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Abstract

Theoretical predictions of NMR chemical shifts from first principles can greatly facilitate 

experimental interpretation and structure identification of molecules in gas, solution, and solid-

state phases. However, accurate prediction of chemical shifts using the gold-standard coupled 

cluster with a full treatment of singles and doubles and triplet perturbation (CCSD(T)) method 

with a complete basis set (CBS) can be prohibitively expensive. By contrast, machine learning 

(ML) methods offer inexpensive alternatives for chemical shift predictions but are hampered 

by generalization to molecules outside the original training set. Here we propose several new 
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ideas in machine learning of chemical shift prediction for H, C, N, and O that first introduces a 

novel feature representation, based on the atomic chemical shielding tensors within a molecular 

environment using an inexpensive quantum mechanics (QM) method, and training it to predict 

NMR chemical shieldings of a high-level composite theory that approaches the accuracy of 

CCSD(T)/CBS. In addition we train the ML model through a new progressive active learning 

workflow that reduces the total number of expensive high-level composite calculations required 

while allowing the model to continuously improve on unseen data. Furthermore, the algorithm 

provides an error estimation, signaling potential unreliability in predictions if the error is large. 

Finally we introduce a novel approach to keep the rotational invariance of the features using tensor 

environment vectors (TEVs) that yields a ML model with highest accuracy compared to a similar 

model using data augmentation. We illustrate the predictive capacity of the resulting inexpensive 

shift machine learning (iShiftML) models across several benchmarks including unseen molecules 

in the NS372 data set, gas-phase experimental chemical shifts for small organic molecules, and 

much larger and more complex natural products in which we can accurately differentiate between 

subtle diastereomers based on chemical shift assignments.

Graphical Abstract

1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is a highly accurate experimental 

technique to probe chemical bonding and subtle environmental differences of atoms 

in various molecular systems, ranging from small molecules,1-3 natural products,1,4 

biopolymers,5,6 to materials.7-9 The NMR chemical shift (CS), which describes the 

shielding effect offset of a nucleus of interest relative to a defined standard molecule, 

is one of the most informative data obtained from an NMR measurement, especially for 

molecular structure,10 identifying the crystal morphology from a selection of candidates,9 

distinguishing among synthetic outcomes for natural products,4 and building and refining 

atomic level models for proteins.11,12 Therefore, accurate CS back-calculators which 

connect structure to shift perturbations are an indispensable tool in trying to help scientists 

understand and make good use of NMR chemical shift measurements.

Chemical shifts arise from the electron shielding of a nucleus under an external magnetic 

field. The shift values can be calculated from first principles13-15 using the second-order 

magnetic shielding tensor σ, which describes the response of the induced magnetic field 

in all directions, but usually only the isotropic component σsio = 1
3Tr(σ) is mapped to an 

experimental observable.16 Calculation of chemical shifts can be done with exceptional 
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accuracy using coupled-cluster theory with single and double excitation and perturbative-

approximated triple excitations [CCSD(T)] together with a complete basis set (CBS) or 

one that is sufficiently large for convergence.17-19 However, with present-day algorithms 

and computing resources, such calculations are essentially impractical for any complex 

systems that contain more than ten heavy atoms (non-hydrogen atoms), due to their large 

computational scaling. Efforts continue to reduce the cost by approaches such as composite 

methods,20,21 and nucleus-optimized electronic structure models.22

Alternatively, data-driven approaches have also been quite successful in predicting 

experimental or calculated chemical shifts at greatly reduced cost. For aqueous proteins, 

chemical shifts can be predicted from carefully curated features extracted from 3-

dimensional geometries of the peptides using machine learning (ML) methods including 

neural networks and random forests, such as implemented in SPARTA+,23 SHIFTX224 

and UCBShift.25 For organic small molecules in crystalline form, kernel ridge regression 

(KRR)9,26and 3D convolutional networks (CNN)27 have been employed to predict chemical 

shieldings calculated using gauge-including projector-augmented waves (GIPAW) density 

functional theory (DFT) methods from merely the molecular structure inputs. Recent work 

by Guan et al. has trained a 3D graph neural network to predict H and C chemical shifts 

for neutral organic molecules found in NMRShiftDB28 using quantum mechanics (QM) 

optimized geometries and DFT calculated chemical shifts, and then transfer learning to 

predict experimental chemical shifts from force-field optimized geometries.29 These ML 

models that directly predict chemical shifts from input geometries are orders of magnitude 

faster than QM calculations, and can usually achieve comparable accuracy to the quantum 

mechanical method they have been trained on. However, this has typically relied upon 

DFT that can calculate chemical shieldings at a much more acceptable cost, but also can 

often suffer from insufficient accuracy.30-32 In addition, machine learning methods are not 

expected to generalize to a different molecular system, unlike QM methods that are still 

much more generalizable and rigorous in terms of predicting chemical shieldings for a 

specific input geometry.

The question arises whether a machine learning method can be used to “amend” a low-level 

QM prediction to high accuracy, hence achieving generalizability and speed at the same 

time. An intuitive way is to use machine learning to predict the difference between a 

high-level and low-level calculation, using molecular geometries as input. Such Δ-machine 

learning idea are exemplified in the work of Unzueta, et al. that predicts a correction to a 

cheap DFT calculation using small basis set and arrives at the target accuracy of the same 

DFT method with a large basis set.33 Very recently, Büning and Grimme have shown that 

a similar approach can correct DFT predictions of chemical shieldings to CCSD(T) quality, 

signifying an important step in predicting CS at the highest level of theory achievable from 

theoretical calculations.34

But what is true about many such ML approaches is that they can be poor in predicting 

out-of-distribution cases, i.e. outside the specifics of the training data.35 Ideally, through 

effective feature engineering, one can achieve an enriched chemical representation that 

extends beyond mere molecular configurations.25,35 Such information, preferably sourced 

from cheap calculations, becomes invaluable not just for achieving high-level accuracy but 
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also for ensuring model transferability. This concept has been effectively demonstrated in 

predicting correlation energies at MP2 and CCSD levels using molecular orbital features 

derived from the mean-field Hartree-Fock (HF) level.36

In this work, we present an innovative feature representation obtained from a low-level 

