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Generalization of the sci-L3 method to achieve 

high-throughput linear amplification for replication 

t emplat e str and sequencing, g enome conf ormation 

capture, and the joint profiling of RNA and chromatin 

accessibility 

Pet er Cho vanec and Yi Yin * 

Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, United States 
* To whom correspondence should be addressed. Email: yiyin@mednet.ucla.edu 

Abstract 

Single-cell combinatorial indexing (sci) methods have addressed major limitations of throughput and cost for many single-cell modalities. With 
the incorporation of linear amplification and three-le v el barcoding in our suite of methods called sci-L3, we further addressed the limitations of 
uniformity in single-cell genome amplification. Here, we build on the generalizability of sci-L3 by extending it to template strand sequencing 
(sci-L3-Strand-seq), genome conformation capture (sci-L3-Hi-C), and the joint profiling of RNA and chromatin accessibility (sci-L3-RNA / A T AC). 
We demonstrate the ease of adapting sci-L3 to these new modalities by only requiring a single-step modification of the original protocol. As a 
proof of principle, we show our ability to detect sister chromatid exchanges, genome compartmentalization, and cell state-specific features in 
thousands of single cells. We anticipate sci-L3 to be compatible with additional modalities, including DNA methylation (sci-MET) and chromatin- 
associated factors (CUT&Tag), and ultimately enable a multi-omics readout of them. 
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he development and utilization of single-cell genomic as-
ays has transformed our understanding of rare and heteroge-
eous (diverse) events within biological systems. In the area of
ingle-cell whole genome sequencing (scWGS), methods have
ommonly utilized bias-prone amplification approaches with
imited scalability. To address these challenges, we have pre-
iously described the sci-L3 suite of methods for single-cell
ombinatorial indexing (sci) with linear amplification (L) and
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three-level barcoding [ 1 ] that includes sci-L3-WGS, sci-L3-
target-seq, and sci-L3-RNA / DNA-seq [ 2 ]. 

As a review of the sci-L3 workflow (Fig. 1 ), (i) millions
of fixed nuclei undergo nucleosome depletion to enable effi-
cient in situ enzymatic chromosome fragmentation and (ii) the
nuclei are then split into pools of tens of thousands of nu-
clei. Each pool undergoes subsequent “tagmentation,” i.e.
Tn5 transposome-mediated DNA fragmentation, while the
fragment ends are tagged with unique first rounds of DNA
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Figure 1. Ov ervie w of the sci-L3 method e xtensions. Each e xtension has only a single-step modification from the original method, shaded in its 
respective section along with the preparation step at the beginning (details in text for an overview of the sci-L3 key steps). The cells are fixed with 
f ormaldeh y de, and then undergo nuclei extraction and nucleosome depletion. The subsequent three levels of barcodes are introduced with a split and 
pool scheme using Tn5 insertion, ligation, and second-strand synthesis. IVT, in vitro transcription; RT, re v erse transcription; UDG, uracil DNA glycosylase; 
EndoVIII, endonuclease VIII; re-distribution can by done by fluorescence-activated cell sorting (FACS) or by dilution except for sci-L3-Strand-seq. 

 

 

 

 

 

 

 

 

 

barcodes, typically 24–96 barcodes; (iii) tagmented nuclei are
pooled and split into new pools; second-round barcodes are
directionally ligated upstream of the first round of the barcode
and downstream of a T7 RNA polymerase promoter for in
vitro transcription (IVT)-based linear amplification; and (iv)
cells are then pooled again and sorted into new wells for
linear amplification. The amplified RNA molecules are con-
verted to double-stranded complementary DNA (cDNA) with
unique third-round barcodes for each amplification pool of 
cells, compatible with various library preparation workflows.

The advantages of sci-L3 are three-fold: (i) the three succes- 
sive rounds of split and pool barcoding significantly increase 
throughput over conventional methods and yield a low per- 
cell cost; (ii) linear amplification through IVT maintains cover- 
age uniformity by avoiding polymerase chain reaction (PCR)- 
or multiple displacement amplification (MDA)-based expo- 
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ential amplification bias; and (iii) the generalizable scheme
an be applied to various modalities, such as WGS or tar-
eted sequencing, and to the simultaneous readout of mul-
iple modalities, such as transcriptome and WGS from the
ame single cell. In principle, sci-L3 can be applied to other
enomic assays beyond scWGS [ 3 ]. Here we describe the ex-
ension of sci-L3 to template strand sequencing (Strand-seq),
enome conformation capture (Hi-C), and the joint profiling
f RNA and chromatin accessibility (RNA / A T AC). 
Strand-seq is a technique that enables the identification of

ister chromatid exchanges (SCEs) and structural variations
SV), and allows the phasing of heterozygous single nucleotide
ariants (SNVs) in diploid genomes [ 1 , 4–7 ]. This is achieved
y only sequencing the template strand of DNA replication
or a given chromosome (Watson or Crick, “W”or “C”) in the
ubsequent cell division. As a result, to adapt sci-L3 to Strand-
eq requires that our method specifically sequences the tem-
late strand and maintains its strand directionality through-
ut. sci-L3 uses the Tn5 transposome for genome fragmenta-
ion and the introduction of the first combinatorial barcode.
he Tn5 transposases catalyze single-stranded strand transfer
nd thus the original directionality of the replication template
trand is preserved in the first round of cell barcoding [ 8 ]. Sim-
larly, the following molecular features of sci-L3 retain strand
irectionality given the unidirectional nature of the following
teps: sticky-ended ligation of the second-round barcodes and
he T7 promoter, the downstream linear amplification by IVT,
everse transcription (RT) with fold-back primer and / or an-
ealed RT primer, and primer-directed second-strand synthe-
is with the third-round barcodes. Altogether, this in theory
llows the compatibility of the sci-L3 chemistry with Strand-
eq. With each extension of the sci-L3 method, only a single-
tep modification from the original method is required. For
ci-L3-Strand-seq, the introduction of nascent strand nicking
efore IVT ensures that only the unnicked template strand is
sed for amplification (Fig. 1 ). We additionally added an enzy-
atic nicking step for the nascent strand and thus improved
n the original Strand-seq chemistry. We show that sci-L3-
trand-seq generates strand-specific libraries for thousands
f single cells at low cost and without requiring specialized
quipment [ 9 ]. 

