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A SIMPLE 3-DIMENSIONAL VISCOELASTIC MODEL
ACCOUNTING FOR DAMAGE EFFECTS

Part I: Infinitesimal Theory

J.C.SIMO and R.L.TAYLOR

Department of Civil Engineering,
University of California, Berkeley.

ABSTRACT
A simple three- dimensional viscoelastic constitutive model is presented which

is capable of accounting for damage effects characteristic of some highly filled
elastomeric polymers. The model predicts degradation of the floss and stored

-moduli with increasing maximum strain amplitude in a cyclic test, in agreement

with experimental results. The Finite Element implementation of the proposed
3-dimensional, which is discussed in some detail, shows that this model is par-
ticularly suited for computational applications. In addition, its simplicity allows
the extension to the fully non-linear theory. Numerical results are presented
which indicate that steady-state solutions in cyclic tests are achieve in very few
cycles when the level of strains is held constant.

CONTENTS

. Introduction

. Basic Assumptions

. The Choice of Functions g(nemt) and bgat.
. Summary of the Model

. Finite Element Implememtation

. Numerical Examples

References.



A SIMPLE 3-DIMENSIONAL VISCOELASTIC MODEL
ACCOUNTING FOR DAMAGE EFFECTS

Part 1: Infinitesimal Theory

J.C.SIMO and R.L TAYLOR

Department of Civil Engineering,
University of California, Berkeley.

ABSTRACT

A simple three- dimensional viscoelastic constitutive model is presented
which is capable of accounting for damage effects characteristic of some highly
filled elastomeric polymers. The model predicts degradation of the loss and
stored moduli with increasing maximum strain amplitude in a cyclic test, in
agreement with experimental results. The Finite Element implementation of
the proposed 3-dimensional model, discussed in some detail, shows that this
model is particularly suited for computational applications. In addition, its sim-
plicity allows the extension to the fully non-linear theory. Numerical results
are presented which indicate that steady-state solutions in cyclic tests are
achieve in very few cycles when the level of strains is held constant.

1. INTRODUCTION

Material damage in polymers is a complex process involving chain and multichain damage,
and microstructural damage such as microvoid formation. See e.g., Wool [1980] and references
therein. In this paper we shall adopt a phenomenological point of view and attempt to describe
some of the experimentally observed facts by means of a three dimensional viscoelastic model,
suitable for a realistic numerical implementation within the framework of the finite element

method.

In the cyclic test of highly filled polymers, it is experimentally observed that the srored
and Jloss moduli of the composite decrease with increasing maximum strain. Furthermore, it is
also observed that a steady state response of the composite is attained in very few cycles, pro-
vided the maximum strain amplitude remains constant. The damage mechanism associated
with this degradation of the viscoelastic properties of the composite is characteristic of highly
filled polymers, and appears to be related to the re-arrangement of the structure of the filler

occurring as a result of the increasing strain.
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Viscoelastic Damage Model 2

From a phenomenological standpoint and under the assumption that the material is isotro-
pic and remains isotropic in its damaged states, this experimental evidence suggests the use of a
measure of the maximum strain to which the specimen is subjected as an internal variable
characterizing the damage process. In this paper we proposed a simple three- dimensional
viscoelastic model capable of accounting for such damage effects. The essential idea is to intro-
duce a damage variable defined as the maximum value of the Euclidean norm of the deviatoric
strain tensor during the loading history. In accord with the described experimental evidence,
our basic assumption is that no further damage in the material occurs if the norm of the devia-

toric strains does not surpass the previously attained maximum.

We then considers a representation for the deviatoric strain tensor in the form of a convo-
lution integral, analogous to that of classical viscoelasticity, but now involving a non-linear
function of the history of the rate of deviatoric strains and the damage variable. The idea of
introducing representations of this type is certainly not a new one, and goes back at least to

Leaderman [1943], who considered a power of the strain rate in the convolution integral.

