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ABSTRACT OF THE DISSERTATION

Enhancing the Utility of Instrumental Variables in Observational Research

By

Roy S. Zawadzki

Doctor of Philosophy in Statistics

University of California, Irvine, 2024

Professor Daniel Gillen, Chair

A central goal in health research is to estimate the causal effect of a treatment or exposure

on an outcome of interest. When randomization cannot be achieved due to ethical, feasibility,

or monetary constraints, we must turn to observational studies to isolate causal effects.

One core challenge in this setting is controlling for confounding, or extraneous factors that

cause both the exposure and outcome. Observational studies are prone to bias due to

unmeasured confounding, which renders methods like confounder adjustment and propensity

scores ineffective. This has motivated the instrumental variable (IV) approach where we use

a variable that influences the exposure but is otherwise not associated with the outcome, to

quasi-randomize the exposure, hence producing unbiased causal effects. This dissertation

makes three important contributions to enhance the utility of IVs in their application to

observational data. First, in the linear setting, we analytically quantify the relative trade-offs

between the confounder and the IV approach under the violation of key causal identification

assumptions including unmeasured confounding, the exclusion restriction, independence of

the IV, and unmeasured treatment effect heterogeneity. We further provide guidelines for

practice and develop a sensitivity analysis procedure to quantify these relative trade-offs.

In the next contribution, we move to the topic of nonparametric identification of the local

average treatment effect (LATE), the estimand targeted by IVs, by developing an influence

function (IF) based estimator to incorporate unknown sampling weights to replicate causal

xiii



estimates across populations – an important facet of enhancing confidence in observational

study findings. Via the use of cross-fitting, our method is able to use machine learning (ML)

to flexibly model nuisance functions, including the sampling weights. Furthermore, we extend

this framework to provide weighted bounds on the ATE. Our final contribution extends the

nonparametric, IF-based framework for identifying the LATE to the time-to-event setting.

With time-to-event outcomes, causal inference with IVs is often limited by the proportional

hazards assumption and the non-collapsibility of the hazard ratio (HR). Therefore, rather than

targeting the HR, we extend the accelerated failure time (AFT) model and the Buckley-James

(BJ) imputation procedure to nonparametrically identify the percentage difference in the

median survival time among compliers for a binary exposure. With this approach, we are able

to circumvent several issues involving the application of IVs to estimate the causal HR and,

furthermore, protect against misspecification via the incorporation of ML with cross-fitting

and double-robustness properties.
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Chapter 1

Introduction

A common goal in healthcare is to estimate the causal effect of an exposure, treatment,

or intervention on a particular medical outcome. The gold standard for this task remains

a well-controlled randomized control trial (RCT). In this setting, randomization allows us

to establish cause and effect estimates because, on average, observed differences between

treatment arms will be due to either the assigned treatment or chance.

RCTs may not always be feasible due to ethical, logistical, or monetary constraints. When

this is the case, we may turn to observational studies in an attempt to isolate causal

effects of interest. Observational studies can provide hypothesis-generating evidence to help

inform future investigations of treatments such as extensions to different populations or use

cases. In this case, observational studies give researchers real-world evidence surrounding

the effectiveness and safety of a treatment to augment RCT findings (e.g. Phase 4 trials).

Another common use of observational data, particularly in the epidemiological setting, is

to quantify the causal impact of biomarkers such as blood lipids on disease incidence and

progression. The recent increase in the volume of electronic health records (EHRs) and

insurance claims data coupled with the heightening demand on healthcare systems have

1



created many opportunities for potentially valuable observational studies.

A fundamental challenge to causal inference in observational settings, and one that is central

to this dissertation, is the fact that the exposure, treatment, or invention (herein referred to

as "the treatment") is not randomized. A common source of bias due to this is confounding by

indication, or treatment selection bias, where factors affect both the assignment of treatment

and the targeted medical condition. These factors, called confounders, range from patient

characteristics to other concurrent treatments.

Two overarching approaches have been developed in the literature for these purposes: adjusting

for observed confounders and pseudo-randomization through instrumental variables (IVs).

Briefly, confounder approaches aim to "adjust" for all factors that both explain treatment

assignment and the outcome. In contrast, IVs determine only the assignment of the treatment

but, otherwise, are not associated with the outcome. IVs are used to define a subset of the

population whose treatment assignment is free from confounding. More formally, an IV is

defined by three main conditions: (i) it influences the treatment assignment (relevance),

(ii) it is not a cause of the outcome after conditioning on treatment assignment (exclusion

restriction), and (iii) it is not associated with unobserved confounders (independence). The

use of IV approach can be thought to theoretically relax the assumption that all confounders

are adequately measured and correctly modeled. Even so, both approaches are characterized

by untestable assumptions in order to isolate causal effects of interest.

Traditionally, among statisticians and epidemiologists, the confounder approach is heavily

utilized; however, IVs are rising in interest. In this dissertation, we focus on optimizing the

use of IVs in health research. More specifically, we aim to develop methodology that assists

analysts to effectively estimate causal effects that are consistent for the true causal effect

under several important and realistic scenarios.

In Chapter 3, we study the behavior of existing confounder and IV approaches under potential

2



assumption violations. Because, as mentioned, both approaches are subject to untestable

assumptions, it may be unclear which assumption violation scenarios one method is superior

in terms of mitigating inconsistency for the a target estimand such as the average causal

effect (ACE). Although general guidelines exist, direct theoretical comparisons of the trade-

offs between CAC and the IVAC assumptions are limited. Using ordinary least squares

(OLS) for CAC and two-stage least squares (2SLS) for IVAC, two popular methods, we

analytically compare the relative inconsistency for the ACE of each approach under a variety

of assumption violation scenarios and discuss rules of thumb for practice. Additionally, a

sensitivity framework is proposed to guide analysts in determining which approach may result

in less inconsistency for estimating the ACE with a given dataset. We demonstrate our

findings both through simulation and by revisiting Card’s analysis of the effect of educational

attainment on earnings, which has been the subject of previous discussion on instrument

validity. The implications of our findings on causal inference practice are discussed, providing

guidance for analysts to judge whether CAC or IVAC may be more appropriate for a given

situation.

In Chapter 4, we shift to the development of novel methodology that utilizes IVs to opti-

mize causal inference in the setting of replicability and generalizability of causal estimates.

Replicating causal estimates across different cohorts is crucial for increasing the integrity of

epidemiological studies. However, strong assumptions regarding unmeasured confounding

and effect modification often hinder this goal. By employing an IV approach and targeting

the local average treatment effect (LATE), these assumptions can be relaxed to some degree;

however, little work has addressed the replicability of IV estimates. In this chapter, we

propose a novel survey weighted LATE (SWLATE) estimator that incorporates unknown

sampling weights and leverages machine learning for flexible modeling of nuisance functions,

including the weights. Our approach, based on influence function theory and cross-fitting,

provides a doubly-robust and efficient framework for valid inference, aligned with the growing

"double machine learning" literature. We further extend our method to provide bounds on a

3



target population ATE. The effectiveness of our approach, particularly in non-linear settings,

is demonstrated through simulations and applied to a Mendelian randomization analysis of

the relationship between triglycerides and cognitive decline.

In Chapter 5, we focus on another common area in health research: examining how certain

treatments or exposures affect time-to-event outcomes. Besides handling right-censoring,

in the observational setting we must mitigate the effect of unmeasured confounding. One

approach to this is through the use of instrumental variable (IV) methods. As is common

in the time-to-event setting, we may seek to estimate the causal hazard ratio. Yet, existing

IV methods are are limited due to non-collapsibility of the Cox proportional hazards model

and violations in the proportional hazard assumption. The accelerated failure time (AFT)

model offers an alternative approach to the setting of proportional hazards, expressing the

effects as multiplicative changes in survival time. Traditional IV approaches within AFT

models are limited to linear settings and inefficiently handle censored data. To overcome these

limitations, we propose a novel, nonparametric estimator for the local average treatment effect

(LATE) based on the non-linear AFT in conjunction with the Buckley-James imputation

procedure to effectively include censored observations. Specifically, our approach estimates

the percent difference in median survival time for compliers in studies featuring binary

exposures and IVs. By leveraging influence functions and sample-splitting, our estimator

can accommodate machine learning techniques to estimate nuisance functions and is doubly-

robust for key nuisance functions, protecting against bias due to model misspecification. We

demonstrate the performance of our estimator via simulation in both linear and non-linear

AFT settings. Furthermore, we apply our proposed methods to a Mendelian randomization

analysis examining the relationship between between high-density lipoprotein and progression

of cognitive decline among those with mild cognitive impairment.

In this work, by addressing three key issues in causal inference, assumption violations,

replicability, and survival analysis, we have meaningfully increased the usefulness of IV
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methods in health research. Importantly, through the use of IVs, the impact of unmeasured

confounding is mitigated, which promises higher-quality causal estimates. First, analysts will

be able to use our findings to examine whether an IV approach is justified, both theoretically

and empirically via sensitivity analysts. Then, they may enhance the replicability, and, thus,

external validity, of IV estimates via nonparametric survey-weighted estimates. And, lastly,

extend nonparametric IV methodology into time-to-event settings, which comprise a large

portion of health research.
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Chapter 2

Background

In this Chapter, we review the fundamentals of causal inference in observational settings as it

pertains to the content of this dissertation. We begin by providing a theoretical overview of

the confounder and IV causal identification approaches as well as the key assumptions behind

each approach. We then rigorously define the causal estimand targeted by the IV approach,

the local average treatment effect and discuss common applications of IVs. Following this,

we discuss traditional methodology to estimate causal effect including regression adjustment

and propensity scores for confounder methods and two-stage least squares for IV methods.

These methods will be at the center of Chapter 3. Moving to more modern casual inference

approaches, we discuss the use of influence functions to nonparametrically identify causal

estimates, which includes the local average treatment effect. This framework will be central

to Chapters 4 and 5 as they allow us to flexibly model key quantities with black-box machine

learning methods with straightforward inference via sample-splitting. Finally, we review

causal inference in time-to-event settings, which is the focus of Chapter 5, for both the

confounder and instrumental variable settings.
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2.1 Two Identification Approaches: Confounders and In-

struments

We begin by considering the simple scenario depicted in Figure 3.1. Such figures are called

directed acyclic graphs (DAGs) where the nodes are variables, the edges represent a directed

causal effect, and the greek letters represent the magnitude of the causal effect of the respective

edge. Contextually, D is an indicator for a binary treatment, Y represents the outcome of

interest, U represents a confounding variable, and Z is an IV.

Z D Y

U

↵ �
✓ ⌘

Figure 2.1: A Directed Acyclic Graph with One Confounder and One IV

We may define the causal estimand of interests in two ways: using the potential outcomes

framework [101] and Pearl’s notation.[86] For the potential outcomes, let Yi(1) be the outcome

if subject i had taken the treatment and Yi(0) be the outcome if subject i had taken the control.

Therefore, we are interested in isolating � = E[Yi(1)� Yi(0)] in Figure 3.1, or the average

treatment effect (ATE). In Pearl’s notation, the equivalent quantity is � = @

@D
E[Y |do(D)]

where do(D) means manipulating the D � Y edge whilst holding the other edges constant.

Throughout this background section, we will use the potential outcomes notation.

We cannot observe both potential outcomes for any individual and thus we must use observed

values from those who were prescribed either treatment option. In order to identify �, we must

make a series of assumptions. First, is stable unit treatment values assumption (SUTVA) of

consistency and no interference. Consistency means that everyone receives the same versions

of the treatment or control while no interference provides that the potential outcome of one

individual does not affect the potential outcome of another person. The second assumption is

treatment assignment ignorability or that the treatment assignment is as good as randomized:

Y (0), Y (1) ?? D. Thirdly, positivity of treatment assignment or 0 < P (D = d) < 1 with

7



d = 0, 1. Under these assumptions � = E[Y (1)� Y (0)] = E[Y |D = 1|� E[Y |D = 0]

Our main focus throughout this dissertation pertains to issues surrounding when the assump-

tion of ignorability fails to hold. Clearly, we have a violation because U is a confounder when

✓ 6= 0 and ⌘ 6= 0 resulting in Y (0), Y (1) 6?? D. Simply estimating the difference in the group

means as the above will not recover � due to E[Y (1)� Y (0)] 6= E[Y |D = 1|� E[Y |D = 0].

In other words, indirect paths from D to Y (via U) pose major issues in obtaining causal

estimates.

There are two ways we will describe how the confounder approach can isolate �. First, we

need to find a set of variables X such that conditional ignorability, D ?? Y (0), Y (1)|X is

achieved. Alternatively, we need to condition upon variables X such that all alternative or

"backdoor" paths from D to Y are blocked.[85] Visually, if we think of a DAG as a set of

pipes, the flow of water or "information" will only be through the pipe flowing from D to Y .

These two notions of confounding lead us to conclude that in Figure 3.1 it is sufficient and

necessary to condition on U and use the finite estimator of E[Y |D = 1, U ]� E[Y |D = 0, U ]

to obtain �. Note that there are many other descriptions of confounding and we will focus

on the conditional ignorability and graphical definitions. [116][43]

Alternatively, we may identify the treatment effect through an IV denoted as Z. For simplicity,

we assume for now that only one IV is sufficient. Briefly, the definition of an IV is that Z must

influence D (relevance), or ↵ 6= 0, does not cause Y conditioning on X (exclusion restriction),

and is not associated with any unobserved confounders (independence). In Figure 3.1, Z is

an IV because ↵ 6= 0 and there are no other arrows in or out of Z that go to Y . Figure 2.2

demonstrates how this latter notion can be violated if either �, ✏, or � are non-zero. In this

case, Z is, in fact, a confounder but if � = 0 and we are able to condition upon U , then Z

is re-classified as an IV. Compared with the confounder approach, if we have access to an

IV, we may be able to obtain a causal estimate without having to account for all possible

confounders, which is a major potential advantage of using IVs over confounder adjustment
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methods.

Z D Y

U

�

✏

�

Figure 2.2: Dotted lines disqualify Z from being an IV

The building of a valid causal network requires both knowledge of all variables in the network

and the arrows between them. Unfortunately, we cannot be sure that a posited DAG is

correct using data. For example, to suggest unobserved confounding requires knowledge that

goes beyond the dataset at hand. Nevertheless, we can still use DAGs to capture assumption

violations as clearly as possible and move towards the best option in a given scenario. By first

thinking outside the scope of the current dataset, one captures a fuller picture of the study.

The untestability of causal assumptions suggests that users of the confounder and IV ap-

proaches must think relatively and not in absolutes. For example, rather than arguing a set

of confounders is sufficient for conditional ignorability, one should instead find confounders

to condition upon that potentially bring the estimate closer to the true causal estimand. For

IVs, rather than justifying whether have a true IV or not, we can think about how strongly

the treatment is identified relative to potential violations in the assumptions of Z and the

hypothesized overall magnitude of confounding.

2.1.1 Identifying and Using Confounders

Without directly modeling the response, in order to avoid spurious results from multiple

testing, a reasonable strategy to identify confounders is to first postulate variables that

affect the response and then distinguish which of these variables may influence treatment

assignment.[20] In the latter step, caution must be taken in the direction of causality:

mistakenly adjusting for mediating variables on the pathway from D to Y may produce
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unintended consequences such as attenuation of the estimated treatment effect. To see this,

consider Figure 2.3 – a scenario where W is a mediating variable.

D W Y
�1 �2

�3

Figure 2.3: DAG of a Mediator, W

For a more formal attenuation scenario, denote the edge weights in Figure 2.3 as {�i : i =

1, 2, 3} (the decomposed � in Figure 1). If we assume linear relationships between variables

then � = �1�2 + �3. If |�| > 0 and sign(�1�2)) = sign(�3), then adjusting for W will yield

�3 but there will be attenuation as |�| > |�3|.

The first and strongest reference for determining causal links for confounders should be

the underlying scientific mechanism. Such information can be based on prior basic science,

epidemiological findings, and historical trials. These sources often help one to identify a vast

majority of relevant confounding factors. Another source but of potentially lesser quality is

past empirical studies done on predictors of the response. One should assess the quality of

these studies in terms of replicability, precision, and study design before choosing to use the

associated information.

Given a set of potential confounders, it may not always be advantageous to select all of

them in the data analysis. In reality, much of the confounding may be captured by a few

variables such as basic demographics (e.g. age and sex), commonly collected lifestyle factors

(e.g. smoking and alcohol use), and comorbidities (e.g. chronic disease and corresponding

medication use). With each confounder included in the analysis, we must weigh moving

towards conditional ignorability against overfitting (i.e. increased imprecision and Type II

error), interpretability, and reproducibility. Consider that under non-linearity, adjusting for

confounders may change the interpretation of the estimate of the treatment effect.[43] In the

linear setting, a similar scenario can occur under treatment effect heterogeneity, which is
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when the effect of the treatment differs across the values of one or more factors.[7]

2.1.2 Identifying and Using Instrumental Variables

Unlike confounders, the use of IVs is not as straightforward and often requires more technical

knowledge to employ effectively. The crux of the IV approach is that we use variation

independent from confounding to identify treatment assignment. Because IVs, by definition,

cannot be determined by other variables in the causal paradigm (there are exceptions: for

example, see Figure 2.4), we can assume that the IV values are effectively randomized. As

a result, the values of the treatment assignment generated by IVs, denoted DIV , are also

randomized. It follows that the estimate using DIV , �̂IV , is theoretically free of unobserved

confounding.

A D Y
Z

��@@U

Figure 2.4: Z is a valid IV because we have blocked the path via U and it is a proxy of an
effectively randomized variable A. By varying Z, we allow variation in A to influence D.

Complexity arises in using IVs mainly because D and DIV are not technically the same

variable. This means that �IV is a different estimand than � and the IVs cannot be used to

directly calculate the ATE. However, under some conditions we will soon detail, we may be

able to identify "Local Average Treatment Effect" (LATE) where we are "local" to variation

in the IVs.[61] Fortunately, if there is no treatment effect heterogeneity and the assumptions

for an IV are met, �̂IV is consistent for � or, in other words, the LATE will equal the ATE.

As a simple demonstration of the above notions, the form of the LATE with a binary IV and

binary treatment can be given by the Wald estimand in Eq. 2.1:
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�IV =
E[Y |Z = 1]� E[Y |Z = 0]

E[D|Z = 1]� E[D|Z = 0]
. (2.1)

Besides adding more intuition behind IV-derived treatment effects, this equation introduces

the importance of IV strength or "predictive power" captured by E[D|Z = 1]� E[D|Z = 0]

or ↵ in Figure 3.1. Heuristically, when ↵ is small then the IV is "weak" and if ↵ is sufficiently

large then the IV is "strong." In the linear setting, the finite sample bias of �̂IV is partially a

function of ↵ where we incur large bias for � with small values of ↵.[19]

The impacts of weak IVs are not just limited to finite samples. Recall that we cannot confirm

we have a true IV using observed data and so we must assume our IV estimate is inconsistent

for �. In this case, as an IV becomes weaker, the sensitivity of the corresponding estimate �̂IV

to IV independence assumption violations increases.[131] To elucidate this, suppose we had

two IV candidates Z1 and Z2 with corresponding strengths ↵1 and ↵2, where |↵1| > |↵2|. For

the same degree of violation in the independence assumptions (e.g. in Figure 2.2 � = c > 0

where c is some constant) the inconsistency of an estimate derived from Z2 would be greater

than from using Z1.

Table 2.1: Potential Treatment Assignment

Sub-population D(0) D(1)

Always Takers 1 1

Compliers 0 1

Defiers 1 0

Never Takers 0 0
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When there is treatment effect heterogeneity, even when we have a valid IV, �̂IV can be

inconsistent for � because �IV is an estimand for a subset of the original population. Table 2.1

summarizes four distinct sub-populations related to the IVs: always-takers, compliers, defiers,

and never-takers. We can use potential outcomes once again but for treatment assignment:

let Z be a binary instrument and D(0) be the treatment assignment had the value of the IV

been 0 and D(1) had the values of the IV been 1.

In Table 2.1, it is clear that changing values of the IVs results in changing values of the

treatment assignment only for compliers and defiers. Therefore, we cannot directly identify

the treatment effects for always-takers and never-takers using IVs. In addition, to achieve the

LATE we must impose a further assumption that the defier population does not exist for a

given IV. This notion is called "monotonicity" where D(1) � D(0) or vice-versa. Thus, we

conclude that the subpopulation identified by the IVs are the compliers. To explain why we

require monotonicity, we can rewrite Eq. 2.1 as[5]

E[Y |Z = 1]� E[Y |Z = 0] = E[
�
Y (1)� Y (0)

��
D(1)�D(0)

�
]

=

✓
E[Y (1)� Y (0)|D(1) > D(0)]P (D(1) > D(0))

� E[Y (1)� Y (0)|D(1) < D(0)]P (D(1) < D(0))

◆
.

Because of treatment effect heterogeneity, the ATE is differential depending on the sub-

population and there is the potential for a non-zero treatment effect in each group to

cancel out. Of course, this does not occur if P (D(1) < D(0)) = 0 (no defiers) or

E[Y (1) � Y (0)|D(1) > D(0)] = E[Y (1) � Y (0)|D(1) < D(0)] (no treatment effect het-

erogeneity). If monotonicity is violated, then our resulting estimand is no longer the LATE

and generally ambiguous.
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Through a similar derivation in the denominator of Eq. 2.1 as above, we arrive at a clearer

definition of the LATE: �IV = E[Y (1)� Y (0)|D(1) > D(0)] or the ATE for compliers.[61]

This LATE, changes with chosen IV. If there are multiple IVs, then the LATE is a weighted

average of LATEs characterized by each IV. When we have covariates included to establish

the validity of Z or decrease error in predicting D, then the LATE is an estimand defined on

a population conditional on these covariates. Furthermore, unless the model is saturated,

always and never-takers are included.[2, 18] As most models in practice include covariates,

the interpretability of IV models can be nebulous.

With the potential outcomes notation, we may formalize the core IV assumptions in the

more general case where must must control for confounders X to satisfy the independence

assumption. One common way to control for measured confounders is via the PS.[100] In

the context of IVs, we utilize the instrument propensity score (IPS) e(X) = P (Z = 1|X) to

control for IV-related confounding. The conditions to identify the LATE via the IPS are

similar to the that of ATE: we require positivity of the IPS and for the set of confounders

to achieve strong ignorability, or "independence," of the potential outcomes. Additionally,

the use of confounders additionally modifies the standard IV assumptions of relevance and

monotonicity to be strata-specific. Formally, we may define the assumptions to identify the

LATE conditional on a set of confounders X as follows:

Assumption 1 (Positivity of IPS): 0 < e(X) < 1 a.s. for all x 2 SX

Assumption 2 (Independence): Z ?? {Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1), D(1), D(0)} |X

Assumption 3 (Exclusion Restriction): Y (d, 0) = Y (d, 1) for d 2 {0, 1}

Assumption 4 (Relevance): P [D(1) = 1|X] > P [D(0) = 1|X] a.s. for all x 2 SX

Assumption 5 (Monotonicity): P [D(1) � D(0)|X] = 1 a.s. for all x 2 SX
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where SX refers to the support of X and Y (d, z) refers to the potential outcome under

treatment assignment d and IV assignment z.

In practice, there usually exists treatment effect heterogeneity so before using IVs we must

determine if it is reasonable to target the LATE, or whatever the IV estimand may be, as a

proxy for the ATE estimand. Consider the following scenarios. First, when treatment effect

heterogeneity is unrelated to the choice of treatment then the estimates for compliers will not

be systematically different from the other subpopulations. Next, when the first-stage is strong,

the population characterized by the IVs will be relatively close to the overall population of

the study. For example, if we have found a strong genetic determinant of some condition that

was a valid IV, it is plausible that, for the vast majority of the population, the occurrence of

the condition would vary with the assignment of the gene. It follows that if the IV is weak,

the LATE will only capture a small subset of the original population, introducing significant

inconsistency in estimating the ATE. Lastly, there is a developing set of literature that relaxes

the assumptions for the Wald estimand to equal the ATE such as requiring heterogeneity in

the outcome caused by the treatment assignment to be independent from heterogeneity in

treatment assignment caused by the IV as well as the IV itself.[6, 122, 47] Note that in these

cases, we are not necessarily concerned with monotonicity if we are targeting the ATE not

the LATE. In Chapter 3 of this dissertation, we will focus on identifying the ATE using the

LATE whereas in Chapters 4 and 5, we will directly estimate the LATE without concern of

whether it is equal to the ATE, though it may be.

Identifying potential IVs is significantly less straightforward than identifying confounders,

which is a main limitation of the approach. While there is usually abundant literature on

predictors of a medical condition, the factors that determine the assignment of a treatment

are difficult to study and are not usually studied. One reason for writing this paper is to

generate exposure to biomedical researchers to IVs such that potential IVs can be shared in

the literature similar to how predictors are. In a similar vein to the confounder adjustment
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approach, we may begin by determining factors that predict treatment assignment and then

prune those that affect the outcome. Determining confounders first is helpful as variables

that were once invalid IVs may become valid after holding certain confounders constant.

One popular source of IVs is variation in medical practice as it is well known that practice

differs across physicians and regions across a wide variety of medical conditions.[128, 127, 35]

If appropriate, we could use factors such as regional variation, facility prescribing patterns,

attitudes to certain contraindications, physician preference, and calendar time as IVs. [27, 21]

For example, with access to the relevant data, physician preference can be quantified by

tabulating the proportion of patients under each physician who were prescribed the treatment

of interest. Following this, we can use these proportions to predict which treatment a new

patient who sees any of these physicians will receive.

Even still, the validity of prescriber preference as an IV can be questioned. It could be that

certain types of patients tend to select a physician that they know is more likely to give

them the treatment (graphically, Figure 2.2 edges from Z to U). Furthermore, geographic

variation in general population health could necessitate higher utilization of treatments in

some regions compared to others. Herein lies the value of identifying confounders in IV

analyses: perhaps controlling for patient characteristics will block these pathways and greatly

reduce assumption violations (e.g. Figure 2.4). One takeaway, however, is that IV analysis

can easily suffer from issues related to unobserved confounding.

Given a set of IVs, we should characterize each subpopulation. For medical practice patterns,

most likely, some patients would not comply with a doctor’s opinions; some patients could

insist to get the treatment (alway-takers) and others would refuse under all circumstances

(never-takers). One that does the opposite of what the doctor says (defiers) is possible and

we will have to assume that they do not exist, which is practically untestable but can be

reasoned as unlikely. Under this assumption, the LATE would roughly be those who follow

the doctors’ orders. All of this considered, the analyst should determine whether the complier
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treatment effect is of scientific value or the sufficient conditions have been attained vis-a-vis

treatment effect heterogeneity to directly target the ATE.

Another common class of IV, particularly in the epidemiological setting, is Mendelian

Randomization (MR) wherein known genetic associations with a key exposure of interest

are utilized as IVs.[102] Common examples include the examining the effect of BMI and

cardiovascular disease or the role of cholesterol in the risk of dementia. where genome wide

association studies (GWAS) have identified one or more single nucleotide polymorphisms

(SNPs) predicted the level of the exposure (i.e. the relevance assumption). These SNPs

can be combined to form an IV if they meet the causal assumptions described above. The

complier subpopulation is thus those whose level of the exposure varies monotonically with

the level oof gene expression. As with any application area, there are several challenges in

particular to MR including linkage disequilibrium, canalization, winner’s curse in GWAS,

reverse causation, and gene-environment interactions.[117] In our MR analyses throughout

this work, we will assume these challenges have been mitigated as methodologically addressing

them is outside of the scope of this dissertation.

2.1.3 Interactions of the Confounder and IV Approaches

The confounder and IVs approaches are deeply related. Therefore, even if an analyst decided

to pursue one approach over another, awareness of the principles of the other approach is

important. One pervasive issue in this vein is adjusting for an IV as if it was a confounder.

Widely-cited guidelines such as Hirano and Imbens (2001) state that variables that are

predictive of treatment assignment should be selected for confounder methods like propensity

scores,[52] which risks adjusting for IVs and mediators. In the best case, treating IVs as

confounders decreases precision because it does not explain variation in the response. Even

worse, when there is unobserved confounding, existing inconsistency is amplified, also named

"bias amplification."[17, 132, 37, 87] By adjusting for IVs, we reduce variation in the treatment
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that is uncorrelated with the unobserved confounding. Thus, variation in the treatment

produced by unobserved confounding proportionally increases, which causes more bias in the

treatment effect.

The impact of adjusting for IVs and mediators demonstrates why one should avoid a purely

"kitchen sink," data-driven approach to variable selection for causal inference. Simply because

the estimate of the treatment effect changes when a variable is introduced does not necessarily

mean it should be adjusted for. This is one reason why we advocate that confounders largely

be sourced a priori by first hypothesizing predictors of the outcome. If one is reasonably

certain that a variable is predictive of the outcome but is unlikely to be associated with the

predictor of interest, one has a "precision variable," which still may be of use. Specifically in

the linear model setting, adjusting for such a variable will decrease standard errors in the

treatment effect estimate with no cost to bias.[22, 43]

2.2 Traditional Methodology for Estimating Causal Ef-

fects

In this section, we discuss three popular approaches for estimating causal effects: regression

adjustment using ordinary least squares (OLS) or generalized linear models, propensity score

weighting with inverse probability of treatment weighting (IPTW), and utilizing two-stage

least squares (2SLS) with IVs. Regression and IPTW are used in the confounder approach

while 2SLS serves as a methodology for the IV approach.

Z1, Z2, ...Zj D Y

X1, X2, ...Xk

U⌧ ✏

Figure 2.5: A DAG with more IVs (Z’s) and observed confounders (X’s) as well as relevant
stochastic errors ⌧ and ✏ for D and Y , respectfully
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A more sophisticated version of Figure 1 is presented in Figure 5. We have added a vector of

IVs of length j (Z1, Z2, ...Zj) and a vector of observed confounders of length k (X1, X2, ...Xk).

In addition, we have there are now stochastic errors for D and Y . For simplicity, assume

the effect of each IV is the same magnitude and similarly for each confounder and that

the outgoing arrows capture from the joint effect. Furthermore, U captures all unobserved

confounding though, in reality, there are likely many variables. Assuming the relationships

between variables are linear, we can write the following system of relevant structural equations:

di = �0 + xT

i
�X + zT

i
�Z + ui�U + ⌧i, (2.2)

yi = �0 + �Ddi + xT

i
�X + ui�U + ✏i. (2.3)

Eq. 2.2 depicts the treatment assignment or "first stage" while Eq. 2.3 depicts the outcome

or "second stage." The estimand of interest is �D. Because the treatments are usually binary

variables, the functional form of the treatment assignment is commonly characterized using a

logit or probit model. For ease of exposition, however, we will assume a linear probability

model (LPM) as in Eq. 2.3.

Using the above two equations, we can provide a high-level overview of the three methods in

practice. Regression methods fit Eq. 2.3 with the treatment and the observed confounders

to estimate �D. U is not observed so the estimate is inconsistent due to misspecification.

Meanwhile, IPTW first fits Eq. 2.2 with only the confounders to predict the propensity score

for all subjects. The propensity scores will be used to compute a weighted sum that will

allow us to estimate �D. Because U is missing, the predicted propensity scores will not be
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correct nor adequate to achieve ignorability conditional on the propensity score.

2SLS will fit Eq. 2.2 as stated (except for U) and use the predictions to construct D̂. We

then effectively substitute D in Eq. 2.3 and fit an OLS model to estimate the coefficient in

front of D̂. Importantly, the omission of U does not affect the consistency of this estimate

under the conditions of Figure 2.5 and if there is no treatment effect heterogeneity then we

have a consistent estimate of �D. If there is then, at the least, the estimate is not affected by

U .

