
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Web application creation made easy : a SQL-driven rapid development framework and a Do-
It- Yourself platform

Permalink
https://escholarship.org/uc/item/1j06g6p9

Author
Ong, Kian Win

Publication Date
2010

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1j06g6p9
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Web Application Creation Made Easy:
A SQL-driven Rapid Development Framework and

a Do-It-Yourself Platform

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Kian Win Ong

Committee in charge:

Professor Alin Deutsch, Chair
Professor Vish Krishnan
Professor Ingolf Krueger
Professor Bertram Ludäscher
Professor Yannis Papakonstantinou

2010

Copyright

Kian Win Ong, 2010

All rights reserved.

The dissertation of Kian Win Ong is approved, and it is

acceptable in quality and form for publication on micro-

film and electronically:

Chair

University of California, San Diego

2010

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . viii

Acknowledgements . ix

Vita . x

Abstract of the Dissertation . xi

Chapter 1 Introduction . 1
1.1 Rapid Application Development Framework 2
1.2 Do-It-Yourself (DIY) Platform 4
1.3 Roadmap . 6

Chapter 2 Rapid Application Development Framework 7
2.1 Introduction . 7

2.1.1 Ajax background 8
2.1.2 Framework and language contributions 12
2.1.3 System and optimization contributions 14

2.2 The FORWARD framework and scope 15
2.2.1 Running example 15
2.2.2 Architecture . 16
2.2.3 Data layer . 18
2.2.4 Visual layer . 21

2.3 Incremental page refresh 24
2.3.1 Leveraging and extending incremental view main-

tenance . 25
2.3.2 Incremental maintenance of the visual layer . . . 33

2.4 Evaluation . 35
2.5 Related work . 38
2.6 Summary and Future Work 39

Chapter 3 Data Model . 42
3.1 Syntax . 44
3.2 Type System . 46

3.2.1 Data Trees . 46
3.2.2 Constraints . 49

iv

3.2.3 Primary keys & Context 52
3.2.4 Data Consistency 55

3.3 Data Diffs . 57

Chapter 4 Query Language . 60
4.1 Syntax Analysis . 62
4.2 Semantic Analysis . 68

4.2.1 Variable reference checking 68
4.2.2 Type checking / inference 70
4.2.3 Group by checking 71
4.2.4 Primary key checking / inference 71

4.3 Query Evaluation . 72
4.3.1 Decomposition of input data 72
4.3.2 Relational decomposition of query 78
4.3.3 Evaluating the generators 83
4.3.4 Reconstructing the nested output data tree 84

4.4 Data Sources . 86
4.4.1 Local versus Remote Data Sources 86
4.4.2 Data Source Catalog 88

Chapter 5 Incremental View Maintenance 90
5.1 Delta Tuples . 90
5.2 Leveraging Relational Incremental View Maintenance . . 92
5.3 Rewrite Rules to Create Incremental Queries 93
5.4 Evaluation of incremental query 108
5.5 Reconstruction of the new view 114

Chapter 6 Do-It-Yourself Platform . 116
6.1 Introduction . 116
6.2 Framework and Scope . 124

6.2.1 Reports . 125
6.2.2 Contextual Actions 127
6.2.3 User Group Definitions 129

6.3 Do-It-Yourself Design Facility 129
6.3.1 Derived Properties 130
6.3.2 Page-Driven Design 131
6.3.3 Workflow-Driven Design 137
6.3.4 Automated Report Creation 141

6.4 Related Work . 147

Bibliography . 152

v

LIST OF FIGURES

Figure 2.1: Review Proposals page . 15
Figure 2.2: FORWARD architecture . 16
Figure 2.3: Page data tree . 18
Figure 2.4: Page schema . 18
Figure 2.5: Unit tree configuration . 23
Figure 2.6: Page state computation . 26

Figure 3.1: BNF for data tree . 44
Figure 3.2: BNF for schema tree . 44
Figure 3.3: Example data tree . 45
Figure 3.4: Example schema tree . 45
Figure 3.5: Grammar for Data Tree . 46
Figure 3.6: Grammar for Schema Tree . 47
Figure 3.7: Grammar for Constraints . 49
Figure 3.8: Example top-level collection . 52
Figure 3.9: Context . 54
Figure 3.10: Original Data Tree . 58
Figure 3.11: Data Diffs . 58

Figure 4.1: Syntax of query (SELECT clause) 63
Figure 4.2: Syntax of query (expressions) 64
Figure 4.3: AST (queries) . 65
Figure 4.4: AST (SELECT clause) . 66
Figure 4.5: AST (expressions) . 67
Figure 4.6: Nested schema before decomposition 74
Figure 4.7: Schema after normalization . 75
Figure 4.8: Schema after concatenation (decomposed schema) 76
Figure 4.9: Data and Schema Tree for Local / Remote Data Sources 88

Figure 5.1: Example base relations . 111
Figure 5.2: Example decomposed old view 111
Figure 5.3: Example flat deltas of base relations 112
Figure 5.4: Example generator tree with incremental queries 112
Figure 5.5: Example incremental view deltas 113

Figure 6.1: Submit Startup Page . 119
Figure 6.2: Evaluate Startups Page . 119
Figure 6.3: Advisor Comments Page . 120
Figure 6.4: TechCrunch50 Workflow Visualization

(in ppt; see video demo for the actual one) 123
Figure 6.5: Page Wizard for Submit Startup Page 132
Figure 6.6: WYSIWYG Page Design . 134

vi

Figure 6.7: Workflow-Driven Design . 139
Figure 6.8: Automated Report Extension on Evaluate Startups Page . . 142

vii

LIST OF TABLES

Table 2.1: Strawman implementation . 36
Table 2.2: FORWARD implementation . 36

viii

ACKNOWLEDGEMENTS

Chapter 2 contains material from “Ajax-based Report Pages as Incremen-

tally Rendered Views”, by Yupeng Fu, Keith Kowalczykowski, Kian Win Ong,

Kevin Keliang Zhao and Yannis Papakonstantinou, which appears in Proceedings

of the ACM SIGMOD International Conference on Management of Data, SIG-

MOD 2010. The dissertation author was the primary investigator and author of

this paper. The material in this chapter is copyright c©2010 by the Association for

Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided

that the copies are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page in print or the

first screen in digital media. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or email permissions@acm.org.

Chapters 3, 4 and 5 contain material from the technical report “Techni-

cal Specifications of the FORWARD Framework”, by Yupeng Fu, Kian Win Ong,

Kevin Keliang Zhao, Yannis Papakonstantinou and Michalis Petropoulos. The dis-

sertation author was the primary investigator and author of the relevant chapters

in the technical report.

Chapter 6 contains material from “Do-It-Yourself Database-Driven Web

Applications”, by Keith Kowalczykowski, Kian Win Ong, Kevin Keliang Zhao,

Alin Deutsch, Yannis Papakonstantinou and Michalis Petropoulos, which appears

in Proceedings of the Fourth Biennial Conference on Innovative Data Systems

Research, CIDR 2009. The dissertation author was the primary investigator and

author of this paper. The paper is published under a Creative Commons License

Agreement (http://creativecommons.org/licenses/by/3.0/). Permission is

granted to copy, distribute, display, and perform the work, make derivative works

and make commercial use of the work, but the work must be attributed to the

authors and CIDR 2009.

ix

VITA

2003 B. Eng. in Computer Engineering, National University of
Singapore.

2003-2004 Research Assistant, Hong Kong University of Science and
Technology.

2004-2010 Graduate Student Researcher, University of California, San
Diego.

2010 Ph. D. in Computer Science, University of California, San
Diego.

PUBLICATIONS

Y. Fu, K. Kowalczykowski, K. W. Ong, K. K. Zhao, Y. Papakonstantinou. “Ajax-
based Report Pages as Incrementally Rendered Views”. ACM Management of
Data International Conference (SIGMOD), 2010

G. Bhatia, Y. Fu, K. Kowalczykowski, K. W. Ong, K. K. Zhao, A. Deutsch, Y. Pa-
pakonstantinou. “FORWARD: Design Specification Techniques for Do-It-Yourself
Application Platforms”. International Workshop on the Web and Databases
(WebDB), 2009.

K. Kowalczykowski, K. W. Ong, K. K. Zhao, Y. Papakonstantinou, M. Petropou-
los, A. Deustsch. “Do-It-Yourself Custom Forms-Driven Workflow Applications”.
Conference on Innovative Data Systems Research (CIDR), 2009.

Q. Chen, A. Lim, K. W. Ong. “Enabling Structural Summaries for Efficient Update
and Workload Adaptation”. Data & Knowledge Engineering (DKE), 64(3), 2008.

Q. Chen, A. Lim, K. W. Ong, J. Q. Tang. “Indexing XML Documents for XPath
Query Processing in External Memory”. Data & Knowledge Engineering (DKE),
59(3), 2006.

Q. Chen, A. Lim, K. W. Ong. “Indexing Graph-Structured XML Data for Efficient
Structural Join Operation”. Data & Knowledge Engineering (DKE), 58(2), 2006.

Q. Chen, A. Lim, K. W. Ong. “D(K)-Index: An Adaptive Structural Summary
for Graph-Structured Data”. ACM Management of Data International Conference
(SIGMOD), 2003.

x

ABSTRACT OF THE DISSERTATION

Web Application Creation Made Easy:
A SQL-driven Rapid Development Framework and

a Do-It-Yourself Platform

by

Kian Win Ong

Doctor of Philosophy in Computer Science

University of California, San Diego, 2010

Professor Alin Deutsch, Chair

Building, installing and evolving a custom web application, even one which

comprises only Create, Read, Update and Delete (CRUD) pages accessing a sin-

gle database, is time consuming and expensive. We present two complementary

systems that enable the rapid creation, customization and evolution of such a

database-driven web application and its pages thereof: a rapid application de-

velopment framework called FORWARD, and a Do-It-Yourself (DIY) platform

called app2you.

FORWARD simplifies the development of AJAX web pages by treating

them as rendered views, where the programmer specifies a view using visual units

xi

and (minimally extended) SQL. Such a declarative approach leads to significantly

less code, as the framework automatically solves performance optimization prob-

lems that the programmer would otherwise hand-code. Since the pages are fueled

by views, FORWARD leverages years of database research on incremental view

maintenance by creating optimization techniques appropriately extended for the

need of pages (nesting, variability, ordering), thereby achieving performance com-

parable to hand-coded applications.

app2you builds on FORWARD by empowering non-programmer business

process owners to create and customize application pages, without programming

or database design in a conventional sense. app2you provides a WYSIWYG design

facility where the owner specifies the application by manipulating visual aspects of

it, responding to questions posed by wizards and setting configuration options. In

response, the design facility infers the necessary FORWARD application, including

database schema, data structures and code, and immediately produces a revision

of the application for the owner’s evaluation. The software development cycle is

shortened to literally seconds.

xii

Chapter 1

Introduction

Database-driven web applications are the most disciplined and efficient way

by which organizations exchange data and run their workflows. For example,

a professor, her TAs and her students can collaborate on a database-driven web

application where the students submit their projects, the TAs and instructor assign

comments and grades, etc. Or a home development company and the home buyers

of a particular real estate development project can collaborate, where the buyers

issue requests for special features of their homes, the employees take action on

the requests and the buyers can check the status of the requests at any point.

Or a startup conference where companies apply to present, the organizers review,

arrange interviews with selected companies, approve or decline, and finally the

approved presenters register. In the absence of the requisite web applications,

people run their workflows using inefficient ad-hoc combinations of phone calls,

email and file attachments. Confusion, files that are out-of-synch and out-of-date,

and communication overhead then become typical maladies [Kra05].

However, building, installing and evolving web applications that are custom

to an organization’s workflow is work-intensive and time consuming. Consider a

custom human-centric [TV07] database-driven web application, i.e., an application

whose:

• entire state is captured by a single database (i.e. there is no mediation

/ integration across multiple databases, or maintenance of out-of-database

1

2

state due to interfacing with external systems)

• state changes (and correspondingly the business process progresses) exclu-

sively in response to user actions on the web pages (i.e. there are no data

feeds that are machine-generated, or programs that react to events triggered

by other systems)

• pages provide only user actions that perform basic CRUD (Create, Read,

Update and Delete) operations

Even though studies [AVFY98, DMS+05, YSRG06, CFB00] have demon-

strated that the business process of a human-centric database-driven web appli-

cation can be specified in terms of its pages using small, restricted languages, its

development will still incur months of expensive effort by a team of professional

programmers [ABB+07].

In light of this, this dissertation seeks to enable the rapid creation, cus-

tomization and evolution of human-centric database-driven web applications. Two

complementary systems are presented: FORWARD, a rapid application develop-

ment framework and app2you, a Do-It-Yourself (DIY) platform that is built on

top of FORWARD. The relationship between app2you and FORWARD is analo-

gous to that between Query by Example (QBE) and SQL in the database field:

QBE query tools are visual frontends built on top of general-purpose SQL engines,

and they generate a subset of SQL corresponding to what can be easily understood

in the visual frontend by non-programmers.

1.1 Rapid Application Development Framework

A key obstacle in the development cycle of web applications is the set of

challenges that developers routinely encounter when implementing the pages of

web applications with conventional Ajax frameworks1. These include:

1Similar challenges are presented by other popular frameworks, such as Adobe Flash and
Microsoft Silverlight.

3

• Distributed programming An Ajax developer has to coordinate browser-

side JavaScript code with server-side Java2 and SQL code. That is, develop-

ing Ajax applications requires distributed programming between the browser

and server, and involves multiple languages and data models.

• Custom logic for partial update To deliver a polished and performant

web application, an Ajax developer needs to implement custom logic for

each action that partially updates a web page. In particular, each action

requires custom server-side code to retrieve a subset of the data needed for

refreshing the page, and JavaScript code to refresh a sub-region of the page.

Such event-driven programming is known to be laborious and error-prone, as

the developer needs to manually coordinate the different states a page goes

through, and ensure that the code implemented correctly transitions from

one state to another [Mir03].

• Disparate component interfaces Third party libraries provide compre-

hensive collections of client-side JavaScript and Ajax components, such as

maps, calendars and tabbed dialogs, that produce large savings in develop-

ment time due to code re-use. However, since there is no standardization of

component interfaces, an Ajax developer that integrates components from

different libraries need to mitigate differences across interfaces, and write

code that refreshes the components’ state based on the nature of each up-

date.

To alleviate the complexities and challenges introduced by Ajax program-

ming, we present FORWARD, a rapid application development framework that

simplifies the programming of data-driven application pages by treating them as

rendered views, whose data are declared by the developer using a syntactically

minor extension of SQL, while the rendering is delivered by page units, which are

responsible for data visualization and interaction with the user. The units map

to the views, either by use of an API or by the use of unit visual (configuration)

2Equivalently, C#, Perl, PHP or any other server-side programming language typically used
for developing web applications.

4

templates that put together the page units and the SQL views that feed them

with the data. Such a declarative approach leads to significantly less code, as the

framework automatically solves performance optimization problems that the de-

veloper would otherwise hand-code. Since pages are fueled by views, FORWARD

leverages years of database research on incremental view maintenance by creating

optimization techniques appropriately extended for the needs of pages (nesting,

variability, ordering), thereby achieving performance comparable to hand-coded

JavaScript / Java applications.

1.2 Do-It-Yourself (DIY) Platform

Core to the time and monetary expenses of developing a custom database-

driven web application, is that building, installing and evolving it is still the ex-

clusive domain of IT professionals, requiring specialized knowledge of database de-

sign, database programming and web application programming. An organization

needs to engage with IT professionals in a lengthy software development cycle that

involves gathering requirements, reviewing specifications, implementation, testing

and evaluating deliverables. While large and long-standing organizations can afford

such time and money expenses, small and fluid organizations cannot. Furthermore

it is very expensive and time-consuming to make even the smallest changes in such

applications since the business logic of the application is buried within thousands

of lines of code and the original developer may not be around. Even small business

process changes lead to practically new projects and expenses. These expenses

prevent small fast-paced organizations from commissioning custom applications,

delay situational applications that have to be rapidly deployed, and inhibit the

timely adaptation of custom applications to changes in business requirements.

To address this, DIY platforms seek to enable non-programmer business pro-

cess owners (also referred to as business architects by Forrester Research [TV07]),

to build, customize and evolve hosted web applications without programming or

database design in a conventional sense. DIY platforms have the potential to dra-

matically change the economics of building, deploying and maintaining simple web

5

applications. The intended outcome is paralleled to the emergence of spreadsheets

in the 80s and of graphical presentation tools (notably PowerPoint) in the early

90s. In the case of spreadsheets, the desktop revolution had made financial and ac-

counting applications available to users, but many users required a tool that would

enable quick customization to their own accounting, record-keeping, reporting and

calculation tasks, as various business planning needs emerge. VisiCalc, Lotus 1-2-3,

and Excel emerged and radically changed how we treat custom business planning

and book-keeping tasks. Similarly, prior to the arrival of Do-It-Yourself presen-

tation tools, polished presentations had to be prepared by specialized graphics

professionals. PowerPoint enabled us to easily create and evolve fairly polished

presentations by ourselves within hours.

In this dissertation, we present a DIY platform, app2you, where building the

application relies exclusively on templates, visual manipulations and specific ques-

tions about the pages’ behavior: absolutely no coding or database design occurs.

app2you provides an application design facility, which provides a WYSIWYG ex-

perience for the application owner. Similar to typical WYSIWYG tools, the owner

can choose to either customize an existing template or start the application from

scratch. He then specifies the application by manipulating visible aspects of it,

responding to questions posed by wizards, and setting configuration options. In

response to the application owner’s choices the design facility infers the necessary

FORWARD application (including database schema, data structures and code),

and immediately produces a revision of the application for the owner’s evaluation.

Furthermore the design facility demonstrates to the owner the experience that his

users will have when visiting the page and guides him into testing it. In that

sense, the experience goes beyond that of Microsoft Excel and PowerPoint, and

dramatically shortens the software development cycle into multiple rounds of a few

seconds.

The relationship between FORWARD and app2you parallels that between

SQL and Query by Example (QBE) in the database field. In the 80s, SQL greatly

simplified data access by replacing imperative programming with declarative spec-

ification. Nevertheless, writing SQL queries still require programmer sophistica-

6

tion, therefore QBE tools (such as Microsoft Access) allow non-programmers to

formulate queries visually by entering example elements and conditions. A QBE

tool translates the visual query into a SQL query (which is more expressive),

and a skilled user can customize the SQL query string before it is executed by

the database engine. Analogously, programmers will use FORWARD’s declarative

syntax for rapid development of database-driven web applications, whereas non-

programmer business process owners will utilize app2you’s design facility. app2you

translates the owner’s visual manipulations and answers of design prompts into a

FORWARD application, which can then be further customized and extended using

FORWARD’s declarative syntax.

1.3 Roadmap

The roadmap for the dissertation is as follows. In Chapter 2, we first present

the FORWARD system, highlighting its language contributions for rapid develop-

ment and how it automatically provides system optimizations for problems that

the developer would otherwise resolve manually. FORWARD’s technical specifica-

tion and implementation details are elaborated in later chapters, where Chapter

3 presents the unified data model of a FORWARD web application, Chapter 4

presents the nested query language, and Chapter 5 presents the incremental view

maintenance system optimization. Finally, we present the app2you system, its

design facility, and its DIY techniques in Chapter 6.

Chapter 2

Rapid Application Development

Framework

2.1 Introduction

AJAX-based web application pages became popular by Gmail and Google

Suggest in 2004. They are now a requirement for professional level Web 2.0 web

application pages and a cornerstone of Software-as-a-Service applications, since

they enable performance and interface quality that are equivalent to those of desk-

top applications. AJAX (Asynchronous JavaScript And XML) is a conglomerate

of technologies and programming techniques for highly interactive web application

pages. Its programming model for producing web application pages differs from the

prior pure server-side model of the Web 1.0 era, where the page is produced on its

entirety at the server side. Section 2.1.1 discusses the advantages that Ajax offers

over the pure server-side model but also the serious complexities and programming

challenges that it introduces.

The FORWARD framework simplifies the programming of data-driven ap-

plication pages by treating them as rendered views, whose data are declared by

the developer using a syntactically minor extension of SQL, while the rendering is

delivered by page units, which are responsible for data visualization and interac-

tion with the user. The units map to the views, either by use of an API or by the

7

8

use of unit visual (configuration) templates that put together the page units and

the SQL views that feed them with data.

FORWARD’s key contribution is the introduction of declarative SQL pro-

gramming for the development of the report part of data-driven Ajax pages. Draw-

ing a parallel to how declarative SQL queries simplified data management during

the last 30 years, similar productivity benefits can be delivered by the use of

declarative SQL queries for the development of data-driven Ajax pages. As has

been the case with SQL in the past, the productivity benefits of the declarative

approach are due to the framework automatically solving performance optimiza-

tion problems and providing common functionalities that would otherwise need

to be hand-coded by the developer. In particular, FORWARD leverages years of

database research on incremental view maintenance and extends it for the needs

of pages, as summarized in the contributions list of Section 2.1.3. The net effect is

that FORWARD relieves the Ajax page developer from having to write mundane

data synchronization code in order to reflect the effect of the users’ actions on the

pages.

2.1.1 Ajax background

In a pre-Ajax, pure server-side application1 a user action on an html page

leads to an http request to the server. The server updates its state, computes

a new html page and sends it to the client (i.e., the browser). At a sufficient

level of abstraction, the new page computation is a function that inputs the server

state, which includes the request data, the main memory state of the application

(primarily session data), the database(s) and relevant information from external

systems (e.g., a credit card processing system) and outputs html. Unfortunately

the user experience in pure server-side applications is interrupted: the browser

blocks synchronously and blanks out (i.e. displays a blank window) while it waits

for the new page. Even in the common case where the new page is almost identical

1We also classify as pure server-side applications those that make simple use of JavaScript
for UI purposes but without the JavaScript contacting the server, as in Ajax. For example, an
application where JavaScript is used to cause submission of a form upon clicking the enter key
still qualifies as a pure server-side application for our purposes.

9

to the old page, aspects of the browser state, such as the data of non-submitted

form elements, the cursor and scroll bar positions, are lost and the user spends

time to “anchor” his attention and focus to the new rendering of the page.

An Ajax page relies on browser-side JavaScript code, including extensive

use of JavaScript/Ajax library components, such as maps, calendars and tabbed

dialogs. A user action leads to the browser running an event handling JavaScript

function that collects data from the page (e.g., from forms and components relevant

to the action), and sends an asynchronous Xml Http Request (XHR) with a response

handler callback function specified. The browser does not blank out: it keeps

showing the old page while the request is processed and even allows additional user

actions and consequent requests to be issued. Later the response handler receives

the server’s response and uses it to partially update the page’s state. The page state

primarily consists of (1) the page DOM (Document Object Model) object and its

subobjects, which capture the displayed HTML and the state of the HTML forms

(text boxes, radio buttons, etc) and (2) the state of the JavaScript variables of the

page, which are often parts of third party JavaScript components (such as maps,

calendars, tabbed dialogs). The components typically encapsulate their state by

exporting methods that the JavaScript functions have to programmatically use for

reading and writing it.

The Ajax advantage The Ajax pages’ “desktop application feel” and quick

responsiveness is due to three advantages over the pure server model:

1. Partial update speed: The request processing and the response are focused

on the relatively few operations needed to produce the partial update of the

page, in contrast to the pure server model where the whole page must be

recomputed. Since today’s applications are often fueled by multiple queries

(e.g., Amazon’s user page is fueled by 100+ queries [O’H06]) the partial

update strategy can dramatically decrease the response time.

For example, consider a proposal reviewing application. On the page shown

in Figure 2.1, the reviewers can see each other’s reviews as they are sub-

mitted and revised. In a pure server-side model, submitting a review for a

10

proposal will require the entire page to be recomputed, including queries for

the reviews and average grades of all proposals. On an Ajax page, however,

a developer will typically optimize: an asynchronous request will be issued

with its input being the review. The server will issue queries only in or-

der to find the id of the newly inserted review and the average grade of the

corresponding proposal. Upon receiving the response, the response handler

updates sub-regions of the page’s DOM to reflect the small changes.

2. Continous action on browser: In the example, once the reviewer submits a

review, he can continue reviewing by moving his cursor and scroll to the

next proposal, even before the response handling function has updated the

page. Such behavior is a major HCI improvement [Gar05] over server side

applications, where the request is followed by a loss of the page and of the

cursor position. The continuous action is enabled by two factors: First, the

asynchronous nature of the request prevents blanking out. In the common

case where the response handler leaves most of the page unaffected, the

user can keep working uninterrupted on most of the page. Furthermore, the

browser’s synchronous blocking is reduced to the amount of time needed for

the response handling function to update the page (after the response has

been received), the components to update their state, and the browser to

reflow (i.e, to redraw the modified part of the DOM) [Sim09]. In conjunction

with the partial update, which minimizes updates on the page and consequent

reflowing operations, this leads to a typically negligible wait period.

3. JavaScript and Ajax libraries: Third party libraries provide comprehensive

collections of client-side JavaScript and Ajax components (such as maps,

calendars and tabbed dialogs) that produce large savings in development

time due to code re-use. These component libraries enable more polished

and consistent user experience across different web applications, and also

mitigate the API incompatibilities between browsers.

The above advantages have led to novel applications and features, many

of which were practically impossible previously. Such applications capture and

11

quickly respond to actions of the user on the page.

The Ajax challenge The programming of Ajax pages is complex, time consum-

ing and error-prone for many reasons. Indeed, each of the Ajax advantages listed

above leads to corresponding programming challenges:

1. Realizing the benefits of partial update requires the developer to program

custom logic for each action that partially updates the page. In a pure

server-side implementation, the programmer need only write (1) code that

produces the report and (2) code for the effect of each individual action

on the database. In an Ajax application however, each action also requires

(3) server-side code to retrieve a subset of the data needed for refresh (4)

JavaScript code to refresh a sub-region of the page. In the running example,

(3) and (4) are required for each of submitting a new review, revising an

existing review and removing a review.

This is obviously laborious and error-prone, as the developer needs to cor-

rectly assess the data flow dependencies on the page. For the running exam-

ple of submitting a review on the page of Figure 2.1, if the developer had

issued a query for Average Grade, but not Reviews, the page will display

inconsistent data if another review had been concurrently inserted into the

database.

2. The programmer has to coordinate browser-based JavaScript code with

server-side Java and SQL code. That is, developing the Ajax pages requires

distributed programming between the browser and server, and involves multi-

ple languages and data models. Furthermore, JavaScript is widely criticized

(e.g., see [Joh09]) as too unstructured and error prone. While the lack of

strong typing and other conventional programming language features was

arguably an advantage when JavaScript was used just for UI purposes, it is a

liability nowadays, where JavaScript (thanks to XHR requests) is an integral

part of the process that the application implements.

3. While the developer of the pages of a pure server-side application needs to

12

only understand HTML (since the browser automatically parses HTML and

turns it into DOM) the developer of Ajax pages needs to understand the

DOM, in order to update the displayed HTML, and also understand the

component interfaces in order to first write code that initializes components,

and then write code that refreshes the components’ state based on the nature

of each update.

2.1.2 Framework and language contributions

FORWARD facilitates the development of Ajax pages by treating them as

rendered views. The pages consist of a page data tree, which captures the data of

the page state at a logical level, and a visual layer, where a page unit tree maps

to the page data tree and renders its data into an html page, typically including

JavaScript and Ajax components also. The page data tree is populated with data

from an SQL statement, called the page query. SQL has been minimally extended

with (a) SELECT clause nesting and (b) variability of schemas in SQL’s CASE

statements so that it creates nested heterogeneous tables that the programmer

easily maps to the page unit tree. A user request from the context of a unit leads

to the invocation of a server-side program, which updates the server state. In

this dissertation, which is focused on the report part of data-driven pages and

applications, we assume that the server state is captured by the state of an SQL

database and therefore the server state update is fully captured by respective

updates of the tables of the database, which are expressed in SQL. Conceptually,

the updates indirectly lead to a new page data tree, which is the result of the page

query on the new server state, and consequently to a new rendered page.