The structure of the non-linear function of the strain rate in the convolution representa-
tion adopted here, is inspired in a one dimensional model proposed by Browning, Gurtin &
Williams [1983]. In our 3-dimensional model, we assume this non-linear function to be the pro-
duct of two functions. The first one depends only on the damage variable, and the second

function involves both the damage variable and the strain deviators.

Clearly, the model is far too general for any practical implementation, and further speciali-
zation is needed. We propose a simple choice of the non-linear functions appearing in the con-
volution integral, which captures the essential features of some experimentally observed

behavior of highly filled polymers.

The resuiting model is not only particularly well suited for computational purposes, spe-
cially in the context of a finite element formulation, but its simplicity permits an extension to

the fully non-linear theory.

Acknowledgements. We thank Prof. J. Lubliner for very helpful discussions. The grant
support of the Lawrence Livermore National Laboratory and the continued interest and

encouragement of Dr. Leseur of LLNL are gratefully acknowledged.
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2. BASIC ASSUMPTIONS

The proposed three dimensional viscoelastic damage model is based upon the introduction

of the following physical assumptions:
(i) The material is assumed to be isotropic in its virgin state and in any of its damaged states.

(ii) The volumetric response of the material is assumed to be elastic; i.e., viscoelastic effecis

in bulk response are not considered.

(iii) The amount of damage is independent of hydrostatic pressures, i.e., no damage in the

material takes place as a result of hydrostatic loading.

(iv) The amount of damage depends on the maximum value attained by a norm of the devia-

toric strain during the loading history.

For the purpose of the present discussion, it will prove convenient to introduce the following

inner product and associated norm:

<ee> = g;€;; llell = <e,e>" =+/2 /(e (n

where J;(e) stands for the second invariant of the deviatoric part of the strain tensor €. Denot-

ing by s(2) the deviatoric part of the stress tensor o (1), we have the usual definitions:

e(r) = (1) — %’tre(t) 1. s(=ol)~ —;m(o 1 @)

In accordance with assumption (iv) we introduce a scalar damage variable y, defined in terms
of the Euclidean norm (1), as follows. For a given deviatoric strain history
Hp = (s—e(s) | s€(—o0, 1] }. the damage variable , is the function of the strain history Hp
defined as

¢, = max |le(s)ll - (3.2)

s€ {00t

We shall denote by leC H) the set of elements in the deviatoric strain history Hj for which

this maximum is attained; that is,

D, = {eM=e(lM) l HEMH=¢,, fy € (—o0, 1} (3.b)

{

By assumption (i) the response function for the stress tensor o (1) may be decomposed

according to

o) =3Ktrel + s(1) 4)
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where viscoelastic effects and, as a result of assumption (iii), damage effects are contained in
the response function associated with the stress deviator s{¢). To account for these effects, we
introduce a convolution representation for the deviatoric stress tensor s(¢#) involving a non-

linear function of the strain deviator and the damage variable ¢, of the form
s{t) =2 Gt—s) «wle(s), y,) (5

where "+" stands for convolution in L,(—e,00), G(1) is the relaxation function of the classical
linear theory, and w(e(s),¢,) is a (non-linear) function of the strain history and the damage
variable ¢,. In particular, we consider the following special representation for the function

w(e(,y,):

ﬂ(e(’), lll,) = g(lll,)-‘y(E(t),'Jll) (6.3)

where the function y (e(1), ¢,) satisfies the conditions
Hyle(n, )l =1 irr  lleDl] =y, (6.b)

and
trly(e(,¢))] =0 (6.c)

Remarks

1. The idea of characterizing the response function of the stress deviator through the convo-
lution representation (5) typical of classical linear viscoelasticity, but with the strain rate
replaced by the rate of a non-linear function of the strain, goes back at least to Leaderman
[1943] who used as non-linear function a power of the strain deviator. Schapery [1966],
among others, considered also a related non-linear representation obtained through ther-
modynamic arguments. Pipkin and Rogers [1968] arrived at analogous representation as
the first term of a formal series expansion. The representation (6.a)-(6.c) is inspired in

(and generalizes) a one dimensional form proposed by Browning, Gurtin & Williams
[1983].