2.2.1 Regression Adjustment and Propensity Score Methods

While OLS and IPTW are different mathematically, they are conceptually similar: both seek

to isolate variation in the outcome caused by the treatment by eliminating variation caused

by confounding factors. Regression adjustment can be thought of as blocking paths in Figure

2.5, which is another way of stating that we are holding X constant in order to isolate the

effect of D on Y and obtain the direct causal pathway with the following estimand:

�OLS

D
= E[Y |D = 1, X = x]� E[Y |D = 0, X = x].

On the other hand, IPTW weights outcomes based on the probability of receiving (p(X) =

P (D = 1|X), creating a pseudo-population that balances confounders across the treatment

groups in a similar rationale to randomization. IPTW has the following estimand:

�IPTW

D
= E


DY

p(X)

�
� E


(1�D)Y

1� p(X)

�
. (2.4)

For a more concrete example of how a pseudo-population is constructed, suppose an individual

in the treatment group had a propensity score of 0.1. In other words, this individual is very
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likely to receive the control and has many similar subjects in the control group. The weighted

outcome of this individual can represent the counterfactual outcomes of the comparable

control group subjects and so we would weight that individual’s contribution to the treatment

effect ten times. As a consequence of such a procedure, in Figure 2.5 the pseudo-population

will theoretically no longer contain edges for the X’s because the treatment assignment cannot

be explained by covariate imbalance. A balance of observed confounders, however, does not

imply a balance of unobserved confounders: the act of balancing observed confounders may

increase the imbalance of these unobserved confounders.[23]

Propensity scores are often used to match individuals across treatment groups. Once one or

more suitable matches are found for each subject in the treatment groups, we can compute

the differences in outcomes, and average them to obtain the average treatment effect on

the treated (ATT), E[Y (1) � Y (0)|D = 1]. We focus on IPTW and not propensity score

matching because, under unobserved confounding, the ATT will not equal the ATE:

�ATT = E[Y (1)� Y (0)|D = 1] = E[Y (1)|D = 1]� E[Y (0)|D = 1]

6= E[Y (1)|D = 1]� E[Y (0)|D = 0] (Y (0) 6?? D)

= �ATE.

While our discussion of methodology in this dissertation mainly centers around the ignorability

assumption, it is important to briefly touch upon the implications of positivity assumption

violations. In propensity score methods this means each subject has a positive probability

of receiving the treatment given each level of the covariates or 0 < P (D = d|X = x) < 1

for all d 2 D and x 2 X. Another way to conceptualize the positivity assumption is the

notion of "common support" where there must be full overlap in each group’s distribution
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of propensity scores or, by extension, their observed covariates. Even when there is no

unobserved confounding, positivity violations can arise when we fail to observe certain

variables that are needed to create overlap. Therefore, for the subpopulations lacking overlap,

extrapolating counterfactual claims can lead to erroneous conclusions.

Conceptually, a violation of the positivity assumption means that we are dividing by 0

in Eq. 2.4. In practice, this results in extreme weights, which both increases variability

in the parameter estimates but also impacts finite sample bias because the estimate is

weighted towards the few extreme observations.[90]. In addition, near-positivity violations, or

individuals who are extremely unlikely to receive the treatment or placebo, pose similar issues

for estimation. When using OLS, positivity violations pose a similar bias of the estimand as

IPTW. Nevertheless, OLS does not face the same degree of finite sample estimation issues as

IPTW when there are positivity or near-positivity violations.

While IPTW and OLS target the same estimand, the ATE, and both are vulnerable to

inconsistency via unobserved confounding, there are differences to consider in practice. If

there are no extreme weights, by encapsulating many covariates in the propensity score,

IPTW will generally be more efficient than OLS because of the degrees of freedom saved. If

there are extreme weights, however, the instability of the variance of estimators will be larger

than that of adjustment-based regression methods.

One common solution to extreme weights in propensity score methods is to trim extreme

weights. This procedure, however, risks estimating the treatment effect for a population

different than the original target population. In other words, for a decrease in variance, there

is a potential increase in bias. Furthermore, the direction of this bias is difficult to determine

because one must define a new population resulting from truncation. Though one could

argue that the bias due to positivity violations could be advantageously traded-off with the

bias due to truncation[129]. Another common solution to extreme weights could be to use

stabilized weights as opposed to conventional inverse probability weights.[97]
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OLS and IPTW also have potential differences in ease of reproducibility and interpretability.

Because propensity scores are the result of fitting a model for treatment assignment in order

to generate propensity scores, methods ranging from logistic regression to random forests may

be used. An issue, however, arises when different models produce different sets of propensity

scores resulting in different pseudo-populations. This poses challenges for reproducibility

across different studies of the same population. The simplicity of OLS arguably reduces the

risk of this since basic adjustment can be easily communicated. On the other hand, when

unaccounted for treatment effect heterogeneity exists, OLS will generate a marginal treatment

effect estimate that is implicitly weighted by the covariance structure in the observed data

sample as opposed to explicit weighting in IPTW.[7, 5]

One advantage of the propensity score is that data-driven selection of the confounders to

model treatment assignment is done separately from the fitting of Eq. 2.3. In contrast, adding

and removing confounders in OLS in a data-driven fashion will also affect the estimand,

estimate, and corresponding inference for the treatment effect. Therefore, IPTW is able to

control inflation in Type I error from repeated testing of the treatment effect coefficient as a

result of fitting several models.

Though it may be tempting to cast estimating propensity scores as a prediction problem,

this may lead to unintended consequences. The original philosophy of propensity scores

from Rosenbaum and Rubin is not to fit the first-stage as well as possible; rather, it is

to find a balancing score sufficient to achieve ignorability.[100, 9, 119, 57] Furthermore,

measures of model performance like the C-statistic do not provide useful information to

suggest unobserved confounding is mitigated more in one model than another.[126]. IVs are

predictors of treatment assignment and, yet, they are adverse to causal estimation if included

in the model.[17, 9] In addition, including variables that are predictive of the outcome but

not the treatment can help improve the efficiency of treatment effect point estimates.[22].

Therefore, we suggest that variable selection for propensity score modeling is not conducted
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purely by optimizing out-of-sample model prediction error.

In contrast, the simplicity of using one equation in regression methodology assists in avoiding

confusion between prediction and inference goals because there is no intermediate step in

obtaining an estimate for �D. Indeed, an optimized model MSE may reduce coefficient

standard errors and yet could lead to issues in internal validity. For example, if we fit Eq.

2.3 with LASSO to select confounders that optimized out-of-sample prediction error, the

elimination of confounders via shrinkage to zero leads to potential omitted variable bias

because we have unblocked a path in the DAG.[29]

A combination of the IPTW and regression methodology is the augmented IPTW (AIPTW)

with the so-called "doubly robust" property: a consistent estimate is obtained if either the

propensity score (Eq. 2.2) or the outcome equation (Eq. 2.3) are correctly specified. Certainly,

AIPTW offers more robustness than IPTW but its practical advantage is unclear. Firstly, in

the case where one suspects the propensity score equation is misspecified but the outcome

equation is not, OLS also will result in a consistent estimate and could theoretically be more

efficient. Secondly, an unobserved confounder would cause misspecification in both equations,

rendering any estimate inconsistent. As such, it is unclear how the inconsistency due to

unobserved confounding in the AIPTW compares to that of IPTW or OLS.

2.2.2 Two-stage Least Squares

2SLS is the most commonly used and well-studied IV method. The motivations of 2SLS

largely stem from the inadequacy of OLS to provide a consistent estimate of �D. Under the

reduced form in Eq. 2.5, omitting U leads to inconsistency because ↵D = �D + Cov(D,U)
V ar(D) .

yi = ↵0 + ↵Ddi + xT

i
↵X + �i (2.5)

Another name for this scenario is that there is "endogeneity" or correlation of D with the error
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term. This is because �i = �U+✏i, which is correlated with D and E[�i|D,X] 6= 0. IV methods

will identify a re-characterized treatment, DIV , using exogenous variation (uncorrelated with

the error term) such that Cov(DIV ,�i) = 0.

In the first stage of 2SLS, we regress the X’s and Z’s (design matrix F ) on D and use the

projection matrix PZ = F (F TF )�1F to obtain predicted values D̂IV . In the second stage, we

use the PZ to obtain the coefficients � = (STPZS)�1STPZY with design matrix S consisting

of the X’s and D. By including the X’s in both the first and second stages, we can improve

the prediction of D and covariates serve as their own IVs. If all assumptions are met, and

there is no treatment effect heterogeneity, then �IV

D
is consistent for �D but not necessarily

unbiased. In fact, in the case where we only have one IV for one endogenous variable, the

first moment does not exist.[67]

There are considerable trade-offs in the IV analysis: consistency comes at the cost of increased

standard errors compared to OLS since we only use the exogenous variation in the treatment

and, thus, have less "information" to calculate the treatment effect.[131] In the case where

the IVs are weak, the finite bias will move towards OLS as weakness increases (i.e. first-stage

coefficients go towards 0) and inflate estimator standard errors.[4, 19] This is because our

treatment effect is determined only by compliers, a subset of the overall population. If the

IVs are correlated with the second stage error term (i.e. U) not only will the estimates be

inconsistent but the magnitude of inconsistency is greatly affected by the IV strength.[131]

This can be observed by deriving the form of the 2SLS estimand under this condition.

�IV

D
= �D +

Cov(Z, ✏)

Cov(Z,D)
. (2.6)

Cov(Z, ✏) captures the degree of the violation in the independence of the IV, and Cov(Z,D)

25



captures the first stage strength. Rewriting covariances as correlations in Eq. 2.6 and in the

OLS estimate ↵D, we obtain:

�IV

D
= �D +

��
�D

Corr(Z,�)

Corr(Z,D))
,

↵D = �D +
��
�D

Corr(D,�).

It is clear that when the IVs are weak, 2SLS inconsistency can be greater than even that of

OLS if |Corr(D,�)||Corr(D,Z)| < |Corr(Z,�)|. Considering that we can never confirm the

IV independence assumption, the use of weak IVs may be perilous.

Resuming our assumption of valid IVs, another perhaps helpful perspective is that the

first-stage is chiefly a prediction task. In this interpretation, weak IVs lead to inaccurate

first-stage predictions, which leads to finite sample bias because we are unable to adequately

capture the treatment assignment of the original population of interest. Simply adding more

weak IVs to the first-stage rarely improves the issue; indeed, packing the first-stage with too

many instruments will lead to overfitting and, hence, finite sample bias.[99] These issues are

partially mitigated by large sample sizes.

Unlike many of the assumptions discussed, the degree of instrument relevance is somewhat

determinable using the data. Because 2SLS utilizes OLS for the first stage, the F-statistic

is commonly used to measure the joint strength of the IVs with 10 being a "rule of thumb"

for sufficient strength. In the case of heteroskedasticity, a robust F-statistic can be used

but variance estimates may be noisy.[134] Nevertheless, using a sample statistic to infer

upon assumptions could be problematic. For instance, Young 2017 points out that there

is a relatively high chance of spuriously obtaining a high F-statistic and unreliability of
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"guaranteed bounds" of size and bias of weak IVs tests. In addition, weak IV tests assume

that the IVs are valid in the first place or else coverage will be incorrect.[44]

Data-driven fitting of the first-stage may prompt concerns about external validity. In theory,

we could select variables in the data that optimized a cross-validated F-statistic. In this

process, however, we would fail to address the impacts on the interpretability of the LATE.

This scenario introduces difficult situations where one set of IVs could have a worse F-statistic

but is more interpretable for the desired use case. This is why we advocate for first thinking

through the conceptual soundness of the selection of IVs given a set of theoretically strong

predictors of the treatment.

Although the independence of the IVs is untestable, there are a few interesting falsification

tests that one could employ. One straightforward test is to compare the values of potential

confounders across values of the IVs similar to how one examines values of potential con-

founders across levels of the treatment.[10] Imbalance of IVs across an observed confounder

is problematic because the observed confounders could be related to an unobserved con-

founder. Another test that assumes observed confounders may be related to unobserved

confounders involves negative control outcomes, or populations constructed to falsify IV

independence.[36] Of course, these tests cannot ensure IV assumptions are met and are

subject to data availability.

In the multiple IV case, given there is one valid IV, one may test if additional IVs influence

the outcome through Sargan’s J -statistic. [103] By running OLS on the residuals of 2SLS

on the IVs, if one or more coefficients are not 0, we have some sort of violation. This test

may have deceivingly high p-values and poor power when one IV is weak but valid and the

others are strong but invalid.[68] The scenario of a mix of strength and validity of IVs poses

an interesting question about whether one would choose a strong but slightly invalid IV over

a weak but valid IV.

27



2.2.3 Complexities that Arise with Non-Linearity

So far, our discussion has been focused on the case where the outcome is continuous and, thus,

we can reasonably assume linear structural equations. When the outcome is not continuous,

some of the statements we have previously made must be modified. In particular, we will

revisit the consequences of adjusting for confounders, IVs, and precision variables, marginal

versus conditional estimands, and the use of 2SLS for binary treatments and non-continuous

outcomes.

First, in the non-linear model setting, the estimand corresponding to the treatment effect

will change by including not only confounders but also precision variables because of non-

collapsibility.[43] Mathematically, because the covariates are encapsulated in a non-linear

function (e.g. a link function), after adjusting for a precision variable, we cannot simply

distribute the expected value such that we recover the "before adjustment" treatment

effect.[86] A further consequence is that adjusting for any variable will increase coefficient

standard errors of the variables already present. For instance, in logistic regression, the

unexplained variance must stay fixed so the explained variance will increase upon adjustment

for new variables, leading to coefficient values increasing in magnitude.[80, 105] Adjusting for

precision variables will increase standard errors of the treatment effect but slightly increase

the power to reject the null of no effect; this is due to the magnitude of the adjusted point

estimate increasing relative to slight increases in the standard error of the estimate.[104]

The presence of non-collapsibility means that the interpretation of coefficients before and

after adjusting for variables differs even in cases where there is independence between the

adjustment variable and the treatment variable. Marginal estimates, without confounders, will

therefore be different from conditional (on the confounders and precision variables) estimates.

Comparing methodologies, IPTW will give a marginal estimate whereas regression will give a

conditional estimate.[105] For example, after adjusting for the confounders, IPTW produces

the odds ratio for the population characterized by the sample while a logistic regression model
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would compute the odds ratio for someone with the average value of the confounders.[64]

In the linear case, the difference between conditional and marginal effects was only present

under treatment effect heterogeneity.

Whether the marginal or conditional estimand is preferable depends on the scenario. One could

argue that the conditional estimand is more applicable to settings where a physician is already

conditioning upon knowledge of various patient characteristics like sex, age, and comorbidities.

In addition, conditional estimands may be better transported to other populations such as

future populations. On the other hand, marginal estimands can be more interpretable and

comparable across studies.[118] They may also be preferred when the covariates potentially

included in the model are not easily observed or measured in practice.

The issue with using IVs as confounders persists in the non-linear setting: adjusting for

IVs as if they were confounders amplifies existing bias none and could even introduce bias

where none previously existed.[87, 37] Amplification is for the same reasons as the linear

setting while introducing bias occurs when the IVs are dependent on the outcome given the

treatment.[89] Though Ding et al. do find specific situations where this bias was not present

under their proposed monotonicity conditions for the treatment selection and outcome model.

A primary challenge for standard IVs methods is that 2SLS misspecifies a non-linear functional

form in the case where we have a binary treatment. Nevertheless, analysts still may utilize

2SLS in non-linear settings such as through LPMs. Simulations have shown that LPM can

produce low inconsistency in the estimates of the LATE.[13] A counterpart of 2SLS, two-stage

residual inclusion (2SRI), where one takes the residuals from the first stage as a covariate

in the second stage, did not perform nearly as well. Furthermore, claims that non-linear

2SRI, (using a probit model for example) are able to recover the ATE (as opposed to the

LATE) are questionable.[26] Quantifying the effect of IV method misspeficiation relative to

the confounder methods is an avenue of research.
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Intuitively, using LPMs appears inappropriate as there is nothing preventing prediction of

values that are outside of the interval [0, 1], which leads to bias and inconsistency of LPM

estimates. However, if the population of interest only has probabilities between a certain

range not close to 0 or 1, then this will seldom be an issue because we will not have errant

predicted values. Thus, LPMs will be consistent and unbiased.[54] One could also argue if

there are true probabilities that are 0 or 1, then we have a positivity violation and propensity

score methods, whether they use a logit, probit, or LPM to calculate propensity scores, will

also run into issues. One solution for any method is to truncate probabilities but this will be

at the cost of bias for the original causal effect.

We can rarely mimic the 2SLS substitution procedure with non-linear models, such as two-

stage probit, and maintain consistency for the treatment effect (such an action is called

"forbidden regression").[131] Instead, one can consider a three-step procedure: fit the first-

stage with a non-linear model, regress the predicted values on the treatment in OLS excluding

the IVs, and, lastly, fit the second stage with a linear or non-linear model.

2.3 Nonparametric Identification of Instrumental Variable

Estimands

Recent developments in causal inference methodology have been mostly focused on relaxing

assumptions on common approaches like OLS, IPTW, and 2SLS. These developments are

predominately motivated by the wish to reduce the impacts of model misspecification and

the view that many subtasks of estimation are primarily prediction-based, allowing for more

flexible modeling using ML. Another motivation that we will not discuss is sparsity (e.g.

incorporating more confounders or IVs than observations). Two prominent examples are

targeted minimum loss-based estimation (TMLE) and double machine learning (DML).[114,

15, 28]
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There are two central elements to nonparametric causal inference methods: influence functions

(IF) and cross-fitting. Briefly, the IF framework is as follows. Suppose we wish to target

some estimand T (P ) where P is an unknown distribution estimated with known distribution

P̃ . Usually, we use empirical distribution P̂ for P̃ . An IF-based approach takes a plug-in

estimator T (P̃ ) and adds an extra term to correct for potential bias in non-parametric settings.

This augmented estimator is called the "one-step estimator:"[40]

T̂1-step := T (P̃ ) + n�1
nX

i=1

�(zi, P̃ ). (2.7)

Notationally, �(Z, P ) represents the uncentered IF whereas IF(Z, P ) = �(Z, P ) � T (P )

is the centered IF. A helpful connection is to visualize Eq. 2.7 as one step of a Netwon

Raphson procedure with respect to the curve that maps the path of the space of possible

distribution functions that link P̃ and P (see Fisher and Kennedy Figure 1).[40] Under some

mild regularity conditions, this one-step estimator will be non-parametrically efficient and

thus is often referred to as the "efficient IF."[65]

As a simple example of the IF, suppose we wanted to estimate T (P ) = E[E[Y |X,D = 1]] =

E[µ(X)]. For propensity score ⇡(X) = P (D = 1|X), the centered IF is

IF(Z, P ) =
D

⇡(X)

�
Y � µ(X)

 
+ µ(X)� T (P ). (2.8)

This can be computed by taking the Gateux derivative of T (P ), which measures how an

infinitesimal change in the distribution of P effects the value of of an estimator. Subsequently,

we can estimate each nuisance function (⇡ and µ) and plug the predicted values into the

uncentered IF �(Z, P ) to obtain our point estimate. One may notice this has the same form

as the augmented inverse probability weighting estimand for T (P ) yielding double-robustness.

That is, we are consistent for T (P ) if either µ(X) or ⇡(X) is correctly specified.

We may estimate the uncentered IF by utilizing sample-splitting to prevent overfitting of our
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plug-in estimates. For sake of example, suppose we split our data A = (X,D, Y, Z) with NA

observations in half: An = (A1, A2, ..., An) and AN = (An + 1, ..., ANA) with n = dNA
2 e. We

would estimate all nuisance functions with An and then plug in predicted values resulting

from inputting AN to �(Z, P ). As to not discard data, we may additionally flip the roles of

the partitions and average the two estimates – this is called cross-fitting.

The implication of using cross-fitting is that we may use ML to fit nuisance functions while

avoiding verifying complicated empirical process conditions.[28] Because ML flexibly fits to

the data, as the sample size grows so does the complexity of these algorithms (e.g. tree

depth or number of trees). Increasing complexity translates to increasing entropy because

the number of functions needed to cover the function class will need to increase. Thus,

without strict limits on complexity, we are unable to meet Donsker conditions to ensure
p
n-convergence rates when we use ML. With cross-fitting, however, we are unconcerned with

model complexity as we can compute T (P̂ ) with the prediction on hold-out sets, essentially

treating the nuisance functions as fixed. This means that in our estimator, we no longer need

to account for the fact that we estimated the nuisance functions.[65]

From Kennedy (2023), the IF procedure to estimate the LATE for a binary treatment is as

follows. Let µz(X) = E[Y |X,Z = z], mz(X) = E[D|X,Z = z], and e(X) = P (Z = 1|X)

where e(X). We now have two uncentered IFs for the numerator and denominator:

�num =
Z

e(X)
{Y � µ1(X)}� 1� Z

1� e(X)
{Y � µ0(X)}+ µ1(X)� µ̂0(X) (2.9)

�denom =
Z

e(X)
{D �m1(X)}� 1� Z

1� e(X)
{D �m0(X)}+m1(X)�m0(X) (2.10)

Estimating the nuisance functions on a different sample, we may plug the values into Eqs. 4.4

and 4.6 to obtain the estimator for �̂LATE = Pn�̂num

�
Pn�̂denom. To determine the asymptotic

distribution, we first write the following decomposition from Lee, Kennedy, and Mitra (2023)
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proof for Theorem 4.1.[70] Letting  num and  denom refer to the centered influence functions

and �̂�1
denom

=
⇥
Pn(m1 �m0)

⇤�1, we have:

�̂LATE � �LATE =
Pn�̂num

Pn�̂denom

� P num

P denom

(2.11)

= �̂�1
denom


Pn�̂num � P num � �LATE

⇣
PnPn�̂num � P�denom

⌘�
(2.12)

= �̂�1
denom

h
(Pn � P )

�
�num(⌘)� �LATE�denom

 i
(2.13)

+ �̂�1
denom


(Pn � P )

n
�̂num � �num

o
� �LATE (Pn � P )

n
�̂denom � �denom

o�
(2.14)

+ �̂�1
denom


P
n
 ̂num �  num

o
� �LATEP

n
 ̂denom �  denom

o�
(2.15)

= T1 + S⇤ + T2 (2.16)

We must also assume the following conditions:

C1: All nuisance functions belong to the Donsker class.

C2: |Y | is bounded a.s. and e < Ce for some constant Ce a.s.

C3: kê� ek = oP (1), km̂z �mzk = oP (1), kµ̂z � µzk = oP (1) for z 2 {0, 1}

C4: kê� ekmax(km̂z �mzkkµ̂z � µzk) = oP (n
�1/2) for z 2 {0, 1}

Because sample-splitting or cross-fitting circumvents the need to prove all nuisance functions

are Donsker, we have that T1 + T2 = oP (n�1/2). Therefore, we have the following asymptotic

distribution for �̂LATE:

n1/2
⇣
�̂LATE � �LATE

⌘
= n1/2S⇤ + oP (1)

d! N
�
0, E[�2]

�
(2.17)
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where � =
⇥
Pn(m1 �m0)

⇤�1 {�num � �LATE�denom}.

(C4) gives us two important properties of IF-based estimators. First, it clearly defines the

double robustness condition as the second-order error term, T2. Second, it indicates that we

can use estimators that converge at rate oP (n�1/4), such as machine learners, and still achieve
p
n convergence.[65, 108] Key complexity conditions have been derived for the regularized

regression, random forests, and neural networks.[28, 38] In general, by only requiring a

oP (n�1/4) convergence rate for nuisance functions, these latter complexity conditions are

generally weak and accommodate a wide array algorithms.

From these results, we may construct (1 � ↵)-level Wald confidence intervals for �̂LATE.

Letting q1�↵/2 be the 1� ↵/2 quantile of the standard normal distribution and �̂ being the

plug-in estimator for �, we have:

�̂LATE ± q1�↵/2

s
Pn�̂2

n
. (2.18)

2.4 Causal Inference in Time to Event Settings

2.4.1 Survival Analysis and Confounder Adjustment

A common scenario in observational health research is isolating causal effects related to the

impact of an exposure on the time until an event of interest such as disease progression or

death. A primary challenge in this setting is that of right-censoring where individuals drop

out of the dataset prior to their event meaning that their outcome is unknown. Discarding

these observations typically leads to bias and inefficiency in causal estimates. The bias, in

part, arises due to uncensored observations having, on average, shorter survival times than

right-censored observations and potential covariate-dependent censoring, inducing selection

bias. Therefore, any causal inference method in this setting must focus on mitigating the
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effects of right-censoring.

Consider a binary treatment D 2 {0, 1} and instrumental variable (IV) Z 2 {0, 1} with

potential survival time denoted T (d) and potential treatment assignment D(z) where T =

DT (1)+(1�D)T (0) and A = ZD(1)+(1�Z)D(0). Notationally, in time-to-event outcomes,

for subject i, censoring prevents the observation of Ti if there exists censoring time Ci such

that Ti > Ci. As such, let �i = I(Ti < Ci) and observed outcome Yi = min(Ti, Ci). We make

the additional assumption that the censoring time is independent from the survival, given the

covariates and treatment assignment: T ?? C|D,X. This assumption is crucial to be able to

treat uncensored observations as a simple random sample of the population.

Suppose for expository purposes, we wanted to estimate the ATE �1. The most common

censoring-robust method would be the Cox proportional-hazards model where the ATE the

coefficient in front of D:

h(t | D,X) = h0(t) exp
⇣
�1D + �T

2 X
⌘
. (2.19)

where h0(t) is the baseline hazard at time t.

Under independent censoring, strong ignorability, positivity, and SUTVA, we may interpret

exp(�1) as the causal hazard ratio (CHR), which tells us the relative increase or decrease

of risk of an event over the study period due to the treatment. As discussed in previous

sections, we may also use the propensity score to adjust for confounding, for example, via

inverse probability weighting.[8]

One major concern with the CHR is its properties under the violation of the proportional

hazards assumption, which states that the hazard ratio between the two treatment groups

remains constant over time. For example, Hernan (2013) points out that since the CHRs are

changing over time, a single number summary may be misleading and there is built-in selection
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bias over time as the subjects that remain at risk may be systematically different than those

who have had the event.[49] To move away from the proportional hazards assumption, some

have instead chosen to model time-to-event data via the accelerated failure time (AFT)

wherein the survival time is regressed upon the treatment and covariates.[113, 125] The

general form is log-linear:

log(T ) = �1A+ �T

2 X + ✏ (2.20)

where ✏ ⇠ N(0, 1). exp(�1) tells us the degree to which survival time is multiplicatively

changed (i.e. accelerated or decelerated) in the treatment group compared to the control.

Handling right-censoring in the AFT is important as T is not observed for all observations. One

solution to this is to impute the survival time for the censored observations via the Buckley-

James procedure.[24] In particular, we are imputing log(T ) with Y ⇤ = log(Y )�+E[log(T )|T >

Y,A,X](1� �) noting that E[Y ⇤] = E[log(T )].

The focus of the procedure is on E[log(T )|T > Y,X,A] = µ(X) +  where µ(X) = �1A +

�T

2 X and (X) = E[✏|✏ > log(Y ) � µ(X), X]. Since we cannot observe ✏ we instead use

observed residuals ri = log(Yi) � µ(X). Ordering, r1 < r2 < ... < rnk
, we can estimate 

nonparametrically via

̂ = Ŝ(ri)
�1
X

rj>ri

rj�j�Ŝ(rj) (2.21)

where Ŝ(ri) is the Kaplan-Meier estimator of the survival function for residual ri.[124] We fit

µ(X) with � = (�1, �2) iteratively as follows:

1. Set M = 0 and obtain initial estimate µ̂(0) using the uncensored data as well as ̂ from

the residuals.

2. At the Mth iteration:
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(a) Y ⇤ = µ̂(M�1)(Xi) + ei�i + (1� �i)̂za(Xi)

(b) Fit µ̂(M)(X) using X and Y ⇤

3. Repeat Step 2 until a set number of iterations is reached or, for some constant ↵ > 0,

����̂(M)(Xi)� �̂(M�1)(Xi)
���

�̂(M�1)(Xi)
< ↵ (2.22)

2.4.2 Instrumental Variables in Time-to-Event Settings

As in with any causal setting, the aforementioned survival analysis methods are susceptible

to bias for the ATE due to unmeasured confounding. Thus, a branch of the causal literature

is focused on adapting survival methods to the IV settings. For example, the complier CHR

can be estimated using 2SRI by taking the residuals from the first stage and incorporating

them into a Weibull or Cox proportional hazards model.[112, 45, 109] The primary limitation

of these methods is that non-collapsibility biases the estimate of the CCHR, which can be

partially mitigated via including a frailty term in the second-stage.[76, 77] Another path to

mitigate non-collapsibility, would be to assume an additive hazards model though considered

by some to be biologically implausible.[111, 75]

Of course, targeting any causal HR, whether it be via the confounder or IV approach, is

subject to the same limitations highlighted above. Thus, some have naturally extended AFT

methods and, moreover, Buckley-James to the IV setting via two-stage predictor inclusion

(2SPI).[81, 55] In this procedure, the predicted values from the first stage are put in place

of the treatment in the outcome model. 2SRI may also be similarly used. Because the

AFT is linear in nature, there is no issue with non-collapsibility. Lastly, methodology to

nonparameterically estimate the difference in the survival probability at a certain time

amongst compliers has been developed, which utilizes many of the IF properties previously

described.[70]
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Chapter 3

Choosing the Right Approach at the

Right Time: A Comparative Analysis of

Causal Effect Estimation using

Confounder Adjustment and

Instrumental Variables

3.1 Introduction

A common goal in observational studies is to estimate the average causal effect (ACE) of

a treatment or exposure on a specific outcome such as the effect educational attainment

on earnings. Due to the exposure not being randomized, the presence of confounders may

bias estimates of the ACE. Confounders are factors that influence both the level of exposure

(or treatment assignment) and the outcome. If uncontrolled for, confounders can create

extraneous differences between the exposure groups that make it difficult to isolate the causal

38



effect. The effectiveness of confounder adjustment for causality (CAC), however, is contingent

on the untestable assumption that a sufficient set of confounders, or suitable proxies, is

present in the dataset such that confounding can be accounted for appropriately. In other

words, we cannot use observed data to prove that the CAC is consistent for the ACE. A

simple example is if household income, a known confounder for educational attainment and

earnings, and any proxies were missing from the dataset we would like to analyze. Without a

priori knowledge that household income was a confounder, we would not be able to ascertain

that the CAC assumptions were violated.

An alternative approach that may avoid concerns about unobserved confounders is the instru-

mental variable (IV) approach, or instrumental variable analysis for causation (IVAC). An

IV is defined by three main conditions: (i) it influences the treatment assignment (relevance),

(ii) it is not a cause of the outcome after conditioning on treatment assignment (exclusion

restriction), and (iii) it is not associated with unobserved confounders (independence). In

the event that we have a variable that satisfies these conditions, we could then use variation

in the IV as a proxy for variation in the treatment and measure the effect on the outcome.

Importantly, by (iii), the variation in the IV is independent from unobserved confounding

and, therefore, unlike CAC, IVAC does not require appropriately accounting for all possible

confounding to consistently estimate the ACE.[10]

When choosing to use CAC over the IVAC, and vice-versa, we trade one set of untestable

assumptions for another. For CAC, we cannot prove that we have properly accounted for

confounding while, for IVAC, we cannot prove we have a valid IV. For example, proving the

exclusion restriction requires us to establish the lack of a direct relationship between the IV

and outcome, or a null result, which is not possible with data. Furthermore, to be consistent

for the ACE, the IVAC must meet certain untestable conditions surrounding treatment effect

heterogeneity. We therefore have no guarantee that under either approach our produced

estimate is consistent for the ACE. Despite this, we remain interested in estimating the ACE
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and subsequently direct our efforts towards attempting to estimate a parameter with the

least possible distance from the ACE. In this vein, the key question and central premise of

the current manuscript focuses on addressing the following question in practice: under the

potential violation of the untestable assumptions, when is the parameter estimated by CAC

closer to the ACE than that of IVAC, and vice versa?