DFT chemical shielding calculation of the diamagnetic (DIA) and paramagnetic (PARA) 

shielding tensor elements, and combine it with geometric-dependent features that are used 

as input into a neural network (NN) model to predict chemical shieldings with training data 

generated with a composite QM method with nearly equivalent CCSD(T)/CBS accuracy.21 

In addition we introduce a novel active learning (AL) training procedure that selects out-of-

distribution training data with an increasing number of heavy atoms (HA) from a full set of 

off-equilibrium geometries obtained from the ANI-1 dataset.37 The resulting model achieves 

similar level of accuracy as a high-level CCSD(T) calculation with large basis set, but 

requires computational cost at only a low-level DFT calculation with a tiny basis set. Given 

that the feature generation and NN model inference almost comes free when compared with 

the QM calculations, our inexpensive shift machine learning (iShiftML) model can achieve 

35 times speedup for 2HA systems and 700 times speedup for 8HA systems when compared 

with the high level CCSD(T) method according to Ref. 21 To analyze the transferability of 

our physics-informed ML model to other systems, we find that error estimations in terms 

of the standard deviation among a committee of ML models are a good indicator for the 

actual error without knowing the target values, signaling when the model is not trustworthy 

for applications outside the original training set. We also compare an invariant multi-layer 

perceptron (MLP) architecture that maintains rotational invariance of the features through 

data augmentation with an equivariant architecture based on tensor environment vectors 

(TEVs).

The physically motivated tensor features of the resulting iShiftML model trained with data 

up to 7 heavy atoms (7HA) from the ANI-1 data set37 achieves both higher accuracy and 

better transferability across a range of benchmarks that are independent of the training set. 

We find exceptional predictive performance when evaluated on the 8HA test data, achieving 

prediction errors of 0.11 ppm for H, 1.34 ppm for C, 3.05 ppm for N, and 6.03 for O 

between predicted chemical shieldings and the target CCSD(T) composite method values. 

A similar level of accuracy was also achieved when the model is evaluated on the extended 

theoretical benchmark nuclear shielding NS372 dataset, and surpasses the performance 

of the recent Δ-machine learning model.34 The iShiftML model when compared against 

experimental gas phase CS measurements for molecules that are not included in the training 

set reduces the error of the low-level DFT calculation by at least two-thirds. Finally, we 

have used our method to predict experimental CSs for natural products that are vastly larger 

and more chemically complex than any molecule from our training set, illustrated with 

strychnine and vannusal, in which we show that diastereomers of the vannusal B molecule 

can be easily differentiated by inspecting the errors between predicted CS and experimental 

measurements.
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2 Methods and Models

2.1 Feature Selection for Machine Learning of Chemical Shifts

The magnetic shielding tensor σ is defined as the total second derivative of the energy E
with respect to nuclear spin MA at nucleus A and the external magnetic field Bext, with 

components defined as

σab = d2E(MA, B)
dMa

AdBb B = 0, MA = 0
.

(1)

Here “d” means total derivative and a, b correspond to Cartesian indices. For a variationally 

optimized wavefunction with parameters, θ (even the exact wavefunction), the total 

derivative has two partial derivative contributions:

σab = ∂2E(MA, B)
∂Ma

A ∂Bb
+ ∂2E(MA, B)

∂Ma
A ∂θ

∂θ
∂Bb B = 0, MA = 0, θ = θopt

.

(2)

Given that the chemical shielding tensor and each of its components, σab, can also be 

decomposed into diamagnetic (DIA) and paramagnetic (PARA) components within the DFT 

gauge-including atomic orbitals (GIAO) approach,38,39

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

=
DIAxx DIAxy DIAxz

DIAyx DIAyy DIAyz

DIAzx DIAzy DIAzz

+
PARAxx PARAxy PARAxz

PARAyx PARAyy PARAyz

PARAzx PARAzy PARAzz

.

(3)

It comes naturally that the isotropic chemical shieldings at the same level of theory can be 

calculated as

σiso = 1
3(σxx + σyy + σzz) = 1

3(DIAxx + DIAyy + DIAzz) + 1
3(PARAxx + PARAyy + PARAzz),

(4)

in which the off-diagonal elements have a contribution of zero to the final isotropic chemical 

shielding formula. However, the full tensor still encodes useful information about the 

local atomic environments for each nucleus and might be helpful with predicting chemical 

shieldings at a higher level of accuracy. Hence we formulate the NMR shielding DIA and 

PARA tensors as a feature set for the machine learning approach described further below.

In addition, we use Atomic Environment Vectors (AEVs) as geometric descriptors that are 

used to describe the atomic environments at each nucleus, following previous studies.33,37 

AEVs are reformulations of the atomic symmetry functions used by Behler and Parinello 

in their neural networks for predicting molecular energies,40 which contain orientation-
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independent angular and radius terms that are determined by local geometries of nearby 

atoms categorized by atom type within a cutoff. The 384-dimensional AEV for an atom 

constitutes a radial part (the first 64 elements) and an angular part (the remaining 320 

elements). The radial elements for atom i are calculated as

GA, n
(rad) = ∑

j ∈ N[i]
e−η(Rij − Rn)2fC(Rij),

(5)

where A denotes a specific atom type of H, C, N, O for the second atom, and n is a 

distance index that defines the different reference distances Rn from the center atom. The 

summation is done over all neighbor atoms j with type A near the central atom i within a 

cutoff, and Rij is the distance between atoms i and j. The reference distances are defined 

as Rn = 0.9 + a0 ∕ 2 ∗ n where a0 = 0.529177Å is the Bohr radius and n ranges from 0 to 

15. η = 16 was used to adjust the width of each Gaussian so that it matches with the 

separation between two consecutive reference distances. Finally, fC(Rij) is a cutoff function 

that smoothly modulates the Gaussian term around the cutoff radius, with the following 

formula and cutoff radius RC = 5.2Å:

fC(Rij) = (1 + cos(πRij
RC

)) ∕ 2 Rij ≤ RC

0 otherwise
.

(6)

We have used 16 distance indices for each atom type and hence 64 radial AEV values.