2. One often speaks of the function y(e(s), ¢,) as the "damage function" and, motivated by
the one-dimensional case, we often refer to g(y,) as the "loading function”. Since
U, = /2 J,(ey), for eMEle, the choice of y, as "damage variable" is consistent with the
isotropy assumption (i). As a result of this assumption, the characterization of damage in
the function 7 should involve only the invariants J, and J; of the deviatoric strain his-

tory. The reasons for condition (6.b) will become apparent in what follows.
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For a given choice of functions g(y,) and y(e(s), y,) the rate # (e(s), ) appearing in the con-
volution representation (5) is obtained, for s€ (—oo, ¢], as follows. First, we note that the dam-

age variable ¢, defined by (3.a) satisfies the following rate equation:

1 . . -
dl‘[,s m<e(s),e(s) >, Iff HE(S)H =i ) , (
"4 | O irf el < g, $€ (oo, 1} (7.2)

Conversely, by integrating (7.a) subjected to the initial condition /R L___. = (), one recovers

definition (3.a). The initial condition , L_"__ = 0 expresses the fact that the material is

assumed to be initially undamaged. (Clearly, one may consider an initial time fy =—oo). Thus,
by making use of the chain rule and (7.a) we are led to the following expression for the rate
7 (e(s), ¢))

(lel] QlelD oy - . @

]:é iff llell =y, and <e,é> >0

T = (7.b)

9., . ;
{8(1111) Be}'e " otherwise

Obviously, the key to the success of the model lies in a simple and at the same time rational

choice of the functions g(y,) and y(e,y,). We consider this issue in some detail next.

3. THE CHOICE OF FUNCTIONS g(y,) and y(e,y,)

Choice of y(e,y,). It is generally accepted that most polymers exhibit little, if any at all,
permament set upon removal of the loading. Motivated by this fact, we introduce the following

additional assumption:

(v) The "damage function " y(e, y,) is continuous for ¢, # 0 and such that:

y(e(D),p) Lo -0 )

We consider perhaps the simplest choice of y(e,4,) satisfying conditions (6.b), (6.c) and (8);

namely:

e(t)

1

yle(n),¢,) = 9)

Choice of the function g(,). To motivate the choice of the function g(y,), consider a

specimen subjected to a pure shear test. Then, according to (5) and (6.a)-(6.c) we must have
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Slz(t) =2G(t—s) "75'12(812, tll,)

g(‘l'z)

¢, = max |e;(s)]
5€ (=00 ¢]

Further, consider a very fast relaxation test; i.e., if 7 is a characteristic relaxation time of the

material, we have the strain history:
t<<rt (ie., £ —0) (11)
T

0<e,(s) =e;(0) =y,; forall s€[0,r]

The final stress then is a function of the initial amplitude, given by:

gy,

{

oy = 2G(0) e =260 gly,)

Experimentally it is observed that the stress depends on the amplitude in a monotonically
decreasing fashion; i.e., as a result of damage the material softens. Moreover, it is often
observed in the experimental testing of highly filled polymers that the shear modulus of the
composite material tends to that of the pure gum with increasing values of the maximum shear
strain, (Ferry [1970]). We consider the idealized behavior represented in Fig. l1a which essen-
tially captures the basic experimental facts and leads to the following simplified expression for

the derivative g'(y,):
gW)=B+(1=-Be*"  Bel01]. acl0.) (12)

On integrating (12) we obtain the following expression the behavior of which is illustrated in
Fig. 1b,

