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Abstract of the Dissertation

Essays on Macroeconomics and Information Economics

by

Jorge Andres Zambrano Riveros

Doctor of Philosophy in Economics

University of California, Los Angeles, 2012

Professor Andrew Granger Atkeson, Chair

My research interests are in the intersection of macroeconomics and information economics.

I am particularly interested in the optimal design of incentives for individuals who interact

over time in uncertain environments with imperfect information, and its consequences for

aggregates. The dissertation is composed by three chapters that address three particular

environments within this area.

The first chapter studies the optimal contract in a principal-agent model where a risk-

neutral principal delegates to a risk-neutral agent the decision of whether to pursue a risky

project or a safe one. The return from the risky project is unknown and the agent can

acquire costly unobservable information about it before taking the decision. The optimal

contract suggests that the principal should only reward the agent for outcomes that are

significantly better than the safe return. It is also optimal to distort the project choice in

favor of the risky one as a mechanism to induce the direct revelation of the uncertain state.

In a managerial context, the findings explain why options and profit sharing compensation

induce better decision making from CEOs, as well as why excessive risk taking might be

optimal.

The second chapter explores the role of effort and human capital as mechanisms to al-

leviate the idiosyncratic risk faced by individuals in the presence of incomplete markets. I

construct a DSGE model where effort and human capital determine the probability of being
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employed the next period. I show how in the stationary equilibrium individuals diversify

between these mechanisms. As a result, I obtain a wealth distribution that better approxi-

mates the real one. The results shed light on the potential implication of combining policies

of unemployment insurance and subsidies to education to improve the wealth distribution.

The third chapter studies dynamic stochastic models where current actions are con-

strained by a current state and determine the distribution over future states. The purpose

of this paper is to provide a general learning process that allows agents to take the optimal

decision when these endogenous transitions are unknown. Our paper generalizes previous

results by not imposing parametric restrictions on the unknown transition functions.
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CHAPTER 1

Motivating Information Acquisition and (Al-

most) Good Decisions

1.1 Introduction

It has been argued that much of the financial crisis has been associated to excessive risk taking

from CEOs and that such risk taking is misaligned with shareholders interests. Moreover, it

has been suggested that option-type contracts are the cause of this misalignment ( [21]). This

paper uses a model of delegated expertise to explain why stock options and profit sharing

are optimal forms of compensation when a CEO has to be motivated to take good decisions.

It also provides an explanation of why excessive risk taking is optimal from a shareholder

perspective, where excessive risk taking is understood here as pursuing a risky project even

though it is ex-ante inefficient.

Models of delegated expertise were first proposed by [41] and [20]. In such models a

principal must hire an agent to decide between a risky and a safe project. Before taking

the decision, the agent can acquire unobservable information about the risky project by
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exerting unobservable effort. This framework shares features of moral hazard and hidden

information, and incentives must be used to motivate both information acquisition and the

(partial) revelation of the obtained information.

Incentives in this scenario are potentially different than the ones in standard moral hazard

problems since effort does not generate greater expected returns directly. In contrast, the

unobservable action taken by the agent generates a privately observed signal that improves

the decision-making. The studied setup is very general and the only restriction imposed is

that signals can be ordered in the likelihood ratio order ( [53]). Under limited liability for

both individuals, the optimal wages suggest that the agent should be rewarded with the

return of the risky project only if it is significantly better than the safe return. Moreover, it

is optimal to distort the project choice in favor of the risky project as a strategy to reveal

the uncertainty directly.

The intuition why contracts reward experimenters only for extreme good outcomes has

two elements whose main instrument is the probability of adopting the risky project given

the observed return. The first element is a likelihood ratio that unravels the moral hazard

concerns. It suggests that we should reward the agent when the probability of choosing

the risky project was greater when effort was exerted rather than when no information was

acquired. Since such probability is increasing in the risky return when effort was exerted

and constant when that was not the case, the moral hazard incentives must be monotone

increasing.

There is a second component associated with the adverse selection problem and is sum-

marized by a hazard rate. The principal must also provide incentives for the agent to choose

the risky project whenever he observes a sufficiently high signal. Since signals are ordered

and wages are monotone, there will exist a unique cutoff signal where an agent is indifferent

between the safe and the risky project. Higher signals will induce the choice of the risky
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project. This implies that, in the limit, the principal wants to penalize agents that chose

the risky project when the cutoff signal was observed. Given the ordering of the signals, the

probability of being at the cutoff signal given that the risky project was chosen (the hazard

rate) is decreasing in the risky return. Therefore, this effect also suggests that compensation

should be increasing in risky return.

The intuition for the project choice distortion relies on the idea that the principal has two

mechanisms to induce the revelation of the unknown return. The first one is through risky

wages as discussed before. The second one is through the safe wage, which is equivalent

to picking the cutoff signal. Instead of paying the agent more to reveal the uncertainty

imperfectly (the signal), the principal can also decrease the safe wage to induce the choice

of the risky project and have the uncertainty revealed directly.

The model applies to a variety of situations. The one principal one agent problem is

tightly connected to the optimal compensation of CEOs who must be motivated by the

shareholders to undertake risky projects that could potentially lead to higher returns. In

this scenario, the effort exerted by the CEO in learning about the portfolio of projects

and the learned information is usually never observed by the shareholders, only the project

chosen and the realized returns are observed. In this environment, the optimal contract can

be implemented using restricted stocks conditional on a performance threshold. When the

optimal contract is constrained to be monotone as in [37], the optimal monotone contract is

an option with strike price greater than the return of the safe project.

The conclusions derived from the model explain why options and restricted stock are

so widely used in this context. It also suggests that it is the best form of compensation

to align the interests of shareholders and CEOs. Moreover, the optimal distortion on the

project choice suggests that it is on the shareholders interest to have a CEO taking excessive

risks. Letting a CEO pursue risky projects that are not ex-ante profitable would help the
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shareholders ameliorate the information problems.

The setup is also similar to the problem faced by managers who must encourage innova-

tion among her employees to increase the profits of the firm. Workers have to divide their

time between undertaking known tasks or exploring new ideas. However, innovations are

risky ventures with a high probability of failure, thus agents prefer to put more effort on

known tasks which returns are well known. Again issuing options and restricted stock to

workers are shown to be useful to encourage more risk-taking.

The problem also resembles the technology adoption decision faced by farmers in develop-

ing countries. [26] studied the adoption of HYVs in India and found that imperfect knowledge

about the management of the new seeds was a significant barrier to adoption. Hence, the

rate of adoption was much slower than the desired one. In this context the amount of trials

performed by farmers as well as the information gathered by them are usually unobservable

to the social planner. Pricing policies resembling the optimal contract would encourage the

adoption of new technologies.

As a last example, the proposed framework also fits the situation of industries with high

levels of innovation such as pharmaceuticals. Pharmaceuticals must invest in potential drugs

with unknown effectiveness. In the absence of property rights, free-riding reduces innovation

and the potential discovery of new drugs. This environment is close to the one studied in

this paper since the investment chosen by firms in the earlier stage of research is usually not

disclosed, nor are the results from such investments. Given these constraints, the optimal

contract suggests the use of patents to motivate innovation. However, such patents must be

issued only for breakthroughs and not marginal innovations.
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1.1.1 Literature Review

The structure used in the one principal and one agent model was first studied by [41] and [20],

who used a simplified environment with two or three possible outcomes. Similar models where

later developed as in [25] and [30]. In contrast with these papers, I allow for a continuum of

outcomes, which permits a more complete characterization of optimal contracts. The closest

structure to my model is the one studied by [44] who focuses in optimal distortions of the

final decision as a mechanism to encourage more information acquisition. This paper, on the

other hand, characterizes the optimal contract as the main incentive mechanism.1

The information structure used in this paper is similar to the one used in [60] and

[56]. However, the first model is used in a procurement environment where the acquired

information is induced to be completely revealed, this is not the case in this paper. In

the second one the agents acquire information to learn about their value for an object,

not the value for a principal as in our model. A similar information structure is also used

in [54]. Nevertheless, their model focus in the optimal actions of a single decision maker

when information can be acquired over time, and not in the strategic interaction.

The acquisition of information is also related to bandit problems where an agent can learn

about the return of a project by undertaking it as in [45] and [23]; however the information

structure is more general in our case and contracts do not depend on the realized signal. [11]

study moral hazard in teams over time where the return of a project is unknown and effort

determines the rate of arrival of the return. Our setup is different in that individuals invest

one time on a signal before deciding to undertake the risky project.

The next section introduces a principal agent setup with a single agent acquiring private

1 [15] also study the motivation of information acquisition, however in their setup the acquired information
is observable.
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information to give intuition about the optimal contracts on a simplified framework. The

third section discusses how to implement the contract in different real-world applications.

In the last section I conclude.

1.2 Principal-Agent Problem

Consider the case of a risk neutral principal (she) who has to decide between a safe project

with known returns and a risky project with unknown returns. The principal can hire a risk

neutral agent (he) to acquire information and recommend him which project to pursue.2 The

information gathered by the agent (if any) is unobservable to the principal. Hence, this is a

problem that involves hidden actions since the acquisition of information is not observable to

the principal, but also there is a hidden information problem since the realized signal when

the agent decides to acquire information is also not observed by the principal. The contract

designed by the principal is assumed to be a function of the realized final outcome and the

chosen project. It is also assumed that both individuals have limited liability.

1.2.1 Model

There are two available projects that cannot be pursued simultaneously. There is a safe

project with known net return ys > 0. There is also a risky one whose return yr ∈ [0, y] is

unknown, with y > ys. Let both individuals have the same nondegenerate prior belief g (yr)

over the unknown return with finite mean µ0.

Before taking the decision, the agent can exert effort and generate information about

the risky project by acquiring a signal x ∈ R at a cost c. This cost can be associated with

2The individual can be in fact risk averse or risk lover, just let the returns perceived by the agent be
measured in utils and let the agent maximize a Von Neuman-Morgenstern utility function
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the cost of running trials or the disutility of effort. In a context of bandit problems, where

signals are the same returns of the risky project, the fixed cost can also be thought as the

ex ante expected return of the risky project, µ0, and reflects the fact that individuals are

initially pessimistic about it. The agent can also shirk, in which case no signal is generated

and there will be no cost.

Let the conditional pdf and cdf of the signal x be denoted by f (x|yr) and F (x|yr),

respectively. Assume these are differentiable with respect to x. Similarly, the unconditional

pdf and cdf will be denoted by f (x) and F (x), respectively. Let the signals be ordered in the

likelihood ratio sense: a signal x is more favorable than signal x′ if the posterior distribution

g (yr|x) first order stochastically dominates the posterior distribution g (yr|x′).3 These type

of problems are known as monotone ones and were first studied by [38].

Since signals are ordered, the posterior mean will be a monotone increasing transforma-

tion of the signal. Thus the distribution of the posterior mean will be a transformation of the

distribution of the signal. Without loss of generalization, let x = Eyr [yr|x] be the posterior

mean of the risky project. Hence, we can let x = 0 and x = y.4

The acquisition of the signal and its content are privately known by the agent. The

only observable variables for the principal are the chosen project and the final return of the

project ys or yr. Thus the principal designs the optimal wage to be paid to the agent as a

function of these variables, that is he chooses the safe wage w (ys) = ws, and the risky wage

schedule w (yr). It will also be assumed that individuals have a limited liability constraint.

The wage for the agent cannot be lower than 0 and the principal cannot pay more than the

return he receives. Formally, optimal wages must satisfy 0 ≤ w (y) ≤ y. Given that a project

3Equivalently, f (x|yr) is log supermodular

4To have an interesting problem we need that F (ys) > 0, otherwise it is optimal to always choose the
risky project.
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j is chosen and a signal has been acquired, the payoff for the principal is given by yj−w (yj)

and the payoff for the agent is w (yj)− c.