Chromosome conformation capture techniques and its
erivatives, such as Hi-C, have revealed the different scales
f genome organization ranging from compartments, self-
nteracting domains, down to individual loops [ 10–12 ]. The
rinciple behind conformation capture is proximity ligation,
here cut chromatin ends in close physical proximity are lig-

ted together to form hybrid molecules. For the adaptation
f the sci-L3 protocol to single-cell Hi-C, we omitted the lig-
tion junction enrichment step conventionally used [ 11 , 13 ],
eading us to obtain a combination of whole genome sequenc-
ng (WGS) and interaction (Hi-C) data for each single cell (Fig.
 ). While increasing the sequencing burden per cell, this design
aximizes the information recovered for each single cell for

pplications such as structural variation detection, for which
oth modalities are informative. The first two split and pool
arcoding steps in sci-L3 are performed in nucleus, permitting
he introduction of restriction enzyme digestion and ligation
efore the initial Tn5 barcoding and fragmentation [ 14 ]. We
how that sci-L3-Hi-C captures features of genome organiza-
ion for thousands of single cells with equivalent performance

o other methods. 

 

Single-cell multi-omics are desirable for advancing our un-
derstanding of cellular diversity and fundamental biologi-
cal mechanisms [ 15 ], one example being the ability to link
cis- and trans -regulatory elements with gene transcription us-
ing chromatin accessibility and transcriptome co-assays [ 16–
18 ]. We have previously shown that sci-L3 can integrate multi-
ple modalities with the sci-L3-RNA / DNA co-assay [ 2 ]. Here,
we have extended the sci-L3 co-assay to RNA and A T AC. The
chromatin accessibility readout was obtained by omitting the
nucleosome depletion step before Tn5 barcoding and frag-
mentation (Fig. 1 ). The linear amplification nature of sci-L3,
in particular, enabled better recovery of accessible chromatin.
Ultimately, we show that sci-L3-RNA / A T AC captures distin-
guishing features of cell identity from both modalities and is
capable of scaling to thousands of single cells. 

Materials and methods 

Cell culture 

BJ-5ta (CRL-4001, ATCC), HEK239T (CRL-3216,
A TCC), NIH / 3T3 (CRL-1658, A TCC), and Patski (gift
from Disteche lab) cells were cultured in Dulbecco’s Modified
Eagle Medium (DMEM) supplemented with 10% fetal bovine
serum (FBS) and 1 × Pen–Strep. HAP1 cells were cultured
in Iscove’s Modified Dulbecco’s Medium (IMDM) supple-
mented 10% FBS and 1 × Pen–Strep. GM12878 and CH12
cells were cultured in RPMI 1640 medium supplemented with
15% FBS and 1 × Pen–Strep. All cells were cultured at 37 

◦C,
5% CO 2 . For sci-L3-Strand-seq, cells were cultured with
bromodeoxyuridine (BrdU) at 40 μM final concentration for
24 h prior to fixation. For sci-L3-Strand-seq, we did not mix
human and mouse cells prior to fixation as the combinatorial
indexing steps are exactly the same as sci-L3-WGS developed
previously. 

sci-L3 library generation 

sci-L3-Strand-seq 

Fixation and nucleosome depletion were performed as pre-
viously described in the “Methods and molecular design of
sci-L3-WGS and sci-L3-target-seq,” subsections “Single cell
preparation and nucleosome depletion” and “Tagmentation
(first-round barcodes) and ligation (second-round barcodes)”
[ 2 ]. Notably, cells were trypsinized and fixed with 37%
formaldehyde (final 1%–1.5% concentration) in 1 × phos-
phate buffered saline (PBS) at a cell density of 1 million / ml for
10 min at room temperature with gentle tube inversion. For
first-round barcoding, Patski nuclei were distributed into wells
with barcodes 1–12, while HAP1 nuclei were distributed into
wells with barcodes 13–24. The remaining nuclei were stained
with 4’,6-diamidino-2-phenylindole (DAPI) at a final concen-
tration of 5 mg / ml and used for FACS as described in Fig.
2 A. After the ligation reaction was stopped by the addition of
the stop solution [lysis buffer (LB: 60 mM Tris–Ac, pH 8.3,
2 mM ethylenediaminetetraacetic acid (EDTA), pH 8.0, 15
mM dithiothreitol (DTT)) with 0.1% Triton X-100 (LBT)],
nuclei were pooled and stained with Hoechst 33258 to a fi-
nal concentration of 10 ng / μl, and the quenched population
was sorted (100–300 nuclei per well) into a 96-well plate con-
taining 3 μl of LB. The major differences of sci-L3-Strand-seq
arise in the “Cell lysis, gap extension, and linear amplification
by in vitro transcription IVT” subsection of the protocol [ 2 ].
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Right after gap extension with the Bst WarmStart 2.0 poly-
merase at 68 

◦C for 5 min and its inactivation with 80 

◦C for
10 min, Hoechst 33258 was added at a final concentration of
10 ng / μl and incubated at room temperature for 10 min in
the dark. A 1- or 5-min exposure in a Bio-Rad Gel Doc with a
365 nm UV bulb, or a dose of 27–4000 mJ / cm 

2 was admin-
istered with a UVP crosslinker (CL-3000L). Note that we did
not observe any differences in library quality between 1- and
5-min exposures, or in doses above 270 mJ / cm 

