
UCLA
UCLA Electronic Theses and Dissertations

Title
Transformation of Canonical Helicity under the Collision and Merging of Two Magnetic Flux 
Ropes

Permalink
https://escholarship.org/uc/item/1j10s7gg

Author
DeHaas, Timothy Alexander

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1j10s7gg
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

 

Transformation of Canonical Helicity under the 

Collision and Merging of Two Magnetic Flux Ropes 

 

 

 

A dissertation submitted in partial satisfaction 

of the requirements for the degree 

Doctor of Philosophy in Physics 

 

by 

 

Timothy Alexander DeHaas 

 

 

 

 

2017  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Timothy Alexander DeHaas 

2017 



 ii 

ABSTRACT OF THE DISSERTATION 

 

Transformation of Canonical Helicity under the  

Collision and Merging of Two Magnetic Flux Ropes 

 

by 

 

Timothy Alexander DeHaas 

Doctor of Philosophy in Physics 

University of California, Los Angeles, 2017 

Professor Walter N Gekelman, Chair 

 

 

Magnetic helicity, a measure of the linkage of magnetic field lines, has long been used in 

the contexts of astrophysical and experimental plasmas because, for highly conductive 

plasmas, it is a conserved quantity. In this experimental study, the dynamics of two 

magnetic flux ropes and the magnetic reconnection that occurs between them is used as a 

proving ground for helicity conservation theory. A magnetic flux rope is a twisted 

bundle of magnetic field lines that is ubiquitous in space and solar plasmas. Two 

magnetic flux ropes are created in the Large Plasma Device (LAPD) using a lanthanum 

hexaboride (LaB6) cathode that injects current along a background, magnetic field. The 

flux ropes are kink unstable, causing them to collide. As they collide, the field lines 
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diverge, and a quasi-separatrix layer (QSL) forms. The QSL is an indicator of magnetic 

field line reconnection. Helicity conservation is examined inside the QSL. Two types of 

helicity are considered: relative magnetic helicity, which is a standard formulation, and 

relative canonical helicity, an extension. Three-dimensional measurements of plasma 

density (ne), electron temperature (Te), plasma potential (!!), the magnetic field (B), and 

ion flow (vflow) are required to evaluate each terms that appear in the extended 

formulation of helicity. In the magnetohydrodynamic (MHD) limit, the transport of 

relative magnetic helicity and the dissipation of relative magnetic helicity do not 

balance. Using relative canonical helicity, the dissipation of relative canonical helicity is 

balanced by the transport of relative canonical helicity into the QSL – such that the 

temporal derivative of the quantity is zero. The electrostatic field is the key term that 

balances helicity. It is ignored in the standard model of helicity. In this experiment, the 

electrostatic component of the electric field is large compared to the induced electric 

field produced by reconnection; and therefore, it should not be ignored in other 

circumstances. 
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CHAPTER 1 – Introduction 
 
 
1.1 – INTRODUCTORY REMARKS 

 

The magnetic flux rope is a fundamental building block of astrophysical and 

experimental plasmas. Simple in concept and structure, the magnetic flux rope consists 

of a bundle of twisted magnetic field lines. To generate such a structure, plasma current 

is injected along an existing magnetic field. The superposition of the external field and 

the azimuthal field generated by the current creates a collection of helical, magnetic field 

lines. This bundle of field lines resembles a rope.  

An example of the type of experimental flux rope explored in this work is 

presented in Figure 1.1. The flux rope is linear – long and thin in form – produced by an 

electron current embedded in a straight, magnetic field. The figure shows its twisted 

field lines, which radially vary in pitch, and the path of the spiraling currents used to 

generate them. 

In this dissertation, the conservation of canonical helicity is examined during the 

collision and reconnection of two magnetic flux ropes. Two side-by-side flux ropes 

generated by parallel currents in a background magnetic field. The two flux ropes are 

driven kink unstable and are free to interact in complex ways. As the two flux ropes 

collide, a small amount of the magnetic field in annihilated and magnetic field line 
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reconnection is triggered. During the process, canonical helicity is examined inside the 

reconnection region; and conservation of canonical helicity is observed.  

Because magnetic flux ropes are so pervasive in solar and astrophysical plasmas, 

their general structure and evolution has been the subject of scientific research for many 

decades. In this light, a brief review of the topic will be presented, and the contribution 

from this research will be summarized. 

 

 

Figure 1.1 – An experimental, magnetic flux rope. A magnetic flux ropes is a bundle of 
twisted magnetic field lines, shown here as tubes of blue. The flux rope is linear with a 
radius of 3.75 cm and a length of 11 m. In experimental devices, flux ropes are generated 
by injected electron current along an external, background magnetic field. In this 
dissertation, the flux ropes are generated in the same way. The tubes in purple signify the 
path of the spiraling currents around the background magnetic field.  
 

1.2 – ASTROPHYSICAL FLUX ROPES 

Magnetic flux ropes are most commonly associated with astrophysical plasmas. 

Magnetic flux ropes are ubiquitous and therefore a matter of general interest to space 

science. A broad review of astrophysical flux ropes in their many space and solar 

contexts can be found in [Russell 1990].  
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The first usage of the term “flux rope” appeared as a description of loop-like 

magnetic structures that were seen extending from the solar surface [Babcock 1961, 

Alfvén 1963]. Upon closer inspection of UV and X-ray images of the solar atmosphere, 

these loops were shown to be full of smaller, filamentary structures. The smaller 

structures retained the name “flux rope” while the larger, loop-like structures became 

aptly named coronal loops. Observations of coronal loops and magnetic flux ropes 

continue to be seen by satellites, including the Solar Terrestrial Relations Observatory 

(STEREO) [Aschwanden 2008],

 

the Transition Region and Coronal Explorer (TRACE) 

[Golub 1999],

 

and the Atmospheric Imaging Assembly (AIA) [Cirtain 2013]. The scope 

of these filamentary structures are not isolated to coronal loops; they are also found in 

solar prominences [Schmieder 1985] and the penumbra of sunspots [Spruit 2006]. These 

filaments, a fundamental building block of solar structures, are now what is referred to 

as magnetic flux ropes. 

The ubiquity of magnetic flux ropes extends beyond the solar atmosphere. Flux 

ropes manifest on multiple spatial scales – from the planetary to the interplanetary. For 

instance, the Cluster mission has confirmed the existence of magnetic flux ropes in the 

earth’s magnetotail [Slavin 2003]. As the solar wind bends the magnetosphere around 

the earth, a current sheet forms in Earth’s shadow. This current sheet is believed to tear 

apart to establish an interwoven fabric of magnetic flux ropes [Øieroset 2011].  

Flux ropes have been seen near both Mars and Venus, planetary bodies (unlike 

Earth) without an intrinsic magnetosphere. An induced magnetic field temporarily forms 

as the solar wind wraps around the surface or atmosphere of these unmagnetized planets. 
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Within this temporary magnetosphere, magnetic flux ropes materialize. The Pioneer 

Venus Orbiter was the first to observe magnetic flux ropes near Venus in the late 1970s 

[Russel 1979]. In this instance, the flux ropes were and tightly wound, located the only 

200 km above the planetary surface. In contrast to these smaller filamentary structures, 

the Mars Global Surveyor has observed planetary sized flux ropes in Mars’ southern 

hemisphere [Cloutier 1999]. In terms of magnetic field strength, these sizable, stationary 

flux ropes are the largest measured by in situ spacecraft [Beharrell 2012].  

On more immense scales, magnetic flux ropes are the brick and mortar of 

interplanetary magnetic clouds. The term “magnetic cloud” was first coined by [Klein 

1982] to describe regions within the solar wind where the magnetic vector field 

smoothly changed polarity. Analysis determined that the smoothly rotating field of 

magnetic clouds was the result of the spiraling currents associated with a flux rope 

[Goldstein 1983, Marubashi 1984, Burlaga 1988]. Interplanetary magnetic flux ropes can 

be created from a coronal mass ejection (CME), a large release of plasma and magnetic 

energy from the sun. As a solar prominence erupts and plasma is expelled from the sun, 

flux ropes anchored to the photosphere are dragged from the solar corona and expand to 

interplanetary sizes [Marubashi 1997, Chen 1997].  

The global behavior of magnetic flux ropes is also of interest because the 

collision, merging, and tearing of multiple flux ropes can produce bursts of magnetic 

field line reconnection [Lawrence 2009, Intrator 2009]. During the reconnection process, 

field line topology rapidly changes as magnetic energy is converted to kinetic energy, 

thermal energy, and particle acceleration. This process has important consequences for a 
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system of flux ropes and the ambient medium in which they reside. For instance, the 

solar corona is several orders of magnitude hotter than the surface of the sun [Grotian 

1939]. Uncertain as to the cause, theory suggests that the collision and unraveling of 

multiple flux ropes on the sun contributes to coronal heating above 2 MK [Priest 1976, 

Akasofu 1979, Parker 1983, Schijver 2007]. The theory is not without basis: The High-

resolution Coronal Imager (Hi-C) has observed the release of magnetic energy in the 

form of strong outflows during the unbraiding of multiple flux ropes [Cirtain 2013]. 

Observations from the Solar Dynamic Observatory (SDO) – among others – have shown 

localized regions of coronal heating as multiple flux ropes collide and reconnect [Parnell 

1994, Zhang 2012]. These concentrated areas of intense, X-ray emission are known as 

X-ray bright points.  

Often, the manifestation of an X-ray bright point is followed by a coronal mass 

ejection. The exact nature of the instability which drives a flux rope CME is unknown. 

The transition from stable to an impulsive disruption depends on the parameters of the 

flux ropes (total electric current, twist) as well as the properties of the ambient medium 

and coronal magnetic fields. Possible causes of flux rope CMEs have been proposed and 

include the loss of flux rope equilibrium [Forbes 1991] and the initiation of the ideal 

kink instability [Török 2004]. 

 Whatever the cause, if the instability occurs and a flux rope breaks off from the 

sun, the strength of the magnetic field from the flux rope can generate storms in space. 

These fields are an important source of large, sporadic, geomagnetic storms that affect 

the near-earth environment [Gosling 1997, Webb 1995]. They are responsible for 



! 6 

disruptions in satellite functionality and can cause communication blackouts. Similar 

reconnection events in the earth’s magnetosphere generate aural substorms that can have 

the same effect [Potemra 1988]. In the magnetosphere, a reconnection event between 

multiple flux ropes triggers short-lived jets of energetic particles that penetrate deep into 

the magnetic poles of the Earth [Elphic 1979]. 

 

1.3 – EXPERIMENTAL FLUX ROPES 

A number of experiments have been designed explicitly to study the properties 

and dynamics of magnetic flux ropes. For instance, [Bostick 1956] was the first to 

simulate an arched, solar, magnetic flux rope by driving an electric current along an 

arched magnetic field. In later years, this technique was perfected to produce both single 

and multiple prominence-like structures of various configurations [Bellan 1998, Hansen 

2004, Tripathi 2007]. If the twist of two adjacent magnetic loops was co-helical (or in 

the same direction), then configuration would trigger a disruption of the structure. If the 

twist of two adjacent magnetic loops was counter-helical (or in the opposite direction), 

then the two would merged to produce a highly energetic current sheet. Experiments at 

UCLA showed a similar disruption of an arched magnetic flux rope [Tripathi 2013]. 

However, in these instances, the impulsive disruption was driven by strong ion flow 

along the field. 

 Instead of generating arched magnetic flux ropes in the laboratory, one can study 

the simpler configuration of a linear flux ropes. As long as the dimensions of flux rope 

are the long and thin, this experimental system is a valid approximation of a solar 
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filament. A number of linear magnetic flux rope experiments have been performed on 

the Large Plasma Device (LAPD) at UCLA. The first instance of these experiments was 

performed in 1991, investigating the interaction between two current channels in a high 

beta plasma [Pfister 1991]. Initially parallel, the flux ropes relaxed into a Taylor state 

[Taylor 1974] (where !×! = 0). In later experiments, a third flux rope was added and 

the morphology of the three structures was studied as they merged [Van Compernolle 

2012]. Other experiments investigated three-dimensional reconnection initiated by the 

collision of multiple flux ropes [Gekelman 2016], the first confirmation of a quasi-

separatrix layer (QSL) in the system [Lawrence 2009], and the investigation of chaotic 

behavior embedded in the system [Gekelman 2014]. 

Similar to the LAPD, the Reconnection Scaling Experiment (RSX) at the Los 

Alamos National Laboratory was constructed to study magnetic reconnection physics as 

well as flux ropes dynamics [Sun 2010]. The device (4 m length × 0.2 m radius) uses a 

pair of plasma guns to create two current-carrying plasma columns. The two columns 

were shown to twist like a corkscrew and coalesce during collisional reconnection. In 

addition to the spatial structure, the flux ropes were shown to rotated in time. This 

rotation was attributed to the kink instability. 

 

1.4 – KINK-DRIVEN DYNAMICS 

This experimental work considers the global dynamics associated with a kink-

unstable flux rope. The kink instability is an MHD instability which causes a current-

carrying, tube-like, plasma column to tilt and deform– or kink [Shafranov 1956, Kruskal 
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1958]. The instability is triggered by a rise in plasma current above the Kruskal-

Shafranov limit (IKS). Above this threshold the !×! forces overcome the tension in the 

field lines. Quantitatively, IKS is expressed as 

!!" =
!!!!!!
!  (1.1) 

Here, !! is the magnitude of the external magnetic field in which the current is 

embedded, ! is the radius of the flux rope, ! is its length, and!! is the speed of light. 

Magnetic flux ropes generated in linear devices – such as the system explored in 

this work – are subject to the kink instability. Once the instability is triggered, the flux 

rope is displaced from its equilibrium position until the instability saturates. Upon 

saturation, the dynamics of the magnetic flux rope settle into a rotating, helical 

equilibrium [Paz-Soldan 2011]. The rotating, helical equilibrium is characterized by 

long-lived, coherent fluctuation in the magnetic signals that dominate the entire 

experimental volume.  

The first observance of the phenomena occurred during an investigation of 

magneto-plasma-dynamic thrusters [Zuin 2004]. To improve efficiency, an external 

magnetic field was applied to the thruster. However, this made the current discharge in 

the device susceptible to the external kink instability. Above the Kruskal-Shrafanov 

limit, a coherent ! = 1!oscillation was observed. The mode grew for a few 

microseconds; then, the oscillations plateaued. The frequency of the mode was shown to 

scale with current, and the propagation of the mode was attributed to !×! rotation.  

In 2006, the same phenomenon was seen in an experiment preformed at the 

University of Wisconsin in the Rotating Wall Machine (RWM) [Bergerson 2006]. In this 
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experiment, a line-tied screw pinch, or flux rope (6 cm radius × 1 m length), was 

generated between a cathode and anode. After the kink instability was initiated, a 

rotating, stationary state formed. The mode was observed globally but was largest near 

to the anode. The magnitude of the oscillations was attributed to imperfect line-tying, 

due to a finite sheath resistance – close to the anode – that allowed the flux rope to 

displace from its axis by 1 cm. While the frequency of the mode scaled linearly with 

current, the overall scaling was simply called “complex;” and the authors acknowledged 

that the process was unexplored analytically and computationally. Despite the 

ambiguity, the rotating helical equilibrium was explained as the manifestation of 

volume-averaged !×! rotation, caused by the biasing of the plasma source. 

[Intrator 2007] disagreed. Generating a single flux rope in the Reconnect Scaling 

Experiment, the work demonstrated that the kink instability could be initiated at 

thresholds lower than IKS (depending on the experimental boundary conditions, plasma 

resistance, and axial flow). A rotating, stationary state formed and scaled with current, 

but the estimates of !×! rotation produced frequencies inconsistent with the ones 

observed. Instead, the rotation was attributed to axial flow, which – in the context of 

kink theory – transformed the purely growing mode into one with real frequencies 

[Ryutov 2006]. The same explanation was later used in experiments performed on the 

Magnetic Reconnection Experiment after a line-tied (but partially toroidal) flux rope 

exhibited rigid body rotation upon the kink instability [Oz 2011]. 

Despite the mode being seen in linear devices of similar size, with similar 

sources, and comparable flow profiles, there were discrepancies between the 
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experiments.  These discrepancies led [Paz-Soldan 2011] to deny that the phenomena 

seen in RWM was the same physics as the one seen in RSX. The most notable difference 

was the direction of rotation. While in RWM, the mode traveled in the!!×! direction, 

the rotation observed in RSX traveled in the diamagnetic direction. Furthermore, the 

theory which was used to justify this external kink mode via axial flows predicts 

decreasing frequency with !!. Increased scaling was observed in RWM. The differences 

were attributed to a weaker role of sheath resistance. 