Similarly, the angular components of an AEV vector are defined as

GA, B, m, n
(ang) = 21 − ξ ∑

j, k ∈ N[i], j ≠ k
(1 + cos(θijk − θm))ξf(R, n)(Rij, Rik),

(7)

fR, n(Rij, Rik) = e−η(Rij + Rik) ∕ 2 − Rn)2fC(Rij)fC(Rik),

(8)

with A, B defining the two different atom types for nearby atoms, and thus 4+3+2+1 

= 10 different atom type combinations are possible. m and n are the angle and distance 

indices that define the reference angles and positions by θm = 2m + 1
16 π with m from 0~7, 

Rn = (0.90, 1.55, 2.20, 2.85)Å, and θijk denotes the angle centered at atom i, and ξ = 32. We used 

the same mathematical form of the distance cutoff function, but with a radial cutoff value 

of RC = 3.5Å. The 10 atom type combinations, 8 reference angles, and 4 reference distances 

Li et al. Page 6

J Chem Theory Comput. Author manuscript; available in PMC 2025 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



altogether defines 320 different angular components of the AEV vector. The calculated 

AEVs were obtained from precompiled C++ code from Ref. 33.

2.2 NMR Shielding Calculations and Stability Analysis

Recently Liang et al. presented a systematic investigation on using locally dense basis sets 

(LDBS) and composite QM methods for chemical shielding calculations, which have been 

categorized into low-level, middle-level and high-level effectiveness based on a balance of 

accuracy and computational cost.21 We selected the ωB97X-V functional41 in conjunction 

with the pcSseg-1 basis set42 as our low-level method. The ωB97X-V functional offers 

robust and transferable performance for various properties prediction,43-50 particularly the 

dipole moment,45 a simple but effective measure of electron density in polar molecules. We 

opted for this functional over the low-level methods recommended in Ref. 21, which provide 

more accurate shielding predictions, due to error cancellation. Thus, we believe it is more 

advantageous to use ωB97X-V as input for predicting high-level results. The advantage 

of using ωB97X-V for the low-level input was also validated by its better in-distribution 

and out-of-distribution prediction error when comparing models trained with different low-

level methods as input, which are described in Supplementary Table S1. The ORCA 5.0.3 

software51 was utilized for these calculations, and local exchange-correlation integrals were 

computed over DefGrid3, a default ORCA grid, for all atoms. GIAOs39 were used in all 

shielding calculations, including subsequent high-level computations.

We directly adopted the high-level method suggested in Ref. 21, namely CCSD(T)/pcSseg-1 

with a basis set correction between pcSseg-1 and pcsSeg-3 calculated from the resolution 

of identity Møller-Plesset second-order perturbation theory (RIMP2), abbreviated with 

CCSD(T)(1)∪RIMP2(3). This high-level method can achieve impressively low root mean 

square errors (RMSEs) (0.048 ppm for H, 0.47 ppm for C, 3.58 ppm for N, and 4.68 

ppm for O) in comparison to the theoretical best estimates, CCSD(T)/pcSseg-3, on the 

NS372 dataset. The CFOUR program package, version 2.1, was utilized for CCSD(T) 

computations,52-54 while ORCA was used for RIMP2 calculations. In RIMP2 calculations, 

the def2-JK55 auxiliary basis set was employed for the Coulomb and exchange part, whereas 

the cw5C56 auxiliary basis set was used for auxiliary correlation fitting to expedite the 

computation.

As our training set encompasses many conformations far from equilibrium and quantum 

mechanical (QM) calculations are likely to fail, we employed the stability analysis57 at 

HF/pcSseg-1 level to exclude all conformations that might exhibit any instabilities.

2.3 Dataset Preparation

The ANI-1 dataset,37 which contains over 20 million off-equilibrium geometries of small 

organic molecules up to 8HA obtained through normal mode sampling, together with the 

equilibrium structures of these 57,462 molecules, was used to define the most inclusive 

dataset (DS-ANI-1) used in this work. However, it is very challenging to perform chemical 

shielding calculations for all the data in DS-ANI-1, even at a low-level DFT, and is not 

accessible for the CCSD(T) calculations that are orders of magnitude more time-consuming 

than DFT calculations.
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To reduce the size of the dataset while keeping the diversity of the conformations of 

the molecules, a “farthest sampling” algorithm was developed that down-samples off-

equilibrium geometries for each molecule in the ANI-1 dataset. The root-mean-square-

deviations (RMSDs) for molecules after the optimal alignment using the Quarternions 

method58 was used to evaluate conformation dis-similarities between geometries of the 

same molecule. A conformation collection pool was defined with the first conformation of a 

molecule being the first element. In each iteration, the aligned RMSDs for all geometries in 

ANI-1 dataset but not in the collected pool were calculated towards all conformations in the 

collected pool, and the geometry with the highest RMSD was added to the collected pool.

The total number of collected conformations depends on the number of heavy atoms 

(HA) in the molecule. For molecules up to 4HA, 200 most dissimilar conformations were 

collected into the pool. For molecules with 5, 6, and 7 heavy atoms, the number of non-

equilibrium conformations collected for each molecule were 100, 50, and 5 respectively. The 

equilibrium geometries for molecules with 5-7HA were always included in the dataset. A 

stability analysis was performed to further exclude systems for which the NMR shielding 

calculations are likely to fail or be erroneous. This collection of a sub-sampled dataset 

(DS-SS) is our primary data for model training and development of the active learning 

workflow of the iShiftML model, which contains 12,677 geometries for molecules up to 

4HA, 13,313 geometries for molecules with 5HA, 31,462 geometries for molecules with 

6HA and 37,105 geometries with 7HA.

Using the geometries of all these data, we calculated the DIA and PARA matrix elements 

under the low-level composite DFT method ωB97X-V/pcSseg-1 DFT.21 For the dataset 

with 5-7HA, 1500 geometries were selected from active learning to perform the high-level 

composite method.21 The active learning dataset covering all data using the high-level target 

values are subsequently labeled DS-AL-N, where N ranges from 4-7, which represents the 

maximum number of heavy atoms included in the dataset. Finally, 40 randomly selected 

molecules with 8HA were collected from DS-ANI-1. The equilibrium geometries and a 

random non-equilibrium geometry for each of the 40 molecules were used to define our test 

set. Our full training and testing dataset is provided in the Supplementary Information.