..d,r/

gly,) = B+(l—ﬁ)-l——:-€—-—-—— ¢, Be€l0,1], a€l0,) (13)
‘1’1/‘1

Remark. Clearly, the function g(y,) could also be determined by performing the same
test as described above but very slowly (i.e., a quasi-static test for which 1 >> 7). We

then would have:

a1y =2 G(o0) g(le;y(0)]) (14)
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Figure 1a. Behavior of the derivative g'(y,) of the "loading function”.

t a(ém) /
—

Emmn
Figure 1b. Behavior of the "loading function" g(y,).
4. SUMMARY OF THE MODEL
For convenience, let us first define
g(l#,) = §(¢)‘)¢I
where g(x) is given by:
- ]— ¢ ¥a .
Ex) =8+ (1-8)——; B€l0,1], «€l0,o)

x/a

(1%

(16)



Cm W ‘:n ¢ ’r' !m m f..» Mwi { m&b-l b Pt [Mwm

Viscoelastic Damage Model 8

Thus, (e(s), ¥,) becomes:

wl(e(s),¢,) =z, e(s), s€(~o0, 1] an

And

o) =3Ktrel +2G(t—s) =w(els),¢,) (18)

For definiteness we shall assume that the relaxation function G(¢) is that corresponding to a

standard solid and thus given by

G(t) = G + (G, — G,) e !" (19)

More realistic forms could be obtained simply by considering the usual series expansion in

terms of exponentials associated with a spectrum of relaxation times.
Remarks

1. Notice that if 8 — 1, then g(x) — 1 and the model reduces to classical linear viscoelasti-

city.

2. All that is needed for computational purposes is an expression for ar. Particularizing (7.b)

we obtain:

w(s) = Cle(s),¢,): &

21l 1 + @dllelD llelb n@n] -6, ir7  Hleli=y, and <e.é> >0
(20)

[5(%) 1] ‘e, : ' otherwise

where n = Te

5. FINITE ELEMENT IMPLEMENTATION.

In this Section we examine the basic aspects involved in the numerical solution by the
Finite Element method of the boundary value problem for a solid exhibiting viscoelastic
response governed by the nonlinear constitutive model summarized in Section 4, which
accounts for damage effects. Details regarding the spatial discretization of the weak form of
momentum balance (virtual work) may be found in standard references on the subject (see,
e.g., Zienkiewicz [1977]) and thus will be omitted. Our main concern shall be a summary
account of the algorithm employed in the numerical integration of the constitutive model, and

the appropriate expression for the tangent elasticities.
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Consider a viscoelastic body initially occupying a compact region 3 C R? at time =0, the
response of which is seek throughout the time interval [0, TIC R. Let b(x), x€Q, be the
body force field, T(x) the prescribed traction field on 9,1, and u(x) the prescribed displace-
ment field on 8,0, where 3.0Ud,0 =380 and 8,0 N9, =@ We shall denote by V

the space of kinematically admissible variations defined by

V={n:0Q—R |n‘aun=0}CH‘(Q). Qn

If for simplicity we confine our attention to the static case, the weak form of momentum bal-

ance is given, at any time ¢€0, T, by’

G = [ alovnlda - [bada -  tadn =0, (22)
0 0 9,0

for any kinematically admissible variation m€ V. The response of the body is governed by
equation (21) in which the stress tensor o (1) is given by the nonlinear viscoelastic model (Eq.
(18)) summarized in Section 4. The numerical solution of (18) and (22) requires first an algo-
rithm for the numerical integration of (18) at a discrete set of N points
{17, | 1,€l0, T}, and £,<tyyy, n=12,... _N). The resulting equation is nonlinear due to
the presence of damage, and relates the current stress at #,,; € [0, T] to the history of stress and
the incremental strain as shown below. The simultaneous solution of (22) and (18) then leads
to a classical iterative solution procedure based on Newton’s method. We shall denote by
(.)i, the value of the variable (.) at iteration within the time step [, #,+1]. Omission of

the iteration superscript will indicate converged value.