The experimental work performed for this dissertation was carried out on the 

LAPD. The flux ropes generated in the LAPD differ from the flux ropes mentioned 

above in that flux ropes in the LAPD are embedded in an ambient plasma rather than in a 

vacuum. However, all previous flux rope experiments on the LAPD have been subject 

the rotating, helical equilibrium. In fact, the pervasiveness and repeatability of the mode 

allows for the spatially reconstruction of the flux rope system. Typically, in a flux rope 

experiment, the experimental conditions are held constant while multiple probes take 

measurements at tens of thousands of locations inside the device. This results in a well-

diagnosed experiment – volumetric measurements of plasma density, ne; electron 

temperature, Te; plasma potential, !!; magnetic field, B; current density, J; electric field, 

E, ion flow, vflow – and places the LAPD in a unique position to solve some of the 

contradictions associated kink-driven dynamics. A discussion of the rotating, stationary 

state is the subject of Chapter 4.  
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1.5 – INCOHERENT BEHAVIOR 

The flux ropes generated in the LAPD are an order of magnitude longer than the 

experiments discussed previously. They satisfy to a greater degree the long-thin 

approximation (!/! ~ 10-3). As a result, the external kink mode manifests at lower 

currents; and, as the current in the flux rope increases to many times IKS, the flux rope 

transitions away from its coherent state toward incoherent behavior. What is meant here 

by “incoherent” is that the magnetic oscillations produced in the experiment are 

disordered – neither repeatable nor predictable.  

Finding an explanation for this behavior is difficult because the unpredictability 

of the signals prevents spatial reconstruction. While the physics behind the phenomena is 

more opaque, there may still be indicators of the physics: Experiments performed at the 

University of Wisconsin observed abrupt spikes in the magnetic signals even after the 

rotating helical equilibrium was initiated [Bergerson 2006]. These spikes were explained 

as internal reconnection events, which – much like a tokamak – relaxed the plasma and 

occurred despite no resonant magnetic surfaces. The occurrence of these spikes was 

observed in the spectrum at 10 kHz.  

 Similarly, recent work on the Line-tied Reconnection Experiment observed 

magnetic fluctuations that were intermittent, broadband, and chaotic [Brookhart 2015]. 

These observations were seen both in a hollow screw pinch system and a system of three 

merging flux ropes. The oscillations, however, where not connected to the kink 

instability, as the current in the flux ropes were below IKS. Instead the oscillations were 

explained as turbulent fluctuations, which facilitated the reorganization of the structures 
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into a simpler form. 

The intermittent behavior observed in the LAPD manifests as a broad spectrum. 

The broad spectrum is produced by random pulses which occurs in the magnetic signals. 

Among the possible explanation, this dissertation will focus on one in particular 

(discussed in Chapter 5): this dissertation tests the hypothesis that the transition into 

incoherence is an indicator of a transition between a rotating helical equilibrium and a 

mode with an unstable, chaotic orbit.   

 

1.6 – CANONICAL HELICITY 

Helicity is a measure of the linkage, knottedness, and twist of a topological 

configuration [Moffat 1978, Pfister and Gekelman 1991, Berger 1999, Bellan 2000]. A 

fundamental quantity, the conservation of helicity has been used in the development of 

physical models – including models of tornadoes [Rasmussen 1998], DNA [Ernst 1999], 

and polymers [Lehn 1995]. In plasma physics, concepts of helicity have been the 

foundation for models of cosmic magnetic fields [Kulsrud 2008], astrophysical jets [Li 

2006], and solar coronal loops [Mahanjan 2001] – among others. When helicity 

describes the linkage of a magnetic vector field, the quantity is called magnetic helicity. 

Magnetic helicity !! is given by: 

!! = ! ∙ !!" (1.2) 

where A is the magnetic vector potential and B is the magnetic field (! = !×!). 

Equivalently, !! !describes the amount of twist and kink of magnetic field lines 

[Blackman 2015]. 
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 Magnetic helicity is a useful tool in the analysis of astrophysical plasmas 

because in the magnetohydrodynamic limit it is a conserved quantity. The conservation 

of magnetic helicity was first proposed by [Taylor 1974]. Searching for the theoretical 

relaxation state of a toroidal plasma into a reversed-field pinch, Taylor minimized the 

magnetic energy under the constraint of a perfectly conducting fluid. He concluded that 

the system would relax in such a way as to preserve magnetic helicity within magnetic 

flux surfaces. He conjectured that it was resistive physics that allowed internal access to 

the relaxed state. As long as the departures from perfect conductivity were rapid 

compared to the resistive diffusion time, the breaking and coalescing of the field lines 

would still preserve the total magnetic helicity. 

Twisted magnetic flux ropes have been thought to be the source of coronal 

helicity [Low 1994, Amari 1999]. As the flux ropes in the solar atmosphere reconnect, 

magnetic helicity is preserved during the process. This has been observed indirectly: as 

magnetic flux ropes break off from the sun during a CME, the resulting interplanetary 

magnetic cloud retains the helical chirality (sign of helicity) that it had in its coronal 

bound state [Rust 1994, Bothmer 1994]. Similarly, under an eruption of a helical 

prominence, the twist of the field has been shown to transfer from one part of the 

prominence to another [House 1987]. 

 When the ideal fluid picture breaks down, magnetic helicity is not conserved. 

However, attempts have been made to generalize the principle within a two-fluid 

framework. These include generalized vorticity [Turner 1986], self-helicity [Steinhauer 

1997], generalized helicity [Oliveira 1995], and fluid helicity [Avinash 1995]. An 
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additional generalization of helicity is called canonical helicity [You 2012, You 2016]. 

Canonical helicity differs from the other concepts in that it was derived using a 

Lagrangian-Hamiltonian framework. It takes into account dissipation, collisionless 

situations, collective behavior, particle reactions, and electromagnetic interactions.  

In Chapter 6, we present the first experimental measurements of global canonical 

helicity. Two interacting flux ropes are considered. The two flux ropes are driven kink 

unstable. They collide, merge, then break apart regularly. As the two collide, a small 

component of the magnetic field from each rope is anti-parallel, and magnetic 

reconnection is triggered. In this chapter, canonical helicity is observed and shown to be 

conserved during a reconnection event. 

 

1.7 – DISSERTATION OBJECTIVE AND OUTLINE 

The objective of this dissertation is to investigate the conservation of canonical 

helicity during a magnetic reconnection event, which occurs when two magnetic flux 

ropes collide. To initiate the reconnection event, the flux ropes are driven kink unstable. 

This causes the flux ropes to periodically crash into one another. To better understand 

this kink dynamic, the behavior of a single, kink-unstable flux rope is considered, first, 

before the two, flux-rope system is examined. The analysis is based on detailed, 

volumetric measurements of the magnetic field as well as measurements of temperature, 

density, plasma potential, and flows.  

A review of astrophysical and experimental flux ropes was given. Chapter 2 

contains a description of the experimental device, probes, and analysis techniques. In 
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Chapter 3, the structure of the flux ropes is discussed - including the scaling of internal, 

plasma parameters with external, experimental conditions. Turning toward the kink-

driven dynamics of a single magnetic flux rope, Chapter 4 explores the rotating helical 

equilibrium. This mode is characterized by the orbital rotation of the flux rope about its 

equilibrium axis. The maximum displacement of the flux rope from equilibrium 

increases with discharge power. In Chapter 5, the intermittent behavior is examined and 

tested against measures of chaotic systems. Intermittent pulses in the temporal derivative 

of the magnetic field characterize this behavior and can be used to locate the position of 

the flux rope in space. As the current in the rope increases, the motion of the flux rope 

transitions to a chaotic orbit. Finally, in Chapter 6, canonical helicity is presented for a 

system of two magnetic flux ropes. In particular, changes in canonical helicity are 

examined for field lines in the process of reconnecting (identified by a quasi-separatrix 

layer). The dissipation of relative canonical helicity is balanced by the transport of 

relative canonical helicity inside the QSL through electrostatic fields generated during 

reconnection. 
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CHAPTER 2 – Experimental Method 
 
 
2.1 – THE LARGE PLASMA DEVICE  

 
A series of flux rope experiments were performed on the Large Plasma Device 

(LAPD) at UCLA’s Basic Plasma Science Facility (BaPSF). A detailed discussion of the 

LAPD is given in [Gekelman et al. 2016]. However, a brief review of the device will be 

given here: The LAPD is a twenty-four-meter long, one-meter diameter, cylindrical 

vacuum vessel. A sketch of the device is found in Figure 2.1. Vacuum is established 

through four turbo-molecular pumps, which evacuate the chamber to a base pressure less 

than 5 × 10-7 Torr. Once base pressure is achieved, a single (or multiple) working gas 

(H2, He, Ne, or Ar) is released into the system, regulated by mass flow controllers 

(MFCs). The rate of release of this gas is brought into equilibrium with the rate of its 

removal such that a fill pressure is established of approximately 3×10-5 Torr. 

The vacuum vessel is surrounded by ten sets of solenoidal electromagnets, which 

are made from heavy gauged, extruded copper bars - water cooled so that they may be 

driven with large current (~kA). Each set of electromagnets is independently driven by a 

programmable power supply. The independent nature of each set allows for a flexible 

field profile along the axis of the device. For the series of experiments presented in this 

work, a  simple,  straight  field  (usually  Bz = 330 G)  is  formed.  The orientation of  the 
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magnetic field points in the +! direction.  

At one end of the device is positioned a cathode-anode pair that is electrically 

isolated from the chamber walls.  The cathode is a 60 cm, nickel plate, coated with a thin 

layer of barium oxide (BaO) [Leneman 2006]. The cathode is indirectly heated to 800 oC 

by an array of resistive tungsten filaments. At this temperature, the cathode becomes a 

thermionic emitter. The corresponding anode is a semi-transparent (50%), molybdenum 

wire mesh, located 50 cm in front of the cathode. When the anode is pulsed between 30 

to 50 V with respect to cathode, electrons pass between the two [Pribyl 2004]. The 4 kA 

direct-current discharge lasts for 12 ms (starting from the current threshold of 1 kA). A 

typical discharge from the BaO cathode is plotted in Figure 2.2. 

 

Figure 2.2 – Current discharges associated with the two cathode-anode sources. The 
BaO source is pulsed with 40 V, producing a current discharge that peaks at 
approximately 4 kA. The LaB6 trace is the discharge for two flux ropes (!! = 3.5 cm, 
!! = 1100 cm each), which peaks at 750 A. The LaB6 cathode is triggered at !! = 0 ms 
and operates for 6 ms during the BaO discharge. 
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If an electron from the discharge collides with a neutral gas particle, there is a 

finite probability that the collision results in an ionized neutral and free electron. When 

numerous electron-neutral collisions occur during the discharge, a plasma is generated. 

Because the anode is semi-transparent, any plasma production between the cathode-

anode pair can pass through anode into the main chamber, forming a current-neutral, 

quiescent, plasma column (!n/n ≈ 3%, 0.05 eV ≤ Te ≤ 5 eV, 1010 cm−3 ≤ n ≤ 2×1012 

cm−3, Ti < 1 eV) 20 m long and 60 cm wide. The flux rope is embedded into this ambient 

medium. An illustration of the device and the various elements are presented in Figure 

2.1. 

 
2.2 – FLUX ROPE GENERATION 
 

An additional plasma source is used to generate the flux rope. This lanthanum 

hexaboride (LaB6) source is inserted radially into the LAPD at an axial position opposite 

to but facing the main source. There are two separate flux rope sources used in the series 

of experiments presented here. The sources are qualitatively the same, except for their 

size. The first source (Figure 2.3a) is a small, circular cathode (d = 10 cm) [Van 

Compernolle 2011]. A portion of the LaB6 material is masked with a carbon plate, such 

that the cathode only emits from a circular hole. The second source (Figure 2.3b) is a 

larger 20 cm x 20 cm cathode [Cooper 2010]. This larger source is not directly masked. 

Instead, a floating carbon mask is place 64 cm in front of the cathode.  

At sufficient temperatures (T ~ 1800 oC), the LaB6 material becomes a 

thermionic emitter– up to 10 A-cm-2 [Goebel 1985]. In order to reach those 

temperatures, an s-shaped carbon flat,  heated through resistive dissipations of circulated  
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Figure 2.3 – A comparison between the two flux rope sources used in the series of 
experiments presented here. (a) A smaller LaB6 cathode that is directly masked to 
produce a flux rope that is 5 cm in diameter. The mask is not shown in the figure. (b) A 
larger LaB6 that is not directly masked. Instead a mask is placed 64 cm away from the 
cathode. Multiple flux rope configurations have been designed using this cathode. 

 

current, is placed close to (but electrically isolated from) the LaB6 crystal. Once heated, 

the source will emit electrons when biased positively with respect to an anode. A typical 

discharge for the larger LaB6 cathode is plotted in Figure 2.2. 

The anode is a square (30 cm x 30 cm), molybdenum wire mesh which is radially 

inserted into the LAPD. The distance between the mask and this anode determines the 

length of the flux rope. With an independent capacitor bank and transistor switch, a 
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voltage is applied between the LaB6 cathode and its anode. This generates a current 

channel, or flux rope, aligned with the axis of the LAPD for 6 ms. The current channel is 

fixed at the mask (defined to be z = 0 cm) but free to move about the anode (typically 

placed at z = 11 m).  

The voltage between the cathode and its anode is set by the charge on the 

capacitor bank. On the other hand, the corresponding discharge current depends on the 

discharge voltage, the gas pressure, the magnetic field, and the state of the cathode. In 

order to have greater control over this current (the current in the flux rope), the 

temperature of the LaB6 was fine-tuned until its emissivity resulted in the desired 

current. 

 Electron Ion (He+) 

Sp
at

ia
l 10 < λD < 30 µm  

20 < ρe < 500 µm 1 < ρi < 30 mm 

1 < ωe/c < 5 mm 10 < ωi/c < 150 cm 

T
em

po
ra

l 0.5 < fce < 5 GHz 10 < fci < 750 kHz 

0.5 < υe < 10 MHz 0.05 < υi < 2 MHz 

5 < fpe < 30 GHz 30 < fpi < 300 MHz 

Table 2.1 – A review of the temporal-spatial scale lengths for the 
experiment. 

 

The flux ropes that are produced are on the order of the size of the machine. The 

cross-sectional (dFR = 5 – 7 cm) and axial lengths (LFR = 11 m) of the flux rope are on 

order of, or greater than, the relevant lengths of the ion and electron gyroradii (ρe), the 

ion and election inertial length (ωi/c and ωe/c respectively), and the Debye length (λD). 
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The time scales of experiments performed on the LAPD are on the order of tens of 

milliseconds. This is greater than the periods associated with the ion and electron 

gyrofrequency (fci and fce respectively), the ion and electron plasma frequency (fpi and fpe 

respectively), and the ion and electron collision frequency (υi and υe respectively). A 

table of these quantities is presented in Table 2.1. 

 

2.3 – DIAGNOSTICS 

Over four hundred diagnostic ports (located approximately every thirty-two 

centimeters axially and every forty-five degrees poloidally) line the walls of the vacuum 

vessel. The LAPD operates continuously, generating a pulsed plasma every second. In 

such a way, experiments are repeated over a million times in the course of a few week 

period. The combination of numerous diagnostic ports and reliable repetition results in a 

well-diagnosed plasma, accumulated volumetric datasets of in situ measurements. 

The majority of measures were taken by small probes ( < 1 cm) – small enough 

such that they do not disturb the flux rope. These probes protrude from the end of a long, 

aluminum shaft and are inserted radially into the LAPD through one of its many ports. 

The shafts are free to slide in and out of the machine without breaking vacuum. Fifty 

diagnostic ports on the LAPD are fitted with vacuum ball-joints, which allow the probes 

to move anywhere within a cone of 35 degrees [Leneman 2001]. An automated 

computer-controlled probe drive system utilizes these ball-joints to move the probes in 

either the x-z plane or the x-y plane. The automated probe drive system moves the 

probes to user-specified positions, collecting data from these location between 
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successive plasma discharges. During these discharges, probe signals are connected to an 

analog-to-digital converter that stores the information for later analysis. After multiple x-

y data planes are collected, the planes are combined to create volumetric datasets of 

density, temperature, plasma potential, magnetic field, and flows. The following is a 

discussion into the types of probes that were used in these experiments. 

 

Figure 2.4 – A cross-sectional sketch of the LAPD. The figure demonstrates the probe 
motion and data acquisition method in the device. An automated probe drive changes the 
angle ! and insertion distance into the LAPD vacuum chamber. The probe shaft slides 
on a double O-ring seal to prevent breaking vacuum. The probe moves in a grid between 
successive discharges to assemble volumetric dataset point for point. 
 

2.3.1 – Langmuir Probes 

  A staple of plasma measurement, Langmuir probes were used to estimate the 

temperature and density of the plasma. Constructed from a small, metallic collector, the 

probe is variably biased (a “sweep”). As a result, free-floating charges in the plasma are 



 24 

either attracted to or repelled from the tip of the probe. Any charges collected by the 

probe are then measured as current. When the current is measured over a range of biases, 

a characteristic I-V curve [Chen 1954, Hershkowizt 1989] is constructed from which the 

temperature and density can be estimated.  

To verify that the estimates of plasma density are close to the experimental 

values, the results from the Langmuir Probe are compared with data taken from several 

interferometers. These interferometers are located every few meters axially along the 

LAPD. While the results from the interferometers cannot be interpreted under the 

experimental conditions of a moving flux rope, a comparison between the background 

plasma and the Langmuir and the interferometer yields values within 10%.  