2.4 iShiftML Ensemble Model and Training Details

We have employed an ensemble machine learning approach by randomly splitting the 

training and validation data into 5 even portions, and 5 separate ML models were trained, 

each model using a different portion as validation data and the rest as training data. In 

addition, the network parameters for these five models were also initialized with different 

random numbers. After all models have been trained, they are combined into an ensemble 

model. When making predictions, each model in the ensemble predicts a value, and the final 

prediction is given by their average.

Because outliers resulting from failed predictions may contaminate the average, any outliers 

should be identified and excluded from the calculation. To estimate outliers, we used the 

local outlier factor (LOF) algorithm implemented in the scikit-learn package to detect 

outliers.59 The algorithm relies on a local neighbor density estimation to identify outliers 

as data points that have a significantly lower density of neigbors than the rest of the data 
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points. Finally, the average and standard deviation among the non-outlier predictions were 

calculated.

All five ML models are trained by minimizing the mean squared error between the predicted 

isotropic chemical shieldings and the calculated high-level targets, under the following loss 

function:

ℒ = 1
N ∑

n
(fθ(Xn) − Y n)2

(9)

where fθ represents the networks parameterized by θ, Xn are the input features, and Y n

are the target values. Weight decay of 3 × 10−5 and dropout with probability 0.160 were 

used after each linear layer to reduce overfitting to the training data. Starting from a 

learning rate of 1×10−3, a stepwise learning rate decay schedule was used that monitors 

evaluation performance on the validation dataset, and reduces learning rate by 30% if the 

validation error did not decrease after 20 epoch since last error reduction on the validation 

dataset, unless the learning rate is already smaller than 1×10−6. The neural network was 

implemented in pytorch61 and optimized using the Adam optimizer62 with a batch size of 

128 and was trained for 750 epochs.

3 Results

3.1 Interpretability and transferability

We begin with the overall layout and the analysis of the MLP version of the iShiftML 

model, with an emphasis on the connection between the model architecture and the 

chemical shielding formula. We then explain the benefits of ensemble training, and a 

new active learning protocol and emphasize the ability of the model to generalize, predict 

error confidence, and to construct affordable datasets for chemical shift prediction. A 

schematic of the original MLP iShiftML model architecture is depicted in Figure 1. For 

a given input geometry, the atomic environment vectors together with the paramagnetic and 

diamagnetic elements of the shielding tensor are calculated with the lower-level ωB97X-V/

pcSseg-1 method and are used as neural network inputs that are trained to predict chemical 

shieldings of the high-level CCSD(T)(1)∪RIMP2(3) composite method for the four atom 

types: hydrogen, carbon, nitrogen, and oxygen.

Figure 2 illustrates the distribution of the learnable weights of the 18 DIA and PARA values 

from the network in the MLP model. This distribution is based on the hydrogen atom of 

the test set, obtained after the training process converges. Intriguingly, even without explicit 

enforcement, the diagonal elements from the DIA and PARA matrices exhibit weights close 

to 1
3 , while the off-diagonal elements are distributed around 0. This behavior aligns well with 

Eq. 4. The model also incorporates a bias term of −0.17 to rectify the systematic error found 

in low-level chemical shieldings. This result proves that the model captures the physical 

connection between the isotropic chemical shieldings and the intermediate matrix elements, 
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and should be generalizable to new predictions even outside of the training set, as long as the 

low-level QM matrix elements are reasonably accurate.

We have also employed an ensemble prediction technique to improve the accuracy compared 

to any individual training of the iShiftML model (Figure 3a). Table 1 shows the performance 

comparisons for individual models and the ensemble average for the original model trained 

on DS-AL-4 for oxygen. We see that while an individual model may make large errors, such 

as in models 3 and 5, the ensemble average model can mitigate these erroneous predictions, 

and still reach a consensus prediction that has a lower RMSE and standard deviation than 

any individual model.

But just as importantly the ensemble model can provide standard deviations that can be 

used to estimate actual prediction errors even without knowing the actual ground truth for 

the chemical shift value. Figure 3b shows an undertrained model using DS-AL-4 evaluated 

on 8HA test data, and compares the predicted and target chemical shielding values with 

data points colored by the standard deviations from the ensemble. We find that all data 

points with large standard deviations correlate with high predicted errors. Figure 3c further 

illustrates the correlation between the prediction standard deviation and the absolute error 

from the ensemble prediction, showing that large standard deviations can signal when the 

model is not trustworthy.

Finally, the ability to identify out-of-distribution data not effectively covered by existing 

training data through ensemble learning has inspired a novel active learning technique to 

select only the most important training data to calculate time-consuming high-level chemical 

shieldings while still improving model performance. In particular, given that the high-level 

QM calculation scales as O(N7) with system size, it is best to generate as much training 

data with a smaller number of heavy atoms as possible in order to reduce the number of 

calculations needed for molecules with more heavy atoms (Figure 4a).

In this case, we start by training a model with all subsampled data with up to 4HA (DS-

AL-4) to allow sufficient initial coverage of the chemical space, which provides a good 

starting point for the AL workflow. For simplicity, the “original” model was used. After 

training converges with DS-AL-4, the model was used to predict chemical shieldings on the 

5HA data using the low-level QM features. Large standard deviations from the ensemble 

prediction were utilized to select 1500 structures to generate the next batch of high-level 

target chemical shieldings which are then added to the training set to define the next 

DS-AL-5 dataset. This process continues until we have included high-level calculations for 

molecules up to 7HA in the training set.

After each AL iteration, the model performance was evaluated on the test set composed of 

randomly selected molecules with 8HA to show the effectiveness of the AL approach. Test 

errors in terms of RMSE for the four atom types are visualized in Figure 4b-e, showing 

that the errors decrease as larger molecules are added to the training set. To make the trend 

clearer, predictions with large standard deviations (STD) predicted from the ensemble are 

excluded. Retained data has STD for hydrogen less than 0.5 ppm, STD for carbon less than 

2.5 ppm, STD for nitrogen less than 5 ppm, and STD for oxygen less than 10 ppm. As 
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a reference, a linear regression (LR) model that uses QM features in DS-AL-7 was also 

trained, which acts as a baseline equivalent to a model that has fixed coefficients on the DIA 

and PARA terms instead of atomic environment dependent weights.