FORWARD makes the following contributions towards rapid, declarative

programming of Ajax pages:

• A minimal SQL extension that is used to create the page data tree, and a

page unit tree that renders the page data tree. The combination enables

the developer to avoid multiple language programming (JavaScript, SQL,

Java) in order to implement Ajax pages. Instead the developer declaratively

describes the reported data and their rendering into Ajax pages.

13

We chose SQL over XQuery/XML because (a) SQL has a much larger pro-

grammer audience and installed base (b) SQL has a smaller feature set,

omitting operators such as // and * for schema-less data and path access of

arbitrary depth, which are not necessary for modelling pages but have created

challenges for efficient XML/XQuery query processing and view maintenance,

and (c) existing database research and technology provide a great leverage

for implementation and optimization (see Section 2.1.3), which enables fo-

cus on the truly novel research issues without having to re-express already

solved problems in XML/XQuery or having to re-implement database server

functionality. Our experience in creating commercial level applications and

prior academic work in the area (see Section 2.5) indicate that if the appli-

cation does not interface with external systems then SQL’s expressive power

is typically sufficient. We briefly describe in the Future Work (Section 2.6)

the issues arising in interfacing to external systems.

• A FORWARD developer avoids the hassle of programming JavaScript and

Ajax components for partial updates. Instead he specifies the unit state

using the page data tree, which is a declarative function expressed in the

SQL extension over the state of the database. For example, a map unit

(which is a wrapper around a Google Maps component) is used by specifying

the points that should be shown on the map, without bothering to specify

which points are new, which ones are updated, what methods the component

offers for modifications, etc.

Roadmap We present the framework and the FORWARD scope in Section 2.2

with a running example. Section 2.2.3 presents the data aspects of the framework.

Section 2.2.4 presents the visual layer. Further details on the specification / im-

plementation of the data model and query language of the framework are deferred

until Chapters 3 and 4.

14

2.1.3 System and optimization contributions

A naive implementation of the FORWARD’s simple programming model

would exhibit the crippling performance and interface quality problems of pure

server-side applications. Instead FORWARD achieves the performance and in-

terface quality of Ajax pages by solving performance optimization problems that

would otherwise need to be hand-coded by the developer. In particular:

• Instead of literally creating the new page data tree, unit tree and html +

JavaScript page from scratch in each step, FORWARD incrementally com-

putes them using their prior versions. Since the page data tree is typically

fueled by our extended SQL queries, FORWARD leverages prior database

research on incremental view maintenance, essentially treating the page data

tree as a view. We extend prior work on incremental view maintenance to

capture (a) nesting, (b) variability of the output tuples and (c) ordering,

which has been neglected by prior work focusing on homogeneous sets of

tuples.

• FORWARD provides an architecture that enables the use of massive

JavaScript / Ajax component libraries (such as Dojo [The09]) as page units

into FORWARD’s framework. The basic data tree incremental maintenance

algorithm is modified to account for the fact that a component may not offer

methods to implement each possible data tree change. Rather a best-effort

approach is enabled for wrapping data tree changes into component method

calls.

The net effect is that FORWARD’s ease-of-development is accomplished at

an acceptable performance penalty over hand-crafted programs. As a data point,

revising an existing review and re-rendering the page takes 42 ms in FORWARD,

which compares favorably to WAN network latency (50-100 ms and above), and

the average human reaction time of 200 ms.

Roadmap Section 2.3 presents optimizations for incrementally maintaining the

page, with Section 2.3.1 highlighting the incremental view maintenance of the page

15

data tree, and Section 2.3.2 presenting the architecture for incrementally refreshing

the visual layer. Section 2.4 presents the system implementation and experimental

results. Further details on the specification / implementation of the incremental

view maintenance on the page data tree is deferred until Chapter 5.

2.2 The FORWARD framework and scope

2.2.1 Running example

Figure 2.1: Review Proposals page

The running example is a simplified version of the FastLane web application,

which the National Science Foundation (NSF) uses to coordinate the submission

and reviewing of proposals among Principal Investigators (PIs), Reviewers and

Program Directors.2 First, a PI visits a Submit Proposal page to submit the

project description, budget estimates and personnel particulars. After the pro-

posal submission deadline, NSF invites Reviewers to a panel, during which they

collaborate on the Review Proposals page (Figure 2.1). Each Reviewer sees the

2A demo of the original Fastlane application is available at https://www.fldemo.nsf.gov/

16

titles of proposals assigned, and can click on them to access proposal details. For

each proposal, a Reviewer can submit and revise a review comprising a textual

comment and a grade ranging from 1 to 5. In addition, a Reviewer can see oth-

ers’ reviews, a bar chart visualizing the respective grades, and the average grade.

Finally, the Program Director uses a Recommend Proposals page to peruse all

reviews provided and indicate which proposals are recommended for funding.

2.2.2 Architecture

Browser page
program

DOM &
components

invocation

Page
unit tree

Unit instance
tree

Visual layer

Programs
ServicesServicesServices

Control layer

P d t

Page state computation
Data layer

Database
Modification

log
Page data

tree
Page
query

Figure 2.2: FORWARD architecture

Figure 2.2 shows an overview of the architecture of the FORWARD frame-

work. In FORWARD, each page is described by a unit tree that has a corresponding

page schema. The unit tree synchronizes between the page data tree, which con-

17

forms to the page schema, and the browser page state, which includes the state of

JavaScript components and HTML DOM. As a user interacts with a page, events

can happen which are triggered by either a direct user action (e.g., clicking a but-

ton) or other mechanisms such as timers, and leads to an invocation of a server-side

program that updates the server state. A program has access to (1) the context

and form data3 of the program invocation, and (2) a SQL database. Using these

data, a program can issue INSERT/UPDATE/DELETE commands on the database. In

FORWARD the server state is completely captured by the state of the database

and therefore the server state update is fully captured by a modification log that

stores all DML commands on the database’s tables. After the program invocation,

a page state computation module creates the data tree of the new browser page

state.

In order to support the Ajax incremental update of a page, the respective

renderers of units translate the data difference between the old and the new page

data trees to method calls of JavaScript components, as well as updates to the

HTML DOM. Furthermore, the data difference is automatically computed in an

incremental way without recomputing the page state from scratch. This is possible

because the computation of a page’s data is specified using a query, called the

page query. As a result, the page data tree is essentially a view over base tables.

The framework logs the modifications to the state of the base tables in the same

application, and employs incremental view maintenance techniques to obtain the

changes to the view. Technical issues about incremental page update are discussed

in detail in Section 2.3, and further implementation details are presented in Chapter

5.

3 If the page contains HTML forms that are both initialized by the query and updatable by
the user, interesting challenges arise around the programs requiring unified access to both the
database and the user provided data. The details of such unified access mechanisms are beyond
the scope of this dissertation and are briefly discussed in Section 2.6.

18

2.2.3 Data layer

1 list(

2 tuple(

3 proposal_id : 509 ,

4 title : Flying Cars,

5 average_grade: 4.5,

6 reviews :set(

7 tuple(

8 review_id : 1,

9 comment : Creative...,

10 grade : 3 - Good,

11 reviewer : tom@abc.edu)

12 ...),

13 grades : list(

14 tuple(

15 bar_id : 1,

16 value : 3)),

17 my_review : switch(

18 input_tuple: tuple(

19 comment : null,

20 grade : tuple(

21 grade_ref : null,

22 grade_options:list(

23 tuple(

24 grade_id : 1,

25 grade_label: 1 - Poor)

26 ...)))

27

28

29

30))

31 ...)

Figure 2.3: Page data tree

list(

tuple(

proposal_id : int,

title : string,

average_grade: float,

reviews : set(

tuple(

review_id : int,

comment : string,

grade : string,

reviewer : string)

),

grades : list(

tuple(

bar_id : int,

value : int)),

my_review : switch(

input_tuple: tuple(

comment : string,

grade : tuple(

grade_ref :int,

grade_options:list(

tuple(

grade_id :int,

grade_label:string)

))),

display_tuple : tuple(

comment : string

grade : string

)))

)

Figure 2.4: Page schema

This section presents an overview of the data model and query language,

and the detailed specifications can be found in Chapters 3 and 4.

The page data tree captures the page’s state at a logical level using a mini-

mal extension of SQL’s data model with the following features that will facilitate

mapping to the page’s data from the unit tree. First, the data tree has both sets

and lists to indicate whether the ordering of tuples matters; e.g., the grade options

19

in Figure 2.1 and the proposals are a list while the reviews of the proposal form

a set. Second, it has nested relations; e.g., nested reviews within proposals. Fi-

nally, it allows heterogeneous schemas for the tuples of a collection; e.g., a tuple

corresponding to the input mode of My Review also carries the nested list of grade

options while a tuple corresponding to the display mode only carries comments

and grades.

The schema of a data tree is captured by a schema tree. Each data node

(also called value) maps to a schema node, and the data tree is homomorphic to

the schema tree.

For example, Figure 2.3 shows the page data tree that represents the list of

proposals at the Review Proposals page. In a proposal tuple, title is an atomic

string value, reviews is a nested set of review tuples, and my review is a switch

value where the input tuple case is selected. Note however that the corresponding

switch schema in Figure 2.4 contains both display tuple and input tuple cases

to indicate that a reviewer’s review can be either in display mode or input mode.

We extend SQL for nesting (in the spirit of OQL [BCD89]) and variability.

Furthermore, a query without an ORDER BY clause produces a set while a query with

ORDER BY produces a list. The following query produces the Review Proposals

page data tree:

1 SELECT P.proposal_id, P.title,

2 (

3 SELECT *

4 FROM reviews R

5 WHERE R.proposal_ref = P.proposal_id

6 AND R.reviewer <> S.user

7) AS other_reviews,

8

9 (

10 SELECT R.review_id AS bar_id, R.grade AS value

11 FROM reviews R

12 WHERE R.proposal_ref = P.proposal_id

13 ORDER BY R.grade DESC

14) AS grades,

15

20

16 (

17 SELECT CASE

18 WHEN (D.mode = ‘input’) THEN ‘input_tuple’ :

19 SELECT

20 D.comment, Tuple(

21 D.grade_ref,

22 (SELECT * FROM grade_options)

23 AS grade_options

24) AS grade

25 ELSE ‘display_tuple’ :

26 SELECT R.comment, R.grade

27 FROM reviews R

28 WHERE R.proposal_ref = P.proposal_id

29 AND R.reviewer = S.user

30 END

31 FROM draft_reviews D

32 WHERE D.proposal_ref = P.proposal_id

33 AND D.reviewer = S.user

34) AS my_review,

35

36 (

37 SELECT AVG(R.grade)

38 FROM reviews R

39 WHERE R.proposal_ref = P.proposal_id

40) AS average_grade

41

42 FROM proposals P, current_session S

43 WHERE EXISTS (

44 SELECT *

45 FROM assignments A

46 WHERE A.proposal_ref = P.proposal_id

47 AND A.reviewer = S.user

48)

49 ORDER BY P.proposal_id

The query operates over four database tables: proposals, assignments to

reviewers, reviews that have been submitted and draft reviews that have been

saved. It also operates over a special collection current session, which provides

a single tuple of HTTP session attributes.

Lines 1-49 is the outer query that produces the list of proposals. Lines 3-7

shows a sub-query that produces the set of reviews by reviewers other than the

current user. It is a conventional SQL sub-query that is parameterized by tuple

variables P and S from the outer query. By allowing nested queries in the SELECT

21

clause the query language can construct results that have nested collections. The

bar chart sub-query (lines 9-14) is similar except for the ORDER BY clause, which

makes the result a list instead of a set. The my review query (16-34) features a

SQL CASE WHEN ... ELSE ... END conditional expression that determines if a

reviewer’s review is an input tuple or display tuple based on whether the corre-

sponding draft review is valid or not. The extension for heterogeneity allows the

CASE expression to become a constructor for switch values, whenever each branch

evaluates to a (potentially heterogeneous) case:value pair. In general, various

constructor functions / operators provide convenience syntax for creating values

of the data model: another example is the tuple constructor on line 20. Lastly,

the average grade sub-query (lines 36-40) uses the AVG aggregation function to

calculate the average review grade for a proposal, and the existential sub-query

(lines 43-48) filters for proposals that have been assigned to the current user.

2.2.4 Visual layer

Units capture the logical structure of a page, including the program invo-

cation requests that may be issued from it. Furthermore FORWARD units enable

the incorporation of components from JavaScript libraries (such as Dojo [The09]

and YUI [YUI09]) into the FORWARD framework.

Each page has a unit tree (comprising units), and each instance of a page

has a corresponding unit instance tree (comprising unit instances) that conforms

to the unit tree similar to how data trees conform to schema trees. Each unit has

a unit schema, and a homomorphic mapping from unit schema attributes to nodes

in the page schema tree. Intuitively, the unit schema captures the exported state

of the unit and its descendants. The unit mapping induces a mapping from the

corresponding unit instances to the nodes in the page data tree, which are termed

the unit instance’s data.

The FORWARD framework provides a textual template syntax for configur-

ing a unit tree. For example, Figure 2.5 shows the unit tree for Review Proposals,

with mappings to the page schema tree of Figure 2.4. Each XML element that

is in the unit namespace encloses a unit configuration, which contains (1) XML

22

elements in the default namespace for the unit schema attributes, and (2) nested

unit configurations for children units. The template also allows HTML elements in

the html namespace, thus a developer can configure all visual aspects of a page in

a single unified syntax. The bind attribute is used to map unit schema attributes

to schema nodes. For example, the (root attribute of the) dropdown unit maps to

the grade tuple of Figure 2.4, and its ref and options attributes map respectively

to the grade ref and grade options attributes.

23

<html:html>

<html:h1>List of all proposals.</html:h1>

<unit:table bind="page_state">

<column header="Title"> <unit:print bind="title /> </column>

<column header="Other reviews">

<unit:table bind="other_reviews">

<column header="Comment"> <unit:print bind="comment" /> </column>

<column header="Grade"> <unit:print bind="grade" /> </column>

<column header="Reviewer"> <unit:print bind="reviewer_id" /> </column>

</unit:table>

</column>

<column header="grades"> <unit:barchart bind="grades" /> </column>

<column header="My Review">

<unit:switch bind="my_review">

<case bind="input_tuple">

<html:div>

<unit:dropdown bind="grade">

<ref bind="grade_ref" />

<options bind="grade_options">

<option bind="grade_option" />

</options>

</unit:dropdown>

<unit:textbox bind="comment" />

<unit:button text="Submit" on_click="save_review"/>

</html:div>

</case>

<case bind="display_tuple">

<html:div>

Comment: <unit:print bind="comment" />

Grade: <unit:print bind="grade" />

<unit:button text="Edit" on_click="edit_review" />

<unit:button text="Remove" on_click="remove_review" />

</html:div>

</case>

</unit:switch>

</column>

<column header="Avg. Grade"> <unit:print bind="average_grade" /> </column>

</unit:table>

</html:html>

Figure 2.5: Unit tree configuration

24

A unit can be associated with one or more server-side programs. When

a program is invoked, it has access to (1) the invocation context, which is the

data node mapped from the unit instance of the program invocation (2) the data

of form units, such as textboxes and dropdowns (3) the SQL database. Using

these data, a program invocation issues INSERT/UPDATE/DELETE commands on the

database, which are captured by the application’s modification log. For example,

the button unit in Figure 2.5 line 42 associates the click event with a save review

program. When the save review program is invoked, it uses the corresponding

proposal from the invocation context, the grade from unit:dropdown, the review

from unit:textbox, and the current user from the session, and issues an INSERT

command on the reviews table.

After program invocation, the page is incrementally refreshed in an efficient

manner, the details of which will be fully described in Section 2.3.

2.3 Incremental page refresh

Pure server-side applications often suffer from long response time, due to

the expensive recomputation at the data layer and the visual layer, and unfriendly

user experience due to the browser blanking-out. Ajax solves both problems (see

Section 2.1.1), but at the cost of significantly complicating web programming.

The following strawman approach employs Ajax to avoid the blanking out,

while the programmer only provides a query that populates the report’s data with-

out having to provide separate queries and programs for incremental refresh. When

a refresh of the page is needed, the page makes an asynchronous XHR JavaScript

call that fetches the new page in its entirety from the server. The response handler

replaces the old page DOM with the new one. The straw man approach achieves

Ajax behavior only superficially. Compared to the pure server-side model, the

server side computation stays the same, and the browser still needs to reinitialize

all JavaScript components and re-render the entire page. Furthermore, users will

still experience loss of focus, of cursor position and of data entered in non-submitted

forms.

25

FORWARD combines the best of both the Ajax model and the pure server-

side model by offering the development advantage of modeling pages as rendered

views so that the developers need not specify any extra update logic, while the

framework automates the incremental page refresh in both the data layer and

the visual layer to achieve the Ajax performance and preservation of focus, scroll,

cursor positions and form data. This section describes how incremental page refresh

is handled in the data layer (Section 2.3.1) and the visual layer (Section 2.3.2).

2.3.1 Leveraging and extending incremental view mainte-

nance

This section presents an overview of the incremental view maintenance tech-

niques in FORWARD, whereas details can be found in Chapter 5.

The Page State Computation Module (PSC) of FORWARD (see Figure 2.2)

treats the page data tree as a view. During page refresh it uses the log of modifi-

cations that happened to the database data, and possibly the database data itself

to incrementally maintain the old view instance to the new view instance.

26

Page
schema

Page
query T1 Q1 T2 Q2 T3 Q3

Design time

Run time

Page data
tree d1

T1

T2

∆T1

∆T2 Page data
tree d

Diffd2‐d1tree d1

T3 ∆T3

tree d2

RIVM

Database
Modification

logg

Figure 2.6: Page state computation

Figure 2.6 shows an overview of how PSC incrementally maintains the page

data tree d1 of the old page state s1 to the page data tree d2 of the new page

state s2. Recall that a page data tree is computed as the result of the page query,

which is a nested query in FORWARD’s extended SQL language. At design time,

PSC decomposes the nested page schema into flat relational views denoted by

T1, T2 etc, and rewrites the page query into standalone SQL queries q1, q2 etc that

define the flat views respectively. At run time, the old page data tree d1 is first

transformed to instances of the flat relational views. Then PSC uses a Relational

Incremental View Maintenance algorithm (RIVM) on each flat view utilizing the

modification log and possibly database data. The incremental changes to the flat

views computed by RIVM are translated to the data difference Diffd2−d1 that can

be combined with the old page data tree d1 to calculate the new page data tree

d2. The current implementation of RIVM in PSC is built on top of an off-the-shelf

27

relational database without modification to the database engine. The framework

monitors all data modification in an application to maintain the modification log,

and expands the log to capture data changes of each database table. Both the

modification log and page data trees are stored in main memory resident tables of

DBMS for fast access.

The data difference Diffd2−d1 is encoded as the series of data modification

commands that turn d1 into d2. The data modification commands are insert,

remove and update. The remove command remove(t) locates the node identified

by t in a data tree and removes the subtree rooted at it. The update command

update(t, N) replaces the old subtree rooted at t with the new subtree N . The

insert command has a set version and a list version for the two different types of

collections. The set-version inserts(r,N) inserts a subtree N rooted at a tuple into

the targeted set identified by r. The list-version insertl(r,N, t0) takes one more

parameter t0 which is the adjacent node after which the new subtree should be

inserted.

Section 2.3.1.1 lists the benefits of PSC for page refresh using an example.

Section 2.3.1.2 provides background on relational techniques that are leveraged.

Section 2.3.1.3 describes how a page schema can be decomposed into flat views,

and how to obtain the SQL queries that define each flat view. Section 2.3.1.4 dis-

cusses the handling of order through the view maintenance process. Section 2.3.1.5

describes how maintenance results on flat views can be translated and applied to

the nested data tree. Further implementation details for PSC, including the incre-

mental rewrite rules supported by the system, are presented in Chapter 5.

2.3.1.1 Benefits and example

PSC drastically reduces the number of SQL queries that must run in order

to refresh the page by detecting the following opportunities:

• Non-modification: PSC may statically prove that certain data tree nodes are

unaffected by the data modifications. Therefore data of these nodes need not

be recomputed.

28

• Page state self-sufficiency: In this case, d2 can be computed as a function of

d1 and the modification log, without access to the proper database tables.

Since PSC stores the modification log and d1 in main memory, fast compu-

tation is achieved by avoiding disk access. Furthermore, as the OLAP and

view maintenance literature has shown self-sufficiency opportunities can be

greatly increased by the inclusion of a small amount of additional data in a

view. For example, an average view is not self-maintainable if it only has the

averages but it is maintainable if it also has the count.

• Incremental maintenance: When the previous two cases are not available,

PSC may need to access database tables to compute Diffd2−d1 and conse-

quently d2. However, computing Diffd2−d1 is usually faster than running the

page query from scratch, with the help of modification log and the cached

old page data set.

In practice, PSC utilizes more than one opportunities from above to main-

tain a page data tree, with each applied to different parts of the page. Suppose

the current reviewer Ken updates the grade and the comment of review #2 of pro-

posal 509 of Figure 2.1. Therefore the modification log includes (a) an update

to the comment and rating of the (509, #2) tuple in the reviews table, and (b)

an update of the mode value of the (509, #2) tuple in the draft review table.

Suppose that the modification log also happens to have the following changes by

other users which happened right before the submission of the update by Ken:

(c) an insertion of new review #3 for proposal 509, (d) an update of a review of

another proposal 456, and (e) an insertion of a recommendation on another page.

Notice that proposal 456 does not appear on the page since it is not assigned to

Ken. Given the modification log PSC can statically determine that the change (e)

does not affect the review page (i.e., the non-modification case) since the current

page does not show recommendations at all. It also determines that the change

(d) does not affect the page because proposal 456 does not appear in the page

data tree shown to Ken. The other changes in the modification log correspond

to either the page state self-sufficiency case or the incremental maintenance case.

In particular, because of (a) and (b), the input tuple (form) at proposal 509 will

29

disappear since the switch node will revert to the display case, and the display

tuple at proposal 509 will be set according to the grade and review submitted by

Ken. A new review tuple is inserted into the list of other reviews for (c). Finally,

because of (a) and (c), the average can be incrementally recomputed from the old

average, the count and the modifications, if the count is also included in the view

as additional data.

2.3.1.2 Leveraging relational research

The relational model literature [BLT86, GMS93, GL95, GM95, RSS96]

has described methods for efficiently maintaining a materialized SQL view V =

q(R1, R2, . . . , Rn), where q is a SQL query and {R1, R2, . . . , Rn} are base ta-

bles. One approach implemented by many existing solutions and also by PSC

in FORWARD is to model data changes as differential tables. Let the old view

instance be V1 and the new view instance be V2. Between V1 and V2, the differ-

ential tables for a base relation Ri are ∆+Ri containing tuples inserted into Ri,

and ∆−Ri containing tuples deleted from Ri. ∆+Ri and ∆−Ri are captured in

the modification log. In the same way ∆+V and ∆−V can be defined. Tuple

update is treated as a combination of insertion and deletion. The view main-

tenance algorithm RIVM in this approach runs two queries q∆+ and q∆− over

{R1, · · · , Rn,∆
+R1, · · · ,∆+Rn,∆

−R1, · · · ,∆−Rn} that produce ∆+V and ∆−V

respectively.

PSC focuses on the deferred view maintenance [CGL+96, SBCL00] that

works with after-modification database tables and the modification log. The rea-

son is that in data-driven web applications, although a data modification can affect

data trees seen by multiple users, the page view maintenance for a user can be de-

ferred until the user requests for the page again, so that the system throughput

can be maximized. PSC implements RIVM on top of the open source PostgreSQL,

which does not have native support of materialized views. In general, other imple-

mentations of RIVM can be used in PSC as well.

30

2.3.1.3 Reduction of nested queries and switches

PSC uses RIVM as a building block to manage nesting and switches. It

transforms a nested page schema into flat relational views T1, · · · , Tn, and the

corresponding page query into SQL queries q1, · · · , qn, such that each Ti is defined

by qi.

Given a page query q and corresponding page schema V , PSC takes the first

step to create flat relations S1, · · · , Sn as follows to represent the decomposition of

V with respect to q. The outer-most collection of V is represented as the relation

S1. Each sub-query in the SELECT clause is mapped to a new relation. Each

case sub-query in CASE WHEN conditional statements is also mapped to a new

relation. Notice that sub-queries in the WHERE clauses are unaffected. Let the

corresponding sub-query for each Si be pi. If pa is the parent (sub-)query of pb,

then expand Sb to contain the foreign key attributes referencing tuples in Sa, and

call Sa the parent of Sb. Finally, the primary key attributes of each Si are made

to include the foreign key attributes to its parent relation, if it exists, in addition

to the Si’s original primary key attributes.

At this point, each flat relation Si after decomposition corresponds to a

sub-query pi that may use values from its ancestor sub-queries. PSC modifies each

Si to get flat view Ti and creates its defining query qi based on pi, so that each qi is

a standalone SQL query without correlation. First, each Ti is designed to have Si’s

schema and also to contain the attributes whose values are referred by any pk that

is a descendant of pi. Then the defining query qi of each flat view Ti is modified

from pi by adding Tj, where pj is the parent of pi, as an additional input table in

pi’s WHERE clause. The original references to values in pj can then be changed

in qi to the joined attributes from Tj. Finally, in order to ease the discussion, we

still call that a flat relation Ta is the parent of Tb if pa is the parent of pb.

During run time, PSC traverses qi from top down to incrementally maintain

each Ti as follows: First for the top level view T1 defined by q1, PSC runs ∆+T1

and ∆−T1 using RIVM. If Ta is the parent of Tb, when Tb is maintained by PSC,

its parent table Ta would have already been maintained, so that ∆+Ta and ∆−Ta

are available, which is necessary since Ta is an input relation to Tb’s definition qb.

31

For example, the following SQL statements defines some of the flat views

corresponding to the result of relational decomposition of the page schema and the

page query in the running example.

1 CREATE VIEW T1_proposals AS

2 SELECT R.proposal_id, P.title, S.user

3 FROM proposals P, current_session S

4 WHERE EXISTS (

5 SELECT *

6 FROM assignments A

7 WHERE A.proposal_ref = P.proposal_id

8 AND A.reviewer = S.user

9)

10 ORDER BY P.proposal_id

11

12 CREATE VIEW T2_other_reviews AS

13 SELECT R.comment, R.grade, R.review_id, T1.proposal_id

14 FROM reviews R, T1_proposals T1

15 WHERE R.proposal_ref = T1.proposal_id

16 AND R.reviewer <> T1.user

17

18 CREATE VIEW T3_average_grade AS

19 SELECT T1.proposal_id, AVG(R.grade)

20 FROM reviews R, T1_proposals T1

21 WHERE R.proposal_ref = T1.proposal_id

22 GROUP BY T1.proposal_id

Consider the modifications described in Section 2.3.1.1. Since neither proposals

nor current session is changed between the previous and the current page states,

T1 is not changed and ∆+T1 and ∆−T1 are empty. Because change (c) brings a

non-empty ∆+Rreviews, RIVM is able to compute ∆+T2 by joining ∆+Rreviews and

T1 and then doing the selection. The defining queries of all the decomposed flat

views of the running example can be incrementally maintained by RIVM.

2.3.1.4 Lists and reordering

Since most prior work on relational view maintenance assume bag or set

semantics only, PSC is extended to support ordered list semantics by embed-

ding order information as data and simulating list-version operators using order-

insensitive ones.

32

The support of list in the data model of FORWARD allows list-version op-

erators in the query language’s algebra like the FLWR in XQuery where the inputs,

outputs and intermediate results are treated as lists. Many of these operators only

need to preserve the order of tuples from the input to the output, such as the

list-version selection and projection. For the view maintenance purpose, such op-

erators can be simulated by their relational counterparts, with order information

embedded as data inside the order specifying attributes. For example, a list can

be encoded as a set of tuples {(1, tom), (2, ken), (3, jane)} with the auxiliary first

attribute being the order specifying attribute. In practice, such system-generated

attributes use encodings like LexKey described in [DESR03] in order to support

efficient repositioning. In this way, these operators can treat order like data and

need not explicitly maintain it.