In the literature, there exist general guidelines surrounding whether CAC is more appropriate

than IVAC.[10, 135] Generally, we contend that analysts should weigh whether the potential

degree of unobserved confounding outweighs the potential for violations in the IV assumptions.

There is, however, little by way of theoretical research that directly compares the two

approaches to assess these trade-offs. To examine these trade-offs between CAC and IVAC,

we focus on the use of ordinary least squares (OLS) and two-stage least squares (2SLS),

respectively, to estimate the causal effect in each paradigm for two main reasons. First, OLS

and 2SLS are the most commonly used methodologies for each approach and, therefore, our

findings would be readily applicable to a large group of analyses. Second, linear functional

forms will allow us to give intuitive and tractable closed-form results for relative inconsistencies.

Then, we will provide a sensitivity framework to guide analysts in determining whether the

inconsistency of 2SLS is more than that of OLS, and vice versa.

Alternative estimators for CAC and IVAC include using non-linear machine learning (ML)

models such as double machine learning or targeted minimum loss estimation approach.[28,

114] Though flexible modeling may protect against functional form misspecification, they

are far from immune to inconsistency due to the assumption violations we will study. Yet,

non-linear approaches will carry additional complexity that will make it difficult to analytically

quantify the impact of potential violations in closed form. Thus, for our purposes, we will

utilize OLS and 2SLS to estimate causal effects under a linear data generating mechanism

with the general intuitions gleaned translating to non-linear settings.

In order to more succinctly express the relative performance of OLS and 2SLS under as-
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sumption violations, we focus on the scenario where, for a given variable, we must decide on

whether the variable should be adjusted for as a confounder in OLS, used as an IV in 2SLS,

or not incorporated into the analysis at all. Note that we allow confounders to be adjusted

for in 2SLS – an IV is only used in the first stage whereas confounders would need to be

present in both the first and second stage.

To our knowledge, there is no existing theoretical literature directly comparing the trade-offs

of pursuing CAC versus IVAC, though authors have considered the impact of assumption

violations in both settings. The first area of literature relevant to the themes of this chapter

is bias amplification, which refers to the fact that using certain variables as confounders may

increase pre-existing bias due to unobserved confounding. In the linear setting, an IV is a

bias amplifier.[17, 132, 88, 107] In these papers, the authors compare the consistency for the

ACE with and without adjusting for an IV. Pearl (2012) provides an extension where there is

an imperfect IV (in that the exclusion restriction is violated) and shows that under certain

conditions, adjusting for the imperfect IV may actually reduce bias. Similar to this work, he

presents his results with both linear structural equations and directed acyclic graphs (DAG)

edge-weights to aid understanding of the the trade-offs. Nevertheless, he does not address

whether this variable may be more appropriately used in 2SLS.

The bias amplification literature and, by extension, our findings have important implications

on applied practice. In particular, the rise of data-driven variable selection approaches for

the propensity score, or probability of receiving the intervention, in confounder methods and

first-stage for IV analysis. Though IVs, by definition, influence the treatment assignment, they

may amplify bias if included in the model for the propensity score.[17] For IV methods, though

a variable may not be a perfect IV it may still be worth using it as such. In addition, data-

driven modeling of the first-stage may, for example, shrink to zero an important confounder

used to achieve the IV assumptions. The gain in the strength of the first-stage may, however,

offset the penalty incurred by omitted variable bias in 2SLS. As it stands, these intuitions
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are difficult to incorporate into variable selection procedures. With this work, we seek to

elucidate these complicated scenarios.

In another area of the literature, there has been some work related to comparing OLS to

2SLS under the violation of IV assumptions. It is a well-known result that if an IV is poorly

predictive of the intervention (i.e. weak), then small violations in the exclusion restriction and

independence assumption can lead to large inconsistencies for the IV estimand.[19, 131]. In

addition, to assess the independence assumption, one may compare the impact of intentionally

omitting an observed confounder on OLS and 2SLS in order to compare the sensitivity of

OLS to that of 2SLS in estimating the ACE.[21] The main assumption behind this procedure

is that the impact of omitting an observed confounder on the consistency of OLS and 2SLS

is similar to that of omitting a correlated unobserved confounder. A similar assumption and

"benchmarking" procedure will be used in our sensitivity analysis.

There are several procedures in the literature regarding sensitivity analyses for violations in

IV assumptions. For example, Cinelli and Hazlett (2022) provide a compelling framework and

visualization scheme for omitted variable bias in 2SLS based on several partial R2 measures.[32]

Their framework addresses the question of how large the impact of an unobserved confounder

would have to be in order to qualitatively change the inferential conclusions of a study,

which covers both violations of the exclusion restriction and independence assumptions. A

similar procedure to this is the E-value.[115] While we use many of the same tools – notably

benchmarking unobserved R2 measures with observed data from Cinelli and Hazlett (2022)

– we do not focus on this sensitivity analysis paradigm of hypothesis testing but instead

consider the relative inconsistencies of CAC and IVAC for the ACE.

Another complication to IVAC lies in treatment effect heterogeneity. In this setting, Imbens

and Angrist (1994) state that, under monotonicity conditions, IVAC identifies the local

average causal effect (LACE) or the causal effect of the "compliers" subpopulation (those

whose treatment assignment varies with the IV).[61] If the factors that determine compliance
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also cause treatment effect heterogeneity, then the LACE may not be equal to the ACE.

Hartwig et al. (2020) and Wang and Tchetgen Tchetgen (2018) give clear explanations of the

assumptions needed for the LACE to equal the ACE.[48, 122] Essentially, the heterogeneity

between the treatment and outcome should be independent of both the IV and the effect

modification between the treatment and outcome. For the ease of parameterization in this

chapter, we will use Wang and Tchetgen Tchetgen’s notion that one of two conditions must

be met: (i) no unmeasured confounders are additive effect modifiers of the relationship of

both the instrument and treatment or (ii) no unmeasured confounders are additive effect

modifiers the treatment and the outcome.

The rest of this chapter is organized as follows. First, we provide the general model setting

of interest and introduce relative notation. We then present results regarding the consistency

of no adjustment, OLS, and 2SLS for the scenarios of an exclusion restriction violation,

independence violation, and treatment effect heterogeneity relevant to IV estimation with

and without covariates. In all scenarios, we consider unobserved confounding and isolate

the impact of individual assumption violations (e.g. both an exclusion restriction and

independence violation). Following this, we present a sensitivity analysis procedure based on

partial R2 and benchmarking unobserved quantities with observed quantities. The goal of

this procedure is to give the analyst relevant information to assess the plausibility of whether

it may be more appropriate to adjust for a variable in OLS or 2SLS. Next, in simulations, we

verify our closed-form results and demonstrate the use of the sensitivity analysis procedure in

a variety of scenarios. Then, we apply the procedure to the analysis the effect of educational

attainment on earnings conducted in Card (1993), which has been the subject of subsequent

analyses over the validity of the IV utilized.[25, 32] We conclude with a discussion regarding

the implications of our closed form results on the practice of causal inference and, additionally,

provide further guidance on how to use our sensitivity analysis procedure.
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3.2 Notation and Set-Up

Our goal is to estimate the ACE of some continuous treatment X on an outcome Y , denoted

as �1 = @

@x
E[Y |do(x)] in Pearl’s notation.[86] We depict the causal relationships in Figure 3.1,

a DAG with edge weights c0, . . . , c3. We further consider the following structural equations

where E[✏1|U,Z] = 0 and E[✏2|X,U ] = 0:

X = ↵1U + ↵2Z + ✏1, (3.1)

Y = �1X + �2U + ✏2. (3.2)

Z X Y

U
c3 c0

c1 c2

Figure 3.1: A directed acyclic graph with one confounder and one instrumental variable.

Given that all variables in Figure (3.1) are standardized to have mean 0 and variance 1, the

edge weights are equivalent to the coefficients in Eqs. (3.1) and (3.2). For example, the ACE,

�1, is the same as the edge weight c0. In addition, ↵1 = c1, ↵2 = c3, �1 = c0, and �2 = c2.

This equivalence will be helpful in visually expressing assumptions surrounding different

scenarios. Furthermore, the edge weights are correlations and are bounded between �1 and

1.

Throughout, we assume the stable unit treatment value assumption (SUTVA) of consistency

and no interference. Because U is unobserved, we must estimate the the following reduced

form regression where the subscript R indicates these are the values related to the reduced
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regression

Y = �R

1 X + ✏R2 . (3.3)

U is a confounder because it both influences X and Y , and, therefore, because we have failed

to block the path through U , �̂R

1 is inconsistent for the ACE. Alternatively, to estimate the

ACE, we may utilize Z, which is a valid IV if

1. ↵2 > 0 (relevance)

2. Z is not a cause of Y conditional on X (exclusion restriction)

3. Z is not influenced by any unaccounted for confounders such that Z 6?? Y |X (indepen-

dence).

Supposing that there is no treatment effect heterogeneity or that the conditions of Hartwig

et al. (2020) or Wang and Tchetgen Tchetgen (2018) [48, 122] are met, we have �IV =

Cov(Z,Y )
Cov(Z,X) =

�1↵1

↵1
= �1, and hence 2SLS will provide a consistent estimate of the ACE. The first

equality comes from the definition of the LACE under a continuous treatment and outcome

and, under the aforementioned conditions, the LACE is equal to the ACE.

We are interested in estimating and comparing the following estimands: the causal effect i.e.

Eq. (3.4), one that omits Z i.e. Eq. (3.5), one that uses Z as a confounder i.e. Eq. (3.6),

and one that utilizes Z as an IV i.e. Eq.(3.7):

A1 =
@

@x
E[Y |do(x)] = c0, (3.4)

A2 =
@

@x
E[Y |x], (3.5)
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A3 =
@

@x
E[Y |x, z], (3.6)

A4 =
Cov(Y, Z)

Cov(X,Z)
=

@

@z
E[Y |z]

@

@z
E[X|z]

. (3.7)

We define the degree of inconsistency for A1 of estimates of A2, A3, and A4 as a set of absolute

differences: �2 = |A1 � A2|, �3 = |A1 � A3|, and �4 = |A1 � A4|. Our goal is to compare the

magnitude of lambda2, �3, and �4. One approach "performs better" than the other if the

respective � is smaller. For example, 2SLS performs better than OLS if �4 > �3.

As a simple example of the types of calculations and comparisons that we will do in the

next section, we can use the conditions of Figure 3.1. From Pearl (2012), we have that

A2 = c0 + c1c2 by Wright’s rules of path analysis and A3 = c0 + c2
@

@x
E[U |x, z] = c0 +

c1c2

1�c23
.[88]

As a result of adjusting for Z as a confounder, we have bias amplification that increases with

the strength of the IV (i.e. the magnitude of c3). In addition, we have that Â4
p! c0. The

proof of this is in the first section of the Appendix. Further, by Chebyshev’s inequality and

assuming finite variances hold, we also have that Â2
p! c0 + c1c2 and Â3

p! c0 +
c1c2

1�c23
. Thus,

�3 = c1c2

1�c23
> �2 = c1c2 > �4 = 0 or, in words, 2SLS performs better than no adjustment,

which performs better than OLS.

3.3 Trade-offs Under Violations in Instrumental Variable

Assumptions

In this section, we present results for the trade-offs between confounder and IV methods

for three scenarios: (i) violation of the exclusion restriction assumption, (ii) violation of

46



the independence assumption, and (iii) treatment effect heterogeneity. In all scenarios, U

is unobserved, which provides the realistic setting where we may be motivated to use 2SLS

due to the concern of unobserved confounding. For ease of exposition, we first derive the

quantities of interest without adjustment for observed confounding. We then present the

quantities with these observed covariates. For ease of comparison of the quantities of interest,

we further assume all regression slope parameters are positive throughout this section and we

will handle the general case in the sensitivity analysis portion. Unless otherwise stated, all

proofs for the propositions in this section can be found in the Appendix.

3.3.1 Exclusion Restriction Violation

Figure 3.2 directly reproduces Figure 2 from Pearl (2012) and presents a violation of the

exclusion restriction assumption for Z if cER 6= 0. We use this quantity to denote the degree

of violation. By traditional logic, one would define Z as a confounder because it is a cause

both of X and Y and use it as such. It is not, however, unequivocally true that one should

use Z as a confounder. To see this, suppose we have the following structural equations:

X = c1U + c3Z + ✏3 (3.8)

Y = c0X + c2U + cERZ + ✏4. (3.9)

Z X Y

U
c3 c0

c1 c2

cER

Figure 3.2: Exclusion Restriction Violation using Z as an IV.

Proposition 3.3.1. Under the conditions of Eqs. (3.8) and (3.9), Â2
p! c0 + c1c2 + c3cER,
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Â3
p! c0 +

c1c2

1�c23
, and Â4

p! c0 +
cER
c3

.

The convergence results for A2 and A3 can be found in Pearl (2012) so we omit them.

The proof for A4 can be found in the Appendix. We see that adjusting for Z decreases

inconsistency compared to not adjusting for Z if cER
c3
� c1c2

1�c23
. This inequality could be difficult

to attain if the instrument is strong.[88] Interestingly, the left term of this inequality is the

inconsistency of 2SLS and thus the IV being strong is relatively advantageous for the use of

Z as an IV in 2SLS. We can re-arrange the inequality between A3 and A4 as cER(1�c
2
3)

c3
� c1c2

where c1c2 indicates the impact of unobserved confounding in the relationship between X

and Y . Here, it becomes more clear that the strength of the IV can be large enough such

that the degree of exclusion restriction violation (i.e. cER) is offset and is smaller than the

impact of unobserved confounding.

The trade-offs between A2, A3, and A4 can be visualized with a 3-D contour plot. In Figure

3.3, letting c0 = 0.3, c1 = 0.7, and c2 = 0.7, we can vary the values of c3 and cER. Note

the plausible coefficient values for c3 and cER are restricted due to the requirement that

the variances for the variables to sum to one (see "Notes about Simulations" section in

the Appendix). This image gives us the visual intuition that when the IV is stronger,

moderate violations in the exclusion restriction violation do not preclude the use of Z as an

IV. Furthermore, adjusting for Z will be inferior compared to not adjusting for Z. When the

IV is weak, 2SLS predictably performs poorly in all cases.

3.3.2 Independence Violation

Figure 3.4 represents one violation of the independence assumption where the residual

confounder U is a cause of Z. Here, cI represents the degree of violation or, in this case, the

effect of U on Z. Alternative specifications create a new confounder that is only associated

with Z but not X. Nonetheless, our parameterization provides a useful case where both the

independence assumption is violated and there is confounding in the relationship between
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Figure 3.3: Analytical comparison of no adjustment, OLS adjusting for the IV, and 2SLS
using the IV under varying IV strength and degree of exclusion restriction violation.

Z X Y

U

c3 c0

c1
c2cI

Figure 3.4: Z is Correlated with an Unobserved Confounder U

Z and X. For structural equations, we can re-use Eqs 3.1 and 3.2 as well as add an extra

structural equation given by

Z = cIU + ✏5. (3.10)

Proposition 3.3.2. Under Eqs. (3.1), (3.2), and (3.10), Â2
p! c0 + c1c2 + c2c3cI , Â3

p!

c0 +
c1c2(1�c

2
I)

1�(c3+c1cI)2
, and Â4

p! c0 +
c2cI

c3+c1cI
.

Establishing the convergence result for A2 is a straightforward application of Wright’s path

analysis so only the proofs for A3 and A4 are provided in the Appendix.[133] To better

interpret these quantities, we can think about both paths on the DAG and remaining variance
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after orthogonalizing variables via the Frisch-Waugh-Lovell Theorem (FWL).[72] Looking at

the pathways, c1c2 is the backdoor path from X to Y through U , c2c3cI is the backdoor path

through Z, and c2cI is the path from Z to Y via U . c3 + c1cI is the unconditional correlation

between Z and X, which includes both the direct and backdoor path via U . 1� c2
I

depicts

the remaining (stochastic) variation in Z after orthogonalizing U while 1� (c3 + c1cI)2 is the

remaining variance in X after orthogonalizing Z.

Of particular interest is the trade-off between using Z in 2SLS and using Z in OLS. We find

that adjusting for Z is superior to using Z for 2SLS if cI
c3+c1cI

>
c1(1�c

2
I)

1�(c3+c1cI)2
. We can begin to

interpret this inequality with the reoccurring theme that if the IV is strong then attaining

this inequality is more difficult: a strong IV will cause c3 + c1cI to be large which inflates the

inconsistency in A3 while it decreases the consistency for A4. The remaining variation in Z

not caused by U , or cI , is an important quantity because as cI decreases, the inconsistency in

A3 will increase while the inconsistency in A4 will decrease. In this sense, a simple sensitivity

analysis procedure could be to benchmark the variation in the IV that is explained by the

covariates. One could use this benchmark to conjecture how much of the variation in the IV

is explained by an unobserved confounder. If this quantity is small then one could plausibly

assume a fair amount of variation in Z free from unobserved confounding and, thus, cI is

small. These trade-offs can be visualized in Figure 3.5 where c0 = 0.3, c1 = 0.7, and c2 = 0.7.

3.3.3 Treatment Effect Heterogeneity

We return the setting of Figure 3.1 where we have a perfect IV but now we omit the edge

weights and introduce treatment effect heterogeneity. In this case, we do not know of any

literature that gives us a salient way to to represent treatment heterogeneity using DAGs

and edge weights. Therefore, the nuance is in the structural equations:

X = ↵1Z + ↵2U + ↵3ZU + ✏1, (3.11)
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Figure 3.5: Analytical comparison of no adjustment, OLS adjusting for the IV, and 2SLS
using the IV under varying IV strength and degree of the independence violation.

Y = �1X + �2U + �3XU + ✏2. (3.12)

The estimand of interest remains the ACE or the average of the individual treatment effects,

which is denoted by �1. This parameterization is consistent with a violation of Wang and

Tchetgen Tchetgen (2018) assumptions 5a and 5b if ↵3 6= 0 and �3 6= 0. The key parameter for

measuring the degree of "assumption violation" is ↵3 because we aim to quantify how large

an unobserved confounder needs to be in order to modify the effect on Z in the first-stage to

render �4 > �3 and �4 > �2, or that IVAC is inferior to CAC.

We note that in this scenario, U is extended to be a composite variable that includes

unobserved confounders but, additionally, unobserved effect modifiers. That is, a variable

that only affects the outcome and thus contribute to the magnitude of �2 and �3 but not

↵2 and ↵3, and vice versa. This allows us to be more flexible in that we do not require all

unobserved variables to be both confounders and effect modifiers but perhaps only effect
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modifiers.

Proposition 3.3.3. Under the conditions of Eqs. (3.11) and (3.12) as well as assuming

E[U3] = 0, Â2
p! �1 + ↵2�2 + 2↵1↵3�3, Â3

p! �1 +
↵2�2+↵1↵3�3

1�↵2
1

, and Â4
p! �1 +

↵3�3

↵1

When comparing the relative trade-off between not adjusting for Z and adjusting for Z, the

latter is inferior if ↵2�2+↵1↵3�3

1�a21
> ↵2�2 + 2↵1↵3�3. Unlike the case of no effect modification,

it is not always true that adjusting for an IV will amplify bias. Specifically, by rearranging

terms we see the inequality holds if 2↵2
1 +

↵2�2

↵3�3
> 1. If |↵1| ' 0.7, or the IV is strongly

associated with X, then this inequality will hold; however, this would not be the case if the

IV is sufficiently weak and the multiplication of the coefficients for the interactions are larger

than the multiplication of the coefficients representing the main effect.

In the more realistic case, if an analyst is aware Z is an IV and assuming that the IV

was sufficiently strong, the main point of concern surrounds whether the LACE estimate

is more inconsistent than the ACE estimate from the unadjusted OLS. This notion is true

if ↵3�3

↵1
> ↵2�2 + 2↵1↵3�3 or ↵1↵2�2

↵3�3
+ 2↵2

1 < 1. Firstly, a strong IV, |↵1| ' 0.7, precludes

this inequality from being attained. Alternatively, this inequality could fail to be attained if

the ratio of main effects to interaction effects, scaled by the IV strength, is large. Setting

↵2 = 0.15, �1 = 0.1, �2 = 0.2, and �3 = 0.1, we can visualize the above inequalities in Figure

3.6.

A final takeaway from these results is that the strength of an IV has implications on the

the OLS inconsistencies even though it is independent from U (e.g. via the term 2↵1↵3�3

in A2). Therefore, accounting for any present IVs, even if never utilized, is important for

understanding the degree of inconsistency present in confounder methodology. The results of

the previous three Propositions are summarized in Table 3.1.
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Table 3.1: Summary of Results

Scenario A2 A3 A4

Exclusion Restriction Violation

Z X Y

U
c3 c0

c1 c2

cER

X = c1U + c3Z + ✏3

Y = c0X + c2U + cERZ + ✏4.
c0 + c1c2 + c3cER c0 +

c1c2

1�c23
c0 +

cER
c3

Independence Assumption

Z X Y

U

c3 c0

c1
c2cI

X = c11U + c3Z + ✏1

Y = c0X + c2U + ✏2

Z = cIU + ✏5.
c0 + c1c2 + c2c3cI c0 +

c1c2(1�c
2
I)

1�(c3+c1cI)2
c0 +

c2cI
c3+c1cI

Treatment Effect Heterogeneity

X = ↵1Z + ↵2U + ↵3ZU + ✏1,

Y = �1X + �2U + �3XU + ✏2.
�1 + ↵2�2 + 2↵1↵3�3 �1 +

↵2�2+↵1↵3�3

1�a21
�1 +

↵3�3

↵1
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Figure 3.6: Analytical comparison of no adjustment, OLS adjusting for the IV, and 2SLS
using the IV under varying IV strength and degree of the treatment effect heterogeneity
assumption.

3.3.4 Adding Additional Confounders

In the vast majority of data analyses, an analyst will have access to observed confounders

that will be adjusted for to mitigate confounding both in OLS and 2SLS. Temporarily, we

consider a single observed confounder, W , that is continuous and has mean 0 and variance 1.

If we have multiple confounders, {W1,W2, ...WJ}, that are in the same form as W , we can

simply redefine W as some function of the confounders, f(W1,W2, ...WJ). For example, this

might take a form linear combination derived from the first principal component of the W

matrix. Therefore, the edge weights and regression coefficients will be the joint effect of the

confounders and our updated results can accommodate multiple covariates. Depending on

the which equation W is in, it can additionally represent the propensity score (first stage)

or prognostic score (second stage) that can be estimated using ML models under a partial

linear model that relaxes assumptions the functional form of covariates.[98, 28] In this work,

for simplicity, we will not discuss such ways of modeling W .

Because we would like to use W to benchmark relationships involving U , we must update
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the DAGs and structural equations such that the W has a similar relationship to U in each

assumption violation. As a consequence, our previous results will change. In all cases, W is

orthogonal to U or, in other words, U represents confounding in ACE unrelated to U . With

the exception of A1, the quantities of interest are updated to

A2 =
@

@x
E[Y |x, w] (3.13)

A3 =
@

@x
E[Y |x, z, w] (3.14)

A4 =
Cov(Y, Z|W )

Cov(X,Z|W )
=

@

@z
E[Y |z, w]

@

@z
E[X|z, w]

. (3.15)

Exclusion Restriction

Figure 3.7 serves as an example of a covariate that has no direct impact on Z or U . Never-

theless, if we were to condition upon X and nothing else, U would no longer be independent

of W or Z due to the collider effect. A collider effect induces an association between two

variables that point to (i.e. cause) a single variable that has been conditioned.[86] However,

conditioning upon W breaks this association.

Z X Y

W

U
c3 c0

c1 c2

cERcER

c5 c6

Figure 3.7: A DAG with observed confounder and violation of exclusion restriction (W ).

The updated structural equations are

X = c1U + c3Z + c5W + ✏3 (3.16)

55



Y = c0X + c2U + cERZ + c6W + ✏4. (3.17)

Proposition 3.3.4. Under Eqs. (3.16) and (3.17), Â2
p! c0+

c1c2+c3cER

1�c25
and Â3

p! c0+
c1c2

1�c23�c25

The proof is very similar to that of Proposition 3.3.1 so it is omitted. As expected, adjusting

for W leads to decreased variance in X, which leads to a higher proportional contribution of

U , at the benefit of eliminating the backdoor path via c5c6. For 2SLS, the results for A4 are

not affected because the assumption violations vis-a-vis using Z as an IV are not influenced

by W . Nevertheless, in practical settings, adjusting for W will usually increase precision of

Â4.

Independence

Z X Y

U

W

c3 c0

c1
c2cI

c5
c6c7

Figure 3.8: W mimics U in the DAG.

Besides introducing W as a confounder in the X � Y relationship, Figure 3.8 extends W

to be a confounder in the Z � Y and Z � X relationships. Therefore, the independence

assumption of Z being met is contingent on conditioning upon both W and Z. Thus, the

structural equations are updated to

Z = cIU + c7W + ✏5 (3.18)
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X = c1U + c3Z + c5W + ✏1, (3.19)

Y = c0X + c2U + c6W + ✏2. (3.20)

The results for all quantities, A2, A3, and A4, can now be updated per the following proposition

with the proof detailed in the Appendix:

Proposition 3.3.5. Under Eqs. (3.19), (3.20), and (3.18):

Â2
p! c0 +

c1c2 + c2c3cI
1� (c5 + c3c7)2

, (3.21)

Â3
p! c0 +

c1c2(1�c
2
7�c

2
I)

1�c27

1� (c5 + c3c7)2 � (1� c27)(c3 +
c1cI

1�c27
)2
, (3.22)

Â4
p! c0 +

c2cI
(1� c27)(c3 +

c1cI

(1�c27)
)
. (3.23)

These results bear some resemblance to Proposition 3.3.2 when we did not have W present.

For A2, in the numerator, because W does not mitigate the influence of U in the DAG, we still

have two backdoor paths from X to Y that go through U . Meanwhile, in the denominator

the variance of X is reduced via controlling for W , which has a direct path to X as well as

an indirect path via Z.

For A3, the quantity is similar conceptually to our findings in Proposition 3.3.2 except that we
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must additionally account for controlling for W . In the numerator, c1c2(1� c27� c2
I
) represents

the magnitude of unobserved confounding reduced (i.e. multiplied) by the exogenous variance

of Z due to there no longer being a backdoor path to Y via Z. We must account for the cost

of adjusting W therefore this quantity is amplified (i.e. divided) by 1� c27, the variance in Z

free of W . In the denominator, we have the remaining variance of X after adjusting for W

and Z. The first subtracting term represents the unconditional R2 between X and Z while

the second takes the variation of Z free of W and multiplies it by the partial R2 between

Z and X, adjusting for W . Because we haven’t adjusted for U , the backdoor path via U

remains and, furthermore, because W does not mitigate this, W essentially acts like a bias

amplifier for c1cI . Lastly, A4 represents the association between Z and X via U as well as

the variation exogenous from W directly from Z.

Treatment Effect Heterogeneity

Because we require our observed confounder to be of the same form of U for benchmarking

purposes, we will set W as both an effect modifier of the treatment on the outcome and of

the instrument on the treatment assignment with the following structural equations:

X = ↵1Z + ↵2U + ↵3ZU + ↵4W + ↵5ZW + ✏1, (3.24)

Y = �1X + �2U + �3XU + �4W + �5XW + ✏2. (3.25)

The presence of XW , which is observed but still endogenous, means that in OLS, we must

adjust for it and in 2SLS, must provide an an additional IV. In particular, we will choose
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ZW . Therefore we modify the quantities of interest to

A2 =
@

@x
E[Y |x, w, xw] (3.26)

A3 =
@

@x
E[Y |x, z, w, xw] (3.27)

A4 =
@

@x̂
E[Y |x̂, cxw,w] (3.28)

where x̂ and cxw represent the fitted values from using Z, ZW , and W as regressors for X

and XW , respectively. Note that now the main effect is obtained after orthogonalizing XW

and W , or dXW and W in 2SLS, which we can find via FWL by treating XW as any other

covariate. Therefore, the corresponding interpretation of the main effect is when W = 0, or

we are at the average value of the covariate due to centering the variable.

Proposition 3.3.6. Under Eqs. (3.24) and (3.25) as well as E[U3] = 0, E[W 3] = 0,

E[W 4] = 3, and E[U4] = 3 we have Â2
p! �1+

↵2�2+2↵1↵3�3

1�↵2
4�

4↵2
1↵

2
5

1+↵2
4+2↵2

5

and Â4
p! �1+

↵1↵3�3�
2↵1↵3↵

2
5�3

↵2
1+↵2

5

↵2
1+↵2

5�
4↵2

1↵
2
5

(↵2
1+↵2

5
)

.

The proof for Proposition 3.3.6 is shown in the appendix. The interpretation of A2 is consistent

with Proposition 3.3.3 with the denominator reflecting the fact that we are adjusting for

W and XW , which reduces the remaining variance of X. For A4, because we are no longer

computing the ratio of coefficients the interpretation is not directly comparable to Proposition

3.3.3. Nevertheless, we can see the influence of the Z � U interaction on the inconsistency

and observe that because XU is correlated with XW , adjusting for XW will reduce the

influence of XU , hence the subtraction terms.

One may notice that we do not consider the convergence of A3 and this is because we only

wish to compare A2 and A4. The reason for this stems from our discussion of Proposition

3.3.3 where, assuming sign(↵2�2) = sign(↵3�3) for sake of simplicity, bias amplification

will hold in the effect modification case if 2↵2
1 +

↵2�2

↵3�3
> 1. When we have a strong IV, or

|↵1| ' 0.7, then this inequality holds. If we instead lower the strength of the IV to where
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we must consider ↵2�2

↵3�3
> 1� 2↵2

1, we would require the multiplication interaction effects to

be at least as large as the main effects with this requirement increasing as the IV strength

increases. We argue that in this circumstance one should avoid using Z altogether because

concern over this ratio would imply that the IV is weak and the LACE is likely to be far

from the ACE due to large heterogeneity. Thus, a comparison between OLS adjusting for Z

and 2SLS is not warranted.

3.4 Sensitivity Analysis

In this section, we use the closed form derivations of the previous section to develop a set of

sensitivity analysis procedures that provide analysts with information surrounding whether

OLS or 2SLS may be more appropriate given the observed data and hypothesized assumption

violations. We focus on comparing A3 and A4, or using Z as a confounder versus as an IV,

by graphically presenting the relative inconsistency � = �4
�3

as measured by the degree of IV

assumption violations and unobserved confounding.

The graphical depiction of the relative inconsistencies is largely motivated by Cincelli and

Hazlett (2020) [31] and Cincelli and Hazlett (2022)[32] where they use a set of partial R2’s to

characterize how large the assumption violations in confounder and 2SLS analyses must be to

render statistically significant results null. Instead of focusing on hypothesis testing, however,

we examine how large unobserved confounding and IV assumption violations could be in

order for move us away from ambivalence over the choice of methodology (i.e. � = 1) either

towards 2SLS (� > 1) or OLS (� < 1). Quantifying this � one IV assumption at a time, we

build a detailed picture of the strengths and limitations relating to an analysis. Following

this, like Cincelli and Hazlett, we use benchmarking to estimate the unobserved quantities

contained within the closed-form derivations across a variety of scenarios. In the remainder

of this section, we will focus on the sensitivity analysis procedure in the case of the exclusion

restriction. Then, using the same principles, present the results for the independence and
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heterogeneity assumption violations more briefly.