Figure 4b-e shows that even the model trained with DS-AL-4 surpasses the LR reference 

performance in all atom types other than nitrogen. With more training data included, even 

though every new training set only has ~10% more data (1500 more molecules) than 

the dataset with one less heavy atom, the model performance continues to systematically 

improve on the 8HA test set. After the model has been trained with DS-AL-7, the RMSE 

between predicted and actual high-level QM chemical shieldings are 0.11 ppm for hydrogen, 

1.60 ppm for carbon, 4.02 ppm for nitrogen, and 6.32 ppm for oxygen.

3.2 Increasing accuracy through equivariance

One drawback of directly using the shielding tensor matrix elements as model features is 

their reliance on the external frame. The isotropic chemical shieldings are invariant under 

a rotation of the molecular geometry, but the DIA (D) and PARA (P) matrix elements will 

change after rotation. Consider a rotation characterized by the rotation matrix R ∈ ℝ3 × 3, in 

which the diamagnetic and paramagnetic tensors of atom i (Di and Pi) transform as

Di
new = RDiR⊺, Pi

new = RPiR⊺,

(10)

where Di
new and Pi

new denote the transformed tensors. This transformation implies that the D
and P matrices lack rotational invariance. To address this issue, one strategy is to utilize 

data augmentation by rotating the molecule by a random angle for each input batch. When 

rotational invariance is applied through data augmentation, the weights become more closely 

centered around the values of 1
3  and 0, as seen in Supplementary Figure S1. As expected, 

the diagonal elements in the DIA matrix (and similarly PARA matrix), which theoretically 

should bear the same weight of 1
3 , do exhibit highly similar weight distributions in the 

converged model. The closer weight distributions around the theoretical values indicate the 

augmented data model is able to better capture underlying physics.

An alternative approach is to embed Di and Pi into a rotationally invariant vector, like an 

AEV, that we refer to as the tensor environment vector (TEV). Inspired by the radius and 

angular terms of AEV, we design the magnitude and direction terms of the TEVs. The 

magnitude elements for atom i are calculated as

GX, n
(mag) = e−η(Xi − Mn)2,

(11)

where Xi represents the isotropic diamagnetic value (i.e., one-third of Di trace ), the isotropic 

paramagnetic value (i.e., one-third of Pi trace), or the final isotropic value (i.e., the sum 

of the former two values). We concatenate the embedded vectors of these three values 

Li et al. Page 11

J Chem Theory Comput. Author manuscript; available in PMC 2025 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



together to form the magnitude part of TEV. n is a magnitude index that defines the different 

reference magnitudes Mn to equally cover all the possible values (shown in Supplementary 

Table S3). The corresponding η is calculated by η = 1
g2  and g = Mmax − Mmin

NM − 1 , where Mmax, 

Mmin, and NM are the maximum, minimum, and number of reference magnitude values. This 

magnitude part is rotationally invariant since Xi is a rotationally invariant scalar.

The direction elements for atom i are defined as

GA, B
(ang) = ∑

j, k ∈ N[i], j ≠ k
rij

⊺ Xirik
RijRik

fC(Rij)fC(Rik),

(12)

where Xi represents the Di and Pi matrices normalized by their Frobenius norms. Because 

these tensors are not symmetric, A and B define the two different atom types for nearby 

atoms, leading to 4 × 4 = 16 different atom type combinations. Here rij
Rij

 and rik
Rik

 represent 

the unit vectors along the direction from atom i to atom j and k, respectively. The rotational 

invariance of this part can be shown as

rij
new, ⊺ Xi

newrik
new = (Rrij)⊺R Xi R⊺Rrik = rij

⊺ Xirik,

(13)

due to the orthogonality of rotation matrix R. Figure 5 shows the equivariant model. As 

shown in Supplementary Figure S2, the TEV model variant displays a slightly different 

behavior than that of the invariant model with and without data augmentation (Figures 2 

and S1). With a bias term that optimizes to near 0, the TEV model corrects the systematic 

overestimation of low-level shieldings by employing weights smaller than 1, especially for 

the PARA tensor. While it’s challenging to definitively state which ML model behavior 

aligns better with physical reality, we next consider which model is more accurate.

After the DS-AL dataset is fully prepared using the active learning obtained from the 

original model, both the data augmentation model and the TEV model ensembles are 

retrained using DS-AL-7, and their evaluation performance on the 8-heavy-atom test set is 

compared with the original models in Table 2. The number of excluded uncertain predictions 

is less than 1%, and is listed in Supplementary Table S4. We see the TEV model achieves 

the best performance among all models, with an RMSE of 0.11 ppm for H, 1.34 ppm for C, 

3.05 ppm for N, and 6.03 ppm for O. Based on the retrained model performances, the TEV 

model is selected for further studies due to its higher accuracy.

3.3 Predicting chemical shieldings for molecules in the NS372 dataset

The NS372 benchmark dataset was developed by Schattenberg et al. which contains in 

total 372 chemical shieldings from 117 small molecules with light main group elements, 

calculated at the CCSD(T)/pcSseg-3 level of theory.19 The NS372 dataset provides 

a standardized evaluation for theoretical chemical shielding predictions using different 

Li et al. Page 12

J Chem Theory Comput. Author manuscript; available in PMC 2025 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methods. We have taken a subset of the NS372 that is composed of only H, C, N, and 

O atoms and without atomic charges, which results in 34 molecules containing 49 shieldings 

for hydrogens, 44 shieldings for carbons, 16 shieldings for nitrogens, and 16 shieldings 

for oxygen, respectively. To prevent data leakage, molecules in this NS372 subset were 

excluded from DS-AL-7 and the models were retrained with the same hyperparameters.