The game consists of two stages. In the first stage the principal designs a payment

schedule and makes a take it or leave it offer to the agent. The agent accepts or rejects the

contract. If she accepts the contract, she decides whether to acquire or not a signal, which

is privately observed by her. In the second stage, the agent updates her beliefs and chooses

which project to pursue. Finally a return y is realized and the principal pays to the agent

the contracted wage w (y).

1.2.2 First Best

Suppose the acquired information by the agent is observed by the principal, also assume

there are no limited liability constraints. If the principal decides to hire the agent, she will

face the following problem:

max
w(yr),w(ys)

Ex
[

max
j(x)∈{s,r}

Eyj(x)
[
yj(x) − w

(
yj(x)

)
|x
]]

s.t Ex
[
Eyj(x)

[
w
(
yj(x)

)
|x
]]
− c ≥ u

where j (x) is the project chosen when x is realized. The constraint assures the agent will

accept the contract by making sure his expected utility is greater than or equal to an outside

option u. The first best can be obtained by either a constant payment from the principal to

the agent equal to the cost, or by selling the agent the returns from the project. Either of

the alternatives lead us to the following indirect utility when the agent is hired:
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Ex
[

max
j(x)∈{s,r}

Eyj(x)
[
yj(x)|x

]]
− c− u

Since there are two stages, we proceed to solve the individual’s problem using backward

induction. That is, I will first determine which project is going to be chosen given the

information acquired. Then, I will characterize when the principal decides to hire an agent

as a function of ys and c.

The individual will choose the risky project if x > ys, thus the payoff of the second period

is given by max {x; ys}. Note this is a convex function of x.

Figure 1.1: Utility in second period
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The value of experimentation is defined as the ex ante expectation of the utility in the

second period, that is

U (ys) = Ex [max {x; ys}]

From the previous properties we can prove the following lemma:

Lemma 1 The value of experimentation U (ys) is strictly increasing and convex in ys, and

strictly greater than max {µ0; ys}

9



The result states that information is always valuable in this setup. However, since infor-

mation is costly, the principal may not want to hire the agent to acquire information. At

the beginning of the first period a principal will choose to hire an agent if and only if c ≤ ĉ,

where ĉ is defined by

U (ys)− ĉ− u = max {ys;µ0} (1.1)

Let the maximized objective function of the principal be denoted by V (ys, c) = max {U (ys)− c− u; ys;µ0}.

This function is also strictly increasing and convex in ys. The next proposition characterizes

when the principal decides to hire an agent as a function of ys.

Lemma 2 The principal decides to hire the agent when ys ∈ (ac, bc) ⊆ (0, y), where µ0 ∈

(ac, bc). Moreover, such interval is decreasing in c, that is (ac, bc) ⊂ (ac′ , bc′) for any c < c′ <

ĉ, with (a0, b0) = (0, y) and aĉ = µ0 = bĉ.

Even if beliefs are relatively pessimistic the individual decides to acquire information

because of the potential gain represented by the value of experimentation. The lower is the

fixed cost c, the greater is the interval over which the principal decides to hire the agent.

Furthermore, if there is no fixed cost, the principal will always decide to hire an agent to

collect information.

1.2.3 Constrained Efficiency

Now suppose the principal does not observe the effort of the agent, nor the information

gathered by the individual. Also assume individuals have limited liability as described before.

In this context a fixed wage will not induce any effort from the agent. Therefore the principal

must provide incentives to the agent by imposing more risk in her payoff, and by distorting
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the choice of the best project. This distortion indicates that the first best will not be

attained. The constrained efficient problem for a principal who decides to hire an agent is

the following:

max
w(yr),w(ys)

Ex
[

max
j(x)∈{s,r}

Eyj(x)
[
yj(x) − w

(
yj(x)

)
|x
]]

(P)

subject to

Ex
[
Eyj(x)

[
w
(
yj(x)

)
|x
]]
− c ≥ u (IR1)

Ex
[
Ey
[
w
(
yj(x)

)
|x
]]
− c ≥ max {Ey [w (yr)] , ws} (IC1)

Eyj(x)
[
w
(
yj(x)

)
|x
]
≥ Ey−j(x)

[
w
(
y−j(x)

)
|x
]

for all x (IC2)

0 ≤ w (yj) ≤ yj for j = r, s (LL)

Equation (IR1) is the same individual rationality constraint as before. Equation (IC1) is

the incentive compatibility constraint that ensures the agent will exert effort. It states that

the agent’s utility when he exerts effort is greater than the expected utility when he does

not, in which case he picks the project that gives her the greatest ex-ante expected wage.

Equation (IC2) is another incentive compatibility constraint to make sure the agent chooses

the project that is more convenient to the principal. Here −j (x) denotes the project the

agent has not chosen. The last equation represents the limited liability constraint.

This problem is hard to solve because the second incentive compatibility constraint in-

volves a continuum of restrictions. However, equation (IC2) can be reduced to only one

constraint when optimal wages for the risky project are monotone nondecreasing. Since sig-

nals are ordered, a posterior generated by a signal x first order stochastically dominates any
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posterior generated by any less favorable signal x′. Therefore a less favorable signal implies

that the expected wage is lower.

Since distributions are continuous in x, there must exists a cutoff xe such that the ex-

pected wage when the risky project is chosen given such signal is equal to the safe wage.

Any more (less) favorable signal than xe implies the agent will choose the risky (safe) project

and that the constraint will not be binding. Formally, there exists cutoff xe such that:

∫ y

0

w (yr) g (yr|xe) dyr = ws

Using this fact, the ex-ante agent’s utility can be rewritten as:

∫ y

xe

∫ y

0

w (yr) f (x|yr) g (yr) dyr + wsF (xe)− c

By integrating the possible signal values when they are higher than the cutoff we obtain

the relevant object to provide incentives: 1 − F (xe|yr). This is the probability that the

agent chooses the risky project when he exerts effort. Let us for now assume that wages are

nondecresing, and in the next proposition I will prove that is the case. The problem can be

reexpressed as:

max
w(yr),w(ys)

∫ y

y

(yr − w (yr)) (1− F (xe|yr)) g (yr) dyr + (ys − ws)F (xe) (P∗)

subject to
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∫ y

0

w (yr) (1− F (xe|yr)) g (yr) dyr + wsF (xe)− c ≥ u (IR∗)

∫ y

0

w (yr) (1− F (xe|yr)) g (yr) dyr + wsF (xe)− c ≥ max {Ey [w (yr)] , ws} (IC1∗)

∫ y

0

w (yr)
f (xe|yr) g (yr)

f (xe)
dyr = ws (IC2∗)

0 ≤ w (yj) ≤ yj, for j = r, s (LL)

Let λ, δr, δs, and φ be the Lagrange multipliers for the first three constraints. The

distinction between δr and δs arises because the expected wage from the risky project does

not need to be necessarily equal to the safe wage. Since the problem is linear on the wages,

the optimal wages are determined by a bang-bang solution that is bounded by the limited

liability constraint. After rearranging the derivative with respect to wages we obtain

−1 + λ+ δr

(
1− 1

1− F (xe|yr)
+
δs
δr

)
− φ f (xe|yr)

(1− F (xe|yr)) f (xe)
(1.2)

Whenever this condition is positive, the wage will be set to the upper bound; if it is

negative, then the optimal wage is zero. Using the structure of the signals and the latter

equation we can indeed prove the that wages are nondecreasing in the following proposition.

Figure 1.2 illustrates the contract.

Proposition 3 If f (x|yr) satisfies the likelihood ratio order then the optimal wage schedule

w (yr) is monotone and is characterized by a cutoff z such that

w (yr) =

 yr if yr ≥ z,

0 otherwise.
(1.3)
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Figure 1.2: Optimal Contract
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The cutoff z is given by the value of yr such that condition (1.2) is equal to zero. Wages

are thus monotone if for any greater (lower) yr the derivative is positive (negative). Thus,

showing that the derivative is increasing in yr implies that wages are monotone.

Condition (1.2) has four elements. The first one is the marginal cost to the principal of

increasing the wage. The second one is the benefit from relaxing the IR constraint which

might be 0 if such constraint is not binding, that is if u < ws. This case arises when the

agent gets information rents for the private information.

As it is common in moral hazard problems, the third term is related to a likelihood ratio.

It is related to the probability of undertaking the risky project when no information has been

acquired relative to that same probability when the information has been acquired. Whereas

the first one is independent of yr, the second one is increasing in yr since the likelihood ratio

order induces first order stochastic dominance.

There are three possible cases. If ws is greater than Ey [w (yr)], implying that δr = 0, then

it would become obvious that the agent exerted effort whenever the risky project is chosen.

In this case the problem simplifies to one of just hidden information where incentives must be

given to encourage the adoption of the risky project. On the other hand, if ws < Ey [w (yr)],

then an agent choosing the safe project would suggest the acquisition of information. Thus,
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there will always be a punishment for choosing the risky project, but such punishment will

decrease the greater is the return. When yr approaches to y, there will be no punishment.

When ws = Ey [w (yr)], the principal is minimizing the cost of inducing acquisition of

information. To see this note the similar structure of restriction (IC1) with equation (1.1) and

its subsequent properties. In this case the agent will be indifferent between the safe and the

risky project when he does not acquire information and it will appear as if he randomizes his

decision and chooses the risky project with probability δr
δr+δs

. Then the principal can reward

the agent for risky returns that induced a greater probability of choosing the risky project

when the information was acquired, otherwise the agent will be punished. As argued before,

such likelihood ratio will be monotone increasing as it is shown in Figure 1.3.

Figure 1.3: Likelihood Ratio
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The final component is associated to the hidden information problem and is represented

by the hazard rate f(xc|yr,e)
1−F (x|yr,e) . The hazard rate in this context is interpreted as the probability

of having observed the cutoff signal given that the risky project was chosen. Intuitively, the

principal wants to make sure the right project is chosen, which implies that, in the limit,

she wants to penalize agents who chose the risky project when they just observed the cutoff

signal. Given the MLRP condition of the signals with respect to the return, this hazard ratio

is monotone decreasing with respect to the return (see [8] and Figure 1.4 for an example).

In other words, a lower observed return increases the chances that the agent observed the
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cutoff signal. Therefore, this effect also suggests that compensation should be increasing in

yr.

Figure 1.4: Negative Hazard Rate
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In sum, a monotone contract encourages information acquisition and the partial revela-

tion of information. On one hand, paying more for higher outcomes induces the acquisition

of information since this increases the probability of choosing the best project. On the other

hand, paying more for higher outcomes induces the agent to choose the best project once the

information has been revealed since a higher signal is associated to a higher return. Thus

the optimal wage schedule creates the incentive for the agent to adopt the risky technology

after observing favorable signals.

The safe wage is set according to constraint (IC2∗). Formally, choosing ws is equivalent

to choosing xe. The first order condition with respect to xe is simplified to:

ys − xe − φ
∂E [w (yr) |xe]

∂xe
= 0

Raising the threshold will yield a marginal benefit of ys since the safe project will be

pursued more often. However, it also generates a cost of xe = E [yr|xe], the return of

the risky project at the threshold, and a cost of increasing the expected wage when such
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threshold increases. The last cost arises because the safe wage must increase to generate the

appropriate incentives to the agent to choose the desired project. 5

This condition implies that the optimal decision is always distorted in the constrained

efficient solution in favor of the risky project, xe < ys. This distortion is purely generated by

the hidden information problem. Note that constraints (IR∗) and (IC1∗) remained constant

after a change on xe precisely because of constraint (IC2∗). Since it is costly for the principal

to induce the agent to reveal the information through the risky wage, she favors the decision

that reveals the uncertain state.