The ORDER BY operator that creates order is handled by PSC by statically

marking the order-by attributes as the order specifying attributes. At run time,

only the inserted data changes are sorted, while the reordering of the entire view is

deferred until the final result, where the size of data is usually small as limited by

the nature of a web page. Order-sensitive operators, such as Top-k and MEDIAN,

are often expensive to maintain incrementally. For example, a deletion of tuple

from the input list of a Top-k operator may incur scanning of the input list if the

deleted tuple was among the top k tuples. Maintenance of Top-k views has been

studied in [YYY+03]. How the embedded order information is restored when the

modification is applied to the nested view is discussed next.

2.3.1.5 Updating the page data tree

After the data changes ∆+Ti and ∆−Ti are obtained for each Ti, the view

maintenance result of the flat views are translated to Diffd2−d1 as a series of data

modification commands and then applied to the old page data tree d1 to obtain

the new data tree d2. The changes to different Ti are applied in a top-down order,

so that when changes to a child data node is applied, its parent data node is

guaranteed to exist. Since every Ti has primary key attributes defined to contain

ancestors’ primary keys in the corresponding data tree, it is simple to navigate

33

in the data tree to locate the target of each change in ∆+Ti and ∆−Ti. Notice

that a relation in the data tree can be either a list or a set. If it is a list, tuples

from ∆+Ti need to be translated into list-version insert commands of the data tree

which require adjacent tuples to be specified. Such adjacent tuples can be located

efficiently by using binary-search over the order specifying attributes because the

previous sorted list is materialized and cached as part of the data tree d1. The

handling of other cases is elaborated in Chapter 5.

2.3.2 Incremental maintenance of the visual layer

Given the data layer difference Diffd2−d1 from the PSC, the incremental

maintenance visual layer (IMVL) refreshes the page through unit instances that

translate the data layer difference into updates of DOM elements and JavaScript

components. The IMVL is based on the observation that the browser page state

can be divided into fragments, where each fragment corresponds to the rendering

of a unit instance, which in turn depends on one or more corresponding data tree

nodes. Only a unit instance corresponding to an updated data tree node needs to

be re-rendered.

Incremental maintenance of unit instance tree Incremental maintenance of

the page is facilitated by the unit instance tree, which is a data structure residing

on the browser. Each unit instance maintains pointers to its underlying DOM

elements and JavaScript components, so that only pertinent elements / components

are re-rendered. From the data layer difference, which is encoded as a sequence

of insert, update and delete commands on the page data tree, the IMVL uses the

unit tree to produce unit instance differences, which are corresponding encodings

for each unit instance. Each insert command that spans multiple units will be

fragmented into insert commands for the respective unit instances; similarly so for

each delete command. Each update command that spans multiple units will be

fragmented into an update command for the top unit instance, delete commands for

existing descendant unit instances, and insert command for new descendant unit

instances. When initializing a new page instance, the IMVL will create the unit

34

instance tree from scratch. However, given an existing page instance, the IMVL

will use the unit instance differences to incrementally maintain the unit instance

tree, in order to preserve existing DOM elements and JavaScript components.

Incremental rendering of units With an updated unit instance tree, the

IMVL will invoke in turn each unit instance’s incremental renderer (or renderer),

which translates the unit instance difference into updates of the underlying DOM

element or method calls of the underlying JavaScript component. Note that these

renderers are implemented by unit authors, and are automatically utilized by the

framework without any effort from the developer. Essentially, renderers mod-

ularize and encapsulate the partial update logic necessary to utilize JavaScript

components, so that developers do not have to provide such custom logic for each

page.

Mediating between unit differences and JavaScript components Con-

sider the number of possible combinations for a unit instance difference: (1) any

of the unit schema’s attributes can be the root of the data diff (2) the data diff

can be encoded as any of the three insert, update and delete commands. For each

(attribute, command) pair, a unit can be associated with a renderer. Since FOR-

WARD units utilize components from existing JavaScript libraries, the number

of possible renderers typically exceed that of available refresh methods on com-

ponents. Therefore, given a unit difference, if the most specific renderer for the

(attribute, command) pair is not implemented, the framework will attempt to sim-

ulate it on a best-effort basis with other available renderers. Any renderer can be

simulated by a update renderer of an ancestor attribute, while an update renderer

on a tuple can also be simulated by a combination of insert and delete renderers

on the same tuple. Minimally, a unit needs to be associated with an insert and

delete renderer on the unit schema root attribute.

For example, consider the bar chart unit used on the Review Proposals

page, and a reviewer modifying his grade on a review. If the underlying JavaScript

component supports changing the value of a particular bar, and a update renderer

has been implemented for the value attribute, the bar chart will be incrementally

35

refreshed where only the affected bar grows/shrinks. Otherwise, the entire bar

chart has to be refreshed. Implementing specific renderers improves performance

for units that are expensive to initialize (e.g. a map unit), and avoids overwriting

user-provided values in units that collect values (e.g. a textbox).

2.4 Evaluation

FORWARD operates as an interpreter of an application specification, with

static analysis taking place the first time an application is loaded by the system.

A proof-of-concept prototype has been implemented as a Java servlet running in

the Jetty servlet container. Queries are parsed and translated into conventional

SQL statements, which are executed in a PostgreSQL relational database.

To illustrate the performance characteristics of the prototype, we consider

the running example where the database stores 20,000 proposals, each proposal

has 6 reviews, the page displays 20 proposals, and a reviewer submits a revision to

his review for one displayed proposal. Only two other database modifications have

been made since the reviewer’s page was last refreshed: one for them is a review

update (by another reviewer) for the same proposal, whereas the other is a review

update for a proposal that is not displayed on the current page. Consequently, the

page refreshes with two additional reviews on the page.

All measurements are performed on an Intel Core 2 Quad 2.7 GHz desktop

running Windows Vista 64-bit. The server runs under Java VM 1.6 under server

mode, whereas pages are loaded in the Firefox 3.5 browser. Since the JVM’s JIT

compiles hotspot bytecode into native code based on runtime profiling of multiple

method invocations, the initial 20-30 readings for each experiment are discarded

until steady readings can be obtained, in order to approximate a long-running

server. The average of 10 readings are then taken to smooth out CPU spikes from

the JVM’s garbage collection. To simulate a database server where proposals are

not already cached in memory buffers, the currently logged-in user (and hence the

proposals retrieved) is randomly selected for each reading.

For network measurements, the servlet container enables gzip compression

36

Table 2.1: Strawman implementation

System Description Time Size
1 Browser Invoke request 14 ms
2 Network Request latency 50 ms
3 Request transfer time 2 ms 0.2 KB
4 Server Update review 5 ms
5 Generate page data tree 210 ms
6 Response I/O 13 ms
7 Network Response latency 50 ms
8 Response transfer time 9 ms 6 KB
9 Browser Rendering 38 ms

Total 391 ms

Table 2.2: FORWARD implementation

System Description Time Size
1 Browser Invoke request 14 ms
2 Network Request latency 50 ms
3 Request transfer time 2 ms 0.2 KB
4 Server Update review 5 ms
5 View maintenance 7 ms
6 Response I/O 5 ms
7 Network Response latency 50 ms
8 Response transfer time 1 ms 0.4 KB
9 Browser Incremental rendering 8 ms

Total 142 ms

by default, which accounts for an order of magnitude reduction in response size. To

estimate the time needed for real network traffic, we assume a coast-to-coast net-

work round-trip time of 100 ms [HA00], and the average US upload and download

bandwidths of 1 Mbps and 5 Mbps respectively [oA09].

To demonstrate the end-to-end performance of a server roundtrip, Table

2.1 presents itemized activities and their latencies in the strawman implementation

described in the beginning of Section 2.3, starting from the time the submit button

is clicked till the browser fully refreshes. Table 2.2 presents the same activities

and their latencies in FORWARD, which employs the incremental maintenance

techniques of Section 2.3.

37

In Table 2.1, (1) is the time spent by JavaScript code in the browser collect-

ing the data for the invocation context, (2-3) is the time to transmit the request,

and (4) is the time to invoke the program for updating the review in the database.

Note that (1-4) are outside the scope of the incremental maintenance optimiza-

tions, and therefore have identical values in Table 2.2. (5) is the time to evaluate

the query to generate the page data tree. Indexes have been created on foreign

key columns so that PostgreSQL can efficiently join tables, but the query is ex-

pensive due to the disk accesses incurred. (6) is the time to encode the entire page

data tree in JSON. (7-8) is network time. Finally (9) is the time to create a new

unit instance tree and render the DOM elements and JavaScript components from

scratch. We omitted browser reflow time, as browsers do not provide programmatic

mechanisms to reliably measure it, and the reflow time for the running example is

too fast to be measured manually with a stopwatch.

In Table 2.2, note that (4) remains the same as in Table 2.1, showing

that storing the modification log in main memory has no measurable performance

penalty. (5) demonstrates the efficacy of the incremental view maintenance of

Section 2.3.1. Since there are no proposal updates in the modification log, the

proposals collection falls in the non-modification case, therefore no SQL queries

need to be issued. Other nested collections, such as other reviews and grades,

fall in the incremental maintenance case, where both the modification log and

database need to be accessed to compute proposals ./ ∆+reviews. As compared

to the full query which requires a join on the 120,000-row reviews table, the

incremental query uses the 3-row modification log to yield a 30x speed up. (6)

shows that the data layer difference is more efficient to encode than the entire

page data tree. Similarly (8) shows that the data layer difference is also more

efficient to transmit. Lastly, (9) shows that incremental maintenance of the visual

layer (Section 2.3.2) produces a 4.75x speed up. The speed up can be attributed to

less DOM elements being created and less JavaScript components being initialized.

In addition to the speed up, FORWARD’s incremental refresh preserves values that

the user may have entered in other form units, thus providing a user experience

superior to that of the strawman implementation’s full refresh.

38

2.5 Related work

The data management research community has created database-driven

frameworks for web site [FFLS00] and pure server side web application [CFB00,

YSRG06] development. In WebML [CFB00] the unit structure of a page tracks the

database’s E/R schema and it is easy to create pages that report/update entities

and navigate across them. While these frameworks do not work with Ajax compo-

nents, they still provide an important target, which FORWARD pursued: maintain

their clarity of specifying applications despite the fact that Ajax applications re-

quire distributed programming, multiple languages and tedious combination of

component initialization and refresh. Generally browser side code was neglected

(except for the recent [FPF+09] that describes how to run XQuery on the browser).

Echo2 [Ech09], ZK [ZK 09], Backbase [Bac09] and ICEfaces [ICE09] are

Ajax frameworks that also provide to the programmer the ease of programming in

a single language (typically Java) and exclusively at the server. They mirror the

page state by caching it in its entirety on the server and they keep the browser

and server page states in sync automatically. However, since the languages of

these frameworks are imperative (instead of FORWARD’s SQL-based language),

they cannot perform automatic incremental maintenance of the page. Therefore

one has to program both for the initialization and the refresh of the components.

To the best of our knowledge FORWARD is the only framework that employs

automatic incremental maintenance of the page.

In the same spirit Microsoft’s ASP.NET [Wik09a] is a pure server-side

framework that provides mirroring of page state by always sending the page state

from the browser to the server in a hidden form field. It shares a drawback with

the Ajax frameworks listed above in that the page state includes styling properties

and implementation details and therefore it has a high memory footprint and slow

mirroring. For example, our measurements have shown that an Echo2 page for

the page of Figure 2.1 occupies about 300KB, or three times more memory. FOR-

WARD’s structuring of the page across the MVC architecture and the sending of

the forms parts of the page data tree is obviously sufficient and more efficient.

Google’s GWT [Goo09] and Cornell’s Hilda [YGG+07] achieve the single

39

language property with the same fundamental technique: they distribute the pro-

cessing between the browser and the server. In GWT’s case this is accomplished by

translating Java (which is the single programming language) into JavaScript. We

believe that the high engineering complexity of distribution is unnecessary since

mirroring can be very performant, as we showed.

For use in pre-Ajax web application infrastructure, [CAL+02] shows how to

manage cached dynamic pages by invalidating out-dated views in the cache upon

relevant updates to the base tables. Ajax provides a finer-grained opportunity,

which FORWARD exploits: Instead of invalidating the whole page, incrementally

update its invalidated parts.

Relational incremental view maintenance received high attention in the mid

90s, in the context of efficient data warehouse maintenance (for example, see

[ZGMHW95, AASY97, MQM97]). More recently, [AMR+98, ZGM98, DESR03,

AFP03, STP+05, FKSV08] proposed solutions to the view maintenance problem

for query languages and data models that support nesting and ordering. How-

ever, these techniques have limited applicability for FORWARD as they specialize

in immediate view maintenance only, do not support the sets of required update

operations or apply to less expressive query languages.

2.6 Summary and Future Work

FORWARD allows the development of Ajax data-driven pages by declar-

atively describing their data (using an appropriately extended SQL) and conse-

quently rendering them in FORWARD’s page unit structure. The pages are treated

as automatically refreshed rendered views. We showed that the rendered views ap-

proach increases productivity since the page can be succinctly expressed with a

combination of SQL and (visual) page units while the mundane data synchroniza-

tion issues of the page are automatically resolved.

At the core of the described solution has been the “data-driven page” as-

sumption, which technically means that the server state is effectively fully captured

by its database state and the page’s data at a logical level can be described with

40

a query over the database state. Notice that a partial failure of this assumption

does not lead to a wholesale dismissal of our approach. Rather, the developer can

use FORWARD just for the parts of pages that are data-driven while he will need

to resort to conventional Ajax programming techniques for the rest.

The larger task of simplifying Ajax web application programming entails

a number of additional challenges, described next, emerging once we remove the

data-driven page assumption. Some of those challenges will require additional

research often at the intersection of software engineering and data management.

Others (notably integration issues) will keep being resolved by the developers’ code

in practice.

Extending to non-data-driven pages An extension to the rendered view

paradigm may need to be taken when the user interaction on the Ajax page leads

to changes on the page itself and such page changes are most succinctly expressed

as a direct function of the user interaction. One way, but not always the best,

to accomplish such page changes is to first turn the user interaction’s effects into

database insert/delete/updates so that the page view can be automatically and

incrementally maintained by capturing them. Another direction towards address-

ing such cases is the extension of FORWARD to allow the page queries to (a) use

the current page state also as an input database and (b) extend the page query

semantics to allow the expression of a partial modification of itself. We believe

that an extension in this direction can bridge the rendered view paradigm with a

style of programming based on explicitly specifying the effect of users’ interactions

on parts of the page.

Integration between the relationally-driven page and server side OO

components If the server state includes objects that either do not have an

underlying database or they are exported by OO components that encapsulate

their underlying database (therefore making it unavailable to the SQL query fuel-

ing the rendered view) a conventional integration problem of objects to relational

data emerges. Part of the problem is mitigated by the fact that the FORWARD

page schemas already include nesting and variability. Nevertheless, we need to

41

work to provide tools, in the spirit of object-relational mappers such as Hibernate,

to facilitate this integration, while keeping in mind that the long history of the

OO/relational interfacing problem indicates that a magic bullet is not found and

developers will need to apply the best practices and methodologies of OO/relational

integration in this domain.

Acknowledgements

This chapter contains material from “Ajax-based Report Pages as Incre-

mentally Rendered Views”, by Yupeng Fu, Keith Kowalczykowski, Kian Win Ong,

Kevin Keliang Zhao and Yannis Papakonstantinou, which appears in Proceedings

of the ACM SIGMOD International Conference on Management of Data, SIG-

MOD 2010. The dissertation author was the primary investigator and author of

this paper. The material in this chapter is copyright c©2010 by the Association for

Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided

that the copies are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page in print or the

first screen in digital media. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or email permissions@acm.org.

Chapter 3

Data Model

The data model is designed to enable the developer to avoid the impedance

mismatch of programming in multiple languages (JavaScript, SQL, Java) in or-

der to implement Ajax pages. It follows the relational model, minimally extended

with nesting, variability and ordering in order to conveniently represent data typ-

ically found on web pages. Similarly, the query language presented in Chapter 4

is a minimal extension of SQL. We chose this approach over XQuery/XML be-

cause (a) SQL has a much larger programmer audience and installed base (b) SQL

has a smaller feature set, omitting operators such as // and * for schema-less

data and path access of arbitrary depth, which are not necessary for modelling

pages but have created challenges for efficient XML/XQuery query processing and

view maintenance, and (c) existing database research and technology provide a

great leverage for implementation and optimization, which enables focus on the

truly novel research issues without having to re-express already solved problems

in XML/XQuery or having to re-implement database server functionality.

To represent data on pages, as well as to communicate data across sub-

systems in a standard fashion (independent of whether they are stored in main

memory, relational databases or other data sources), the following is required of

the data model:

• Nesting. In an application, data collected by forms and reported pages are

often nested. Nesting is not natively handled by the (flat) relational model,

42

43

which is one of the sources of “impedance mismatch” between SQL databases

and application frameworks.

• Strong typing. A strict type system generally provides more opportunities for

analysis and optimization. For example, type constraints such as uniqueness,

functional dependencies and cardinality provides richer type information that

can benefit query optimization and program verification.

• Ad-hoc typing.1 To maximize re-usability, a service needs to declare its

input to be of any type that possesses specific attributes. For example,

an EmailService requires attributes name and email, therefore it should

work with types Person and Company as long as attributes name and email

are defined on them. Ad-hoc typing allows the creation of an ad-hoc

type EmailRecipient that qualifies as the supertype of both Person and

Company, (or indeed any type that has the two necessary attributes).

• Sum types.2 A data value may take on one of several different (but fixed)

types. For example, to model conditional forms, a switch unit conditionally

displays one of several different groups of child units. As another example,

programs may contain conditional branches. At the reconvergence point, the

respective outputs of the if-branch and the else-branch need to be represented

as a choice between two types.

1Java uses a nominative type system that does not facilitate ad-hoc typing, but there are other
type systems that do. Dynamic languages such as Python use duck typing, where type checking
is deferred until runtime. OCaml uses structural subtyping, where a subtype is simply one that
structurally contains all attributes (or more) of the supertype. A recent addition to C# (due
to LINQ) is anonymous types, which allow ad-hoc creation of types that encapsulate a set of
read-only attributes. Note that all such systems offer the convenience of not requiring explicit
type declarations: the statically-typed languages (i.e. OCaml and C#) accomplish this by using
type inference. See respective Wikipedia articles for more information.

2Also known as tagged unions. Examples of language support include C’s UNION keyword, and
Haskell’s / ML’s algebraic data types. Note that tagged unions are not related whatsoever to
the union operator in relational algebra. See respective Wikipedia articles for more information.

44

3.1 Syntax

The grammar for the syntactic representation of a data tree and a schema

tree are given in Figure 3.1 and Figure 3.2 respectively. Subsequently, Figure 3.3

and Figure 3.4 show examples of syntactically representating a data tree and a

schema tree.

value4 → collection value
| tuple value
| switch value
| scalar value

collection value → [name :] (set | list)
(tuple value [, tuple value]*)

tuple value → [name :] tuple(value [, value]*)

switch value → [name :] switch(tuple value)

scalar value → [name :] (string | int | float | date)

Figure 3.1: BNF for data tree

type4 → collection type
| tuple type
| switch type
| scalar type

collection type → [name :] (set | list) (tuple type,
PRIMARY KEY(name [, name]*))

tuple type → [name :] tuple(type [, type]*)

switch type → [name :] switch(tuple type
[, tuple type]*)

scalar type → [name :] (string | int | float | date)

Figure 3.2: BNF for schema tree

45

list(

tuple(

proposal_id : 509,

title : Flying Cars,

average_grade : 4.5,

reviews : set(

tuple(

review_id : 1,

comment : Creative...,

grade : 3 - Good,

reviewer : tom@abc.edu

)

...

),

grades : list(

tuple(

bar_id : 1,

value : 3

)

),

my_review : switch(

input_tuple : tuple(

comment : null,

grade : tuple(

grade_ref : null,

grade_options : list(

tuple(

grade_id : 1,

grade_label : 1 - Poor

)

...

)

)

)

)

)

...

)

Figure 3.3: Example data tree

list(

tuple(

proposal_id : int,

title : string,

average_grade : float,

reviews : set(

tuple(

review_id : int,

comment : string,

grade : string,

reviewer : string

)

),

grades : list(

tuple(

bar_id : int,

value : int

)

),

my_review : switch(

input_tuple : tuple(

comment : string,

grade : tuple(

grade_ref : int,

grade_options : list(

tuple(

grade_id : int,

grade_label : string

)

)

)

),

display_tuple : tuple(

comment : string

grade : string

)

)

)

)

Figure 3.4: Example schema

tree

46

3.2 Type System

3.2.1 Data Trees

Figures 3.5 and 3.6 provide the tree grammars of the data model concepts

that are to be defined shortly. Each concept has both a data equivalent and a

type equivalent, where the latter serves to represent characteristics that apply

across multiple data instances. We first define the data tree and schema tree as

independent structures: the consistency between the two trees (such as whether a

data tree corresponds 1-to-1 to a schema tree) is defined later in Section 3.2.4.

DataTree4 → data tree [Value]
Value → CollectionValue

| TupleValue
| SwitchValue
| ScalarValue

CollectionValue → SetValue
| ListValue

SetValue → set value [name?, TupleValue*]
ListValue → list value [name?, TupleValue*]
TupleValue → tuple value [name?, Value+]
SwitchValue → switch value [name?, TupleValue+]
ScalarValue → PrimitiveValue

| NullValue
PrimitiveValue → StringValue | IntegerValue | . . .
StringValue → string value [name?, string]
NullValue → null value [name?]

Figure 3.5: Grammar for Data Tree

47

SchemaTree4 → schema tree [Type, Constraint+]
Type → CollectionType

| TupleType
| SwitchType
| ScalarType

CollectionType → SetType
| ListType

SetType → set type [name?, TupleType]
ListType → list type [name?, TupleType]
TupleType → tuple type [name?, Type+]
SwitchType → switch type [name?, TupleType+]
ScalarType → PrimitiveType

| NullType
PrimitiveType → StringType | IntegerType | . . .
StringType → string type [name?]
NullType → null type [name?]

Figure 3.6: Grammar for Schema Tree

The basic building block is the tuple, which is a sequence of attributes,

that is, named values. The tuple’s type indicate the fixed size of the sequence,

the ordering of the attributes, the unique attributes, and the respective types of

attributes. A variety of attribute values can be stored in a tuple.

A scalar value is a value that is handled natively by a SQL database:

1. primitive value, such as string, binary data (byte array), boolean, big integer,

integer, double, float and timestamp.

2. null value, which necessitates ternary logic during expression evaluation in

the spirit of SQL. It conforms to all possible types.

A collection value is a set of homogeneous tuples (i.e. all the tuples have

the same type). Unlike the relational model, the collection is itself a value that

can be stored in a tuple, thereby allowing collections to be nested.

There are multiple extensions to the nested relational model:

1. Any value can be the root of the data tree.

48

2. A collection type must be associated with a primary key constraint (Section

3.2.2), such that each tuple in the collection is uniquely identifiable. An

unordered collection is a set value, whereas an ordered collection is a list

value (more precisely, a unique list). The ordering of tuples within a list

value are determined by the values of ordering attributes (Section 3.2.2).

3. A switch value3 allows choosing among different tuple types. Its type is a

mapping of distinct cases to tuple types; the value comprises of exactly one

case, and a tuple of the corresponding type.

4. A tuple is itself a value, therefore it can be contained directly within another

tuple. This is a convenience feature that facilitates grouping of values: such

a grouping can always be implicitly captured with hierarchical naming.

For example, a person tuple can contain a physical tuple with attributes

height and weight, and a contact tuple with attributes phone and address.

This showcases grouping of values.

As a short-hand, direct attributes of a tuple type are attributes immediately

specified by a tuple type, indirect attributes are those reachable by traversing only

tuple types, and conditional attributes are those reachable by traversing only tuple

and switch types. The respective definitions can be extended in a straightforward

manner for the direct, indirect and conditional attributes of a collection type, a

tuple, or anything that corresponds to exactly one tuple type.

There is a tree homomorphism between a data tree and its corresponding

schema tree. One or more data nodes (i.e. values) can map to a single schema

node (i.e. type).

Implementation notes:

1. Data nodes do not always have to be recursively contained within a data

tree. This is necessary because (1) data nodes need to be constructed before

they can be attached to a data tree (2) it facilitates detaching a sub-tree,

and re-attaching it to another data tree. Likewise for schema nodes.

3Analogous to XML Schema’s choice element.

49

2. A data tree d1 can be compared to another data tree d2 by considering

whether d1 is isomorphic or homomorphic to d2. Likewise for schema trees.

3. Cloning an entire data tree, or sub-tree thereof, is supported.

3.2.2 Constraints

Constraint → NonNullConstraint
| HomogeneousConstraint
| OrderingConstraint
| LocalPrimaryKeyConstraint
| ForeignKeyConstraint

NonNullConstraint → non null constraint

(TupleType, Type)

HomogeneousConstraint → homogeneous constraint

(TupleType, Type+)

OrderingConstraint → ordering constraint (

ListType, ScalarType+)

LocalPrimaryKeyConstraint → local primary key constraint (

CollectionType, ScalarType+)

ForeignKeyConstraint → foreign key constraint (

CollectionType,
CollectionType,
ScalarType*, ScalarType+)

Figure 3.7: Grammar for Constraints

A schema tree contains the data constraints for all types recursively within.

A data constraint is a declaration that data satisfies certain criteria. Each

data constraint has a constraint checker that verifies that the containing data tree

is consistent with respect to the constraint. This decoupling of declaration and

enforcement provides more flexibility for data tree writers: enforcement can be

deferred for efficiency, and data trees can be left as inconsistent if so desired. Note

that a constraint can only operate within a single data tree, i.e. it cannot cross

data tree boundaries.

We will first present the data constraints that can be declared, and defer

the discussion on their enforcement until Section 3.2.4.

50

The data constraints available are:

Non-null constraint(T,A) Declares on tuple type T that all corresponding tu-

ples cannot map attribute A to the null value. A must be a direct attribute

of T .

Homogeneous constraint(T,A) Declares on tuple type T that each correspond-

ing tuple t maps attributes A to either all null values or all non-null values.

A must contain only direct attributes of T .

Ordering constraint(L,A) Declares on list type L that for each corresponding

list value l, l has tuples ordered by the concatenation of values v for attributes

A. A must contain only direct or indirect scalar attributes of L.

Local uniqueness constraint(C,A) Declares on collection type C that for each

corresponding collection c, c has tuples with unique4 values v for attributes

A. A must contain only direct or indirect scalar attributes of C.

Global uniqueness constraint(C,A) Declares on collection type C that c∪, the

union of all corresponding collections, has tuples with unique values v for

attributes A. A must contain only direct or indirect scalar attributes of C.

Local primary key constraint(C,A) Declares on collection type C that in each

corresponding collection c, attributes A are the primary key. Restrictions are

as follows:

1. A must contain only direct or indirect scalar attributes of C.

2. The values corresponding to each attribute A of A must be immutable.

3. There must be a global uniqueness or local uniqueness (or both) con-

straint on (C,A).

4. For each attribute A in A and its parent tuple type T , there must be a

non-null constraint on (T,A).

4Null values are not considered equal under uniqueness, as per the SQL standard.

51

5. There must be exactly one local primary key constraint on C5.

Global primary key constraint(C,A) Declares on collection type C that in c∪,

the union of all corresponding collections, attributes A are the primary key.

Restrictions are as follows:

1. A must contain only direct or indirect scalar attributes of C.

2. The values corresponding to each attribute A of A must be immutable.

3. There must be a global uniqueness constraint on (C,A).

4. For each attribute A in A and its parent tuple type T , there must be a

non-null constraint on (T,A).

5. There must be at most one global primary key constraint on C.

Foreign key constraint(Cf , Cr, Af , Ar) Declares on collection type Cf that each

tuple in corresponding collections has values vf for foreign key attributes Af ,

that match values vr for referenced attributes Ar of some tuple in some

collection of collection type Cr. If there is at least one null value in vf , the

match trivially succeeds and the constraint is considered satisfied.6

For example, consider an employee collection with a foreign key comprising

two attributes department id and manager id. When both attributes

are non-null, the constraint ensures that the attributes match a manager

who is really managing a specific department. When at least one value

is null (e.g. the employee is the department head himself), then the

match trivially succeeds. In this example, note that there are likely two

other foreign keys respectively for department id (ensure that the depart-

ment is valid) and manager id (ensure that the manager is a valid employee).