2 . At this stage,
each well had a volume of around 7.7 μl, to which 0.3 μl of
USER enzyme (a mix of uracil DNA glycosylase and endonu-
clease VIII, referred to as UDG + EndoVIII in the text, NEB)
was added and incubated at 37 

◦C for 15 min. Next, 0.9 μl of
uracil glycosylase inhibitor (UGI; NEB) was added with a fur-
ther incubation at 37 

◦C for 10 min. Finally, the T7 IVT system
was assembled as previously described by adding 2 μl H 2 O,
2 μl T7 Pol mix, and 10 μl rNMP mix (NEB, HiScribe T7
Quick High Yield RNA Synthesis Kit) and incubated at 37 

◦C
for 10–16 h. The remaining section, “RNA purification, RT,
and SSS,” was performed exactly as previously described [ 2 ]. 

sci-L3-Hi-C 

The major differences of sci-L3-Hi-C arise in the first “Sin-
gle cell preparation and nucleosome depletion” subsection of
the protocol [ 2 ]. After 2% formaldehyde fixation and quench-
ing as done for sci-L3-Strand-seq, the proximity ligation was
performed largely as previously described for Dip-C [ 19 ]. The
pelleted cells after fixation were washed with ice-cold 1 × PBS,
resuspended in 500 μl Hi-C lysis buffer [10 mM Tris, pH 8.0,
10 mM NaCl, 0.2% IGEPAL with 100 μl protease inhibitors
(PI; Sigma P8340)], and incubated on ice for at least 15 min.
The nuclei were pelleted at 2500 × g for 5 min at 4 

◦C and
washed with ice-cold Hi-C lysis buffer. The pellet was resus-
pended in 50 μl of 0.5% sodium dodecyl sulfate (SDS; diluted
with H 2 O) and incubated for 10 min at 62 

◦C. The SDS was
quenched with the addition of Triton X-100 (145 μl H 2 O,
25 μl of 10% Triton X-100) and with a further incubation
of 15 min at 37 

◦C. Next, 25 μl of NEBuffer2 was added, fol-
lowed by 20 μl of 25 U / μl MboI (NEB, R0147M) and left
overnight at 37 

◦C. The nuclei were pelleted at 2500 × g for
5 min at 4 

◦C and washed with 1 ml of ligation buffer (1 × T4
DNA ligase buffer, NEB B0202S, with 0.1 mg / ml BSA, NEB
B9000S). Ligation was performed with 1 ml ligation buffer
and 10 μl of 1 U / μl T4 DNA ligase (Life Tech 15224-025)
at 16 

◦C for 4 h. Nuclei were passed through a 35 μm cell
strainer, pelleted at 2500 × g for 5 min at 4 

◦C, washed with
1 ml lysis buffer (LB: 60 mM Tris–Ac, pH 8.3, 2 mM EDTA,
pH 8.0, 15 mM DTT), and resuspended with LB at a con-
centration of 20 000 nuclei per μl. The remaining steps were
performed exactly as previously described in subsection “Tag-
mentation (first-round barcodes) and ligation (second-round
barcodes)” onward [ 2 ]. 

sci-L3-RNA / A T AC 

The major differences of sci-L3-RNA / A T AC arise in the nu-
cleosome depletion step previously described in the “Methods
and molecular design of sci-L3-RNA / DNA co-assay” subsec-
tion of the protocol [ 2 ]. Cells were trypsinized, combined to-
gether (HEK293T, BJ-5ta, NIH / 3T3), and fixed with 2% PFA
in 1 × PBS at room temperature for 10 min at a density of 1
million / ml. The subsequent quenching (with glycine), wash-
ing, and nuclei isolation (with 0.1% IGEPAL) steps are iden-
tical with sci-L3-WGS, except the addition of 1% Superase-In
to all the LB and 1 × NEBuffer 2.1 buffers. After the isola- 
tion of nuclei, the pellet was split in half. One half was sub- 
jected to nucleosome depletion with the addition of 776 μl of 
1 × NEBuffer 2.1, 24 μl of 10% SDS, and an incubation at 
42 

◦C for 15 min. The SDS was quenched with 180 μl of 10% 

Triton X-100 with 10 μl Superase-In, and further incubated at 
42 

◦C for 10 min. The depleted nuclei were pelleted, washed 

with 1 ml LB with 1% Superase-In, and resuspended in LB 

with 1% Superase-In at a 20 000 nuclei per μl concentration.
These nuclei represent the sci-L3-RNA / DNA sample. For the 
other half, the nuclei were washed with 200 μl of LB with 

1% Superase-In and 0.1% Triton X-100 and resuspended in 

LB with 1% Superase-In at a 20 000 nuclei per μl concentra- 
tion. These nuclei represent the sci-L3-RNA / A T AC sample.
For the first-round barcoding, the nucleosome-depleted nu- 
clei were distributed into wells with barcodes 1–5 and 11–15,
while the non-nucleosome-depleted nuclei were distributed 

into wells with barcodes 6–10 and 15–20. The subsequent 
steps were performed exactly as previously described in the 
sci-L3-RNA / DNA co-assay subsections “RT and Tagmenta- 
tion, Ligation, FACS, and Cell Lysis,” “Gap Extension and 

Linear Amplification by In Vitro Transcription,” and “RNA 

Purification, RT, and SSS” [ 2 ]. 