This distortion also suggests that the first best is never attained. To avoid the distortion

the risky wage should be constant. Although the hidden information would be solved in this

case, the moral hazard will persist since information will have no value to the agent. The

first best is also never attained because the principal will hire the agent only for c strictly

lower than ĉ, where ĉ was defined in equation (1.1). To see this just note that the value

of experimentation decreases for the principal since she will only appropriate risky returns

lower than z, thus her payoff is no longer convex.

Finally note that z must be greater than ys. If this is not the case then the principal

will never want to hire the agent since she is better off by pursuing the safe project. This

result suggests that the agent should be rewarded for pursuing the risky project only when

its return is significantly better than the safe return, not just marginally better.

5Remember that wages are monotone increasing, implying that a higher threshold generates a higher
expected wage.
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1.2.4 Debt Contracts

The optimal contract found in the previous subsection is not continuous. In particular, the

payment for the principal is not monotone since any return greater than the threshold will

yield him zero profit. As argued by [37], this type of contracts could be manipulated by

either the principal or the agent if any of them can affect the return before the contract

is paid. For example, the principal would have incentive to sabotage the risky project by

burning profits in excess of the threshold. Similarly, the agent would have an incentive to

inflate profits by borrowing money and ”revealing” a higher apparent profit to the principal.

In order to prevent this behavior, a monotonicity constraint must be imposed, thus

modifying the limited liability constraint:

w (yr − ε) ≤ w (yr) ≤ w (y − ε) + ε

The same argument in the preceding section applies, and the optimal monotone contract

will be option like, with an strike price z0 greater than the safe return:

w (yr) = max {0, yr − z0} (1.4)

This type of contract was first obtained by [37] using a principal-agent setup. In his

paper the argument relies on the standard assumption that a greater effort generates better

distributions of profits in the likelihood ratio sense. Therefore an optimal contract rewards

the agent for higher profits and punishes him otherwise.
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Figure 1.5: Optimal Monotone Contract

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

y
r

w
(y

r)

(a) Payment to Agent
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(b) Payment to Principal

The difference with our setup is that effort does not lead to such ordering on the distribu-

tion of returns. In fact, effort does not directly influence the observed returns. The returns

for either project are given ex-ante, the problem is that individuals are uncertain about the

risky return. Effort in our context lets the agent take a more informed decision and that is

why the agent is rewarded for good outcomes.

1.3 Implementation

The studied setup closely resembles the interaction between a CEO and the shareholders

of a firm. The shareholders hire a CEO to take decisions concerning the future of the

company. It is usually the case that the CEO has more expertise than the shareholders in

making such decisions, or at least is more efficient at gathering information related to such

decisions. Decisions can range from acquisitions to the marketing of new products, whose

main characteristic is the uncertainty of their return. Such uncertain returns will be reflected

in the value of the firm and thus affect the shareholders payoff. The effort exerted by the

CEO to acquire information is not observable. It is also common that if information has

been acquired by the CEO, it is not (completely) observed by the shareholders.
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The optimal contract derived here suggests that stock options and profit sharing com-

pensation are optimal ways to motivate the acquisition of information and its revelation.

Stock option programs give workers the right to buy company’s shares at a fixed price for

a given period of time. These will only be exercised if the market price is higher than the

strike price originally agreed to. Stock options are thus used as a long- term motivator and

the employee is constrained on exercising the option only after their performance has been

(partially) observed. Likewise, profit sharing is also used as a long-term motivator where

individuals are entitled to a percentage of the profits of a firm after a given period. To

implement the contract the firm could set a threshold on the profits such that the CEO can

only claim his share if profits are greater than such level.

The constrained efficient solution also explains why it is optimal to pursue risky projects

even when the information suggests the safe project is better. This feature is in close con-

nection to the debate on excessive risk taking of CEOs. Although this is inefficient ex-ante,

it is a valuable strategy because it helps to reveal the uncertain state of nature. This is

also related to the result obtained by [45] where early failure is not punished and long-term

success is rewarded.

The environment also describes situations that involve technology adoption. The return

of new technologies is usually uncertain until they are tried. For example, it has been

documented the lack of adoption of high yielding variety seeds in developing countries because

of the uncertainty that farmers must bear ( [26]). A social planner interested on the adoption

of new technologies but unable to observe the effort (or number of trials) performed by the

farmers and their subsequent results, could use an option-type contract to encourage farmers.

The optimal contract might be also interpreted as a patent policy to encourage innovation.

Innovation is usually thought as a process whose return is proportional to the amount of

R&D expenditures. However, one could think of such expenditures as being a measure of
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the precision of the signals that emerge from the trials. If a great quantity of money is

invested and the trials suggest that the new product would not work, a good decision is to

stop pursuing such project. On the other hand, if not enough money has been invested, a

bad trial does not necessarily imply is not a good project.

Following such interpretation, a social planner who wants to increase the levels of inno-

vation in a society but cannot observe R&D expenditures and their outcomes, should use

the optimal contract derived here to provide incentives for innovation. The contract can

be interpreted in terms of a patent. It suggests that patents should only be given if it is

shown that the new technology is significantly better than the previous one, and not for

marginal improvements. This result cannot be interpreted as a restriction on the use of the

new technology as often happens with patents. In other words, the optimal contract does

not allocate the property rights of the new technology. On the contrary, it encourages the

adoption of the new technology by all the population, while rewarding innovators with the

surplus they generated, suggesting an optimal pricing policy.

1.4 Conclusions

This paper studies the problem faced by a risk-neutral principal who must hire a risk-neutral

agent to take a decision between a safe project with known return and a risky one with

unknown return. The agent can acquire costly information about the new project before

taking the decision of whether to pursue it or not. The acquisition of information and its

content are unobservable to the principal, thus the problem features moral hazard and hidden

information frictions.

The main result is that the wage schedule when the risky project is pursued must be

monotone increasing. The agent will be rewarded with the whole output only if the return
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is significantly better than the safe return, otherwise he will be paid nothing. Thus the risk

of the decision is imposed to the agent. It has been also shown that decision making is

distorted in favor of the risky project. That is, it is optimal to pursue the risky project when

a signal reveals that is slightly worse than the safe one.

The optimal contract resembles restricted stock in an environment where shareholders

hire a CEO to make decisions. In this case the CEO will be given firm shares when he decides

to undertake the risky project and its returns are significantly greater than the returns from

the previous project. When the optimal contract is constrained to be continuous it resembles

an option with a strike price greater than the return of the safe project. The model also

provides explanation as to why excessive risk taking is optimal, where excessive risk taking

is understood as pursuing the risky project even when it seems to be worse than the safe

one.

The conclusions of the model are robust when there is a finite number of possible projects.

However, the same framework does not apply when the decision belongs to a continuum as

in [44]. In this case the optimal contract is analogous to one where the gathered information

is completely revealed. This is a natural extension of the proposed model that we leave for

further study. Another useful extension is the characterization of the optimal contract when

the agent is risk-averse as well as in a dynamic setup where reputation for undertaking good

projects can be built.

1.5 Appendix

Proof for Lemma 1. To show that U (ys) > max {µ0, ys} integrate by parts the value of

experimentation to obtain
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U (ys) = ys +

∫ y

ys

(1− F (x)) dx

= ys +

∫ y

0

(1− F (x)) dx−
∫ ys

0

(1− F (x)) dx

= µ0 +

∫ ys

0

F (x) dx (1.5)

Also note that
∂U (ys)

∂ys
= F (ys) > 0

where the strict inequality comes from footnote 4. Convexity is also easily obtained since

the second derivative is the probability of having a signal equal to ys.

Proof for Lemma 2.

First note that U (0) = µ0 and U (y) = ys. Therefore U (ys) − c will cross at most

once each of the outside options. It could cross once the constant µ0 from below since it is

increasing in ys. It could cross once ys from above since its first derivative with respect to

ys is between 0 and 1. This in turn implies that U (ys) is farther from max {µ0; ys} precisely

when µ0 = ys.

Since U (ys) − c is linear in c, there exists a ĉ such that U (ys) − c = µ0 = ys. Thus,

for any c < ĉ, there exists ac, bc ∈ (0, y) such that U (ys) − c > µ0 for any ys > ac, and

U (e∗) − C (e) > ys for any ys < bc. Obviously it must be the case that µ0 ∈ (ac, bc). Note

that ac and bc are increasing and decreasing in c, respectively, precisely because the function

crosses from below and above each of the corresponding outside options. Finally, for any

c > ĉ, the interval is empty and the principal never experiments.
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CHAPTER 2

Endogenous Employment and Incomplete Mar-

kets

2.1 Introduction

The unemployment rate for college graduates is lower than for non-college graduates (4.4%

versus 9.6% in 2011 according to the Bureau of Labor Statistics), as well as the median

duration of spells of unemployment (2.6 months for less than high school graduate, 2.4 for

a high school graduate and 1.9 months for individuals with at least some college). It is also

true that college education is usually obtained by richer households, which creates a stronger

tension towards a more unequal distribution of wealth.

However, recent empirical papers have provided evidence on the negative effect that

wealth has on the probability of employment once a set of control variables, including human

capital, are used [6,9,10,58]. On the theoretical side, such association was rationalized by [42]

in a search model with savings where effort must be exerted over time to increase the chance

of being employed.
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The above observations suggest a rather complex relationship between assets and the

probability of employment, which seems to be negative in the short-run put positive in the

long run. The purpose of this paper is to build a model to explore the joint role of effort

and human capital investment as non-market mechanisms used by individuals to deal with

their idiosyncratic risk. The analysis provides potential welfare implications for combining

public policies related to unemployment insurance and subsidies to education to improve the

wealth distribution and the long-run unemployment.

I develop a dynamic stochastic general equilibrium with heterogeneous agents that builds

on the framework proposed by [36] and [5]. Effort and human capital are variables deter-

mining the transition dynamics between states, whereas asset holdings are used directly to

smooth consumption. Effort is modeled as a flow variable that has to be chosen every period

to maintain a positive probability of being employed, thus following the literature on unem-

ployment insurance (see for example [34] and [61]). This can be seen as search effort when

the individual is unemployed, or effort in the job when the agent is employed. We assume

the level of effort required in the latter case is more effective that the one when the agent is

unemployed. This assumption matches with empirical data that has been studied in search

models and emphasize the role of the depreciation of human capital during unemployment

( [3]; [55]).

On the other hand, human capital is a binary stock variable that can be acquired when

the individual is born. It improves the efficiency of effort when looking for a job or main-

taining it. Although human capital has been usually studied as a mechanism to increase

earnings, previous empirical work has also pointed out the effect of human capital on em-

ployment transitions. For example, [14] estimate the effect of training on the probability of

employment for the 1976 cohort of adult male participants in the Comprehensive Employ-

ment and Training Act (CETA). They found that the effect is positive, even for people who

is already employed. [29] also found that participation of women in private training programs
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increases both the frequency and duration of employment spells.

Although there exists some selection on the individuals that attend to college due to dif-

ferences in abilities for example, I abstract from this issue. I assume agents are homogeneous

in this dimension and that human capital does not affect the income when employed. Even

with this simplication the model does a good job on replicating the wealth distribution.