Restrictions are as follows:

5The mandatory local primary key constraint ensures that a collection is trivially in parti-
tioned normal form (PNF) [RKS88].

6The match semantics come from the default MATCH SIMPLE option in SQL. MATCH FULL

semantics can be obtained by adding a separate homongeneous constraint.

52

1. Af must contain only direct or indirect scalar attributes of Cf .

2. Ar must contain only direct or indirect scalar attributes of Cr.

3. There must be a global uniqueness constraint on (Cr, Ar).

3.2.3 Primary keys & Context

Given the mandatory local primary key constraint on collection type C and

attributes L, we define the local primary key attributes of C to be the attributes

L. Furthermore, we define the context attributes of C to be:

• G if there is a global primary key constraint on collection type C and at-

tributes G, otherwise

• L if C is a top-level collection, otherwise

• the concatenation of the parent key and L, where the parent key is the context

of the closest ancestor collection type of C.

Using Figure 3.8 as an example, and assuming the top-level collection has

context attribute (student id), the nested collection’s context attributes can be

specified to be any one of the following:

• (enroll id) if there is a global key constraint on (enroll id).

• (student id, class id) if there is no global key constraint, and there is a

local key constraint on class id.

• (student id, enroll id) if there is no global key constraint, and there is

a local key constraint on enroll id.

student id name enrollment
enroll id class id class grade

1 John 1 1 Math B
2 2 Physics C
3 3 Art B

2 Mary 4 1 Math A
5 4 History A

Figure 3.8: Example top-level collection

53

The context attributes as declared in the schema determines the context,

which serves as an identifier for values that is (1) globally unique within the data

tree (2) stable due to the immutability of local / global primary key attributes.

The context of a data node d (i.e. value) is a tree comprising:

1. a root-to-node path pd to the node d.

2. a root-to-node path pgi for each closest value gi of context attributes G

of closest ancestor collection type C, where closeness is determined by the

number of nodes in common with pd.

3. no other paths.

Using the data tree in Figure 3.9a as an example, and assuming that the

context attributes are respectively (plan id) and (plan id, member id), the con-

text of the string value John is illustrated in Figure 3.9b, whereas the context of

the top-level collection is illustrated in Figure 3.9c. The nodes identified by the

context are highlighted with rectangles.

54

(a) Data tree

(data_tree)

page
(tuple)

plans
(set)

plan
(tuple)

plan_id
(int)

1

title
(string)

Flying Cars
members

(set)

member
(tuple)

member
(tuple)

member_id
(int)

1

name
(string)

John

member_id
(int)

2

name
(string)

Jane

(b) Context of nested

tuple

(data_tree)

page
(tuple)

plans
(set)

plan
(tuple)

plan_id
(int)
1

members
(set)

member
(tuple)

member_id
(int)
1

name
(string)
John

(c) Context

of top col-

lection

(data_tree)

page
(tuple)

plans
(set)

Figure 3.9: Context

To define a textual path syntax that uniquely identifies a data node, we

define the identifier suffix of the tuple t of a collection c to be:

1. a comma-separated string of the values of its context attributes, if there is a

global primary key constraint on collection type C of c, otherwise

2. a comma-separated string of the values of its local primary key attributes.

The qualified name of a data node is:

1. its name concatenated with @ and the identifier suffix, if it is a collection

tuple, otherwise

55

2. its name.

A context path (or data path) for a data node is a textual syntax of its

context, represented by a dot-separated string of the qualified names along its

root-to-leaf path. For example, the data path for the string Jane in Figure 3.9a

is: page.plans.plan@1.members.member@2.name.

Analogously (but simpler), the schema path for a schema node is a dot

separated string of the names along its root-to-leaf path. For example, the corre-

sponding schema path for the name attribute in Figure 3.9a is:

page.plans.plan.members.member.name.

3.2.4 Data Consistency

Each data tree must be associated with a schema tree, whereas a schema

tree can be associated with zero or one data tree. This association is bidirectional,

by having a pair of pointers between a data tree and schema tree.

A data tree is consistent when it is both (1) type consistent with respect to

the schema tree and (2) constraint consistent with respect to the constraints on

the schema tree.

For a data tree to be type consistent, a generic type checker needs to evaluate

to true given the data tree and schema tree. Each node in the data tree must satisfy

the following criteria:

1. A data node is associated with a node in the schema tree.

2. The data node is conformant to the schema node. For example, a string

value is always conformant to a string type, whereas a tuple value is only

conformant to a tuple type if both have identical attribute names. As a

special case, a null value is conformant to all types.

3. The parent of the data node is associated with the parent of the schema

node. For tuple values and switch values, all children nodes must be named,

and the respective names on the data tree and the schema tree must agree.

56

For a data tree to be constraint consistent, it must be type consistent and

have all the constraint checkers on the schema tree evaluate to true. Typically a

constraint checker is implemented as a query.

Note that a data tree can be left as inconsistent: it is the caller’s responsibil-

ity to invoke the respective type checker and constraint checkers. For the purposes

of efficiency though, especially since a data tree is used to pass data from one

sub-system to another, it is important that it memoizes whether it is consistent

by storing a type consistency flag and a constraint consistency flag.

1. When the data tree is modified by adding, removing or changing nodes, both

the type consistency flag and the constraint consistency flag are reset.

2. When the schema tree is modified by adding, removing or changing nodes,

both the type consistency flag and the constraint consistency flag are reset.

3. Adding or changing a constraint resets only the constraint consistency flag.

4. Removing a constraint does not reset any flags.

When passing a data tree from one sub-system to another, sometimes it

may be necessary to mark a data tree as immutable. This is accomplished with

a immutable flag on a data tree that can only be set once, and cannot be reset

thereafter. When a data tree is immutable:

1. Modifying the data tree, schema tree or constraints will throw an exception7.

2. The data tree must be type consistent and constraint consistent. Modifying

the type consistency and constraint consistency flags will throw an exception.

3. The only way to modify the data tree, schema tree or constraints again is to

clone them (and discard the originals). Obviously, the cloned copy should

default to being mutable

7Whereas Java collections are immutable in a shallow manner, a data tree is immutable in a
deep recursive manner.

57

To implement the type consistency, constraint consistency and immutable

flags, each data node, schema node and constraint needs to locate its corresponding

data tree (when it is attached to one). This is achieved by navigating (1) the parent

pointers on each node (2) the pointers between the data tree and schema tree.

3.3 Data Diffs

A data diff compactly represents the differences between two data trees.

This representation is useful when encoding changes that have occurred on a data

tree (presumably for efficient transmission or storage), or changes to be made to a

data tree (presumably through an update language). A data diff comprises:

1. the operation, which is either of insert, replace or delete.

2. the context, which is a data path that uniquely identifies where the change

has occurred in the data tree.

3. the payload, which is a data (sub-)tree that represents the change.

Where the payload is a collection tuple, its values for the context attributes

in the payload must be identical to those used in the context.

We focus on data diffs where the updated data tree remains conformant to

the schema tree. That is, we defer discussing data diffs which also require schema

changes, such as changing the number of attributes within a tuple, changing the

type of an attribute etc.

As an example, Figure 3.10 shows a original data tree, whereas Figure 3.11

shows the respective kinds of data diffs that can occur on the data tree. In Figure

3.11, the rectangle indicates the data node that has been uniquely identified by

the context. Note that the context has been illustrated as a tree structure for ease

of exposition, typically the more compact representation for it is a context path.

58

(data_tree)

page
(tuple)

plans
(set)

plan
(tuple)

plan_id
(int)

1

title
(string)

Flying Cars
members

(set)

member
(tuple)

member
(tuple)

member_id
(int)

1

name
(string)

John

member_id
(int)

2

name
(string)

Jane

Figure 3.10: Original Data Tree

(a) Insert diff

(data_tree)

page
(tuple)

plans
(set)

plan
(tuple)

plan_id
(int)
1

members
(set)

member
(tuple)

member_id
(int)
3

name
(string)
Peter

(b) Delete diff

(data_tree)

page
(tuple)

plans
(set)

plan
(tuple)

plan_id
(int)
1

members
(set)

member
(tuple)

member_id
(int)
1

(c) Replace diff

(data_tree)

page
(tuple)

plans
(set)

plan
(tuple)

plan_id
(int)
1

members
(set)

member
(tuple)

member_id
(int)
1

name
(string)
Jonathan

Figure 3.11: Data Diffs

The semantics of the data diffs are as follows:

• Insert diff. The context identifies the tuple in the new data tree (note the

symmetry to the delete diff), and the payload represents the tuple to be

59

inserted. Figure 3.11a shows an insert diff, where the context is

page.plans.plan@1.members.member@3, and the inserted tuple for Peter

has member id equals to 3.

When the data diff is used to modify a data tree where default values have

been specified on the schema tree, omitting an attribute in the payload will

cause default values to be assigned. As a special case, omitting the primary

key attributes will cause automatic assignment of unique identifiers, which

will necessitate omitting as well the last identifier suffix on the context. In the

example, the context will become page.plans.plan@1.members.member.

• Delete diff. The context identifies the tuple in the data tree to deleted,

and there is no payload necessary. All descendants of the tuples would be

recursively deleted. Figure 3.11b shows a delete diff, where the context is

page.plans.plan@1.members.member@1, and the tuple for John is deleted.

• Replace diff. The context identifies the value in the data tree to be replaced,

and the payload represents the replacement value. Figure 3.11c shows a

replace diff, where the context is page.plans.plan@1.members. Both John

and Jane tuples are removed, and the new members collection has a single

tuple for Jonathan. Note that while the members sub-tree has changed, its

sibling attribute title in the data tree remains unaffected.

Acknowledgements

This chapter contains material from the technical report “Technical Spec-

ifications of the FORWARD Framework”, by Yupeng Fu, Kian Win Ong, Kevin

Keliang Zhao, Yannis Papakonstantinou and Michalis Petropoulos. The disserta-

tion author was the primary investigator and author of the relevant chapters in

the technical report.

Chapter 4

Query Language

As described in Chapter 3, the query language is designed as a minimal

extension of the SQL syntax (as opposed to XQuery or OQL) because (a) SQL

has a much larger programmer audience and installed base (b) SQL has a smaller

feature set, omitting operators such as // and * for schema-less data and path

access of arbitrary depth, which are not necessary for modelling pages but have

created challenges for efficient XML/XQuery query processing and view mainte-

nance, and (c) existing database research and technology provide a great leverage

for implementation and optimization, which enables focus on the truly novel re-

search issues without having to re-express already solved problems in XQuery or

having to re-implement database server functionality.

The minimal syntactic extensions to SQL are illustrated below with exam-

ples:

1. Nested output The SELECT clause allows expressions that create nesting,

including sub-queries that output nested collections. The following example

creates an employees collection nested within each department. Note that

the sub-query is parameterized by the tuple variable d from the top-level

query.

1 SELECT *,

2 (

3 SELECT *

4 FROM employees AS e

60

61

5 WHERE e.department_ref = d.department_id

6) AS employees

7 FROM departments AS d

2. Nested input The FROM clause allows navigation into nested collections of

tuple variables. The following example creates a flat collection of employees

from a nested one.

1 SELECT d.id, e.id, e.name

2 FROM departments AS d, d.employees AS e

3. Variability A SWITCH WHEN ... ELSE ... END expression allows con-

structing switch values. Similar to SQL’s CASE WHEN ... ELSE ... END

conditional expression, a SWITCH expression evaluates condition expressions

on multiple branches. However, each branch evaluates to a (potentially het-

erogeneous) case:value pair, where the case name identifies the currently

selected case. The following example constructs a switch value that has ei-

ther the undergraduate or the graduate case based on whether the student

has an advisor.

1 SELECT s.id,

2 SWITCH

3 WHEN (s.advisor IS NOT NULL) THEN

4 TUPLE(

5 s.advisor AS advisor,

6 s.funding AS funding

7) AS graduate

8 ELSE

9 TUPLE(

10 s.tuition AS tuition

11) AS undergraduate

12 END

13 FROM students AS s

4. Non-collection output A query can return a value that is not a collection.

In particular, an expression (without a SELECT clause) is a valid query. The

following examples return an integer value and a tuple value respectively.

1 1+1

62

1 TUPLE(123 AS x, 456 AS y)

In order to leverage existing SQL implementations, a query is parsed and

translated into one or more SQL queries. The flat SQL tables returned by the

SQL queries are then reconstructed into nested data trees. Conceptually, the sys-

tem resembles XQuery query processors [GST04, PCS+05, BGvK+06] that execute

XQuery by translating it into SQL queries that run on top of a relational database.

Details of the query language implementation are organized as follows:

• Syntax Analysis Section 4.1 presents both the BNF syntax and abstract

syntax tree (AST) for the query language. We use JavaCC to generate a

parser that parses the textual syntax into an AST.

• Semantic Analysis Section 4.2 presents the semantic checks to be per-

formed on the AST. This includes type checking / type inference (Section

4.2.2) and primary key checking / inference (Section 4.2.4).

• Query Evaluation Section 4.3 presents how the nested query is evaluated

using the SQL engine. In order to produce data structures for a SQL engine,

Section 4.3.1 explains how the schema tree is decomposed into relational ta-

bles, and Section 4.3.2 explains how the nested query is decomposed into one

or more SQL queries with a system of rewrite rules. Section 4.3.3 describes

how the SQL queries are evaluated, and finally Section 4.3.4 describes how

the results of the SQL queries are used to reconstruct the nested data trees.

We first present the query language assuming that it operates only over

data stored in a SQL database. Section 4.4 further discusses how to extend the

query language to operate over in-memory data, as well as other data sources.

4.1 Syntax Analysis

The query syntax in Figures 4.1 and 4.2 is designed to closely resemble

SQL. For ease of exposition, the BNF presented here does not take into account

operator precedence.

63

query4 → SELECT select list
[FROM from item [, from item]*]
[WHERE expression]
[GROUP BY expression [,expression]*]
[HAVING expression [,expression]*]
[UNION | INTERSECT | EXCEPT query]
[ORDER BY expression [ASC | DESC]
[, expression [ASC | DESC]]*]
[KEY ON expression [,expression]*]
[LIMIT expression [CACHE integer]]
[OFFSET expression]

select list → *

| select item [,select item]*
select item → tuple name.*

| expression [AS alias]
from item → collection name AS alias

| variable.path AS alias
| function call AS alias
| (query) AS alias
| from item join type from item [ON condition]

Figure 4.1: Syntax of query (SELECT clause)

64

expression 4 → expression arithmetic op expression
| [+ | -] expression
| scalar literal
| variable.path

| function call
| (query)
| parameter

| (expression)
| condition
| CASE [WHEN expression THEN expression]+

[ELSE expression] END
| SWITCH

[WHEN expression THEN expression AS alias]+
[ELSE expression AS alias] END

| TUPLE(expression AS alias [, expression AS alias])
condition → condition logical op condition

| NOT condition
| expression comparison op expression
| expression [NOT] LIKE expression
| expression IS [NOT] NULL
| EXISTS (query)

function call → function name ([expression [, expression]*])

Figure 4.2: Syntax of query (expressions)

Parsing the query produces an AST. The tree grammar for the class struc-

ture of the AST nodes are shown in Figures 4.3, 4.4 and 4.5.

65

Query4 → UnorderedQuery
| OrderedQuery

UnorderedQuery → PlainQuery
| SetOpQuery

OrderedQuery → ordered query [
unordered query: UnorderedQuery,
order by: (OrderByItem)*,
limit: (LimitItem)?,
offset: (Expression)?]

SetOpQuery → set op query [
lhs: UnorderedQuery,
operator: set op,
rhs: UnorderedQuery]

PlainQuery → plain query [
select items: (SelectItem)+,
from items: (FromItem)*,
where: (Expression)?,
group by: (GroupByItem)*,
having: (Expression)?,
key on: (KeyOnItem)*]

Figure 4.3: AST (queries)

66

SelectItem → WildcardRef
| CollectionWildcardRef
| SelectExpressionItem

CollectionWildcardRef → collection wildcard ref

[variable: string]
WildcardRef → wildcard ref

SelectExpressionItem → select expr item [
select expr: Expression,
alias: string]

FromItem → FromExpressionItem
| JoinItem

FromExpressionItem → from expr item [
from expr: FromExpression,
alias: string]

FromExpression → AttributeReference
| CollectionReference
| Query
| FunctionCall

JoinItem → join item [
lhs: FromItem,
join type,
rhs: FromItem]

GroupByItem → group by item [expr: Expression]
KeyOnItem → key on item [expr: Expression]
OrderByItem → order by item [

expr: Expression,
asc: boolean]

LimitItem → limit item [
limit: Expression,
cache: integer]

AttributeReference → attribute ref

[variable: string,
path: string]

CollectionReference → collection ref [path: string]

Figure 4.4: AST (SELECT clause)

67

Scalar → ScalarLiteral
| parameter

ScalarLiteral → IntegerLiteral
| StringLiteral
| ...

FunctionCall → function call [(Expression)*]
TupleAttribute → tuple attribute [

expression: Expression,
alias: string]

Expression → AttributeReference
| CollectionReference
| Scalar
| FunctionCall
| Query
| SwitchConstructor
| CaseExpression
| TupleConstructor

TupleConstructor → tuple constructor [TupleAttribute+]
SwitchConstructor → switch constructor [

when items: (WhenItem)+,
else item: (ElseItem)?]

CaseExpression → case expr [
when items: (WhenItem)+,
else item: (ElseItem)?]

WhenItem → when item [
when expr: Expression,
then expr: Expression,
(alias:string)?]

ElseItem → else item [
else expr: Expression,
(alias: string)?]

Figure 4.5: AST (expressions)

The parser handles operator precedence, but all operators are translated

uniformly into function calls in the AST. The list of supported operators / functions

include:

1. Logical operators, such as AND, OR and NOT.

2. Comparison operators, such as <>, <, >, <=, >=, = and !=.

68

3. Arithmetic operators, such as +, -, *, / and **.

4. String operators, such as LIKE.

5. Aggregate functions, such as SUM, COUNT and AVG.

6. The EXISTS function, which takes as input a collection. It returns true if the

collection contains any tuples and false otherwise.

7. The TUPLE ELEMENT function, which takes as input a collection. It returns

NULL if the collection is empty, the tuple if the collection has a single tuple,

and throws a runtime error otherwise.

8. The SCALAR ELEMENT function, which takes as input a collection whose tuple

has only a single scalar attribute. It returns NULL if the collection is empty,

the scalar value if the collection has a single tuple, and throws a runtime

error otherwise.

9. The CAST function, which takes as input (1) a scalar value and (2) a string

specifying the target type. It returns the appropriately cast value if the cast

succeeds, and throws a runtime error otherwise.

10. The SELECTED CASE NAME function, which takes as input a switch value. It

returns the selected case name as a string value.

4.2 Semantic Analysis

4.2.1 Variable reference checking

The query language emulates SQL’s variable scoping rules.

1. Within the same query, variables declared in the FROM clause can be refer-

enced in expressions of all other clauses. However, variables declared in the

SELECT clause can only be referenced in the ORDER BY clause. This is because

joins occur before projection, and projection occurs before sorting.

69

2. When a sub-query occurs in the FROM clause, all variables declared in ancestor

queries cannot be referenced in the sub-query. This is to allow the query

optimizer to have the flexibility of re-ordering joins. However, the output

attributes in the SELECT items of the sub-query can be referenced in all

clauses of the parent query, since the purpose of the sub-query is to produce

an intermediate collection accessible within the parent query.

3. When a sub-query occurs in the SELECT clause or the WHERE clause, all vari-

ables declared in the FROM clauses of ancestor queries can be referenced in

the sub-query. However, the sub-query cannot reference variables declared

in the parent query’s SELECT items.

Variable reference checking consists of two steps:

1. Variable resolution is a recursive procedure that resolves the variable dec-

laration corresponding to a variable reference. For each reference ri in the

AST that references variable vi, the procedure visits ri’s nearest ancestor

PlainQuery node q, to check if vi is declared as an alias (tuple variable) in a

FROM item of q. If not, the procedure recursively checks the ancestor queries

of q.

2. Attribute resolution is a procedure to check if the path navigation from a

variable reference is valid. After locating variable declaration vi, the attribute

resolution procedure checks its corresponding collection type ci, and checks

whether the path navigation from ri is a valid path navigation from the tuple

type of ci. We currently restrict the path such that collection types cannot

occur anywhere in the path except as the last component.

Note that a variable declaration must be unique within a query and its

ancestor queries. That is, variable masking is disallowed. This is achieved by

maintaining a symbol table that keeps track of all declared variables.

All FROM items and SELECT items are required to have aliases in the AST.

If the alias has not been explicitly specified by the developer, the checker will infer

an alias from the original expression. The inference uses the following defaults:

70

1. If the item is an attribute reference, the inferred alias is the attribute name.

2. If the item is a function call, the inferred alias is the function name.

Inferred aliases may need to be appended with numerical suffixes to that

aliases are unique within a tuple.

4.2.2 Type checking / inference

Type checking and type inference is performed in a single pass by propagat-

ing types in a bottom-up fashion in the AST. Each expression node is annotated

with a type after its children have been traversed. At the end of the procedure,

the output schema of the query is available.

Type checking is done for the following:

1. FROM item Must be a collection type.

2. Function call A function’s parameter types and return type are captured

by a function signature. For each function call site, the arguments’ types are

checked according to the function signature.

3. SWITCH constructor Each case of the switch must be a tuple type.

4. CASE expression Each THEN expression of the CASE expression must be the

identical scalar type.

5. GROUP BY item Must be scalar type.

6. ORDER BY item Must be scalar type.

7. KEY ON item Must be scalar type.

8. UNION, INTERSECT, EXCEPT The operands of set operators are of collection

types, and their output schemas must be identical.

9. LIMIT clause The operands of LIMIT and OFFSET must be of numeric types.

71

4.2.3 Group by checking

The group by checking procedure checks if the query contains a valid GROUP

BY clause, and behaves identically to SQL. When a GROUP BY clause is present, it is

not valid for the expressions in the SELECT items to refer to ungrouped attributes

unless the attributes are within aggregate functions.

We currently restrict expressions in the GROUP BY clause to only be attribute

references (originating from input collections).

4.2.4 Primary key checking / inference

Each collection type must have a local primary key constraint. The con-

straints should be captured in the type annotations of AST nodes, and can be

either declared explicitly by the developer using the KEY ON clause, or inferred

with the following procedure:

• If a query has a GROUP BY clause, the local primary key attributes are the

group by items. Otherwise, the local primary key attributes comprise the

respective local primary key attributes of collection types in the FROM clause.

Note that to handle aliasing and self-joins, the local primary key attributes

of a collection type are used once for each FROM item the collection type is

referenced.

• Any expressions that produce scalar constants are constant expressions,

which include scalar, aggregate functions, top-level scalar reference, or any

deterministic functions that have constant expressions as arguments. If all

the SELECT item expressions produce constants, then all the scalars in the

result are local primary key attributes.

• The SELECT clause must not exclude any local primary key attribute inferred

from above.

• The local primary key is not applicable for a query that produces a singleton

result, i.e. a query that is coerced by the TUPLE ELEMENT or SCALAR ELEMENT

operator.

72

• The operands to set operators UNION, INTERSECT and EXCEPT must have iden-

tical local primary keys. Furthermore, UNION should behave as a discrimi-

nated union, i.e. the output of each operand set should contain a discrimina-

tor attribute that indicates which operand set an output tuple correspond to.

A discriminator attribute must be a scalar literal. In the following example,

query id serves as the discriminator attribute:

1

2 SELECT 1 AS query_id, p.id, p.title

3 FROM proposals AS p

4 WHERE ...

5

6 UNION

7

8 SELECT 2 AS query_id, p.id, p.title

9 FROM proposals AS p

10 WHERE ...

11

4.3 Query Evaluation

In the following architecture, we describe how a query evaluator evaluates

queries by using an existing SQL engine. This architecture deviates from the

conventional approach of creating an algebraic plan for query evaluation, and is

more reminiscent of XML databases that are built on top of SQL databases by

translating XML data and XQuery queries accordingly.

4.3.1 Decomposition of input data

The query operates over input data that is stored in a SQL database. (For

data that is transient in memory, this implies that the query evaluator will need

to copy that data into the SQL database before evaluating the SQL statements).

Since a SQL database does not handle data model extensions such as nested col-

lection types, nested tuple types and switch types, nested data will undergo de-

composition to become decomposed data that can be stored in the SQL database.

The decomposed data can undergo reconstruction to become nested data again.

73

Although the main purpose of decomposition is to remove nesting (by encoding it

otherwise), decomposition can also be configured to perform vertical partitioning

of 1-to-1 relationships.

Decomposition can occur on the data tree, schema, or constraints. For

conciseness, only decomposition of the schema is described.

Decomposition is separated into two phases: normalization and concatena-

tion. The purpose of normalization is to eliminate nested collection types from

the schema, such that only top-level collection types remain. For those top-level

non-collection types in the nested schema will be moved under a special collection

type named root after normalization. In addition, a non-collection non-key type

can also be marked for normalization, so that it is split off into a separate top-level

collection. On the other hand, the purpose of concatenation is to eliminate nested

tuple types and switch types from the schema. During concatenation, each tuple

type in the schema will concatenate its direct, indirect and conditional attributes.

Example 4.3.1 shows how a nested schema is decomposed, where Figure 4.6

shows the original nested schema, Figure 4.7 shows the schema after normalization,

and Figure 4.8 shows the schema after concatenation, i.e. the decomposed schema.

To facilitate subsequent reconstruction, a mapping from the nested schema

to the decomposed schema is needed. This mapping occurs through a naming

convention for attributes in the decomposed schema, as illustrated by example in

Figure 4.8:

1. A collection type maps to a top-level collection type named after its fully-

qualified path, i.e. the string concatenation of names starting from the root.

For example, proposals.reviews.

2. A scalar type or switch type maps to a scalar type named after its collection-

relative path, i.e. the string concatenation of names starting from its closest

ancestor collection type. For example, comment, my review,

my review.input tuple.comment.

3. A tuple type is not mapped.

74

4. Normalization will create new attributes in the decomposed schema that

correspond to foreign keys. A foreign key attribute is named after the fully-

qualified path of the corresponding primary key attribute. For example,

proposals.id.

Algorithm 1 describes the recursive procedure to normalize a type X,

whereas Algorithm 2 describes the recursive procedure to concatenate a type X.

EXAMPLE 4.3.1. The following example shows a nested schema and its decom-

position. In this example, the average grade attribute is a non-collection type

that has been marked for normalization.

proposals : list(tuple(

id : int,

reviews : set(

id : int,

comment : string

),

average_grade : float,

my_review : switch(

input_tuple : tuple(

comment : string

),

display_tuple : tuple(

comment : string,

edited : date

)

)

))

Figure 4.6: Nested schema before decomposition

75

proposals : set(tuple(

id : int,

my_review : switch(

input_tuple : tuple(

comment : string

),

display_tuple : tuple(

comment : string,

edited : date

)

)

))

proposals.reviews : set(tuple(

proposals.id : int,

id : int,

comment : string

))

proposals.average_grade : set(tuple(

proposals.id : int,

average_grade : float

))

Figure 4.7: Schema after normalization

76

proposals : set(tuple(

id : int,

my_review : string,

my_review.input_tuple.comment : string,

my_review.display_tuple.comment : string,

my_review.display_tuple.edited : date

))

proposals.reviews : set(tuple(

proposals.proposal_id : int,

id : int,

comment : string

))

proposals.average_grade : set(tuple(

proposals.proposal_id : int,

average_grade : float

))

Figure 4.8: Schema after concatenation (decomposed schema)

77

function normalize(X) begin

// Normalize in post-order

foreach child type XC of X do
normalize(XC)

XP ← global primary key attributes of X’s parent

if X is a nested collection type then

Add to X’s child tuple type the attributes XP (named with respective

fully-qualified paths)

Detach X to become top-level collection type (named with X’s

fully-qualified path)

else if X is a non-collection type marked for normalization then
Y ← new top-level set type (named with X’s fully-qualified path)

Add to Y ’s child tuple type the attributes XP (named with respective

fully-qualified paths)

Add to Y ’s child tuple type the attribute X (named with X’s original

name)

Detach X
end

Algorithm 1: Normalizing 1-to-many (and possibly 1-to-1) types

78

function concat(X) begin

if X is a collection type then
concat(X’s child tuple type)

else if X is a switch or tuple type then
Y ← new tuple type

foreach descendant scalar attribute XD of X do
Add to Y the attribute XD (named with XD’s collection-relative

path)

foreach descendant switch attribute XD of X do
Add to Y a new string attribute (named with XD’s

collection-relative path)

if X is a switch type then
Add to Y a new string attribute (named with X’s

collection-relative path)
Replace X with Y

end
Algorithm 2: Concatenating nested tuple types and switch types

4.3.2 Relational decomposition of query

Query plan A query plan is a list of steps used to construct a nested data tree,

where each step issues a SQL query on a SQL database. Given a nested query,

our goal is to decompose the nested query into the multiple steps of a query plan.