Recursive Algorithm for Stress Recovery. In order to numerically integrate the constitutive
equation (18), the essential idea is to evaluate the convolution integral in (18) through a
recurrence relation. A related procedure was employed by Key & Krieg [19§2]. Considering
the time interval [0, ], 1, < T, the stress o, at time £, € [0, 7] may be computed from (17)

and (18) according to

,’7
o, =3Ktrde,,1+0,+ [e~A"'/T—~ l]fZ (G, — G) e 5 (s) ds
0
In+)
+ [ 206+ (G, = Gy &N (5) ds (23)

Iy

7‘For notational convenience, the spatial dependence of the variables appearing (22) on the point x€ { is not
explicitly indicated.
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To evaluate (23) we introduce, in addition to the stress tensor o (z,) given by (18), the history

variable h(¢,) defined at any time t,€[0, T} by
’H
b, =hit) = [2(G,~G) e " als) ds (24)
0

Given converged values o, and h, of the stress and auxiliary history variable at the left point
of the interval [z, 1,.1], and the incremental strain Ae/,, at iteration i, use of a generalized
mid-point rule and the mean value theorem results in following algorithm for calculating the

stress o .y

€01 =€, + A€y, ers) = €, — trAe, .1 (25)
Amly =mlel, ¥lie) — wle,,p,) , where: ¢/ = max{lle;, ], {le,ll} (26)
—At/ 1 - AT
Ah!., = [e "T—1lh, + 2(G, = Go) ————Am 1y 27)
: A/t
ol=0,+3KtrAe, 1 +2G.An). (28)

Once convergence is achieved the stress o, and history variable h, are updated at the end of

the step in the obvious manner as

ey = Wy, + A?T,,+| B h”+1 == h,, + Ah,,+1 {29)

Linearization and Tangent Elasticities. The linearization of the weak form of momentum
balance given by (22) leads, for a typical iteration i within the time step [¢,, ¢,.,], to the follow-

ing linear problem for the incremental strain Ae /%!

1t [Vn-Daji:aeth] d0 = ~Gujm) , foran mev, (30)
Q

where the matrix of "tangent elasticities” Do}, is obtained according to
Dol :ae/tl =3 K[1®1]: A€t}

—~4& tn/'r

+2 A/t

G + (G,~ G) 1

] Clens) ¥ ae) :Aerl;i‘l > (31)

with the tangent matrix C(e; ., ¢/, ) defined by (20).

Once the linearized problem (30) is discretized by standard Finite Element procedures,
the classical Newton solution procedure simply involves, for each time step {t,, 1,411, the itera-

tive solution of (30) with the stress in the right hand side evaluated according to (28) and the
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tangent stiffness computed according to (31).

6. NUMERICAL EXAMPLES

The finite element formulation discussed in Section 4 of the the proposed viscoelastic
constitutive model accounting for damage effects, is currently implemented in the general pur-
pose finite element computer program FEAP discussed in Zienkiewicz [1977], Chap.24. 1t is
emphasised that the current version of FEAP at U.C. Berkeley has been modified in order to
achieve full compatibility with the treatment of the constitutive equations employed in the com-
puter program NIKE 2D (Hallquist [1983]), presently used at the L.L. N.L.

Two simple examples that illustrate the proposed viscoelastic mode] have been considered.
In the first example a specimen is subjected to a pure shear cyciic test, whereas in the second
example the specimen is subjected to a Simple tension cyclic test. A "saw tooth" strain history
and a sinusoidal strain history were the strain input considered in both examples. The stress-
strain diagrams together with the corresponding strain histories are collected in Fig. 2 to Fig. 5.

From these figures we note the following

(i) The stored and loss moduli decrease with increasing maximum strain amplitude, as

expected.

(ii) If the maximum strain amplitude of the cycles is held fixed, then the steady state solution

is achieved in abour two cycles.
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