As it is usual in this literature, asset holdings are restricted to be greater than a lower

bound to prevent situations where individuals get indebted forever. This lower bound is used

to model a financial friction usually found in reality, and is calibrated accordingly. An upper

bound arises naturally from the optimal decisions and the fact that the interest rate is lower

than the rate implied by the intertemporal discount factor. This discourages individuals

from accumulate forever their asset holdings.

The role of the asset holdings in our model is similar to the one played in previous

literature. When the individual is employed she accumulates assets, while she decreases

her holdings when unemployed. Therefore, it keeps track of the employment history the

individuals have had. However, assets also have a bequest motive in this model. Individuals

die with an exogenous probability and newborns inherit the previous wealth. Given the

assumptions, if the cost of attend college is sufficiently large, only sufficiently rich born

individuals invest in human capital. This generates pressure towards more inequality.

On the other hand, effort has an inverse relationship with assets. If an individual becomes

unemployed and has sufficient savings, she will not exert too much effort to find a job and

instead use the savings to smooth consumption. However, the ability of the assets to smooth

consumption loses importance when they are close to the debt limit. At that point effort

plays a major role by increasing the likelihood of being employed next period.
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In the stationary distribution most of the individuals will hold a small negative credit

balance, while few of them will have positive savings. This means that most of the individuals

combine both channels to smooth consumption rather than relying in one of them. As a

consequence, the resulting stationary distribution of wealth is much closer to the real one

than the wealth distributions obtained by previous studies. Papers that focus on market

mechanisms to alleviate risk usually generate wealth distributions negatively skewed since

precautionary savings are the only channel to smooth consumption. On the other hand,

empirical papers have shown that only the top deciles have positive savings, while most

households hold some degree of debt [63].

Idiosyncratic shocks and consumption smoothing has been largely studied in the litera-

ture. Models of incomplete markets and heterogenous agents have been used to explain the

risk premium [36], the benefits of insurance [31], optimal fiscal policy [32], and the distribu-

tion of income [5, 33, 39], among others. The common characteristic of these models is that

they use mechanisms affecting the budget constraint to smooth consumption. These mech-

anisms are usually identified with assets holdings (or credit balances), capital, or savings.

However, the labor transitions are always specified exogenously.

Besides the theoretical contribution made by [42] on endogenous transitions, other cal-

ibrated models of search with savings include [2], [57] and [28]. However, the inclusion of

human capital and the characterization of the wealth distribution are new in our model.

The organization of the paper is as follows. The next section describes the model and

the third section defines the equilibrium in this scenario. I then describe the performed

numerical exercise, while section 5 devotes attention to its computation. In section 6 we

show the results and its implications. The last section concludes.
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2.2 Model

Consider an exchange economy with a continuum of agents with total mass equal to one who

face idiosyncratic risk. There are two commodities: one perishable consumption good c and

asset holdings a. Each agent receives an stochastic endowment st at the beginning of each

period. Assume the endowment can take two possible values sL < sH , which are usually

associated with unemployed/employed status, respectively.

Effort e > 0 is made in order to increase the probability of having a good endowment

(state) next period. The probability of being employed next period also depends on whether

the agent has a college degree or not, hH or hL, respectively. The probability in period t is

defined as Pr(st+1 = sH |st, h) = P (et; st, h), which is an increasing concave function of the

effort with P (0; s, h) = 0 and lime→∞ P (e; s, h) = 1. According to the empirical literature,

assume that effort to remain employed is more effective than the effort to become employed

when previously unemployed, and effort is also more effective when the individual has a

college degree. Formally, P (et; sH , h) > P (et; sL, h) for all h, P (et; s, hH) > P (et; s, hL) for

all s. Finally let the probability be supermodular in e, s, and h.

Individuals discount future at rate β and survive next period with probability δ. When

an individual dies it is replaced by an unemployed newborn. The newly born agent inherits

previous wealth and decides whether to obtain a college degree or not at a cost φ. Agents are

altruistic and maximize lifetime utility of the household. Each individual derives instanta-

neous utility from consumption and effort according to an additive separable utility function

u(c)− e that is strictly concave and satisfies Inada conditions. Separability can be obtained

assuming the existence of lotteries and simplifies the analysis importantly [42]. The fact that

the disutility of effort is linear is just an innocuous normalization.
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Each agent is able to smooth her consumption by holding a single riskless asset. This asset

entitles the individual to receive one unit of future consumption for each unit of asset whose

price is q > 0. The amount of claims held must remain above the limit amin, a restriction

that represent the financial friction faced by individual in addition to the incompleteness of

the markets. Therefore, the budget constraint faced by an individual who holds a claims,

has a current endowment s, and chooses consumption c and future claims a′, is given by

c+ qa′ ≤ s+ a (2.1)

The agent’s problem can be represented in recursive formulation as

v (a, s, h; q) = max
c,e,a′
{u (c)− e+ βδ [P (e; s, h) v (a′, sH , h; q)

+ (1− P (e; s, h)) v (a′, sL, h; q)] + β (1− δ) v0 (a′; q)} (2.2)

subject to (2.1), c ≥ 0, e ≥ 0, and a′ ≥ amin; and where

v0 (a′; q) = max {v (a′, sL, hL; q) ; v (a′ − φ, sL, hH ; q)}

This problem is well defined since v (a, s, h; q) will inherit the concavity properties of

u (·) , while also satisfying discounting and monotonicity (see [59]). On the other hand, the

functional v0 can be replaced without loss of generalization by its least concave function.

Therefore, the first order conditions are necessary and sufficient, and the optimal decision
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rules c (a, s, h; q), e (a, s, h; q), and a′ (a, s, h; q) are given by

1 ≥ βPe (e; s, h) [v (a′, sH , h; q)− v (a′, sL, h; q)] ,

with equality if e > 0

uc (c) q ≥ βδE [uc (c′) |e, s, h] + β (1− δ) ∂v0 (a′; q)

∂a′
,

with equality if a′ > amin

c+ qa′ ≤ s+ a

The first condition shows the tradeoff between the marginal disutility and the expected

marginal benefits of exerting an effort. This condition is similar to the one obtained in the

optimal unemployment insurance literature. Using the separability of the utility function we

can prove the following lemma:

Lemma 4 Effort is a decreasing function of assets

The intuition behind this result relies on the fact that the difference on the value func-

tion for employed and unemployed people is decreasing in assets, formally v (a′, sH , h; q) −

v (a′, sL, h; q) is decreasing in a by supermodularity. In other words, it is less important

for rich households whether they are employed or unemployed since they can use their as-

sets to smooth consumption. Therefore the role of effort becomes less important. On the

other hand, poor households cannot incur in more debt when they are close to the debt

limit. Hence their current state generates great differences in their maximized utility so

effort becomes crucial in increasing the probability of being employed.

The difference v (a′, s, hH ; q)−v (a′, s, hL; q) is also decreasing in assets by a similar reason.

Using this fact and the concavity of the value function on a, we can obtain the following
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lemma:

Lemma 5 Let A (φ) = {a > amin + φ : v (a′, sL, hL; q) < v (a′ − φ, sL, hH ; q)} be the set of

assets holdings such that a newborn with inherited wealth a ∈ A (φ) will prefer to acquire a

college degree. Then there exists φ1 and φ2 such that:

• For any φ < φ1 < φ2, there exists a1 (φ) such that A (φ) = (amin + φ, a1 (φ)], where

a1 (φ) is increasing in φ;

• For any φ > φ2 > φ1, , there exists a2 (φ) such that A (φ) = [a2 (φ) ,∞), where a2 (φ)

is increasing in φ

• And if φ2 < φ < φ1, then A (φ) = [a2 (φ) , a1 (φ)].

The lemma states that if the cost of education is sufficiently low, only poor individuals

that can afford it will attend college. The reason behind the result is that, when the cost

is low, individuals that decide not to acquire education have a greater marginal value for

the assets than households that decide to invest. Then if some individual was indifferent

between going to college or not, a richer one will definitely prefer to avoid the investment.

However, if the cost of college is large the inequality reverses because of the concavity of

the value function. Thus the marginal value for individuals that decide to attend college

becomes greater and only rich enough individuals will attend college.

The second first order condition is very familiar to the literature that uses asset markets.

The limiting behavior of consumption can be characterized by applying the theory of martin-

gales. Let Zt =
(
βδ
q

)t
uc (ct) ≥ 0. Therefore, Et [Zt+1 − Zt|It] =

(
βδ
q

)t
Et

[
βδ
q
uc (ct+1)− uc (ct) |It

]
<
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0, where It is the information set at time t, including et. The previous expectation implies

that Zt is a supermartingale. Since Zt is nonnegative, we can apply the supermartingale con-

vergence theorem. This theorem states that Zt must converge almost surely to a nonnegative

random variable [62]; which leads to the following lemma:

Lemma 6 In equilibrium βδ < q

If βδ > q then Zt must converge to zero to avoid its divergence. But then this implies that

ct must diverge to infinity. This is obtained by letting the asset holdings go to infinity since

the incentives to save are greater than the ones to get more debt. This explosive solution can

not be an equilibrium. A similar behavior is obtained if βδ = q, see [16] for an exposition.

On the other hand, if βδ < q, then Zt will converge to a nondegenerate nonnegative

random variable. This implies that consumption and asset holdings will remain finite, a

necessary condition to achieve an equilibrium. In fact, there will be an endogenous upper

bound such that no agent would like to save more than such bound (see [43]). The first order

condition also implies that agents will save when facing a good shock and spend savings when

facing an adverse shock.

It is important to note that optimal decision rules will depend on their state vector

(a, s, h) and on the price of claims q. This price will be determined in equilibrium according

to a market clearing condition for the asset holdings. The existence of such equilibrium is

easy to obtain given the standard properties of the model; however, the equilibrium will not

be unique. Since we are interested in the long run interaction in this economy, we focus only

on the stationary equilibrium that we describe in the next section.
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2.3 Stationary Equilibrium

The equilibrium in an exchange economy is usually defined as policy rules and prices that

clear the markets given some aggregate states. However, the market clearing condition

is always changing in this dynamic economy given that the distribution of individuals is

always moving. Therefore, a definition of a stationary equilibrium is more appropriate in

this context. In this definition we focus on market clearing when the distribution of wealth

λ is invariant and plays the role of the aggregate variable that depends on the price q.

The law of motion of this state vector distribution is described by

λt+1 (a′, s′, hH ; q) = Pr (at+1 = a′, st+1 = s′, ht+1 = hH)

= δ

∫
{a:a′(a,s,hH ;q)}

∑
i=L,H

λt (a, si, hH ; q) · P (et; st, hH) dat

+ (1− δ)
∫
a∈A

∑
i=L,H

∑
j=L,H

λt (a, si, hj; q) da

and

λt+1 (a′, s′, hL; q) = Pr (at+1 = a′, st+1 = s′, ht+1 = hL)

= δ

∫
{a:a′(a,s,hL;q)}

∑
i=L,H

λt (a, si, hL; q) · P (et; st, hL) dat

+ (1− δ)
∫
a∈Ac

∑
i=L,H

∑
j=L,H

λt (a, si, hj; q) da
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A stationary distribution is thus defined as a distribution λ (a, s, h; q) such that

Tλ (a, s, h; q) = λ (a, s, h; q). The existence and uniqueness of the invariant distribution

is established using the approach suggested by [35]. Therefore, starting from any initial

distribution, a sufficient number of iterations will converge to the invariant one. Moreover,

since a′ (a, s, h; q) is bounded, the sequence of averaged assets will also converge.