The query plan is represented by a generator tree, where each node is a generator

containing a query AST.

Initially, the original AST is enclosed in the only node of a generator tree.

The generator tree is rewritten by a system of rewrite rules. Each rewrite rule

takes a generator tree as input, and outputs a generator tree where certain query

fragments, corresponding to query language features that are not supported by

SQL, have been removed. The rewrite rules progressively remove non-SQL fea-

tures, until each generator node contains a SQL-compliant AST. The ASTs are

serialized into SQL query strings, and executed on a SQL database.

79

Algorithms for generating query plan

1. Invoke each rewrite rule until the generator tree reaches a fixed point.

Each rewrite rule can be invoked more than once, and the rules can be non-

deterministically invoked in any order. The generator is guaranteed to reach

a fixed point, since each rewrite rule only removes a non-SQL feature and

does not add any non-SQL features.

The rewrite rules are presented below as rewrite patterns. Note that:

• The syntax <condition> denotes a list of conditions.

• The variable s1 is the alias for set 1, and is declared either in

<collection> or in outer queries.

• The element generator is a special kind of generator, resulting from

rewriting the TUPLE ELEMENT and SCALAR ELEMENT functions. The el-

ement generator has an additional constraint that its result collection

contains only a single tuple. Due to this property, an element genera-

tor is treated differently from a collection generator during primary key

generation and reconstruction, which we will elaborate in later sections.

(a) Switch constructor

1 generator ’g’[

2 SELECT <other_attr>,

3 SWITCH

4 WHEN condition_1 THEN result_1 AS alias_1

5 WHEN condition_2 THEN result_2 AS alias_2

6 ELSE result_3 AS alias_3

7 END AS alias

8 FROM <collection>

9 WHERE <condition>

10]

rewriting:

1 generator ’g’[

2 SELECT <other_attr>,

3 CASE

4 WHEN condition_1 THEN ’alias_1’

5 WHEN condition_2 THEN ’alias_2’

80

6 ELSE ’alias_3’

7 END AS alias,

8 result_1 AS "alias.alias_1",

9 result_2 AS "alias.alias_2",

10 result_3 AS "alias.alias_3"

11 FROM <collection>

12 WHERE <condition>

13]

(b) Nested collection in FROM

1 generator ’g’[

2 SELECT <attr>

3 FROM <collection>, s1.set_2 AS s2

4 WHERE <condition>

5]

rewriting:

1 generator ’g’[

2 SELECT <attr>

3 FROM <collection>, "set_1.set_2" AS s2

4 WHERE <condition>

5 AND s1.id = s2.ref

6]

(c) Nested select

1 generator ’g’[

2 SELECT <other_attr>,

3 (SUB_QUERY

4) AS out

5 FROM <collection>

6 WHERE <condition>

7]

rewriting:

1 generator ’g’[

2 SELECT <other_attr>

3 FROM <collection>

4 WHERE <condition>

5]

6

7 generator ’g.out’[

8 SUB_QUERY

9]

81

(d) Nested collection reference in SELECT clause

1 generator ’g’[

2 SELECT <other_attr>, s1.set_2 AS out

3 FROM <collection>

4 WHERE <condition>

5]

rewriting:

1 generator ’g’[

2 SELECT <other_attr>

3 FROM <collection>

4 WHERE <condition>

5]

6 generator ’g.out’[

7 SELECT *

8 FROM s1.set_2 AS s2

9]

(e) Tuple constructor

1 generator ’g’[

2 SELECT Tuple(s1.scalar AS scalar, s1.set AS set) AS out, <other_attr>

3 FROM <collection>

4 WHERE <condition>

5]

rewriting:

1 generator ’g’[

2 SELECT s1.scalar AS "out.scalar", s1.set AS "out.set", <other_attr>

3 FROM <collection>

4 WHERE <condition>

5]

(f) Tuple element function

1 generator ’g’[

2 SELECT TUPLE_ELEMENT(SUB_QUERY) AS out, <other_attr>

3 FROM <collection>

4 WHERE <condition>

5]

rewriting:

1 generator ’g’[

2 SELECT <other_attr>

82

3 FROM <collection>

4 WHERE <condition>

5]

6 element_generator ’g.out’[

7 SUB_QUERY

8]

(g) Scalar element function

1 generator ’g’[

2 SELECT SCALAR_ELEMENT(SUB_QUERY) AS out, <other_attr>

3 FROM <collection>

4 WHERE <condition>

5]

rewriting:

1 generator ’g’[

2 SELECT <other_attr>

3 FROM <collection>

4 WHERE <condition>

5

6]

7 element_generator ’g.out’[

8 SUB_QUERY

9]

2. Generate output schema with the select items in the AST node Query.

3. Annotate the local primary key in each output schema

4. Create the parent key in each generator

In each generator, the parent key, which is a list of attributes referencing the

global primary key of the parent generator, is created and added to both the

AST and the output schema .

5. Build parameter mappings

Each generator node contains a list of parameter mappings. Each parameter

mapping maps a parameter at a particular position in the AST to an attribute

name in an ancestor’s output schema.

83

In an AST, when a scalar reference variable.path is encountered, the name

variable is looked up in the symbol table to find the generator where it is

declared. If the generator is not the one that contains the current AST, then

we create a new parameter mapping, and map this scalar reference to the

select item in the generator’s query that outputs the attribute specified by

path.

Note that in a parameter mapping, we identify parameters by their positions

instead of names, since JDBC does not support named parameters.

6. In each generator, translate the SQL compliant AST into a SQL statement.

If the collection and attribute names contain the token “.”, they are quoted

in order in order to escape the special character.

4.3.3 Evaluating the generators

During runtime, before evaluating the query plan, each statement in the

generator tree is prepared with the associated parameter mappings. The evaluation

then is performed using Algorithm 3.

function evaluate(Generator gen) begin
statement← get the prepared statement in gen

foreach parameter in gen.parameter mappings do
tuple← get the active tuple from parameter.generator

value← get the value from tuple with the attribute name

parameter.name

Set the parameter in statement of parameter.position with value
collection← construct collection with the evaluation result of statement

append collection to gen.result collection

foreach tuple in collection do
Set tuple as the active tuple of current generator gen

foreach child gen of gen’s children do
evaluate(child gen)

end
Algorithm 3: Evaluating the query plan

84

4.3.4 Reconstructing the nested output data tree

Algorithms 4 and 5 illustrate how the nested output data tree can be re-

constructed, given the nested schema XS and the decomposed output data tree

yall. This is made possible by the naming convention presented in Section 4.3.1

that provides a mapping from the nested schema to the decomposed schema. The

high-level idea is that the algorithm first finds the top-level collection (in order

to obtain all primary key attributes), thereafter joins this collection (i.e. denor-

malizes it) with the remaining decomposed collections. During denormalizing, the

decomposed collection is also unconcatenated to restore the original nested tuples

and switches.

function reconstruct(XS, yall) begin
foreach decomposed collection yc of yall (in increasing order of number of

parts in name) do
X ← type in XS with fully-qualified path that matches yc’s name

if X is a top-level collection type then
x← denormalize(X, yc)

else
XT ← parent tuple type of X

foreach tuple xt that is a descendant in x and corresponds to XT

do
yσ ← subset of yc that matches the global primary key of xt

add to xt the child attribute denormalize(X, yσ)
return x

end
Algorithm 4: Reconstructing a nested data tree from a decomposed data tree

85

function denormalize(X, yσ) begin

if X is a collection type then
x← new collection

foreach child tuple yt of yσ do
add to x the child tuple unconcat(child tuple type of X, yt)

else
yt ← the only tuple in yσ

x← unconcat(X, yt)
return x

end

function unconcat(X, yt) begin

switch X do

case collection type
x← null

case tuple type
x← new tuple

foreach child attribute XA of X do
add to x the child attribute unconcat(XA, yt)

case switch type
y ← scalar value in yt (named with X’s collection-relative path)

x← new switch value using y

foreach child case XA of X do
add to x the child case unconcat(XA, yt)

case scalar type
y ← scalar value in yt (named with X’s collection-relative path)

x← new scalar value using y

// x may be null if yt does not have the corresponding

attribute(s)

return x
end

Algorithm 5: Reconstructing a nested data tree from a decomposed data tree

86

4.4 Data Sources

In the general case, a query can be issued over different data sources, such

as SQL databases, in-memory data, LDAP databases, WSDL / XML-RPC web

services etc. A data source is a system that:

1. allows reading and writing data.

2. allows data to be transient and/or persistent. Data are physically stored

either on volatile storage such as main memory or durable storage such as

hard drives.

3. is self-consistent. It should provide an exclusive interface to the data, so

that other programs cannot bypass the system to modify the data. Typ-

ically, a data source provides synchronization primitives such as locks and

transactions, so that writers can maintain the consistency of the data stored.

As an example for self-consistency, multiple text files can be considered a

single data source if all of them are exclusively locked before a write to any occurs.

Conversely, even if two databases are hosted within the same SQL engine, they are

considered separate data sources since SQL transactions provide ACID guarantees

within a single database, but not across databases.

For the time being, we focus our attention on SQL databases and in-memory

data. We assume for simplicity that a query executes over a single data source, as

executing queries over multiple data sources require distributed transactions. One

consequence of the single source assumption is that the query engine needs to copy

in-memory data into the SQL database before the query is executed.

4.4.1 Local versus Remote Data Sources

We distinguish between local data sources and remote data sources. A local

data source is one where data can be directly accessed, whereas a remote data

source is one where data can only be indirectly accessed through a query language.

Note that a local data source does not have to be transient data in memory: it may

87

provide an abstraction over persistent files by reading from disk and writing to disk

on-demand. For the time being however, we focus on in-memory data structures

(within the JVM) as the only local data source, and a JDBC/SQL database as the

only remote data source.

We restrict the data model to allow only a collection type to have a data

source mapping, which associates the collection type with a data source, and maps

the collection type to a specific data structure in the data source. For example, a

collection type can be mapped to a SQL table by specifying the (namespace, table

name) pair. We further restrict that collection types nested within each other must

be associated with the same data source, otherwise the corresponding data tree is

not type consistent.

When a collection type is associated with a local data source, the corre-

sponding collection recursively contains data within the same data source. For a

remote data source though, there are no corresponding data nodes to the schema

nodes, since the data can only be indirectly accessed. For example, Figure 4.9b

shows a schema tree containing collection types associated either with a local data

source or a remote data source. Figure 4.9a shows that the data tree has a col-

lection that corresponds to the top-level collection type of a local data source,

and only an empty set value that corresponds to the top-level collection type of a

remote data source.

In the general case where the root data node is not a collection value, the

values need to be copied into a special root table.

88

(a) Data Tree

(data_tree)

(tuple)

env
(set)

plans
(set)

(tuple)

user_id
(int)
7

(b) Schema Tree

(schema_tree)

(tuple)

env
(set)

<local data source X>

plans
(set)

<remote data source Y>

(tuple)

user_id
(int)

(tuple)

plan_id
(int)

members
(set)

<remote data source Y>

(tuple)

member_id
(int)

Figure 4.9: Data and Schema Tree for Local / Remote Data Sources

4.4.2 Data Source Catalog

A data source has an initialization configuration. For example, a

JDBC/SQL remote data source’s initialization configuration can comprise the

driver name, the connection URL and authentication credentials.

A data source also has a catalog that stores and provides metadata about

the data source. These metadata include:

1. A list of supported scalar types. A data source may choose to support only

certain scalar types (e.g. no binary data type), or require certain scalar types

to be explicitly declared.

2. A persistent schema tree that contains the corresponding types of all persis-

tent data, i.e. the schema of the data source. Any schema tree that needs

to refer to the data tree persisted in a particular data store will do so by

cloning the data store’s persistent schema tree.

89

Acknowledgements

This chapter contains material from the technical report “Technical Spec-

ifications of the FORWARD Framework”, by Yupeng Fu, Kian Win Ong, Kevin

Keliang Zhao, Yannis Papakonstantinou and Michalis Petropoulos. The disserta-

tion author was the primary investigator and author of the relevant chapters in

the technical report.

Chapter 5

Incremental View Maintenance

The incremental view maintenance module uses the log of modifications

that happened to the database data, and possibly the database data itself, to

incrementally maintain an old view instance to a new view instance.

5.1 Delta Tuples

A database instance comprises a set of named base data trees

{D1, D2, . . . , Dm}. We write Di(s) to denote the data tree Di when the database

instance is in state s. Each base data tree Di can be decomposed into a set of

flat base relations {Ri1, Ri2, . . . , Rin} by the decomposition algorithm in Section

4.3.1. The base relations correspond to the SQL tables stored in the underlying

SQL database.

A modification log L is a collection of records shared in an application

that captures all modifications, including inserts, updates and deletes, to each

base data tree Di up to the current state sc. A subset of the modification log

LDi
(sp, sc) records all modifications to the data tree Di between a past state sp

and current state sc. Whenever an insert, replace, or delete command in the update

language is issued, a corresponding modification record will be added to the log.

A modification log record has:

1. The name of the target data tree.

90

91

2. A data diff, as defined in Section 3.3.

3. A set of flat deltas, which is a collection of flat ∆+ and ∆− tuples, resulting

from the decomposition of the data diff. Deltas record the actual modifica-

tions to the base relations. The decomposition of data diffs is similar to the

decomposition of data trees, with the additional requirement that replace

and delete diffs will produce flat deltas corresponding to the old values be-

fore the modification. It is the responsibility of the modification commands

to provide these old flat deltas. This requirement allows the incremental

view maintenance to handle replace commands as a pair of delete / insert

commands.

4. The version number of the database instance. The modification log itself

maintains a version counter that is incremented for each modification log

record.

Thus, a base data tree difference, which is the diff between base data trees

D(sp) and D(sc), can be equivalently represented by a set of base relation delta

tuples, which are the delta tuples in LD(sp, sc) for each base relation Ri, i = 1, . . . , n

of D. Since

Ri(sc) = Ri(sp) + ∆+Ri −∆−Ri

Rearranging, we have:

Ri(sp) = Ri(sc)−∆+Ri + ∆−Ri

The above allows computing the past state from the current state, which

will be utilized in later sections for deferred view maintenance.

Assumptions Two flat tuples are equal if and only if all attribute values are

equal to each other. We assume that there are no redundancies in ∆+ and ∆−,

namely:

1. Ri(sp)
⋂

∆+Ri = ∅ : An inserted tuple is not in the past state of Ri.

92

2. Ri(sc)
⋂

∆−Ri = ∅ : A deleted tuple is not in the current state of Ri.

3. ∆+Ri

⋂
∆−Ri = ∅ : No tuple is deleted and again inserted, or inserted and

again deleted.

To ensure the above, retrieving delta tuples between states sp and sc from

the modification log requires the following post-processing: if a tuple occurs in both

∆+Ri and ∆−Ri, it would be removed from both in the returned delta tuples.

5.2 Leveraging Relational Incremental View

Maintenance

A view is a query over the database, and a view instance is the output data

tree of the query. Given view V with query Q, and data trees Di, i = 1, . . . ,m in

state s, the view instance V (s) is:

V (s) = Q(D1(s), D2(s), . . . , Dm(s))

Recall in Chapter 4, in order to evaluate a nested query Q, we decompose

Q into a sequence of parameterized SQL-compliant queries qi, i = 1, . . . , l, and

each decomposed query qi is over the decomposed base relations Rj, j = 1, . . . , n

and results in a decomposed view instance vi = qi(R1, . . . , Rn).

For each such decomposed view instance v, its flat tuples with respect to

states sp and sc are defined as:

∆+v = v(sc)− v(sp)

∆−v = v(sp)− v(sc)

An efficient incremental view maintenance algorithm on the relational

model will compute ∆+v and ∆−v without having to explicitly compute v(sc)

and compare it with v(sp). For example, given a relational algebra expression

v = R1 ./ R2, if insertions are the only modifications (i.e. only ∆+R1 and ∆+R2

occur), then ∆+v can be efficiently computed using (∆+R1 ./ R2(sc))∪ (R1(sc) ./

∆+R2).

93

Since the query language implementation in Chapter 4 utilizes rewrite rules

to rewrite to valid SQL (as opposed to generating an query plan of algebraic

operators), we also implement a relational incremental view maintenance algorithm

based on rewrite rules. For a SQL query q(R1, . . . , Rn), the algorithm computes

the flat deltas by evaluating two incremental queries ∆+q and ∆−q, which are

created by modifying q using rewrite rules. That is,

∆+v = ∆+q(R1(sc), . . . , Rn(sc),∆
+R1, . . . ,∆

+Rn,∆
−R1, . . . ,∆

−Rn)

∆−v = ∆−q(R1(sc), . . . , Rn(sc),∆
+R1, . . . ,∆

+Rn,∆
−R1, . . . ,∆

−Rn)

The incremental view maintenance of decomposed queries qi in a generator

tree is performed similar to the (full) query evaluation algorithm, in that it tra-

verses the queries in the generator tree top down to incrementally maintain each

decomposed view vi as follows:

1. For the top level query q1, compute the flat deltas ∆+v1 and ∆−v1 by eval-

uating the incremental queries ∆+q1 and ∆−q1

2. Using ∆+v1, ∆−v1 and the materialized past view v1(sp) as the context,

populate the parameters in the descendant generators’ queries

3. For each descendant query qi, recursively compute the flat deltas ∆+vi, ∆−vi

as in 1. The evaluation algorithm will be elaborated more in section 5.4.

Finally, a reconstruction algorithm takes all the decomposed views’ deltas,

and builds a collection of diff data trees representing the nested view’s difference

∆+V and ∆+V .

5.3 Rewrite Rules to Create Incremental

Queries

As will be seen in the query patterns / rewrite rules below, based on the

structure of the query pattern, a base relation can be classified as safe or unsafe. A

94

safe query is one where all its base relations in the query are safe. The significance

of a safe query is that it can be incrementally maintained efficiently through the

evaluation of its corresponding incremental queries.

For a safe SQL query q, there are two incremental queries ∆+q, ∆−q that

serve to compute the flat deltas directly. The system has a set of rewrite rules, each

rewrite rule has a pattern which it matches q against, and if the match succeeds,

creates the appropriate incremental queries. We assume that q can be matched by

at most one pattern. Note that the incremental queries are issued over the base

relations at the current state sc, thus each rewrite rule needs to perform deferred

view maintenance.

The following rewrite rules have assumed the knowledge of primary key

constraints in order to identify rewriting opportunities. As illustrated by previous

work on incremental view maintenance [QGMW96, Vis98, LZ07], further opti-

mization opportunities can be identified by exploiting foreign key constraints as

well.

1. Base relations participate in joins at top-level FROM clause

Suppose q is

1 SELECT <attr>

2 FROM S1 AS s_1, S2 AS s_2 , ... ,Sn AS s_n

3 WHERE <condition>

where S1,...,S2 are base relations. Note the absence of nested sub-queries

in the condition, and the absence of a GROUP BY clause in the query.

A base relation Si is safe in the query if one of the following holds:

(a) the key of Si is in the SELECT clause of q.

(b) condition includes an equality comparison between the key of Si and

a constant.

(c) condition includes an equality comparison between the key of Si and

the key of another safe relation Sj.

95

Note that (c) usually occurs when Sj is a weak entity of Si. For example, if

a Countries collection has a nested Cities collection in the nested schema, in

the flat relational schema the cities relation will have among its primary

key attributes a foreign key to the countries relation. Joining on the foreign

key in the query will satisfy (c).

Recall also in Chapter 4 that we require the SELECT clause of a query q to

always include the primary key attributes of all base relations in the FROM

clause (provided there is no GROUP BY clause). Therefore, (a) is trivially

satisfied, each base relation is always safe in query q, and q is always a safe

query.

After rewriting, the incremental query ∆+q is:

1 SELECT <attr>

2 FROM delta_plus_S1 AS s1, S2 AS s_2, ..., Sn AS s_n

3 WHERE <condition>

4

5 UNION

6

7 SELECT <attr>

8 FROM S1 AS s_1, delta_plus_S2 AS s_2, ..., Sn AS s_n

9 WHERE <condition>

10

11 UNION

12 ...

13 UNION

14

15 SELECT <attr>

16 FROM S1 AS s_1, S2 AS s_2, ..., delta_plus_Sn AS s_n

17 WHERE <condition>

We can see the incremental query is a union expression where each sub-

query contains the delta plus relations delta plus Si for each base relation

Si. Such a sub-query is named the incremental query component for base

relation Si.

For the following rewrite rules to be more concise, we will use PAST Si as a

syntactic shortcut for the value of relation Si at the past state sp. PAST Si

is translated to the sub-query:

96

1 SELECT * FROM Si

2 EXCEPT

3 SELECT * FROM delta_plus_Si

4 UNION

5 SELECT * FROM delta_minus_Si

Thus, the incremental query ∆−q is:

1 SELECT <attr>

2 FROM delta_minus_S1 AS s1, PAST_S2 AS s_2, ..., PAST_Sn AS s_n

3 WHERE <condition>

4

5 UNION

6

7 SELECT <attr>

8 FROM PAST_S1 AS s_1, delta_minus_S2 AS s_2, ..., PAST_Sn AS s_n

9 WHERE <condition>

10

11 UNION

12 ...

13 UNION

14

15 SELECT <attr>

16 FROM PAST_S1 AS s_1, PAST_S2 AS s_2, ..., delta_minus_Sn AS s_n

17 WHERE <condition>

Note that the rule is based on each separate FROM item. Even if a relation

appears more than once in the top-level FROM clause, the aliases will be

considered separately.

2. Positively nested sub-queries

A positively nested sub-query is a nested SELECT expression that is immedi-

ately enclosed by an EXISTS.

Consider the query q with one positively nested level of sub-queries as follows:

1 SELECT <attr>

2 FROM S1 AS s_1, S2 AS s_2 , ... ,Sn AS s_n

3 WHERE <condition1> AND

4 EXISTS (

5 SELECT <attr>

6 FROM N1 AS n_1, N2 AS n_2 , ... ,Nl AS n_l

97

7 WHERE <condition2>

8)

The relations N1,...,Nl are safe, if they are correlated to the top-level rela-

tions S1,...,Sn. Ni is correlated if one of the following holds:

(a) Ni is one of the top-level relations S1,...,Sn.

(b) condition2 includes an equality comparison between the key of Ni and

the key of one of the top-level relations S1,...,Sn.

(c) condition2 includes an equality comparison between the key of Ni and

a constant.

(d) condition2 includes an equality comparison between the key of Ni and

the key of a correlated relation Nj.

If the query has more than one positively nested level, the definition of cor-

relation can be similarly extended.

Suppose all the relations N1,...,Nl in q are correlated, then incremental

query ∆+q is:

1 SELECT <attr>

2 FROM delta_plus_S1 AS s_1, S2 AS s_2 , ... , Sn AS s_n

3 WHERE <condition1> AND

4 EXISTS (

5 SELECT <attr>

6 FROM N1 AS n_1, N2 AS n_2 , ... , Nl AS n_l

7 WHERE <condition2>

8)

9

10 UNION

11 ...

12 UNION

13

14 SELECT <attr>

15 FROM S1 AS s_1, S2 AS s_2 , ... , delta_plus_Sn AS s_n

16 WHERE <condition1> AND

17 EXISTS (

18 SELECT <attr>

19 FROM N1 AS n_1, N2 AS n_2 , ... , Nl AS n_l

20 WHERE <condition2>

21)

98

22

23 UNION

24

25 SELECT <attr>

26 FROM S1 AS s_1, S2 AS s_2 , ... , Sn AS s_n

27 WHERE <condition1> AND

28 EXISTS (

29 SELECT <attr>

30 FROM delta_plus_N1 AS n_1, N2 AS n_2 , ... , Nl AS n_l

31 WHERE <condition2>

32)

33

34 UNION

35 ...

36 UNION

37

38 SELECT <attr>

39 FROM S1 AS s_1, S2 AS s_2 , ... , Sn AS s_n

40 WHERE <condition1> AND

41 EXISTS (

42 SELECT <attr>

43 FROM N1 AS n_1, N2 AS n_2 , ... , delta_plus_Nl AS n_l

44 WHERE <condition2>

45)

The incremental queries for a query with multiple levels of positively nested

sub-queries can be derived in a similar way.

The incremental query ∆−q is similar to ∆+q, but with the following changes:

(1) replace delta plus relation with delta minus relation (2) replace

the current state of each relation with its past state.

If there are unsafe relations in the sub-query, it is still possible to perform the

incremental maintenance when there are only insertions to the base relations.

The incremental view ∆+v will contain tuples from the result of ∆+q, but

excluding those from the old view v(sp). Suppose the old view is stored in

the relation V, then each incremental query component for the unsafe base

relation Ni will cause an additional predicate to be added to the condition

of the outer query, as such:

1 SELECT <attr>

2 FROM S1 AS s_1, S2 AS s_2 , ... , Sn AS s_n

99

3 WHERE <condition1> AND

4 EXISTS (

5 SELECT <attr>

6 FROM N1 AS n_1, N2 AS n_2 , ...,

7 delta_plus_Ni AS n_i ,... , Nl AS n_l

8 WHERE <condition2>

9)

10 AND NOT IN (SELECT * FROM V)

However, delete and update modifications may require recomputation of the

view.

3. Negatively nested sub-queries

A negatively nested sub-query is a nested SELECT expression that is immedi-

ately enclosed by an EXISTS. Consider the query q with one negatively nested

level of sub-query of the form:

1 SELECT <attr>

2 FROM S1 AS s_1, S2 AS s_2 , ... , Sn AS s_n

3 WHERE <condition1> AND

4 NOT EXISTS (

5 SELECT <attr>

6 FROM N1 AS n_1, N2 AS n_2 , ... , Nl AS n_l

7 WHERE <condition2>

8)

For negatively nested sub-queries, the high-level idea is that insert modifica-

tions on base relations in the sub-query result in delete modifications on the

view, whereas delete modifications on base relations in the sub-query result

in insert modifications on the view.

Similarly, the availability of incremental queries depends on whether base

relations in the sub-query are correlated to base relations in the top-level

query. The incremental query ∆+q is:

1 SELECT <attr>

2 FROM delta_plus_S1 AS s_1, S2 AS s_2 , ... , Sn AS s_n

3 WHERE <condition1> AND

4 NOT EXISTS (

5 SELECT <attr>

6 FROM N1 AS n_1, N2 AS n_2 , ... , Nl AS n_l

100

7 WHERE <condition2>

8)

9

10 UNION

11 ...

12 UNION

13

14 SELECT <attr>

15 FROM S1 AS s_1, S2 AS s_2 , ... , delta_plus_Sn AS s_n

16 WHERE <condition1> AND

17 NOT EXISTS (

18 SELECT <attr>

19 FROM N1 AS n_1, N2 AS n_2 , ... , Nl AS n_l

20 WHERE <condition2>

21)

22

23 UNION

24

25 SELECT <attr>

26 FROM PAST_S1 AS s_1, PAST_S2 AS s_2 , ... , PAST_Sn AS s_n

27 WHERE <condition1> AND

28 EXISTS (

29 SELECT <attr>

30 FROM delta_minus_N1 AS n_1,PAST_N2 AS n_2 , ... , PAST_Nl AS n_l

31 WHERE <condition2>

32)

33

34 UNION

35 ...