3.4.1 Exclusion Restriction Violation

For the exclusion restriction, we have that

� =

����
cER

c3

����

����
c1c2

1� c23 � c25

����
�1

. (3.29)

Both c3 and 1� c23 � c25 are observed quantities and can be directly estimated via OLS where

c3 =
@

@z
E[X|z, w] and 1� c23 � c25 = 1�R2

X⇠W+Z
, or the residual variation in the model. cER

measures the degree of the exclusion restriction violation and, crucially, we cannot directly

identify it with the reduced model �R

ER
= @

@z
E[Y |x, w, z] because conditioning on X induces

a collider effect between Z and U thus �R

ER
= cER � c1c2c3

1�c23�c25
(see appendix). Therefore, we

can substitute for cER resulting in � =

����
�
R
ER+

c1c2c3
1�c23�c25
c3

����

����
c1c2

1�c23�c25

����
�1

. The quantification of cER

requires knowing sign(c1c2), which is unobserved. As a result, we will calculate � separately

for the case when sign(c1c2) = 1 and when when sign(c1c2) = �1

We now turn to c1 and c2, which together quantify the degree of unmeasured confounding. In

order to reasonably benchmark these relationships, we must make the following assumption:

for the set of observed confounders with cardinality J that make up the composite confounder

W in our notation, the magnitude of the Wj �X relationship and Wj � Y relationship for

j 2 {1, 2, ...J} are similar to the magnitude of the U �X and U �Y relationship, respectively.

To be conservative, we take the largest such magnitude where we the benchmark c1 via

cB1 = maxj
@

@wj
E[X|z, w1, w2, ..., wJ ] and similar for c2. Of course, the degree of unobserved

confounding could be different than the observed benchmark. To mitigate this, we may

additionally add a multiplier, for example M ⇥ cB1 , if we believe the observed confounders

underestimate (M < 1) or overestimate (M > 1) the degree of unobserved confounding. For

instance, if M = 0.5, we are assuming that the unobserved confounding is half as much as

the benchmarked confounding. Because the data is normalized, all quantities are on the scale
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of [�1, 1] and can be effectively interpreted as partial correlations.

With the ability to calculate an estimate on �, we can construct a graphical depiction of

the relative trade-offs across a matrix of cases. That is, we can can calculate � across an

array of multipliers to account for several benchmark scenarios and, furthermore, across,

for instance, the 90% confidence interval for �R

ER
to account for sampling variability in the

estimation of the exclusion restriction violation. The final result is a contour plot colored

by � such as the one presented in Figure 3.9, which depicts the contour plots across a grid

of example simulated scenarios where � < 1 (2SLS better), � = 1 (ambivalence), and � > 1

(OLS better) with sample sizes n = 500, 1200, and 3000 to show the impact of a widening

confidence interval bounds on the decision-making.

Focusing on the plot in the upper-right, the dotted lines represent for the x-axis and y-axis

the point estimate for �R

ER
and the multiplier of 1, respectively. The value of � at the

intersection of these dotted line indicates our decision if we take our data at face-value. The

value of � is about 0.5, indicating the inconsistency for the ACE of 2SLS due to an exclusion

restriction violation is about half the inconsistency in OLS due to unmeasured confounding.

This indicates that 2SLS may be the more appropriate method compared to OLS, which

matches with our simulation. At a glance, referring to the legend, where the plot remains red

(as opposed to white or blue) we maintain this conclusion. Nevertheless, we can see that as

we move towards the upperbound of the confidence interval we need an increasingly larger

multiplier on unmeasured confounding to cross into making the opposite conclusion due to

� > 1. In the context of the current data analysis at hand, an analyst should consider the

likelihood of both �R

ER
, which represents a partial correlation, nearly doubling and that the

degree of unmeasured confounding is less than the available covariates to benchmark as it

pertains to a certain multiplier.

As we move to the second row, ambivalence to methodology, we can see the intersection of

the dotted lines lands on the white strip with translates to � = 1. Furthermore, roughly half
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Figure 3.9: Contour Plots Across an Array of Exclusion Restriction Violation Scenarios

the scenarios are colored red while the other half is blue further indicating graphically that

there is no clear choice of 2SLS or OLS. In this case, our sensitivity analysis for the exclusion

restriction assumption is inconclusive and that other assumptions and factors regarding the

analysis should be examined. In the third row, it is clear that across virtually all the scenarios

observed, the exclusion restriction violation is large enough such that the 2SLS has a higher

inconsistency for the ACE compare to the OLS, sometimes at a ratio of nearly 4 times.
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3.4.2 Independence Violation

For the independence assumption, our ratio is now

� =
���

c2cI
c3 +

c1cI

1�c27

���
���

c1c2(1�c
2
7�c

2
I)

1�c27

1� (c5 + c3c7)2 � (1� c27)(c3 +
c1cI

1�c27
)2

���
�1

.

Involving partial R2s for this assumption is more tractable to calculate and interpretable in

this setting as opposed to the coefficients themselves. Furthermore, the key edge weight cI

plays a key role in both the inconsistency of 2SLS and OLS. Combining these both leads to a

quantification of the degree of violation of the independence assumption using the partial

Cohen’s f 2 where f 2
U⇠Z|W =

R
2
U⇠Z|W

1�R2
U⇠Z|W

. The partial Cohen’s f 2 is a common measure for the

general effect size of a relationship.[31] The notation in the super-script indicates we are

interested in the relationship between U and Z conditioning on W . The inconsistency ratio

can be translated to

� = f 2
U⇠Z|W

0

B@

q
R2

X⇠U |Z,W sd(Z?W )sd(X?Z,W )R2
X⇠Z|W

V ar(X?W )
V ar(Z?W )

1�R2
X⇠W

� (1�R2
X⇠W

)(R2
X⇠Z|W

V ar(X?W )
V ar(Z?W ) )

1

CA

�2

where, for example, sd(Z?W ) represents the standard deviation of the residuals produced

from regressing Z on W (see appendix for the construction of this result).

There are only two quantities we cannot estimate directly: R2
U⇠Z|W , the degree of violation,

and R2
X⇠U |Z,W , the degree of unmeasured confounding that influences X. We will benchmark

the former with R2
Z⇠Wj |W�j

and the latter with maxj R2
X⇠Wj |W�j ,Z

. Similar to the exclusion

restriction, we will compute a 90% confidence interval of the partial f 2 quantity (constructed

via the bootstrap) and place a multiplier on the benchmarked unmeasured confounding.

Using the same method to form the graphical representations, the contour plots across an

array of scenarios are presented in Figure 3.10. The graphs have the same interpretation

only that the x-axis directly measures the degree of violation. For example, the top left plot,
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at face value, the dotted lines intersect at a � of 0.25 meaning that the inconsistency in

2SLS due to a potential violation is four times smaller than that of OLS due to unmeasured

confounding. Thus, we favor 2SLS in this case. Where the white ambivalence line intersects

the horizontal dotted line tells us that if we trust our benchmark at a multiplier of one, then

the effect size will need to increase to about 0.02 to be ambivalent. The feasibility of this can

be judged using subject matter expertise in a given analysis.

Figure 3.10: Contour Plots Across an Array of Independence Violation Scenarios
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3.4.3 Treatment Effect Heterogeneity

As previously discussed, we will be comparing the inconsistency of OLS that does not adjust

for Z (i.e. �2) to the estimate produced under 2SLS. We have that

� =

�����
↵1↵3�3 � 2↵1↵3↵

2
5�3

↵2
1+↵2

5

↵2
1 + ↵2

5 �
4↵2

1↵
2
5

(↵2
1+↵2

5
)

�����

�����
↵2�2 + 2↵1↵3�3

1� ↵2
4 �

4↵2
1↵

2
5

1+↵2
4+2↵2

5

�����

�1

.

The key quantity to measure the heterogeneity violation is ↵3, or the coefficient representing

the Z � U interaction. After re-arranging terms (see appendix), we can re-express the

inconsistency ratio as

� = |↵3|
 �����

(↵2
1 � ↵2

5)
2

(12↵
2
1 � 3

2↵
2
5)V ar(X?W,XW )� (↵2

1 � ↵2
5)

2

�����

�����
�2↵2

2↵1�3

�����

!�1

We can benchmark ↵3 by via the regression coefficient that the corresponds to the maxi-

mum absolute value of the coefficient between the observed covariates and Z in the model

E[X|z, w1, w2, ..., wJ , zw1, zw2, ..zwJ ]. Because this value comes directly from the regression

model, we can easily derive 90% confidence intervals. �3, or the X � U interaction can be

benchmarked in a similar fashion. Similar to c1c2 in the exclusion restriction and because all

variables are centered, ↵2�2 measures the degree of marginal unmeasured confounding, which

we can benchmark in the same manner and include multipliers on these quantities. The only

caveat is that we need to make sure to include the interaction terms in the benchmark model.

Figure 3.11 presents the contour plots across several scenarios where on the x-axis the absolute

value ↵3 is estimated at the vertical dotted line. Furthermore, the lowest and highest absolute

values of the bounds of the confidence interval are plotted as the range in the plot. The bottom

left plot shows that there is significant heterogeneity, obtaining a coefficient of 0.135 on the

partial correlation scale, which produces a � of about 2.5. This means that the heterogeneity

pertaining to Z is large enough such that the LACE is 3 times more inconsistent for the
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ACE than OLS despite unmeasured confounding. If we are at the lower end of the range and

if the true degree of unmeasured confounding is twice that of our benchmark, then our �

is closer to 1 and we are more ambivalent in regards to this assumption violation causing

inconsistency greater than that of OLS.

Figure 3.11: Contour Plots Across an Array of Treatment Effect Heterogeneity Scenarios
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3.5 Simulation Results

In this section, we present results verifying the closed form derivations for all three assumption

violation scenarios with and without covariates. Additionally, we further present results

validating the accuracy of � to capture the inconsistency. All variables were generated via the

structural equations provided in the earlier sections with the error terms following a normal

distribution with mean zero. When the variables were independent from all other variables

in the system, such as U , they were standard normal. When the variable was determined by

other variables in the system, such as X, it was still normal but with the variance of the error

term being equal to one minus the variance of the other variables in the structural equation.

This is so that the total variance of terms like V ar(X) will still equal one (see the "Notes

about Simulations" section in the appendix). For example, in Eq 3.1, �✏1 = 1� c21 � c23 and,

thus, ✏1 ⇠ N(0, 1� c21 � c23).

To obtain the simulated numbers for OLS, we use the built-in lm from R function while for

2SLS, we use the ivreg function from the ivreg R package. In the exclusion restriction

and independence setting, we present the Monte Carlo averages over 500 simulations of 500

observations generated. For treatment effect heterogeneity because the empirical results

take more samples to converge, we used 500 simulations of 3000 observations. Note that

for all simulations, for demonstration purposes, we set the IV to be sufficiently strong such

that the estimates would converge on the population value within a reasonable sample size.

Nevertheless, our results otherwise hold for weak IVs if the number of observations in each

simulation increased significantly.

To demonstrate the sensitivity analysis plots, we examine an array of scenarios that scale

the degree of violation from zero to a value where the inconsistency of 2SLS is far past

that of OLS. At each degree of violation, we generate 500 samples from the data generating

mechanism of sizes n = 500, 1200, and3000 and record the proportion of calculated �’s that

are above 1 given a multiplier of 1. As the violation increases, this proportion should increase
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from 0 to 1. Crucially, it should also equal 0.5 when we reach ambivalence between OLS

and 2SLS. To simulate a set of covariates that we may use to benchmark the unobserved

quantities, we generated three independent covariates (W1,W2,W3) from a standard normal

distribution and constructed W via the first principal component.

3.5.1 Exclusion Restriction

For the case with no covariates, we set the following structural parameters c0 = 0.3, c1 = 0.5,

c2 = 0.5, c3 = 0.5, and cER = 0.25. For the case with covariates, we have c0 = 0.25, c1 = 0.4,

c2 = 0.4, c3 = 0.7, cER = 0.25, c5 = 0.4, and c6 = 0.4. The results are presented in Table 3.2.

Table 3.2: Theoretical and Simulated Results for the Exclusion Restriction Violation

Method

OLS without Z OLS with Z 2SLS with Z

Without covariates
Closed Form Result 0.375 0.333 0.5

Simulated Result 0.374 0.334 0.496

With covariates
Closed Form Result 0.399 0.457 0.357

Simulated Result 0.398 0.459 0.354

Using the values c1 = c2 = 0.35, c3 = 0.3, and c5 = c6 = 0.385 (to account for W being

constructed via PCA for benchmarking), Figure 3.13 demonstrates the properties of � as the

exclusion violation grows in magnitude. As expected, when the violation is low, the average

� begins low and steadily increases before leveling off near one. The vertical dotted line

represents magnitude of cER where the inconsistency of OLS is equal to that of 2SLS. For

all sample sizes examined, we see that at this ambivalence point the average � is about 0.5,

indicating good performance of our procedure. Predictably, as the sample size increases, the

behavior of � at the ends of the range for the degrees violation (i.e. no violation and large) is

more stable as there is less variability in the calculation of �.
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Figure 3.12: Average � across 500 simulations of the given sample size over a variety of
degree of exclusion restriction violations. The vertical dotted line represents the point of
ambivalence.

3.5.2 Independence

For the case with no covariates, we set the following structural parameters c0 = 0.3, c1 = 0.5,

c2 = 0.5, c3 = 0.5, cER = 0.25. For the case with covariates, we have c0 = 0.3, c1 = 0.4,

c2 = 0.4, c3 = 0.5, cER = 0.25, c5 = 0.4, c6 = 0.4, and c7 = 0.25. The results are presented in

Table 3.3.

Table 3.3: Theoretical and Simulated Results for the Independence Violation

Method

OLS without Z OLS with Z 2SLS with Z

Without covariates
Closed Form Result 0.312 0.384 0.2

Simulated Result 0.311 0.383 0.200

With covariates
Closed Form Result 0.290 0.391 0.176

Simulated Result 0.290 0.394 0.178

In Figure 3.13, we present the results of increasing the independence violation with c1 =
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c2 = 0.25, c3 = 0.2, and c5 = c6 = 0.35 and c7 scaling with the degree of violation to ensure

accurate benchmarking. Based on the plotted proportions, the performance of � matches our

expectations.

Figure 3.13: Average � across 500 simulations of the given sample size over a variety of
degrees of independence violations.

3.5.3 Treatment Effect Heterogeneity

For the case with no covariates, we set the following structural parameters �1 = 0.1, �2 = 0.2,

�3 = 0.1, ↵1 = 0.45, ↵2 = 0.15, and ↵3 = 0.1. For the case with covariates, we have �1 = 0.1,

�2 = 0.2, �3 = 0.1, �4, �5, ↵1 = 0.45, ↵2 = 0.15, ↵3 = 0.1, ↵4 = 0.15, and ↵5 = 0.1. The

results are presented in Table 3.4. Figure 3.14 shows the performance of � when �2 = 0.25,

�3 = 0.15, �4 = 0.35, �5 = 0.15, ↵1 = 0.4, ↵2 = 0.25, and ↵4 = 0.25.

3.6 Applied Example

The causal effect of educational achievement on earnings have been the subject of several

observational studies including the widely-cited results of Card (1993), which studies a sample

of n = 3, 010 men from the National Longitudinal Survey of Young Men (NLSYM).[25]
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Table 3.4: Theoretical and Simulated Results for Treatment Effect Heterogeneity

Method

OLS without Z OLS with Z 2SLS with Z

Without covariates
Closed Form Result 0.039 0.044 0.022

Simulated Result 0.039 0.044 0.021

With covariates
Closed Form Result 0.040 0.037 0.021

Simulated Result 0.039 0.046 0.021

Figure 3.14: Average � across 500 simulations of the given sample size over a variety of
degrees of treatment effect heterogeneity interactions as measured by the effect modification
via the interaction coefficient between U and Z in the first stage.

More details and access to the data can be found in R via wooldridge package under the

card object. After log transforming earnings, Card (1993) found via OLS that there was a

statistically significant 7.5% increase in earnings for each year of education. Nevertheless,

there is large potential for residual confounding despite adjusting for race, experience, and

regional indicators. As such, Card (1993) pursued an IV approach using an indicator variable

for if the participant lived near a four-year college during their teenage years or not, which

we will refer to as "Proximity." With this approach, 2SLS finds a significant 13.2% increase
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though with larger confidence intervals compared to OLS. Even so, as discussed in Cinelli and

Hazlett (2022) there is concern that this IV may be invalid due to unmeasured geographical

factors that are potentially associated with Proximity and Earnings.[32]

Though we use the same application, our sensitivity analysis addresses a different question

than Cinelli and Hazlett (2022). Where as they aim to measure how large the strength of

an an omitted variable that influences the IV and outcome must be to render 2SLS results

null, we instead inquire whether for each assumption there exists a violation large enough

to result in worse inconsistency than OLS. The findings of our procedure are presented in

Figure 3.15. For sake of example, we interpret our findings based on the intersection of the

dotted lines for each plot. The vertical dotted line represents the benchmarked assumption

violation based on the data while the horizontal line denotes the multiplier of one, which

assumes our data roughly quantifies the degree of unmeasured confounding.

With no prior knowledge on the sign of confounding, we may choose to average the results

from the two exclusion restriction plots where � takes the value of about 1.4 and 0.65 for the

positive and negative sign respectively. This leads us to be ambivalent on whether the direct

relationship between proximity and earnings is large enough such that the 2SLS estimate is

more or less inconsistent than the OLS estimate. For heterogeneity, we have benchmarked

a notable degree of interaction between an unmeasured confounder and proximity in the

first stage, leading to a value of � of approximately 0.9, slightly favoring 2SLS in this case.

That is, there is likely some inconsistency in the LACE for the ACE but not to the amount

where it renders the 2SLS estimate more inconsistent than the OLS estimate. Therefore,

the deciding factor is in the independence assumption, which shows a rather large violation

at a � of nearly 3.25. This means that an unmeasured confounder with a partial f 2 of 0.09

has rendered the inconsistency of 2SLS to be 3.25 times larger than that of OLS. We thus

conclude that using proximity as an instrument in 2SLS is sub-optimal compared to OLS

due to a large potential violation in the independence assumption – a similar conclusion to
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Figure 3.15: Examining the Three Assumptions for the Proximity IV

that of Cinelli and Hazlett (2022).

3.7 Discussion

In this work, we have investigated two predominant ways that analysts may isolate causal

effects: CAC and IVAC via OLS and 2SLS, respectively. Considering these paradigms,

we have based our study on the notion that each approach may work imperfectly due to

assumption violations (as is most plausible in the vast majority of real world settings). Our

closed-form results that capture interpretable rules of thumb based on DAG edge weights
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and coefficients, as well as our sensitivity analysis procedure, help guide analysts towards a

practical philosophy on how one may execute observational studies. If the goal is to obtain an

estimate of the ACE and there is a set of tools that one must choose from, such as the CAC

and IVAC. Thus, one must ask: when is one tool more advantageous than the other? We have

ultimately broken down this question by juxtaposing the degree of unobserved confounding

to the degree IV assumption violations, providing results for analysts to offer evidence that

the estimate computed was the least inconsistent it could have been given the scenario.

Our results suggest that properly defining confounders and IVs in the study paradigm is

only a starting point. Whether a variable will be used in CAC or as an IV in IVAC is not

necessarily congruent with its formal definition. In fact, we have presented analytically that,

relative to OLS, there are scenarios where a variable should be used as an IV even though it

does not meet the strict definition of an IV. For example, in an exclusion restriction violation

the variable used as an IV is, by definition, a confounder and, although such a variable is

not a "perfect IV," the relative performance of 2SLS would be better than that of OLS. Our

sensitivity analysis procedure assists in detecting this by using the observed data.

Another relevant scenario lies in the fact that even though we may have a valid IV, the LACE

estimand from 2SLS may be further away from the ACE than an estimand from OLS that

is impacted by unobserved confounding. Through our closed form results and sensitivity

analysis, we allow an analyst to judge how large heterogeneity would need to be in order for

this to occur. Whether the resulting IV estimand remains scientifically useful is a subject of

debate that we will not discuss here.[60] Rather, we are interested in directly targeting the

ACE and will assume that treatment effect heterogeneity may provide a barrier to this goal.

In this sense, the results from this work may provide case-by-case evidence for and against

those who may argue IV analyses may still be useful for the ACE.

In our sensitivity analysis tool, we provide separate evaluations for the three distinct IV

assumption violation scenarios. If all evaluations agree that either 2SLS is superior or OLS is
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superior then the suggested approach is clear to the analyst. However, one may encounter a

scenario that the graphs disagree: for example, the exclusion restriction and independence

show 2SLS is superior while the treatment effect heterogeneity graph does not. In this case,

one should rank the importance of each assumption and consider the observed benchmarks for

each assumption violation. Using the multipliers provided or inputting a custom multiplier,

one could consider the degree of unobserved confounding across the board in order for all

three graphs to agree and evaluate whether these findings are reasonable in the particular

study scenario. Similarly, one may further use the implied assumption violations in the legend

relative to the benchmarked assumption violations for these purposes. Ultimately, sensitivity

analyses are matters of judgement and we aim to provide quantitative tools for analysts to

navigate these scenarios.

Though we focus on inconsistency in this work, in practice, precision is important to consider

as well. Even so, we believe that the first, and most important step, in any analysis is to

verify that the correct estimand is being targeted, which requires reasoning about untestable

causal assumptions. Our methods aim to assist analysts with this step. In the second step,

the analyst will then judge which estimand is most efficient. This can be approximated by

using the observed data to compare the standard error of each method. For instance, it would

be clear that with a weak IV the confidence intervals will be comparatively wide. Of course,

under unobserved confounding, there are implications on the first and second moment and,

thus, inference. Examining the relative impacts on inference is a potential avenue of future

research and could possibly be based upon the results of Cinelli and Hazlett.[31, 32]

Users of CAC often opt to capture confounding by adjusting for the propensity score (PS)

using the fitted values of the exposure regressed on the confounders. Specifically, in the case

of a continuous treatment, one will utilize the generalized propensity score (GPS).[59, 58] Like

OLS, propensity scores estimates require conditional ignorability to be consistent so it falls

in the purview of our scenarios (i.e. to adjust for Z or not). There are several ways to utilize
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the propensity score including matching, stratification, adjustment, and weighting. If the

functional form of the propensity score is correct, then both the adjustment and propensity

score methods would be consistent. In the case of unmeasured confounding, the inconsistency

of each method would not be notably different because the propensity score would be incorrect

by the same degree. Subsequently, in terms of judging consistency, the results we present

for OLS would be identical to propensity score via adjustment for the propensity score as

opposed to individual covariates. Because we encapsulate all confounders in a single covariate

W , we could replace W and Z with a GPS containing a linear specification and achieve the

same results. Though, as a result, the effect of Z in OLS would be mediated through the

GPS, which would make our closed form derivations more complicated.

The results in this work also have implications on more sophisticated non-parametric, data-

driven variable selection techniques. In order to reduce Type I error, one would model the

PS away from the outcome and, thus, it appears reasonable to use penalization or machine

learning (ML) techniques to optimize prediction error. There are two main issues with

this automated procedure: (1) strong though imperfect IVs would be selected leading to

possible bias amplification and (2) omitted variable bias may occur due to shrinkage to zero

of important confounders. These points have been mentioned by others[88, 17, 29] and our

results further provide analysts information to act in the face of such issues. As a starting

point, one may use the general intuition gleaned from our results to quantify how strong the

confounder or IV should be in order to avoid adjustment altogether or, instead, use it in

an IVAC framework. Subsequently, future directions may include extending the framework

developed in this chapter to techniques such as augmented inverse probability of treatment

weighting, post-LASSO, targeted minimum loss estimation, and double machine learning to

weigh the approaches against one another.[114, 15, 28]

Isolating causal effects in observational data presents many challenges, which foremost include

the effect of unobserved confounding. The CAC and IVAC offer potential avenues to mitigate
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this confounding. Even so, under untestable assumptions, choosing the optimal approach

for the problem at hand involves much conjecture. Our closed-form findings and sensitivity

analysis approach helps analysts quantitatively justify the approach that they ultimately

believe produces an estimate closest to the ACE. The upshot is that, with the information

we provide, results from observational studies will both be more transparent and more useful

in their interpretation.
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Chapter 4

Nonparametric Replication of

Instrumental Variable Estimates Across

Studies

4.1 Introduction

In recent years, researchers have come to recognize that science faces a replicability crisis.[84,

63] That is, many findings produced by one study are unable to be repeated in subsequent

similar studies. The end result is a potential reduction in the scientific community’s confidence

in published results. In the context of medical research, many have highlighted instances of

limited replicability. [62, 14, 78] Epidemiologists frequently undertake questions for which

controlled experimental data cannot be feasibly produced. Among other factors, this leads to

a chief concern of spurious results due to unmeasured confounding, further highlighting the

importance of replicability across multiple cohorts to increase confidence in conclusions. As

an illustrative example, consider the effect of elevated blood lipid levels on cognitive decline.

Though some work has found a that elevated lipid levels are associated with Alzheimer’s
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Disease (AD) incidence, others have reported null results.[106, 69, 110, 79]

One may hypothesize two natural reasons that explain the conflicting results in our example:

unmeasured confounding and unaccounted for effect modification across studied cohorts.

While much of the work on observational study methodology has centered around the former

issue, there is comparatively less work that focuses on the latter. To relax the assumption

that all confounders, or suitable proxies, were measured, we may turn to an instrumental

variable (IV) approach via Mendelian randomization (MR). Briefly, MR involves using one

or more single nucleotide polymorphism (SNP) that meets three main conditions: (i) it

influences the level of triglycerides (relevance), (ii) it does not directly cause the cognitive

decline (exclusion restriction), and (iii) there is no association any unobserved confounders

(independence).[10]. For example, an analysis by Proitsi et al. (2014) found a null effect

between triglycerides and late onset AD via MR.[93] Yet, considering the previous literature

on this topic, it is natural to ask whether such findings can be replicated in other settings.

This crucially involves a nuanced discussion surrounding how the conditions for replicability

and, by extension, generalizability and transportability, interacts with the causal assumptions

required for internal validity.

Suppose we wish to compare causal estimates across two independent studies or populations

whether to replicate, transport, or generalize (herein encompassed by the verb replicate). This

requires us to properly account for differences in the distribution of effect modifiers between

each study such as medical history, concomitant medications, and lifestyle factors with many of

these simultaneously being confounders. Traditionally, this may be done via survey weighting

methodology. [34, 94, 16]. Nevertheless, there are three assumptions for such an approach to

succeed: (i) all possible effect modifiers are measured, (ii) the distributions of these effect

modifiers overlap (i.e. positivity), and (iii) the sampling weights are properly modeled. In

many ways, these assumptions are similar to that of propensity score (PS) analyses in which

we can require only balancing a correctly specified PS comprised of variables we are able
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to measure and that, furthermore, sufficiently overlap between treatment groups.[100, 23]

Similar to the threats to internal validity posed by untestable causal assumptions, the threats

to replicability are conceptually alike.

One path forward to relax the conditions required for sample weighting methods is by

narrowing the scope of the target estimand from the whole population (i.e. the ATE) to a

subset. By restricting the population of interest to be more homogeneous, the variability of

all possible effect modifiers decreases, including those unobserved. Furthermore, the area of

overlap is more likely to be proportionally larger. Through estimation of the local average

treatment effect (LATE),[61] an IV approach with a valid instrument will achieve the same

effect while mitigating unobserved confounding. The aforementioned "narrowing" occurs

because the IV approach identifies the causal effect of a “complier” population, defined as

those whose level of exposure monotonically varies with the value of the IV. This means

that unless we assume treatment effect homogeneity or that treatment effect heterogeneity is

unrelated to treatment assignment, the LATE does not equal the ATE.[122, 46] Even so, the

IV approach could allow us to replicate causal estimates with increased confidence. Unlike

the ATE, however, there has been little research regarding how the LATE may be used for

replicability.

In the current work, assuming a binary IV and treatment, we extend LATE estimators to

incorporate unknown sampling weights into a weighted LATE (WLATE). The WLATE seeks

to generalize the results from one study to the target distribution of another, thus allowing

for the basis of replication of effect estimates across studies. While existing WLATE methods

could be employed to provide analysts valid point estimates, they require one to assume the

sampling weights are known for valid inference and are further restrictive to which models

can be used to estimate nuisance functions such as the weights.[30] Using the theory of

influence functions (IFs) and sample-splitting,[65] our proposed method both accounts for the

uncertainty in estimating the sample weights using a straightforward variance estimator and
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allows analysts to utilize machine learning (ML) to flexibly model nuisance functions in order

to guard against potential misspecification. Furthermore, our estimator is doubly-robust with

respect to within-study nuisance functions.

The remainder of this work is organized as follows. First, we describe the necessary conditions

and key estimand of our methodology that we call the survey weighted LATE (SWLATE).

Then, we develop an IF-based approach and describe a novel across-study cross-fitting

procedure to estimate the SWLATE. To our knowledge, there is no result deriving the IF

and showing the regularity conditions and asymptotic properties of a weighted LATE when

using ML to estimate unknown sampling weights. Following this, to ameliorate concerns

over the narrow scope of the LATE, we extend our developed method to estimate bounds on

the weighted ATE (WATE) based on the approach of Kennedy et al. (2020).[66] Lastly, we

demonstrate our estimators for the SWLATE and WATE both in simulation and in an MR

analysis of the effect of triglycerides on cognitive decline.

4.2 Notation and Set-Up

Notationally, we assume a binary treatment D 2 {0, 1} and a binary IV Z 2 {0, 1}. Y (d) is

the potential outcome under treatment assignment d and D(z) as the potential treatment

assignment under IV assignment of z and therefore Y = DY (1) + (1 � D)Y (0) and D =

ZD(1)+(1�Z)D(0). Denote Y (d, z) as the potential outcome under treatment assignment d

and IV assignment z. We will assume Y is continuous throughout this work. We additionally

assume the standard assumption of the stable unit treatment value assumption (SUTVA) for

all potential outcomes. Formally, the LATE and ATE are define as �ATE = E[Y (1)� Y (0)]

and �LATE = E[Y (1) � Y (0)|D(1) > D(0)] where D(1) > D(0) refers to the "principal

strata" of compliers or those whose treatment status vary with the IV.[3] The other principal

strata are always-takers, D(1) = D(0) = 1, never takers, D(1) = D(0) = 0, and defiers,

D(1) < D(0).

82



A set of covariates X may be required to satisfy the IV independence assumption.[41, 2] As

such, we utilize the instrument propensity score (IPS) e(X) = P (Z = 1|X). The conditions

to identify the LATE via the IPS are similar to the that of ATE: positivity of the IPS and for

the set of confounders to achieve strong ignorability. Additionally, conditioning on X means

the standard IV assumptions of relevance and monotonicity are strata-specific. Formally, we

may define the assumptions to identify the LATE conditional as follows:

Assumption 1 (Positivity of IPS): 0 < e(X) < 1 a.s. for all x 2 SX

Assumption 2 (Independence): Z ?? {Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1), D(1), D(0)} |X

Assumption 3 (Exclusion Restriction): Y (d, 0) = Y (d, 1) for d 2 {0, 1}

Assumption 4 (Relevance): P [D(1) = 1|X] > P [D(0) = 1|X] a.s. for all x 2 SX

Assumption 5 (Monotonicity): P [D(1) � D(0)|X] = 1 a.s. for all x 2 SX

where SX refers to the support of X. In order to formulate the SWLATE, we include weights

w(X) in the LATE estimand outlined in Frolich (2007) Theorem 1, which leads us to the

following functional form

�SWLATE =

R ⇥
µ1(x)� µ0(x)

⇤
w(x)fX(x)dxR ⇥

m1(x)�m0(x)
⇤
w(x)fX(x)dx

(4.1)

where µz(X) = E[Y |X,Z = z] and mz(X) = E[D|X,Z = z]. To define w(X) for the

purposes of replicability, we must outline some further notation and conditions.