Definition 7 A stationary equilibrium is defined by policy rules c (a, s, h; q), e (a, s, h; q),

and a′ (a, s, h; q); a value function v (a, s, h; q); a price q; and a stationary distribution

λ (a, s, h; q), such that

• The policy and value functions solve the agent’s problem (2.2)

• Markets clear:
∫
a

∑
i=1,2

∑
j=1,2 a

′ (a, si, hj; q)λ (a, si, hj; q) da = 0

• The stationary distribution λ (a, s, h; q) is induced by the policy functions and the en-

dogenous Markov chains generated by P (e (a, s, h; q) ; s, h).

The first condition states the optimality of the decisions. The second one defines market

clearing for assets, which means that the average holdings in the population must be zero.

By Walras Law, if the market of loans is cleared, then the market of the consumption good

is also cleared by making average consumption equal to the average endowment. The third

condition requires that the distribution of assets remains the same over time. For that we

need them to remain finite, this is assured by the lower bound and the fact that βδ < q. It

also plays an important role that P (e; sH , h) > P (e; sL, h).
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2.4 Numerical Exercise

We calibrate the model according to the previous literature on heterogenous agents, mainly

[36], and unemployment insurance [34]. We first assume the utility function takes the form

u (c) =
c1−σ

1− σ

This is the standard utility function used in this type of problems. According to [52],

estimates of the risk aversion coefficient σ are around 1.5. The rest of the parameters are

calculated according to periods of 8.5 weeks approximately, that is 6 periods per year. [36]

chose this length to match the average duration of unemployment spells of 17 weeks (Bureau

of Labor Statistics), which is a underestimation of the current average duration of 21.6, but

it fits the 5 year trend. For this the endowments were calibrated to sH = 1 and sL = 0.1,

where the last number assumes that individual has access to social programs when he is

unemployed. Finally β = 0.99322 to match an annual discount rate of 0.96, andδ = 0.995 to

match the average death rate.

Hugget also specified an exogenous Markov process where Pr (st+1 = sH |st = sH) = 0.925

and Pr (st+1 = sH |st = sL) = 0.5. This calibration replicates a coefficient of variation for the

annual earnings of 20%, which is close enough to the actual data. It also generates an annual

average endowment of 5.3; therefore, we set amin = −5 to simulate the financial friction. This

bound generates in equilibrium an annual interest rate between 2.3% and 3.4% in Huggett’s

calculations and is close to the natural borrowing limit of − sL
r

described by [5].

In order to obtain similar quantitative results, we calibrate our endogenous Markov chain

to find similar probabilities. We model the probability of having a high state tomorrow as

a cdf of an exponential distribution with parameter µ (si, hj) = sihj, that is P (e; si, hj) =
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1 − exp−sihje, where hL = 13 and hH = 16. This parameterization satisfies our initial

assumptions of first order stochastic dominance and the ones described by [34] to characterize

the optimal unemployment insurance. Moreover, as shown in the next section, the optimal

probabilities in equilibrium will wander around Huggett’s calibration. Finally, the cost of

education is set to φ = 4 to match the average cost of public college relative to average

income (see the 2011 report from the College Board). Note this number allows individuals

with some degree of debt to invest in education.

2.5 Computation

To find the optimal policy rules we first set a candidate for q, say q1, belonging to a plausible

interval of equilibrium prices. We then use value function iteration to obtain the optimal

policy rules. Since all the desired properties of the value function are satisfied, convergence

is achieved independently of the initial guess for the value function. To compute the solution

we discretize the choice of a, obtain e from its first order condition and consumption from

the budget constraint. The grid must be fine enough to achieve smooth policy functions.

As pointed out before, there exists a natural upper bound for a. Optimal future assets

for an employed agent start above the 450 line (when current assets are negative), and then

crosses this line for some positive level of current holdings, say amax. On the other hand, an

unemployed agent will always reduce her holdings to maintain her consumption. See Fig. 2

in the appendix for an example of an optimal policy rule for asset holdings.

This shape of the optimal policy implies that amax plays the role of a fixed point when

an agent is always employed. Moreover, it also plays the role of an upper bound since once

the agent receives a bad shock she will decrease her assets. Hence, an agent with any initial

wealth will converge to the interval [amin, amax], and remain there forever. This upper bound
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can only be computed by experimentation and thus the upper bound of the grid is set large

enough to include the fixed point.

After obtaining the optimal decision rules we compute the stationary distribution. To

obtain it we simulate an economy of 100000 agents and iterate for 200 periods.1 The initial

distribution of states and assets will not matter for the convergence. We first fix a set of two

i.i.d shocks εi,t and zi,t with a uniform distribution between 0 and 1 for each individual and

each period. We then interpolate the optimal decision using the optimal policy rules and the

current asset holdings and state. If zi,t > δ the individual dies and a newborn must decide

whether to acquire the college degree or not according to the inherited wealth. If this is not

the case then I proceed to compare the first i.i.d shock with the probability associated with

the optimal effort and the current state. If P (e (ai,t, si,t, h; q) ; si,t, h) ≤ εi,t then si,t+1 = sL,

otherwise the agent will be employed.

After the stationary distribution is computed we calculate the excess demand for assets

given the initial price q1. Then we follow Huggett’s process of bisection: if the excess demand

is positive we increase the price q, if it is negative we decrease it. This algorithm follows the

conjecture that the excess demand of assets is negatively correlated with its price. Although

this is hard to prove in general, this is the case in the interval we examined, and it has

been also true in related papers that follow the same methodology (see for example [36]

and [5]). The process continues until excess demand is approximately 0 and the difference

of the updated price is less than 0.001.

1We also chose a longer horizon without obtaining significant differences.
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2.6 Results

Fig. 1 shows the concavity of the value function that permits the contraction to find the fixed

point. It also shows how utilities diverge when asset holdings are close to the lower limit, a

result that is intuitive after examining the policy rules. The optimal asset policy is shown in

Fig. 2 and it follows the behavior described in the previous section. It shows how individuals

with low states will decrease their holdings until the lower limit, while individuals with good

shocks accumulate holdings until they reach the upper bound. This is a characteristic of the

models in this branch of the literature.

In our model we also explore a different non-monetary mechanism used by individuals

to alleviate risk. Individuals use effort to increase their probability of being employed next

period, especially when their level of assets is approaching its lower limit. The optimal

probability of employment conditional on human capital is decreasing on the asset holdings

and is lower for unemployed individuals since by assumption is harder to change their status.

These probabilities are shown in Fig. 3 and wander around the probabilities calibrated

by [36], providing a good approximation of the steady state. They also show how the

individual increases them when asset holdings are close to the lower bound.

As a consequence of this optimal strategy for risk bearing, consumption has very little

variation across different types of individuals, except for unemployed agents whose asset

holdings are close to the lower limit. Fig. 4 depicts the optimal consumption. Fig. 5 shows

the excess demand of holdings, which depends negatively on the price. The price of assets

that clears the market is 0.9933, which is equivalent to an annual interest rate of 4.1%. This

rate is higher than the one obtained by [36] since individuals have more incentive to acquire

debt instead of save.
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The obtained percentage of individuals with a college degree is 30.6% which is close

enough to the real one (29%). The simulated rate of unemployment is 5.5%, consistent with

unemployment rates for developed economies.2 The model generates an unemployment rate

of 4.6% and 6% for college and non-graduates, respectively. The generated gap between

these two rates is not enough, since these numbers are currently 4.9% and 9.5% for the

US. The model is also robust to small perturbations in the parameters. In an alternative

scenario where hL = 16 and hH = 20, the rate of unemployment decreases to 5%, which is

decomposed on 4.5% and 5.7% for college graduates and non-graduates, respectively.

The distribution of wealth in the stationary distribution differs from the one found by [36]

and the one potentially generated by the class of models where consumption can only be

smoothed through market mechanisms. These models generate distributions skewed to the

left since they must accumulate precautionary savings to deal with their idiosyncratic shocks.

In contrast, when the transitions are endogenous, individuals will diversify between the

market and the non-market mechanisms.

Fig. 6 shows how the wealth distribution in our model is skewed to the right, approximat-

ing better the real wealth distribution [63]. This suggests that in the long run individuals are

not afraid of becoming indebted since they have an extra mechanism to smooth consump-

tion. At the end, the incomplete markets partial insurance is successfully complemented by

the effort. This result is a consequence of the convexity properties of the sets. In our model

it can be traced to the concavity of the probability transition to the employed state, as well

as the concavity of the utility function.

Fig. 7 shows the disaggregation of the wealth distribution for college graduates and non-

graduates. It is found that distribution for the former is more dispersed and less skewed.

2Current unemployment for US is 7.6%, which is higher than the trend observed in previous years.
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Thus having college education seems to increase the expected wealth but creates more un-

certainty at the same time.

2.7 Concluding remarks

I have studied a model of heterogenous agents who face idiosyncratic risk and smooth their

consumption using a riskless assets and non-market mechanisms. Effort is a flow variable that

must be exerted every period to obtain or maintan a job, whereas human capital increases

the efficiency of effort in obtaining a job and persists until the individual dies. We found that

effort and assets have an inverse relationship and it is shown how the investment in a college

degree depends on its cost. If the cost is sufficiently high, as it appears to be according to

the calibration, then only rich-born agents acquire education.

In the stationary equilibrium agents diversify among these mechanisms and as a result

I obtain a distribution of wealth that is not as skewed as the one generated by previous

models. In particular, the median individual holds a small negative credit balance and exert

a medium amount of effort. This result contrasts with the ones previously obtained where

the median individual holds a positive credit balance. Therefore, our framework replicates

much better the real distribution of wealth.

The analysis also shows how the distribution of wealth for college graduates is more

dispersed and less skewed than the distribution for non-graduates. The model could be

used as a benchmark to evaluate the combination of unemployment insurance policies with

subsidies for education to improve the wealth distribution. It first suggests how asset holdings

could be used as a proxy to unobservable effort, and how education can be used as long-run

insurance.
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2.8 Figures

Figure 2.1: Value function
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Figure 2.2: Optimal policy rule for assets
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Figure 2.3: Probabilities associated with optimal effort
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Figure 2.4: Optimal policy for consumption
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Figure 2.5: Excess Demand for assets
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Figure 2.6: Stationary distribution of assets
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Figure 2.7: Conditional stationary distribution of assets
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CHAPTER 3

Nonparametric learning when unknown Markov

transitions are endogenous

3.1 Introduction

Stochastic dynamic models study environments where agents take actions that affect current

payoffs and future states, while maintaining the uncertain nature of the outcomes. Most of

these models, usually known as the rational expectations ones, assume individuals know the

relevant functions and parameters necessary to take the optimal decision. Although, this

is usually not true for most of applications in economics, its motivation depends on the

idea that agents have faced the environment enough times so that they have learned all the

relevant aspects of it, including the optimal decisions.

However, it has been proven this is not necessarily the case. Two sources for the lack

of convergence have been identified. The first of them shows that complete learning may

not be optimal. This is the case of the bandit problems studied by [27] when arms (ac-

tions) are countable, and later extended by [22] to a more general scenario. The second of
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them was recently addressed by [1]. They showed that when individuals have an arbitrarily

small uncertainty on the conditional distribution of the signals, the difference in the implied

asymptotic beliefs is not necessarily small.

In this paper we focus on models where actions determine the Markov transitions over

future states but this transitions are unknown. For example, investment and learning are

usually simultaneous and interdependent since the returns of different projects are unknown

and the only way to learn about them is by undertaking them. This problem is associated

with the adoption of new technologies and our approach explains why better technologies are

not always implemented in developing countries. Another example that fits this situation

is related to the health status of an individual. Health is determined by preventive care

when individuals are healthy and by taken medicines when individuals are ill, although their

particular effect is uncertain.