36 UNION

37

38 SELECT <attr>

39 FROM PAST_S1 AS s_1, PAST_S2 AS s_2 , ... , PAST_Sn AS s_n

40 WHERE <condition1> AND

41 EXISTS (

42 SELECT <attr>

43 FROM PAST_N1 AS n_1, PAST_N2 AS n_2 , ... , delta_minus_Nl AS n_l

44 WHERE <condition2>

45)

and ∆−q is:

1 SELECT <attr>

2 FROM delta_minus_S1 AS s_1, PAST_S2 AS s_2 , ... , PAST_Sn AS s_n

3 WHERE <condition1> AND

4 NOT EXISTS (

5 SELECT <attr>

101

6 FROM PAST_N1 AS n_1,PAST_N2 AS n_2 , ... , PAST_Nl AS n_l

7 WHERE <condition2>

8)

9

10 UNION

11 ...

12 UNION

13

14 SELECT <attr>

15 FROM PAST_S1 AS s_1, PAST_S2 AS s_2 , ... , delta_minus_Sn AS s_n

16 WHERE <condition1> AND

17 NOT EXISTS (

18 SELECT <attr>

19 FROM PAST_N1 AS n_1, PAST_N2 AS n_2 , ... , PAST_Nl AS n_l

20 WHERE <condition2>

21)

22

23 UNION

24

25 SELECT <attr>

26 FROM S1 AS s_1, S2 AS s_2 , ... , Sn AS s_n

27 WHERE <condition1> AND

28 EXISTS (

29 SELECT <attr>

30 FROM delta_plus_N1 AS n_1,N2 AS n_2 , ... , Nl AS n_l

31 WHERE <condition2>

32)

33

34 UNION

35 ...

36 UNION

37

38 SELECT <attr>

39 FROM S1 AS s_1, S2 AS s_2 , ... , Sn AS s_n

40 WHERE <condition1> AND

41 EXISTS (

42 SELECT <attr>

43 FROM N1 AS n_1, N2 AS n_2 , ... , delta_plus_Nl AS n_l

44 WHERE <condition2>

45)

Notice that in the incremental queries, the sub-query’s NOT EXISTS has been

converted to EXISTS.

If the nested relations are not safe, incremental maintenance can still be

performed provided only delete modifications have occurred on base relations.

102

As previously, exclude tuples from the old view v(sp) from the result of ∆+q,

by adding the predicate NOT IN V to the incremental query components.

4. Aggregation

We only consider queries with aggregate functions that are used directly as

SELECT items, i.e. the aggregate functions are not used as arguments of

other functions. Without loss of generality, consider a query with only one

aggregate function, which takes as argument the attribute of the first base

relation in the FROM clause:

1 SELECT <group_by_attr>, aggregate(s_1.aggr_attr) AS aggr_attr

2 FROM S1 AS s_1, S2 AS s_2, ..., Sn AS s_n

3 WHERE <condition>

4 GROUP BY <group_by_attr>

5

Unlike preceding rules, insert / delete modifications on the base relations

whose attributes are used in aggregate functions may result in update modi-

fications on the view. This occurs when the old view v(sp) already has tuples

whose grouped by attributes have the same value as the delta plus tuples,

which indicates that these tuples should be removed by the incremental query

∆−q.

Each aggregate function has its own rewrite rule:

(a) SUM function

First we consider insert modifications. Where relation V stores the ma-

terialized old view, the incremental query ∆+q is:

1 SELECT <group_by_attr>,

2 SUM(s_1.aggr_attr) + CASE

3 WHEN V.aggr_attr IS NULL THEN 0

4 ELSE V.aggr_attr

5 END AS aggr_attr

6 FROM delta_plus_S1 AS s_1 LEFT OUTER JOIN V, S2 AS s_2, ..., Sn AS s_n

7 WHERE <condition> AND <group_by_attr> = <V.group_by_attr>

8 GROUP BY <group_by_attr>

9

10 UNION

11

103

12 SELECT <group_by_attr>, SUM(s_1.aggr_attr) AS aggr_attr

13 FROM S1 AS s_1, delta_plus_S2 AS s_2, ..., Sn AS s_n

14 WHERE <condition>

15 GROUP BY <group_by_attr>

16

17 UNION

18

19 SELECT <group_by_attr>, SUM(s_1.aggr_attr) AS aggr_attr

20 FROM S1 AS s_1, S2 AS s_2, ..., delta_plus_Sn AS s_n

21 WHERE <condition>

22 GROUP BY <group_by_attr>

Since the insertion on s 1 may cause an update on the view, the incre-

mental query ∆−q is required to remove tuples from the old view that

are affected by this modification:

1 SELECT <group_by_attr>, V.aggr_attr AS aggr_attr

2 FROM delta_plus_S1 AS s_1 JOIN V, PAST_S2 AS s_2, ..., PAST_Sn AS s_n

3 WHERE <condition> AND <group_by_attr> = <V.group_by_attr>

4 GROUP BY <group_by_attr>

For the delete modification, currently we always recompute the view.

5. Set operators

For a query that has set operators, the rewrite rule invokes respective rewrite

rules applicable for each SELECT expression separately, thereafter apply the

set operators to the flat delta tuples. Consider the query q of the form:

1 SELECT <attr1> FROM <relations1> WHERE <condition1>

2 UNION

3 SELECT <attr2> FROM <relations2> WHERE <condition2>

4 ...

5 UNION

6 SELECT <attrK> FROM <relationsK> WHERE <conditionK>

We first consider the incremental query ∆+q. For each SELECT expression,

an initial set of incremental query components is generated by using the cor-

responding rewrite rules, thus these components are assembled using UNION.

To ensure that duplicates are not added to the incremental view, each tuple

created by the incremental query is checked to not be in the old view.

104

Generating incremental query ∆−q is more complicated. Even if a tuple is no

longer produced by one of the SELECT expressions, it can only be deleted from

the view if it is also not produced by any of the other SELECT expressions.

Without loss of generality, consider the incremental query component for the

first SELECT expression in q. The following conjunct must be added to the

WHERE clause of the component:

1 AND <attr1> NOT IN (SELECT <attr2> FROM <relations2> WHERE <condition2>)

2 AND ...

3 AND <attr1> NOT IN (SELECT <attrK> FROM <relationsK> WHERE <conditionK>)

Such conjuncts may result in incremental view maintenance being compara-

ble to, or more expensive than, reevaluating the original query.

6. CASE expression

Consider a query q with CASE expression of the form:

1 SELECT <attr>,

2 CASE

3 WHEN condition1 THEN expression1

4 WHEN condition2 THEN expression2

5 ...

6 WHEN conditionK THEN expressionK

7 ELSE expression

8 END

9 FROM <relations>

10 WHERE <condition>

The conditions condition1, ..., conditionK are mutually exclusive, and

the query can be rewritten to an equivalent query with the UNION operator

as such:

1

2 SELECT <attr>, expression1

3 FROM <relations>

4 WHERE <condition> AND condition1

5

6 UNION

7

8 SELECT <attr>, expression2

9 FROM <relations>

105

10 WHERE <condition> AND condition2

11

12 UNION

13 ...

14 UNION

15

16 SELECT <attr>, expressionK

17 FROM <relations>

18 WHERE <condition> AND conditionK

19

20 UNION

21

22 SELECT <attr>, expression1

23 FROM <relations>

24 WHERE <condition> AND NOT condition1 AND NOT condition2 AND ... AND NOT conditionK

Thus this rewrite rule can be reduced to the UNION operator rewrite rule.

7. ORDER BY clause

The incremental view maintenance strategy for ordering is to represent the

flat deltas ∆+v or ∆−v in arbitrary order, apply them to the old view, there-

after sort the new view according to the specified order.

Consider query q with an ORDER BY clause in the format:

1 uq(R1, R2, ..., Rn)

2 ORDER BY <order_by_attr>

where uq is an unordered query with base relations R1,...,Rn, and

<order by attr> is a list of attributes declared in the ORDER BY clause of

uq to specify the order of the returned tuples. Furthermore, the query lan-

guage requires that the SELECT clause includes the attributes in the ORDER

BY clause, i.e. ordering attributes cannot be omitted from the results. Note

that we require that uq only contains the features specified by the preceding

rewrite rules.

The incremental query ∆+q is identical to ∆+uq, similarly the incremental

query ∆−q is identical to ∆−uq. The new view v(sc) is obtained by issuing

the following query:

106

1 SELECT * FROM V

2 EXCEPT

3 SELECT * FROM delta_minus_V

4 UNION

5 SELECT * FROM delta_plus_V

6 ORDER BY <order_by_attr>

where relation V captures the old view of v(sp), and delta plus V,

delta minus V correspond to ∆+v and ∆−v respectively.

8. Top-K tuples

Retrieving the top-K tuples in SQL is achieved with the LIMIT clause. Note

that when using the LIMIT clause, the ORDER BY clause must also be present

so that the results are deterministic. Consider the query q with a LIMIT

clause in the format:

1 uq(R1, R2, ..., Rn)

2 ORDER BY <order_by_attr>

3 LIMIT K

where uq is an unordered query over base relations R1,...,Rn,

<order by attr> is the list of ordered by attributes, and K is the maximum

number of tuples to return.

The high-level idea is as follows. For tuples that are in ∆+v but not in the

old view, we insert them into the old view at the proper ordinal positions

(since the view is ordered), and only return the specified maximum number

of tuples for the new view. For the tuples in ∆−v, it is possible that after

excluding these tuples from the old view, the number of tuples left is smaller

than the K. The remaining tuples will need to be retrieved by re-evaluating

the query. Instead of repeatedly re-evaluating the query (for example, when

pagination occurs on the web application), the system caches the next C

tuples, where C is a configurable number.

First, we modify the original query q into q′ as follows:

107

1 uq(R1, R2, ..., Rn)

2 ORDER BY <order_by_attr>

3 LIMIT K+C

where we change K to K+C, such that when we initialize the view or recompute

the view, we retrieve at most C more tuples.

The incremental query ∆+q is:

1 delta_plus_uq(R1, R2, ..., Rn)

2 ORDER BY <order_by_attr>

3 LIMIT K+C

where delta plus uq is the incremental query ∆+uq, which can be created

using the corresponding rewrite rules.

The incremental query ∆−q is:

1 delta_minus_uq(R1, R2, ..., Rn)

2 ORDER BY <order_by_attr>

3 LIMIT K+C

where similarly delta minus uq is the incremental query ∆−uq.

Finally, we obtain a view v′(sc) by issuing:

1 SELECT * FROM V

2 EXCEPT

3 SELECT * FROM delta_minus_V

4 UNION

5 SELECT * FROM delta_plus_V

6 ORDER BY <order_by_attr>

7 LIMIT K+C

where relation V captures the old view of v(sp), and delta plus V,

delta minus V correspond to ∆+v and ∆−v respectively. The view v′(sc)

has at most K + C tuples. If it has more than K tuples, we leave it as is,

otherwise we re-evaluate query q′ to obtain the new view.

The reconstruction of the new nested view V (sc) will use only the top K

tuples in the new view v(sc) to obtain the correct data tree.

108

Creating incremental queries on demand Depending on the original query

and the number of base relations in the FROM clause, the generated incremental

queries can become very complex.

From the rewrite rules, we observe that the incremental query is the union

of query components, each of which is associated with a single flat delta relation.

Therefore, instead of statically determining incremental queries that contains all

query components, the system creates incremental queries dynamically at run time

so that only query components corresponding to non-empty delta relations need

to be included in the incremental queries.

5.4 Evaluation of incremental query

After the incremental queries have been created, for each node i in the

generator tree, the incremental query evaluator computes the flat deltas ∆+vi and

∆−vi of query qi.

Recall from Chapter 4 that a query qk at level k of the generator tree

has respective join relationships with each of its k − 1 ancestor queries. That is,

qk can be expressed as qk(R1, . . . , Rn, v1, . . . , vk−1), where R1, . . . , Rn are the base

relations used in qk, and v1, . . . , vk−1 are the respective views of the ancestor queries

q1, . . . , qk−1. If all base relations R1, . . . , Rn are safe, then the rewrite rules will

produce incremental queries for qk. Notice that all views v1, . . . , vk−1 are safe, since

their primary keys are used in join conditions with the parent key of qk. Thus, we

can derive the incremental queries for qk using the rewrite rules in Section 5.3. For

example,

∆+qk =qk(∆
+R1, . . . , Rn(sc), v1(sc), . . . , vk−1(sc)) ∪ · · · ∪

qk(R1(sc), . . . ,∆
+Rn, v1(sc), . . . , vk−1(sc))∪

qk(R1(sc), . . . , Rn(sc),∆
+v1, . . . , vk−1(sc)) ∪ · · · ∪

qk(R1(sc), . . . , Rn(sc), v1(sc), . . . ,∆
+vk−1)

if q does not have a negatively nested sub-query. We can obtain ∆−qk in a similar

fashion.

109

Thus, the evaluation algorithm operates as follows. At each generator node

i, if the original query qi is safe, the algorithm obtains the old views and flat delta

tuples from each ancestor generator node, and evaluates the incremental queries

∆+qi and ∆−qi to produce the flat deltas for qi. If however qi is unsafe, the

algorithm re-evaluates qi to obtain the new view, and manually compares it to the

old view to obtain the flat deltas. The children generators are similarly evaluated,

in a pre-order traversal of the generator tree.

There are two alternative ways of incremental query evaluation.

1. Parameterized evaluation

The parameterized evaluation algorithm (Algorithm 6) extends the general

query evaluation algorithm in Chapter 4 to simulate the join with material-

ized views of ancestor generators. The algorithm takes as input a generator

gen, a context tuple and a query type type. The query type identifies where

the context tuple comes from and determines which statement in gen is to

be evaluated. After incremental query creation, up to four queries may be

present in each generator, which are:

(a) CurrentStateQuery, the original query that computes the view at the

current state q(sc).

(b) PastStateQuery, the query rewritten from the original query by replac-

ing all the base relations to their past state, to compute the view at the

past state q(sp).

(c) PositiveIncQuery, the incremental query computing the positive

deltas of the view ∆+q.

(d) NegativeIncQuery, the incremental query computing the negative

deltas of the view ∆−q. Note that the negative incremental query may

not exist if the original query is not safe.

Note that we assume in the algorithm that the old view is always accessible.

EXAMPLE 5.4.1. We use an example to illustrate how the algorithm works

in practice.

110

function evaluate(gen, context, query type)

begin
old view ← get the old view using gen.name and context

switch query type do

case CurrentStateQuery
delta plus view ← CurrentStateQuery (gen, context)

append delta plus view to gen.delta plus

case PastStateQuery
delta minus view ← PastStateQuery (gen, context)

append delta minus view to gen.delta minus

case PositiveIncQuery
delta plus view ← PositiveIncQuery (gen, context)

append delta plus view to gen.delta plus

case NegativeIncQuery

if gen has NegativeIncQuery statement then
delta minus view ← NegativeIncQuery (gen, context)

append delta minus view to gen.delta minus

else
new view ← CurrentStateQuery (gen, context)

append old view − new view to gen.delta plus

new view ← old view − delta minus view + delta plus view

evaluateChildren(new view, gen,PositiveIncQuery)

evaluateChildren(delta plus view, gen,CurrentStateQuery)

evaluateChildren(old view, gen,NegativeIncQuery)

evaluateChildren(delta minus view, gen,PastStateQuery)
end

function evaluateChildren(collection, gen, query type)

begin

foreach tuple in collection do

foreach child gen of gen’s children do
evaluate(child gen, tuple, query type)

end
Algorithm 6: Parameterized evaluation of the incremental query

111

plan id title organization
1 Flying Cars UCSD

(a) Relation plan at sp

staff id name organization
1 John UCSD
2 Jane Stanford

(b) Relation staff at sp

Figure 5.1: Example base relations

Figure 5.1 shows the base relations that the example query operates over:

5.1a represents the base relation plan at the past state sp, and similarly

5.1b represents staff at the past state sp. The example query q produces a

nested data tree where each report tuple nests all staff members of the same

organization, as follows:

1 SELECT P.plan_id, P.title, P.organization

2 (

3 SELECT S.staff_id, S.name

4 FROM staff AS S

5 WHERE S.organization = P.organization

6) AS members

7 FROM plan AS P

At state sp, query q outputs a view V (sp). Figures 5.2a and 5.2b illustrate

the decomposed views of V (sp):

plan id title organization
1 Flying Cars UCSD

(a) Relation report at sp

staff id plan id name
1 1 John

(b) Relation report.members at sp

Figure 5.2: Example decomposed old view

Suppose during the past state sp and the current state sc, several modifica-

tions are made to the base relations, as the flat deltas ∆+plan and ∆+staff

show in Figures 5.3a and 5.3b.

112

plan id title organization
2 Invisible cloak Stanford

(a) Relation delta plus plan

staff id name organization
3 Mary UCSD
4 Mario Stanford

(b) Relation delta plus staff

Figure 5.3: Example flat deltas of base relations

In order for the query to incrementally maintain the view, each generator

tree node i is attached with incremental queries ∆qi that are the result of

rewriting the decomposed query qi, as shown in Figure 5.4.

Generator for report

1 CurrentStateQuery {

2 SELECT P.plan_id, P.title, P.organization

3 FROM plan AS P

4 }

5

6 PositiveIncQuery {

7 SELECT P.plan_id, P.title, P.organization

8 FROM delta_plus_plan AS P

9 }

Generator for report.members

1 CurrentStateQuery {

2 SELECT S.staff_id, S.name, :report/plan_id

3 FROM staff AS S

4 WHERE S.organization = :report/organization

5 }

6

7 PositiveIncQuery {

8 SELECT S.staff_id, S.name, :report/plan_id

9 FROM delta_plus_staff AS S

10 WHERE S.organization = :report/organization

11 }

Figure 5.4: Example generator tree with incremental queries

113

plan id title organization
2 Invisible cloak Stanford

(a) Relation delta plus report

staff id plan id name
2 2 Jane
4 2 Mario
3 1 Mary

(b) Relation delta plus members

Figure 5.5: Example incremental view deltas

The evaluation algorithm starts at the generator report. First, it evaluates

the positively incremental query statement and results in a collection contain-

ing the report tuple with title Invisible cloak. Then the algorithm uses

this tuple as the context tuple to evaluate the CurrentStateQuery state-

ment in the child generator report.members, and produces two member

tuples with names Mario and Jane.

Notice that if the algorithm had incorrectly used the PositiveIncQuery

statement for report.members, the member tuple with the name Jane will

not have been produced. This is an example of where incremental queries

cannot be used. Specifically, the original query that produces member tuples

is not safe, as the join condition does not involve the primary key of report.

Thereafter, in order to produce joins with tuples in ∆+staff, the algorithm

iterates over each tuple in the old decomposed view of report as the context

tuple. The member tuple with name Mary is constructed by evaluating the

positively incremental query statement in report.members. The flat deltas

after evaluation are illustrated in figures 5.5a and 5.5b.

2. Deparameterized evaluation

The parameterized evaluation may not be efficient, because a query has to

be separately evaluated for each context tuple with corresponding arguments

for the parameters. A more efficient way is to remove the parameters from

a query so that it is a standalone query that is evaluated only once.

The deparameterization is applied to the full query with the following pro-

cedure:

114

(a) Suppose the full query qk is at level k of the generator tree. Deparame-

terization adds all views v1, . . . , vk−1 of its k − 1 ancestor generators to

the FROM clause of qk as base relations.

(b) All parameters in qk of the form :generator/attribute are replaced

with view.attribute, i.e. a join to the view’s attribute.

(c) If qk has a GROUP BY clause and/or aggregate functions, all the primary

keys of the ancestor views are added to the GROUP BY clause.

After the full query is deparameterized, the incremental queries are gener-

ated as per normal, with the rewrite rules treating the materialized views as

regular base relations.

Algorithm 7 illustrates how incremental query evaluation is performed with

deparameterized queries.

function evaluate(gen, old data tree) begin
old view ← get the decomposed old view from old data tree using

gen.name

Materialize old view into database with the table name as gen.name

delta plus view ← evaluate the deparameterized PositiveIncQuery

statement in gen

delta minus view ← evaluate the deparameterized NegativeIncQuery

statement in gen

new view ← old view − delta minus view + delta plus view

Materialize new view into database with the table name as gen.name

foreach child gen of gen’s children do
evaluate(child gen, old data tree)

end
Algorithm 7: Deparameterized evaluation of the incremental query

5.5 Reconstruction of the new view

After the incremental query evaluation, each generator i contains the new

decomposed view vi(sc). Using the reconstruction algorithm (Algorithms 4 and 5)

115

obtains V (sc) the view at current state.

Acknowledgements

This chapter contains material from the technical report “Technical Spec-

ifications of the FORWARD Framework”, by Yupeng Fu, Kian Win Ong, Kevin

Keliang Zhao, Yannis Papakonstantinou and Michalis Petropoulos. The disserta-

tion author was the primary investigator and author of the relevant chapters in

the technical report.

Chapter 6

Do-It-Yourself Platform

6.1 Introduction

app2you belongs to the emerging space of Do-It-Yourself (DIY), custom,

hosted, database-driven web application platforms that empower non-programmer

business process owners to rapidly create and evolve applications customized to

their organizations’ data and process needs. The hoped-for outcome of DIY plat-

forms is paralleled to the emergence of spreadsheets in the 80s and of graphical

presentation tools in the 90s [Bor07]. Before the arrival of tools such as PowerPoint,

polished presentations had to be prepared by graphics professionals. PowerPoint

enabled us to do them ourselves.

Generally DIY application platforms provide an application design facility

(also called application specification mechanism) where the application owner (also

called process owner) specifies the application by manipulating visible aspects of

it or by setting configuration options. A simple early example of DIY creation was

form builders, where the owner introduces form elements in a form page and the

platform, in response, creates a corresponding database schema.

A DIY platform must maximize the following two metrics:

• Application scope, which is characterized by the computation, collabora-

tion on a process and pages (presentation) that can be achieved by applica-

tions specified using the platform.

116

117

• Ease of specification of applications. When ease increases, a larger num-

ber of less technically sophisticated creators are empowered to create appli-

cations.

The two metrics present an inherent tradeoff. At the one extreme, building

applications using Java, Ajax and SQL provides unlimited scope, but does not

provide ease of specification. Platforms such as Ruby on Rails [Rub] and WebML

[CFB00] make specification easier and faster, but still not easy enough to enable

non-programmer owners. At the other extreme, creating an application by copying

an application template, as done in Ning [Nin] or Salesforce [Sal], is easy but the

scope is limited1 to their finite number of templates. DIY platforms are between

these two extremes of the scope/ease trade-off (see Section 6.4 for a discussion of

particular platforms).

To systematically explore the scope versus ease tradeoff between these two

extremes, we characterize FORWARD and app2you as follows:

• the FORWARD scope captures the full generality of human-centric database-

driven workflow applications, but achieving its full scope requires knowledge

of SQL. As seen in Chapter 2, a programmer uses FORWARD’s declarative

syntax to specify an application by providing (1) extended SQL queries to

retrieve the data displayed on pages, and (2) imperative server-side programs

that modify the database state using SQL INSERT / UPDATE / DELETE com-

mands.

• Of the general FORWARD scope, app2you’s DIY design facility captures a

strict subset called the app2you scope, which is the focus of this chapter.

The app2you design facility generates FORWARD applications, but also im-

poses limitations on the FORWARD features it uses. Its essential limitation

is that the core queries are SPJ queries, including the possibility of EXISTS

conditions in the WHERE clause. An overlay of aggregation and calculation,

1WYSIWYG tools occasionally provide programmatic escapes for sophisticated users to write
custom code. For example, Microsoft Excel can be further programmed using the embedded VBA
scripting language. The scope and ease of two such inter-operable tools should be considered
separately, as will be the case for FORWARD and app2you.

118

which captures Excel functionality, is applied on the core. These limitations

are common in real-world applications and have marginal negative reper-

cussions on application scope practically, but enable automatic inference of

schemas, queries and programs by inspection of the structure of the applica-

tion pages. The declarative nature of FORWARD is also critical in enabling

these inferences.

The limited app2you scope presents an excellent scope / ease-of-

specification tradeoff point: app2you’s DIY design facility enables the easy specifi-

cation of applications by “business architects” [TV07], that is, application owners

that are not programmers but have the sophistication to reduce their business

process into web pages by specifying, in a WYSIWYG fashion and in response to

easy-to-understand prompts, properties of the pages such as who can access each

page, what is the page’s main function, what happens in response to an action.

Formulating the FORWARD scope as an extension of the app2you scope

also enables a principled exploration of design approaches for app2you. In opti-

mizing for ease of specification, many DIY platforms suffer from arbitrary, and

sometimes unnecessary, limitations on application scope. Not only do the arbi-

trary limitations restrict customization of key functionalities of the resulting ap-

plications, they also disable in-depth comparisons between the various approaches

and impedes the development of platforms that can seamlessly combine the best

aspects of each approach.

Last but not least, building a DIY platform on top of a rapid development

framework introduces novel opportunities for efficient collaboration between busi-

ness process owners and IT specialists. Where an entire web application cannot be

fully created or customized in app2you, the non-programmer owner can still create

by himself the bulk of the application’s pages and workflow, while the program-

mers provide assistance in elaborate graphics, integration with outside services,

code for complex functions, complex SQL and other such aspects in FORWARD.

This assistance can occur at different stages of the software development cycle.

Programmers can choose to participate at the beginning by providing generic ap-

plication templates that can be readily customized, at the end where app2you

119

would have served as a rapid prototyping tool to clarify the requirements, or in-

deed continuously throughout the cycle as point interventions on abstract and

complex aspects of the application.

Figure 6.1: Submit Startup Page

Figure 6.2: Evaluate Startups Page

120

Figure 6.3: Advisor Comments Page

In an app2you application users with potentially different roles and rights

interact on a web-based process. Depending on the state of the process/application,

each user has rights to access certain pages, read certain records in them and

execute actions, which often pertain to reported records.

Let us first convey informally the scope of app2you applications through a

redacted version of a real-world app2you application. More real world examples are

found in the Appendix. We use a simplified and modified version of the app2you

application for TechCrunch50 (TC50) 2008 [Tec], a conference where over 1000

startups submitted requests, along with information packages, in order to present

themselves and their products. The app2you application was used to collect the

submissions, review them, schedule multiple rounds of appointments where the

candidates met the reviewers online to demo their products, and select the top

50 startups. At page Submit Startup (Figure 6.1) any user with a registered

account can prepare and submit information regarding her startup, which includes

the name, logo, and list of founders.2 Every user is constrained to at most one

submission. The submitted startups are displayed on the Evaluate Startups page

(Figure 6.2), which is accessible by all reviewers, each of whom can execute three

actions on each one of them: submit a review consisting of Notes for each startup;

solicit comments from one or more advisors (essentially external reviewers), in

which case the startup submission will be displayed on the Advisor Comments page

(Figure 6.3) to the particular advisors;3 invite the startup submitter to schedule

an interview. The invitation results to the candidate receiving an email notifying

2 Users must first pass from a typical login and signup page before they reach the page of
Figure 6.1.

3 In the actual application there were solicitations to other reviewers.

121

him to visit the Schedule Appointment page, which reports available interview

slots, submitted by the reviewers on the Post Interview Slots page, and lets

the invited startups choose one of them (see Figure 6.4). The submitted choices

are reported on the Grade Demo page, where the reviewers post their grade for the

demo given at the agreed interview slot as part of the second review round. Finally,

the submitted demo reviews are reported on the Evaluate Startups page, where

reviewers can now make an informed decision of which 50 startups are the most

promising ones. The actual application evolved during a period of two months,

indicating the great value of the Do-It-Yourself approach in allowing applications

to evolve as the business process evolves.