sci-L3 read processing and alignment 

The first step of processing sci-L3 sequencing data is the ex- 
traction and consolidation of the combinatorial barcodes that 
uniquely identify each single cell. The barcode extraction and 

processing has been previously described in [ 2 ] and subse- 
quently implemented as an easy to use snakemake pipeline 
(sciL3pipe; available at https:// github.com/ recombinationlab/ 
sciL3Pipe ) [ 3 , 20 ]. Briefly, the processing steps (i) first ori- 
ent read pairs such that the combinatorial barcodes are al- 
ways within read 1 (R1). The orientation is identified by the 
presence of either the RT primer sequence (allowing up to 

three mismatches using Levenshtein distance) or the third- 
round barcode; (ii) identify the third-round barcode at the 
start of R1 (SSS, 6 nt, no mismatches allowed) and write it into 

the read name together with the in vitro transcription unique 
molecular identifier (4 nt; ivt_UMI). Reads without a match- 
ing SSS are discarded, while matching reads are written into 

individual SSS fastq files that enable the division of subsequent 
steps among multiple processors; (iii) clean up reads by trim- 
ming the Tn5 Mosaic End double-stranded (MEDS) sequence 
from R1 (5 

′ adaptor: AGA TGTGT A T AAGAGACAG; maxi- 
mum error rate: 0.2, minimum overlap: 19) and R2 (5 

′ adap- 
tor: AGA TGTGT A T AAGAGACAG; 3 

′ adaptor: CTGTCTCT- 
T A T A CA CA TCT ; maximum error rate: 0.2, minimum over- 
lap: 13) using cutadapt [ 21 ]; (iv) identify the first-round (Tn5 

or RT, 8 nt, 1 mismatch allowed; Levenshtein distance) and 

second-round (ligation, 7 nt, 1 mismatch allowed; Levenshtein 

distance) barcodes from the MEDS adjacent sequence (bc2 7nt 
| 4nt spacer | bc1 8nt | MEDS) and write both barcodes into 

the read name. Additionally, for co-assays, the RNA is distin- 
guished from the DNA modality based on the first-round bar- 
codes. For RNA, a reverse transcription UMI (6 nt; rt_UMI) 
is extracted and added to the read name, while a placeholder 
“GGGGGG” is added for DNA (used for distinguish RNA 

from DNA downstream); (v) align read pairs with all three 
barcodes identified to hs37d5 or a hybrid reference of hs37d5 

and mm10 using bwa-mem [ 22 ] and converted to sorted BAM 

using samtools [ 23 ]. 

https://github.com/recombinationlab/sciL3Pipe
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ci-L3-Strand-seq processing and data analysis 
low cytometry data were collected on a BD Fortessa at the
SCRC flow cytometry core and analyzed using BD FACSDiva

8.0.1) and FlowJo (10.10). 
After alignment, filtering was performed for proper read

airs (FR), a maximum insert size of 2000, and a maxi-
um soft-clipping ratio of 0.5 (defined as the number of

oft-clipped bases over the number of matched bases) to re-
ove excessively soft-clipped reads, which if retained con-

ribute significantly to the background levels. Following fil-
ering, reads were split by species of origin (hs37d5 or mm10)
nd cell barcodes. For each cell, strand breakpoints and back-
round estimates were obtained using breakpointR (1.18.0)
 24 ]. For Patski, a diploid cell line, we expect breakpoints in
he form of WC to WW or CC transitions, while for HAP1, a
aploid cell line, we expect WW to CC (or CC to WW) transi-
ions. Irrespective of ploidy, breakpointR assigns strand state
o breakpoint-segmented regions. Previously described black-
isted regions for hg19 and mm10 (version 2) [ 25 ], in addi-
ion to a high signal region we consistently found enriched on
hr4-89540413:89 544 084 in mm10, were excluded from all
nalysis. BreakpointR breakpoints were filtered to eliminate
alse calls using a set of distance and strand state-based crite-
ia (details in companion sci-L3-Strand-seq paper). 

breakpointR run command used: 
breakpointr(inputfolder = <> , output- 
older = <> , windowsize = 5000000, bin- 
ethod = "size", pairedEndReads = TRUE, 
air2frgm = FALSE, min.mapq = 20, fil- 
Alt = TRUE, peakTh = 0.33, trim = 10, 
ackground = 0.05, minReads = 50, 
askRegions = <> ) 
After breakpoint filtering, the strand state of each break-

oint and segment was re-evaluated with the background
nd minReads set to 0.1 and 10, respectively. These final seg-
ent strand states were used to evaluate the percentage of WC

nd “uncategorized (?)” regions as designated by breakpointR
ithin each cell. We refer to these regions as “strand-neutral”

egions. Cells with a WC and “uncategorized (?)” percentage
f more than ( = > ) 15% for haploid and 75% for diploid, to-
ether with a background estimate of 0 or more than ( > ) 0.08,
ere filtered out. 
The relative chromosome coverage was calculated as the

overage per chromosome divided by the total coverage in the
ell, normalized by the chromosome mappable size divided by
he total size of the mappable genome. The mappable size was
efined as the proportion of the chromosome or genome that
oes not contain ambiguous bases ( N ) over the total number
f bases. 
The complexity analysis that extrapolates the percent of

enomic coverage obtained with additional sequencing effort
as performed using preseqR [ 26 ]. 
We performed phasing as previously described using

trandPhaseR (v0.99) [ 5 , 27 ]. Using the known variants from
6 / SPRET [ 28 ], we calculated phasing coverage for all het-
rozygous SNV sites and phasing accuracy by comparing to
he ground truth in the reference VCF. 