Let A = (XA, DA, Y A, ZA) represent a sample of size NA from study A with distribution

PA and B = (XB, DB, Y B, ZB) a sample of size NB from study B with distribution PB. We

assume that all variables were collected in the same manner and that Assumptions 1-5 are

met across both studies. Assuming that PA 6= PB, for example due to differences in effect

modifiers between the samples, the study-specific LATEs, �A

LATE
and �B

LATE
, are not equal.
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For the purposes of replicability, this is the crux of the problem and may be ameliorated via

modifying one of the LATEs (we arbitrarily choose study B) via sampling weights. When this

is the case, our target estimand is �A

LATE
and we denote the SWLATE as �B

SWLATE
because

it is estimated over PB. Thus Eq. 4.1 can be rewritten as

�B

SWLATE
=

EPB [w(X){µ1(X)� µ0(X)}]
EPB [w(X){m1(X)�m0(X)}] . (4.2)

Let MA and MB represent indicators of membership for study A and B, respectively. We

construct weights based upon the probability of being sampled into study B: ⌘(X) = P (MB =

1|X). Typically, these probabilities are unknown and must be estimated by constructing and

fitting a model for E[MB|X] using the data from both A and B. Consequentially, we must

account for the uncertainty in estimating ⌘(X) in inference on �B

SWLATE
.

We assume the following conditions for our sampling weights: the subjects have a non-zero

probability of being sampled into each study, both studies’ conditional LATEs are equal

within each possible strata of the covariates (i.e. no hidden strata-specific treatment effect

heterogeneity), and that ⌘(X) is properly specified. Formally, letting SX = SA

X
[ SB

X
we have:

• Assumption 6 (Positivity of Sampling Weights): 0 < ⌘(X) < 1 a.s. for all x 2

SX

• Assumption 7 (Equality of Strata Specific LATEs): �(x)A
LATE

= �(x)B
LATE

a.s. for all x 2 SX

• Assumption 8 (Proper Specification of the Weights): |⌘̂(X)� ⌘(X)| = op(1)

With these conditions, we may utilize w(X) = 1�⌘(X)
⌘(X) to re-weight �B

LATE
to replicate �A

LATE
.

Assumption 7 encapsulates the previous argument that we may relax assumptions regarding

unmeasured effect modification and positivity for the overall population by replacing them
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with similar assumptions for the complier population whose distribution of covariates varies

less across studies.

4.3 Nonparametric Estimation of the SWLATE with Un-

known Sampling Weights

To estimate Eq. 4.2, we extend the IF and cross-fitting framework for the LATE as detailed

in Kennedy (2023)[65] to add survey weights w(X). This allows us to non-parametrically

identify and estimate the SWLATE with the use of ML (e.g. regularization, random forests,

neural networks). Additionally, our estimator admits double-robustness for estimating the

LATE within each study if either m1(X),m0(X), µ1(X), and µ0(X) or e(X) are correctly

specified, which assists replicability by relaxing the assumptions for internal validity. When

survey weights are unknown, our application of IF theory and sample-splitting both avoids

complex derivations of asymptotic results using many simultaneous estimating equations and

allows for flexible modeling of w(X), protecting against potential misspecification.

In the remainder of the text, the empirical measure Pn refers to a sub-sample of B created by

sample-splitting. For example, suppose the data has been split into two partitions, Bn and

BN , with n = dNB
2 e. Letting ⇣z = (µz{X},mz{X}, e{X}) represent the nuisance functions

associated with study B, we can estimate ⇣z using BN . Following this, we may fit ⌘(X) with

both BN and A. Computing the predicted values for each nuisance function using Bn, we

may adapt the estimand presented in Mao et al. (2019) Appendix Theorem 2[74] to the

following plug-in estimators for the uncentered IFs of the numerator and denominator of Eq.

4.1:

�num(B; ŵ, ⇣̂z) =
ŵ(X)

Pn{ŵ(X)}


Z

ê(X)
{Y � µ̂1(X)} (4.3)

� 1� Z

1� ê(X)
{Y � µ̂0(X)}+ µ̂1(X)� µ̂0(X)

�
(4.4)
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�denom(B; ŵ, ⇣̂z) =
ŵ(X)

Pn{ŵ(X)}


Z

ê(X)
{D � m̂1(X)} (4.5)

� 1� Z

1� ê(X)
{D � m̂0(X)}+ m̂1(X)� m̂0(X)

�
(4.6)

with point estimate �̂B

SWLATE
= Pn{�num(B; ŵ, ⇣̂z)}

�
Pn{�denom(B; ŵ, ⇣̂z)}. We define the

following cross-fitting procedure involving data from two studies and use this to formulate

the main result of this chapter, Theorem .

Definition 4.3.1 (Cross-fitting Procedure for Two Studies). To estimate �̂B

SWLATE
via

cross-fitting we execute the following procedure:

1. Randomly split B into K folds equally and NB,k sized. Let k 2 {1, ...K} be an arbitrary

fold. Define IB,k as the indices in k and, similarly, Ic
B,k

:= {1...NB} \ IB,k.

2. For each k:

(a) Combine datasets into C = (A, (Bi)i2IcB,k
).

(b) Use C to estimate ⌘�k where �k refers to omitting the fold k.

(c) Use (Bi)i2IcB,k
to estimate the study-specific nuisance functions ⇣z,�k

(d) With the "hold-out" sample (Bi)i2IB,k
, compute the "predictions" ŵk(X) and ⇣̂z,k.

(e) Plug in these values into the estimators in Equations 4.4 and 4.6 to obtain

�̂B

k,SWLATE
.

3. Average across the folds to obtain the final estimate: �̂B

SWLATE
= 1

K

P
K

k=1 �̂
B

k,SWLATE
.

Theorem 4.3.1 (Inference for the SWLATE via the Influence Function). The following

conditions must be met:

1. NA/NB

p! c > 0 where c is some constant.
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2. Assumption 10 holds as well as |µ̂z�µz| = oP (1), |m̂z�mz| = oP (1), and |ê(X)�e(X)| =

oP (1) for z 2 {0, 1}.

3. kê� ek max
z2{0,1}

(kµ̂z � µzk ,km̂z �mzk) = op(N
�1/2
B

)

4. |Y | < CY a.s. for some constant CY

5. |µz| < Cµz and mz < Cmz a.s. where Cµz and Cmz are some constants for z 2 {0, 1}

6. ê, e > Ce and ⌘̂, ⌘ > C⌘ a.s. where Ce and C⌘ are some constants such that Ce, C⌘ > 0

7. ŵ(X)
Pn{ŵ(X)} < Cw a.s where Cw is some constant

Using the estimator described in Definition 4.3.1, we have that N1/2
B

(�̂B

SWLATE
� �A

LATE
)

d!

N(0, E[�2]) where

� =
w(X)

EPB [w(X){m1(X)�m0(X)}]

⇢
2Z � 1

e(X,Z)


Y � µZ(X)� �A

LATE
{D �mZ(X)}

�

+ µ1(X)� µ0(X)� �A

LATE
{m1(X)�m0(X)}

�

with e(X,Z) = e(X)Z + {1� e(X)}(1� Z).

From the results of Theorem 4.3.1, we may construct (1� ↵)-level Wald confidence intervals

for �̂B

SWLATE
. Letting q1�↵/2 be the 1� ↵/2 quantile of the standard normal distribution and

�̂ being the plug-in estimator for �, we have:

�̂B

SWLATE
± q1�↵/2

s
PNB �̂

2

NB

. (4.7)

A notable property of our estimator is that by taking EPB [�
2], by iterated expectation on X

and Z, we obtain the efficiency bound for the WLATE as given by Choi (2023) Theorem 1.[30]

That is, our estimator achieves the lowest possible variance across all possible non-parametric
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WLATE estimators.[65] In contrast with Choi (2023), we need not know the weights nor

the IPS to achieve this lower bound. Altogether, this means that we may efficiently, non-

parametrically, and flexibly compute a weighted LATE estimator to replicate findings from

IV analyses across studies with all nuisance functions unknown.

4.4 Weighted ATE Bounds with Unknown Sampling Weights

Without restrictive and untestable assumptions regarding treatment effect heterogeneity, the

LATE will not identify the ATE.[48, 122] Nevertheless, we may use the LATE to bound the

ATE, which was first developed for non-compliance in clinical trials.[73, 96, 12] Kennedy et

al. (2020) generalized this to tighter bounds that allows conditioning on covariates tha we

will utilize.[66]

Let Y be bounded and scaled such that Y 2 [0, 1], then for j 2 {l, u}, referring to the lower

and upper bounds, Kennedy et al. (2020) defines the bound as

�j

ATE
= E[E[Vj,1|X,Z = 1]� E[Vj,0|X,Z = 0]] (4.8)

for Vu,1 = Y D+ 1�D, Vl,1 = Y D, Vu,0 = Y (1�D), and Vl,0 = Y (1�D) +D. The width of

the interval (�l

ATE
, �u

ATE
) is inversely proportional to the strength of the instrument: stronger

instruments will yield smaller intervals. Using the results from the previous section, we can

straightforwardly extend this approach to incorporate survey weights.

Letting ⇣j,z = (vj,z, e{X}), the uncentered IF �ATE,j(B;w, ⇣j,z) takes the following form

�ATE,j(B; ŵ, ⇣̂j,z) =
ŵ(X)

Pn{ŵ(X)}


Z

ê(X)
{Vj,1 � v̂j,1(X)} (4.9)

� 1� Z

1� ê(X)
{Vj,0 � v̂j,0(X)}+ v̂j,1(X)� v̂j,0(X)

�
. (4.10)
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Denoting our study weighted estimate for the bounds ATE of study A as �̂B

SWATE,j
, we denote

�̂B

SWATE,l
= Pn{�ATE,l(B; ŵ, ⇣̂l,z)} and �̂B

SWATE,u
= Pn{�ATE,u(B; ŵ, ⇣̂u,z)} as the lower and

upper bounds, respectively. Each weighted bound can be fit with the procedure described in

Definition 4.3.1. Furthermore, inference follows from conditions identical to Theorem 4.3.1

since each bound is a essentially weighted ATE, we may use the results in the proof for the

SWLATE numerator. Standard 1� ↵ level confidence intervals can be computed as

�̂B

SWATE,j
± q1�↵/2

s
PNB�̂

2
j

NB

(4.11)

where �̂j is the plug in estimator for the centered influence function, which takes the form

�j =
w(X)

EPB [w(X)]

⇢
2Z � 1

ê(X,Z)
[Vj,z � vj,z(X)] + vj,1(X)� vj,0(X)

�
� �A

ATE,j
. (4.12)

From these results, analysts can compute bounds on the ATE based on the LATE that are

weighted towards a target study population and, if desired, compute confidence intervals on

these weighted bounds.

4.5 Simulation

We consider two general scenarios: a linear and non-linear data-generating mechanism (DGM).

First, we generate six continuous covariates X = (X1, X2, ..., X6), from a multivariate normal

distribution with N = 1500. Each variable has mean 0 and variance 1.5 with two correlated

blocks, X1, X2, X3 and X4, X5, X6, with a covariance of 0.3. Table 5.1 defines all equations

and coefficients for both the the linear and non-linear DGMs. First, we generate sampling

probabilities of being in study A with P (MB = 1) = 0.5 and use these probabilities to sample

1500 observations with replacement form study B’s sample. Within each dataset, we assign

the IV using the IPS with P (Z = 1) = 0.5.
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Following this, we generate compliance status based on the "compliance score," or probability

of being a complier. We set P (D(1) > D(0)) at 0.2, 0.5, and 0.8 to represent a "Weak

IV","Moderate IV", and "Strong IV", respectively. Letting �(X) = P (D(1) > D(0)|X), we

calculate P (D(1) = D(0) = 1|X) = P (D(1) = D(0) = 0|X) = 1��(X)
2 for each subject, or the

probabilities of being an always-taker and never-taker, respectively. From these probabilities,

a subject’s principal strata is selected via a multinomial distribution where S = 0 if a

never-taker, S = 1 if an always-taker, and S = 2 if a complier. For subject i, the treatment

assignment is Di = ZiI(Si = 2) + SiI(Si 6= 2).

In the outcome DGM, we set the Study A ATE (i.e. �1) at 1. Our formulation in Table 5.1

allows us to write the LATE in closed form as �A

LATE
= �1 +

P7
i=2 �iE[Xi|S = 2] where we

obtain the ground-truth LATEs via averaging across 5000 simulations to estimate E[Xi|S = 2]

where we know the complier status. Notationally, we let �A

LATE,L
refer to the LATE in study A

under the linear DGM while �A

LATE,NL
refers to the non-linear DGM. The same interpretation

applies to �B

LATE,L
and �B

LATE,NL
.

To estimate the nuisance functions, we will compare utilizing generalized linear models (GLMs)

to an ensemble of flexible models via the SuperLearner package.[92] For the ensemble, we

will we use multivariate adaptive regression splines (EARTH), generalized additive models

(GAMs), GLMs, random forest (RF), and recursive partitioning and regression trees (RPART).

"SL" or "No SL" denotes whether the ensemble SuperLearner was used or not. Nuisance

functions were estimated with cross-fitting with four splits of the data.

4.5.1 Results for the Survey Weighted LATE

Tables 4.2,4.3, and 4.4 detail the results over 1000 with the ground truth results in the

footnotes. The unweighted LATE estimation and inference is equivalent to that detailed

in Kennedy (2023). The simulation results show our SWLATE estimator can successfully

replicate the target study LATE across a variety of scenarios as well as estimate in closed
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Table 4.1: Summary of Data-Generating Mechanisms for Simulation

Model DGM Equation Coefficient Values

Sampl. Prob Linear logit[P (MB = 1|X = x)] =
↵0 +

P6
i=1 ↵iXi

↵0 = 0,
↵1 = ↵2 = ↵3 = 0.4,
↵4 = ↵5 = ↵6 = �0.4

Non-Linear logit[P (MB = 1|X = x)] =
↵0 + ↵1X1 + ↵2X2

2 + ↵3X2
3 +

↵4 exp(X4) + ↵5 sin(X5) + ↵6X6

IPS Linear logit[P (D(1) > D(0)|X = x)] =
✓0 +

P6
i=1 ✓iXi

�0 = 0,
�1 = �2 = �3 = 0.1,
�4 = �5 = �6 = �0.1

Non-Linear logit[P (Z = 1|X = x)] =
�0 + �1X1 + �2 exp(X2) + �3X2

3 +
�4X4 + �5 cos(X5) + �6X6

Compl. Score Linear logit[P (D(1) > D(0)|X = x)] =
✓0 +

P6
i=1 ✓iXi

✓0 = 0,
✓1 = ✓2 = ✓3 = 0.4,
✓4 = ✓5 = ✓6 = �0.8

Non-Linear logit[P (D(1) > D(0)|X = x)] =
✓0 + ✓1X2

1 + ✓2 exp(X2) + ✓3X3 +
✓4X3

4 + ✓5X5 + ✓6X6

Outcome Linear Y = �1D +
P7

i=2 �iDXi + f(X) + ✏,
where f(X) =

P6
i=1 �iXi

�1 = 1,
�2 = �3 = �4 = 0.35,
�5 = �6 = �7 = �0.35,
�8 = �9 = �10 = 1,
�11 = �12 = �13 = 0.5
✏ ⇠ N(0, 1)

Non-Linear where

f(X) = �8X2
1 + �9X2

2 + �10 exp(X3) +
�11X4 + �12 exp(X5) + �13 cos(X6)
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form the variance from estimating the weights with our cross-fitting procedure. In the linear

setting, regardless of the instrument strength both no SL and SL have minimal absolute bias

for the LATE of Study A as well as the desired coverage. In the non-linear setting, the SL

approach is able to adapt to non-linearity in the DGM, with almost no bias and the desired

coverage. On the other hand, not utilizing SL produces both substantial bias, almost as much

as not weighting, and under-coverage. For example, in the moderate IV non linear setting,

the absolute relative bias is 12.05%, almost as much as the unweighted SL. Nevertheless,

the coverage of the weighted no SL estimator is better than the unweighted SL at 82.6%

and 45.7%, respectively, which is largely a reflection of accounting for the estimation of the

weights in our model-based estimator. These latter findings are mirrored the both the weak

and strong instrument setting.

Table 4.2: Simulation Results for Linear and Non-Linear DGM Part I

Weak IV

Point
Estimate

Bias
(%)

Monte
Carlo
SE

Model-
Based

SE

Coverage
(95%
CI)

Linear

Weighted
No SL 1.577 -2.14 0.251 0.233 0.93

SL 1.605 -0.40 0.255 0.240 0.941

Unweighted
No SL 1.790 11.02 0.172 0.167 0.811

SL 1.787 10.86 0.173 0.167 0.822

Non-Linear

Weighted
No SL 1.762 19.80 0.300 0.287 0.843

SL 1.469 -0.17 0.191 0.181 0.936

Unweighted
No SL 1.880 27.80 0.216 0.214 0.501

SL 1.636 11.23 0.141 0.137 0.773

Ground truth: �A

LATE,L
= 1.612, �B

LATE,L
= 1.786; �A

LATE,NL
= 1.471, �B

LATE,NL
= 1.636

Overall, the simulation results show our SWLATE estimator can successfully replicate the

target study LATE across a variety of scenarios. Additionally, our efficient, model-based SE
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Table 4.3: Simulation Results for Linear and Non-Linear DGM Part II

Moderate IV

Point
Estimate

Bias
(%)

Monte
Carlo
SE

Model-
Based

SE

Coverage
(95%
CI)

Linear

Weighted
No SL 1.379 -1.78 0.128 0.124 0.946

SL 1.400 -0.29 0.130 0.126 0.953

Unweighted
No SL 1.603 14.17 0.100 0.095 0.431

SL 1.601 14.03 0.100 0.094 0.435

Non-Linear

Weighted
No SL 1.431 12.05 0.166 0.162 0.826

SL 1.273 0.08 0.105 0.101 0.943

Unweighted
No SL 1.597 25.55 0.134 0.130 0.299

SL 1.447 13.76 0.087 0.083 0.457

Ground truth: �A

LATE,L
= 1.404, �B

LATE,L
= 1.604; �A

LATE,NL
= 1.272, �B

LATE,NL
= 1.447

is aligns with the Monte Carlo results with and without SL. Clearly, the impact of having

to estimate the weights is reflected in the difference between the weighted and unweighted

SEs. In the linear DGM, SL incurs only a marginal increase in variance with a similar point

estimate while in the non-linear DGM, SL is necessary to prevent bias and undercoverage.

4.5.2 Results for the Weighted ATE Bounds

For measuring the performance of our weighted ATE bounds, we again use 1000 simulations

with the same DGM detailed above with a target ATE of 1. There are three main metrics

measured across 1000 simulations: (i) the average of the lower bound estimate across

simulations, (ii) the average of of the upper bound estimate across simulations, and (iii) the

number of simulations whose intervals that cover the true ATE, which we will colloquially refer

to as "coverage." Because the length of the ATE estimate interval is inversely proportional

to IV strength, we present the results for strength ranging from 0.1 to 0.9. This also ensures
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Table 4.4: Simulation Results for Linear and Non-Linear DGM Part III

Strong IV

Point
Estimate

Bias
(%)

Monte
Carlo
SE

Model-
Based

SE

Coverage
(95%
CI)

Linear

Weighted
No SL 1.219 -0.51 0.085 0.084 0.951

SL 1.234 0.72 0.087 0.085 0.943

Unweighted
No SL 1.461 19.25 0.074 0.069 0.082

SL 1.460 19.21 0.074 0.069 0.084

Non-Linear

Weighted
No SL 1.252 10.05 0.121 0.119 0.825

SL 1.136 -0.15 0.075 0.074 0.949

Unweighted
No SL 1.445 26.95 0.105 0.101 0.14

SL 1.326 16.52 0.069 0.065 0.168

Ground truth: �A

LATE,L
= 1.225, �B

LATE,L
= 1.461; �A

LATE,NL
= 1.138, �B

LATE,NL
= 1.327

that our coverage results are informative since wider intervals are more likely to contain the

true ATE.

Figure 4.1 shows how the average bounds across simulations vary with the IV strength, while

Tables 4.5 and 4.6 detail those results along with the coverage. When the IV is of sufficient

strength, the weighted bounds capture the true ATE for the target study at a far larger rate

than the unweighted bounds. With a strong IV, the unweighted bounds almost always miss

the true ATE while the weighted bounds increasingly center upon the target study ATE. At

lower strengths, coverage was more a function of interval width than the result of a weighting.

Similar to the LATE results, in the linear setting, SL had little to no impact on the results

while in the non-linear setting, SL was crucial to ensuring that the bounds contained the

target ATE at increasing strengths.

94



Figure 4.1: Simulation results from ATE bounds simulation. Blue lines are the unweighted
bound estimators while red lines are the weighted bound estimators. The dotted black line
indicates the target ATE ground truth of 1.

4.6 Applied Example

To demonstrate our methodology to replicate IV estimates across studies, we study the effect

of triglycerides on cognitive decline by employing MR on data from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI). ADNI is a multi-center, natural history longitudinal study

that tracks cognitive performance among cognitively unimpaired, mild cognitively impaired,

or cognitively impaired volunteers aged 55-90 who are in otherwise good health.[91] Here we

consider two-year change from baseline in the clinical dementia rating sum of boxes (CDR-

SB)[82] for those with mild cognitive impairment (MCI). Higher CDR-SB scores indicate

more severe cognitive decline. The baseline CDR-SB is the earliest visit with recorded MCI.

For the final measurement, there must be a CDR-SB measurement 1.75 to 2.5 years after

their first measure. Our models both adjust for baseline CDR-SB and time from baseline.
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Table 4.5: Simulation Results for ATE Bounds by Instrument Strength Part I

Linear, No SL

Strength 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

Unweighted LB 0.483 0.646 0.762 0.857 0.941 1.018 1.088 1.160 1.234

Weighted LB 0.235 0.365 0.465 0.551 0.630 0.706 0.777 0.853 0.934

Unweighted UB 1.261 1.299 1.320 1.333 1.342 1.348 1.348 1.347 1.339

Weighted UB 1.077 1.100 1.111 1.118 1.121 1.120 1.114 1.104 1.082

Unweighted Coverage 0.999 1.000 0.996 0.965 0.779 0.385 0.108 0.009 0.000

Weighted Coverage 0.867 0.931 0.935 0.940 0.949 0.947 0.941 0.915 0.723

Linear, SL

Unweighted LB 0.481 0.643 0.760 0.854 0.937 1.015 1.085 1.157 1.232

Weighted LB 0.244 0.373 0.471 0.557 0.634 0.710 0.780 0.856 0.937

Unweighted UB 1.258 1.296 1.316 1.330 1.339 1.346 1.345 1.345 1.339

Weighted UB 1.081 1.104 1.115 1.123 1.126 1.126 1.119 1.110 1.089

Unweighted Coverage 0.999 1.000 0.996 0.965 0.794 0.406 0.132 0.009 0.000

Weighted Coverage 0.867 0.928 0.937 0.939 0.955 0.948 0.937 0.904 0.721

Baseline covariates include medical history, age, body mass index (BMI), dementia family

history, sex, APOE4 allele count, and years of education.

Using available genetic data, we constructed a binary IV by recording the presence of SNP

rs1260326, which is associated with elevated triglyceride levels.[130] Our exposure, blood

triglycerides levels, was binarized into "low" and "high" using the median level in our MCI

cohort of 1.05 mmol/L. More details about how the genetic sequencing and lipid measurements

were collected and about ADNI in general can be found at https://adni.loni.usc.edu/about/.

Our final cohort had a total sample size of n = 655.
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Table 4.6: Simulation Results for ATE Bounds by Instrument Strength Part II

Non-linear, No SL

Strength 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

Unweighted LB 0.625 0.804 0.920 1.011 1.086 1.151 1.209 1.263 1.315

Weighted LB 0.407 0.562 0.667 0.753 0.827 0.893 0.954 1.014 1.074

Unweighted UB 1.340 1.379 1.390 1.396 1.396 1.395 1.392 1.386 1.380

Weighted UB 1.184 1.208 1.209 1.207 1.200 1.194 1.184 1.173 1.161

Unweighted Coverage 0.999 0.959 0.769 0.445 0.215 0.071 0.021 0.007 0.005

Weighted Coverage 0.952 0.965 0.963 0.960 0.904 0.772 0.632 0.404 0.212

Non-linear, SL

Unweighted LB 0.531 0.703 0.815 0.904 0.976 1.040 1.095 1.147 1.198

Weighted LB 0.308 0.454 0.556 0.640 0.711 0.776 0.834 0.893 0.950

Unweighted UB 1.244 1.279 1.286 1.289 1.287 1.286 1.280 1.272 1.263

Weighted UB 1.078 1.102 1.101 1.098 1.091 1.083 1.073 1.059 1.043

Unweighted Coverage 0.994 0.995 0.980 0.860 0.613 0.309 0.105 0.016 0.001

Weighted Coverage 0.796 0.853 0.869 0.872 0.841 0.829 0.784 0.690 0.460

To demonstrate our methodology, we synthetically construct two cohorts by sampling the

original data with replacement using sampling weights from the model

logit[P (MB = 1|X = x)] = ↵0 + ↵1ICardiovascular Disease + ↵2INeurological Disease

+ ↵3IMale + ↵4BMI + ↵5Baseline CDR-SB + ↵6Baseline Age

with ↵0 = 0 and ↵1 = ... = ↵6 = 0.1. Our model indicates those with higher values for

the above covariates are more likely to be sampled in B. Henceforth, the original data is

referred to as the target study and the sampled data the current study. Table 4.7 details

the distributions of covariates across the cohorts. Binary IV strength is measured by the
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difference of the proportion of high triglyceride level subjects who do and do not have the

gene, resulting in 0.13 for the current study and 0.11 for the target study, indicating an

instrument of moderate strength.

Table 4.7: Baseline distributions of Covariates Stratified by Study

Variable Target Study Current Study Standardized

(n = 655) (n = 655) Mean Difference

Age (mean (SD)) 72.96 (7.26) 71.30 (7.29) 0.228

Male (%) 394 (60.2) 400 (61.1) 0.019

Years Education (mean (SD)) 15.98 (2.72) 15.94 (2.61) 0.014

BMI (mean (SD)) 26.97 (4.77) 28.75 (5.38) 0.349

Family History (%) 371 (56.6) 394 (60.2) 0.071

Baseline CDR (mean (SD)) 1.46 (0.88) 1.58 (0.97) 0.139

Time from Baseline (mean (SD)) 2.03 (0.08) 2.03 (0.08) 0.042

APOE4 copies (%) 0.094

0 332 (50.7) 314 (47.9)

1 256 (39.1) 255 (38.9)

2 67 (10.2) 86 (13.1)

Neurological Condition (%) 226 (34.5) 244 (37.3) 0.057

Cardiovascular Condition (%) 447 (68.2) 472 (72.1) 0.083

Metabolic Condition (%) 275 (0.42) 288 (0.44) 0.043

The results of our analysis are presented in 5.6. SL and no SL refer to the same estimators

outlined in the previous section with five-fold cross-fitting for estimation. For a baseline ATE

estimate, we ran OLS for both studies demonstrate a significant increase in CDR for those

with higher triglycerides. To weight the current study OLS estimates, we computed survey

weights via logistic regression and used 1000 bootstrap repetitions to calculate the variance.

The weighted estimate does move towards the target study estimate but not notably so,

indicating an opportunity to better model the weights.
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Table 4.8: Estimated Effect of Triglycerides on Cognitive Decline with and without Weighting

Estimation Method Target Study Current Study

Weighted Unweighted

OLS 0.34 (0.04, 0.65) 0.59 (0.29, 0.93) 0.63 (0.35, 0.93)

LATE

No SL 2.13 (-0.93, 5.56) 3.53 (-2.46, 9.55) 5.36 (0.95, 9.77)

SL 1.44 (-1.7, 4.60) 1.73 (-4.20, 7.78) 2.73 (-3.50, 8.98)

ATE Bounds

No SL (-0.95, 0.16) (-1.00, 0.08) (-0.81, 0.25)

SL (-1.11, 0.08) (-0.93, 0.18) (-0.77, 0.31)

The target study LATE, with and without SL, both have a positive point estimate but are

not statistically significant. The unweighted LATE without SL in the current study shows a

significant 5.36-point increase, but after weighting, the estimate attenuates toward the target

LATE and becomes insignificant with our weighting method, reducing the relative difference

from the target and current estimate from over 150% to 66%. SL for the current study LATE

produced a lower point estimate and wider confidence intervals than the no SL equivalent

(possibly a consequence of using flexible learners at lower sample-sizes) and, thus, was not

statistically significant. After weighting the SL current study LATE, we see that the relative

difference is reduced from 90% to 20%, showing notable attenuation towards the target SL

point estimate.

Our ATE bounds in the target study for both no SL and SL suggest a null point estimate

with the bounds crossing 0. The bounds for the unweighted current study estimates reach

higher, which intuitively follows from the fact that the OLS and LATE estimates were higher.

When we apply the weights, the bounds align well with the target study. For no SL, the

percentage overlap between the ATE intervals increases from 87% to 93% while for SL, the

percent overlap increases from 71% to 84%.
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4.7 Discussion

Crucial to the trustworthiness of causal estimates from observational studies, including those

found from MR, is whether they may be replicated across different populations. In this work,

we have developed an approach to non-parametrically replicate the LATE across cohorts

using possibly unknown survey weights. By focusing on the LATE as opposed to the ATE,

our method has the inherent benefit of relaxing the untestable assumptions involved in

replicability, including positivity and unmeasured effect modifiers. Explicitly, through the use

of ML, our method can protect against functional misspecification of the survey weights. Our

empirical results show that for all nuisance functions, using ensemble learning incurs little to

no downside even when the DGM is linear, suggesting this approach is an acceptable default

when the underlying DGM is unknown. Should we wish to target the ATE, our method

performs well on providing bounds on the target ATE despite not making the accompanying

causal assumptions, particularly in the case of a stronger IV.
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Chapter 5

Nonparametric Instrumental Variable

Estimation of Survival Times with

Censored Data

5.1 Introduction

Survival analysis seeks to quantify the effect of an exposure on the time until an event of

interest in the presence of censoring. Common event types include disease onset, disease

progression or death. In the observational setting, many have focused on developing methods

that can isolate causal effects while accounting for possible right-censoring.[51, 33, 8] For

example, in studying the effect of blood lipid levels on the course of cognitive decline, older

participants may become lost-to-followup for a variety of reasons. Due to potential violations

in the assumption that confounding between exposure and outcome has been adequately

accounted for, many have investigated the use of instrumental variables (IV) in survival

analysis.[111, 75, 123]. Briefly, an IV must meet three main conditions: (i) it is associated

with the exposure of interest, (ii) it is not associated with any unmeasured confounders, and
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(iii) it is not directly associated with the outcome.[10] In the context of the previous example,

if we wished to study the effect of high-density lipoprotein (HDL) levels on cognitive decline,

we may choose to use one or more single nucleotide polymorphisms (SNPs) as IVs via a

Mendelian Randomization (MR) approach.[93]

Under the setting of treatment effect heterogeneity related to the assignment of the IV,

the IV approach identifies the local average treatment effect (LATE). That is, the effect of

the treatment among the "compliers". Generally, the LATE is not equal to the population

causal effect.[3, 122, 46] In MR, the compliers are those whose level of exposure changes

monotonically with the presence of the selected SNPs. This work focuses on identifying the

LATE in the survival setting where there is right-censoring.