The purpose of the paper is to provide a general learning process for this unknown en-

dogenous transitions. We generalize previous results by not imposing parametric restrictions

on the distribution over future states. Therefore, our approach is robust to the second source

of lack of convergence.

We first consider the case where the possible set of actions is discrete as in bandit prob-

lems. We develop a tractable bayesian model where we impose no structure on the transition

functions, although it guarantees convergence to the true transition function provided that all

actions are taken enough times. Unfortunately, this latter condition is not always satisfied;

in our model optimal incomplete learning is also possible.

We then allow the actions to take a convex and compact set of values as is usual in most

of the dynamic literature. We enrich the model by giving more structure to the transition

function. In particular, we let it be a function of the action taken, a constant initial attribute,
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and stochastic shocks. The second component captures inherited characteristics, such as

ability or genes, that are unknown to individuals and must discover through time. The third

component introduces the stochastic nature of the problem. We assume the stochastic shocks

are not observable and their density is unknown, as opposed to the traditional literature

where a particular density is assumed (a normal one most of the times) and a bayesian

learning rule is specified over the parameters that characterize the density.

Our approach is different to what has been done previously since it involves learning

about functions and not only parameters.1 For instance, we do not need assumptions over

the density of the shocks that hit the individual each period, yet it plays an enormous role in

determining the optimal decisions and can be (partially) learned from our process. To find a

learning process we use tools from nonparametric econometrics in a similar way parametric

OLS regressions have been used in adaptive learning. This approach guarantees convergence

to the rational expectations actions but in a more general framework.

We show that, even though the agents cannot learn all of the unknowns, they will be

able to learn the probability of having the good state, which is a composite function of

the unknowns and is the relevant function to take the optimal decision. The unknowns

are not identified since the relevant probability can be obtained by different compositions

of functions. Therefore, we impose some structure on the transformation function of the

actions and use a normalization by focusing on its least concave representative, a function

that can be estimated by nonparametric techniques [49]. This normalization allows us to

find also an estimate of the density of the shocks and the inherited attribute that matches

with the overall composition.

Finally, we do not require completely time consistent individuals. Our learning process

1One remarkable exception is [17]. However, as discussed later in this section, their approach cannot be
applied in our framework.
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apply for passive learners who think each period they know the relevant functions to take

an optimal decision, although at the beginning of each period they update those functions

with the experience they have accumulated. A completely forward looking agent would be

able to learn faster and completely by also using the actions for experimentation.

3.1.1 Related literature

Our model is related with literature on bandit problems where agents take sequential actions

to maximize the discounted present value of an stream of rewards, but without knowing ex

ante the rewards from each action. The tradeoff faced by agents is between exploitation

and exploration (or experimentation), which can be associated between short term and long

term rewards, respectively. Our model generalizes previous ones by not assuming a particular

conditional density over the signals.

As mentioned before, this paper is also related to adaptive learning. In the context of

macroeconomics and general equilibrium, the main body of this literature assume agents

perform OLS regressions to estimate unknown parameters given the available information

these agents have.2 Several papers have shown how a rational expectations equilibrium can

be achieved using this approximation even if agents mispecify the relevant model; see for

example [7], [12], or [13]. Furthermore, [46,47] provide conditions when model mispecification

is not crucial to the achievement of the equilibrium in an environment where the unknown

parameters face linear dynamics.

However, as [40] shows, the convergence to a rational expectations equilibrium is sensitive

to the stochastic law of motion of the unknown parameters and the specification of the agent’s

model that they estimate. They show that if the dynamics of the parameter is non-linear,

2There are alternative methods such as constant gain learning. See [24] for a extensive review of these
approaches in macroeconomics.
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mispecification will lead to non-optimal and non-rational equilibria. This result motivated

the introduction of a non-parametric adaptive learning process by [17] that applies both

for rational expectations and Nash equilibria. Their paper follows a similar structure of

the previous literature but allows the agent to learn the relevant functions to achieve an

equilibrium. Although we share the same spirit of nonparametric learning processes, our

methods differ. This difference arises because they only consider learning algorithms that

evolve linearly.

In our model learning is achieved by estimating in each period the normalized functions

using modified maximum likelihood functions in two stages (see [18] and [50]). We follow

importantly [49] since her paper deals with the nonparametric estimation and identification

of several type of models related to ours. Moreover, she provides the consistency result of the

estimator that is necessary to achieve the learning outcome of our paper. Therefore, we use

her results as tools to generate learning in our model. However, our model, its implications,

and its interpretation are new in the literature.

The organization of the paper is as follows. In the second section we describe the model

with discrete actions and nonparametric learning. In the next section we describe the case

where actions can take a convex and compact set of values and we introduce the assumptions

required to obtain the convergence in this scenario. Finally, in the last section, we conclude.

3.2 Discrete Actions

Consider an infinitely lived agent who wants to maximize her expected utility function over

her lifetime. At the beginning of each discrete period a state st ∈ S is observed and the

agent chooses an action at ∈ A. Let A and S be discrete sets indexed by n = 1, ..., N

and k = 1, ..., K, respectively. The payoff per period is given by u (at; st) and actions also
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determine the probability distribution over future states. Let P k
n (sj) be the probability that

the future state is sj given the current action an and current state sk. Therefore there are

K ×N ×K − 1 transition probabilities.

Suppose first that the transition probabilities are known. For simplicity of the exposi-

tion, let us assume an individual maximizes a Von Neuman- Morgenstern utility function

represented recursively by

v (sk) = max
n

{
u (an, sk) + γ

∑
s′∈S

v (s′)P k
n (s′)

}
forγ ∈ (0, 1)

When the distribution is not known we have to keep track of the agent’s beliefs. Suppose

first there are two states sH > sL and two actions, then we just need to keep track of four

probabilities. We let P k
n (sH) have as prior a Beta distribution with parameters αkn (sL) and

αkn (sH). This distribution is defined on the interval [0, 1] and its mean is given by

E
[
P k
n (sH)

]
=

αkn (sH)

αkn (sH) + αkn (sL)

The prior is updated using Baye’s rule every time an is chosen when the current state is sk

and the new st+1 is drawn, if not it will remain the same. This updating rule follows the

literature in bandit problems when arms are independent. Given a prior with parameters(
αkn,0 (sL) , αkn,0 (sH)

)
, the updating rule for α = (α1

1 (S) , α1
2 (S) , α2

1 (S) , α2
2 (S)) is given by:

αkn,t+1 (sj) =

 αkn,t (sj) + 1 if st+1 = sj, at = an, st = sk

αkn,t (sj) otherwise

Note that the state next period plays the role of a signal. The parameter αkn,0 (s) is the

initial belief of the number of periods the individual has had state s after choosing action
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an when the previous state was sk. When the initial prior is given by αkn,0 = 1 and βkn,0 = 1

it represents a uniform distribution over [0, 1], the most uninformative prior. Moreover,

conditional on having a previous state sk and choosing action an, the mean E
[
P k
n,t (sH)

]
can

be interpreted as the number of times and individual has had a good state plus her initial

belief, over the total number of periods (including the beliefs ones).

The generalization of this framework to K states and N actions follows the same struc-

ture. Let P k
n (S) have as prior a Dirichlet distribution F

(
·|αkn (S)

)
with parameters αkn (S).3

In this case

E
[
P k
n (sj)

]
=

αkn (sj)∑K
i=1 α

k
n (si)

The updating rule now applies over α =
(
α1
1 (S) , ..., αkn (S) , ..., αKN (S)

)
and is the same

as before. For convenience we will also denote an updated α as αk′
n,j when an update has

been done to αkn (sj) whereas the other parameters remain the same. That is, when current

state was sk, action an was chosen, and the next period realization was sj.

The problem can be expressed recursively as

v (sk,α) = max
n

{
u (an, sk) + γE

[
v
(
sj,α

k′
n,j

)
|an, sk

]}
= max

n

{
u (an, sk) + γ

[
K∑
i=k

EPkn (sj)
[
P k
n (sj) v

(
sj,α

k′
n,j

)]]}

= max
n

{
u (an, sk) + γ

K∑
j=k

[
αkn (sj)∑K
i=1 α

k
n (si)

v
(
sj,α

k′
n,j

)]}

3When K = 2 the Dirichlet distribution is just a Beta distribution.
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Therefore the agent only cares about the frequency each state has been realized given

previous actions and states. Note that our learning process did not assume any parametric

restriction over the distribution of the signals as a function of the actions. Our parametric

assumptions over the prior were only used for each point in the grid, but we did not assume

anything about the overall composition. Moreover, our prior assigns positive mass to any

number in the interval (0, 1), guaranteeing convergence if the action is taken enough times.

Therefore, this approach is more robust than traditional ones assuming agents know the

conditional distribution of the signals. This is particularly important since it has been shown

recently by [1] that when individuals do not perfectly identify this conditional distribution

and have a small uncertainty about it, asymptotic beliefs can vary importantly from their

true value.

However, as in bandit problems, we can not guarantee that the agent will eventually

converge to the optimal decision taken in the model where the transitions are known. The

intuition behind this result is that ex ante an agent may find optimal to stick with one

action. If priors of other actions were not favorable then the individual will not find them

attractive to try them enough times so as to be close to the true probabilities. This strategy

implies that the individual will learn perfectly the transition associated with the action taken

whereas having bad estimates of the transitions associated with other actions. In the next

subsection we present an example of non convergence.

3.2.1 Example

Consider an infinitely lived consumer who has to invest in her health every period. Being

healthy generates an income sH = 1, whereas an unhealthy person gets half of this income

sL = 0.5. This income is used for consumption and investment ct+ it = st. The agent orders
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the consumption streams according to U (c) =
∑∞

t=1 β
tEst

[
c1−σt

1−σ

]
, where σ = 2; whereas

investment increases the probability of being healthy next period. Therefore, the current

payoff is given by u (i; s) = (s−i)1−σ
1−σ .

Investment can only take two values: i1 = 0.25 and i2 = 0.45. The probability of being

healthy next period conditional on the investment taken is independent of the current state

and is given by P (sH |i) = 2i. Let the discount factor be β = 0.9932. Under this setup,

rational expectations optimal decisions consist on choosing the high investment when she

has the high state, and choosing the low investment when having the low state.

However, when transitions have to be learned, convergence to the rational expectations

decisions is not obtained. We simulate shocks for 100 periods and analize the behavior of this

agent in the learning environment described before. Starting with the most uninformative

prior for both levels of investment, individuals will first try the cheapest investment since

the expected probability is the same (0.5). After getting bad shocks in the next two periods

the individual updates this transition and lower its mean (0.25).

The next period the individual tries the high investment but after obtaining a bad shock

(which happens with a 0.1 probability) the individual updates the transition probability and

lowers its mean to 1/3. After period 3 the individual does not choose the high investment

again since its relatively more costly than the low investment. Moreover, the transition

associated with the low investment starts to converge and the agents gets stuck with low

investment. The next figure shows the simulated evolution of the probabilities.

One can also include nonparametric restrictions such as monotonicity or concavity of the

transition function with respect to the actions to refine the priors. In this case actions will

be correlated now, which means that an action could be used to learn about the effect of

another action. Nevertheless, [22] provide an analysis of settings where incomplete learning
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Figure 3.1: Evolution of beliefs
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may be ex ante optimal even when arms are correlated.

To break this negative result we need a model with more structure that guarantees

complete learning on the optimal action. In the next section we explore a model where we

impose additional assumptions on the transition function and the set of possible values the

actions to ensure the convergence to the optimal action, while maintaining the nonparametric

approach.