For the experiments presented in this work, the probe was “swept” two different 

ways.  First, the Langmuir probe was fixed in space;  a constant voltage was applied to 

the probe over the course of a discharge, and the current collected by the probe was 

recorded as a function of time. The voltage applied to the probe was slowly stepped up 

each time the experiment was preformed. This allows for a time resolved temperature 

measurements at a fixed point.  

The second method applied a voltage ramp (slowly increasing in time) to the 

probe a few times during an experiment. The current was collected and recorded over 

each sweep. Therefore, each time the experiment was performed, a few temperature 

measurements were taken from a fixed location. By moving the probe each time the 

experiment is performed, the temperature was measured with good spatial resolution but 

at the expense of temporal resolution. 
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Figure 2.5 – A collection of the probe diagnostics used in the Large Plasma Device: The 
Langmuir probe, a small metallic collector variably biased to collect or repel free-
floating charged particles. A magnetic pickup loop used to measure the magnetic field 
by Faraday’s law. An Emissive probe, which floats at the plasma potential when the tip 
is sufficiently emissive. A Mach Probe, a set of particularly oriented collectors to infer 
ion flow in the plasma. 
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Figure 2.6 – (a) Time resolved measurement of plasma density at (x,y,z = 5, 0, 160 cm). 
As the kink unstable flux rope passes this location, a spike in the density is observed. 
From such time traces, the density of the core of the flux rope and the ambient medium 
can be inferred. (b) Time resolved measurement of plasma temperature at (x,y,z = 5, 0, 
160 cm). As the kink unstable flux rope passes this location, a spike in the temperature is 
observed. From such time traces, the density of the core of the flux rope and the ambient 
medium can be inferred. 
 

Using the former method, the temporally resolved temperature and density was 

calculated at particular point in space (x,y,z = 5, 0, 160 cm). The results are plotted in 

Figure 2.6. Large-scale oscillations (!!!!!
, !!!!! ~!0.5) are observed in the time trace. These 

oscillations are the result of the motion of a kink unstable flux rope. The probe samples a 
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distribution of temperature and density as the kink-unstable flux rope passes by the 

probe. If the flux rope is treated as a rigid object, exhibiting orbital motion about some 

equilibrium, then minimums in the figure indicate characteristics of the background 

medium (or close to it) while peaks in the figure indicate the plasma parameters of the 

flux rope core. In Chapter 3, these measurements of temperature and density are used to 

explore scaling of these quantities with discharge power. 

 

2.3.2 – Magnetic Probes  

Temporal changes in the magnetic field (!) were measured by magnetic pickup 

loops. Typically, these magnetic diagnostics consists of six magnetic pickup loops, a 

three-axis configuration, two loops oppositely wound per orthogonal dimension 

[Everson 2009]. Each loop of wire is wrapped around a face of a cube so that the surface 

area each loop is similar (! ~ 9 mm2) and encased in a ceramic dome. If changing 

magnetic flux traverses normal to the surface of these coils, a potential difference is 

measured across each loop according to Faraday’s law: !!"#$%&# != !−!!""!. If two 

differentially wound coils are aligned along the same dimension, their voltages are 

subtracted to suppress electrical noise; and from the resulting potential, the magnetic 

field is inferred accordingly. The error in these probe measurements are nominal. When 

the magnetic field is measured as a function of space, other important electrical 

parameters can be derived. In particular, the vector potential (A) can be estimated as 

well as the current density (J) through Ampere’s law. 
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2.3.3 – Emissive Probes 

An emissive probe was used to measure the plasma potential !!. An emissive 

probe in substance is a hot, emitting surface placed in contact with the plasma. The 

probe was first suggested by Irving Langmuir in 1923 [Langmuir 1923] and operates in 

the following manner: If a cold, metallic collector is in contact with a plasma, then the 

potential difference between the plasma (!!) and the potential at which the probe “floats” 

(!!) is governed by: 

!! − !! =
!!!
! ln !!"#$

!!"#!
 (2.1) 

where !!"#$  is the ion saturation current and !!"#$ is the electron saturation current 

collected by the probe. However, when the conducting surface become emissive, the 

probe floats closer to the plasma potential by the addition of another term: 

!! − !! =
!!!
! ln !!"#$ + !!"#$

!!"#$
 (2.2) 

As !!"#$ + !!"#$  approaches !!"#$ , the logarithm approaches zero; and therefore, the 

probe will be at the plasma potential [Kemp 1966]. This is highly advantageous as – in 

contrast to a swept Langmuir probe – good temporal and spatial resolution of the plasma 

potential can simultaneously be measured; and with volumetric measurements, the 

electric field can be estimated.  

A special emissive probe was developed at the Basic Plasma Science Facility 

(BaPSF) [Martin 2015]. It is constructed with a cerium hexaboride (CeB6) tip, resistively 

heated by current passed through a carbon load. The CeB6 emits electrons from its 

surface up to 10 A-cm-2. To ensure that the probe is hot enough, !!"#$ is measured by 
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variably biasing the probe in the same manner as described in Section 2.3.1 on Langmuir 

probes. As a ‘sweep’ is performed, the current collected from the probe is measured. 

When the probe is biased well below the plasma potential, the probe will emit electrons, 

measured as “collected” ions. When the absolute value of this current reaches !!"#$, the 

probe is considered emissive enough to float at the plasma potential. 

The emission from the probe is space-charge limited. A correction is needed, 

which is added to Eq. 2.2, in order to estimate the plasma potential: 

!! − !! + !!! =
!!!
! ln !!"#$ + !!"#$

!!"#$
 (2.3) 

where ! is approximately unity. The value ! was derived analytically using fluid theory 

and estimated to be 1.02 for a helium plasma [Hobbs 1967]. Similarly, [Ye 2000] 

estimated the value to be 0.99, while [Schwager 1993] developed a kinetic PIC model to 

confirm unity as well. Using the temperature measurements from the Langmuir probe, 

this correction was imposed for all measurements taken with the emissive probe. In the 

core of the flux ropes, the error in the measurement are approximately !!!/!!!~!0.1. 

 

2.3.4 – Mach Probes 

Mach probes are metallic collectors, variably biased to collect free-floating, 

charged particles. Mach probes differ from the typical Langmuir probe in that they are 

constructed from a series of particularly oriented collectors: each surfaces faces the 

plasma in a different direction. The faces of the probe are biased negatively with respect 

to the plasma potential, collecting only ions. Each face will collect a varying amount of 
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ions. Ions flowing toward a face of the probe will collect more current than faces 

oppositely directed. Therefore, the flow may be inferred by examining the differences in 

current collected by each face.  

Theoretical models have been developed to provide the relationship between the 

ion flow and two oppositely directed collectors. These models are typically separated 

into the magnetized [Stangeby 1984, Hutchinson 1988] and unmagnetized regimes 

[Huddis 1970, Hutchinson 2003, Oksuz 2004]. When the ion larmor radius !! is much 

greater than the probe dimension ! (i.e. !! ≫ !), the ions are treated as unmagnetized 

while the opposite is treated as magnetized. In either case, Mach probe models take the 

form 

!!"#$!
!!"#$!

= !!" (2.4) 

In Eq. 2.4, !!"#$! !!"#$! is the ratio of ion saturation current collected from surfaces 

facing upstream (+) and downstream (-); ! is referred to as the Mach number, the mean 

ion flow expressed as a fraction of the sound speed (! = v !!); and ! a model-

dependent constant when ! < 1.  

 The Mach probe used in the experiment was constructed from a series of six 

tantalum collectors (Figure 2.5). The faces of each were oriented orthogonally (two per 

dimension); and, to accommodate flows in the !-direction, an “elbow” was constructed 

so that a portion of the probe extrudes at a right angle.  Each face of the probe has an 

area of < 1 mm2. Assuming !! ~ 0.1 eV and !! ~ 330 G, then the ion gyroradius !! of a 

helium ion is 2 mm. This is on the order of the size of the probe; and therefore, Mach 

probe analysis will be considered using the unmagnetized regime.  



 31 

[Hudis 1970] developed a one-dimensional, free-fall model for a collisionless, 

fluid-like plasma with the criteria that !! > ! ≫ !! and !! > !! where !! is the Debye 

length. Under this model, ! was estimated to be  

! =
2 2(!!!! + !!!)

!!
 (2.5) 

For the LAPD background plasma, !!~!0.5 . This is the constant used in the 

reconstruction of Mach flow associated with the flux rope. 

Mach probes suffer from differences in collection area between tips. This can 

remedied to an extent by calibration: first taking measurements with the probe oriented 

in one direction, then repeating the measurements with the probe rotated 180°. A 

calibration factor is then calculated from the ratio of the measured saturated current of 

each tip in normal and flipped configurations.  

 

2.4 – THREE-DIMENSIONAL RECONSTRUCTION 

 Spatial reconstruction of the flux rope requires repeatability of any measured 

signal. In order to test repeatability and reconstruct the three-dimensional system, a 

fixed, magnetic probe is employed. Upon the initiation of the kink instability, the flux 

rope enters into a rotating helical equilibrium [Paz-Soldan 2011]. The magnetic signals 

associated with this type of behavior are global, repeatable, and highly coherent – even 

for a system of multiple flux ropes [Gekelman, 2012]. The signals observed by the fixed 

probe are characterized by this mode. 

The frequency of the mode, however, is not phase locked. For example, Figure 
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2.7a plots ten successive magnetic signals from a fixed probe. Each time trace is triggered 

at the same moment, the initiation of the LaB6 source. While a pattern is identifiable for 

each individual time trace, the average to these ten time traces will exhibit small 

oscillation with large error. In order to correct for the phase difference between 

successive discharges, each shot is triggered independently. This is known as conditional 

triggering [Van Compernolle 2012]. 

 
Figure 2.7 – Ten consecutive time traces of magnetic signals from the fixed probe. (a) is 
the representation of the un-aligned signals using a standard trigger. (b) is the 
representation of aligned signals using conditional triggering.  The conditional trigger is 
valid for a certain length of time before the signal becomes decorellated. 
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The effective length of time over which reconstruction is possible is 

approximated by an autocorrelation of a single time trace from the fixed probe. The 

envelope of the autocorrelation takes the functional form 1 + !′ !! !/! !!. This form is 

consistent throughout the varying external conditions imposed on the experiment. The 

width !!  is determined and taken to be the amount of time for which spatial 

reconstruction is possible. Outside this time range, the signals become decorrelated. 

The fixed probe collects data from the same location over the course of several 

weeks. A temporal range of !! is isolated from the end of each time trace collected from 

the fixed probe. Spatial reconstruction is done for this period of time (where the 

discharge current has reached a steady state). A random time trace from the fixed probe 

is selected from and made “master reference.” A cross-correlation is performed between 

the “master reference” and all other data collected from the fixed probe. In this way, the 

phase difference between the two is revealed. The cross-correlation between the “master 

reference” !!"(!) and any other magnetic time trace from the fixed probe !!(!) can be 

written as 

! !! =
!!"(!)!!!(! − !′)!"!!"#

!!"#!!!
!!"(!)!!"!!"#

!!"#!!! ! !!(t)!!"!!"#
!!"#!!!

 (2.10) 

where !!"# is the time at the end of the experiment and !! is the width of time over 

which reconstruction is possible. Maximum correlation!! !! !"# yields the temporal 

shift !!!"# between discharges. When shifting !!(!) such that !! ! → !!(! − !!!"#), 

the signal demonstrates good alignment with the “master reference.” Figure 2.6b shifts 

the time traces in Figure 2.7a to demonstrate the effectiveness of the technique.  
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The shift !!!"# is applied to all other data collected during a single discharge of 

the BaO and LaB6 sources, regardless of the position of any other probe. This can be 

done because the correlation length between two probes in a LAPD flux rope 

experiments is greater than 5 meters. Several probe diagnostics (mentioned in Section 

2.3) were used to generate fully three-dimensional datasets of relevant quantities: a 

Mach probe measured the ion flow; magnetic pickup loops measured the magnetic field; 

an emissive probe measured the plasma potential; and a Langmuir probe measured the 

temperature and density of the plasma. Each probe was moved to forty-three thousand 

locations within the plasma; and at each location, repeatable time traces were recorded. 

When the conditional trigger is applied to each time trace, the data can be reconstructed 

three-dimensionally point-for-point. The characteristics of these quantities are the 

subject of the next chapter.  
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CHAPTER 3 – Structure of the 
                               Magnetic Flux Rope 
 
 
3.1 – INTRODUCTORY REMARKS 
 

When generating magnetic flux ropes in the LAPD, there are typically three 

parameters that can be varied. They are the external, background magnetic field; the gas 

to be ionized (along with the gas pressure); and the input power associated with the 

plasma sources: two cathode-anode pairs, which generate the background plasma and the 

flux rope. The characteristics of the flux ropes (and therefore their dynamics) are 

changed by manipulating a combination of these three quantities. 

The key flux rope quantities were measured: the magnetic field (B), temperature 

(Te), density (ne), plasma potential (!!), and ion flow (v). These quantities develop in 

space, both in the perpendicular direction and the parallel direction. The characteristics 

of each measured quantity are considered in turn. These quantities will lay the basis for 

the discussion of kink-driven dynamic in Chapter 4 and canonical helicity in Chapter 6. 

In this chapter, measurements are presented for both a single flux rope and multiple flux 

rope system. The single flux rope system will be used to understand the scaling of key 

quantities at fixed locations. The two flux rope system will be used to understand the 

spatial structure of the flux ropes. 
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Figure 3.1 – The (a) magnetic field and (b) current density profile for a flux rope (a = 
3.75 cm, L=1100 cm, Bz = 330 G, IFR = 300 A) at z = 64 cm and t =  4.75 ms. (c) A x-y 
cross section of the two flux rope current densities at z = 64 cm. The dashed line 
indicates the lineout used in (a) and (b). 

 

3.2 – MAGNETIC FIELD AND CURRENT DENSITY 

The first thing to consider is the rope magnetic field and its associated current. In 

Chapter 1, Figure 1.1 demonstrated the three-dimensional nature of the magnetic fields. 

It showed a flux rope that is long and thin (! !~10!!) – a twisted bundle of magnetic 

field lines. In Figure 3.1, a 2D cross-section of the current density is shown for the two 

flux rope system (a = 3.75 cm, L=1100 cm, Bz = 330 G, VD = 120 V, IFR = 300 A each) 

that will be used to evaluate canonical helicity. The flux ropes are 7.5 cm in diameter, 

and their inner edges are separated by 3 cm. A lineout across one of the flux ropes is 

presented in Figure 3.1a and Figure 3.1b – the magnetic probe inserted into the LAPD 
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from the +x direction. The sign of the axial current suggests that the current points 

towards the LaB6 source. The superposition of the background magnetic field 

(!! = 330!! and not plotted in the figure) and the poloidal field from this current results 

in a structure that is left-handed.  

The perpendicular current points in the same direction as the perpendicular 

magnetic field. The direction of the current is responsible for a reduction of the 

background magnetic field in the core of the flux rope (~1 G). The reduction can be 

estimated by imagining the spiraling currents as a solenoid of length L and current I – 

wound around the axis a number of times proportional to !! !!. 

 

 

Figure 3.2 – Parallel current density (!!) at various axial location (!!"#$" = 64 cm, !!"# = 
768 cm, !" = 64 cm) for t = 5.86 ms. The two current channels merge as they approach 
the anode at ! = 1100 cm. 
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The data presented in Figure 3.1 is taken at an axial position close to the source 

(! = 64 cm). At this location, the flux ropes are the most symmetric, and its structure is 

clear. Farther from the source, the magnetic field relaxes to form a more stable state. In 

previous LAPD experiments, the currents of multiple flux merge [Pfister 1991, Van 

Compernolle 2011]. This can occur by magnetic reconnection or by magnetic field line 

diffusion in a resistive plasma. Using classical resistivity for 10 eV electrons (!∥ =1.9!× 

10-3 Ω-cm) and a radius of ! = 3.75 cm, the resistive diffusion time (!! = !!!!
!!! ) is 92 !s. 

For an Alfvén speed of v! = 1.6×107 cm/s and a flux rope length of !!= 1100 cm, the 

Alfvén transit time (!! = !/v!) is 68!!s, the same order of magnitude as !!. Figure 3.2 

shows the axial development of the two flux ropes merging into one. 

 

3.3 – TEMPERATURE AND DENSITY 

 Electrons emitted from the LaB6 source generate additional heating and 

ionization that is spatially correlated with !!. As a result of this addition heating and 

ionization, the core of the flux ropes will be hotter and denser than the surrounding 

medium. In the experiments presented here, core densities in the ropes rise to five times 

greater than the background plasma; and temperatures in the core may be twice as hot. 