The general goals of app2you’s Do-It-Yourself design facility are typical in

easy-to-use systems: (i) WYSIWYG design, where the owner immediately expe-

riences the result of each specification action. (ii) Wizards that suggest to the

owner common and semantically meaningful specification options and automate

their implementation. (iii) Wizards that explain the specification at a high level

where the user does not have to engage in schema design or database queries. Sat-

isfying such ease-of-use specification goals has required the introduction of multiple

novel DIY specification techniques, which are described in this chapter, and the

construction of algorithms that automatically infer the schemas and queries that

fuel the pages. The reported techniques have been designed during a period of one

year, as we have been observing stumbling blocks faced by owners in their efforts

to build applications.

Due to the highly interactive, WYSIWYG nature of the DIY design fa-

cility we suggest that the reader watches the 10-minute high resolution video at

http://www.vimeo.com/2075363, password app2you, which is also a key part of

the chapter’s presentation.

The first technique is page-driven design (Section 6.3.2), which provides to

the owner a WYSIWYG model of the pages. The owner specifies properties of the

pages that have immediately visible effects on the page. For this contribution we

borrowed techniques from the WYSIWYG/automatic design of database schemas

by the creation of respective input forms as done in form-builders even before the

122

web. We expanded with the WYSIWYG specification of forms and actions that

operate within the context of reported records (for example, every input form, such

as solicit action and invite action on Evaluate Startups, operates within the

context of a submitted startup). We also launched wizards for specifying prop-

erties by answering questions, expressed in easy-to-understand language referring

to the pages and the actions that happen on them. app2you in response creates

automatically the pages’ structure (called page sketches, Section 6.2) and the un-

derlying schemas and queries, therefore relieving the business process owner from

designing the database layer, which is one level away from the layers that she un-

derstands, namely, the application page layer and the overall workflow. Hiding

database schemas, queries, constraints and other low-level details is facilitated by

an architecture where high level, easy-to-explain derived properties of the page

sketch hide hard-to-understand complex primitive properties (Section 6.3.1).

We found out that the inherent difficulty (in comparison to, say, a spread-

sheet) in producing a WYSIWYG model for a collaborative application is that

the pages typically behave differently depending on which user accesses them and

the application state. The resulting enhancement to page-driven design (Section

6.3.2) is prompting the owner to experience the page’s function as if she were a

suggested sample user of it. Such prompts are issued when assuming the role of

such sample user and performing particular suggested actions reveals properties

of the pages’ operation that would otherwise not exhibit themselves. Forcing the

use of the application also leads to collecting sample data, which become useful in

exhibiting the operation of other pages also.

123

Figure 6.4: TechCrunch50 Workflow Visualization

(in ppt; see video demo for the actual one)

Page-driven design by itself still turns out to be insufficient for allowing the

owner to reduce a non-trivial multistep process she has in mind into a working

application. In order to appreciate the difficulty that non-programmer owners

face, visualize a database-driven application as a workflow. Figure 6.4 shows the

workflow visualization of the functionality of the TC50 application. User groups

are on the left. The rows in Figure 6.4 visualize access rights, that is, which

pages are accessible by which user group. Intuitively, it is easy for the owner to

specify in a single specification action what appears as a single transition in the

workflow graph, such as the solicit edge. Unfortunately, a major shortcoming

of DIY online databases, which is not resolved by page-driven design alone, is

that they require the owner to decompose a single user action in the process into

coordinated activity in two pages. For example, in page Evaluate Startups the

user submits the solicited advisor’s name. Page Advisor Comments has a too-

complex-for-non-programmers query that filters startup submissions according to

whether the currently logged-in user appears in a solicitation related to this startup.

The technique that will resolve this problem is the workflow-driven design extension

(Section 6.3.3) to the page-driven paradigm.

Finally, in Section 6.3.4, we discuss work on semiautomatic creation of

reports. The goal is a report building interface that

• suggests semantically meaningful joins of various data sets; or joins of the

124

currently reported data with other collected data sets of the application

• does not suggest joins that would lead to provably redundant information on

the report

• explains to the owner the (potentially nested) involved data sets and joins by

referring to names that appear in the application; avoids causing confusion

with details of how the pages are normalized in tables

• requests minimal information in the form of plain multiple choice menus

• discovers the best placement of information on the report in order to illustrate

associations and constraints between the reported data sets.

In effect the interface must compensate for the minimality of the owner-provided

information with algorithms that detect and perform complex nested report cre-

ation operations.

Roadmap Section 6.2 presents the app2you scope as a subset of the FORWARD

scope, and argues why the app2you scope can still capture many practical appli-

cations. Section 6.3 briefly describes an array of design techniques. Section 6.4

discusses related work.

6.2 Framework and Scope

An app2you application is described by an application sketch, which is mod-

ified by the owner when the application is in design mode. The sketch consists

of primitive properties (collectively called primitive sketch) and derived properties,

where the former are low level data structures (e.g., queries, constraints) as defined

in the FORWARD scope (Chapter 2), and their settings cannot be derived from the

settings of other properties. For ease of specification the non-programmer owner

typically does not access the primitive sketch aspects directly, since deconstruct-

ing a process into primitive aspects tends to require CS sophistication. Rather the

non-programmer owner indirectly accesses them via the derived properties, which

125

explain at a high level common questions and options, using wizards and other

components of the DIY design facility (Section 6.3).

6.2.1 Reports

In the FORWARD framework, the unit tree is homomorphic to the page

schema tree, which is in turn homomorphic to the page query’s abstract syntax

tree. A field is a triplet comprising (1) a unit, (2) its corresponding type node in

the schema tree, and (3) the corresponding fragment in the original page query

that outputs the attribute. The query fragment can be represented as a standalone

query q, which is parameterized by the context c and retrieves from the database

tuples t1, . . . , tn that have schema t, and correspond to the values rendered by

the field’s unit. In particular, a field whose unit has child units is an iterator,

otherwise it is an atomic field. Consequently, a hierarchical structure is induced

between iterators and fields, and an iterator field recursively contain its own nested

iterators. A child unit operates within context c+ t, which is the concatenation of

c (i.e., the context within which the iterator operates) and t (i.e., the context that

the iterator generates).

For example, the Evaluate Startups page (Figure 6.2) has a top-level

iterator, which contains the atomic fields Startup Name, Logo, and Business

Plan. This iterator runs a query SELECT * FROM Submit Startup, where

Submit Startup is the automatically inferred table that collects the non-nested

fields of the startup submission form (see Figure 6.1). It also contains the

(nested) iterator Founders, which, in turn, contains the atomic fields Name

and Title. The query of the iterator Founders is SELECT * FROM Founders

WHERE Founders.Parent=? and the parameter (?) is instantiated by the

Submit Startup.ID of the query result of the containing iterator.

The FORWARD framework allows iterator queries to be arbitrary SQL

queries over the schema, typically parameterized by values of the context. In this

way SQL experts can utilize SQL’s full power. The app2you scope queries (lqueries)

are SPJ queries with EXISTS predicates, that is, queries of the form SELECT

* FROM OuterJoinExpression WHERE BooleanCondition, where the condition

126

may be parameterized with values from the context and may also involve

EXISTS(SubQuery) predicates where the parameterized SubQuery is recursively

an lquery. Applications of the app2you scope use only lqueries and correspond-

ing constraints, which are generated by the DIY facility. A DIY-built application

however may go outside the app2you scope and into the FORWARD scope by

selectively utilizing “manually” written queries and constraints for a few complex

functionalities.

App2you also allows calculated fields to be associated with queries. In the

app2you scope such queries will capture the typical functionality of Excel spread-

sheets. In particular, a calculated field may:

1. Compute a new scalar value from values of the context. For example, if the

context has attributes First Name and Last Name then the calculated field

Name may be calculated as concat(Last Name, ",", First Name).

2. Compute an aggregate value by applying an aggregate function over a (poten-

tially hidden) nested iterator of the page. For example, the non-programmer

owner may include in Evaluate Startups a calculated field Number of

Founders that performs the count function over the Founders iterator fields.

3. Combinations of the two above.

Lqueries, scalar calculations and aggregates capture the needs of most typical re-

porting applications and even the needs of relatively unusual action-controlling

constraints, such as “each startup may receive at most 5 advisor reviews”. There-

fore the limitation leads to small scope loss. At the same time, this limitation en-

ables ease of specification benefits: First, the design facility automates the creation

of reports (see Section 6.3.4) for lqueries. Second, filtering and aggregation uses

DIY interfaces that have proven themselves in other settings (e.g, spreadsheets).

Third and most important, lqueries enable the easy and efficient computation of

the context created by each report tuple, therefore enabling the automatic infer-

ence of the database commands associated with contextual actions, such as the

submit, invite and solicit, i.e., actions that appear in the context of reported

data, as explained in Section 6.2.2.

127

Note that for DIY simplicity the design facility focuses on pages with a

single iterator at the top level of the page. Such pages are called report pages.

6.2.2 Contextual Actions

Recall in the FORWARD framework that a unit can be associated with one

or more server-side programs. An action is a triplet comprising (1) a program (2)

the unit from which the program can be invoked (3) a constraint, represented by a

yes/no query (see discussion below on representation of queries), whose semantics

is that the action is applicable only when the constraint is satisfied. Invoking an

action produces side-effects (or effects).

The most common effect of executing an action is an update on the

database; this will be the only effect discussed in detail next. In the FORWARD

framework such effect is captured by an SQL statement, which is possibly param-

eterized by the context. In the app2you scope the database effect is automatically

inferred by the DIY design facility: It is an insertion in the database of the val-

ues collected by the input fields. It is described in the sketch by (i) naming the

database table that takes the insertion and (ii) mapping the input fields to type-

compatible attributes of the table. If the form contains repeated nested forms,

such as the Founders in the Submit Startup form that contains Name and Title

pairs, then each nested form is mapped to a corresponding database table. Note

that the inserted record also includes system attributes such as the auto-generated

ID, the submitter and creation timestamp of the record.

Other effects of an action may be (i) sending an email, described by a

template (in the style of MS Word mail merge) whose placeholders can refer to

both the input fields of the form and the system attributes and (ii) causing a

navigation to another page, which can be used to produce confirmation pages and

forms submission processes that span multiple pages.

For example, the data submission form of Figure 6.1 has a submit action.

Its effect is inserting the collected data in tables Submit Startup and Founders

and sending a confirmation email. It has the constraint that the currently logged-

in user has not submitted a startup already. The solicit and invite of Figure

128

6.2 are the buttons of respective actions.

A feature that sets the scope of app2you applications apart from the scope

of online databases (see Section 6.4) is the ability of reports to have nested actions,

which operate in the context of the reports. For example, the solicit action in

Figure 6.2 operates within the context created by the containing report iterator.

Such a nested action is said to be an annotation of its report iterator. A nested

action differs from a top level action as follows: First, when it inserts in the

database it may map values from its context into attributes of the insertion table.

For example, when the solicit action is executed it stores a tuple in a table

Solicitation and this tuple has a foreign key attribute that stores the ID of the

startup submission within whose context the particular nested action operates.

Second, its constraint and its side effects may also utilize the context. For example,

the invite action is associated with a constraint that there may be at most one

invitation for each startup.

Note the following important interplay between lqueries and the automatic

inference of the insertions happening when an action is issued: lqueries enable

automatic inference of a compact context for the nested actions that appear within

reports fueled by such lqueries. In particular, each record produced by a lquery

creates a context consisting of the IDs of the few database tuples that joined

together to result in it. This, in turn, enables fully automatic inference of an

efficient database insertion performed when the nested action is activated. In

particular, the insertion stores the IDs of the compact context along with the

input fields of the action and the system attributes. This, in turn, leads to ease of

specification since the non-programmer owner does not have to specify what part

of the context of a nested action will be stored with the insertion.

Note that the DIY design facility is facilitated by iterator+action combos

where the iterator part of the combo ranges over actions created in response to the

action part of the combo. For example, the iterator+action Advisor Comments

in Figure 6.3 combines the submit action with an iterator showing the comments

collected by the submit action.

129

6.2.3 User Group Definitions

In the app2you scope user groups (such as Invited Applicants, Advisors

and Reviewers) are identified as a pair consisting of a report page and a field (of

such report) whose values are user identities. The submitter is typically such a

field.

6.3 Do-It-Yourself Design Facility

app2you’s design facility allows its non-programmer business process owner

to easily and rapidly create a working web application that can be immediately

tested and experienced. If the result is not what the owner had in mind a new

round of specification-testing can be played out within seconds.

We focus on three key DIY-enabling techniques of the design facility and

the architecture that enables them: page-driven design (Section 6.3.2), workflow-

driven design (in progress, Section 6.3.3) and automatic creation of complex reports

(in progress, Section 6.3.4). We use the following principles as a scorecard for the

DIY design facility.

• Prefer to provide concrete explanations of sketch properties using WYSI-

WYG feedback and verbalization of prompts and options that refers to pages,

actions and other highly visible properties of the page; rather than being ab-

stract and making references to database terms.

• Prefer to provide a high-level specification from which primitive properties

can be generated, rather than a low-level specification of primitive properties

that requires the owner to deconstruct high level concepts into low level

concepts.

• Prefer to summarize and enumerate design options to focus on common cases,

rather than provide an unstructured, high degree of freedom. “Advanced

user”, less prominent interfaces should cater to the less common cases.

130

6.3.1 Derived Properties

Often an important combination of primitive properties must be explained

to a non-programmer owner at a high level, which is close to the non-programmer’s

understanding of the workflow and the function of the pages. Therefore the derived

properties interface reads the primitive sketch and exports derived properties and

corresponding common options (called derived options) for their settings. When

the owner chooses an option the derived properties interface translates it back to

the primitive sketch. We describe next a simple example of a derived property,

exemplifying the concept. Derived properties become paramount in the following

sections.

For example, recall that a user of the Submit Startup page may submit

only one startup. Once she makes her submission, the form of Figure 6.1 disap-

pears. At the primitive sketch level, this behavior is achieved by a non-obvious

primitive property: The constraint associated with the form checks that the set of

startup submissions of the currently logged-in user is empty. Understanding the

behavior of the Submit form at this level is fairly complex. Therefore the page

wizard offers a derived property asking the much more obvious question of Figure

6.5.

The combination of a primitive sketch with a derived properties interface

produces many benefits on scope and ease of specification:

• It enables the incremental addition of derived properties in the platform,

as common cases that lend themselves to higher level explanations emerge,

without disrupting existing applications. Indeed, applications created before

the introduction of a new derived aspect in the platform can benefit from its

introduction: The derived properties interface reads their primitive sketch

and exposes a high level derived property.

• It enables a 90/10 rule where the design facility first poses common questions,

often relying on derived properties and derived options in order to express

them. At the same time, the wide scope enabled by the primitive sketch is

available.

131

6.3.2 Page-Driven Design

The first step towards providing a high-level specification is to allow the

process owner to design her application through the WYSIWYG model of pages,

as opposed to engaging in low-level web and database programming. Various

properties of pages are either specified by direct visualization on the pages, or

via answering simple questions about the page. The design facility in response

automatically creates the page’s form/action and iterator structure, underlying

schemas and queries.

Through the high-level specification, page-driven design relieves the owner

from specifying data structures in the abstract while en route to construct pages.

Moreover, explaining the design options available at the page level promotes easy

comprehension, especially if they are explained directly in terms of the applica-

tion layer that are easily perceived by the owner such as what is the report/form

structure of the pages. Lastly, page-driven design facilitates immediate feedback

on whether a design satisfies the owner’s requirements, since the owner can both

inspect and experience the page directly.

132

6.3.2.1 Page Wizard

(a) Access Rights

(b) Page Templates

(c) Record Names

Figure 6.5: Page Wizard for Submit Startup Page

The page wizard is the starting point of page-driven design. It prompts

with simple questions about page-specific information, such as the page name,

133

URL, and the groups that are authorized to access the page. For example, ac-

cess to Submit Startup is granted to system-defined group Everyone (no login

required) (Figure 6.5a), whereas access to Evaluate Startups is granted to cus-

tom group Reviewers. Allowing a page to be accessed by a group is also visualized

on the workflow diagram by placing the page in the appropriate swim-lane (row).

The page wizard prompts for the main function of the page by enumerating

a list of templates, where each template bundles a commonly occurring combina-

tion of page properties including presentation format and action rights. Templates

are provided to speed up the design of common cases. Such common cases may

include forms that allow each user to submit at most one record, and tabular re-

ports where each user sees all records but can only edit/remove the records she

submitted, etc. Where the common case is not fully applicable to the scenario at

hand, the owner can always customize the page by overriding individual properties

independently.

Figure 6.5b shows the Private Form template used in creating the Submit

Startup page. The template provides the following defaults for the following

derived properties:

• The submit property of the page’s form is set to on, but max one per

user. (Each applicant can only submit one startup.)

• The display property of the page’s iterator is set to on if user has

submitted the record, off otherwise. (Each applicant can only see the

startup info she has submitted.)

• The edit and remove properties of the page’s iterator are also set to on if

user has submitted the record, off otherwise. (Each applicant can

only edit or remove the startup info she has submitted)

Whenever the submit aspect is on, the page wizard also prompts the owner to op-

tionally assign a name to the records collected. The record name helps the system

phrase questions and options more specifically. Figure 6.5c shows the wizard for

Submit Startup. It starts with a system-proposed default of Record submitted

at Submit Startup, which is later set by the owner to Startup.

134

6.3.2.2 WYSIWYG Design

After the basic properties of the page have been specified through the page

wizard, the owner can customize the form of the page in a WYSIWYG fashion. To

create new input fields, the owner drags-and-drop input components such as text

boxes, image upload prompts, dropdown boxes, check boxes etc. into the action

form of the page (Figure 6.6).

For each input component dragged into the form, a corresponding field is

added to the action, and a corresponding attribute is added to the schema of the

database table where the records corresponding to the action are inserted. The

input component determines the data type of the field. For example, the Logo

field is created through an image upload component, therefore storage is allocated

for binary data, data can be submitted through an HTML file input form element,

and submitted data are displayed as images.

Figure 6.6: WYSIWYG Page Design

The owner may also introduce repeating nested data by creating nested

tables, such as the Founders on the Submit Startup page.

135

6.3.2.3 DIY creation of nested actions

While existing form builders and online databases employ WYSIWYG de-

sign for (pure) input forms, app2you advances page-driven design to also encompass

the WYSIWYG specification of nested actions that operate within the context of

reported records. On the Evaluate Startups page for example, the Reviews, the

solicit and invite nested actions all operate within the context of a startup. A

nested action is also called annotation by the DIY design facility if it is a submit

actions, which is associated with input forms, since the data it collects intuitively

annotate the data of the report.

An annotation is created by the drag-and-drop of an input component into

a report.4 For example, the Reviews annotation is created when a multi-line

textbox for Notes is dropped into an area corresponding to a startup, excluding

the area corresponding to Founders. In this way the owner visually specifies the

context of the Reviews annotation to be a startup. Had she accidentally dropped

it into the area for Founders, she would have seen a multi-line text box for each

founder, which creates an immediate visual indication of the mistake. Recall that

the design facility automatically infers the database insertions that will be issued

when a review is submitted. For example, the insertion of a review will lead to

inserting in the underlying table Reviews a record that contains the values collected

by the input fields, system attributes and a foreign key that refers to the startup

that provides the context for the particular review. The updates issued when a

review is edited are computed similarly.

6.3.2.4 Experiencing the page

WYSIWYG design is not sufficient since there are properties that are not

immediately evident from the page’s visual appearance. For example, how many

submissions can a user make? Can a user see which other users have submitted?

The inherent difficulty faced by an owner of a collaborative application

4 As we will see in Section 6.3.3.1, more generally, nested actions are created by the introduc-
tion of a workflow action (such as the solicit, invite) into a report.

136

(as compared to an owner of a spreadsheet) in comprehending the behavior of an

application and verifying it against her requirements, is that pages typically behave

differently depending on what data has been submitted and who accesses the data.

The design facility takes a number of steps towards resolving this problem. First,

it makes every feature that is available in use mode also available during design

mode. The fact that the page sketches are interpreted, instead of requiring a

design-compile cycle, facilitates this. Second, it always prompts the owner to

submit sample data and make actions so that corresponding records can be shown

on report pages. The third step is to prompt and help the owner assume the role of

particular sample users in order to visualize the behavior of properties that would

otherwise be hidden.

The system suggests to the owner to experience a page as a sample user

if it recognizes that certain properties of the page cannot be explained by the

owner’s current WYSIWYG experience. For example in Submit Startup, the

system suggests the experience submit as a sample user in order to explain to

the owner the following properties:

• The display property of the page is set to on.5 The owner understands this

when she sees that the startup info record submitted by the sample user is

displayed on the page.

• The submit property of the page’s action form is set on, but max one per

user. The owner understands this when she sees that the action form and

button disappears once she submits a startup info record.

• The edit and remove properties of the page’s iterator are set to on.6

Note however, that the experience of the first sample user does not fully explain

whether the display, edit and remove properties are unconditionally or condi-

tionally on. For example, does the iterator display all records submitted, or only

5 The display aspect of a page is a derived aspect that asks whether a page that has a form
also has a report iterators that displays the data submitted at the form.

6 The edit and remove aspects of a page are derived aspects that ask whether the report
iterator of the page provides the built-in actions edit and remove.

137

records submitted by the current user? Therefore, the design facility subsequently

engages the owner to experience as a second sample user. The experience shows

that in this the page, each user can only see, edit and remove records she has sub-

mitted. If this is contrary to requirements, the owner can then either select another

template, or customize the individual properties defaulted by the template.

When the records displayed by iterators and the actions that are available

are controlled by complex conditions, it is harder to reason about what sample data

and sample users are needed in order to experience a page. For example, obtaining

the experience of a solicited advisor at the Advisor Comments page requires that

(i) at least one (sample) solicitation has been made and (ii) the owner uses the

Advisor Comments page as if she were the solicited advisor. When the conditions

have been introduced in response to workflow-driven design, as described next, it

is easier to reason about such sample users and data.

Note that in practice sample data are not needed when the first pages of

the application have actually gone in use and have already obtained actual data.

6.3.3 Workflow-Driven Design

In the workflow visualization of an application (see Figure 6.4), edges (also

called transitions) capture actions that happen on the page at the source of the

edge and affect the experience and rights of a user on the page at the target of

the edge. The starting points of a workflow are data collection pages, such as

Submit Startup and Post Appointment Slots that provide actions collecting

new records without implicit or explicit references to other records. The records

may be reported on the data collection page itself, or appear on reports that com-

bine data collected from one or more pages. Reports, such as Evaluate Startups,

may allow their user to act on individual reported records (review, solicit or

invite). Formally, there is an edge from page P1 to page P2 labeled with action

a1 if executing a1 on P1 may change

1. the read rights of a user u on P2, that is, u can read on P2 a record r as a result

of a1. For example, the submit edge from page Submit Startup, accessible

to Everyone (login required), to page Evaluate Startups, accessible to

138

reviewers, denotes that reviewers gain read rights to a startup once the action

is submitted.

2. the action rights of a user u on P2, that is, u can perform an action a2 on P2 as

a result of a1. For example, the solicit edge indicates that upon executing

the solicit on Evaluate Startups a user (in this case the solicited advisor)

can read and comment on a startup submission at the Advisor Comments

page.

3. the access rights of a user u on P2, that is, u gains access on page P2. For

example, the invite edge of Figure 6.4 indicates that upon executing the

invite action on Evaluate Startups a user (in this case the startup sub-

mitter) gains access to the Schedule Appointment page.

An implementation that visualizes the workflow also allows drilling down into the

nature of the edges so that the owner can tell which type of right is affected by

the edge, why it is affected, etc.

Some workflow transitions correspond to application functionality that is

easily built using page-driven design. For example, the submit edge from Submit

Startup happens because the owner ordered at the page wizard that the Evaluate

Startups reports the data collected on Submit Startup.

However, process owners often want to capture more elaborate workflow

logic, which leads to application functionality that cannot be easily-built in page-

driven design. Consider in Figure 6.4 the solicit edge from page Evaluate

Startups to page Advisor Comments, accessible toadvisors. Here, the reviewers

may solicit reviews for each startup from a subset of the advisors. Using page-

driven design, the owner has to add an annotation (action) to Evaluate Startups

so that reviewers can choose the advisors to solicit reviews from. Then she needs

to create the Advisor Comments page, for the advisors to submit their comments,

by initially report all the startupsfrom the Evaluate Startups page, and then

keep only those where the currently logged-in user is one of the advisors chosen to

solicit a review from; not a simple condition to state regardless of how friendly the

query building GUI is. Indeed, the query in SQL is:

139

1 SELECT *

2 FROM Submit_Startup

3 WHERE EXISTS (

4 SELECT *

5 FROM Solicitations

6 WHERE SS_ref = Submit_Startup.ID

7 AND route_to=<current user>

8)

The Solicitations table folds the advisors chosen (route to column) by

the reviewers for each Startup (SS ref column). The SS ref column is a foreign

key referring to the ID of a Startup. The route to column is a foreign key referring

to the ID of an advisor and the condition makes sure that the solicited advisor is

the currently logged-in user. No matter how user friendly the query building of

the design facility becomes, the above query is too hard to be conceived by a

non-programmer.

Figure 6.7: Workflow-Driven Design

Deconstructing a single workflow transition, which corresponds to a single

user action, into the above design steps is not a trivial task for the process owner.

For that reason, we enhance the design facility’s page-driven design with workflow-

driven design where all of the above design steps are integrated into a single DIY

task performed on the starting page of a workflow transition.

140

Workflow-driven design is initially experienced by the owner as a set of

Workflow Actions components, shown on the right side of Figure 6.7, which can

be dragged-and-dropped on a page as any other component. For the solicit

example, the process owner decides to drop the Route to Users component on

the Evaluate Startups page, which triggers the Create New Action wizard. The

wizard saves the owner from having to formulate queries like the one above.

6.3.3.1 Workflow Wizard

The requirement for the workflow wizard is to either automatically infer

or ask the process owner about one or more of the following properties of the

workflow action and correspondingly of the transition that appears in the workflow

visualization:

1. The action on the current page that corresponds to the workflow transition.

2. The type of record involved in the workflow action, which can typically be

automatically inferred from the context in which the action was introduced

3. The user group that will be affected by the action.

4. How exactly the action will affect the rights of the user group on the cor-

responding records. That is, will the action change the access rights, the

readrights and/or the action rights of the affected user group on the tar-

get page. In most cases this is implied by the choice of the action and no

additional information is needed.

5. Depending on the answer to the above question, additional questions about

the exact implementation of the rights become relevant. For example, if the

workflow action makes the record readable by users of the affected group,

which is the page where the users will read the record?

6. How the affected user group will be notified of the action?

As an example, let us consider what the workflow wizard for the Route to Users

action should do, in the spirit of the above properties, while the owner customizes

the action to solicit comments from advisors.

141

Property 1 is answered purely by the fact that the owner drags-and-drops

the Route to Users action from the Components list (see Figure 6.7) into the page.

Property 2 is inferred by the fact that the owner dropped the workflow action

in Evaluate Plans page; therefore the type of record involved in the workflow

action is a Startup record. The wizard can proceed in a series of questions.

Property 3 comes from asking the owner to decide which user group to route

Startup records. The answer in the running example is Advisors. Property 4

is implied by the choice of the Route to Users action, whose effect is that the

involved record (Startup record) becomes readable by users of the chosen group

(Advisors). Property 5 comes from asking the owner which is the page where

Advisors will read Startup records; the owner will answer that is a new page,

named Advisor Comments. Property 6 is addressed by a last question, where the

owner chooses to send an email to the relevant users of the Advisors group.

Once the owner exits the wizard, the system automatically places a solicit

action in the context of each Startup, along with a drop-down box that references

the advisors, as shown in Figure 6.2.

6.3.4 Automated Report Creation

Section 6.3.2 has demonstrated how the high-level specification of pages can

generate a database schema, while Section 6.3.3 has shown how raising the specifi-

cation level to that of application workflows can ease the design of actions. In keep-

ing with this high level of specification, it is desirable for owners to design reports

powered by complex queries, without having to specify low-level implementation

details of queries such as projections, join conditions and selection conditions.

Since report pages are created after data collection pages the automated re-

port creation can leverage semantic information previously specified by the owner.

Consequently, app2you is able to provide the owner a minimal interface for design-

ing complex reports, while compensating for this minimalism with algorithms that

offer semantically meaningful options and automate implementation details.