Table 3 compares the RMSE between the low-level DFT method, our iShiftML method, 

and the recent work by Büning and Grimme.34 The exact prediction values for each nucleus 

are provided in Supplementary Table S5. Even though the NS372 benchmark includes some 

molecular configurations not present in our training set, such as carbon monoxide (CO) and 

allene (CH2CCH2), the overall performance of the iShiftML method on the NS372 dataset 

is similar to its performance on the 8HA test set, with slightly higher RMSE on carbons 

and lower RMSE on nitrogens. Compared to the low-level DFT method used for the ML 

input, the error reduction ranges from 72% to 87% depending on the atom type. The result 

indicates our iShiftML method can generalize to different types of molecules than what the 

model has been trained on with reasonable accuracy. Furthermore, by comparing to the same 

set of molecules that were also predicted by the Δ-machine learning method in Ref. 34, our 

method also demonstrates around 10% improvement on both hydrogen and carbon nuclei 

even though our low-level method employs a smaller basis set than that of Ref. 34.

3.4 Application to predicting experimental gas phase chemical shifts

The iShiftML model can predict NMR chemical shieldings at a high-level CCSD(T) 

composite method accuracy using only a tiny fraction of the calculation time of a low-

level DFT calculation, which enables us to explore new possibilities of experimental CS 

prediction as well. We first show that experimental gas phase CS for molecules not included 

in the training set can be accurately predicted and error is significantly reduced compared 

to the low-level DFT that provides the QM matrix elements. Gas phase chemical shifts 

were used to minimize the effect of environmental complexities, including any influence of 

solvent and perturbations to chemical shifts due to other molecules nearby.

Figure 6a shows a set of 18 molecules that were collected from the literature for their 

experimental gas phase CS values,66-68 and the geometries of the molecules were taken 

from NS37264 and NIST database.65 Because some of these molecules were already in 

the DS-AL-7 data set, the iShiftML models were retrained after excluding all molecules 

in Figure 6a that are to be tested. Chemical shifts were calculated with two techniques. 

For H and C, the reference chemical shieldings for the respective nuclei in the standard 

substance tetramethylsilane (TMS) were calculated at the low-level ωB97X-V/pcSseg-1 and 

high-level CCSD(T)(1)∪RIMP2(3), and chemical shifts were calculated using δ = σref − σnuc, 

where σref is the isotropic chemical shielding for TMS, and σnuc is the isotropic chemical 

shielding for the target nucleus. Reference chemical shieldings are 31.766 ppm and 189.588 

ppm using the low-level theory for hydrogen and carbon, respectively, while the references 

were 31.522 ppm and 193.972 ppm using the high-level theory. Due to the lack of a standard 

substance for nitrogen, a linear model was fit between the predicted chemical shieldings and 

experimental chemical shifts using a fixed slope of −1 such that only the intercept was fitted. 

The resulting intercept is −146.224 ppm and −130.297 ppm for the low-level and high-level 
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theories, respectively. Oxygen nuclei were not assessed due to the lack of experimental gas 

phase chemical shifts for this test set. We note that by comparing to CS instead of chemical 

shieldings, error cancellation might be possible. However it is not a concern for users that 

need predictions on CS instead of chemical shieldings.

When compared directly to experimental measurements, we find that iShiftML can predict 

CS for hydrogen nuclei with RMSE of 0.10 ppm, 2.1 ppm for carbon, and 2.0 ppm for 

nitrogen. By comparison, the low-level DFT calculations give an RMSE of 0.30 ppm for 

hydrogen, 6.3 ppm for carbon, and 12.8 ppm for nitrogen indicating that with an inexpensive 

method, we have significantly reduced error by 3-6 fold. Figures 6b-d show the error 

distributions for the low-level calculated chemical shifts and high-level predicted chemical 

shifts, both compared with experimental CS for different nuclei. We see that the low-level 

CS has a systematic offset for the hydrogen and carbon nuclei, resulting in error distributions 

shifting towards positive values. This systematic trend was corrected in the predicted high-

level CS, whose errors are centered around zero with a much sharper distribution, in line 

with its overall superior performance compared to the low-level DFT calculations. The 

standard deviations from the predictions are also small, indicating the model can confidently 

predict the chemical shifts for this set of molecules not included in the training set.

3.5 Application to natural product chemical shifts prediction

Finally, we consider a more challenging application of iShiftML to highlight the 

transferability of the model. Synthetic chemists often rely on NMR CS as an essential 

tool to validate the structural correctness of synthesized molecules, especially for natural 

products.15 In turn, automated methods such as DP469 and DP4+70 and corresponding ML 

advances such as DP4-AI71 for computing NMR spectra reliably enough to confirm the 

chemical composition and stereochemistry of natural products are a critically important 

counterpart to the experimental data.70,72-74 Here we demonstrate that iShiftML can also 

improve the accuracy of predicted CS for a given molecular structure when compared with 

experimental measurements.

We have used strychnine73,75-78 as a starting example since it is a relatively rigid molecule 

(Figure 7a) so that conformational averaging will not play a major role in predicting its 

chemical shifts accurately. Figure 7b and c shows the absolute errors between experimental 

and calculated CSs using both the low-level DFT and high-level predictions from the 

iShiftML model for hydrogens and carbons, and the correlation plots are provided in Figure 

S4. Due to potential limitations from theory, referencing issues, or discrepancies in solvents 

and experimental conditions,79 former comparisons were typically made with predictions 

of CS that were fit to experiment measurements through linear regression.77 To minimize 

scaling compensation of systematic error from theory, we have only fit the intercept while 

keeping the slope at 1 when comparing with experimental CS of natural products. All 

iShiftML predictions were made with small standard deviations and hence no outliers were 

found.

The RMSEs between the experiment and calculated CS of low-level DFT and high-level 

iShiftML predictions, along with four other DFT methods reported in Ref. 77 after re-

referencing are also provided in Table 4. We find that iShiftML has significantly improved 
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over the low-level ωB97X-V/pcsSeg-1 DFT calculation that provides input for our model, 

and is as good or better than other DFT methods that use a much larger basis set. Hence 

even though strychnine is significantly larger and its fused ring system is not covered by our 

training set, we still realize significant improvements over much more expensive methods, 

with errors that remain commensurate with the errors of the 8HA test set for high-level 

CCSD(T) calculations. This demonstrates the reliability and generalizability of the iShiftML 

model.