ci-L3-HiC processing and data analysis 
ligned ensemble sci-L3-HiC data were filtered first by re-
oving read pairs with cell barcodes with < 10 000 counts

not enough reads to be considered as a single cell) and sec-
ond by MAPQ 30 scores. For the high sequencing depth li-
brary, the barcode count cutoff was increased to 30 000. Fil-
tered BAMs were processed using the 4DN Docker image
(v43; https:// github.com/ 4dn-dcic/ docker-4dn-hic ) that con-
tains wrapper scripts for running pairtools [ 29 ], pairix [ 30 ],
and cooler [ 31 ]. First, the filtered BAMs were converted to the
pairsam format and sorted (run-pairsam-parse-sort.sh). Sec-
ond, PCR duplicates were marked (DD) within the pairsam
files (run-pairsam-markasdup.sh) and subsequently filtered
out by only retaining valid pairs (UU, unique–unique; UR,
unique–rescued; RU, rescued–unique) (run-pairsam-filter.sh).
We also added the restriction fragment (RF) (MboI) positions
to the filtered pair files (run-addfrag2pairs.sh), which were
obtained using Juicer [ 32 ] ( https:// github.com/ aidenlab/ juicer/
blob/ main/ misc/ generate _ site _ positions.py ). Interaction pairs
with a distance of 1 kb or less were filtered out to remove Hi-C
by-products such as dangling ends and self-circles [ 29 ]. Lastly,
the filtered valid pairs were converted to 1 kb resolution cools
(run-cooler.sh) and subsequently to multi-resolution cools
(run-cool2multirescool.sh) for the generation of ICE normal-
ized interaction matrix plots [ 31 , 33 ]. For plotting of single-
cell raw interaction counts, interaction pairs were filtered by
barcodes within the read name in R, exported in BEDPE for-
mat, and converted into cool files using cooler [ 31 , 34 ]. A / B
compartment calls from the ensemble data were made using
cooltools cis eigenvector decomposition at a 500 kb resolu-
tion [ 35 ]. ChIP-seq of H3K4me3 performed in GM12878 cells
(ENCODE: ENCFF818GNV) [ 36–38 ] was used as the phas-
ing track to select and orient the eigenvectors most corre-
lated with active regions. Smoothed P ( s ) curves for normal-
ized intra-arm chromosomal contacts were calculated from
contact matices at 10 kb resolution and aggregated using
cooltools [ 35 ]. 

For A / B compartment comparisons, we downloaded and
processed bulk Hi-C data from GM12878 cells using the same
pipeline as described above, with the exception of omitting the
interaction pair distance filter [ 39 ]. 

To compare sci-L3-Hi-C with other single-cell Hi-C meth-
ods, we downloaded processed and / or supplementary data for
sci-Hi-C [ 13 ], s3-GCC [ 40 ], and droplet Hi-C [ 41 ]. For the
combinatorial indexing method, sci-Hi-C, the ML3 valid read
pairs provided by the authors were used [ 13 ]. Since the ML3 li-
brary contained K562, GM12878, Patski, and primary mouse
embryonic fibroblast (MEF) cells, only valid pairs correspond-
ing to the GM12878 cell line were used (GSM2254217). For
the GM12878 cells, a bimodal distribution of valid pairs
per cell barcode was observed. Consequently, any barcodes
with < 100 valid pairs were excluded. For generating inter-
action matrices, the same interaction distance filter of 1 kb
was also applied as used for sci-L3-Hi-C data. The final set
of valid pairs was exported in BEDPE format and converted
into cool files using cooler [ 31 , 34 ]. Additional data on sci-
Hi-C performance were obtained from table 1 in [ 42 ]. For
s3-GCC, the pairix file provided by the authors (GSE174226)
was parsed and contacts at various distances ( cis < 1 kb, cis > 1
kb, trans ) were counted [ 40 ]. The counts for each cell barcode
were annotated using Supplementary Table S8 and only cells
matching PDAC1 and PDAC2 samples were used. For droplet
Hi-C, data provided in Supplementary Table S2 were used
[ 41 ]. For normalization of sequencing effort between meth-
ods with or without ligation junction enrichment, we used raw
read number of the ML3 library in sci-Hi-C [ 13 ] (21 808 993
read pairs) and the proportion of GM12878 reads (37.56%

https://github.com/4dn-dcic/docker-4dn-hic
https://github.com/aidenlab/juicer/blob/main/misc/generate_site_positions.py
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
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based on GSM2254217_ML3.percentages.txt.gz), and esti-
mated 8 191 458 raw reads for GM12878 cells. Alterna-
tively, we also extrapolated the number of Hi-C-specific reads
in sci-L3-Hi-C by calculating the proportions of cis > 1000
and trans reads: 5.8% and 6.3%, respectively, for high-depth
and low / medium-depth cells. After excluding the 5% mouse
reads, we estimated that we sequenced 86.4 × 95% × 5.8%
million read pairs for 96 high-depth cells and 55.7 ×
95% × 6.3% million read pairs for 929 low / medium-depth
cells. 

sci-L3-RNA / A T AC and sci-L3-RNA / DNA processing and
data analysis 
DNA / A T AC and RNA count matrices were generated from
sorted BAMs using a MAPQ 10 cutoff. RNA reads were dis-
tinguished from DNA / A T AC based on the rt_UMI in the
read name (“GGGGGG” for DNA / A T AC and “NNNNNN”
for RNA). For DNA / A T AC, the count matrices consist of
the R1 raw alignment counts (r1s) per cell barcode and split
by species (mouse, m_r1s; human, h_r1s). For RNA, instead
of raw alignment, the counts are based on a unique molecular
identifier (UMI) that consists of the species, overlapping gene
name, and the rt_UMI. An initial filtering of barcodes with
< 300 combined counts of DNA r1s and RNA UMIs (non-
cells) was performed for both mouse and human. To iden-
tify and remove barcode collisions, > 90% of DNA / A T AC
counts and > 80% of RNA UMIs were required to originate
from either human or mouse, with an agreement between
both modalities as a final filter. Non-cell barcodes (e.g. de-
bris) are expected to have a higher rate of collisions com-
pared to cells and overall contain a lot fewer reads. We used
these expectations to further filter barcodes for high- and
low-depth libraries independently. For high-depth libraries, a
DNA / A T AC r1s count threshold of > 10 

3.8 ( ∼6309.57) was
chosen, along with a threshold of > 1000 UMIs for RNA
( Supplementary Fig. S3 A). For low-depth libraries, a threshold
of 1000 DNA / A T AC r1s and 20 RNA UMIs was chosen as a
compromise between number of cells recovered and the infor-
mational content per cell ( Supplementary Fig. S3 A). Barnyard
plots were plotted from the resulting filtered barcodes. 