Figure 3.3a and Figure 3.3c show a line profile of temperature and density across one of 

the flux ropes (! = 3.75 cm, ! = 1100 cm, Bz = 330 G, IFR = 300 A) – close to the line-

tied position (! = 64 cm). The profile corresponds to the same position and time as the 

one in Figure 3.1c. At this axial location, !!~0 and !!~0; and therefore, good spatial 

reconstruction of the temperature and density is available from Langmuir probe analysis.  
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Figure 3.3 – (a) The density profile (red) of a single flux rope at z = 64 cm. The values 
of spatially correlated with !! (purple). (b) The core density of the flux rope depends 
with the discharge power of the LaB6 cathode. (c) The temperature profile (blue) of a 
single flux rope at z = 64 cm. The values are spatially correlated with !! (purple). (d) 
The core temperature of the flux rope depends with the discharge power of the LaB6 
cathode. 
  

The temperature and density are shown to depend on discharge power rather than 

the discharge current or voltage independently.  To test this, a series of localized 

temperature and density measurements was taken for varying discharge currents and 

discharge voltages for a single flux rope (! = 2.5 cm, ! = 1100 cm, Bz = 330 G). The 

process by which these measurements were made was described in Section 2.3.1. As the 

flux rope passes by a fixed probe, a spike in the temperature and density is observed; 

thereby, the core plasma parameters are determined. The results are plotted in Figure 

3.3b and Figure 3.3d. The measurements begin to plateau at 10 kW of power, where the 
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energy no long goes into heating and ionization. The temperature limit comes from a 

balance between the input power and factors, such as the thermal flux of electrons, 

recombination at the walls, radiation from electron-neutral and electron-ion collisions, 

inelastic collisions of electrons and ions with neutrals, and charge exchange.  

 

3.4 – MHD EQUILIBRIUM  

The elevated temperature and density inside the current channel leads to the 

poloidal current seen in Figure 3.1b. These currents, which are responsible for the drop 

in the magnetic field inside the flux rope, result from a balance between the !×! force 

and the strong radial pressure gradients. This is given according to MHD equilibrium: 

1
! !×! = !!! (3.1) 

where the ions are assumed to be cold and !! is approximated by !! = !!!!. From the 

measurements presented in the previous sections, Eq. 3.1 was directly calculated from 

the data. The perpendicular force balance is plotted in Figure 3.4 for two axial locations 

(! = 64 cm, ! = 510 cm, ! = 5.45 ms). In Figure 3.4b and Figure 3.4d, the color table 

scales with !×!  while the contours correspond to −!P! . A line profile is taken across 

one of the flux ropes at each axial location. The RHS and the LHS of Eq. 3.1 show good 

agreement in the data. In absence of the fully volumetric temperature measurements 

from a swept Langmuir probe, temperature may be estimated from !×!.  

Because of the force balance, magnetic flux ropes have traditionally been 

considered paramagnetic. The paramagnetic nature of a gas discharge in an external 

magnetic field is a well-known phenomenon  –  first  explored  in  the  1950s  [Bickerton 
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Figure 3.4 – (a) A line profile across one of the flux ropes to demonstration the pressure 
forces are balanced by the !×! forces at ! = 64 cm. (b) A cross-section of the flux rope 
at ! = 64 cm. The color table scales with !×!  while the contours correspond to −!P! . 
The two show good agreement. (c) A line profile across one of the flux ropes to 
demonstration the pressure forces are balanced by the !×! forces at ! = 510 cm. (d) A 
cross-section of the flux rope at ! = 510 cm. The color table scales with !×!  while the 
contours correspond to −!P! . The two show good agreement. 

 

1958]. As long as the external, magnetic field (or “seed” field) is above a certain 

threshold, the gas discharge has the possibility of amplifying that field. This occurs when 

highly conductive plasma traps and compresses the axial field under the influence of the 

self-generated magnetic field from the discharge. Previous flux rope experiments fielded 

by [Hsu 2003] have observed amplification of the background magnetic field. [Paz-

Soldan 2011], in addition, observed a transition from diamagnetism to paramagnetism as 
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the flux rope transitioned to high currents.  

The diamagnetism of the magnetic flux ropes generated in the LAPD is in 

contrast to these experiments. The current necessary to trigger the transition from a 

diamagnetic flux rope to a paramagnetic one can be estimated. For a flux rope of current 

!!with a uniform current density and a radius of a = 3.75 cm, Eq. 3.1 can be rewritten to 

obtain the threshold: 

−∇!! <
2!!
!!! (3.2) 

Under the conditions in the LAPD, the flux rope current would have to exceed 500 

Amps, larger than the emission capabilities of the LaB6 source (~10 A/cm2).  

 

3.5 ELECTRIC FIELD 

 In the LAPD, magnetic flux ropes are electrostatically negative with respect to 

the ambient medium in which they reside. The plasma potential inside the ropes depends 

on the discharge voltage the current in the rope. This has important consequences for the 

development of magnetic helicity associated with the two, interacting magnetic flux 

ropes. An electric field inside the experimental volume acts as a source or sink of 

magnetic helicity! ! ∙ !!!" ; and a potential difference across a magnetic flux surface 

is a source of helicity injection !!!!!" .  

Figure 3.5 shows two x-y cross-sections associated with the two magnetic flux 

ropes at ! = 64 cm and ! = 510 cm. The color bar represents the plasma potential inside 

the flux ropes while the vectors represent the perpendicular electric field. The radial 

component of the electric field is the primary component – on the order of 102 V/m. The 
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axial electrostatic field, on the other hand, is on the order of 1 V/m (not shown in the 

figure). On average, the plasma potential drops 4 V/m along the flux rope. This is 

consistent with estimates of ! = !!, using classical resistivity and 6 eV electrons. 

 

Figure 3.5 – (a) The plasma potential inside the two flux ropes at ! = 64 cm and!! = 5.45 
ms. The electric field vectors point toward the center of each rope. (b) The plasma 
potential inside the two flux ropes at ! = 510 cm and!! = 5.45 ms. The electric field 
vectors point toward the center of each rope. 
 

The current in the single flux rope (! = 2.5 cm, ! = 1100 cm, Bz = 330 G) was 

increased between 20 – 110 A at a fixed discharge voltage (VD = 100 V). The emissive 

probe was fixed in space (x,y,z) = (5,0,160) cm. As the flux rope moved passed the 

probe, a drop in the signal was observed. Using electron temperature measurements at 

the same location, the plasma potential was calculated as a function of time for this 

location. An example time trace of the plasma potential is plotted in Figure 3.6a. The 

plasma potential of the background medium and the core of the flux rope are label in the 

figure. These measurements are taken with respect to the walls of the device.  
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The scaling of the plasma potential with discharge current at a fixed discharge 

voltage (VD = 100 V) is plotted in Figure 3.6b. Here, the plasma potential is referenced 

with respect to an electrode in the ambient plasma. The drop in the potential is on the 

order of a few volts; however, over the scale of a few centimeters, the force −!!!∇!! is 

greater than the pressure gradients or the !×! term in Section 3.5. 

 

Figure 3.6 – (a) The plasma potential measured by the emissive probe at (x,y,z) = 
(5,0,160) cm for a single LAPD discharge (I = 95 A, V = 100 V). As the flux rope passes 
by the probe, a drop in the plasma potential is observed. (b) The scaling of the core 
plasma potential as a function of discharge current. 
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3.6 ION FLOWS 

Because the ion flow is a factor in the kink mode dispersion relation and to 

calculations of canonical helicity, a brief discussion of the ion flow is presented here. In 

the presence of axial ion flow, the threshold at which the flux rope becomes unstable is 

lowered. The frequency of the kink mode changes with the magnitude and direction of 

the flow [Ruytov 2006]. Figure 3.7 shows a typical radial profile of axial flow for a 

single flux rope. The flow is not localized to the flux rope but broadened around it. The 

axial flow peaks at a Mach number of !! = 0.25 and points toward the anode. With an 

electron temperature of 10 eV, it is approximately equal to v! = 3.7×105 cm/s. Because 

the Alfvén speed in these experiments is over ten times the sound speed, the peak ion 

flow v! expressed as a fraction of the Alfven speed is v!/v! = 0.02. 

In Chapter 6, ion canonical helicity is calculated during the collision and 

reconnection of two magnetic flux ropes. Ion canonical helicity describes the linkage of 

flux surfaces associated with canonical vorticity (Ω! = !!+!!∇×! ), the linear 

combination of the magnetic field and vorticity (see Chapter 6 for further discussion). 

The primary component of vorticity is comes from perpendicular plasma flows, which 

spiral around the flux ropes in the !×! direction. Figure 3.8a shows the perpendicular 

flow associated with two magnetic flux rope at ! = 510 cm. The magnitude of the flow 

reach a maximum at approximately v!/!!  ~ 0.5. The perpendicular flow does not 

contribute appreciably to the force balance (! !!!
! !~ 1 N/m3) – a hundred times less than 

the contribution from !×!.  
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Figure 3.7 – An !-! cross-section of a single flux rope at ! = 332 cm. The figure shows 
the axial Mach flow. A lineout is presented above the figure and peaks at 0.25, 
corresponding to approximately 3.7×105 cm/s. 

 

The perpendicular flow, however, has a significant effect on ion canonical 

vorticity. Figure 3.8b shows the vorticity (!!∇×!) associated with two magnetic flux 

ropes at ! = 510 cm. The plot is normalized to the background magnetic field (!"!) to 

illustrate the contribution of vorticity to canonical vorticity. Positive vorticity is 

associated with the core of the flux ropes. This leads to calculations of canonical helicity 

which differ up to 40% percent from traditional calculations of magnetic helicity.  



 47 

 

Figure 3.8 – (a) The perpendicular ion flow at !!= 510 cm and ! = 5.45 ms. The ions 
spiral around the two flux rope in the !!×!  direction and reach a maximum of 
approximately v!/!!  ~ 0.5. (b) The vorticity associated with (a). The values are 
normalized to the background magnetic field to show that the contribution of vorticity to 
ion canonical vorticity is up to 40%.  
 

3.7 CONCLUDING REMARKS 

In summary, the flux ropes are three times hotter (Te = 12 eV) and five times 

denser (nrope = 5×1012 cm-3) than the background plasma with a current density as high 

as 5 A/cm2. The perpendicular pressure forces point radially outward from the center of 

each flux rope and are balanced by the inward forces of JxB. The electrostatic field 

points inward toward the center of each flux rope as the ropes are electrostatically 

negative with respect to the plasma background. The electrostatic field generates ExB 

flows that spiral around the two flux ropes, and this accounts for magnetic helicity. The 

vortical flow plays a major role in calculations of canonical helicity.  
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CHAPTER 4 – ORBITAL ROTATION OF 
                                      THE FLUX ROPE 
 
 
4.1 – THE KINK INSTABLITY 

 

The external magnetic field provides the stabilizing restoring force that gives the 

flux rope its shape and form. If the flux rope becomes displaced from its axis, the 

restoring force results in oscillations about the equilibrium position. These oscillations 

take the form of a standing Alfvén wave between the mask and the anode. However, if 

the current flowing along the background field exceeds a certain threshold, the flux rope 

will become unstable. Its displacement from equilibrium will grow exponentially on the 

order of an Alfvén transit time. This instability is the kink instability, a well-studied 

MHD instability [Shafranov 1956, Kruskal 1958].  

The kink instability is the main driver of flux rope dynamics in the LAPD. Upon 

initiation of the instability, the flux ropes are displacement from their equilibrium 

position. The growth of the instability eventually saturates, and the kinked flux ropes 

move in coherent fashion about the !-axis. The coherent nature of this motion provides 

the repeatability needed for three-dimensional reconstruction of magnetic fields and 

other physical quantities from which canonical helicity may be calculated. This chapter 

will focus on an experiment performed on a single flux rope. The flux rope was driven 
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kink unstable under varying conditions, and the coherent behavior of the flux rope was 

observed. This chapter presents the results and will seek to explain the behavior of the 

flux rope under this coherent mode.  

 

Figure 4.1 – A cartoon demonstrating the “gentle wiggle” which Eq. 4.1 describes. The 
dashed circle represents the equilibrium position of the flux rope in the x-y plane while 
the solid curve shows the cross-section of the flux rope as it is displaced ! , from the 
equilibrium position. 

 

For the geometry of a single, flux rope, embedded in a vacuum with fix-free 

boundary conditions an analytic theory has been constructed [Ruytov 2006]. This 

analytic theory will be referenced many times in this throughout chapter. The 

displacement of a slender plasma column can be described by the follow equation: 

!!!
!!! = 2v!!

!!!
!!! + !!!

!"
!" . (4.1) 

Here, v! is the average Alfvén velocity inside the flux rope, !! = !!
!!!

 (with the poloidal 

magnetic field !! taken at the edge of the flux rope), and is !(!; !) is a complex variable 



! 50 

that describes the position of the flux rope with respect to its equilibrium. In cylindrical 

coordinates, the central position of the flux rope can be expressed as (!,!,!) = ( ! , 

tan!! !" !
!" ! , !). Figure 4.1 helps visualize the “gentle wiggle” the equation describes. 

When !! → 0 (i.e. the current in the flux rope goes to 0 A), Eq. 4.1 describes a shear 

Alfvén wave. 

To solve Eq. 4.1, a set of boundary conditions must be imposed. The theoretical 

threshold at which the flux rope goes unstable depends on this set of boundary 

conditions. For a flux rope fixed at the mask and free to slide about the anode, [Ruytov 

2006] uses the following boundary conditions: 

! !!! = 0 (4.2) 

!"
!" +

!!!
2 !

!!!
= 0 (4.3) 

This set of boundary conditions has been used by [Intrator 2007] and [Furno 2006] to 

explain the kink threshold observed in the Reconnection Scaling Experiment. A 

discussion into the validity of this boundary condition is performed in Appendix A. For a 

cylindrical flux rope fixed at the mask and free to slide about the anode, the structure 

will go unstable when 

!!" > !!"#! =
!!!!!!
2! = !!"

2  (4.4) 

This is half the Kruskal-Shafranov limit (Eq. 1.1). With a flux rope length of ! = 1100 

cm, a radius of ! = 2.5 cm and a magnetic field of 330 G (the characteristics of the flux 

rope explored in this chapter), the current threshold is 30 A. 
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4.2 – TRANSITION INTO UNSTABLE MODE 

The flux ropes generated in the series experiments presented here are designed to 

be driven kink unstable. As the flux ropes transition from stable to unstable, the 

dynamics of the current system dramatically change. This is shown in Figure 4.2: two 

magnetic time traces on either side of the kink threshold (one at I = 20 A, one at I = 75 

A, with B0 = 660 G). In the stable case, the perpendicular magnetic oscillations are small 

compared to the stable magnetic field. These small oscillations correspond to standing 

Alfvén waves. They appear at 15 kHz, which match the frequency estimates of 

! = v! 4!!. Above the instability threshold, the magnetic signals observe large-scale 

oscillations in the perpendicular and parallel direction. This behavior cannot be 

explained by the set of equations present above – as its solution predicts only imaginary 

frequencies above !!"/2. 

As discussed in the Chapter 1, these large oscillations correspond to motion of 

the flux rope after it has been freed from its axis. It is sometimes called a “rotating 

helical equilibrium,” a quasi steady state in which a helically distorted flux rope rotates 

about the equilibrium position [Paz-Soldan 2011]. The term “equilibrium” is associated 

with this motion because in the frame of the flux rope, the plasma appears to be in 

equilibrium. Magnetic signals resulting from this behavior are highly coherent, 

repeatable, and well correlated in space. Therefore, any magnetic signals shown in this 

chapter are characteristic magnetic signals anywhere in the experimental volume. By 

plotting the observed, real frequencies, associated with this motion, as a function of 

current in the rope (Figure 4.3), the transition into this coherent behavior is observed. 



! 52 

 

Figure 4.2 – (a) A magnetic time trace at (x, y, z) = (3, 0, 850) cm for a flux rope I = 20 
A, L = 1100 cm, and B0 = 660 G. The current in the rope is below the threshold needed 
to trigger the kink instability. The oscillations (15 kHz) correspond to standing Alfvén 
waves. (b) A magnetic time trace at (x, y, z) = (3, 0, 850) cm for a flux rope I = 75 A, L 
= 1100 cm and B0 = 660 G. The current in the rope is above the threshold needed to 
trigger the kink instability. The oscillations correspond to the “rotation helical 
equilibrium.” 

 

The transition occurs near half the Kruskal-Shafranov limit. The data which 

recorded the shift was taken from a fixed magnetic probe (x,y,z = 5,0,870 cm). The 

discharge voltage was held fixed at 100 Volts while the LaB6 source was cooled over a 

several hour period. As the source was slowly cooled, magnetic data was collected from 

successive discharges until the emission current from the source approached 0 A. In this 

way, the transition between a stable flux rope and unstable on could be observed while 
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simultaneous eliminating any effects from changing electrical boundary conditions. A 

Fourier transform of the data was taken and averaged. The results are displayed in Figure 

4.3. After the instability initiates, the frequency is shown to depend on with the current 

in the rope. This behavior has been seen in previous experiments [Intrator 2007, Paz-

Soldan 2011]. However, at some point, the observed frequency saturates.  

 

Figure 4.3 – The transition of the flux rope into coherent rotation. This mode is 
associated with the kink instability, which is triggered at !!"/2. Once the mode is 
initiated, its frequency increase with the current in the rope – then saturates.  