Finally, we consider a more challenging natural product synthesis application to identify the 

correct molecular structure of vannusal B (5-2 in Figure 8a), whose structural assignment 

had been uncertain due to the errors in back-calculations and comparison to the experiment 

of a set of highly similar diastereomers of the natural product itself (Figure 8a).80,81 Here 

we have uses iShiftML to investigate the match between experimental and calculated CS 

for carbon atoms and compare our results with the M06/pcS-2 DFT method reported in 

Ref.82. However, we did not rescale predicted CS values as was done in Ref. 82, so that our 

reported errors reflect true prediction errors on various atoms in the molecule. Additionally, 

sp2 hybridized carbons (C1, C2, C11, C12, C21, C31) were retained in our analysis, unlike 

the original study, as the iShiftML model should provide accurate predictions (or indicate if 

it is an outlier) without any prior system knowledge.

Figure 8b provides the RMSEs between predicted and experimental CSs for vannusal 

B (5-2) and the same for the structures of the other diastereomers (2-1, 2-2, 3-1, 3-2, 

4-1, 4-2, and 5-1). We find that iShiftML consistently predicts lower RMSE across all 

molecules compared with the low-level DFT method or M06/pcS-2 from Ref. 82 (i.e. the 

bottom of the blue bars for iShiftML are well below the bottom of the orange and green 

bars). Furthermore, in Figure 8b the bottom of each bar provides the RMSE between the 

experimental chemical shifts that match the true structure of each diastereomer, while the 

top position of the RMSE bar shows the error made if the experimental CS for natural 

product structure 5-2 involved an (erroneous) assignment to the diastereomer structure of 

interest. On average, iShiftML has a larger RMSE margin (longer bars) between the correct 

structure assignment of the given diastereomer and the erroneous matching (to 5-2) based on 

the two sets of experimental CS. Therefore iShiftML can identify the correct structure from 

other candidates with higher confidence, as well as recognize the true vannusal B molecule 

with ease.

4 Conclusion

Methods for ab initio calculation of chemical shieldings lie on a spectrum, with one 

end being DFT calculations that are cheap but less accurate, and the other end being 

CCSD(T)/CBS methods that are highly accurate but prohibitively expensive for large 

systems. We have now created a tool to bridge the two ends using machine learning, so 

that with input features coming from a relatively fast DFT calculation, the predictions can 

approach the highest level of accuracy achievable through quantum mechanics calculations, 

without incurring extra cost. By utilizing a feature set that relies on chemical shielding 

DIA and PARA tensor components, together with features that describe molecular geometry, 

we demonstrated that iShiftML can achieve not only excellent accuracy compared to the 
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high-level target chemical shieldings, but greater transferability to test molecules larger than 

any molecule contained in our training set, approaching the intrinsic errors for the high-level 

targets when compared to CCSD(T)/CBS calculations.

There are also some limitations of the current method. It is trained with equilibrium and 

non-equilibrium geometries of closed-shell small organic molecules that contain only H, C, 

N and O atoms. Also, only single molecule data were included in our training set. Therefore 

it is not expected to work for open-shell molecules, molecules containing other elements, or 

for molecular systems in which intermolecular interactions play a major role in the chemical 

shifts. However, we are planning to improve the method in the future to make it even more 

transferable and widely applicable. For example, adding support for more atom types will 

be our first step to allow this method to work for a broader range of organic compounds. 

Nevertheless, we believe in its current form iShiftML can already benefit those in need of a 

fast and reliable chemical shift predictor.

While iShiftML is readily helpful for those who study the chemical shieldings of small 

organic molecules using coupled cluster methods, its broader applicability is exemplified 

with predicting experimental chemical shifts with higher accuracy for larger and variable 

organic systems. Our trained model without any fine-tuning can predict the ab initio 

generated chemical shifts for the NS372 dataset with modest improvement over the delta-

learning model.34 Greater transferability and accuracy of iShiftML was also demonstrated 

for gas phase experimental chemical shifts of small organic molecules, reducing error by 

more than 50% compared to the direct calculation using the same level of QM theory 

as our input features. When applying this method to synthesized natural products, we 

illustrated it could achieve better agreement between predicted and measured chemical shifts 

when the structures match and provide better differentiation capability between matched 

and mismatched diastereomer structures given the CS experimental data. We believe there 

are many more application possibilities for our method, including predicting chemical 

shifts for proteins, correcting assignment errors in databases, and aiding drug discovery 

in determining structure-activity relationships.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: The iShiftML ensemble learning model that uses low-level QM calculations of the 
shielding tensor and AEVs to predict high-level chemical shieldings.
Given a molecular geometry, the AEV around each nucleus is prepared and sent into a MLP 

network with two layers, each of which contains 128 neurons, in which the ReLU activation 

function63 is used for the first layer to encode the AEVs into a 128-dimension internal 

representation. On the second branch, we perform low-level composite QM calculations 

to obtain the 18 DIA and PARA chemical shielding values that are concatenated with the 

AEVs from the first branch to provide input for the second MLP weight network. The 

weight MLP is composed of a first layer containing 64 neurons and uses ReLU activation, 

followed by a second layer of 19 neurons (including a bias term) without an activation 

function.
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Figure 2: Distributions of weights of the original model without considering rotational invariance 
for hydrogen atom evaluated on test data.
Distributions of the weights for diagonal elements in the DIA and PARA matrices are 

centered close to 1/3, off-diagonal elements are centered around 0, and the bias term is 

distributed around −0.17.
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Figure 3: Ensemble prediction and correlation with actual prediction error.
(a) An ensemble learning approach using 5-fold cross-validation to train individual models 

in the ensemble. The final prediction is the average prediction from the models after 

excluding outliers recognized by the Local Outlier Factor algorithm.59 (b) An undertrained 

model for oxygen tested on the 8-heavy-atom test set, showing the correlation between 

predicted and actual values. Data points are colored according to their standard deviation 

(STD), with warm colors representing high STDs and cool colors representing low STDs. 