Due to the ubiquity of the Cox model, some have developed IV estimators for the complier

causal hazard ratio (CCHR). This typically involves a two-stage residual inclusion (2SRI)

procedure wherein the residuals from the first stage are incorporated into a multiplicative

hazards model to control for residual confounding.[112, 45, 109] Nevertheless, these methods

have notable bias in estimating the CCHR, which can be attributed to non-collapsibility of

the HR.[120, 121] One way to mitigate this bias to include a frailty term (i.e. random effect)

in the second stage model.[76, 77] Others have developed estimators under the assumption

of an additive hazards model, though some have criticized these approaches as "biologically

implausible."[111, 75]

One salient disadvantage of the HR is that a clear causal interpretation heavily relies on

the proportional hazards assumption being met.[50, 39] To avoid potential issues stemming

from non-proportional hazards, other estimands have been investigated such as those based

on the accelerated failure time (AFT) model in which the log-transformed survival time is

regressed upon covariates of interest using a linear model.[113, 125] The AFT model yields

an intuitive interpretation of regression coefficients as the multiplicative change in survival

time. Due to the linear nature of AFT, traditional IV approaches such as 2SRI can be
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straightforwardly incorporated.[81, 55] One method to efficiently use both uncensored and

censored observations to estimate the impact of a covariate on the survival time is by the

Buckley-James method.[24] In this approach, the survival time of censored observations is

iteratively imputed by incorporating a Kaplan-Meier estimator on the residuals.

Existing methods that extend the AFT model estimated via Buckley-James to the IV approach

are limited to the linear setting[1]. While there are methods that incorporate machine learning

(ML) to estimate non-linear AFTs, none have been developed in the IV setting to estimate the

LATE.[124, 83] One path forward to non-parametrically identify the LATE in this setting is to

build upon the recent developments in the "doubly debiased machine learning" literature.[28]

Notably, Lee et al. (2023) develop an influence function (IF) approach to estimate the LATE

of the survival probability.[70] Our work proposes a similarly derived estimator under the AFT

model, incorporating the of use sample-splitting and machine learning to estimate nuisance

functions, and yielding double robustness should some nuisance functions be misspecified.

Additionally, we utilize a non-linear Buckley-James procedure as described by Wang and

Wang (2013) to effectively include censored observations in the LATE estimation [124],

thereby merging the AFT and modern causal inference literature. We specifically develop

our method to estimate the relative difference in median survival times for compliers under

the common scenario of a binary exposure and IV.

The remainder of this work is organized as follows. First, we introduce key notation and

assumptions to identify the LATE using the AFT and BJ. In the next section, we describe

our estimand and derive our nonparametric, IF-based estimator along with describing the

asymptotic and double-robustness properties. Next, we present the procedure for estimation,

including cross-fitting the BJ procedure and a modified variance estimator to account for the

uncertainty in imputing of censored observations. We then compare the performance to the

traditional two-stage predictor substitution approach across a variety of scenarios including

potential misspecification. Finally, we apply our methodology to estimate the effect of HDL
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on progression of cognitive decline among those with mild cognitive impairment patients

using a Mendelian Randomization approach and conclude by discussing the implications of

our methodology.

5.2 Notation and Set-Up

Consider a binary treatment A 2 {0, 1} and instrumental variable (IV) Z 2 {0, 1} with log

survival time denoted T (a) and potential treatment assignment A(z) where T = AT (1) +

(1�A)T (0) and A = ZA(1) + (1� Z)A(0). We can define the local average treatment effect

(LATE) of the log survival time among compliers as  LATE = E[T (1)� T (0)|A(1) > A(0)].

Assuming that the distribution of log-survival time is symmetric, exponentiating leads to the

interpretation of exp( LATE) as the ratio of the median survival times under exposure and

non-exposure. Given a set of covariates X, we define the instrument propensity score (IPS)

as e(X) = P (Z = 1|X). To identify  LATE, we require the following assumptions conditional

on confounders X:

A1 (Positivity of IPS): 0 < e(X) < 1 a.s. for all x 2 SX

A2 (Independence): Z ?? {T (0, 0), T (0, 1), T (1, 0), T (1, 1), A(1), A(0)} |X

A3 (Exclusion Restriction): T (a, 0) = T (a, 1) for a 2 {0, 1}

A4 (Relevance): P [A(1) = 1|X] > P [A(0) = 1|X] a.s. for all x 2 SX

A5 (Monotonicity): P [A(1) � A(0)|X] = 1 a.s. for all x 2 SX

With A1-A5, we may identify the LATE as[41]

 LATE =
E[E[T |Z = 1, X]� E[T |Z = 0, X]]

E[E[A|Z = 1, X]� E[A|Z = 0, X]]
. (5.1)
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In time-to-event outcomes, for individual i, censoring prevents the observation of Ti if there

exists log censoring time Ci such that Ti > Ci. As such, let �i = I(Ti < Ci) and observed

outcome Yi = min(Ti, Ci). We make the additional assumption that the censoring time is

independent from the survival, given the covariates and treatment assignment.

A6 (Ignorable Censoring): T ?? C|A,X

Thus, we will write

E[T |Z = z,X] =
X

a2{0,1}

E[T |Z = z, A = a,X]P (A = a|X,Z = z) for z 2 {0, 1}. (5.2)

Let us now focus on the estimation of the expectations of the log survival time such as

E[T |Z = 1, A = 1, X]. Building off of the AFT literature, we posit a potentially non-linear

relationship between covariates X and the log survival time as

TZ=1,A=1 = fZ=1,A=1(X) + ✏Z=1,A=1 (5.3)

such that E[✏Z=1,A=1|Z = 1, A = 1, X] = 0 and where the subscript refers to the particular

strata where both A = 1 and Z = 1. We will drop the superscript notation henceforth, noting

the remaining conditional expectations will take a similar form.

The primary goal of the Buckley-James approach is to incorporate the use of censored

observations to estimate f(X) by imputing T with Y ⇤ = Y � + E[T |T > Y,X](1� �) noting

that E[Y ⇤] = E[T ].[24]. Writing E[T |T > Y,X] = f(X)+E[✏|✏ > Y � f(X), X], we may use

an iterative procedure to estimate f(X) (i.e. the expectation of interest) via ML, compute

the residuals, estimate E[✏|✏ > Y � f(X), X] via Kaplan-Meier, and then compute Y ⇤ until

convergence of f(X). By incorporating the above decomposition of the log survival time

into an IF-based estimator for  LATE, not only will we be able to utilize the Buckley-James

105



procedure for estimation but we will completely non-parametric and doubly-robust for certain

nuisance functions involved in  LATE.

5.3 Influence Function-based Buckley-James Estimation

of the LATE

Define the following nuisance functions:

1. Mean Survival Time Among Uncensored: mza(X) = E[T | T < C,Z = z, A =

a,X]

2. Mean Censoring Time Among Censored: !za(X) = E[C|X,A = a, Z = z, T > C]

3. Mean Survival Time Adjustment: �za(X) = E[Y ⇤ � C|X,A = a, Z = z, T > C]

4. Censoring Probability: �d
za
(X) = P (� = d|Z = z, A = a,X) for d 2 {0, 1}

5. Treatment Propensity Score: ⇡z(X) = P (A = 1|Z = z,X)

6. IPS: e(X) = P (Z = 1|X)

7. Marginal Probability of X: p(x) = P (X = x).

Conditioning on A as in Eq. 5.2 the LATE can be written as

 LATE =
 11 +  10 �  01 �  00

�1 � �0
(5.4)

with  za = E
⇥
E[T |Z = z, A = a,X]P (A = a|Z = z,X)

⇤
and �z = E[⇡z(X)]. Fo-

cusing on the numerator, without loss of generality we will derive on the properties of

 11 = E
⇥
E[T |Z = 1, A = 1, X]P (A = 1|Z = 1, X)

⇤
. In the following proposition, we may

re-write E[T |Z = 1, A = 1, X] in terms of the Buckley-James decomposition.
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Proposition 5.3.1. Via the Buckley-James decomposition,

E[T | Z = 1, X,A = 1] = m11(X)�111(X) + !11(X)�011(X) + �11(X)�011(X)

Given the decomposition in Prop. 5.3.1, we may derive the IF for of the three terms separately

using the properties outlined in Kennedy (2023) Section 3.[65]

Proposition 5.3.2. The IF for  1,1 is written as

IF( 1,1) =

✓
Z

e(X)

⇥
�AT �m11�

1
11⇡1

⇤
+m11�

1
11⇡1

◆

+

✓
Z

e(X)

⇥
(1� �)AC � !11�

0
11⇡t

⇤
+ !11�

0
11⇡1

◆

+

✓
Z

e(X)

⇥
(1� �)A(Y ⇤ � C)� �11�011⇡1

⇤
+ �11�

0
11⇡1

◆
�  11

We can generalize this quantity to any Z and A by replacing e(X) with e(X,Z) = P (Z|X)

and ⇡Z(X) with ⇡Z(X,A) = P (A|Z,X). We denote this arbitrary estimand as  Z,A and can

write the general IF of the numerator as

'num = IF
�
( 11 +  10)� ( 01 +  00)

 
= IF{ 11}+ IF{ 10}� IF{ 01}� IF{ 00}

The IF for the denominator is derived in Kennedy (2023) Example 6. That is, we have

'denom = IF(�1 � �0) =
2Z � 1

e(X,Z)
[A� ⇡Z(X)] + ⇡1(X)� ⇡0(X)� (�1 � �0)

107



Thus, the IF of the entire LATE is

IF( LATE) =
⇥
Pn(�1 � �0)

⇤�1
n
'U

num
(⌘)� LATE'

U

denom
(⌘)
o

Let 'U

num
and 'U

denom
refer to the uncentered IFs for the numerator and denominator, re-

spectively. Assuming a known value for Y ⇤, we may utilize the plug-in estimator  ̂LATE =

Pn{'U

num
(⌘̂)}

�
Pn{'U

denom
(⌘̂)} where ⌘ = {e(X,Z), ⇡Z(X,A), µZA(X), �ZA(X),ZA(X)}, the

set of nuisance functions. We will discuss the case with an estimated Y ⇤ in the next section.

Once this estimate is obtained, we may exponentiate it to estimate the ratio of the median

survival times between the treatment groups among compliers.

To establish the asymptotic and double robustness properties of  ̂LATE, we assume the

following conditions:

C1: Each nuisance functions {g 2 ⌘ :kĝ � gk = oP (1)} belong to the Donsker class.

C2: There exist constants such that |m̂ZA| < CmZA , �̂
1
ZA

> C�̂1
ZA
, �1

ZA
< C�1

ZA
,

⇡̂Z > C⇡Z , |!̂ZA| < C!̂ZA ,

�̂0
ZA

< C�̂0
ZA
, �0

ZA
< C�0

ZA
, |�̂ZA| < C

�̂ZA
, and ê > Cê

, almost surely for Z 2 {0, 1} and A 2 {0, 1}.

C3: {h 2 ⌘⇤ :
���ĥ� h

���kê� ek = oP (n
�1/2)} for ⌘⇤ = {⇡Z ,mZA,!ZA,�ZA, �ZA}

for Z 2 {0, 1} and A 2 {0, 1}

Note that (C1) is not required if we use sample-splitting to estimate ⌘[28, 65, 70], as proposed

in the next section.
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Theorem 5.3.1. Given the following decomposition  ̂LATE � LATE = S⇤ + T1 + T2, then

T1 + T2 = oP (n�1/2) under (C1)-(C3) with

n1/2
⇣
 ̂LATE � LATE

⌘
= n1/2S⇤ + oP (1)

d! N
�
0, E[�2]

�
(5.5)

where � =
⇥
Pn(�1 � �0)

⇤�1 �
'U

num
(⌘)� LATE'U

denom
(⌘)
 
.

Using these results, constructing (1 � ↵)-level Wald-based confidence intervals for  LATE

is straightforward. With q1�↵/2 representing the 1 � ↵/2 quantile of the standard Normal

distribution, we can utilize a plug-in estimator for �̂ to obtain

 ̂LATE ± q1�↵/2

s
Pn�̂2

n
.

which may then be exponentiated.

The double-robustness condition of our estimator is detailed by (C3), which is required for

the term T2 = oP (n�1/2). In summary, we jointly require that one of the following in each

line to be correctly specified:

1. ⇡Z(X) or e(X) for Z 2 {0, 1},

2. mZA(X) or e(X) for Z 2 {0, 1} and A 2 {0, 1},

3. �1
ZA

(X) or e(X) for Z 2 {0, 1} and A 2 {0, 1},

4. !ZA(X) or e(X) for Z 2 {0, 1} and A 2 {0, 1}, and

5. �ZA(X) or e(X) for Z 2 {0, 1} and A 2 {0, 1}.
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5.4 Estimation

We propose estimating ⌘, the set of nuisance functions in  LATE via sample-splitting.[65]

Briefly, we randomly split i.i.d. data of size n into K mutually exclusive groups Qn =

q(1) [ q(2) [ ...q(K). For k 2 {1, 2, ...K}, using Rn \ q(k), we estimate ⌘(k) and then plug-in q(k)

to obtain our estimate for  ̂(k)
LATE

. With cross-fitting, we obtain a pooled final estimate

 ̂LATE =
1

K

kX

1

 ̂(k)
LATE

.

By incorporating cross-fitting, we may non-parametrically estimate all the nuisance functions

in IF( LATE) using flexible modeling (e.g. splines, random forests) while protecting against

overfitting and straightforwardly avoiding the need to satisfy (C1). While we can estimate

e(X,Z),⇡Z(X,A), mZA(X), �ZA(X), and !ZA(X) by simply fitting them with training set of

each fold in cross-fitting, �11(X) will be fitted with Ŷ ⇤ obtained iteratively with the training

set via the Buckley-James procedure.

The Buckley-James estimation procedure for fitting a non-linear function with sample-

splitting for arbitrary Z and A is as follows. For training data of size nk, we first define

observed residuals ri = Yi � µ̂za(Xi) with ordering r1 < r2 < ... < rnk
. The training data

is additionally sorted in this order. Following the notion from Wang and Wang (2010),

za(X) = E[✏|✏ > Y � f(X), X, Z = z, A = a] can be estimated non-parametrically as follows

̂za = Ŝ(ri)
�1
X

rj>ri

rj�j�Ŝ(rj) (5.6)

where Ŝ(ri) is the Kaplan-Meier estimator of the survival function for residual ri.[124]

We can estimate both f̂za and ̂za via the following iterative approach in Wang and Wang

(2010).
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1. Set M = 0 and obtain initial estimate µ̂(0)
ZA

using the uncensored data as well as ̂ZA

from the residuals.

2. At the Mth iteration:

(a) Y ⇤ = f̂ (M�1)
za (Xi) + ei�i + (1� �i)̂za(Xi)

(b) Fit f̂ (M)
za (Xi) using X and Y ⇤

3. Repeat Step 2 until a set number of iterations is reached or, for some constant ↵ > 0,

���f̂ (M)
za (Xi)� f̂ (M�1)

za (Xi)
���

f̂ (M�1)
za (Xi)

< ↵ (5.7)

With ⌘̂, we may now compute the relevant values using the hold-out sample and plug them

into our estimator in Prop. 5.3.2. The first step is to compute residuals r = Y � f̂za. Then,

using the fitted KM estimator Ŝ and training set cumulative sums in Eq. 5.6, we may compute

Ŷ ⇤. In this case, the estimator in Theorem 5.3.1 underestimates the true variance because

we need to account for the estimation of Ŷ ⇤. More specifically, the second-order bias term
���Ŷ ⇤ � Y ⇤

��� in T2 is likely not of order oP (n�1/2) for the IF of the right-hand side third term

in Prop. 5.3.1 (see Appendix).

The second-order bias caused by imputation could, in theory, be accounted for by "higher-

order" IFs.[95] That is, capturing additional terms beyond the one-step estimator in the von

Mises expansion of the estimated IF around the true IF. Nevertheless, it is not known whether

a higher-order de-biased estimator exists for our estimand, which additionally would may

make restrictive structural assumptions about the underlying nuisance function space.[11] In

traditional estimation settings, "Rubin’s rules" (RR) is used to account for the additional

variance of multiple-imputation where "within-imputed dataset" estimated variances are

pooled and added to the "between-dataset" variance of the point-estimate.[? ] We borrow this
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intuition to heuristically account for the remaining variance in T2 in imputing Y ⇤, inducing

randomness to measure between-dataset bootstrapping. This procedure is limited to the IF

of the third term in Prop. 5.3.1 as the other two terms are not influenced by Y ⇤.

Without loss of generality, let '11 represent the uncentered IF for the estimand  11. Based

on Prop. 5.3.1, we may decompose it into three terms '11 = 'A

11 + 'B

11 + 'C

11 where

'A

11(⌘
A) =

Z

e(X)

⇥
�AT �m11�

1
11⇡1

⇤
+m11�

1
11⇡1,

'B

11(⌘
B) =

Z

e(X)

⇥
(1� �)AC � !11�

0
11⇡t

⇤
+ !11�

0
11⇡1,

'C

11(⌘
C) =

Z

e(X)

⇥
(1� �)A(Y ⇤ � C)� �11�011⇡1

⇤
+ �11�

0
11⇡1.

We may estimate 'A

11(⌘
A) and 'B

11(⌘
B) without the use of bootstrapping, resulting in two

vectors of length n after plugging in the values of the hold-out set. For 'C

11(⌘
C), for a given

train-test split, we take K bootstrap samples in the train data and fit {⌘̂C(1), ⌘̂C(2), ...⌘̂C(K)}.

Crucially this gives us variability in calculation of Y ⇤ and, subsequently, �11(X). Then, using

test set, we may compute {'C

11(⌘̂
C

(1)),'
C

11(⌘̂(2)), ...'
C

11(⌘̂
C

(1))}, which forms a n⇥k matrix 'C

11,boot

after plugging in the observed data. Thus, we have a matrix 'pool

11 = 'A

11 + 'B

11 + 'C

11,boot and

we can take the column means 'pool

11 as well as the column means of the squared IF values

'2,pool
11,k . The point estimate is thus  ̂11 = (K)�1

P
K

k=1 '
pool

11,k with

V ar( ̂11) = (K)�1
KX

k=1

n�1'2,pool
11,k + (1 +

1

K
)(

1

K � 1
)

KX

k=1

⇣
 ̂11 � '2,pool

11,k

⌘2
.

We generalize this to the entire IF for  LATE in Prop. 5.4.1.

Proposition 5.4.1. Writing 'num = 'A

num
+'B

num
+'C

num
where 'l

num
= 'l

num,11 +'l

num,10�

'l

num,01 � 'l

num,00 for l 2 {A,B,C}. We estimate V ar( LATE) with the bootstrap as follows.
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1. Compute '̂A

num
, '̂B

num
, and '̂denom using the standard cross-fitting procedure.

2. For '̂C

num
in each fold’s sample split we do have the following

(a) Bootstrap sample the training data K times

(b) For each bootstrap, compute the respective nuisance functions

{⌘C
num,1, ⌘

C

num,2, ...⌘
C

num,K
}

(c) Using the test data, compute matrix '̂C

num
with column vectors ('̂C

num,(1)), '̂
C

num,(2)), ...'̂
C

num,(K))

(d) Combine test set values across such that we have a n⇥K matrix.

3. Create '̂pool

num
by adding '̂A

num
+'̂B

num
to each column vector '̂C

num,(k) for k 2 {1, 2, ...K}.

4. Compute a K-length vector of point estimates,  LATE
pool, where the kth entry is

Pn'̂
C
num,(k)

Pn'̂denom
.

5. Compute pooled point estimate  pool

LATE
= K�1

P
K

k=1

Pn'̂
C
num,k

Pn'̂denom

6. Compute a n⇥K matrix of LATE IF values as

�pool =
⇥
Pn(�1 � �0)

⇤�1
n
'̂pool

num
� '̂denom LATE

pool(⌘)
o

7. Via Rubin’s Rules: V ar( LATE) = (K)�1
P

K

k=1 n
�1
⇣
�pool

k

⌘2
+(1+ 1

K
)( 1

K�1)
P

K

k=1( 
pool

LATE
�

 LATE,k
pool)2

With this augmented variance estimator, we can account for the uncertainty introduced from

having to impute Y ⇤, which is subsequently used when fitting �.

5.5 Simulation

We study the properties of our non-parametric estimator under both linear and non-linear

data generating mechanisms (DGMs). First, we generate six continuous covariates X =
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(X1, X2, X3, X4, X5, X6) from a multivariate normal distribution with N = 4000 and each

variable having mean 0. The covariance matrix has two correlated blocks, X1, X2, X3 and

X4, X5, X6 each with correlation 0.3. Furthermore, we have an uncorrelated unmeasured

covariate U generated from the standard normal distribution.

Table 5.1 details the equations and coefficients for the linear and non-linear DGM. Briefly,

once the six covariates and unmeasured covariate are generated we generate Z via the IPS

with P (Z = 1) = 0.5. Then, we generate A from the treatment propensity score, where ✓1

represents the strength of the IV and P (A = 1) = 0.5. The censoring times are generated

from the exponential distribution in which the rate parameter CR is iteratively found such

that the proportion of the censored data matches our simulation specification. Finally, the

outcome is generated via a log-normal distribution with the treatment effect being �1 = �0.8.

Because there is no treatment effect heterogeneity the LATE is equal to the ATE.

In each DGM, as a baseline comparison method, we fit two-stage least squares (2SLS) via

substituting Y ⇤ for Y where the imputed values are derived from the traditional linear AFT

BJ procedure. That is, we first use the bj function in the rms package to regress Y on the

covariates and A to derive Y ⇤. Then, 2SLS is fit as usual upon Y ⇤. In our method, we fit all

nuisance functions except  with and without ensemble learning through the SuperLearner

package.[92] We denote "No SL" to refer to the case where all nuisance functions are fit via

generalized linear models (GLM) whereas "SL" refers to an ensemble of multivariate adaptive

regression splines (EARTH), generalized additive models (GAMs), GLMs, random forest

(RF), and recursive partitioning and regression trees (RPART). All estimates are computed

via cross-fitting with four splits.

Within each DGM, we examine our estimator across three different scenarios varying the

censoring rate from 10% to 60% with the ground truth being �0.8 on the log scale across all

simulations. We examine five metrics: average point estimate, average relative bias, Monte

Carlo variance, model-based variance, and the root mean squared error (MSE).For 2SLS,
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Table 5.1: Summary of Data-Generating Mechanisms for Simulation

Model DGM Equation Coefficient Values

IPS Linear logit[P (Z = 1|X = x)] =
�0 +

P6
i=1 �iXi

�0 = 0,
�1 = �2 = �3 = 0.2,
�4 = �5 = �6 = �0.2

Non-Linear logit[P (Z = 1|X = x)] =
�0+�1X1+�2 exp(X2)+�3 sin(X3)+
�4X4 + �5 cos(X5) + �6X2

6

Treatment Propensity Linear logit[P (A = 1|X = x)] =
✓0 + ✓1Z + ✓2U +

P8
i=3 ✓i

✓0 = 0, ✓1 = 0.8,
✓2 = �0.6
✓3 = ✓4 = ✓5 = 0.4,
✓5 = ✓6 = ✓7 = �0.4

Non-Linear logit[P (A = 1|X = x)] = ✓0+✓1Z+
✓2exp(U) + ✓3 cos(X1) + ✓4X2

2 +
✓5 sin(X3)+✓6X4+✓7exp(X5)+✓8X

Censoring Linear log(C) =
log(CR) + ↵1A+

P7
i=2 ↵iXi

↵1 = �0.3,
↵2 = ↵3 = ↵4 = 0.3,
↵5 = ↵6 = ↵7 = �0.3

Non-Linear log(C) =
log(CR) + ↵1A+ ↵2exp(X1)
+ ↵3X2

2 + ↵4 sin(X3) + ↵5X4 +
↵6X5 + ↵7exp(X6)

↵1 = �0.3,
↵2 = ↵3 = ↵4 =
�0.15,
↵5 = ↵6 = ↵7 = 0.3

Outcome Linear log(Y ) =
�0 + �1A+ �2U +

P8
i=3 �i + ✏

�0 = 1.5, �1 = �0.8,
�2 = 0.8,
�3 = �4 = �5 = 0.4,
�6 = �7 = �8 = �0.4,
✏ ⇠ N(0, 1)

Non-Linear log(Y ) = �0 + �1A+ �2exp(U)
+ �3 cos(X1) + �4X2

2 + �5 sin(X3) +
�6exp(X4) + �7X5 + �8X6 + ✏

�0 = 1.5, �1 = �0.8,
�2 = 0.5,
�3 = �4 = �5 = �0.4,
�6 = �7 = �8 = 0.4,
✏ ⇠ N(0, 1)
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Table 5.2: Simulation Results: Linear Data Generating Mechanism (n = 4000)

Point
Estimate

Bias
(%)

Monte
Carlo
SE

Model-
Based

SE

MSE Coverage
(%)

10% Cens.
2SPI -0.803 0.38 0.102 0.106 0.102 92.4

Proposed Method -0.779 2.26 0.102 0.109 0.102 95.8

20% Cens.
2SPI -0.805 0.625 0.112 0.113 0.113 92.8

Proposed Method -0.777 2.88 0.113 0.113 0.114 95.0

30% Cens.
2SPI -0.804 0.50 0.120 0.123 0.120 93.6

Proposed Method -0.783 2.12 0.117 0.123 0.117 95.8

40% Cens.
2SPI -0.809 1.125 0.129 0.132 0.130 94.4

Proposed Method -0.793 0.80 0.149 0.136 0.149 94.4

50% Cens.
2SPI -0.809 1.125 0.150 0.151 0.150 93.6

Proposed Method -0.802 0.01 0.184 0.160 0.184 94.4

60% Cens.
2SPI -0.810 1.25 0.170 0.176 0.170 93.2

Proposed Method -0.788 1.50 0.269 0.206 0.269 91.0

the model-based variance is calculated via 500 bootstrap iterations; for our estimator, 10

bootstrap samples were used to calculate the variance estimator.

We present three sets of results with n = 4000. Table 5.2 details the results from 1000

simulations in the linear DGM. To examine the robustness to misspecification, we conducted

another simulation in the linear setting that intentionally drops a covariate from the mean

model for 2SPI (i.e. the bj function) and all nuisance functions besides the IPS. The results

are presented in Table 5.3. Table 5.4 details the non-linear DGM results from 500 simulations

(due to large computation times).

In the linear setting, as expected, both the 2SRI approach and the proposed method are
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Table 5.3: Simulation Results: Misspecification (n = 4000)

Point
Estimate

Bias
(%)

Monte
Carlo
SE

Model-
Based

SE

MSE Coverage
(%)

10% Cens.
2SPI 1.779 322.44 0.156 0.152 6.809 0

Proposed Method -0.766 4.22 0.087 0.091 0.088 95.4

20% Cens.
2SPI 1.756 319.56 0.155 0.155 6.690 0

Proposed Method -0.703 12.07 0.091 0.088 0.095 95.4

30% Cens.
2SPI 1.73 316.04 0.164 0.160 6.571 0

Proposed Method -0.714 10.69 0.106 0.103 0.113 94.4

40% Cens.
2SPI 1.70 312.31 0.179 0.167 6.42 0

Proposed Method -0.691 13.67 0.116 0.113 0.128 92.4

50% Cens.
2SPI 1.69 311.69 0.174 0.178 6.39 0

Proposed Method -0.667 16.67 0.146 0.132 0.163 92.8

60% Cens.
2SPI 1.66 307.63 0.206 0.191 6.26 0

Proposed Method -0.643 19.62 0.200 0.166 0.224 91.0
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Table 5.4: Simulation Results: Non-linear Data Generating Mechanism (n=4000)

Point
Estimate

Bias
(%)

Monte
Carlo
SE

Model-
Based

SE

MSE Coverage
(%)

10% Cens.
2SPI -1.381 72.6 0.081 0.081 0.419 42.4

Proposed Method -0.838 4.75 0.065 0.072 0.066 96.0

20% Cens.
2SPI -1.404 75.5 0.084 0.086 0.449 41.6

Proposed Method -0.848 6.00 0.064 0.078 0.066 94.8

30% Cens.
2SPI -1.425 78.1 0.092 0.093 0.480 41.6

Proposed Method -0.867 8.38 0.085 0.087 0.088 95.2

40% Cens.
2SPI -1.432 79.0 0.095 0.102 0.495 41.6

Proposed Method -0.869 8.62 0.102 0.102 0.105 94.8

50% Cens.
2SPI -1.456 82.3 0.11 0.114 0.541 43.8

Proposed Method -0.917 14.62 0.128 0.125 0.140 91.6

60% Cens.
2SPI -1.494 86.7 0.126 0.137 0.607 48.0

Proposed Method -0.918 14.8 0.213 0.177 0.226 90.4
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approximately unbiased and have acceptable coverage. We note that our model-based

variance estimator begins to underestimate the empirical variance when censoring is at 50%

and beyond. When we misspecify key models, even though we remain the linear setting, 2SPI

shows substantial bias while the proposed method shows minimal bias with this increasing

bias increasing modestly with the censoring rate increasing due to the BJ imputations

becoming increasingly incorrect (recall we are not doubly robust for Ŷ ⇤, see Appendix). This

demonstrates the ability of the proposed flexible, nonparametric estimator to mitigate the

effects of model misspecification. Lastly, in the non-linear setting, 2SPI contains large bias

with poor coverage while the proposed method shows minimal bias, even at higher censoring

rates where there are less uncensored observations to train complex machine learning models.

Furthermore, the proposed variance estimator largely captures the empirical variance even in

the non-linear setting.

We additionally examine the performance of our method in the linear and non-linear settings

with a low sample size of n = 1000, which can be found in the Appendix. Across scenarios,

though our method is approximately unbiased for the LATE, our computational variance

estimator tends to overestimate the empirical variance, leading to overcoverage. This extra

variability primarily stems from additional sparsity of strata induced by random sampling

with replacement in the bootstrap. Indeed, there are some cases where we obtain extreme

results or the BJ procedure simply fails to run, which particulary pronounced in the non-linear

setting where adequately learning ML models is imperative. Typically, this occurs in the

lower censoring rate scenarios (e.g. 10%) where we have only a few observations to fit a

model on censored data.

5.6 Application to Dementia Progression

We apply our methodology to study the effect of HDL on cognitive decline from a Mendelian

randomization analysis with data from the Alzheimer’s Disease Neuroimaging Initiative
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(ADNI). ADNI is a natural history that longitudinally tracks cognitively unimpaired, mild

cognitively impaired, or cognitively impaired volunteers aged 55-90 who are in otherwise

good health over time.[91] Our event of interest is the time until a half-point progression

from baseline in the clinical dementia rating sum of boxes (CDR-SB)[82] for those with mild

cognitive impairment (MCI). An increase of CDR indicates cognitive decline.

Our exposure is a participant’s HDL levels at the earliest visit with recorded MCI, which we

refer to as the "baseline visit." HDL was binarized into a "low" and "high" exposure group

with a cut-off of 1.3 mmol/L. Using available genetic data, we constructed a binary IV that

measures whether if a participant has two copies of the SNP rs3764261, which is associated

with lower HDL levels.[130] More details regarding genetic and lipid data in ADNI can be

found at https://adni.loni.usc.edu/about/.