 

A closer investigation of this mode reveals multiple peaks in the Fourier 

spectrum. This is plotted in Figure 4.4a. The lowest peak is the coherent mode (which 

was displayed in Figure 4.3) while its harmonics are produced by a displacement that is 

on the order of the flux rope radius ( !! !~!1). By isolating and filtering out these peaks, a 

mode structure can be identified, corresponding to an m=1, m=2, etc. This is shown in 

the following graph. This gives the anticipation of a flux rope description as a wave 

phenomenon.  However,  each  mode  is  in  phase  with  one  another,  not being excited  
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randomly as the discharge power increases. Similarly, both the real and imaginary 

frequencies predicted by Eq. 4.1 are not evenly spaced – as is observed here. Instead, the 

collection of these peaks is the manifestation of approximate circular motion of the flux 

rope in the transverse plane, whose radius of rotation in a plane is greater than (or on the 

order of) the size of the flux rope. 

To demonstrate the motion of the displaced flux rope, Figure 4.4b shows the 

instantaneous central position of the flux rope over several rotations about the axis. The 

central position was calculated by weighting the positions according to the local current 

density. The rotation is right-handed when the current is anti-parallel to the background 

magnetic field. In one experiment, the positions of the LaB6 cathode and its 

corresponding anode were exchanged. In this case, the current was flipped so it was 

parallel to the background magnetic field. Keeping the same coordinate system, the 

coherent rotations remained right-handed with respect to the background magnetic field.  

 

4.3 – MODEL OF COHERENT ROTATION 

To explore how the transitory motion manifests itself in the Fourier analysis, a 

simple model has been created. A virtual, cylindrical flux rope with a Gaussian current 

density profile was constructed. In the model, the flux rope is moved in the transverse 

plane in increasing concentric circles (from !!"#$%/! = 0 – 4). The flux rope is moved 

around each circle with constant velocity and a constant period of rotation. A virtual 

probe is placed somewhere along the x-axis between !!!"#$%/! = 0 – 4. As the flux rope 

moves in greater and greater circles, the virtual probe samples more of a magnetic 



! 56 

profile that varies as 1/r rather than r. This gives an appearance of waveform steepening 

on the virtual probe, which, in the case of a Fourier transform, leads to the harmonics of 

the coherent rotation. These are identical to the ones seen in the experiment. 

Mathematically, this model can be expressed as the sum of a series. First, 

consider a current density profile in the x-y plane that takes the form 

!! = !!!!
!!
!!! (4.5) 

where ! is the radius of the flux rope and !! is the arbitrary maximum current density. 

This produces a magnetic profile, calculated by Ampere’s law, given by 

!! =
!!!!
! 1− !

!!!
!!!  (4.6) 

If the flux rope is displaced by !!" = ! cos !!! !+ ! sin !!! ! and a virtual probe is 

placed along the x-axis at !! = !!!, then the virtual probe will record a magnetic field 

that is given by 

!!" =
!!!!

!!" − !!
1− !

! !!"!!! ∙ !!"!!!
!!!  (4.7) 

The exponential can be converted into a power series. Letting ! = !!!!!
!!!!!!

, Eq 4.8 is 

converted: 

!!" =
!!!
2

(−1)!!!
!!

!! + !!!
2!!

!!!/!
1− ! cos !!! !!!/!

!

!!!
 (4.8) 

Finally, 1− ! cos !!! !!!/! can be expanded by the binomial theorem such that 

!!" =
!!!
2

(−1)!!!
!!

!! + !!!
2!!

!!!/! ! − !
!

!
!! cos! !!!

!

!!!

!

!!!
 (4.9) 
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Figure 4.5 – Using simple circular motion of the plasma column as a model to explain 
the observed harmonics, the predicted (the solid curves) and observed amplitudes (the 
square points) are plotted.  
 

The preceding mathematical exposition that led to Eq. 4.9 was done to demonstrate that 

the signals measured by the virtual probe can be expressed as a sum of cos! !!! . 

When the Fourier transform is taken of Eq. 4.9, cos! !!!
ℱ !

! !(!! 2! − ! −!
!!!

!). Therefore, with a single input frequency !!!and simple circular motion of a 

Gaussian, current profile, the Fourier transform of magnetic signals is expressed as 

harmonics of the coherent, rotation frequency: 

ℱ !!" = a!
!

!!!
!(! −!"!) (4.10) 

Figure 4.5 plots the amplitude a! of the harmonics as predicted by the model as the flux 

rope moves in greater and greater concentric circles. The virtual probe is placed at 
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!!/! = 1, the position of the experimental probe. Along side, the data is plotted to show 

a comparison between the predicted values and the ones observed. The data and the 

model show good agreement. 

 

4.4 – ABSOLUTE DISPLACEMENT  

Establishing that the observed amplitudes in the frequency spectrum are a 

function of the orbital radius (!!"#) of the flux rope, a discussion of the absolute 

displacement of the column in the x-y plane is necessary. To do this, the total peak-to-

peak variation in !(!) will be discussed as a placeholder for the numerous amplitudes 

a! in the spectrum. When the proper boundary conditions are imposed, Eq. 4.1 yields 

the displacement of the flux rope. The solution takes the form: 

! = !!"# !!!!! − !!!!! !!!"# (4.11) 

!!"# is the maximum displacement of the flux rope from its equilibrium position within 

the whole experimental volume while!!! and !!! are calculated to be 

!! = !
!
2! −

!!
2  (4.12) 

!! = !−
!
2! −

!!
2  (4.13) 

The orbital radius of the flux rope is then a function of axial location and is given by the 

absolute value of Eq. 4.1: 

! = !!"#sin
!"
2!  (4.14) 

In other words, the flux rope exhibits no displacement at the mask (!! = 0 cm) and 

enjoys maximal displacement where is it free to slide at the anode. A previous 
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experiment performed on the LAPD [Van Compernolle 2011] as well as an experiment 

performed by [Intrator 2007] measured the displacement of the flux rope and confirmed 

it takes this form. Similarly, [Intrator 2007] demonstrated that the maximal displacement 

of the plasma column depends on the current in the ropes. This was also confirmed in 

this experiment. In addition, the depends on the discharge voltage was studied.  

 

 

Figure 4.6 – (a) A magnetic time trace at (x, y, z) = (3, 0, 850) cm for a flux rope of 75 
A and 60 V. The small oscillations in the signal are a function of the displacement of the 
flux rope from its axis. (b) A magnetic time trace at (x, y, z) = (3, 0, 850) cm for a flux 
rope of 75 A and 175 V. The large oscillations in the signal are a function of the 
displacement of the flux rope from its axis, demonstrating the displacement of the 
column varies with the discharge voltage independent of current. 
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As noted in Section 2.3, a series of experiments were performed on a flux rope 

(! = 2.5 cm, ! = 1100 cm) in which the discharge current and discharge voltage were 

varied independently. In the case of fixed current (!! != !75!A), the voltage was varied 

between 60 to 175 Volts. In the case of fixed voltage (!! != 100 V), the current was 

varied between 20 to 130 Amps. In each case, the flux rope was kink unstable and the 

magnetic field was measured at a fixed location (x, y, z) = (3, 0, 850) cm.  

The peak-to-peak variation in the magnetic field !" was recorded at this location 

and may be interpreted as the displacement of the plasma column.  This presumption can 

be proven using the model presented in Section 4.3 for !/!! < 1. However, [Intrator 

2007] has already experimentally demonstrated that !!"# is proportional to !"/!!"# 

(with !!!"# =
!!
!" ). Figure 4.6 shows two magnetic time traces at the same location. 

Each corresponds to the same discharge current but differs in discharge voltage 

(!! != 60 V and !! != 175 V). By increasing the discharge voltage on the LaB6 source, 

the peak-to-peak variation in the field increased by a factor of three. The orbital radius of 

the flux rope scales with the voltage on the boundaries as well as the current in the rope. 

To determine if there is a difference between the displacement of the plasma 

column with discharge current and the displacement of the plasma column with 

discharge voltage, one must examine plots !" as a function of discharge power as done 

in Figure 4.7. Instead of varying independently, !" is shown to vary with the discharge 

power. The displacement increases until the orbital radius exceeds the position of the 

probe. At this point, the probe has sampled the whole magnetic profile of the flux rope, 

which – to the probe – looks like an oscillation equal to !!!"#. Similar measurement can 
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be made at different radial and axial location producing the same results.  

 

Figure 4.7 – The amplitude of oscillations observed from a fixed magnetic probe: (x, y, 
z) = (3, 0, 850) cm. This amplitude is a placeholder for the displacement of the flux rope 
from its axis. The displacement scales with discharge power, which is demonstrated by 
plotting two sets of data: 1) where current is fixed and the discharge voltage is varied 
and 2) where the discharge voltage is fixed and the current is varied. When the 
displacement of the flux rope becomes greater than the radial position of the probe, the 
amplitude of oscillations saturates. 
 
 
4.5 – APPLICATION TO THE TWO FLUX ROPE SYSTEM 

While this chapter focused on the motion of a single flux rope, the two flux rope 

system exhibits the same coherent rotation. The two flux rope system is unstable with 

2!/!!" ~ 4. The kink threshold for this system corresponds to the expected fixed-free 

boundary condition from theory [Ruytov 2006], which was also demonstrated by 

experiment for a single flux rope in this chapter. Multiple modes arise in the Fourier 

transform of the two flux rope system just as in the single flux rope system, but the 

lowest mode is the primary mode of importance. The two flux ropes twist about one 
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another and merge, but the coherent mode drives the pulsating reconnection events 

between the two flux rope. The flux rope collide and produce magnetic reconnection at 

regular intervals which correspond to the frequency of the coherent mode. These 

reconnect events will be identified in Chapter 6.  
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CHAPTER 5 – Characteristic Pulses 
                            and chaotic Motion 
 
 
 
5.1 – TRANSITION IN SIGNALS 

With an increase in flux rope current, the magnetic signals transition from a 

highly coherent signal to an incoherent one. Figure 5.1 shows a side-by-side comparison 

of magnetic signals from a single, kink-unstable flux rope with currents corresponding to 

55 A, 75 A, and 130 A. The more random nature of the 130 A case holds significance in 

that it may represent a system driven into chaos. When the system degrades to this state, 

three-dimensional reconstruction of the data is not possible as reconstruction can only be 

done for time scales shorter than the autocorrelation time. Using the examples in Figure 

5.1, the autocorrelation time for the 75 A flux rope is 4 ms, which is 20 times the period 

of the coherent mode and a majority of time over which the experiment was conducted 

(5 ms). For IFR = 130 A, the auto-correlation time is only 200 µs. 

The cause of the transition is not readily apparent. It is not caused by sudden 

variations in the emission of the LaB6 source – as the variation in the current is !"!~!2!!.  

Neither does it appear to be dependent of the kink threshold, manifesting between 100 A 

and 125 A  for both a single flux rope at 330 G  and at 660 G.  The behavior is connected 
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Figure 5.1 – A comparisons between of the types of magnetic signal seen in this 
dissertation: (a) Coherent oscillations (fFR = 4 kHz) which signify a rotating helical 
equilibrium. (b) The same phenomena at higher frequency (fFR = 6 kHz). The frequency 
increases with current in the flux rope. (c) A transition of the signals in a more 
incoherent, intermittent mode. 
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with the current in the rope and not connected with the total discharge power. Under the 

conditions of IFR = 75 A and VD = 175 V (13 kW; Figure 4.6b), the flux rope is highly 

coherent and never leaves electric contact with the anode. At the same discharge power 

for a flux rope IFR = 130 A and VD = 100 V, the signals are more random. 

The incoherent behavior of the flux rope constrains the range of discharge 

currents over which three-dimensional reconstruction of the system is possible. Without 

volumetric data, global quantities like magnetic helicity cannot be calculated. Similarly, 

accompanying this intermittent behavior is the rise of a background spectrum. This 

background spectrum is not be predicted by simple, circular motion of a flux rope in the 

plane, yet it is visible even in when the flux rope exhibits coherent rotation. 

Understanding the link between the motion of the flux rope and this background 

spectrum is important when separating changes in helicity due to motion and changes in 

magnetic helicity due to magnetic reconnection. 

In this chapter, we evaluate this incoherent, random behavior – identifying some 

of its defining characteristics. In addition, we will gauge whether or not this behavior is 

indicative of a chaotic process. The hypothesis is that the signals are indicative of a 

chaotic orbit rather than another turbulent process such as wave turbulence. To evaluate 

this hypothesis, the power spectrum will be used to identify characteristic structures, or 

pulses, in the data. This will lead to the conclusion that the incoherent, magnetic signals 

are produced by the displacement of the plasma column. Then, the Bandt-Pompe (BP) 

Probability distribution calculated and complexity-entropy (C-H) analysis performed. 

This will be used to demonstrate that the displacement is indicative of a chaotic process. 
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5.2 – FLUCTUATION POWER SPECTRUM 

In Figure 5.2, the power spectrum is plotted for three discharge currents – each 

associated with a time trace in Figure 5.1. The plots are shown on a log-linear scale to 

call attention to the rise in the underlying background of each signal. Each background 

spectrum appears similar in form (a feature which will be discussed below).  The 

background is not associated with a spectrum of waves. Instead, it is the product of a 

common, repeating pattern (or structure) found in the magnetic signals – regardless 

whether the signal is coherent or random. Because it is a common feature, a coherent 

flux rope will be considered first. 

 

Figure 5.2 – The power spectrum associated with the three magnetic time traces shown 
in Figure 5.1. The spectrum is presented on a log-linear plot to show the rise in the 
underlying background as the current in the flux rope increases. 

The wavelet transform of Figure 5.1a is plotted in Figure 5.3c. In this example, 

the signal exhibits strong, coherent rotation at f = 4 kHz. This frequency is shown to 
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pervade the whole experiment. Also seen in the figure is the regular excitation of a broad 

range of frequencies. The interval between these events corresponds to the orbital 

rotation of the flux rope. As the flux rope moves in large and large circles around its 

stable position, the waveform recorded by the magnetic probe in the laboratory frame 

steepens, appearing either “pulse-like” or “ramp-like.” The sudden change in the 

magnetic signals from this type of waveform creates a broad range in frequencies. 

Similar behavior is visible at the turn on of the flux rope, where the sudden jump 

produces a range of frequencies. 

A small portion of the magnetic signal and its corresponding temporal derivative 

is plotted in Figure 5.3a and Figure 5.3b. Also marked are the times at which there is an 

excitation of a broad range of frequencies. These times correspond to spikes in the ! 

signals. The shape of these peaks (or minimums) generates the form of the power 

spectrum in Figure 5.2. In this way, the frequencies observed in the spectrum are not 

waves but indicative of a single process – a characteristic pulse in !. 

The temporal derivative of the magnetic field may be seen as a placeholder for a 

spatially varying electric field that is well correlated with the flux rope cross-section. 

This electric field can correspond to the electrostatic field associated with an 

electronegative flux rope (as seen in Chapter 3), or it can correspond to an induced 

electric field brought about the motion of the rope. The pulses then correspond to times 

when the flux rope passes the probe. This was evaluated by comparing !!"#$ and ! at the 

same location (x,y,z) = (5,0,870) cm outside the flux rope. A comparison between the 

two  signals  is  plotted in  Figure 5.4.  The sign of the magnetic signal is reversed so that  



! 68 

 

Figure 5.3 – (a) The time derivative of Figure 5.1a. The sharp spikes in the signal excite 
a broad range of frequencies. (b) A small portion of the magnetic signal from Figure 
5.1a. (c) The wavelet transformation of Figure 5.1a. A flux rope exhibited a strong 
coherent mode at 4 kHz. As the flux rope passes the probe, there is the regular excitation 
of higher frequencies. 
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the signals can be easily compared. With this correction, the two signals are found to be 

well correlated ( > 0.8). This is true at any position within the path of the flux rope. The 

width of each pulse corresponds to the time it takes for the flux rope to complete its 

transit passed the probe. This can be or approximated by ∆! = !!
!!!!"!!"#$%

. Using !!" != 4 

kHz, ! = 2.5 cm, and !!"#$% = 4 cm, the width of the pulse is predicted to be 50 !s, the 

width observed in Figure 5.4. 

 

Figure 5.4 – A comparison between the!!!"#$ and ! at the same location (x,y,z = 5,0,870 
cm) for a flux rope IFR = 55 A, Bz = 330 G, and L = 1100 cm. The signals are well 
correlated in time and space. In this way, ! reveal information about the position of the 
flux rope. 
 