(c) Prediction errors compared to reference values are found to be well correlated with 

standard deviations of the predictions in the ensemble on a log-log plot. See Methods for 

further details.
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Figure 4: Procedure and results of the active learning workflow.
a) The active learning (AL) workflow. Starting from a model trained with data up to 4 heavy 

atoms (HA), data with 5HA are evaluated using the trained model, and 1500 structures with 

the largest predicted standard deviations from the 5HA dataset were included to define the 

training set for the next iteration until the training set contains molecules up to 7HA. The 

8HA dataset was always used as the test set. b-e) RMSE on the 8HA test set for models 

trained with AL on training sets containing molecules with different sizes (blue curve), and 

also a baseline model that is trained using linear regression (green dotted line). Figures are 

for hydrogens (b), carbons (c), nitrogens (d) and oxygens (e). (b-e) are also provided in 

tabular form in Supplementary Table S2. Note that the RMSEs are calculated with uncertain 

predictions excluded, which removes any prediction with an ensemble standard deviation 

larger than 0.5 ppm for H, 2.5 ppm for C, 5 ppm for N, or 10 ppm for O.
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Figure 5: Architecture of the TEV variant of the iShift ML model.
As an alternative to the model in Figure 1, in the second branch the DIA and PARA 

chemical shielding tensors are embedded into a 98-dimension TEV vector that is 

concatenated with the AEVs from the first branch to provide input for the second MLP 

weight network. The weight MLP is composed of a first layer containing 64 neurons and 

uses ReLU activation, followed by a second layer of 3 neurons (including a bias term) 

without an activation function. In total, the TEV of one atom comprises 98 elements, 

including 16 reference magnitude indices each for isotropic diamagnetic and paramagnetic 

values, 32 indices for the final isotropic value, and 16 direction elements each for the 

diamagnetic and paramagnetic tensors. This combination ensures both magnitude and 

direction while maintaining rotational invariance.

Li et al. Page 26

J Chem Theory Comput. Author manuscript; available in PMC 2025 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: Predicting experimental gas phase chemical shifts for small organic molecules.
(a) the small molecules under investigation. 3D geometries of these molecules are taken 

from NS37264 and NIST database.65 (b-d) Distributions of errors between predicted and 

experimental gas phase NMR chemical shifts for low-level DFT calculations (ωB97X-

V/pcSseg-1, blue distributions) and iShiftML predictions for the high-level CCSD(T) 

composite method (orange distributions) for hydrogens (b), carbons (c), and nitrogens (d). 

Also see Figure S3 and Table S6.
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Figure 7: Results on predicting and comparing CS for strychnine.
a) Molecular structure of strychnine. b) Absolute prediction error for the low-level DFT 

method and iShiftML across the experimental CS range for hydrogens. c) Absolute 

prediction error for the low-level DFT method and iShiftML across the experimental CS 

range for carbons. All predicted CS are re-referenced to have the same mean values as 

experimental measurements.
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Figure 8: Predictive analysis and comparison of chemical shifts for the 8 diastereomers of 
vannusal B.
a) Molecular structures of the 8 diastereomers of vannusal B. Reproduced from reference 

[ 82] Copyright 2011 American Chemical Society. b) The prediction RMSE margins for 

various vannusal B isomers. The bottom position in each bar represents comparison with the 

true experimental CS, while the top indicates a comparison to vannusal B CS in its native 

form, 5-2. Predictions were made using iShiftML, low-level DFT, and M06/pcS-2 (the latter 

from Ref. 82). Large bars with a low bottom therefore indicate good discrimination between 

predicted CS for the true structure against potential misidentification with CS of the native 

structure. All predicted CS are re-referenced to have the same mean values as experimental 

measurements. Also see Figure S5.
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Table 1:

Root mean square errors (RMSE) and standard deviations of prediction errors from individual models and 

from the ensemble model for oxygen prediction when trained using DS-AL-4. Data with high standard 

deviations among ensemble models (std>30) has been excluded to make the trend more concise. All units in 

ppm. See Methods for further detail.

RMSE standard deviation

Model 1 8.30 5.23

Model 2 8.65 6.18

Model 3 16.76 15.01

Model 4 8.86 5.73

Model 5 23.34 21.72

Ensemble model 7.60 4.82
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Table 2:

Root mean square errors (RMSE) for the original model, model trained with data augmentation by rotating 

input geometries, and the rotational invariant tensor environment vector (TEV) model trained with DS-AL-7 

and evaluated on the 8-heavy-atom test set. Uncertain predictions with standard deviations (STD) greater than 

0.5 ppm for H, 2.5 ppm for C, 5 ppm for N, and 10 ppm for O were excluded.

H C N O

Original model 0.11 1.60 4.02 6.32

Data augmentation model 0.11 1.39 4.06 6.77

TEV model 0.11 1.34 3.05 6.03
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Table 3:

Performance comparison in terms of RMSE for the low-level DFT method, iShiftML model and Ref. 34 

evaluated on the NS372 subset19 containing H, C, N, O atoms and no atomic charges.

H C N O

Low level (ωB97X-V/pcSseg-1) 0.36 9.7 16.7 39.3

iShiftML (all) 0.10 2.0 2.1 6.4

iShiftML (overlap with Ref. 34) 0.09 2.0 \ \

Ref. 34 0.11 2.3 \ \
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Table 4:

RMSEs between predicted and measured CS in strychnine using different methods. The 3-dimensional 

geometry of the strychnine molecule and the experimental measurements of CS are taken from Ref. 77. 

Predicted CS are re-referenced to have the same mean values as experimental measurements. However, the 

slopes are fixed at unity.

Method Hb Cc

B3LYP/cc-pVTZa 0.162 2.095

PBE1PBE/cc-pVTZa 0.202 2.032

BP/TZPa 0.177 3.145

BP/TZ2Pa 0.177 2.895

ωB97X-V/pcsSeg-1 (low-level) 0.296 3.068

iShiftML 0.160 1.701

a
Refitted with unity slope using original data from Ref. 77

b
Experimental CS data from Ref. 75

c
Experimental CS data from Ref. 76
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