3.3 Convex and Compact set of actions

Let us now assume the set A is convex and compact. In particular let A =
L∏
l=1

[al, āl] ⊂ RL

be an L-dimensional closed interval containing the vector of zeros.4 Let also u (at; st) be

a decreasing and differentiable convex function in at, which could be interpreted as a cost

function that wants to be minimized. We will now use nonparametric econometrics to keep

4The necessity of a being a vector will become clear later.
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track of the unknown transition function. For this purpose we focus on a two state model

where sH > sL, we assume the transition between states is independent on the previous state,

and we add concavity and monotonicity as nonparametric conditions over the transition as

a function of the actions.

The probability of having a high state next period is assumed to be increasing in the

effect of an action taken in the current period h (at). This function captures the possibly

unknown effect of the actions and its mapping to the space of the stochastic shocks. For

example, the effect of preventive care may be different between different agents. The function

h : A → R+ belongs to Ω, the set of concave, monotone increasing, strictly positive and

twice continuous differentiable functions satisfying h (0) = 0. That is, the set of production

functions satisfying non-increasing returns to scale, no free lunch and free disposal.5

The probability also depends on an inherited and constant through time characteristic of

the individual θ ∈ Θ ⊆ R. For example, this parameter can be associated with genes in the

case when the state is health. Finally, the state will also depend on i.i.d. shocks εt ∈ R, which

density Fε (·) belongs to Γ = {F : R→ [0, 1] | F is monotone increasing and F (0) = 0.5}.

In particular, suppose the following law of motion for s

st+1 = sH if θ + h (at) ≥ εt (3.1)

st+1 = sL otherwise

5We do not impose Inada conditions since we do not want to rule out 0 as an optimal investment. In
fact, we require that the first derivative of this function has to be bounded.
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The additivity between the effect of the actions and the initial attribute is necessary to

interpret and partially identify θ after the normalizing assumptions over Fε and h. Hence,

it can be interpreted either as the effect on the probability even when no actions have been

taken, or as the mean of the distribution of the shocks. The first interpretation is closer to

the case of genes or ability, whereas the second is related to how lucky an individual is or

as a characteristic of the environment she faces. We stick with the first one since it goes

along the traditional economic literature. Also note that if θ were to enter multiplicatively,

for example, then it would be just part of the function h.

Given this law of motion, the probability of having the high state in t + 1 is given by

Fε (θ + h (at)). We require this probability to be concave in at in order to reflect the fact

that the marginal probability of the actions is positive but decreasing. This probability

also shows how the likelihood of being high type tomorrow depends on initial characteristics

and possible shocks we can experience (nature) and the decisions we have taken in our life

(nurture).

This is a strictly concave problem satisfying monotonicity and discounting, hence the first

order conditions are necessary and sufficient.6 Assuming the agent knows the environment

perfectly, including functions h and Fε (·) and her initial characteristic θ, then the optimal

decision a∗ (s) is characterized by

−Dau (a∗ (s) ; s) = β [v (sH)− v (sL)] fε (θ + h (a∗ (s)))Dah (a∗ (s)) (3.2)

where Da denotes the gradient of derivatives since a is a vector.

6See [59] for details.
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Interestingly, the density of the stochastic shocks may generate non-monotonic com-

parative statics. For instance, if the distribution of the random shocks follows a normal

distribution, the action gets its maximum when θ = −h (a∗ (s)). If the agent has a very

negative initial attribute, the optimal action will be small because it is too costly to increase

the likelihood of having a high state tomorrow and overcome the inherited attribute. On the

other hand, if the individual has a very high θ, it is not necessary to take greater actions to

insure a high probability of having the good state. In other words, for agents with extreme

genes their future state is almost predetermined (decided basically by nature), but for agents

with mild genes their state will be importantly determined by nurture. A similar behavior is

observed for single peaked distributions. However, if the distribution is uniform, the optimal

action is independent of θ.

3.3.1 Identification and Least Concave Representatives

Now assume the agent does not know her genes θ∗, the action production function h∗ (·)

and the distribution of the stochastic shocks F ∗ε (·). Following [49] closely, we will show

that, although these unknowns can not be identified, we can characterize the set of trios

(θ, h, Fε) that are observationally equivalent to (θ∗, h∗, F ∗ε ). Therefore, we can focus on a

representative of such set.

We choose the least concave as such representative since is the closest to a linear function

and thus is easier to estimate using linear programming. Its estimation follows the same spirit

as the revealed preference approach presented in [4] where a piecewise concave function is

obtained. Moreover, we know that as the observations becomes ”dense” it will converge to

the true function [48,49].

Definition 8 The trio (θ, h, Fε) ∈ (Θ,Ω,Γ) is observationally equivalent to (θ∗, h∗, F ∗ε ) if
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Fε (θ + h (a)) = F ∗ε (θ∗ + h∗ (a)) for all a ∈ A .

That is, the trios are observationally equivalent if they yield the same probability of

having a high state, which is the object we are interested in. A trio is identified within a

set if there is no other trio in that set that generates the same probability. The next lemma

shows that this is not the case.

Lemma 9 There exists (θ, h, Fε) ∈ (Θ,Ω,Γ) that is observationally equivalent to (θ∗, h∗, F ∗ε )

and such that (θ, h, Fε) 6= (θ∗, h∗, F ∗ε ).

Proof. Let (θ, h) ∈ (Θ,Ω) be such that for some strictly increasing superadditive function

f : R → R satisfying f (0) = 0, θ + h (a) = f (θ∗ + h∗ (a)) and (θ, h) 6= (θ∗, h∗). Let

Fε = F ∗ε ◦f−1, then (θ, h, Fε) ∈ (Θ,Ω,Γ) for all a ∈ A. Hence Fε (θ + h (a)) = F ∗ε (θ∗ + h∗ (a))

for all a ∈ A, i.e (θ, h, Fε) is observationally equivalent to (θ∗, h∗, F ∗ε ).

Usually authors impose more restrictions over the functions in order to identify them.7

However, we can characterize all the observationally equivalent trios as the next Lemma

suggests.

Lemma 10 If (θ, h, Fε) ∈ (Θ,Ω,Γ) is observationally equivalent to (θ∗, h∗, F ∗ε ) then there

exists a strictly increasing function f : R→ R such that f (0) = 0, θ+h (a) = f (θ∗ + h∗ (a))

and (θ, h) 6= (θ∗, h∗).

Proof. Suppose there is no such increasing f . Then for some a1, a2 ∈ A either h (a1) > h (a2)

and h∗ (a1) ≤ h∗ (a2), or h (a1) ≤ h (a2) and h∗ (a1) > h∗ (a2). However, since h and h∗ are

7For a complete survey of restrictions used to achieve identification see [51].

59



strictly increasing, neither statement can be true, hence such increasing f must exist. In

order to have observationally equivalence it must be true that Fε = F ∗ε ◦ f−1. Hence, we

need f (0) = 0 in order to have Fε (0) = 0 and Fε ∈ Γ.

Therefore, we can take one representative of each equivalent class and focus our attention

in it without loss of generalization. We choose the least concave function as such represen-

tative since there are non parametric econometric techniques to calculate this function. To

explain the definition of a least concave function we follow Debreu (1976).

Let U be the set of all monotone transformations of h : A→ R+, a concave function. The

least concave function h̄ can be defined as the least element in U with respect to the relation

”more concave than”, where u is more concave than v if there exists a concave function

g : R+ → R+ such that u = g ◦ v. Formally:

Definition 11 Suppose h : A → R+ is a concave function. A function h̄ : A → R+ is a

least concave representative if for any strictly increasing function f : R+ → R+ such that

f ◦ h is concave, there exists a concave function g : R+ → R+ such that f ◦ h = g ◦ h̄.

This definition implies that if a concave function is a strictly increasing transformation

of other, they share the same least concave representatives. [19] also showed the existence,

uniqueness up to increasing linear transformation and continuous differentiability when h is

continuous differentiable of the least concave representatives.

Note that the definition of least concave representatives is closely related to the envi-

ronment described in this paper considering that the probability of having high state is a

composite function of an increasing function Fε and a concave function θ + h (a). Also note
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that since we impose the restriction that h (0) = 0, the least concave representative is unique

up to a constant (not a linear transformation).

In order to obtain a nonparametric estimator of the least concave function we need to

impose compactness in all the sets we are interested in. We first define a compact set W ⊂ Ω

of twice continuous differentiable least concave functions. To obtain it we impose some

plausible boundary and Lipschitz conditions on its values, gradients, Hessians and Gaussian

curvatures (see [49] for details). Also let θ ∈ [θmin, θmax] = Θ and Γ̂ be the restriction

of Γ to the compact domain. Finally, functions in W must satisfy θmin + h (a) = x and

θmax + h (ā) = x̄, where x and x̄ are known.

Let Ŵ be the set of concave functions that possess least concave representatives in W .

Therefore, all functions in Ŵ possess a unique representative in W . The next lemma provides

a useful characterization of observationally equivalent concave functions.

Lemma 12 Suppose that (θ, h, Fε) ∈
(

Θ, Ŵ , Γ̂
)

. Let h̄ and h̄∗ denote respectively the

least concave representatives of h and h∗. Define F̄ε, F̄
∗
ε , θ̄ and θ̄

∗
by F̄ε

(
θ̄ + h̄ (a)

)
=

Fε (θ + h (a)) and F̄ ∗ε
(
θ̄
∗

+ h̄∗ (a)
)

= Fε (θ∗ + h∗ (a)). Then (θ, h, Fε) is observationally

equivalent to (θ∗, h∗, F ∗ε ) if and only if
(
θ̄, h̄, F̄ε

)
=
(
θ̄
∗
, h̄∗, F̄ ∗ε

)
.

Proof. Suppose (θ, h, Fε) is observationally equivalent to (θ∗, h∗, F ∗ε ). By Lemma 10, there

exists a strictly increasing function f : R → R such that f (0) = 0 and θ + h (a) =

f (θ∗ + h∗ (a)). By Definition 11, the uniqueness of the least concave representative and

the definition of W we have that θ̄ = θ̄
∗

and h̄ = h̄∗. Finally, by definition of F̄ and F̄ ∗, and

observationally equivalence between the trios, it is true that F̄ ∗
(
θ̄
∗

+ h̄∗ (a)
)

= F̄
(
θ̄ + h̄ (a)

)
.

Hence F̄ = F̄ ∗.

61



Conversely, suppose
(
θ̄, h̄, F̄ε

)
=
(
θ̄
∗
, h̄∗, F̄ ∗ε

)
. Then, by definition of F̄ε and F̄ ∗ε , Fε (θ∗ + h∗ (a)) =

F̄ ∗ε
(
θ̄
∗

+ h̄∗ (a)
)

= F̄ε
(
θ̄ + h̄ (a)

)
= Fε (θ + h (a)), implying the observationally equivalence

of (θ, h, Fε) and (θ∗, h∗, F ∗ε ).

This Lemma implies that all observationally equivalent trios giving us the same probabi-

lity of having the high state have the same least concave representative. Moreover, the genes

can be compared across individuals if we calculate that least concave representative. Also,

since h̄∗ is continuously differentiable, the marginal probability of the actions using the least

concave representatives is the same as the one using the true functions. Thus, the agent can

calculate Equation (3.2) accurately with this information.

Let yt = 1 if st+1 = sH and 0 if st+1 = sL. [49] shows that we can obtain a strongly

consistent and identifiable estimator of
(
θ̄
∗
, h̄∗, F̄ ∗ε

)
with the observables {(yt, at)}Tt=1 if the

following assumptions are satisfied:

1. The random term ε is independent of a has a strictly increasing cumulative distribution

F ∗ε .

2. Actions a possesses a bounded Lebesgue density g whose support is A and whose

probability measure PX is absolutely continuous.