The shape of each pulse will then depend on the position of the probe, the 

distribution of current density within the flux rope, the orbital radius, and frequency of 

rotation.   While   this   produces   numerous  different  spectra  within  the  experimental  
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Figure 5.5 – (a) The spectrum of magnetic b-dot signals associated with the three time 
trace in Figure 5.1. The temporal derivate may be interpreted as a spatially varying 
electric field inside the flux rope. The data is fit to Eq. 5.1. The shape of the background 
is produced by the shape of characteristic pulses in the data.  (b) The pulse shape was 
derived using the fit in (a) and is overlaid on the data for a flux rope of 75 A. (c) Using 
the fit in (a), the derived pulse from the spectrum is overlaid on the data for a flux rope 
of 130 A. The “skewness “ of the data is not preserved in the spectrum. 
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volume, the shape of each can be estimated by to an approximate form. Figure 5.5a plots 

the spectrum for ! signals that correspond to the three cases in Figure 5.2. Again, the 

results are plotted on a log-linear plot. On top of the data is shown a fit to the 

distribution: 

ℱ ! = exp! −! !  (5.1) 

where ! and ! are constants that can be calculated from the data. Eq. 5.1 is the spectrum 

associated with a pulse shape that is Lorentzian [Maggs 2012]. This characteristic 

exponential background is not uncommon in the LAPD and other experimental devices 

[Pace 2008, Hornung 2011] and can be indicative of a chaotic process [Gekelman 2014]. 

By numerically performing an inverse Fourier transform on the fits, the approximate 

form of the pulses are gained. Figure 5.5b and Figure 5.5c show the calculated pulse 

overlaid on the data. The two show good agreement when a line is added to the fit. In the 

case of 130 A, the pulse in the data is skewed. While the pulse shape will be retained in 

the Fourier transform, the “skewness” cannot be calculated from the spectrum.  

 

5.3 – INCOHERENT SIGNALS 

The preceding analysis was performed for a coherent flux rope – the exploration 

of a well-understood system before moving on to the incoherent one. As shown using the 

form of the spectrum (Figure 5.5), the pulses that are found in coherent signals are also 

found in the incoherent ones. It is reasonable to assume that if the translational motion of 

the flux rope causes the pulses in the coherent signals, then the same effect may 

produces the pulses in the incoherent signals. The pulses in the incoherent signals are 
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shorter, more numerous, and occur at random intervals. To demonstrate this, Figure 5.6 

shows a time trace of ! for a flux rope IFR = 130 A.  On the plot is marked the time 

difference between pulses. 

 

Figure 5.6 – The time derivative of Figure 5.1c (IFR =130 A). The sharp spikes in the 
signal excite a board range of frequencies. These pulses are not evenly space; however, 
they do have a preferential direction. 
 

It should be noted that the pulses in Figure 5.6 (just like those in Figure 5.3a) 

have a preferential (negative) polarity. This data was taken from a fixed probe. At this 

position (x,y,z = 5,0,870 cm), the preferred polarity of each pulse is negative. The 

preferred pulse direction, however, will change as a function of position. This can be 

demonstrated by counting the number and polarity of pulses at several locations in an !-

! plane. A movable magnetic probe was moved to 1,600 location in an !-! cross-section 

at z =  1060 cm.  

For a flux rope of IFR = 130 A, the number and polarity of pulses were counted. 

This was done in the following manner: Using the fit to the background spectrum in 

Figure 5.5a, the pulse shape was obtained. A cross-correlation was performed between 
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this pulse and each magnetic time trace acquired by the moveable probe. The pulse was 

slid through the data in time until good correlation (>0.9) was observed. The number, 

location, and polarity of each pulse were marked with +1 indicating a positive pulse and 

-1 indicating a negative pulse. This technique was utilized by [Pace 2009] to find 

Lorentizian pulses associated with a small current filament. 

 

 

Figure 5.7 – The average number of pulses in B! and B! at!! = 1060 cm. The figure is 
presented as a vector field with the number of pulses in B! being the !-component of the 
vectore and the number of pulses in B! being the !-component of the vector. Negative 
values in reflect negative pulses on average while positive values indicate positive pulses 
on average. 
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The results are plotted in Figure 5.7. The analysis was performed on both B! and 

B! so that the number and polarity of pulses could be shown as a vector field. On 

average the polarity of the pulses resembles the structure of a shear Alfvén wave  from a 

narrow current filament [Gekelman 2011]. This is related to the motion of the flux rope 

whose system of equations is related to that of an Alfvén wave. The perpendicular wave 

number !!!for the structure can be approximated using the radius of the flux rope (!!= 

!
!!!cm-1). A circle is drawn in the figure to show the equilibrium position of the flux rope. 

 

5.4 – COMPLEXITY-ENTROPY MAPPING 

Recent advances in statistical analysis have yielded a technique through which 

experimenters can parse the underlying physical processes of their system. By creating a 

distribution that quantifies the frequency of occurrence of certain patterns in a digitized 

time traces, a distinction is made between systems that are smooth and deterministic and 

others that are stochastic or chaotic [Bandt 2002, Rosso 2007]. In the LAPD, this 

technique has already been utilized on a system of two magnetic flux ropes embedded in 

an argon plasma [Gekelman 2014]. In this experiment, the system exhibited chaotic time 

traces. However, the analysis is sensitive to all sources of fluctuations – including 

motion of the ropes, interactions between two ropes, drift waves, and maser activity 

from the BaO source. In this chapter, we repeat the analysis for a single flux rope to 

eliminate second order effects.  

The analysis begins by computing the Bandt-Pompe (BP) probability distribution 

[Bandt 2002]. To compute the distribution, a collection of digitized time traces is 
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assembled. An “embedding space” of dimension ! is created by partitioning each time 

trace into numerous sets of ! consecutive points, or “d-tuples.” Each individual set is 

then ordered according to the amplitude of the elements within the set, and the order by 

which they occurred in the data is marked. 

For example, a tuple of size ! = 4 is given by A = {9, 6, 3, 12}. These are 

arbitrary values. Ordering them from largest to smallest, the order by which they 

occurred originally may be given by t = {4, 1, 2, 3}. In a time series with N points, there 

is a total of (N-!+1) !-tuples that can be generated. For each embedding dimension !, 

there are !! possible permutations (or in the example: possible orderings of t). From 

these orderings, the relative frequency or the probability a particular ordering of type ! 

is given by 

!!!!!!!!!!!!!!!!! ! =
# !! !! ≤ ! − !, !!!!! ,… !!!!!! ℎ!"!!"#$%&'&()*!!"#$!!

! − ! + 1  (5.2) 

Equation 5.2 is the Bandt-Pompe (BP) probability distribution [Bandt 2002]. Once the 

BP probability distribution is calculated, the form of the distribution can be mapped onto 

a plane. This is plane is known as a complexity-entropy diagram (C-H diagram) [Rosso 

2007]. In other words, a single time trace of recorded data is reduced to a set of two 

elements, {ℎ! , !!}. The position of this set on the plane can represents the type of physical 

process in the system. The diagram can discern between different degrees of periodicity 

associated with routes to chaos and can distinguish stochastic noise and chaos.  

Given a probability distribution !! = ! {!!,!!,…!!},!the entropy element of the 

diagram, called the Shannon entropy S, is calculated by: 
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! ! = − !!! ! ln!(!! !
!

!
) (5.3) 

The normalized Shannon entropy H is computed by dividing S by the maximum entropy 

according to: 

ℎ! =
!(!)
ln!(!!) (5.4) 

Therefore, the values of ℎ! fall between 0 and 1.  

Since BP probabilities with the same entropy do not necessarily have the same 

physical significance, to distinguish between processes that are chaotic and processes 

that are more stochastic, the complexity of a signal is defined as: 

!! = −2
! ! + !!

2 − 12 ! ! − 12 !(!!)
!!+ 1
!! ln !!+ 1 − 2 ln 2!! + ln!(!!)

ℎ! (5.5) 

Where !! is the maximum entropy state for which every member of the probability 

distribution have the same value 1/!!. While !! and ℎ! can be used as independent 

parameters of data analysis, there is a maximum and minimum complexity value for a 

given value of ℎ! [Martin 2006].  

Because the analysis relies on the partitioning of discretized sets of data, it is 

sensitive to the digitization rate at which the data was collected [Maggs 2015]. In the 

series of experiments presented here, the data was collected at a rate of 3 MHz. 

However, the physics associated with the motion of the flux rope is on the order of 10 

kHz. If the analysis was perform on a time whose points are separated by !" = 3.2x10-7 

s, then the resulting probabilistic distribution would appear either stochastic (only 
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sampling the high frequency noise) or periodic (if a low pass filter was applied to the 

signals before digitization). Therefore, to better capture the physical process associated 

with the motion of the rope, the data was subsampled every 10 points in the data. 

 

Figure 5.8 – The Complex-Entropy Plane for a single flux rope at varying currents. 
Each dot represents the reduction of a single magnetic time trace onto the plane. 
Between 50A and 100A, the flux rope are kink unstable for a background magnetic field 
of both (a) 330 G and (b) 660 G. For this range of currents, the flux rope exhibits strong 
coherent rotation, indicated by low entropy signals. The points for this range of current 
is indistinguishable on the plane. For 130 A, the signals transition toward chaos. This is 
indicated by their position above Fractional Brownian Motion (fBm). 
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Complexity-entropy analysis was performed on data collected from a fixed probe 

(x,y,z) = (5,0,870) cm for flux rope currents between 50 A and 130 A. Two background 

magnetic fields were considered: one at 330 G and another at 660 G. Over 35,000 time 

traces were considered, and an embedding space of ! = 5 was used. The results are 

plotted in Figure 5.8 and each dot represents a single analyzed time trace. Between 50 A 

and 100 A, the flux rope exhibits coherent rotation for both a flux rope at 330 G and 

another at 660 G. This is reflected in the C-H plane, presented on the plane at low 

entropy. This is a check on the validity of the analysis.  

At 130 A, the collection of points shifts in the C-H plane. This indicates a 

transition in the behavior of the flux rope. There is an increase in both entropy and 

complexity. The collection of points for 330 G and 660 G both lie above the line which 

indicates Fractional Brownian Motion (fbm). This line serves as a separator between 

chaos at high complexity and stochastitity at low complexity [Mandelbrot 1968]. Both 

signals at 330 G and 660 G may be considered chaotic. However, the signals at 660 G 

represent motion with high entropy, appearing more stochastic, than those at 330 G.  
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CHAPTER 6 – Canonical Helicity 
 
 
 

6.1 – INTRODUCTION 

In astrophysics, magnetic flux ropes are modeled using the assumption of a 

perfectly conducting fluid. Under this condition, the motion of the fluid is bound by the 

conservation of the quantity: 

!! = ! ∙ !!" (6.1) 

Here, A is the vector potential; B is the magnetic field (! = !×!); and !! is the 

magnetic helicity. Magnetic helicity has geometric significance. Eq. 6.1 is a generalized 

expression for a topological linking number, describing the linkage of magnetic flux 

tubes. Equivalently, the expression characterizes magnetic twist and writhe. This has 

been addressed by [Moffat 1978], [Pfister and Gekelman 1991], [Berger 1999], [Bellan 

2000], and [Blackman 2015] – among others.   

In this experimental work, however, flux ropes cannot be modeled using the 

MHD approximation - the field lines are not frozen to the flow, large pressure gradients 

exist, and the electric field has a dominating electrostatic component. In addition, plasma 

resistivity on the order of or larger than its classical value can have a great effect on the 

motion of the flux rope system itself. This limits the use of magnetic helicity as a 
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constant of motion. 

While its use is constrained for the experiment as a whole, magnetic helicity is 

still a valuable quantity during events of magnetic reconnection because its non-

conservation can be connected to dissipation in the plasma.  In this chapter, we examine 

magnetic helicity for two-flux ropes. The flux rope are driven kink unstable so that they 

thrash about and periodically collide, producing magnetic reconnection. Magnetic 

helicity and its two fluid counterpart, canonical helicity, are evaluated during a 

reconnection event. We conclude that the dissipation of relative helicity in the flux ropes 

is balanced by the electric field generated during reconnection. 

 

6.2 – TWO FLUX ROPE INTERACTION 

 This chapter focuses on a system of two magnetic flux ropes (! = 3.75 cm, ! = 

1100 cm, Bz = 330 G, VD = 120 V, IFR = 300 A each). The flux ropes are driven unstable, 

each going unstable at !!"/2. In addition to twisting about each other due to !×! forces, 

each flux rope exhibits coherent rotation about its equilibrium position. Unlike a single 

flux rope, the path of each flux rope does not take the form of a perfect circle. Instead, 

the orbit becomes elongated as the two flux ropes interact, writhe, and merge close to the 

anode. The merging process of the two flux ropes was demonstrated in Chapter 3.  

The consistency of coherent motion (Chapter 4) produces repeatable signals 

throughout the system. This repeatability is utilized to reconstruct quantities (B, E, v, 

etc.) point for point over the course of a few weeks of data acquisition. Several probe 

diagnostics were used to generate fully three-dimensional datasets of relevant quantities 
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– including the magnetic field (B), vector potential (A), current density (J), electric field 

(E), ion flow (v), and plasma pressure (Pe). 

The two flux ropes are three times hotter (Te = 12 eV) and five times denser (nrope 

= 5x1012 cm-3) than the background plasma with a current density as high as 5 A/cm2. 

The perpendicular pressure force points radially outward from the center of each flux 

rope and is balanced by the inward forces of JxB. The electrostatic field points inward 

toward the center of each flux rope as the ropes are electrostatically negative with 

respect to the plasma background.  This electrostatic field generates ExB flows that 

spiral around the two flux ropes. In the parallel direction, an electrostatic field, produced 

by the discharge voltage, is responsible for electron streaming along the field to form the 

flux ropes. Similarly, axial pressure gradients lead to ions flows along the field. These 

quantities are used in the calculation of canonical helicity.  

  

6.3 – IDENTIFICATION OF MAGNETIC RECONNECTION 

To identify when and where magnetic reconnection occurs, a squashing factor, or 

q-value is employed. A q-value is a topological description of magnetic field line 

divergence [Priest 1995, Titov 2002, Démoulin 2006]. Using the fully three-dimensional 

magnetic dataset, hundreds of field lines are seeded and fixed at z = 0 m. Then, using 

spline coefficients calculated from the data, the field lines are followed axially until their 

x-y locations (denoted here as!!(!,!, !),!(!,!, !)) are determined at z = 11 m. With the 

end positions of these field lines, q-values are calculated:   
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! =
∂!
∂x

!
+ ∂!

∂y
!
+ ∂!

∂x
!
+ ∂!

∂y
!

B! z = 0!m /B! z = 11!m  (6.2) 

Eq. 6.2 is a mathematical projection of the field-line topology onto a plane, having a 

unitless lower bound of 2.0. When ! becomes large on multiple, adjacent field lines, the 

collection of these field lines is called a Quasi-Separatrix Layer, or QSL.  

Figure 6.1 shows a surface of constant ! using field line data and Eq. 6.2. A 

direct calculation of ! is shown in Figure 6.1a at a time when ! is large (! = 5.67 ms). 

Each field line is reduced to a single scalar, and ! is therefore plotted in a plane by 

definition. A collection of large !-values snakes between the two ropes, forming a QSL. 

A three-dimensional representation of the QSL is presented in the Figure 6.1b. The flux 

ropes are born at the mask then twist around each other as they develop axially. The 

QSL in the figure represents the collection of field lines whose ! values are greater than 

200. The structure manifests between the flux ropes over the length of the flux ropes. 

Previous flux rope experiments on the LAPD have demonstrated that a QSL 

forms periodically, snaking in between two flux ropes that at repeatedly collide and 

merge [Lawrence 2009, Gekelman 2016]. During the periodic formation of the QSL, 

neighboring field lines diverge as they pass though the layer, suggesting a reconnection 

event. In this experiment, a QSL forms every 200 µs (or at a rate of 5.1 kHz) as long as 

the flux rope are driven kink unstable. 

To further demonstrate that this topological quantity is linked to magnetic 

reconnection,   the  amount  of  energy  dissipation  within  the  QSL   was  estimated  by  
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integrating ! ∙ ! !"!"# . The dissipation of energy inside the QSL peaks at 

approximately 100 Watts, a small fraction of the 100 kW used in the formation of the 

ropes. Over the formation and diminution of the QSL, the total change in energy is -2 

mJ, which corresponds to 0.2 Gauss of annihilated magnetic energy. This number was 

corroborated with the measurement of magnetic energy density in side the same region.  

 

6.4 – MEASUREMENTS OF RELATIVE MAGNETIC HELICITY 

Magnetic helicity is only preserved within magnetic flux surfaces [Taylor 1974]. 

When the volume integral of ! ∙ ! is not enclosed by a magnetic flux surface, there is no 

absolute measure of magnetic helicity. For a straight flux rope enclosed in a cylindrical 

volume, the magnetic field line do not close inside the experimental volume. Since the 

magnetic field was not measured past the walls of the experimental device, Eq. 6.1 

cannot be used to evaluate HM. To solve this problem, relative magnetic helicity is 

utilized instead: 

!! = ! !+ !′
!

∙ !− !! !" (6.3) 

!’ and !’ are reference fields such that !’ = ∇×!!′. !! is the relative magnetic helicity, 

a concept developed by [Berger and Field 1984] , [Jensen and Chu 1984], [Finn and 

Antonsen 1985], and others. For a cylindrical flux rope, a convenient reference field is 

!’ = !!, the background field which penetrates the ends of the volume and a constant in 

space and time [Hu and Dasgupta 2005]. 