Our final cohort contained n = 760 inidividuals and with administrative censoring at five

years where 564 participants, or 74%, had an event. The Kaplan-Meier curve stratified by

HDL level is shown in Figure 5.1. Baseline covariates include baseline CDR, include medical

history, age, body mass index (BMI), dementia family history, sex, APOE4 allele count, and

years of education (Table 5.5). The strength of the IV is estimated by the difference in the

proportion of individuals with high HDL levels between those who have and do not have two

copies of the gene. The proportion for the low HDL group was 0.56 while the proportion was

0.47 in the high HDL group, yielding a complier percentage of 9%, indicating instrument of

moderate strength.

The results across a multiple estimation approaches are presented in Table 5.6. Using the

traditional BJ confounder adjustment, we obtain a null and significant point estimate. With

the MR approach, the complete case 2SPI yields a protective point estimate of high HDL

on progression of cognitive decline with this estimate becoming statistically significant once

we incorporate BJ. A point estimate of 0.17 indicates there is a 83% decrease in the median

time until a 0.5 point progression in CDR in the high HDL group compared to the low HDL
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Figure 5.1: Kaplan Meier Curve of Time Until Half-Point Progression, Stratified by HDL
Level
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Table 5.5: Baseline distributions of Covariates Stratified by Study

Variable HDL  1.3 HDL > 1.3 Standardized

(n = 243) (n = 517) Mean Difference

Age (mean (SD)) 73.73 (7.03) 72.80 (7.40) 0.128

Male (%) 199 (81.9) 256 (49.5) 0.726

Years Education (mean (SD)) 15.86 (2.85) 16.04 (2.71) 0.064

BMI (mean (SD)) 28.42 (4.69) 26.21 (4.64) 0.474

Family History (%) 123 (50.6) 394 (52.4) 0.036

Baseline CDR (mean (SD)) 1.43 (0.91) 1.50 (0.88) 0.083

APOE4 copies (%) 0.054

0 122 (50.2) 314 (49.7)

1 99 (40.7) 255 (39.9)

2 22 (9.1) 86 (10.6)

Neurological Condition (%) 94 (38.7) 166 (32.1) 0.132

Cardiovascular Condition (%) 194 (79.8) 327 (63.2) 0.374

Metabolic Condition (%) 116 (47.7) 208 (40.2) 0.175

group. Our methodology approximately replicates this protective point estimate with the

SL point estimate being slightly higher at 0.415. Nevertheless, the confidence intervals are

notably wider due in part to sparsity and a lower performance of our at smaller sample sizes

due to flexibility. Indeed, in some strata, such as those who have low HDL, do not have two

copies of rs3764261, and do not experience the event, we have as little as 24 participants to

learn flexible models.

5.7 Discussion

In this work, we have a developed a nonparametric estimator of the LATE stemming from

the AFT and BJ framework. Our estimator allows model-agnostic estimation of all nuisance
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Table 5.6: Treatment effect estimate by methodology

Approach Estimate SE (log) 95% Conf
Int.

Confounder BJ 0.996 0.072 (0.869, 1.39)

Complete-Case 2SPI 0.179 1.37 (0.012, 1.63)

2SPI + BJ 0.17 0.682 (0.045, 0.644)

No SL 0.255 1.83 (0.02, 9.34)

SL 0.415 2.54 (0.003, 59.0)

functions, including those involved the BJ procedure. Through our IF-based estimator and

cross-ftting, we may avoid complicated Donsker conditions making inference straightforward

with additional double-robustness properties with all nuisance functions. We furthermore

developed a computational procedure for accounting for the extra variability due to having

to impute Y ⇤. In our simulations, we showed that inference for the LATE with our approach

performs better than 2SPI in a variety of scenarios, including a non-linear DGM and

misspecification of key functions.

Traditionally, the LATE can be boiled down to essentially a ratio of coefficients of Z from

two linear models representing the propensity score and outcome. On the other hand,

nonparametric approaches such as ours decompose the LATE into a set of nuisance functions

that we may flexibly estimate. In practice, this translates to dividing our original sample into

many subpopulations to estimate specific nuisance functions like, for example, m1,1, which

can only be estimated for only uncensored individual who both have Z = 1 and A = 1. At

lower sample sizes, we risk sparsity and overfitting of ML models, resulting in high variability

and overcoverage, which was demonstrated in our simulation results at n = 1000 and the

applied example.
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Chapter 6

Conclusion and Future Directions

In this dissertation, we have enhanced the utility of IVs in three important scenarios. First, in

the linear settings, we analytically quantified the relative trade-offs between the confounder

approach and the IV approach in the presence of key assumption violations. These results

combined with our sensitivity analysis tool can be utilized by analysts wishing to examine

whether the IV approach will improve upon the traditional regression adjustment or propensity

score approach in consistently estimating the ATE. Shifting to the assumption of a valid IV,

we extend recent developments in the nonparametric identification literature to accommodate

unknown sampling weights for the purposes of replicating causal effects. Through flexible

and doubly robust estimation of the LATE, we are able to guard not against misspecification

within a specific population but enhance replicability across populations. We additionally

apply this methodology to providing weighted bounds on the ATE. Lastly, we move to the

time-to-event setting, once again extending the nonparametric literature as well as the AFT

literature to flexibly estimate the percentage difference in the median survival time among

compliers with a binary exposure. With this approach, we are able to avoid many of the causal

complications stemming from using IVs to estimate the causal HR and, further, improve

upon linear AFT and BJ methods.
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For Chapter 3, there are several additional avenues for future research. As previously

mentioned, we focus only on consistency but in estimation, we may also want to know

whether CAC may be more efficient than IVAC or vice-versa. Additionally, the confidence

interval overlap of OLS and 2SLS estimates could also cause ambivalence between the methods.

Another future direction lies in moving beyond the setting of a continuous exposure and

outcome. Nevertheless, if one believes linear probability models (LPMs) are appropriate for

the study’s context, then one may extend our results to a binary exposure and outcome. It

has been shown that if the probabilities produced by the LPM are not outside of the range of

[0, 1], or if the probabilities of exposure or outcome are not extreme in the population, then

OLS and 2SLS may still give consistent results.[54, 13] For the sensitivity analysis procedure,

the results are only as useful as variables available and chosen for benchmarking, which is

partially mitigated by using the multipliers. Certainly, other benchmarking quantities for

the unobserved quantities than the ones we chose could be used. The aggregation of the

covariates into one general confounder W could be done via other methods besides PCA,

which is limited when there are categorical variables. Using non-continuous variables is also

limited when capturing associations using R2 due to the Frechet bounds on the correlation

between non-continuous variables being potentially far narrower than [�1, 1].[53]

There are a few future directions vis a vis Chapter 4. The ATE bounds could be further

narrowed by incorporating sampling weights with developing work on "covariate-assisted"

bounds.[71]. Despite double robustness on most nuisance functions, the survey weights do not

share this property. Undoubtedly, the sensitivity to misspecification of the weights depends

on the target estimand. Thus, future work could not only extend our work to estimands

such as the local average treatment effect on the treated (LATT)[42] but furthermore assess

scenarios where replicability may be more successful in one estimand compared to another.

These results could be used to derive an "optimally weighted" estimator for replicability.

In the IV literature, key conditions like monotonicity have been relaxed through similar

approaches, trading off "localness" of the estimand for validity.[56] Finally, future work might
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consider extensions to binary outcomes, continuous IVs, and time-varying treatments.

For Chapter 5, the impacts of sparsity in finite samples is ultimately a limitation to our

nonparametric approach and a trade-off for protecting against misspecification. These impacts

can be partially alleviated if we need not condition on the treatment assignment for ignorable

censoring as we effectively halve the number of expectations to estimate in the numerator.

Another related aspect of our approach is that since we are training models directly on the

censored subpopulation, we require a sufficient number of censored observations. In practice,

censoring usually constitutes a significant proportion of the (e.g. 40%), which our estimator

performs well on even at lower sample sizes. Future work may focus on maximizing sample

size by effectively borrowing information across different subgroups to estimate nuisance

functions but still remaining model agnostic. Furthermore, stratified sample-splitting and

bootstrapping approaches could be investigated. Ultimately, analysts should ensure their

data is able to sufficiently accommodate a nonparametric, flexible estimation approach before

employing this general class of methods, not just ours.

In terms of inference, one challenge is properly accounting for the variability stemming

from training nuisance functions on imputed outcomes such as what we did Y ⇤. While our

bootstrap variance estimator captured most of this variability, it demonstrated bias when

the censoring rate was high. As discussed earlier, a higher-order IF estimator could be

utilized to potentially derive closed-form estimator, yet it is not known whether we may

remain model-agnostic or if such a solution exists.[11] Lastly, we may extend our methodology

to nonparametrically estimate several other causal quantities that involves time-to-event

outcomes such as mediation effects with accommodation of continuous IVs and exposures.
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Appendix A

Appendix

A.1 Appendices for Chapter 3

A.1.1 Proof for the Consistency Â4 under Figure 3.1

Proof. We begin by defining following system of structural equations under Figure 3.1 where

E[✏1|U,Z] = 0 and E[✏2|X,U ] = 0.

X = ↵1U + ↵2Z + ✏1 (A.1)

Y = �1X + �2U + ✏2 (A.2)

By the standard definition of the IV estimator, Â4 =
dCov(Y,Z)
dCov(X,Z)

. Where n is the sample size,
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by finite variance and Slutsky’s theorem we can write:

dCov(Y, Z)
dCov(X,Z)

=
n�1

P
n

i=1 yizi
n�1

P
n

i=1 xizi

p! E[Y Z]

E[XZ]
=

Cov(Y, Z)

Cov(X,Z)
(A.3)

Clearly, Cov(X,Z) = ↵2 = c3 because Z ?? U . Moving onto Cov(Y, Z) we write:

E[Y |z] =
X

u

E[Y |z, u]P (u|z) (A.4)

=
X

u

[c0c3z + c2u]P (u) (A.5)

= c0c3z
X

u

u+ c2
X

u

uP (u) (A.6)

= c0c3z (A.7)

A.1.2 Proof for Proposition 3.3.1

Proof. Using an equivalent definition of the IV estimator, Â4 = (ZTX)�1(ZTY ) we can

substitute 3.9 for Y

(ZTX)�1(ZTY ) = (ZTX)�1(ZT (c0X + c2U + cERZ + ✏3)) (A.8)

= c0 + c2(Z
TX)�1ZTU + cER(Z

TX)�1ZTZ + (ZTX)�1ZT ✏3 (A.9)

= c0 + c2
n�1

P
n

i=1 ziui

n�1
P

n

i=1 zixi

+ cER

n�1
P

n

i=1 z
2
i

n�1
P

n

i=1 zixi

+
n�1

P
n

i=1 ✏3ixi

n�1
P

n

i=1 zixi

(A.10)
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p! c0 + c2
Cov(Z,U)

Cov(Z,X)
+ cER

V ar(Z)

Cov(Z,X)
+

Cov(Z, ✏3)

Cov(Z,X
(A.11)

= c0 +
cER

c3
(A.12)

(Z ?? U and Cov(X,Z) = c3) (A.13)

The last line follows from the fact that Z ?? U and E[✏3Z] = 0 by iterated expectation.

A.1.3 Proofs for Proposition 3.3.2

Proof for the Consistency of Â3

Proof. We need to find the value of @

@x
E[Y |x, z] = c0 + c2

@

@x
E[U |x, z]. We will use the

FWL theorem to find @

@x
E[U |x, z] by orthogonalizing Z and using consistency. Assuming no

intercept, we can write the quantity as X
T
MZU

XTMZX
where MZ = I � ZT (ZTZ)�1ZT (residual

making matrix). Noting that Cov(X,Z) = c3 + c1cI and Cov(U,Z) = cI , we have:

XTMZU

XTMZX
=

P
n

i=1[xi � (c3 + c1cI)zi][ui � cIzi]P
n

i=1[xi � (c3 + c1cI)zi]2
(A.14)

p! Cov[X � (c3 + c1cI)Z,U � cIZ]

V ar[X � (c3 + c1cI)Z]
(A.15)

=
c1 + c3cI � cI(c3 + c1cI)

1� (c3 + c1cI)2
=

c1(1� c2
I
)

1� (c3 + c1cI)2
(A.16)
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Proof for the Consistency of Â4

Proof. In a similar derivation Proposition 3.1 but plugging in c0X+c2U+✏3 for the structural

equation of Y , we obtain

Â4
p! c0 + c2

Cov(Z,U)

Cov(Z,X)
+

Cov(Z, ✏3)

Cov(Z,X)
(A.17)

= c0 + c2
Cov(Z,U)

Cov(Z,X)
(A.18)

= c0 +
c2cI

c3 + c1cI
(A.19)

Note that the unconditional association between X and Z goes has two paths: the direct

path X ! Z and the indirect path X  U ! Z.

A.1.4 Proofs for Proposition 3.3.3

Proof for the consistency of Â2

Proof. We simply will compute the regression of Y on X where Â2
p! Cov(Y,X).

Cov(Y,X) = Cov(�1X + �2U + �3XU + ✏2, X) = �1 + �2↵2 + �3Cov(XU,X) (A.20)

= �1 + ↵2�2 + 2↵1↵3�3 (A.21)

Where Cov(XU,X) = 2↵1↵3 because

Cov(XU,X) = Cov(U(↵1Z + ↵2U + ↵3ZU + ✏1), X) (A.22)

= ↵1Cov(UZ,X) + ↵2Cov(U2, X) + ↵3Cov(ZU2, X) (A.23)

= ↵1E[UZX]| {z }
B1

+↵2E[U2X]| {z }
B2

+↵3E[ZU2X]| {z }
B3

(A.24)
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B1 = ↵1↵3 because

E[XUZ] = E[ZE[XU |Z]] = E[ZE[(↵1Z + ↵2U + ↵3ZU + ✏1)U |Z]] (A.25)

= E[Z(↵1E[UZ|Z] + ↵2E[U2|Z] + ↵3E[ZU |Z] + E[U✏1|Z)] (A.26)

= E[↵1Z
2E[U ] + ↵2ZE[U2] + ↵3ZE[U2] + E[U✏1]] (A.27)

= E[↵2Z + ↵3Z
2] = ↵3 (A.28)

B2 = 0 because E[U2X] = E[U2E[X|U ]] = ↵2E[U3] = 0 because E[U3] = 0.

B3 = ↵1↵3 because

E[ZU2X] = E[ZU2(↵1Z + ↵2U + ↵3ZU + ✏1)] (A.29)

= ↵1E[Z2U2] + ↵2E[ZU3] + ↵3E[Z2U3] (A.30)

= ↵1 (A.31)

Where the last equality follows because Z ?? U and E[U3] = 0.

Proof for the consistency of Â3

Proof. Similar to proposition 3.2, we will proceed via FWL to find the value of A3 =
X

T
MZY

XTMZX
.

First, we need to find Cov(Z,X) and Cov(Z, Y ):

Cov(Z,X) = Cov(Z,↵1Z + ↵2U + ↵3ZU + ✏1) = ↵1 (A.32)

and (A.33)

Cov(Z, Y ) = Cov(Z, �1X + �2U + �XU + ✏2) = E[Z(�1X + �2U + �XU + ✏2)] (A.34)
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= E[�1XZ + �2UZ + �3XUZ + Z✏2] = ↵1�1 + ↵3�3 (A.35)

Going back to FWL, letting � = ↵1�1 + ↵3�3, we now have

XTMZY

XTMZX
=

(X � ↵1Z)T (Y � �Z)
(X � ↵1Z)T (X � ↵1Z)

=

P
n

i=1 XiYi � �XiZi � ↵1ZiYi + ↵1�Z2
iP

n

i=1(Xi � ↵1Zi)2
(A.36)

p! E[XiYi � �XiZi � ↵1ZiYi + ↵1�Z2]

E[(Xi � ↵1Zi)2]
(A.37)

=
Cov(X, Y )� �Cov(X,Z)� ↵1Cov(Z, Y ) + ↵1�V ar(X)

1� ↵2
1

(A.38)

=
(�1 + ↵2�2 + 2↵1↵3�3)� �↵1 � ↵1�+ ↵1�

1� ↵2
1

(A.39)

=
�1 + ↵2�2 + 2↵1↵3�3 � ↵2

1�1 + ↵3�3↵1

1� ↵2
1

= �1 +
↵2�2 + ↵1↵3�3

1� ↵2
1

(A.40)

Proof for the consistency of Â4

Proof. We can compute the Wald estimator from the quantities computed in the proof for

Â3. In particular, Cov(Z, Y ) and Cov(Z,X).

Â4
p! Cov(Z, Y )

Cov(Z,X)
=
↵1�1 + ↵3�3

↵1
= �1 +

↵3�3
↵1

(A.41)

A.1.5 Proofs for Proposition 3.3.5

Proof for the consistency of Â2

Proof. Our goal is to find @

@x
E[Y |x, w], which, by FWL, is equivalent to the convergence in

probability of X
T
MW Y

XTMWX
. Because we have already demonstrated the use of FWL, we will skip
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several intermediate steps. Letting ⌘ = c6 + c5c0

XTMWY

XTMWX
=

(X � c5W )T (Y � ⌘W
((X � c5W ))

p! Cov(X, Y )� ⌘Cov(W,Y ) + c5⌘

1� c25
(A.42)

=
c0 + c1c2 + c2c3cI � ⌘c5 � ⌘c5 + c5⌘)

1� c25
= c0 +

c1c2 + c2c3cI
1� c25

(A.43)

Proof for the consistency of Â3

Proof. Our goal is to find @

@x
E[Y |x, w, z], which, by FWL, is equivalent to the limit of X

T
MBY

XTMBX

where B = [W,Z] or the residuals of regressing both W and Z. To simplify matters, we can

expand Y

XTMBY

XTMBX
=

XTMB(c0 + c2U + c6W + ✏2)

XTMBX
(A.44)

= c0 + c2
XTMBU

XTMBX
(A.45)

Where the last line follows from the orthogonality of ✏2 and the result of W being regressed

upon itself being that the residuals are 0. So we are focused on two regressions: E[X|w, z] =

�1W + �2Z and E[U |w, z] = ⇡1W + ⇡2Z. Using FWL, we find the value of the coefficients to

be

�1 =
W TMZX

W TMZW
p! c5 �

c1cIc7
1� c27

, (A.46)

�2 =
ZTMWX

ZTMWZ
p! c3 +

c1cI
1� c27

, (A.47)

⇡1 =
W TMZU

W TMZW
p! �cIc7

1� c27
, (A.48)

⇡2 =
ZTMWU

ZTMWZ
p! cI

1� c27
(A.49)
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Putting this altogether, we write A3 = c0 + c2
Cov(X��1W��2Z,U�⇡1W�⇡2Z)

V ar(X��1W��2Z) (note that we are

now in the limit). Expanding the numerator we get

c2


Cov(X,U)� ⇡1Cov(X,W )� ⇡2Cov(X,Z)� �1Cov(W,U) + �1⇡1 (A.50)

+ �1⇡2Cov(W,Z)� �2Cov(Z,U) + �2⇡1Cov(W,Z) + �2⇡2

�
(A.51)

Noting that Cov(X,U) = c1 + c3cI , Cov(X,W ) = c5 + c3c7, Cov(X,Z) = c3 + c1cI + c5c7,

Cov(W,U) = 0, Cov(W,Z) = c7, and Cov(Z,U) = cI , we can simplify the above expression

to

c1c2 +
c1c2c2Ic7
1� c27

� c1c2c2Ic7
(1� c27)

2
+

c1c2cIc37
(1� c27)

2
� c1c2c2I

1� c27
(A.52)

= c1c2 +
c1c2c2Ic7 � c1c2c2I

1� c27
+

c1c2c2Ic7(c
2
7 � 1

(1� c27)
2

= c1c2 +
c1c2c2Ic7 � c1c2c2I � c1c2c2Ic7

1� c27

(A.53)

= c1c2 �
c1c2c2I
1� c27

(A.54)

For the denominator

V ar(X � �1W � �2Z) = 1 + �21 + �22 � 2�1Cov(X,W ) (A.55)

� 2�2Cov(X,Z) + 2�1�2Cov(W,Z) (A.56)

(A.57)

After combining like terms we obtain

1� c25 � c23 +
c21c

2
I

(1� c27)
2
� 2c3c5c7 � 2c1c3cI � 2

c21c
2
I

1� c27
� c21c

2
I
c27

(1� c27)
2

(A.58)
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= 1� c25 � c23 � 2c3c5c7 � 2c1c3cI �
c21c

2
I

1� c27
+ [c23c

2
7 � c23c

2
7] (A.59)

= 1� (c5 + c3c7)
2 + c23c

2
7 � c23 � 2c1c3cI �

c21c
2
I

1� c27
(A.60)

= 1� (c5 + c3c7)
2 � (1� c27)(c

2
3 +

2c1c3cI
1� c27

+
c21c

2
I

1� c27
) (A.61)

= 1� (c5 + c3c7)
2 � (1� c27)(c3 +

c1cI
1� c27

)2 (A.62)

Proof for the consistency of Â4

Proof. Via FWL,
@
@zE[Y |z,w]
@
@zE[X|z,w]

= = Z
T
MW Y

ZTMWX
. Re-using quantities from the proof for A3 and,

additionally Cov(Z, Y ) = c0c3+c2cI+c6c7+c0c5c7+c0c1cI and Cov(Y,W ) = c0c5+c6+c0c3c7

we have

ZTMWY

ZTMWX
p! Cov(Z, Y )� Cov(Z,W )Cov(Y,W )

Cov(X,Z)� Cov(Z,W )Cov(X,W )
(A.63)

=
c0c3 + c2cI + c6c7 + c0c5c7 + c0c1cI � c7(c0c5 + c6 + c0c3c7)

c3 + c1cI + c5c7 � c7(c5 + c3c7)
(A.64)

=
c0(c3 + c1cI � c27c3) + c2cI

c3 + c1cI � c27c3
=

c2cI
c3(1� c27) + c1cI

(A.65)
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A.1.6 Proof for Proposition 3.3.6

Results for A2

Proof. Our goal is to find the value of @

@x

X
T
MCY

XTMCX
where C = [W,XW ]. Because Cov(W,XW ) =

0, we can write the following linear conditional expectations

E[X|W,XW ] = Cov(X,W )W +
Cov(X,XW )

V ar(XW )
XW = ↵4W +

2↵1↵5

↵2
4 + 2↵2

5 + 1
XW,

(A.66)

E[Y |W,XW ] = Cov(Y,W )W +
Cov(Y,XW )

V ar(XW )
XW (A.67)

= (�1↵4 + �4)W +
2↵1↵5�1 + �5(↵2

4 + 2↵2
5 + 1)

↵2
4 + 2↵2

5 + 1
XW. (A.68)

Returning back to the FWL expression, we now plug in the above conditional expectations.

Focusing on the numerator, which is rewritten as Cov(X�E[X|W,XW ], Y �E[X|W,XW ]),

we have

Cov(X � ↵4W �
2↵1↵5

↵2
4 + 2↵2

5 + 1
XW,Y � �1↵4 + �4W (A.69)

� 2↵1↵5�1 + �5(↵2
4 + 2↵2

5 + 1)

↵2
4 + 2↵2

5 + 1
XW (A.70)

= Cov(X, Y )�
2↵1↵5�1+�5(↵2

4+2↵2
5+1)

↵2
4+2↵2

5+1
Cov(X,XW )

↵2
4 + 2↵2

5 + 1
� ↵4Cov(W,Y )� (A.71)

2↵4↵5Cov(XW,Y )

↵2
4 + 2↵2

5 + 1
+

2↵1↵5�1+�5(↵2
4+2↵2

5+1)
↵2
4+2↵2

5+1
2↵1↵5

↵2
4 + 2↵2

5 + 1
(A.72)

= �1 + �2↵2 + 2↵1↵3�3 + �4↵4 + 2↵1↵5�5 � ↵4(�1↵4 + �4) (A.73)

�
2↵1↵5

2↵1↵5�1+�5(↵2
4+2↵2

5+1)
↵2
4+2↵2

5+1

↵2
4 + 2↵2

5 + 1
(A.74)
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= �1 + �2↵2 + 2↵1↵3�3 � ↵2
4�1 �

4↵2
1↵

2
5�1

↵2
4 + 2↵2

5 + 1
. (A.75)

Focusing on the denominator:

V ar(X � ↵4W �
2↵1↵5

↵2
4 + 2↵2

5 + 1
XW ) = 1 + ↵4 +

4↵2
1↵

2
5

↵2
4 + 2↵2

5 + 1
� 2↵2

4 �
8↵2

1↵
2
5

↵2
4 + 2↵2

5 + 1

(A.76)

= 1� ↵4 �
4↵2

1↵
2
5

↵2
4 + 2↵2

5 + 1
. (A.77)

Thus, we obtain the final result �1 + �2↵2+2↵1↵3�3

1�↵4�
4↵2

1↵
2
5

↵2
4+2↵2

5+1

.

Results for A4

Due to there being two endogenous variables, X and XW , we will need to utilize two

instruments, which are Z and ZW , respectively. We will have the following series of linear

conditional expectations, noting that Cov(XW,W ) = 0

E[X|W,Z, ZW ] = Cov(X,W )W + Cov(Z,X)Z + Cov(ZW,X)ZW, (A.78)

E[XW |Z,ZW ] = Cov(XW,Z)Z + Cov(XW,ZW )ZW, (A.79)

E[Y |X̂, ˆXW,W ] =
Cov(Y, X̂)

V ar(X̂)
X̂ +

Cov(Y, ˆXW )

V ar( ˆXW )
ˆXW + Cov(Y,W )W (A.80)

where X̂ and ˆXW are the fitted values from the E[X|W,Z, ZW ] and E[XW |Z,ZW ], respec-

tively. The coefficient of interest from 2SLS is thus Cov(Y,X̂)

V ar(X̂)
or, returning to FWL, denoted

as @

@x̂

X̂MDY

X̂MDX̂
where D = [W, ˆXW ].

149



First, we will write out the relevant covariances and variances:

Cov(W, X̂) = ↵4 (A.81)

Cov( ˆXW, X̂) = 2↵1↵5 (A.82)

Cov(W,Y ) = �1↵4 + �4 (A.83)

Cov( ˆXW,Y ) = ↵5�1Cov(Z,X) + ↵5�3Cov(Z,XU) + �5↵5Cov(Z,XW ) (A.84)

+↵1�1Cov(ZW,X) + ↵1�3Cov(ZW,XU) + ↵1�5Cov(ZW,XW ) (A.85)

= 2↵1↵5�1 + ↵3↵5�3 + �5↵
2
5 + ↵2

1�5 (A.86)

V ar(X̂) = ↵2
4 + ↵2

1 + ↵2
5 (A.87)

V ar( ˆXW ) = ↵2
5 + ↵2

1 (A.88)

Cov(X̂, Y ) = ↵4Cov(W,Y ) + ↵1Cov(Z, Y ) + ↵5Cov(ZW, Y ) (A.89)

= ↵4(�1↵4 + �4) + ↵1(↵1�1 + ↵3�3 + ↵5�5) + ↵5(�1↵5 + �5↵1) (A.90)

Cov(ZW, Y ) = �1↵5 + �5↵1 (A.91)

Because Cov( ˆXW,W ) = 0 we can simply substitute the covariances in the FWL expression

as such

Cov(X̂ � ↵4W � 2↵1↵5

↵5+↵2
1

ˆXW,Y � (�1↵4 + �4)W � Cov( ˆXW,Y ) ˆXW )

X̂ � ↵4W � 2↵1↵5

↵5+↵2
1

ˆXW
(A.92)

Now focusing on the numerator, can further simplify to

Cov(X̂, Y )� (�1↵4 + �4)Cov(X̂W )� Cov( ˆXW,Y )

↵2
5 + ↵2

1

� 2↵1↵5Cov( ˆXW,Y )

↵5 + ↵2
1

(A.93)
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+
2↵1↵5Cov( ˆXW,Y )V ar( ˆXW )

(↵5 + ↵2
1)

2
(A.94)

= ↵1(↵1�1 + ↵3�3 + ↵5�5) + ↵5(�1↵5 + �5↵1)�
2↵1↵5Cov( ˆXW,Y )

↵5 + ↵2
1

(A.95)

= ↵1�1 + ↵1↵3�3 + 2↵1↵5�5 + �1↵
2
5 (A.96)

� 4↵1↵2
5�1 + 2↵1↵3↵2

5�3 + 2↵1↵3
5�5 + 2↵3

1↵5�5
↵2
5 + ↵2

1

(A.97)

= �1


↵2
1 + ↵2

5 �
4↵2

1↵5�1
↵5 + ↵2

1

�
+ ↵1↵3�3 �

2↵1↵3↵2
5�3

↵2
1 + ↵2

5

. (A.98)

For the denominator, we have

V ar(X̂ � ↵4W �
2↵2

1↵
2
5

↵2
1 + ↵2

5

ˆXW ) = ↵2
4 + ↵2

1 + ↵2
5 + ↵2

4 +
4↵2

1↵
2
5

↵2
1 + ↵2

5

(A.99)

� 2↵2
4 �

8↵2
1↵

2
5

↵2
1 + ↵2

5

(A.100)

= ↵2
1 + ↵2

5 �
4↵2

1↵
2
5

↵2
1 + ↵2

5

. (A.101)

Therefore, all together we obtain the final result of

�1 +
↵1↵3�3 � 2↵1↵3↵

2
5�3

↵2
1+↵2

5

↵2
1 + ↵2

5 �
4↵2

1↵
2
5

(↵2
1+↵2

5
)

(A.102)

A.1.7 Derivation for Reduced Form Coefficient in Exclusion Restric-

tion �R
ER

Proof. We will first derive the proof in the case with no covariates in the DAG (i.e. E[Y |X,Z|)

as it is more tractable to show and describe how it applies when W is present. The coefficient

takes the form Cov(Y�E[Y |X],Z�E[Z|X])
Var(Z�E[Z|X]) . As shown in the previous proof, the denominator is
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1� c3 so we will focus on the numerator.

Cov(Y � E[Y |X], Z � E[Z|X])Var(Z � E[Z|X]) = Cov(Y, Z)� Cov(Y,Cov(Z,X)X)

� Cov(Cov(Y,X)X,Z) + Cov(Y,X) · Cov(Z,X)

= cER + c3c0 � c3(c0 + c1c2 + c3cER)

� c3(c0 + c1c2 + c3cER) + c3(c0 + c1c2 + c3cER)

= cER + c3c0 � c3c0 � c1c2c3 � c23cER

= cER(1� c23)� c1c2c3

Thus, the quantity is equal to cER� c1c2c3
1�c3

. Adding W to the DAG, because we are conditioning

for it, there is no impact besides a portion of variation in X being explained away, leading us

the final quantity of cER � c1c2c3

1�c23�c25

A.1.8 Proof for Independence � Result

Proof. We will first translate the edge weights or the linear combination of the edge weights

as R2 quantities. From the main text, the initial quantity is

� =
���

c2cI
c3 +

c1cI

1�c27

���
���

c1c2(1�c
2
7�c

2
I)

1�c27

1� (c5 + c3c7)2 � (1� c27)(c3 +
c1cI

1�c27
)2

���
�1

. (A.103)

We can re-write the different terms as follows [31]:

|c1| =
q

R2
X⇠U |Z,W

sd(X?Z,W )

sd(U?Z,W )
(A.104)

|cI | =
q

R2
Z⇠U |W

sd(U?W )

sd(Z?W )
(A.105)

|c7| =
q

R2
Z⇠W

(A.106)
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(c5 + c3c7)
2 = R2

X⇠W
(A.107)

(c3 +
c1cI
1� c27

)2 = R2
X⇠Z|W

V ar(X?W )

V ar(Z?W )
(A.108)

1� c2
I
� c27

1� c27
=

1�R2
Z⇠W+U

1�R2
Z⇠W

= 1�R2
Z⇠U |W . (A.109)

Canceling out c2 on both sides and substituting these quantities, we obtain

q
R2

Z⇠U |W
sd(U?W )
sd(Z?W )

R2
X⇠Z|W

V ar(X?W )
V ar(Z?W )

=

q
R2

X⇠U |Z,W
sd(X?Z,W )
sd(U?Z,W )

1�R2
X⇠W

� (1�R2
X⇠W

)(R2
X⇠Z|W

V ar(X?W )
V ar(Z?W ) )

. (A.110)

Noting that sd(U?W,Z)
sd(U?W ) =

q
1�R2

Z⇠U |W , we can re-arrange terms such that

q
R2

Z⇠U |W
q

1�R2
Z⇠U |W

=

q
R2

X⇠U |Z,W sd(Z?W )sd(X?Z,W )R2
X⇠Z|W

V ar(X?W )
V ar(Z?W )

1�R2
X⇠W

� (1�R2
X⇠W

)(R2
X⇠Z|W

V ar(X?W )
V ar(Z?W ) )

. (A.111)

Squaring both sides obtains the final result.