To establish a ground truth for cell identity, BJ
SNVs called from bulk WGS data (SRA: SRP102259;
[ 43 ]) and previously published HEK293T SNVs ( http:
// bioinformatics.psb.ugent.be/ downloads/ genomeview/ 
hek293/ SNP/ 293T _ RTG.vcf.gz ) [ 44 ] were used to obtain
a list of SNVs private to each cell line using BCFtools [ 23 ].
The HEK293T VCF was lifted over from hg18 to hg19 and
filtered for SNVs using BCFtools (1.11). BJ SNV calling was
performed with BCFtools using the following run command: 
bcftools mpileup -O z –skip-indels –

ignore-RG –redo-BAQ –min-BQ 13 –per- 
sample-mF -a ’AD,ADF,ADR,DP,SP,SCR’ - 
f < genome.fa > < combined.bam > | bcftools 
call –multiallelic-caller –variants-only -O 
z -o < out.vcf.gz > 

The number of reads containing a private SNV were nor-
malized by the total number of reads overlapping with private
SNV positions and scaled to be within a 0–1 range. This cell
line relative total of SNVs was further normalized by the sum
of both cell line relative totals [e.g. BJ / (BJ + HEK)] and is re-
ferred to as the rate of cell line-specific SNVs. A rate of > 70%
was required for each cell to be assigned a cell line identity,
otherwise it was classified as a SNV collision and excluded 

from downstream analysis. 
The RNA and A T AC modalities were analyzed separately 

using Seurat (4.4.0) and Signac (1.13.0), respectively [ 45 , 46 ].
For A T AC-specific analysis, DNA reads were isolated based 

on the rt_UMI filtered for proper read pairs (FR), a maxi- 
mum insert size of 2000, and a maximum soft-clipping ra- 
tio of 0.5. A CB tag was added to the BAM files based on 

the cell barcodes present in the read name. Using the CB tag,
BAMs were converted into fragment files using sinto (0.10.0),
and imported into Signac (1.13.0) [ 45 ]. A feature matrix of 
peaks was created in Signac using the built-in wrapper func- 
tion for MACS2 [ 47 ] and used for downstream clustering 
and visualization. A 5-kb bin-based feature matrix was ad- 
ditionally created to calculate the fraction of reads overlap- 
ping mitochondria. Transcriptional start site (TSS) enrichment 
was performed based on the Ensembl gene annotations from 

the EnsDb.Mmusculus.v79 and EnsDb.Hsapiens.v75 Biocon- 
ductor packages. Frequency inverse document frequency (TF- 
IDF) normalization with the latent semantic indexing (LSI) di- 
mensional reduction was performed [ 45 ]. The first 10 dimen- 
sions from the LSI reduction were used as input for the low- 
dimensionality visualization with uniform manifold approx- 
imation and projection (UMAP) [ 48 ], with the exclusion of 
one of the dimensions that strongly correlated with sequenc- 
ing depth. 

For RNA-specific analysis, the matrix of UMI counts over 
genes (gencode annotation v19 [ 49 ]) was used to create a Seu- 
rat object, retaining features that are shared between at least 
two cells and cells with at least one feature. The percentage 
of mitochondrial reads was added as a metadata feature. De- 
fault parameters were used for normalization, selection of the 
top 3000 most variable features, and scaling and centering 
of the data, with an exception of selecting the mitochondrial 
read percentage as the variable to be regressed out. The first 
10 components from the principal component analysis (PCA) 
were used as input for the low-dimensionality visualization 

with UMAP, while excluding the dimension representing se- 
quencing depth as done in the A T AC analysis. 

Cluster identity was assigned based on the dominant 
ground truth (SNV identity) cell type within each cluster. Cell 
identity based on clusters derived from each modality was 
overlaid onto the clusters of the opposing modality (modal- 
ity identity) to determine the agreement between RNA and 

A T AC. Examining the distribution of low and high sequenc- 
ing depth cells showed similar distributions of both within the 
clusters, validating depth was not driving clustering. 

Results 

sci-L3-Strand-seq 

Sequencing the template strands of DNA replication requires 
the newly synthesized strands to be labeled with BrdU within 

a single cell division [ 4 ]. The level of labeling and the phase 
of the cell cycle contribute to the quality of the strand in- 
formation. Under-labeling results in interspersed regions of 
both Watson and Crick reads per chromosome as no nascent 
strands are ablated, while double labeling in the next S-phase 
results in regions with no reads as both strands contain BrdU 

and are thus ablated. Input cells for sci-L3-Strand-seq do not 
need to be cell cycle synchronized, enabling potential in vivo 

applications. The sci-L3 framework contains a flow sorting 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
http://bioinformatics.psb.ugent.be/downloads/genomeview/hek293/SNP/293T_RTG.vcf.gz
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A B