We focus on the changes of relative magnetic helicity inside the QSL. Inside this 
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layer, the field lines are undergoing the most rapid change, and therefore helicity is of 

interest and may be conserved. We focus on the temporal derivative of relative magnetic 

helicity because it takes a more physical meaning then a direct calculation of !! inside 

the volume. 

When the flux ropes collide and reconnect, a small amount of magnetic field is 

annihilated. This produces an electric field, which can be identified in the data and used 

to locate times and regions of reconnection. This induced electric field is linked to 

changes in magnetic helicity, and these changes can be broken down into two integrals 

[Berger and Field 1984]:  

!!!
!" = −2 −!!!" ∙ ! dV

!
− −!!!" × !+ !′

!
∙ !! (6.4) 

In Eq. 6.4, the volume integral is a source (or dissipative) term of magnetic helicity 

while the surface integral represents its transport. Each term in Eq. 6.4 was evaluated.  

To demonstrate the spatial dependence of helicity dissipation, –!!/!"  is 

integrated along the field lines. Mathematically, this is expressed as a dissipation: 

! = −2 −!!!" ∙ ! !"
!"#$%!!"#$

 (6.5) 

D, when viewed in a plane, spirals around the two flux ropes (Figure 6.2). This is the 

result of the flux rope’s elliptical motion in the x-y plane. At the time of formation of the 

QSL, a tendril of dissipation reaches out and snakes between the two flux ropes. This 

dissipation  is  due  to  reconnection  and  is  temporally  and spatially correlated with the  
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QSL. The remaining dissipation is from the resistive currents.  

Eq. 6.5 is related to the quasipotential, Ξ . This quantity is computed by 

integrating along field lines: 

Ξ = ! ∙ !!
!"#$%!!"#$

 (6.6) 

While Eq. 6.5 included only the induced electric field, Eq. 6.6 is the total electric field. 

This term will be added below. In terms of magnetic reconnection, Eq. 6.6 is a direct 

measurement of the global nonlinear reconnection rate [Hesse 2005]. Recent simulations 

suggest that magnetic field lines passing through the QSL are associated with non-zero 

values in Ξ [Wendel 2013]. This is what is observed here. In this chapter, it is used in the 

context of magnetic helicity.  

An additional benefit of presenting!! is that it defines regions of interest that can 

be isolated from the rest of the plasma. Changes in helicity can be used to estimate 

plasma resistivity [Bellan 2000] according to 

η !"# = −!!!" ∙ ! !"
!"#

! ∙ ! !!"
!"#

 (6.7) 

Instead of using the dissipation of helicity to estimate resistivity over the entire 

experimental volume, we isolate the volume of field lines located within the QSL. These 

are the field lines potentially undergoing the most change. Eq. 6.7 yields a lower bound 

resistivity of 1.7×10-5 Ω-m due only to the annihilated magnetic field. This is a 

resistivity approximately equal to the classical resistivity for 10 eV electrons.  
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Figure 6.3 – (a) The dissipation and influx of magnetic helicity (Eq. 6.4) into the QSL 
(q=100). The addition of the two traces yields the time derivative of magnetic helicity, 
!!!
!" , during a collision between the two flux ropes. (b) The color map represents ! (Eq. 

6.5) calculated at t=5.67 ms. The arrows represent ! (Eq. 6.8) calculated at t=5.67 ms. 
 

Equation 6.4 was evaluated using the volume of the QSL as the region of 

interest. The volume integral and the surface integral of Eq. 6.4 were calculated 

separately and are plotted in Figure 6.3. The solid curve in Figure 6.3a is the resistive 
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dissipation of magnetic helicity inside the QSL. The dashed curve in Figure 6.3a is the 

transport of magnetic helicity into or out of the QSL. The terms do not balance. While 

magnetic helicity is moving into the QSL as the two ropes collide, it is not enough to 

supplant the magnetic helicity that is dissipated. A 2-D representation of this process is 

plotted in Figure 6.3b. This figure shows D at the time of peak dissipation. The contour 

of ! = 100 is drawn to show spatial correlation with D. The arrows represent helicity 

transport into the QSL, calculated using: 

! = !− −!!!" × !+ !′
!"#$%!!"#$

!" (6.8) 

Because the dissipation of helicity does not balance helicity flux, this suggests a missing 

term(s) in Eq. 6.7 or Eq. 6.8. 

 

6.5 – CANONICAL HELICITY 

Up to this point, helicity has been viewed in an MHD sense. In this description, 

the plasma was treated as a single flux with no electrostatic fields or pressure gradients. 

This is certainly not the case for the experimental system – as shown in Chapter 3. 

Therefore, the former picture is an insufficient description. Instead, an extended fluid 

picture involving heretofore ignored quantities is used. This is done by untilizing 

canonical helicity, as introduced by [You 2012]. Canonical helicity is a fluid counterpart 

to magnetic helicity, and its conservation has been proposed in lieu of the MHD model. 

The use of this new model is beneficial because it includes the effect of electrostatic 

potential, temperature, and flow on magnetic helicity.  
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Figure 6.4 – A three-dimensional representation of (electron canonical vorticity, blue) 
and (ion canonical vorticity, red) at t=5.67. The two fluid approach to helicity, canonical 
helicity is defined as the self-linkage of these quantities. 
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Calculations of canonical helicity begin with the canonical momentum of a fluid 

element in the plasma, given by !! != !!!!! + !!. Here, !! and q are the mass and 

charge   associated   with   a   species, q, and !! represents   the fluid flow   of   that 

species. Generalized vorticity is introduced as the curl of canonical momentum 

(!! = !×!! ). By integrating !! ∙ !!  over the entire volume, canonical helicity is 

derived.  

Canonical helicity is a generalized expression for a topological linking number 

that describes the self-linkage of canonical vorticity, !!. The ion and electron species 

each have their own canonical vorticity. “Field lines” of !! and !! are shown in Figure 

6.4. Because the mass of the electron is negligible, !! is equivalent to the magnetic 

field. One the other hand,!!! includes the addition of vorticity to the magnetic field. 

Therefore, the self-linkage of !!  and !!  differs from one another. Each will be 

considered separately.  

 To ensure that canonical helicity is gauge invariant, an arbitrary reference field 

is added to each physical quantity (!,!,!…) that penetrates the surface surrounding the 

experimental volume as in Eq. 6.2. This reference field !′  satisfies the criteria 

! ∙ ∇! = !′ ∙ ∇!, where ! is a stand-in for any experimental quantity and S is the surface 

of the experimental volume. Using this reference field, relative canonical helicity is 

defined in the same manner as relative magnetic helicity: 

K! = ! !! − !′!
!

∙ !! + !′! !" (6.9) 

  As before, temporal changes in K! are broken down into a volume integral and a 
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surface integral. This not only includes the induced electric fields but also temperature, 

density, plasma potential, and flows. 

dK!
dt = !− !!! ∙ !!! + !!! ∙ !!!

!"#
!V − ℎ!!!!! + !!!×

!!!!
!!!"#

∙ !! (6.11) 

The volume integral is the generalized source and sink of canonical helicity, where 

!! = −!ℎ! − !!!
!!  and ℎ! = !" + 1 2!!!!! + !!! !  for a single species q [You 

2015]. The first term in the surface integral is the generalized helicity injection from an 

electrostatic potential. And the second term in the surface integral is the AC injection of 

canonical helicity from the changing vector potential !! !". 

Considering, first, electron canonical helicity: the dissipative term (!! ∙ !!) is 

found to be spatially and temporally correlated with the QSL. This region of helicity 

decay snakes through the center of the two flux ropes as they begin to collide. The 

dissipation of helicity within this region is three times greater than the pure MHD case. 

By defining the region of interest to be within the QSL, the contribution to the resistivity 

from each term in !! is calculated. The contribution from the induced electric field is 

1.7e-5 Ω-m. The contribution from the electrostatic term is 1.0e-5 Ω-m, and the 

contribution from the pressure term is 1.8e-5 Ω-m. When added together, the volume-

averaged resistivity within the QSL becomes approximately three to five times the 

classical value. Figure 6.5 plots a comparison between helicity dissipation due to the 

different terms in!!!. Each term is separately coincident with the QSL. Adding the 

graphs yields the total amount of canonical helicity dissipated within the QSL. 
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Figure 6.5 – A comparison between the amount of electron canonical helicity 
dissipation inside the QSL due to the terms in !!: (a) from the induced electric field, (b) 
from the electrostatic field, (c) from the pressure gradients. The total is plotted in (d). 
 

The arrows in Figure 6.6b represent the influx of electron canonical helicity into 

the QSL. Visualizing the data in this manor is a useful technique to demonstrate that as 

Ke is being dissipated within the QSL (represented by the color bar in Figure 6.6b), it is 

also   being   replaced   by  an  influx  of  helicity  across  the  boundary.   Both  the  total  
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Figure 6.6 – (a) The dissipation and influx of electron canonical helicity (Eq. 6.9) inside 
the QSL (q=100). The addition of the two traces yields the time derivative of Ke during a 
collision between the two flux ropes. (b) The color map represents the dissipation of 
electron canonical helicity calculated at t=5.67 ms. The arrows represent the influx of the 
same quantity inside into the QSL calculated at t=5.67 ms where T-V is a Tesla-Volt. 
 

dissipation and the total influx of Ke into the QSL are tracked during an experimental 

reconnection event, plotted in Figure 6.6b. Unlike Figure 6.3, which used only the 

induced electric field, there is a balance between canonical helicity dissipation and 
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canonical helicity influx. This results in!!!! !" ~ 0 inside the QSL. The inclusion of the 

electrostatic potential is crucial to the balancing of the two integrals in equation. 

 

Figure 6.7 – The temporal derivative of ion canonical helicity during the collision of the 
flux ropes (the peak on the left and their subsequent separation (the peak on the right) (a) 
The dissipation of ion canonical helicity inside the QSL (q=100) according to the 
volume integral of Eq. 6.11. (b) The influx of ion canonical helicity into the QSL 
calculated using the surface integral of Eq. 6.11. Note: !!!/!"!= a-b~0. 
 

The temporal changes in Ki are shown in Figure 6.7. Figure 6.7a plots the 

dissipation of Ki inside the QSL, and the Figure 6.7b plots the influx of Ki into the QSL. 

Both are similar in magnitude and shape. When added together Figure 6.7a and Figure 
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6.7b yield!!!! !"!~!0. The figure includes not only the formation of a QSL as the two 

ropes collide (the first peak) but also the formation of a second QSL that occurs when 

the flux ropes break apart (the second peak). 

The second peak is the consequence of the introduction of the ion flow into the 

calculations. The second peak corresponds to the times in which the flux ropes are in the 

process of breaking apart, when another QSL forms between the flux ropes. While there 

is no appreciable dissipation of Ke during this period, there is for Ki. This is caused by an 

increase of kinetic ion flow inside the QSL. Considering the energy density of kinetic 

ion flow (!!!!!!!) within the QSL, the increase in kinetic energy as the flux ropes break 

apart approximately equals the energy dissipation, ! ∙ ! !"!"# , over the period of QSL 

formation– 20 Watts over 10 microseconds, or 2×10-4 Joules. 

 

6.6 – SUMMARY 

In this chapter, two dynamical flux ropes were examined to determine the effects 

of magnetic reconnection on magnetic helicity. Volumetric measurements of this system 

were taken of the magnetic field, temperature, density, plasma potential, and ion flows. 

The importance of measuring each term, which included non-ideal MHD physics, was 

demonstrated from the fact that the electrostatic component of the electric field, the 

induced component of the electric field, and the pressure gradient term contribute 

equally to the resistivity within the region of reconnection.  

The flux ropes were driven kink-unstable to trigger repetitive motion. As they 

interacted, helicity conservation was examined in regions of reconnection. This was 
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done by focusing on the temporal derivative of magnetic helicity instead of its absolute 

magnitude. The changes to helicity were separated into the dissipation of helicity and the 

influx of helicity. These were separately tracked within the QSL. If the changes in 

magnetic helicity are calculated using ideal single fluid MHD physics, helicity is not 

conserved. If a two-fluid approach that includes the electrostatic fields is used, the 

dissipation of canonical helicity is balanced by an influx of canonical helicity into the 

reconnection region. Both electron canonical helicity and ion canonical helicity are 

individually balanced in a reconnection event.  
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CHAPTER 7 – Conclusion 
 

7.1 – SUMMARY OF RESULTS  

Two magnetic flux ropes were created in the Large Plasma Device (LAPD) by 

injecting initially field-aligned currents into a background, helium plasma. The two 

magnetic flux ropes were driven kink-unstable. They thrash about, collide, and merge. 

The goal of this experiment was to simulate magnetic flux rope as they are found in the 

solar atmosphere: where bundles of flux ropes are ubiquitous and the collision between 

multiple flux ropes can initiate magnetic reconnection. This system was used to test 

concepts of helicity conservation theory. In the experiment, magnetic reconnection was 

identified during a collision between the two magnetic flux ropes. A QSL forms as the 

reconnection occurs. Over the reconnection event, the dissipation and flux of magnetic 

helicity in the QSL was examined. 

First, to aid in the understanding of kink motion, a single flux rope was created in 

a separate series of experiments. The various components of the motion were identified 

by the Fourier spectrum of magnetic time traces. There are two distinct types of motion. 

The first type is associated with elliptical motion of the flux rope in the transverse plane. 

This motion is highly coherent, repeatable, and pervades the entire experimental volume. 

This coherent mode manifests as multiple, harmonic, peaks in the Fourier spectrum. The 

harmonics are the result of flux rope excursions greater than or equal to the original 
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radius of the flux rope. The particulars of this motion depend on the current in the flux 

rope and the discharge power. An increase in power corresponds to an increased 

displacement of the flux rope in its elliptical motion. 

The second motion is characterized by intermittent pulses seen by magnetic 

probes, which are sensitive to !. These magnetic pulses are associated with a spatially 

varying electrostatic field inside the flux rope and an induced electric field from the 

motion of the rope. The intermittency of the pulses prevents three-dimensional, spatial 

reconstruction. The signals become more intermittent as the current in the flux rope 

increases and does not appear to be connected with the kink threshold. Simultaneous 

measurements along the axis of the LAPD observe pulses that are well correlated in 

space. This suggests that these intermittent pulses are connected to large-scale structures, 

possibly related to a characteristic orbit of the large-scale flux rope. Complexity-Entropy 

analysis was performed on the intermittent magnetic time traces. The result showed that 

the time traces were chaotic. 

In the magnetohydrodynamic (MHD) limit, the behavior of magnetic flux ropes 

is bound by rules of magnetic helicity conservation. Magnetic helicity was examined 

during a magnetic reconnection event between two magnetic flux ropes. Both MHD 

theory and an extended MHD model were used and evaluated during reconnection. 

Volumetric measurements of this system were taken of the magnetic field, electron 

temperature, density, plasma potential, and ion flows. The importance of measuring each 

term was demonstrated by the fact that the electrostatic component of the electric field, 

the induced component of the electric field, and the pressure gradient term contribute 
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equally to the resistivity within the region of reconnection. 

To identify regions of magnetic reconnection, a squashing factor,!!, is computed 

for the field line configuration. Regions of large ! are identified as quasi-separatrix 

layers (QSLs). Within the QSL, 0.2 G of magnetic energy is annihilated (approximately 

2 mJ, 100 W over 20 !s), determined by measurements of ! ∙ !. By focusing not on the 

magnitude of magnetic helicity but on its temporal derivative, the dissipation of helicity 

and the influx of helicity are tracked separately within the QSL.  

Using terms only associated with MHD physics, the magnetic helicity is shown 

to dissipate inside the QSL due to the induced electric field from magnetic reconnection. 

This dissipation is not balanced by an influx of magnetic helicity into the region. 

Because the flux ropes are electrostatically negative with respect to the background 

plasma, the addition of an electrostatic term is required in order for the two to balance. 

The term was added using a MHD-like fluid theory of magnetic helicity, called 

canonical helicity [You 2012]. The inclusion an electrostatic term generates additional 

helicity dissipation (−∇!! ∙ !) inside the QSL. This dissipation is balanced by a helicity 

injection term (!!!). Both electron canonical helicity and ion canonical helicity are 

separately balanced during a reconnection event. increased flows around the 

reconnection site.  

While previous works have used the conservation of canonical helicity to model 

astrophysical jets [Lavine 2017] and two, relaxing, magnetic flux ropes [You 2014], this 

dissertation presents the first experimental measurements of relative canonical helicity. 

The theoretical model ties electrostatic helicity injection to magnetic fields and flows. 
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This work demonstrates the importance of theoretical models which do just that. In 

addition, this work underlines the importance of electrostatic fields within the flux rope 

currents as well as in the QSL. Specifically the transport of canonical helicity into the 

QSL was shown to equal the dissipation within it.  This has application to solar magnetic 

flux rope where QSLs have been used to identify magnetic reconnection as well as other 

types of reconnection events. 
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APPENDIX A – FREQUENCY SCALING 
                     OF COHERENT ROTATION  
 
 
A.1 – INTRODUCTORY REMARKS 

  Equations 4.1 through 4.3 predict the threshold at which the flux rope becomes 

kink unstable. However, above the kink threshold (IKS/2), these equations only predict 

imaginary frequencies. The dispersion relation is given by 

!!

v!!
= !!
4!! −

!!!
4  (A.1) 

Despite this fact, the unstable system shows strong, well-defined real frequencies. The 

scaling of this frequency is not well understood. To that end, the frequency scaling 

associated with flux rope rotation will be reviewed. A single flux rope will be considered 

at various experimental parameters. In Section A.5, these measurements will be 

compared to four hypotheses that have been commonly used to explain its behavior.   