A.1.9 Proof for Heterogeneity � Result

Proof. From the main text, the original quantity is

� =

�����
↵1↵3�3 � 2↵1↵3↵

2
5�3

↵2
1+↵2

5

↵2
1 + ↵2

5 �
4↵2

1↵
2
5

(↵2
1+↵2

5
)

�����

�����
↵2�2 + 2↵1↵3�3

1� ↵2
4 �

4↵2
1↵

2
5

1+↵2
4+2↵2

5

�����

�1

. (A.112)

Noting that 1� ↵2
4 �

4↵2
1↵

2
5

1+↵2
4+2↵2

5
= V ar(X?W,XW ), we may simplify as follows

�2↵2

2↵1↵3�3
+ 1

V ar(X?W,XW )

0

@
1
2 �

2a25
a21+a25

a21 + a25 �
4a21a

2
5

a21+a25

1

A
�1

(A.113)
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�2↵2

2↵1↵3�3
+ 1

V ar(X?W,XW )

 
1
2(a

2
1 + a25)� 2a25

(a21 + a25)
2 � 4a21a

2
5

!�1

(A.114)

�2↵2

2↵1↵3�3
+ 1

V ar(X?W,XW )

 
1
2a

2
1 � 3

2a
2
5

(a21 � a25)
2

!�1

(A.115)

����
�2↵2

2↵1↵3�3

����

�����
(12a

2
1 � 3

2a
2
5)V ar(X?W,XW )� (a21 � a25)

2

(a21 � a25)
2

�����

�1

(A.116)

����
2↵1↵3�3
�2↵2

����

�����
(a21 � a25)

2

(12a
2
1 � 3

2a
2
5)V ar(X?W,XW )� (a21 � a25)

2

�����

�1

(A.117)

|↵3|

0

@
�����

(a21 � a25)
2

(12a
2
1 � 3

2a
2
5)V ar(X?W,XW )� (a21 � a25)

2

�����

����
�2↵2

2↵1�3

����

1

A
�1

(A.118)

(A.119)

This gives us the final result in the text.

A.1.10 Notes about Simulations

Specifically, we have restricted the variance for all variables to 1. Therefore, choosing values

of the structural coefficients for simulations to verify our derivations is subject to constraints.

Importantly, the variance of the stochastic error (e.g. �✏1 in Eq 3.1) must be chosen carefully

such that we simulate the random variables properly. We detail these constraints for each

scenario below, which are calculated by taking variances of X and Y and computing the

relevant covariances.

Perfect IV

We are subject to the following constraints:

1. �2
X
= 1 = c23 + c21 + �2

✏1
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2. �2
Y
= 1 = c20 + c22 + 2c0c1c2 + �2

✏2

Exclusion Restriction

Without Covariates

1. �2
X
= 1 = c23 + c21 + �2

✏1

2. �2
Y
= 1 = c20 + c22 + c2

ER
+ 2c0c1c2 + 2c0c3cER + �2

✏2

With Covariates

1. �2
X
= 1 = c21 + c23 + c25 + �2

✏3

2. �2
Y
= 1 = c20 + c22 + c2

ER
+ c26 + 2c0c1c2 + 2c0c3cER + 2c0c5c6 + �2

✏4

U is a cause of Z

Without Covariates

1. �2
X
= 1 = c21 + c23 + 2c1c3cI + �2

✏1

2. �2
Y
= 1 = c20 + c22 + 2c0c2(c1 + c3cI) + �2

✏2

3. �2
Z
= 1 = c2

I
+ �2

✏3

With Covariates

1. �2
X
= 1 = c21 + c23 + 2c1c3cI + 2c3c5c7 + �2

✏4

2. �2
Y
= 1 = c20 + c22 + 2c0c2(c1 + c3cI) + 2c0c6(c5 + c3c7) + �2

✏5

3. �2
Z
= 1 = c2

I
+ c27 + �2

✏6
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Treatment Effect Heterogeneity

Without Covariates

1. �2
X
= 1 = ↵2

1 + ↵2
2 + ↵2

3 + �2
✏1

2. �2
Y
= 1 = �2

1 + �2
2 + �2

3 + 2�1�2↵2 + 4�1�2�3↵1↵3 + �2
✏2

With Covariates

1. �2
X
= 1 = ↵2

1 + ↵2
2 + ↵2

3 + ↵2
4 + ↵2

5 + �2
✏3

2. �2
Y
= 1 = �2

1+�
2
2+�

2
3+2�1�2↵2+4�1�2�3↵1↵3+2�1↵4�4+4(�1�5↵1↵5)+2�3�5(↵2↵4+

2↵3↵5) + �2
✏4

A.2 Appendices for Chapter 4

A.2.1 Proof of Theorem 4.3.1

Proof. The overall structure of the proof is as follows. We largely follow the strategy outlined

in Kennedy (2023) where we must show that �̂A

LATE
� �A

LATE
= S⇤ + T1 + T2 takes a

asymptotically linear form of (Pn � P )(�(B;w, ⇣z)) + oP (n�1/2).[65] In other words, we have

S⇤ = (Pn�P ){�(B;w, ⇣z) and show T1+T2 = oP (n�1/2). We will establish this result for the

numerator, whose influence function will be denoted by �, and skip proof for the denominator

as it is similarly a weighted difference of conditional expectations. Once we have done this, we

can apply Lemma S.1 from Takatsu et al. (2023), which states the ratio of two asymptotically

linear estimators is also asymptotically linear.[108]

For simplicity of the proof, we assume that our estimation uses sample-splitting with K = 2,

but not cross-fitting, as described in Proposition 4.3.1. Suppose we had an i.i.d. sample from

distribution PB: (B1, B2, ..., BNB) and that n = dNB
2 e, then we fit the nuisance functions with
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BN = (Bn + 1, ..., BNB) and computed the predicted values over (B1, ...Bn) where empirical

measure Pn is over this independent partition. The fact that we are using sample-splitting

means that our weights estimator only needs to be consistent for w(X)
EPB

[w(X)] . Nevertheless,

because study A is involved in estimating the weights, we will take the expectations over P ,

the joint distribution of PA and PB.

Lemma A.2.1. |⌘̂ � ⌘| = oP (1) implies |ŵ � w| = oP (1)

Proof. By positivity and the bounding conditions outlined, ⌘, ⌘̂ > C⌘ so by a simple arithmetic

arrangement we have |ŵ � w| =
����
⌘�⌘̂

⌘⌘̂

���� 
1
C2

⌘
|⌘̂ � ⌘|.

Lemma A.2.2. T1 = oP (n�1/2)

Proof. Proving T1 = oP (n�1/2) is an application of results of Kennedy et al (2020) Lemma 2,

which states T1 = OP

✓
k�̂��k
n�1/2

◆
due to sample-splitting.[66] Therefore, we meet the condition

for T1 as long as
����̂� �

��� = oP (1). We can investigate this condition in more detail for

T (PB) =
EPB

[w(X)E[Y |Z=1,X]]

EPB
[w(X)] , which naturally extends to our estimand:

�̂� � =
ŵ

Pnŵ

⇢
µ̂1 +

Z(Y � µ̂1)

ê

�
� w

EPB [w]

⇢
µ1 +

Z(Y � µ1)

e

�
(A.120)

=
ŵµ̂1

Pnŵ

�
1� Z

ê

�
� wµ1

EPB [w]

�
1� Z

e

�
+

ZY

êe

� ŵê

Pnŵ
� we

EPB [w]

�
(A.121)


� ŵµ̂1

Pnŵ
� wµ1

EPB [w]

��
1 +

1

Ce

�
+

CY

Ce
2

� ŵê

Pnŵ
� we

EPB [w]

�
(A.122)

Therefore, taking the L2 norm, we will have

����̂� �
��� 

����
ŵµ̂1

Pnŵ
� wµ1

EPB [w]

����
�
1 +

1

Ce

�
+

CY

Ce
2

����
ŵê

Pnŵ
� we

EPB [w]

���� (A.123)

Thus, it is sufficient that
��� ŵµ̂1

Pnŵ
� wµ1

EPB
[w]

��� = oP (1) and
��� ŵê

Pnŵ
� we

EPB
[w]

��� = oP (1) for the whole

term to be oP (1). This is achieved as long as we have consistency of the first term of
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each L2 norm to the second term of each L2 norm and smoothness of the various nuisance

functions.[28, 65] Using sample splitting, we can completely avoid Donsker conditions regarding

the complexity of the nuisance functions. For µ̂1, this is implied by assumption. In the

following steps, we will show consistency for ŵ and Pnŵ.

To show |Pnŵ � EPB [w]| = oP (1), we will proceed by Markov’s inequality, noting that we

have estimated w via sample splitting and, therefore, conditioning on BN and A, the data

from study A, will yield ŵ fixed.

P (|Pnŵ � EPB [w]| � ✏) = E[P (|Pnŵ � EPB [w]| � ✏|
��BN , A)] (A.124)

 ✏�1E[|Pnŵ � EPB [w]|
��BN , A] (A.125)

= ✏�1E[|Pnŵ � EPB [w] + Pnw � Pnw|
��BN , A] (A.126)

 ✏�1E[|ŵ � w|] + E[|Pnw � EPB [w]|] = o(1) (A.127)

where the last inequality follows by a combination of triangle inequality and the fact that

E[|Pn(ŵ � w)|
��BN , A]  n�1

X

i

E
⇥
|ŵ(xi)� w(X)|

��BN , A
⇤
,

an i.i.d. sum, because w is now fixed, similar to the proof of Kennedy et al (2020) Lemma

2.[66] Now, the first term goes to 0 by |ŵ � w| = oP (1) and uniform integrability because

ŵ and w are bounded. The second term goes to 0 by weak law of large numbers and and

uniform integrability due to boundedness.

Now that we have established all the terms in A.123 are consistent, the whole term is

consistent by Slutsky’s theorem. Thus, we we will have L2 convergence due to boundedness

and, consequentially, T1 = OP

✓
k�̂��̂k
n�1/2

◆
= oP (n�1/2).

Lemma A.2.3. T2 = oP (n�1/2)
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Proof. For T2, we must derive the remainder term R2(P, P̂ ) = EP [T̂1-step] � T (PB) for the

numerator. We will begin first with T (PB) =
EPB

[w(X)E[Y |Z=1,X]]

EPB
[w(X)] :

R2(P, P̂ ) =

Z
ŵ

Pnŵ


Z

ê
(Y � µ̂1) + µ̂1

�
dP � EPB [wµ1]

EPB [w]
(A.128)

=

Z
ŵ

Pnŵ


µ1e

ê
� µ̂1

ê
+ µ̂1

�
dP � EPB [wµ1]

EPB [w]
(A.129)

=

Z
ŵ

Pnŵ


�ê
e
(µ̂1 � µ1) + µ̂1 + (µ1 � µ1)

�
dP � EPB [wµ1]

EPB [w]
(A.130)

=

Z
ŵ

Pnŵ


1

ê
(ê� e)(µ̂1 � µ1)

�
dP +

Z
µ1


ŵ

Pnŵ
� w

EPB [w]

�
dP (A.131)

where the second equality follows by iterated expectation and the last follows because P is a

joint distribution that includes PB. Thus, taking the absolute value by bounding assumptions,

triangle equality, and Cauchy-Schwarz, we have

|R2(P, P̂ )|  1

Cê

Z
| ŵ

Pnŵ
||ê� e||µ̂1 � µ1|dP + Cµ1

Z
�� ŵ

Pnŵ
� w

EPB [w]

��dP (A.132)

 Cw

Cê

kê� ekkµ̂1 � µ1k+ Cµ1

Z ����
ŵ

Pnŵ
� w

EPB [w]

����dP (A.133)

= oP (n
�1/2) + oP (1). (A.134)

The first term is oP (n�1/2) by boundedness of
��� ŵ

Pnŵ

��� and the product kê� ekkµ̂1 � µ1k =

oP (n�1/2), which holds if kê� ek = oP (n�1/4) and kµ̂1 � µ1k = oP (n�1/4). Now we will focus

on the second term, where we will show L1 convergence.

Firstly, we have |ŵ � w| = oP (1) by Lemma A.2.1. Furthermore, when proving the rate

of T1, we showed that |Pnŵ � EPB [w]| = oP (1). Thus, by Slutsky’s theorem we have that

| ŵ

Pnŵ
� w

EPB
[w] | = oP (1). Given that we have uniform integrability due to boundedness of ŵ

Pnŵ

so we have L1 convergence or, in other words, E
�� ŵ

Pnŵ
� w

EPB
[w]

��
�
= oP (1).
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The proof for T (PB) =
EPB

[w(X){µ1�µ0}]
EPB

[w(X)] is the same as the one above where we repeat the

process for µ1 and µ0 because it takes the form of a WATE. The proof for the denominator

mirrors that of the numerator. Now we are ready to prove convergence and derive the

asymptotic variance of our estimator.

From the result of Takatsu Lemma S.1, assuming there exists ✏ > 0 such that |�num(B; ŵ, ⇣̂z)|^

|�denom(B; ŵ, ⇣̂z)| > ✏, then we have the following asymptotically linear form

Pn�̂num

Pn�̂num

� P�num

P�denom

= Pn

⇢✓
EPB [w{m1(X)�m0(X)}]

E[w(X)]

◆�1✓
IFnum � �A

LATE
IFdenom

◆�
+ oP (n

�1/2)

= Pn

⇢✓
EPB [w{m1(X)�m0(X)}]

EPB [w(X)]

◆�1

✓
2Z � 1

e(X,Z)

w(X)

E[w(X)]
{Y � µz(X)}+ w{µ1(X)� µ0(X)}

EPB [w(X)]

� �A

LATE


2Z � 1

e(X,Z)

w(X)

EPB [w(X)]
{D �mz(X)}+ w{m1(X)�m0(X)}

EPB [w(X)]

�◆�
+ oP (n

�1/2)

= Pn

 
w(X)

EPB [w(X){m1(X)�m0(X)}]

⇢
2Z � 1

e(X,Z)


Y � µZ(X)� �A

LATE
{D �mZ(X)}

�

+ µ1(X)� µ0(X)� �A

LATE
{m1(X)�m0(X)}

!
+ oP (n

�1/2)

where e(X,Z) = e(X)Z + {1� e(X)}(1� Z). We can observe this is a sample mean of the

influence function for the weighted LATE and, thus, after multiplying each side by n�1/2, we

have that n�1/2(�̂A

LATE
� �A

LATE
)

d! N(0, EPB [�
2]) where

� =
w(X)

EPB [w(X){m1(X)�m0(X)}]

⇢
2Z � 1

e(X,Z)


Y � µZ(X)� �A

LATE
{D �mZ(X)}

�

+ µ1(X)� µ0(X)� �A

LATE
{m1(X)�m0(X)}

�
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via Slutsky’s theorem and the standard central limit theorem, giving us
p
n-convergence.

A.3 Appendices for Chapter 5

A.3.1 Proof of Proposition 5.3.1

Given �i = 0, we know that Ti = Ci + ↵i for some ↵i > 0. The crux of the Buckley-James

procedure is essentially computing the BJ adjustment for the censored observations. Thus

we may re-write the expected survival time of each strata as

E[T | Z = 1, A = 1, X] = E[T � | Z = 1, A = 1, X] + E[(1� �)T | Z = 1, A = 1, X]

= E[T | Z = 1, A = 1, X, T  C]P (T  C | Z = 1, A = 1, X)

+ E[� + ↵ | Z = 1, A = 1, X, T > C] [1� P (T  C | Z = 1, A = 1, X)]

= E[T | Z = 1, A = 1, X, T  C]P (T  C | Z = 1, A = 1, X)

+ E[C | Z = 1, A = 1, X, T > C] [1� P (T  C | Z = 1, A = 1, X)]

+ E[↵ | Z = 1, A = 1, X, T > C] [1� P (T  C | Z = 1, A = 1, X)]

= E[T | Z = 1, A = 1, X, T  C]P (T  C | Z = 1, A = 1, X)

+ E[C | Z = 1, A = 1, X, T > C] [1� P (T  C | Z = 1, A = 1, X)]

+ E[Y ⇤ � C | Z = 1, A = 1, X, T > C] [1� P (T  C | Z = 1, A = 1, X)].

Where the last equality follows from that fact that

E[Y ⇤ � C | Z = 1, A = 1, X, T > C]
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= E[Y � + (1� �)E[T |Z = 1, A = 1, X, T > C] | Z = 1, A = 1, X, T > C]

� E[C | Z = 1, A = 1, X, T > C]

= E[E[T |Z = 1, A = 1, X, T > C] | Z = 1, A = 1, X, T > C]

� E[C | Z = 1, A = 1, X, T > C]

= E[T |Z = 1, A = 1, X, T > C]� E[C | Z = 1, A = 1, X, T > C]

= E[↵ | Z = 1, A = 1, X, T > C].

A.3.2 Proof of Proposition 5.3.2

IF{ 11} = IF
�
m11(x)�

1
11(x)⇡1(x)p(x)

 
+ IF

�
!11(x)�

0
11(x)⇡1(x)p(x)

 
(A.135)

+ IF
�
�11(X)�011(X)⇡1(x)p(x)

 
(A.136)

Focusing on the first term, we may re-write it as

IF
⇢X

x

m11(x)�
1
11(X)⇡1(x)�

1
11(x)p(x)

�
=
X

x

h
IF{m11(x)}�111(x)⇡1(x)p(x)

+m11(x)IF{�111(X)}⇡1(x)p(x) +m11(x)�
1
11(x)IF{⇡1(x)}p(x) +m11(x)�

1
11(x)⇡1(x)IF{p(x)}

i

= (A) + (B) + (C) + (D)

Beginning with (A), we have

(A) =
X

x

I(X = x, T < C,Z = 1, A = 1)

p(X = x, T < C,Z = 1, A = 1)
[T �m11(x)]�

1
11(x)⇡1(x)p(x) (A.137)
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=
X

x

�ZA

p(Z = 1|X = x)
[T �m11(x)] =

�ZA

e(X)
[T �m11(X)]. (A.138)

Similarly, we can write (B), (C), and (D) as

(B) =
m11(X)AZ

e(X)
[� � �111(X)], (A.139)

(C) =
m11(X)�111(X)Z

e(X)
[A� ⇡1(X)], (A.140)

(D) = m11(X)�111(X)⇡1(X)� E[m11(X)�111(X)⇡1(X)⇡1(X)]. (A.141)

Thus, combining these terms, we are left with

(A) + (B) + (C) + (D) =
Z

e(X)

⇢
�A[T �m11(X)] +m11(X)A[� � �111(X)] (A.142)

+m11(X)�111(X)[A� ⇡1(X)]

�
(A.143)

+m11(X)�111(X)⇡1(X)� E[m11(X)�111(X)⇡1(X)] (A.144)

=
Z

e(X)

⇢
�AT �m11(X)�111(X)⇡1(X)

�
(A.145)

+m11(X)�111(X)⇡1(X)� E[m11(X)�111(X)⇡1(X)]. (A.146)

We may similarly write out the second term into four terms (E) + (F ) + (G) + (H) where

(E) =
AZ�011(X)

e(X)
[C � !11(X)], (A.147)

(F ) =
AZ!11(X)

e(X)
[(1� �)� �011(X)], (A.148)

(G) =
Z!11(X)�011(X)

e(X)
[A� ⇡(X)], (A.149)
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(H) = !11(X)�011(X)⇡1(X)� E[!11(X)�011(X)⇡1(X)]. (A.150)

Combining and simplifying we are left with

(E) + (F ) + (G) + (H) =
Z

e(X)

�
(1� �)AC � !11(X)�111(X)⇡1(X)

 
(A.151)

+ !11(X)�111(X)⇡1(X)� E[µ11(X)�011(X)⇡1(X)] (A.152)

For the third term, we write (I) + (J) + (K) + (L). For (I) we can write

(I) =
�ZA

e(X)
[(Y ⇤ � C)� �11(X)] (A.153)

(J) =
�11(X)ZA

e(X)
[(1� �)� �11(X)], (A.154)

(K) =
Z�11(X)�011(X)

e(X)
[A� ⇡1(X)], (A.155)

(L) = 11(X)�011(X)⇡1(X)� E[�11(X)(X)�011(X)⇡1(X)]. (A.156)

Combining the results together and simplifying, we obtain

(I) + (J) + (K) + (L) =
Z

e(X)

⇢
A(1� �)(Y ⇤ � C)� �11(X)�011(X)⇡1(X)

�
(A.157)

+ �11(X)�011(X)⇡1(X)� E[�11(X)�011(X)⇡1(X)]. (A.158)

Therefore, the final influence function is denoted as

IF( 1,1) =
Z

e(X)

⇥
�AT �m11�

1
11⇡1

⇤
+m11�

1
11⇡1 +

Z

e(X)

⇥
(1� �)AC � !11�

0
11⇡1

⇤

(A.159)
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+ !11�
0
11⇡1 +

Z

e(X)

⇥
(1� �)A(Y ⇤ � C)� �11�011⇡1

⇤
+ �11�

0
11⇡1 �  11

(A.160)

A.3.3 Proof of Theorem 5.3.1

Letting  num =  11 +  10 �  01 �  00 and �denom = �1 � �0 from Lee, Kennedy, and Mitra

(2023) proof for Theorem 4.1 we can write the following:[70]

 ̂LATE � LATE =
Pn{'U

num
(⌘̂)}

Pn{'U

denom
(⌘̂)}

� P num

P denom

(A.161)

= (Pn�̂denom)
�1


Pn{'U

num
(⌘̂)}� P num � LATE

⇣
Pn{'U

denom
(⌘̂)}� P�denom

⌘�

(A.162)

= (Pn�̂denom)
�1


(Pn � P )

n
'U

num
(⌘)� LATE'

U

denom
(⌘)
o�

(A.163)

+ (Pn�̂denom)
�1 (A.164)


(Pn � P )

n
'U

num
(⌘̂)� 'U

num
(⌘)
o
� LATE (Pn � P )

n
'U

denom
(⌘̂)� 'U

denom
(⌘)
o�

(A.165)

+ (Pn�̂denom)
�1


P
n
'U

num
(⌘̂)�  num

o
� LATEP

n
'U

denom
(⌘̂)�  denom

o�
(A.166)

= S⇤ + T1 + T2 (A.167)

The S⇤ is asymptotically normal by the central limit theorem while T1 = oP (n�1/2) under

the condition that each estimator of the nuisance function are apart of the Donsker class,

which is achieved by estimation via sample splitting.[28, 65, 70]. Thus, we must show that

the remainder term T2 = oP (n�1/2), which will additionally reveal the double robustness

conditions of our estimators. As the numerator is composed of four alike terms, we will
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derive the bounds only for  11, which itself is comprised of three terms that we derived in

the previous section and can study the remainder of. For simplicity of notation, we omit X

from the nuisance functions assuming so unless otherwise stated.

Beginning with the first term, we have
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Via iterated expectation on X, we have (A.170)
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To better express the remainder term, we may further manipulate the term (A.174)

inside the parenthesis (A.175)
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By the Cauchy-Schwarz inequality (A.179)
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The form of the second term is identical to that of the first term, thus we can omit intermediate

steps:
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For the third term, assuming a known Y ⇤, the form of the remainder term is as follows:
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Thus, for the entire numerator, substituting 1� �111 for �011 we can factor the final bounding

on the remainder term as
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+

 
C⇡1C�0

11

Cê
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which can be generalized to any combination of Z and A. Thus, we have double robustness

in the following sense that one of the two must be correctly specified:

1. ⇡Z(X) or e(X) for Z 2 {0, 1}

2. mZA(X) or e(X) for Z 2 {0, 1} and A 2 {0, 1}

3. �1
ZA

(X) or e(X) for Z 2 {0, 1} and A 2 {0, 1}

4. !ZA(X) or e(X) for Z 2 {0, 1} and A 2 {0, 1}

5. �ZA(X) or e(X) for Z 2 {0, 1} and A 2 {0, 1}

Therefore, if the estimation of each nuisance function has a rate of oP (n�1/4) or better (e.g.

kmZA � m̂ZAk = oP (n�1/4)) in each of these sets, then we have T2 = oP (n�1/2).

Bounding the denominator is the same as any derivation for the ATE and is detailed in

Kennedy (2023) Section 4.3 Example 2. It is sufficient to show, without loss of generality,

the result for �1.
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This reveals that either the propensity scores, ⇡1 and ⇡0, or the instrument propensity

score must be correctly specified. The term is oP (n�1/2) if k⇡̂Z � ⇡Zk = oP (n�1/4) and

|ê� ek = oP (n�1/4) or better.

Now that we have shown under which conditions T2 = oP (n�1/2), we may now state the
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asymptotic distribution of  ̂LATE, which is defined by the remaining term S⇤:
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where � = 'U
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(⌘)� LATE'U

denom
(⌘).

A.3.4 Remaining Bias When Plugging in for Y ⇤

For the third term, we must account for the fact that we are estimating Y ⇤, which we denote

as Ŷ ⇤ in our plug-in estimator. The form of the remainder term is as follows:
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(A.198)

+
C⇡1C�0

11

Cê
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with the first term resulting from the fact that we must impute Y ⇤ with Ŷ ⇤.
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A.3.5 Extended Simulation Results

For each DGM (i.e. linear and non-linear) and each of the 500 simulations, we generated 1000

observations and estimated nuisance functions with two-fold sample splitting, to mitigate

sparsity. We further restricted the algorithms to exclude RF and RPART. Results that failed

to run or produced extreme results, defined as a closed form variance of less than 3 on the

log scale (exponentiated is 20 on the multiplicative scale, or 2000%), were excluded from the

results with the total number of such iterations reported in the footnote of each DGM’s table.

Table A.1: Simulation Results: Linear Data Generating Mechanism (n = 1000)

Point
Estimate

Bias
(%)

Monte
Carlo
SE

Model-
Based

SE

RMSE Coverage
(%)

10% Cens.
2SPI -0.737 7.84 0.359 0.506 0.361 92.8

Proposed Method
⇤

-0.778 2.75 0.578 1.341 0.578 99.5

20% Cens.
2SPI -0.732 8.51 0.394 0.544 0.397 94.0

Proposed Method -0.747 6.52 0.500 0.806 0.501 99.6

30% Cens.
2SPI -0.722 9.63 0.411 0.596 0.415 94.8

Proposed Method -0.746 6.75 0.592 0.768 0.597 98.6

40% Cens.
2SPI -0.689 13.81 0.505 0.648 0.505 93.2

Proposed Method -0.746 6.75 0.744 0.876 0.746 99.2

50% Cens.
2SPI -0.722 9.64 0.530 0.720 0.534 92.0

Proposed Method -0.825 3.13 0.967 1.071 0.966 98.0

60% Cens.
2SPI -0.737 7.91 0.644 0.837 0.645 92.8

Proposed Method -0.896 12.00 1.551 1.516 1.558 97.0

*291 excluded iterations
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Table A.2: Simulation Results: Non-linear Data Generating Mechanism (n = 1000)

Point
Estimate

Bias
(%)

Monte
Carlo
SE

Model-
Based

SE

RMSE Coverage
(%)

10% Cens.
2SPI -1.361 56.14 0.323 0.458 0.637 77.6

Proposed Method
⇤

-0.878 9.69 0.489 1.009 0.493 98.0

20% Cens.
2SPI -1.365 56.79 0.347 0.486 0.661 80.3

Proposed Method -0.853 6.58 0.432 0.861 0.434 99.6

30% Cens.
2SPI -1.404 60.38 0.408 0.546 0.771 83.6

Proposed Method -0.862 7.81 0.480 0.793 0.482 99.4

40% Cens.
2SPI -1.409 61.25 0.431 0.604 0.798 83.5

Proposed Method -0.829 3.62 0.475 0.629 0.475 98.3

50% Cens.
2SPI -1.468 66.83 0.470 0.667 0.915 84.4

Proposed Method -0.819 2.38 0.610 0.827 0.609 98.7

60% Cens.
2SPI -1.500 70.73 0.531 0.757 1.015 85.6

Proposed Method -0.727 9.12 0.864 1.151 0.867 98.4

*Iterations excluded: 10% Cens. 296, 20% Cens. 192, 30% Cens. 168, 40% Cens. 141, 50% Cens.

122, 60% Cens. 112

171


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Background
	Two Identification Approaches: Confounders and Instruments
	Identifying and Using Confounders
	Identifying and Using Instrumental Variables
	Interactions of the Confounder and IV Approaches

	Traditional Methodology for Estimating Causal Effects
	Regression Adjustment and Propensity Score Methods
	Two-stage Least Squares
	Complexities that Arise with Non-Linearity

	Nonparametric Identification of Instrumental Variable Estimands
	Causal Inference in Time to Event Settings
	Survival Analysis and Confounder Adjustment
	Instrumental Variables in Time-to-Event Settings


	Choosing the Right Approach at the Right Time: A Comparative Analysis of Causal Effect Estimation using Confounder Adjustment and Instrumental Variables
	Introduction
	Notation and Set-Up
	Trade-offs Under Violations in Instrumental Variable Assumptions
	Exclusion Restriction Violation
	Independence Violation
	Treatment Effect Heterogeneity
	Adding Additional Confounders

	Sensitivity Analysis
	Exclusion Restriction Violation
	Independence Violation
	Treatment Effect Heterogeneity

	Simulation Results
	Exclusion Restriction
	Independence
	Treatment Effect Heterogeneity

	Applied Example
	Discussion

	Nonparametric Replication of Instrumental Variable Estimates Across Studies
	Introduction
	Notation and Set-Up
	Nonparametric Estimation of the SWLATE with Unknown Sampling Weights
	Weighted ATE Bounds with Unknown Sampling Weights
	Simulation
	Results for the Survey Weighted LATE
	Results for the Weighted ATE Bounds

	Applied Example
	Discussion

	Nonparametric Instrumental Variable Estimation of Survival Times with Censored Data
	Introduction
	Notation and Set-Up
	Influence Function-based Buckley-James Estimation of the LATE
	Estimation
	Simulation
	Application to Dementia Progression
	Discussion

	Conclusion and Future Directions
	Bibliography
	Appendix
	Appendices for Chapter 3
	Proof for the Consistency 4 under Figure 3.1
	Proof for Proposition 3.3.1
	Proofs for Proposition 3.3.2
	Proofs for Proposition 3.3.3
	Proofs for Proposition 3.3.5
	Proof for Proposition 3.3.6
	Derivation for Reduced Form Coefficient in Exclusion Restriction RER
	Proof for Independence  Result
	Proof for Heterogeneity  Result
	Notes about Simulations

	Appendices for Chapter 4
	Proof of Theorem 4.3.1

	Appendices for Chapter 5
	Proof of Proposition 5.3.1
	Proof of Proposition 5.3.2
	Proof of Theorem 5.3.1
	Remaining Bias When Plugging in for Y*
	Extended Simulation Results