3. The function h∗ belongs to the set of all concave functions that posses least concave

representatives in W .

All these properties are satisfied in our model by construction. The estimation procedure

for the least concave function and the initial attribute uses the maximum score estimation

method, whereas the density of the shocks is obtained via maximum likelihood (see [49] for

details). Throughout this section we have assumed a is a vector. If a where to belong to the
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real line, the least concave function is simply given by a linear function connecting the two

known limit values of the function θmin + h (a) and θmax + h (ā), which will also allow us to

obtain θ∗. Therefore, an estimation of the least concave function is nontrivial only if a is a

vector.

3.3.2 Passive Learning

Now suppose the agent does not know the trio (θ∗, h∗, F ∗ε ). We focus on passive learners

which we define as agents who do not internalize the learning process and thus does not

experiment and learn optimally. This agent takes the decision as if she knows the true

functions. After more observations are obtained she updates her beliefs but again thinks

those are the true unknown functions.

We follow this approach since the internalization of the learning process involves the

inclusion of a infinite dimensional object as a state variable. Despite this inconsistency, this

type of agents will be arbitrarily close to the optimal decision as she accumulates experience

in this scenario. Consistent or active learners will be able to completely learn at a greater

speed by doing experimentation.

We have shown that, although we cannot identify all the unknown functions and parame-

ters, we can focus on a representative of the class of functions that yield the same probability,

that is we will be only interested in z∗ (a) = F ∗ε (θ∗ + h∗ (a)). Then, by generating obser-

vations through time via the choices made by the individual and the experimentation made

by nature, the agent will be able to estimate consistently the least concave representative.

Therefore, as long as the individual does not get stuck in an action, she would be able to

approach the optimal decision as time goes to infinity. The reason why the agents do not get

stuck is because of the smoothness properties imposed to the least concave function, which
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are inherited to the transition function.8

In time zero, let the agent have a prior over (θ, h, Fε) ∈
(

Θ, Ŵ , Γ̂
)

. 9 These priors

can be interpreted as information learned from others experiences. Using these priors and

according to the first realization s0 = sk the individual calculates the optimal action a0 (sk)

using Equation (3.2). She will do the same calculation every period until her state changes,

say time τ . Then sτ = s−k and her optimal action aτ (s−k) changes, where ”−k” denotes

the opposite state of sk. Of course we need the priors to imply different optimal actions in

each state to have a meaningful learning process. At time τ + 1 the agent will have enough

variation to estimate a new prior of the functions using her history {st+1, at}τt=0 and the

technique described in [49].

With the new updated prior, she will use Equation (3.2) to calculate the current opti-

mal action aτ+1. After that period, she will update her prior every period t with the new

information she gathers, (st+1, at). The smoothness properties inherited by the transition

function will generate a contraction and will imply the convergence of the action to the opti-

mal one. However, since optimal decision will tend to concentrate around (a∗ (sL) , a∗ (sH))

as the individual approaches to the true functions, the estimation will be dominated by these

observations and therefore will ruin its properties.

To avoid this result we can define an optimal stopping time that allows us to be as

close as we want to the true functions. Formally, for any ε > 0 there exists a T such that

d (zT ,z∗) < ε. After T the individual will stop learning and will conform to be sufficiently

close to the optimal actions. Note this is a consequence of this passive learning process

8Of course the utility function has to be smooth enough. In this case, concavity and differentiability will
suffice.

9Note the prior we are defining here does not follow the bayesian sense. In the bayesian approach, a prior
should be defined as a nondegenerate probability distribution over the sets. In this case is just a degenerate
probability distribution over the sets.
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3.3.3 Optimal Learning

This learning process is myopic since the agent does not internalize the updating process

generated every period by the estimation. An active learner would consider this updating

process as a constraint every period and the estimated functions and parameters as state

variables. This refinement would allow for experimentation since the F.O.C. (Equation (3.2))

used in the optimum under complete knowledge gets distorted. In this case the choice of the

action will also consider its effect on the updating process. Therefore, the individual will be

able to learn faster when learning is internalized.

Formally, the value function for an active learner is given by:

v (s,z) = max
a∈A

 u (a; s) +

β [Fε (θ + h (a)) v (sH ,zH) + (1− Fε (θ + h (a))) v (sL,zL)]



subject to zk = G (z, sk, a) for k = L,H, the updating process. The optimal decision is

characterized now by following F.O.C

−Dau (a∗; s) = β

 [v (sH ,zH)− v (sL,zL)]

[fε (θ + h (a∗))Dah (a∗) + Es′ [DaG (zs′ , s
′, a∗)]]



Now the Euler equation gets distorted by the term Es′ [DaG (z, s′, a∗)], which shows the

expected benefit from experimentation. This distortion carries the optimal decision away

from the rational expectations decision (a∗ (sL) , a∗ (sH)). Therefore the properties of the

estimator will not be ruined and the agent will be able to learn completely the unknowns.
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Nevertheless, as previously shown, the difference of the long run average payoff between the

passive and the active learner will be just a function of ε. On the other hand, modelling

optimal learning gets tedious since an infinite dimensional variable has to be added as a

state, and we can not assure the new constraint have desired properties (such as concavity).

3.4 Concluding remarks

We have studied a dynamic stochastic model where current actions determine the probability

distribution over future states, while constrained by a current state . We first studied a

bandit problem with possibly correlated arms and nonparametric learning. That is, we did

not assume a particular functional of the transition function; instead, we show how to update

each point of the transition function using a simple tractable model. This approach has the

advantage to be robust to uncertainty on the conditional distribution of the signals, which

has been proved to be determinant in the convergence of the asymptotic beliefs [1].

As the classic result in bandit problems, convergence to the optimal action when tran-

sitions are known is not obtained. Therefore, we enrich our model by allowing the actions

to be in a compact and convex set and by imposing regularity conditions on the transition

function. We focus on a two state model and let the probability of having a high type next

period depend on the effect of the action chosen by the agent (nurture), a constant inherited

attribute and the distribution of the stochastic shocks determined by nature.

We suggested a learning process when the agent does not any of the three functions and

the individual does not internalize the learning process. Since these unknowns can not be

identified, we first characterized the set of all the unknowns that are observationally equiv-

alent, i.e, that yield the same probability. Secondly, we chose a representative of such set,

the least concave one, and show how we can estimate it provided some plausible conditions.
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These estimators are consistent, meaning that as the agent gets more experience in this

game she can better calculate the representatives. Finally we stressed the difference when

the individual internalizes the updating process.
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[31] G.D. Hansen and A. İmrohoroğlu. The role of unemployment insurance in an econ-
omy with liquidity constraints and moral hazard. The Journal of Political Economy,
100(1):118–142, 1992.

[32] J. Heathcote. Fiscal policy with heterogeneous agents and incomplete markets. Review
of Economic Studies, 72(1):161–188, 2005.

[33] J. Heckman, L. Lochner, and C. Taber. Explaining Rising Wage Inequality: Explana-
tions With A Dynamic General Equilibrium Model of Labor Earnings With Heteroge-
neous Agents. Review of Economic Dynamics, 1(1):1–58, 1998.

[34] H.A. Hopenhayn and J.P. Nicolini. Optimal unemployment insurance. Journal of po-
litical economy, 105(2):412–438, 1997.

[35] H.A. Hopenhayn and E.C. Prescott. Stochastic monotonicity and stationary distribu-
tions for dynamic economies. Econometrica: Journal of the Econometric Society, pages
1387–1406, 1992.

[36] M. Huggett. The risk-free rate in heterogeneous-agent incomplete-insurance economies.
Journal of economic Dynamics and Control, 17(5-6):953–969, 1993.

[37] R.D. Innes. Limited liability and incentive contracting with ex-ante action choices* 1.
Journal of economic theory, 52(1):45–67, 1990.

[38] S. Karlin and H. Rubin. The theory of decision procedures for distributions with mono-
tone likelihood ratio. The Annals of Mathematical Statistics, 27(2):272–299, 1956.

[39] P. Krusell and A.A. Smith. Income and wealth heterogeneity in the macroeconomy.
The Journal of Political Economy, 106(5):867–896, 1998.

[40] C.M. Kuan and H. White. Adaptive learning with nonlinear dynamics driven by depen-
dent processes. Econometrica: Journal of the Econometric Society, pages 1087–1114,
1994.

[41] R.A. Lambert. Executive effort and selection of risky projects. The Rand Journal of
Economics, pages 77–88, 1986.

[42] R. Lentz and T. Tranæs. Job search and savings: Wealth effects and duration depen-
dence. Journal of Labor Economics, 23(3), 2005.

[43] L. Ljungqvist and T.J. Sargent. Recursive macroeconomic theory. The MIT press, 2004.

70



[44] J.M. Malcomson. Principal and expert agent. The BE Journal of Theoretical Eco-
nomics, 9(1):17, 2009.

[45] G. Manso. Motivating innovation. The Journal of Finance, 66(5):1823–1860, 2011.

[46] A. Marcet and T.J. Sargent. Convergence of least-squares learning in environments
with hidden state variables and private information. The Journal of Political Economy,
pages 1306–1322, 1989.

[47] A. Marcet and T.J. Sargent. Convergence of least squares learning mechanisms in self-
referential linear stochastic models. Journal of Economic theory, 48(2):337–368, 1989.

[48] A. Mas-Colell. On revealed preference analysis. The Review of Economic Studies,
45(1):121–131, 1978.

[49] R.L. Matzkin. Least concavity and the distribution-free estimation of nonparametric
concave functions. Yale University, Cowles Foundation for Research in Economics,
1990.

[50] R.L. Matzkin. Nonparametric and distribution-free estimation of the binary threshold
crossing and the binary choice models. Econometrica: Journal of the Econometric
Society, pages 239–270, 1992.

[51] R.L. Matzkin. Nonparametric identification. Handbook of Econometrics, 6:5307–5368,
2007.

[52] R. Mehra and E.C. Prescott. The equity premium: A puzzle* 1. Journal of monetary
Economics, 15(2):145–161, 1985.

[53] P.R. Milgrom. Good news and bad news: Representation theorems and applications.
The Bell Journal of Economics, pages 380–391, 1981.

[54] G. Moscarini and L. Smith. The optimal level of experimentation. Econometrica,
69(6):1629–1644, 2001.

[55] D. Neal. Industry-specific human capital: Evidence from displaced workers. Journal of
labor Economics, pages 653–677, 1995.

[56] N. Persico. Information acquisition in auctions. Econometrica, 68(1):135–148, 2000.

[57] S. Rendon. Job search and asset accumulation under borrowing constraints*. Interna-
tional Economic Review, 47(1):233–263, 2006.

[58] E.G.F. Stancanelli. Do the rich stay unemployed longer? an empirical study for the uk.
Oxford Bulletin of Economics and Statistics, 61(3):295–314, 1999.

[59] N.L. Stokey, R.E. Lucas, and E.C. Prescott. Recursive methods in economic dynamics.
Harvard Univ Pr, 1989.

71



[60] D. Szalay. Contracts with endogenous information. Games and Economic Behavior,
65(2):586–625, 2009.

[61] C. Wang and S. Williamson. Unemployment insurance with moral hazard in a dynamic
economy. In Carnegie-Rochester Conference Series on Public Policy, volume 44, pages
1–41. Elsevier, 1996.

[62] D. Williams. Probability with martingales. Cambridge Univ Pr, 1991.

[63] E. Wolff. Recent trends in household wealth in the united states: Rising debt and the
middle-class squeezean update to 2007. Annandale-on-Hudson, NY: Levy Economics
Institute, Bard College, 2010.

72




