uninformative. MPC1 does, 

however, contain many significant sites from the X chromosome. As such, sex-based differences 

are well captured by MPC1. Looking at Figure 11 and examining the loadings of MPC1, we 

noticed that many traits, such as creatine, blood urea nitrogen (BUN), FFM, grip strength, and 

height, were positively correlated with MPC1. These are all traits where we observe statistically 

significant discrepancies between men and women. 

Additionally, the loadings revealed that the negatively associated sites were located 

mainly on the X chromosome and had weights with much higher absolute values across the top 

200 selected compared to the positively associated counterparts. This implies the negatively 

associated sites were far more influential to MPC1. Since the most influential sites of MPC1 

were negatively associated, increases in the methylation of these sites corresponded to decreases 

in the PC value, which would translate to decreases in the traits listed above. Since the increased 

methylation occurs on the X chromosome, MPC1 likely captures the X chromosome inactivation 

(XCI) in women. XCI involves the large-scale methylation of CpG islands on the X-chromosome 

slated for inactivation in women (Sharp et al. 2011). Thus, MPC1 may be able to predict the 

values of these traits based on the level of methylation recorded from the negatively associated 

CpG sites. As further proof of MPC1’s ability to model sex-dependent traits, Sex is almost 

perfectly inversely correlated with MPC1, with an r-value of -0.97. Since females were denoted 

as 2 and males as 1 in the original study, increased methylation of influential X chromosome 

sites decreases the PC value, translating to an increase in the Sex “value” (i.e., closer to 2). As is 

evident, MPC1 efficiently captured the biological differences between men and women 

regarding muscle mass, strength, and size.  
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However, MPC1 was less efficient in modeling differences based on health, as is evident 

from the lower r-values that resulted from correlating MPC1 with traits like fat mass, BMI, and 

sagittal. MPC1 showed significant negative correlations with body fat percentage and FMI, 

which are relevant to the study. However, a literature dive into the MPC1’s transcription factors 

yielded few insights into the mechanisms at play. POLR2A is non-specific in its function since it 

is a subunit of RNA polymerase, a protein necessary for all cell transcription.  GABPA is more 

closely linked to mitochondrial function, and BRFP3’s function is not well established. ELK1 is 

the only transcription factor that plays a role in adipogenesis, wherein adipocyte differentiation is 

heavily suppressed when ELK1 is inhibited (Pang et al. 2016). Methylation of ELK1’s binding 

sites produces a similar inhibitory effect. Since ELK1 is negatively associated with MPC1, 

increased methylation at those sites may inhibit ELK1’s activity. However, lower ELK1 activity 

relates to a decrease in adipogenesis, the opposite interaction we observe in the heatmap. 

Although the interaction may not agree with biological intuition, ELK1’s relation to 

adipogenesis may still be significant due to the connection between heightened adipogenesis and 

obesity. 

MPC3 and MPC4 behave similarly in Figure 11, negatively correlated with several key 

traits such as BMI, body fat percentage, fat mass, etc. Additionally, most of the transcription 

factors that will be examined here bind to sites that are negatively associated with either MPC3 

or MPC4, indicating an increase in these key traits. Like ELK1, EZH2, which is related to MPC3 

and MPC4, has been shown to play a role in adipogenesis and obesity. Although EZH2 typically 

relates to cell differentiation and oncogenesis, there is evidence that the inhibition of EZH2 leads 

to lipid accumulation in certain cancer cell lines (Yiew et al. 2019). However, there is more 

evidence to suggest that the inhibition of EZH2 activity leads to healthier outcomes, implying 
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that EZH2 plays a crucial role in adipogenesis (Wang, 2022). This contradiction may be 

explained by the fact that EZH2 is involved in numerous complex interactions and that the 

methylated CpG sites we are examining may not relate to genes involved in adipogenesis. 

Instead, the methylation of these sites (decrease in EZH2 binding at these sites) could relate to 

the silencing of tumor suppressant genes, in which EZH2 is more commonly implicated. 

Further research to determine EZH2’s role will be necessary if and how it relates to 

adipogenesis in this study. TRIM24 is another notable transcription factor that may play a role in 

lipid metabolism. It directly and indirectly represses hepatic lipid accumulation (Jiang et al. 

2014). Thus, methylation of TRIM24’s binding sites may promote lipid accumulation, a key 

mechanism in obesity. It is important to note these results were acquired from experiments on 

mice, so the effect is yet to be observed in humans. RYBP was the final transcription factor we 

analyzed, and it is involved in the negative regulation of a particular protein catabolic process. 

The function of this transcription factor seems to fit with our protein network findings regarding 

the negative regulation of protein catabolic activity. Like EZH2, RYBP has also been reported to 

affect tumor cells, wherein it has been shown to inhibit glycolysis in tumor cells and repress 

tumor migration. Thus, increased methylation at its binding sites may limit its tumor-suppressant 

activity.  

Although the discovery of these transcription factors has helped inform our study, it is 

important to note that EZH2, RYBP, and ELK1 exhibited interactions that ultimately linked 

increased methylation of their binding sites to increases in obesity-related traits. However, 

studies have shown that inhibiting the activity of these transcription factors decreases obesity-

related effects. These inconsistencies might be explained by exploring specific CpG sites and 

identifying which genes they might regulate. From here, we can predict binding activity more 
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clearly and truly uncover how these factors might increase or decrease traits relating to poor 

health.  

 

4.3. Caveats and Future Steps 

 Through this study, we developed proteomic and epigenetic biomarkers for lifestyle traits 

to elucidate the biological mechanisms behind poor health and obesity. In-depth analyses of 

these models have provided some biological validation for the predictive power of our 

biomarkers. There are some caveats to these discoveries, however. In the protein network 

analyses, PC5, which was heavily involved in protein metabolism, was inversely related to white 

blood cells, monocytes, and neutrophils. During this analysis, we operated under the notion that 

lower protein metabolism corresponds to worse health; however, this assumption could be 

incorrect. Another caveat to consider would be the vast number of transcription factors not 

included in the analysis. Although using GIGGLE scores to prioritize transcription factors of 

note is efficient, it is not a perfect method for determining the significance of a transcription 

factor to a particular trait. Thus, a more comprehensive study of these factors could aid in 

understanding the mechanisms at play. Additionally, we could examine the CpG sites and 

determine the genes they regulate. This would provide a clearer picture of the binding behavior 

of our transcription factors by narrowing our search to factors that bind only to the genes we 

have uncovered. Including target gene information would eliminate much of the speculation 

behind the effects of methylating the target genes of our transcription factors.  

 Despite these caveats, this study presents detailed documentation of the development and 

biological validation of 19 proteomic and 28 methylation biomarkers. We found evidence linking 
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poor health to platelet activation, inflammatory immune response, protein metabolism, tumor 

progression, adipogenesis, and more through deep analysis of protein networks and transcription 

factors. This provides researchers with numerous avenues to pursue, such as testing therapeutic 

drugs that interact with the factors/proteins we examined or building networks to model real 

biological systems.  
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