C

Figure 2. DNA template Strand-seq with sci-L3-Strand-seq. ( A ) Example sorting gate for BrdU-labeled cells. The sorting gates are demarcated by two 
vertical lines. The histogram on the left shows quenching of the Hoechst signal in cells labeled with BrdU for 24 h (red) compared with cells without 
BrdU (blue), both stained with Hoechst. The histogram on the right shows 24-h BrdU-labeled cells stained with DAPI (red; no quenching control) and 
Hoechst (blue). The desired cells quenched by Hoechst stand out at roughly half of the signal of cells stained with DAPI. Peaks to the left of the sorting 
gates are predominantly debris. ( B ) Cell background estimates for combinations of UV and UDG + EndoVIII conditions. The highlighted background 
estimate filter threshold of 0 > and < 0.08 is used for identifying cells with template strand information. Number of cells within each experimental 
condition ( n ) is shown below the plot. Percentages within the plot are cells passing filter (within green strip) and cells with 0 or 0.5 background (top, 
more detailed breakdown in Supplementary Table S1 ), which indicates that they are completely strand-unbiased WGS libraries. Note that UV treatment 
alone only slightly increased the strand bias of WGS libraries, while UDG + EndoVIII treatment alone did not. Both are required to generate high-quality 
sci-L3-Strand-seq libraries (details in text). ( C ) Example sci-L3-Strand-seq profiles of a haploid and a diploid cell. The distribution of reads in a haploid cell 
(top) shows either Watson (+, forward strand, W) or Crick ( −, reverse strand, C) template strand orientation, except for the known disomic region on 
c hromosome 1 5 that harbors both W and C reads. For diploid cells (bot tom), the inherit ance of t wo template strands from either parent creates a 
mixture of WW, WC, or CC reads. Triangles highlight SCEs. Depth represents the median number of reads per Mb, e x cluding reads falling into 
blacklisted regions. 
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tep after two rounds of cell barcoding that can be leveraged
o enrich for the useful cell population, i.e. cells in the imme-
iate subsequent G1 cycle after BrdU labeling. We thus only
equire a proportion of the input cells to survive until the next
1, which is compatible with experimental designs where cells
re perturbed in a pooled manner, naturally growing, and di-
iding in vivo , and / or simply for the ease of the experiment.
t is worth noting that the sci-L3 methods can be performed
sing dilution instead of FACS, and we routinely do so for
uality control; however, for sci-L3-Strand-seq, the need to
nrich for BrdU-labeled cells means fewer cells with template
trand information would be recovered using dilution. 

We fix BrdU-labeled cells along a spectrum of cell cycles
Fig. 2 A, left, Hoechst or alternatively DAPI to stain for ploidy
nd cell cycle stage without BrdU) and subject them to the
ci-L3 workflow that includes nucleosome depletion, tagmen-
ation, and ligation. After these first and second rounds of in
itu barcoding, nuclei are sorted by flow into separate wells for
mplification and third-round barcoding [ 2 ]. In this flow sort-
ng step, the incorporated BrdU quenches the Hoechst 33258
tain [ 50 ], shifting the cell cycle profile to the left (Fig. 2 A, left,
oechst with BrdU). In the sci-L3 workflow, we typically use
API to stain the nucleosome-depleted, non-tagmented con-

rol nuclei to separate debris and nuclei. Such DAPI-stained
ontrol nuclei can serve as a negative control for BrdU quench-
ng as the incorporated BrdU does not quench the DAPI signal.
In the original development of Strand-seq, a no BrdU control
(unlabeled cells) is recommended to detect Hoechst quench-
ing by BrdU. Since the DAPI and Hoechst stain for cell cycle
and ploidy largely overlap without BrdU ( Supplementary Fig.
S1 A), the use of the DAPI control sample avoids the need to
additionally culture and process unlabeled cells just for set-
ting the FACS sorting gates. We sorted hundreds of cells per
well from the BrdU-quenched, G1 population to test various
nascent strand ablation conditions for sci-L3-Strand-seq (Fig.
2 B and Supplementary Table S1 ). In real applications, one can
increase the number of first and second round of barcodes
as described in sci-L3 [ 2 ] such that thousands of cells can be
sorted per well to further increase throughput. Overall, we re-
covered an average of 93% of the total sorted cells (789 cells
recovered out of 850 sorted). 

The Strand-seq protocol utilizes a 270 mJ / cm 

2 total dose
of 365 nm UV in the presence of Hoechst 33258 to induce
single-stranded nicks at the site of BrdU incorporation [ 1 ]. We
applied the same procedure to sci-L3 barcoded and BrdU in-
corporated nuclei with UV doses ranging from 27 to 4000
mJ / cm 

2 and assessed the quality of the resulting strand infor-
mation using a background estimation calculation [ 24 ]. Essen-
tially, regions where both template strands were inherited in
the same orientation will contain a few reads with the opposite
orientation that represent the background noise. Using this
metric, we found that despite adequate levels of BrdU incor-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
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poration (Fig. 2 A) and irrespective of UV dose, we consistently
obtained cells without any strand information and essentially
only produced single-cell WGS libraries (Fig. 2 B, background
of 0 and > 0.08). We postulated that 365 nm UV should cat-
alyze debromination effectively [ 51 ]; however, nicking of the
DNA strand next to the U base may not necessarily occur,
leading us to test the addition of the uracil DNA glycosylase
(UDG) and the DNA glycosylase-lyase endonuclease VIII (En-
doVIII), subsequently referred to as “UDG + EndoVIII.” The
combination of UV treatment and UDG + EndoVIII generated
strand information in over 66% of cells (Fig. 2 B and C). 

We assayed both haploid and diploid cells, validating that
we obtained single-strand information and were also able to
detect SCEs [Fig. 2 C and Supplementary Fig. S1 B, 4 ( ±2.7)
SCEs in 71 HAP1 cells and 7 ( ±2.8) SCEs in 38 Patski cells].
We further selected cells based on the overall proportion of
regional strand states, allowing the combination of “strand-
neutral” [the chromosome can be Watson–Crick (WC) and / or
not biased enough to be assigned to W atson–W atson (WW)
or Crick–Crick (CC)] regions to account for at most 15% in
haploid and 75% in diploid cells ( Supplementary Fig. S1 C; see
the “Materials and methods” section). In the end, we obtained
over 58% of sorted cells with strand information passing QC
( Supplementary Table S1 ) with an average 0.22% genome
coverage ( Supplementary Fig. S1 D). With limited variation
between cells in their relative chromosome coverage, we can
identify obvious copy number variation (CNV) in Patski cells
for chromosomes 3, 4, 5, 9, 12, and 19 ( Supplementary Fig.
S1 E). Strand-seq is a powerful tool for phasing, i.e. assign-
ing parent of origin to heterozygous variants [ 5 ]. In WC re-
gions, SNVs from one parent should map solely in the W (or
C) direction, and SNVs from the other parent should map
in the opposite direction. In theory, even a single diploid cell
sequenced by Strand-seq could provide phasing information,
regardless of how small the coverage is. We thus attempted
phasing with the limited set of 40 Patski cells, where we have
the ground truth for haplotype information. We achieved an
average phasing accuracy of 79.5% for 2.2% of heterozygous
variants (2.4% collective coverage in WC regions among these
cells), noting that subclonal aneuploidy greatly affects phasing
accuracy. For comparison, we picked 40 cells with top cover-
age among a bigger set of 931 Patski cells from a larger experi-
ment. We were able to phase 21.5% variants (23.6% coverage
in WC regions among these cells) with 85% accuracy. 