142

(a) Access Rights

(b) Page Templates

Figure 6.8: Automated Report Extension on Evaluate Startups Page

Let us consider how the owner can extend the Evaluate Startups page

with the comments that advisors have submitted on Advisor Comments. Such an

augmented Evaluate Startups is shown in Figure 6.8b

Figure 6.8a shows the WYSIWYG design of Evaluate Startups, during

143

which the owner selects the Report tab and sees options for extending the page. For

example, the first option corresponds to extending Evaluate Startups with data

on Advisor Comments. The intuitive understanding is that selecting an option will

cause the system to produce a more complex report, which is an amalgamation of

both pages.

Figure 6.8b shows that after the above-mentioned option is selected, the

system has introduced advisor comments by extending the Solicitations iter-

ator’s unit with data collected by Advisor Comments. Notice that the extension

was placed at an optimal point, next to corresponding solicitations.

Through the WYSIWYG interface (and appropriate sample data), the

owner receives immediate visual feedback of the extension. She can then per-

form further customization, such as hiding extraneous fields and iterators, deleting

the extension and starting over, or repeat the design activity of extending the page.

This minimal interface is intended to capture the common case of designing

reports. Sophisticated owners may choose to obtain explanatory details for an

option in order to customize join conditions.

To enable this high degree of ease for the owner, the system has employed

various DIY features and heuristics. The technical challenge lies in intelligently

restraining the infinite space of all possible joins, to produce a summarized enu-

meration of options for the common case.

6.3.4.1 Generating Joins

When the owner selects the Report tab, the system produces the list of

options by first generating a (finite) list of join paths. This is the core mechanism by

which ultimately the owner chooses from enumerated options, rather than specify

join conditions using arbitrarily complex Boolean conditions.

For each pair comprising an iterator b of the base page, (that is, the report

page to be extended - Evaluate Startups in the example) and an iterator or an

action e of any extension page, app2you attempts to find join paths that connect

b and e. A join path is a left-deep relational join of the form:

144

FC(b)/cn FC(in) ./cn+1 . . . FC(e)

where FC(i) is the flat context of an iterator i.

Some example join paths between base iterators on the Evaluate Startups

page and extension iterators on the Advisor Comments page are the following. For

the sake of example, assume the Advisor Comments page also shows the Founders.

1.

FC(Evaluate Startups)

./lhs.startup id = rhs.startup ref

FC(Founders)

2.

FC(Evaluate Startups)

./lhs.startup id = rhs.startup ref

FC(Advisor Comments)

3.

FC(Solicitation)

./lhs.startup id = rhs.startup ref AND lhs.route to = rhs.submitted by

FC(Advisor Comments)

The flat context of an iterator i is its corresponding non-parameterized

query. If i is the top-level iterator of the page, then FC(i) is simply the query

producing the records displayed in i. If i is nested within iterator h, then FC(i) is

FC(h) appropriately joined with the query producing the records displayed in i.

The join conditions cn are conjunctions of equalities between attributes.

Currently, the system considers two types of attribute join-pairs: (1) between id

attributes, and corresponding foreign key attributes (2) between email attributes

corresponding to user groups, and Submitted By / Edited By attributes of records

145

accessible by said user groups. This reflects the common intuition where the ma-

jority of join conditions involve unique identifiers, be they surrogate keys generated

by the database or natural keys such as email addresses.

Note that the generated join paths do not contain cycles (i.e. an iterator can

only occur once in the path), otherwise there can be an infinite number of paths.

The exception is that b and e can be the same iterator, so that the owner can make

arbitrary self-joins by choosing the same e for subsequent extension rounds.

6.3.4.2 Detecting Redundant Joins

The list of join paths generated is finite, but not all join paths are useful

enough to present as options to the owner. For each join path, app2you makes

a hypothetical extension of the base iterator, and uses view equivalency to test

whether the extension adds only redundant information on the page.

For example, join path 1 is provably redundant and can be discarded, since

there is already a Founders iterator on the base page Evaluate Startups.

A conservative definition of redundancy is the following: A join path is

redundant if it leads to a new iterator x, where there is already an iterator y such

that for all possible database instances that satisfy the schema and its constraints,

each tuple tx = (v1, . . . , vn) in FC(x) has a corresponding tuple ty in FC(y) that

has v1, . . . , vn and vice versa.

Note that such a definition does not prevent self-joins or, more generally,

reports where a database table occurs multiple times as a result of different join

conditions. The redundancy test is accomplished by essentially reducing all con-

straints into embedded dependencies, asserting the existence of tx in FC(x) and

running a chase procedure [PDST00] that deduces tuples that must exist in the

flat contexts of other iterators on the page.

6.3.4.3 Optimizing Join Placement

Given two generated join paths where the extension iterators are the same,

one join path may be strictly better than the other. For example, contrast Join

path 2 with 3. Extending Evaluate Startups with 2 will place advisor comments

146

on each startup, whereas 3 will place advisor comments on each solicitation. In-

tuitively, 3 is preferable to 2, as only the former visualizes the existing association

between a solicitation to a specific advisor, and the corresponding comment.

This intuition can be expressed as functional dependencies between records.

A startup can be routed at most once to each advisor, and an advisor can comment

at most once on each startup. Therefore, a comment functionally determines

a solicitation, which in turn functionally determines a startup. Since app2you

relies heavily on WYSIWYG visualization to assist the owner in making design

choices, it is important that wherever possible, functional dependencies and other

constraints in the schema be visualized with the appropriate placement and nesting

of iterators. Extending with 3 will produce a more accurate visualization of the

functional dependencies.

Implementation-wise, running the chase procedure in Section 6.3.4.2 has

the side benefit of also producing the necessary functional dependencies.

6.3.4.4 Bundling Additional Joins

After discarding pruned join paths, the surviving ones are aggregated by the

pages of the extension iterators, and presented as a list of options as in Figure 6.8a.

This achieves the minimal interface with a corresponding high-level of specification,

as the owner only needs to comprehend pages (and not join paths) to start creating

complex reports.

Note that the system uses the page rather than the iterator as the level of

summarization. This comes from the observation that due to the parameterization

between nested iterators, the standalone functionality of an iterator is harder to

perceive than that of a page. Moreover, the existence of a report page is a strong

hint that its structural organization is useful. Therefore, bringing in the entirety

of the page en masse as part of the extension and allowing the owner to later hide

extraneous fields and iterators provides better visual cues, than allowing the owner

to extend one iterator at a time.

For an example, consider an alternate scenario where startups can provide

rebuttals to advisor comments. There will be a page Rebut Advisor Comments,

147

that reports comments and annotates them with a Rebuttal iterator. If Evaluate

Startups were not extended with Advisor Comments, but were instead extended

with Rebut Advisor Comments, the bundling of additional joins will introduce

both comments and rebuttals with a single round of extension.

6.3.4.5 Visualizing Projections

Iterators and fields can be easily shown and hidden with checkboxes (Figure

6.8b). For example, each iterator has a few hidden-by-default system fields, such as

Submit Timestamp. The owner can easily customize the new Advisor Comments

iterator to display when each advisor submitted her comment. From the DIY

perspective, it is far preferable for the owner to toggle visibility of iterators and

fields through an enumerated list, than to manually specify a projection list of

attributes (a la query languages such as SQL).

6.4 Related Work

The time is opportune for Do-It-Yourself database-driven applications for

two reasons. First, they leverage the emergence of hosted applications (software

as a service) and Web 2.0 Ajax-based interfaces that allow application page design

from the comfort of one’s browser, while providing the richness of desktop inter-

faces. The two aspects combine to remove the hassles of (i) downloading/installing

software in order to create an application and (ii) deploying/exporting an appli-

cation on the web. But the Do-It-Yourself ability presents a larger, qualitatively-

different challenge: How to disrupt conventional database-driven web application

programming by providing brand new models of specifying database-driven web

applications so that non-programmer business owners can build their own appli-

cations.

Multiple systems support the fast creation of custom web applications by

removing the need to program in a complex Turing-complete programming lan-

guage, such as Java. [CFB00] is a prime example of schema-driven application

creation (also see DeKlarit [DeK] and Oracle Application Express [Ora]). The

148

creator starts by designing the Entity-Relationship data model for her applica-

tion. Then it is easy to specify pages by putting together units that accomplish

typical functionalities of Web applications. For example, a unit may report the

data of an entity and utilize the relationships of the data model to navigate to

related entities. It is reported in [ABB+07] that the development and mainte-

nance of WebML applications led to 30% increased productivity with 46 distinct

applications maintained by 5 part-time, junior developers.

The emerging Do-It-Yourself custom application platforms primarily target

non-programmer process owners. A common theme is that the owner does not

need to create a database schema in the abstract. Rather she builds forms, which

automatically lead to corresponding tables that are typically reported on the same

page. Such systems tend to be online databases [Wik10, eUn, Int] for easy in-

formation sharing and collaboration, often delivering great advantages over online

spreadsheets, which are their main competitor for structured information sharing7.

However, the resulting applications have a very limited scope (and business logic):

Users simply post and read structured data in the shared space.

A next generation of Do-It-Yourself systems promises to go beyond in-

formation sharing and to enable users to capture their business processes by

web applications. At a high level, these enablers are either “MS Access online”

[Wik09b, YGB+08] or customizable vertical templates [Sal].

The “MS Access online” enablers allow users to create multiple Do-It-

Yourself online tables (having forms and reports to give access to them). In the

same spirit with MS Access, the reports have to be fueled by queries where the user

has explicitly specified joins and selections. Finally, business logic and flow of data

from table to table is offered in the form of scripting programming languages [Lon]

or graphical languages [Wik09b] that allow the user to describe series of insertions,

deletions and updates and the conditions under which they should happen. The

adherence to tables with separate forms and reports creates problems at both the

scope axis and the easy specification: The web applications we are dealing with

7 Yahoo Pipes [Yah] and IBM Mashup Center [IBM] represent high end versions of the in-
formation sharing space, where data from multiple sources and RSS feeds can be automatically
integrated and presented online.

149

day-to-day are not mere collections of tables with a report and a form for each

table. A typical case is that the input forms of a page typically operate within the

context of reported dynamic data and even within the context that prior pages

create, i.e., there is no artificial divide of “input only” and “report only”, as is

clearly evidenced by pages such as Evaluate Startups and Advisor Comments.

In addition to app2you, AppForge [YGB+08] also solves this problem by allowing

input forms in the context of reports.

Another scope problem of “MS Access Online” is the inability to capture

that access rights to a page may depend on the business logic itself. For example,

in the TC50 application the group Invited Applicants is derived automatically

and controls access to Schedule an Appointment.

The “MS Access online” class is problematic in creating workflow applica-

tion since the business process owner needs to reduce the collaborative process she

has in her mind into normalized tables and into sophisticated queries and updates.

For example, we showed in Section 6.3.3 how hard it is to explain using a query

that the Advisor Comments should only show startup submissions that have been

passed to the currently logged-in user. This raises the bar of sophistication needed

by the builders towards the level of sophistication that programmers have, therefore

seriously limiting who can create and evolve applications. The anecdotal evidence

behind this thesis is plenty: Instructors of undergraduate database classes know

the difficulty that, even computer science students, have in designing appropriate

schemas and writing non-trivial queries. Furthermore, despite the best efforts of

tools, such as the tools of Microsoft Office Access and Microsoft InfoPath, to make

database schema design and query writing approachable by the masses, the general

public has found it hard to engage in those activities. The above evidence is not

surprising since database schemas and queries are abstract structures that have no

immediately visible connection to the web application and workflow aspects that

the non-sophisticated designer can immediately associate with, which are the Web

pages with which the users of the application will be interacting.

Applications with fixed workflow and database table structure and cus-

tomizable input form structure (i.e., one can change the attributes of tables as

150

long as the tables and their interactions remain fixed) have been a great success

[Sal]. We believe that customization does not need to stop at that point since,

by doing so, the scope of available applications is limited by the available initial

templates.

Appendix

More than twenty forms-driven applications have been built and used in

2008 on app2you.com. For example, a recruiter has collected job openings from

its customers. A wide group of users, defined and controlled by the recruiter, sees

selected fields of the job openings’ records and is invited to recommend individuals,

who are notified about the positions, provide their level of interest and proceed to

exchange information with the customer and the recruiter if interested.

In another example, the United Cerebral Palsy non-profit organization

maintains an online loan library of toys, keeping track of who currently holds

a toy and who has requested it.

In multiple variations of classroom management applications students sub-

mit their projects, often after a phase where they have teamed up in project teams.

The TAs and instructor provide feedback and grade. Variations include setting up

appointments for project presentations and rehearsals, voting for the best project

etc.

In multiple variations of reviewing applications, candidates submit material

that is pushed through a review process with various rules and steps.

Acknowledgements

This chapter contains material from “Do-It-Yourself Database-Driven Web

Applications”, by Keith Kowalczykowski, Kian Win Ong, Kevin Keliang Zhao,

Alin Deutsch, Yannis Papakonstantinou and Michalis Petropoulos, which appears

in Proceedings of the Fourth Biennial Conference on Innovative Data Systems

Research, CIDR 2009. The dissertation author was the primary investigator and

151

author of this paper. The paper is published under a Creative Commons License

Agreement (http://creativecommons.org/licenses/by/3.0/). Permission is

granted to copy, distribute, display, and perform the work, make derivative works

and make commercial use of the work, but the work must be attributed to the

authors and CIDR 2009.

Bibliography

[AASY97] Divyakant Agrawal, Amr El Abbadi, Ambuj K. Singh, and Tolga
Yurek. Efficient view maintenance at data warehouses. In SIGMOD,
pages 417–427, 1997.

[ABB+07] Roberto Acerbis, Aldo Bongio, Marco Brambilla, Massimo Tisi, Ste-
fano Ceri, and Emanuele Tosetti. Developing ebusiness solutions
with a model driven approach: The case of acer emea. In ICWE,
pages 539–544, 2007.

[AFP03] M. Akhtar Ali, Alvaro A. A. Fernandes, and Norman W. Paton.
Movie: An incremental maintenance system for materialized object
views. Data Knowl. Eng., 47(2):131–166, 2003.

[AMR+98] Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis Vassalos, and
Janet L. Wiener. Incremental maintenance for materialized views
over semistructured data. In VLDB, pages 38–49, 1998.

[AVFY98] Serge Abiteboul, Victor Vianu, Brad Fordham, and Yelena Yesha.
Relational transducers for electronic commerce. In PODS ’98: Pro-
ceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART sym-
posium on Principles of database systems, pages 179–187, New York,
NY, USA, 1998. ACM.

[Bac09] Backbase enterprise ajax framework, 2009. http://www.backbase.
com/products/enterprise-ajax/.

[BCD89] François Bancilhon, Sophie Cluet, and Claude Delobel. A query
language for the o2 object-oriented database system. In DBPL, pages
122–138, 1989.

[BGvK+06] Peter A. Boncz, Torsten Grust, Maurice van Keulen, Stefan Mane-
gold, Jan Rittinger, and Jens Teubner. Monetdb/xquery: a fast
xquery processor powered by a relational engine. In SIGMOD Con-
ference, pages 479–490, 2006.

152

http://www.backbase.com/products/enterprise-ajax/
http://www.backbase.com/products/enterprise-ajax/

153

[BLT86] José A. Blakeley, Per-Åke Larson, and Frank Wm. Tompa. Effi-
ciently updating materialized views. In SIGMOD Conference, pages
61–71, 1986.

[Bor07] Jeanette Borzo. Do-it-yourself software. Wall Street Jour-
nal, September 2007. http://online.wsj.com/article/

SB119023041951932741.html.

[CAL+02] K. Selçuk Candan, Divyakant Agrawal, Wen-Syan Li, Oliver Po, and
Wang-Pin Hsiung. View invalidation for dynamic content caching in
multitiered architectures. In VLDB, pages 562–573, 2002.

[CFB00] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web modeling lan-
guage (webml): a modeling language for designing web sites. Com-
puter Networks, 33(1-6):137–157, 2000.

[CGL+96] Latha S. Colby, Timothy Griffin, Leonid Libkin, Inderpal Singh Mu-
mick, and Howard Trickey. Algorithms for deferred view mainte-
nance. In SIGMOD, pages 469–480, 1996.

[DeK] Deklarit. http://www.deklarit.com.

[DESR03] Katica Dimitrova, Maged El-Sayed, and Elke A. Rundensteiner.
Order-sensitive view maintenance of materialized xquery views. In
ER, pages 144–157, 2003.

[DMS+05] Alin Deutsch, Monica Marcus, Liying Sui, Victor Vianu, and Dayou
Zhou. A verifier for interactive, data-driven web applications. In
SIGMOD Conference, pages 539–550, 2005.

[Ech09] Echo web framework, 2009. http://echo.nextapp.com/site/.

[eUn] eunify. http://www.eunify.net/.

[FFLS00] Mary F. Fernández, Daniela Florescu, Alon Y. Levy, and Dan Suciu.
Declarative specification of web sites with strudel. VLDB J., 9(1):38–
55, 2000.

[FKSV08] J. Nathan Foster, Ravi Konuru, Jérôme Siméon, and Lionel Villard.
An algebraic approach to view maintenance for xquery. In PLAN-X,
2008.

[FPF+09] Ghislain Fourny, Markus Pilman, Daniela Florescu, Donald Koss-
mann, Tim Kraska, and Darin McBeath. Xquery in the browser. In
WWW, pages 1011–1020, 2009.

http://online.wsj.com/article/SB119023041951932741.html
http://online.wsj.com/article/SB119023041951932741.html
http://www.deklarit.com
http://echo.nextapp.com/site/
http://www.eunify.net/

154

[Gar05] Jesse James Garrett. Ajax: A new approach to web ap-
plications. http://adaptivepath.com/ideas/essays/archives/

000385.php, February 2005. [Online; Stand 18.03.2008].

[GL95] Timothy Griffin and Leonid Libkin. Incremental maintenance of
views with duplicates. In Michael J. Carey and Donovan A. Schnei-
der, editors, SIGMOD, pages 328–339. ACM Press, 1995.

[GM95] Ashish Gupta and Inderpal Singh Mumick. Maintenance of mate-
rialized views: Problems, techniques, and applications. IEEE Data
Eng. Bull., 18(2):3–18, 1995.

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In Peter Buneman and Sushil Ja-
jodia, editors, SIGMOD, pages 157–166. ACM Press, 1993.

[Goo09] Google widget toolkit, 2009. http://code.google.com/

webtoolkit/.

[GST04] Torsten Grust, Sherif Sakr, and Jens Teubner. Xquery on sql hosts.
In VLDB, pages 252–263, 2004.

[HA00] Md. Ahsan Habib and Marc Abrams. Analysis of sources of latency
in downloading web pages. In WebNet, pages 227–232, 2000.

[IBM] Ibm mashup center. http://www-01.ibm.com/software/info/

mashup-center/.

[ICE09] Icefaces, 2009. http://www.icefaces.org/main/home/.

[Int] Intuit quickbase. http://quickbase.intuit.com/.

[Joh09] Bruce Johnson. Reveling in constraints. Queue, 7(6):30–37, 2009.

[Kra05] Joe Kraus. The long tail of software. millions of markets
of dozens. http://bnoopy.typepad.com/bnoopy/2005/03/the_

long_tail_o.html, March 2005.

[Lon] Longjump. http://longjump.com/.

[LZ07] Per-Åke Larson and Jingren Zhou. Efficient maintenance of materi-
alized outer-join views. In ICDE, pages 56–65, 2007.

[Mir03] Samek Miro. Who moved my state? Dr. Dobb’s, 2003.

[MQM97] Inderpal Singh Mumick, Dallan Quass, and Barinderpal Singh Mu-
mick. Maintenance of data cubes and summary tables in a ware-
house. In SIGMOD, pages 100–111, 1997.

http://adaptivepath.com/ideas/essays/archives/000385.php
http://adaptivepath.com/ideas/essays/archives/000385.php
http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/
http://www-01.ibm.com/software/info/mashup-center/
http://www-01.ibm.com/software/info/mashup-center/
http://www.icefaces.org/main/home/
http://quickbase.intuit.com/
http://bnoopy.typepad.com/bnoopy/2005/03/the_long_tail_o.html
http://bnoopy.typepad.com/bnoopy/2005/03/the_long_tail_o.html
http://longjump.com/

155

[Nin] Ning. http://www.ning.com/.

[oA09] Communications Workers of America. 2009 report on inter-
net speeds in all 50 states, 2009. http://cwafiles.org/

speedmatters/state_reports_2009/CWA_Report_on_Internet_

Speeds_2009.pdf.

[O’H06] Charlene O’Hanlon. A conversation with werner vogels. Queue,
4(4):14–22, 2006.

[Ora] Oracle application express. http://www.oracle.com/technology/
products/database/application_express/index.html.

[PCS+05] Shankar Pal, Istvan Cseri, Oliver Seeliger, Michael Rys, Gideon
Schaller, Wei Yu, Dragan Tomic, Adrian Baras, Brandon Berg, Denis
Churin, and Eugene Kogan. Xquery implementation in a relational
database system. In VLDB, pages 1175–1186, 2005.

[PDST00] Lucian Popa, Alin Deutsch, Arnaud Sahuguet, and Val Tannen. A
chase too far? In SIGMOD Conference, pages 273–284, 2000.

[QGMW96] Dallan Quass, Ashish Gupta, Inderpal Singh Mumick, and Jen-
nifer Widom. Making views self-maintainable for data warehousing.
In Proceedings of the Fourth International Conference on Parallel
and Distributed Information Systems, December 18-20, 1996, Mi-
ami Beach, Florida, USA, pages 158–169. IEEE Computer Society,
1996.

[RKS88] Mark A. Roth, Henry F. Korth, and Abraham Silberschatz. Ex-
tended algebra and calculus for nested relational databases. ACM
Trans. Database Syst., 13(4):389–417, 1988.

[RSS96] Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. Materialized
view maintenance and integrity constraint checking: Trading space
for time. In SIGMOD, pages 447–458, 1996.

[Rub] Ruby on rails. http://rubyonrails.org/.

[Sal] Salesforce.com. http://www.salesforce.com/.

[SBCL00] Kenneth Salem, Kevin S. Beyer, Roberta Cochrane, and Bruce G.
Lindsay. How to roll a join: Asynchronous incremental view main-
tenance. In SIGMOD, pages 129–140, 2000.

[Sim09] Lindsey Simon. Minimizing browser reflow, 2009. http://code.

google.com/speed/articles/reflow.html.

http://www.ning.com/
http://cwafiles.org/speedmatters/state_reports_2009/CWA_Report_on_Internet_Speeds_2009.pdf
http://cwafiles.org/speedmatters/state_reports_2009/CWA_Report_on_Internet_Speeds_2009.pdf
http://cwafiles.org/speedmatters/state_reports_2009/CWA_Report_on_Internet_Speeds_2009.pdf
http://www.oracle.com/technology/products/database/application_express/index.html
http://www.oracle.com/technology/products/database/application_express/index.html
http://rubyonrails.org/
http://www.salesforce.com/
http://code.google.com/speed/articles/reflow.html
http://code.google.com/speed/articles/reflow.html

156

[STP+05] Arsany Sawires, Jun’ichi Tatemura, Oliver Po, Divyakant Agrawal,
and K. Selçuk Candan. Incremental maintenance of path expression
views. In SIGMOD, pages 443–454, 2005.

[Tec] Techcrunch50 2008. http://www.techcrunch50.com/2008/.

[The09] The dojo toolkit, 2009. http://www.dojotoolkit.org/.

[TV07] Colin Teubner and Ken Vollmer. Bpms revenue to reach
$6.3 billion by 2011. Technical report, Forrester Research,
2007. Archived at http://db.ucsd.edu/app2you/2009-www/

2007-forrester-bpms.pdf.

[Vis98] Dimitra Vista. Integration of incremental view maintenance into
query optimizers. In EDBT, pages 374–388, 1998.

[Wik09a] Wikipedia. Asp.net, 2009. Accessed Nov 04 2009. http://en.

wikipedia.org/w/index.php?title=ASP.NET&oldid=323456166.

[Wik09b] Wikipedia. Coghead, 2009. Accessed Jul 26 2010. http://en.

wikipedia.org/wiki/Coghead.

[Wik10] Wikipedia. Dabble, 2010. Accessed Jul 26 2010. http://en.

wikipedia.org/wiki/Coghead.

[Yah] Yahoo! pipes. http://pipes.yahoo.com/pipes/.

[YGB+08] Fan Yang, Nitin Gupta, Chavdar Botev, Elizabeth F. Churchill,
George Levchenko, and Jayavel Shanmugasundaram. Wysiwyg de-
velopment of data driven web applications. PVLDB, 1(1):163–175,
2008.

[YGG+07] Fan Yang, Nitin Gupta, Nicholas Gerner, Xin Qi, Alan J. Demers,
Johannes Gehrke, and Jayavel Shanmugasundaram. A unified plat-
form for data driven web applications with automatic client-server
partitioning. In WWW, pages 341–350, 2007.

[YSRG06] Fan Yang, Jayavel Shanmugasundaram, Mirek Riedewald, and Jo-
hannes Gehrke. Hilda: A high-level language for data-drivenweb
applications. In ICDE, page 32, 2006.

[YUI09] Yui library, 2009. http://developer.yahoo.com/yui/.

[YYY+03] Ke Yi, Hai Yu, Jun Yang, Gangqiang Xia, and Yuguo Chen. Efficient
maintenance of materialized top-k views. In ICDE, pages 189–200,
2003.

http://www.techcrunch50.com/2008/
http://www.dojotoolkit.org/
http://db.ucsd.edu/app2you/2009-www/2007-forrester-bpms.pdf
http://db.ucsd.edu/app2you/2009-www/2007-forrester-bpms.pdf
http://en.wikipedia.org/w/index.php?title=ASP.NET&oldid=323456166
http://en.wikipedia.org/w/index.php?title=ASP.NET&oldid=323456166
http://en.wikipedia.org/wiki/Coghead
http://en.wikipedia.org/wiki/Coghead
http://en.wikipedia.org/wiki/Coghead
http://en.wikipedia.org/wiki/Coghead
http://pipes.yahoo.com/pipes/
http://developer.yahoo.com/yui/

157

[ZGM98] Yue Zhuge and Hector Garcia-Molina. Graph structured views and
their incremental maintenance. In ICDE, pages 116–125, 1998.

[ZGMHW95] Yue Zhuge, Hector Garcia-Molina, Joachim Hammer, and Jennifer
Widom. View maintenance in a warehousing environment. In SIG-
MOD, pages 316–327, 1995.

[ZK 09] Zk direct ria, 2009. http://www.zkoss.org/.

http://www.zkoss.org/

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Rapid Application Development Framework
	Do-It-Yourself (DIY) Platform
	Roadmap

	Rapid Application Development Framework
	Introduction
	Ajax background
	Framework and language contributions
	System and optimization contributions

	The FORWARD framework and scope
	Running example
	Architecture
	Data layer
	Visual layer

	Incremental page refresh
	Leveraging and extending incremental view maintenance
	Incremental maintenance of the visual layer

	Evaluation
	Related work
	Summary and Future Work

	Data Model
	Syntax
	Type System
	Data Trees
	Constraints
	Primary keys & Context
	Data Consistency

	Data Diffs

	Query Language
	Syntax Analysis
	Semantic Analysis
	Variable reference checking
	Type checking / inference
	Group by checking
	Primary key checking / inference

	Query Evaluation
	Decomposition of input data
	Relational decomposition of query
	Evaluating the generators
	Reconstructing the nested output data tree

	Data Sources
	Local versus Remote Data Sources
	Data Source Catalog

	Incremental View Maintenance
	Delta Tuples
	Leveraging Relational Incremental View Maintenance
	Rewrite Rules to Create Incremental Queries
	Evaluation of incremental query
	Reconstruction of the new view

	Do-It-Yourself Platform
	Introduction
	Framework and Scope
	Reports
	Contextual Actions
	User Group Definitions

	Do-It-Yourself Design Facility
	Derived Properties
	Page-Driven Design
	Workflow-Driven Design
	Automated Report Creation

	Related Work

	Bibliography