 

A.2 – SCALING WITH MAGNETIC FIELD 

Two magnetic flux ropes were separately generated: both with a radius of 3.75 

cm and a length of 1100 cm.  One flux rope carried 75 Amps of current while the other 

carried 120 Amps. The background magnetic field was varied between 330 G and 1500 
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G. Each flux rope was the kink unstable for the external fields used in the experiment.  

Figure A.1 plots the frequency of coherent rotation as a function of the background 

magnetic field. For each set of data, the frequency of mode increases with the 

background field. However, a doubling of the magnetic field does not double the 

frequency – as one would expect if the rotation of the flux rope were explained by a 

simple, standing Alfvén wave (! = !!
!!/!!). On interesting feature is that the two curves 

cross one another such that the dataset for I = 75 A rises above the dataset at 120 A. 

 

Figure A.1 – The frequency of coherent rotation as a function of the background 
magnetic field. Two separate flux ropes were generated (!! = !3 cm, !! = !1100 cm). 
The two instances are plotted: 1) for a flux rope of 75 A and 2) a flux rope of 120 A.  
 

A.3 – SCALING WITH LENGTH 

 In a single experiment, the anode was bought closer to the LaB6 cathode such 

that the length of the flux rope was reduced from 1100 cm to 550 cm. In this way, the 
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character of coherent rotation could be gauged as a function of length. Without explicitly 

plotting the results, the scaling with the external magnetic field and the current in the 

rope retained the same form as Figure 4.3 and Figure 4.8. In this instance, however, the 

frequencies increased by a factor of 1.4.  

 

A.4 – SCALING WITH MASS DENSITY 

The LAPD has four working gasses (H, He, Ne, Ar) from which a plasma might 

be produced. By changing the working gas, the coherent mode may by explored as a 

function of mass density. This is an important quantity because it affects the Alfvén 

velocity. A single flux rope was embedded in an argon plasma. The current in the flux 

rope (a = 3.75 cm, L  = 550 cm) was slowly raised until it went kink unstable. Figure 

A.2 plots the kink transition for the flux rope at two background fields. 

Unlike the helium flux rope, drift waves play a dominant role in the transition. 

Drift waves can be found in flux rope experiments because the flux rope is hotter and 

denser than the surrounding medium (see Section 3.2). The pressure gradients between 

the core of the flux rope and the ambient medium are a source of free energy. This drives 

waves along the pressure gradients of the flux rope with a phase velocity equal to the 

electron diamagnetic velocity v!". The frequency associated with drift waves [Swanson 

1989] is given by 

!!" =
v!"

2!"! 1+ !!!! !  (A.2) 

Where !! is the perpendicular wave number and !! is the ion sound gyroradius. Using 

v!" ~ 4x105 cm-s-1 and a flux rope of 10 eV, !!!! ~ 0.5 for an argon plasma. This places 
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the predicted frequency associated with a drift wave near 15 kHz. In Figure 4.2a, a 

distinct peak occurs near this frequency, which phases out as the kink instability is 

triggered. In Figure A.2b, the same mode is broad in character and does not phase out as 

the flux rope transitions into the coherent mode.  

 

Figure A.2 – (a) The transition from a stable to and unstable flux rope in an argon 
background plasma for Bz = 330 G. (b) The transition from a stable to and unstable flux 
rope in an argon background plasma for Bz = 660 G. 
 

This observed mode is not the standing Alfven wave predicted by Eq. A.1. The 

frequency predicted by Eq. A.1 is given by  

! = !!
4! (A.3) 

For an Alfvén speed of 7x106 cm-s-1 and a length 550 cm, the predicted real frequency is 
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5 kHz. A faint peak in the spectrum can be observed at this frequency below !!"/2 in 

Figure A.2a. This corresponds to the standing Alfvén, which also phases out as the kink 

instability is triggered.  As it transitions into the coherent mode, frequency drops to 2 

kHz. This is approximately 2.5 times lower the frequency observed under the same 

conditions in helium, close to but not exactly the square root of the mass ratio between 

argon and helium: !!" !!" = 3.2 

 

A.5– TESTING OF COHERENT FREQUENCIES. 

We explore the factors which determine the frequency of coherent, flux rope 

behavior. This is defined as the orbital rotation of the flux rope in the plane. Eq. 4.1 with 

the associated boundary conditions (Eq. 4.2 and Eq. 4.2) fails to produce real frequencies 

above !!"/2. Previous experiments have the sought to explain the observed orbital 

rotation of the flux rope with a variety of hypotheses. These include orbital rotation 

driven by a radial electrostatic fields [Berger 2006, Paz-Soldan 2011], axial ion flow 

[Intrator 2007, Oz 2011, Van Compernolle 2011], modified boundary conditions 

[Gekelman 2016], and bulk resistivity [Ruytov 2006]. In this section, these hypothesis 

will be tested by comparing them to the observed scaling of Section 4.5. 

 

A.5.1 – ELECTROSTATICALLY DRIVEN KINK ROTATION 

 [Bergerson 2006] and [Paz-Soldan 2011] proposed that the orbital rotation of the 

flux rope was driven by radial electric fields. The flux rope is electrostatically negative 

with respect to the background plasma (see Chapter 3). A radial electric field points 
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toward the center of the flux rope, and the magnitude of the electric field scales with 

discharge current. This could explain the increase in frequency which accompanies the 

increase in flux rope current (Figure 4.3). 

An investigation of this hypothesis is considered in two ways: The first deals 

only with the absolute magnitude of the local, radial electric field at the edges of the flux 

rope. The second performs a volume-averaged measurement. In the first and simplest 

case, the radial electric field at the edge of the flux rope is 4 V/cm. With a background 

magnetic field of 330 G and an orbital radius on the order of 3 cm: 

!!"# =
!!
!!

1
2!!!"#

!~!40!!"# (A.4) 

This value is an order of magnitude too large and cannot explain the observed 

frequencies. 

 

Figure A.3 – A presentation of how symmetry in the electric field can be broken and 
how it can establish a non-zero, volume-averaged, radial electric field. A radial electric 
field can be created by the deformation of the x-y cross-section. By centripetal forces, a 
large electric field manifests on the outer edge resulting in a non-zero electric field in the 
plane. 
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In contrast to using a !!  at one radial location, the volume-averaged electric 

field is considered. In order for the volume-averaged electric field to be non-zero, axial 

symmetry must be broken. Suppose the flux rope is deformed according to the shaded 

surface in Figure A.4. This would result in a non-zero radial electric field after averaging 

over the rope, and the flux rope would travel in the same direction of the observed 

rotation (+!) in the LAPD. 

 

Figure A.4 – (a) The volume-averaged electric field vector over several periods of flux 
rope rotation from !! = !4!ms to !! = !5 ms. The vector rotates with the flux rope and 
produces !×! estimates of 2 to 10 kHz (b) The instantaneous current density profile as 
it moves in a circle around the equilibrium position. The current profile deformed into a 
moon shape. 
 

For a single flux rope experiment (IFR = 120 A, VD = 220 V, Bz = 330 G, a = 3 

cm, L = 1100 cm), the volume-averaged electric field was evaluated. Figure A.4 shows 

the radial electric field vector over several milliseconds. The vector presents itself 

moving in a circle with the motion of the flux rope. The resulting estimates of rotation 

are between 2 and 10 kHz, the correct order of magnitude to explain the phenomena. 
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Despite being the right order of magnitude, we experimentally verified that the 

frequency predicted by this hypothesis does not scale properly with Bz (!! ∝ 1/!!). 

Similarly, the predicted frequency has amplitude dependence (!" ∝ !!"#) whereas none 

was observed in the experiment. We rule out this effect, and will not consider the kink 

mode as the key driver. 

 

A.5.2 – ION FLOW 

 [Ryutov 2006] introduces a state-state axial ion flow to Eq. 4.1 by applying a 

Galilean transformation such that the operator ! !"  becomes ! !" + v! !" . 

Modifying Eq. 4.1, the transformed description of the flux rope is 

!
!" + v

!
!"

!
! = 2!!!

!!!
!!! + !!!

!"
!"  (A.5) 

When Eq. A.5 is solved and the appropriate boundary conditions imposed, the effect of 

axial flow is to lower the current threshold sufficient to trigger the instability. This 

threshold becomes 

!!"#$ =
!!"
2 1−!!

! (A.6) 

where !!  is the Alfvenic Mach number. As discussed in Chapter 3, this value is 

approximately !! = 0.02. It is an order of magnitude lower than the flows expressed as 

a fraction of the sound speed. It is unlikely in the LAPD that the background flows of a 

flux rope experiment will become supersonic, and therefore, the flow of ions between 

the cathode and anode have little effect on the kink threshold. 

 However, small ion flows can introduce substantial real frequencies into the 
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system. Above the critical, current threshold, the real frequencies governing the 

displacement of the plasma column are given by 

Re! ω = − v!!!!!
= −!v!

!
!!"

 (A.7) 

Using ion flow as an explanation to the coherent rotation observe in numerous flow rope 

experiments is appealing because the frequency of the mode scales with the current in 

the flow ropes. Similarly, the mode is independent of the direction of the external 

magnetic field, and the negative sign in front of the term predicts the proper direction of 

rotation (+!). Using a flux rope 3.75 cm in radius, a background magnetic field 

!! != !330!G, and !! != !10 G, the resulting real frequency is 500 Hz.  This is an order 

of magnitude less than the observed frequencies.  

Even if the estimates of axial flow are incorrect, the mode is inconsistent on two 

points: 1) the theoretical mode is independent of the length of the flux rope and 2) the 

mode is inversely proportional to the background magnetic field. As stated above, by 

cutting the length of the flux rope in half, the frequency of rotation increases. To the 

second point, the frequency of rotation is observed to scales proportionally not inversely 

proportionally to the background magnetic field. 

 

A.5.3 – MODIFIED BOUNDARY CONDITIONS. 

 The solution to Eq. 4.1 is sensitive to boundary conditions. A change in the 

boundary conditions can change threshold at which the flux rope goes kink-unstable. 

Similarly, a change in the boundary conditions can introduce real frequencies into the 

dispersion relation above the kink threshold. Because the anode is semi-transparent, the 
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proper boundary conditions are uncertain, and therefore other boundary conditions 

should be tested. This section changes the boundary condition at the anode in two ways: 

1) by including finite sheath resistance at the anode and 2) by changing the angle at 

which the flux rope meets the anode. 

 [Ruytov 2006] developed a dimensionless parameter ! to gauges the role of 

sheath resistance: 

! = !!
v!

!
!!!"

!
!! (A.8) 

 where !!"  is the plasma frequency of ions, and !! = !!!!!!
!!!

. When ! ≫ 1 , the 

dispersion relation rapidly approaches Eq. A.1. When ! ~ 1, the dispersion relation 

yields real frequencies on the same order as the ones observed. The dispersion relation is 

given by: 

tan ! !!!
4 + !!

2v!!
=− !"v!!

!!!
2 + !

!

v!!
 (A.9) 

Similarly, instead of using Eq. 4.3 as the proper boundary condition, the boundary 

condition of a vibrating rod with a free end can be used. 

!"
!" !!!

= 0 (A.10) 

Applying this boundary condition to Eq. 4.1, the following dispersion relation is 

tan ! !!!
4 + !!

2v!!
=− 2!

!!
!!!
4 + !!

2v!!
 (A.11) 

Figure A.5 plots the predicted frequencies from Eq. A.1, Eq. A.9, and Eq. A.11 as a 
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function of current in the rope. The calculation uses helium a flux rope with ! = 2.5 cm, 

! = 1100 cm, !! = 330 G, and !! = 5×1012 cm-3. The data is placed on the same graph 

for comparison.  

 
Figure A.5 – (a) Three dispersion relations associated with three boundary conditions: a 
fixed-free boundary condition (Eq. 4.3), a vibrating rod with a free end (Eq. A.11), and a 
boundary condition with finite sheath resistance !~1 at the anode (Eq. A.9). The data is 
placed on top of these curves to demonstrate incompatibility.  
 

 Both Eq. A.9 and Eq. A.11 are beneficial because they produce the frequencies 

the correct order of magnitude. The dispersion relations scale correctly with the Alfvén 

speed and the length of the system. They do not scale correctly with the current in the 

rope. Introducing finite sheath resistance does not produce real frequencies (for the 

lowest mode) above !!". Simulating the flux rope as a vibrating rod can introduce real 

frequencies above the limit !!". However, these frequencies do not scale in the same 

direction as the data. Similarly, in the limit of 0 < !!" ≪ !!", Eq. A.11 predicts an 
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unstable flux rope with !" ! = !!!!!
! . In other words, the flux rope is always unstable 

when this boundary condition is used. This was not observed.  

 

A.5.4 – BULK RESITIVITY 

 A dimensionless parameter is introduced which characterizes the role resistivity 

on the flux rope system: 

! = !!!!!
!  (A.12) 

Where !! = 2!!!! !! and ! is the plasma conductivity. In the LAPD with !!~!1100 

cm, !!~!2.5 cm, and!!!~! 5.8×10-6 s-1:!!!~!20 µs and !!~!1. [Ryutov 2006] points out 

that at !!~!1 perturbations in the plasma column can have substantial real frequencies 

above !!"#$. These real frequencies are a possible explanation of the orbital rotation seen 

in the experiments. Modifying the equations of motion to describe the effect of 

resistivity on a slender plasma column, 

!! = 2!!!
!"!!

!"!! − 1
!! + !!! . (A.13) 

In the limit !!! → !∞, the two solutions for !  reduce to Eq. 4.13 and Eq. 4.14. 

Therefore, substituting!!! and !! from Eq. 4.13 and Eq. 4.14 into Eq. A.13: 

1
!!!!!!

!!! !! − 1
!!!!!!

!! + 1
2−

1
8
!!"!
!! !!! ! − 1 = 0 (A.14) 

This is a third order polynomial, which can be solved analytically.  

Solving for the real roots of Eq. A.14, the solution can be compared to the data 

presented above. In Figure A.6, the rotation frequency is again plotted as a function of 
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the background magnetic field. This time, the solution to Eq. A.14 is drawn as a dashed 

line on top of the data. The theory and the data show good agreement.  The two curves 

cross one another. This is due to an increase in the density of the ropes at 120 Amps. In 

this instance, the discharge voltage was 220 V (26 kW), leaving the density in the core 

of the flux rope at 8x1012 cm.-3 In contrast, the flux rope at 75 (a 110 V discharge) has a 

density of 4x1012 cm-3. Because increases in the density slows the Alfvén speed, the 

solution to Eq. A.10 decreases. Similarly, this explains the decrease in frequency when 

the experiment was switched to an argon plasma. 

 

 

Figure A.6 –A comparison between the observed rotation of a magnetic flux rope (a=3 
cm, L=1100 cm) and the frequencies predicted by Eq. 4.25 as a function of background 
magnetic field. The frequencies scale with the Alfvén velocity. The two curves cross 
because of an increase in the density for elevated discharge currents. 
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The predicted scaling of the mode with current is more difficult to compare to the 

data. When the current in the flux rope increases, there is also a corresponding increase 

in the temperature and density. This will affect !!  and the solution to Eq. A.14. 

However, the key difference between the equations of Section A.5.3 and Eq. A.14 is that 

the slope of curve is positive instead of negative when !!~!1. The positive increase in 

frequency with current corresponds to the data and is the same order of magnitude.  

Finally, the roots of Eq. A.14 vary as a function of the length of the flux rope. 

The length of the flux rope is embedded in !!"! . While measurements were only taken at 

two different lengths, Eq. A.14 can be used to estimate the effect of length on the 

frequency. When the length of the flux rope is cut in half, Eq. A.14 predicts an increase 

in the frequency by a factor between 1.2 and 1.6. This is equal to the observed 

phenomena.  

 

A.6– SUMMARY OF APPENDIX 

  A single flux rope was generated in the LAPD. The flux rope was kink unstable 

and rotates about it equilibrium position. The background magnetic field, the current in 

the rope, the mass density of the rope, and the length of the flux rope were varied in 

order to determine the dispersion relation that governs the system. The observe 

frequency of rotation scales positively with the Alfvén speed. In addition, it also scales 

positively with the current in the ropes. This scaling was tests against several hypothesis 

– including orbital rotation driven by a radial electrostatic fields, axial ion flow, 

modified boundary conditions, and bulk resistivity. Because the Alfven transit time is on 
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the same order as the resistive diffusion time, bulk resistivity is an important part of flux 

rope dynamics. Introducing resistivity into the dispersion relation predicts frequencies 

which are the same order of magnitude and scale in the same direction as the observed 

frequencies.  

 

 

 

 

 

!
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