sci-L3-Hi-C 

We next extended sci-L3 to examine the 3D genome orga-
nization in single cells. With the initial steps of sci-L3 be-
ing shared with the nucleosome depletion used in chromo-
some conformation capture, it became possible to incorpo-
rate Mbol digestion (4-base cutter) and ligation without al-
tering the remainder of the assay (Fig. 1 ) [ 52 ]. We tested
our scheme with over 1000 cells, consisting of a mix of
GM12878 and Ch12 cells before fixation. This small spike-
in of 5% mouse cells (Ch12) allowed us to assess barcode
collision, showing that we recover the expected number of
cells with both human and mouse reads. Overall, we recov-
ered 48% of the expected sorted cells with a sequencing depth
of 19 000 read pairs per cell (under-sequenced), and 91% of
cells with a higher sequencing depth of 68 000 read pairs
per cell ( Supplementary Table S2 ). We then deep sequenced
a subset of cells to saturation at a depth of over 800 000
read pairs per cell. In total, 96 cells passing QC were recov- 
ered out of the 100 sorted ( Supplementary Table S2 ). After 
examining the number of unique valid interaction pairs for 
each library (see the “Materials and methods” section), we 
retained 90.8% (35M / 38M) of the initial low-pass aligned 

reads and 68.8% (43M / 61M) of the high-depth aligned reads 
(7.6% and 29.8% are duplicates, respectively, with < 1.5% 

invalid pairs, Supplementary Table S3 ). Note that sci-L3-Hi- 
C does not have the biotin incorporation step to enrich lig- 
ation junctions, and thus works best for profiling both the 
whole genome sequence and its 3D structure. Therefore, the 
vast majority of the valid interaction pairs were at a dis- 
tance of < 1 kb and showed a forward–reverse read orien- 
tation bias (dangling ends) consistent with whole genome 
sequencing ( Supplementary Fig. S2 A and B) [ 29 , 53 ]. After 
filtering pairs with interaction distance of < 1 kb, we ob- 
tained a comparable distribution of contact frequencies across 
genomic distances to bulk Hi-C and to a previously pub- 
lished combinatorial indexing single-cell Hi-C method, sci- 
Hi-C ( Supplementary Fig. S2 B) [ 39 , 13 ]. However, the three- 
level indexing increases throughput and the linear amplifica- 
tion counteracted the loss of chromatin interactions typical of 
adding more rounds of split and pool, which is an expected 

advantage of the sci-L3 scheme. 
We subsequently examined the ensemble interactions of all 

cells to validate that we can detect features typical of Hi-C 

(Fig. 3 B and C). With clear enrichment of intrachromosomal 
contacts across all chromosomes ( Supplementary Fig. S2 D),
we focused on individual chromosomes displaying the canon- 
ical plaid pattern of A / B compartments [ 11 ]. Using eigenvalue 
decomposition [ 35 ], we observed a high correlation ( R = 0.87,
P -value < 2.2 × 10 

−16 , Spearman correlation test) between the 
compartment eigenvalues in bulk Hi-C and our single-cells en- 
semble (Fig. 3 B and Supplementary Fig. S2 E). Despite substan- 
tial under-sequencing, with only 48% of the expected num- 
ber of sorted cells being recovered, the interaction map of the 
929 lowly sequenced cells was highly similar to that of the 96 

highly sequenced cells ( Supplementary Fig. S2 F). This suggests 
that large numbers of cells at lower sequencing can provide 
equivalent ensemble insights into genome organization, open- 
ing the door to creating pseudo-bulk interaction maps from 

in silico grouped cells that could further our understanding of 
complex tissues and organisms. 

Finally, we wanted to examine how our method compared 

to other single-cell Hi-C methods, namely the two-level com- 
binatorial indexing methods, sci-Hi-C [ 13 ] and s3-GCC [ 40 ],
as well as a 10 × Genomics method, droplet Hi-C [ 41 ]. With 

sci-Hi-C being the only method that performed ligation junc- 
tion enrichment, s3-GCC and droplet Hi-C cells contain the 
same high proportion of interaction pairs at a distance of < 1 

kb as our sci-L3-Hi-C ( Supplementary Fig. S2 A). sci-L3-Hi- 
C (high depth) obtained more total read pairs per cell than 

droplet Hi-C, but had fewer cis pairs at a distance of > 1 kb,
which represent informative chromatin interaction pairs (Fig.
3 A, Supplementary Fig. S2 A, and Supplementary Table S3 ).
One reason for this lower proportion of ligation junction 

reads could be that sci-L3-Hi-C uses the MboI restriction en- 
zyme with around 7M cut sites, which is 44% fewer than s3- 
GCC with 13M cut sites by AluI, and 76% fewer than droplet 
Hi-C with 30M cut sites by a combination of DpnII, MboII,
and NlaIII. 

Both sci-Hi-C and sci-L3-Hi-C use MboI, and thus have the 
same theoretical complexity. We compared the two methods 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
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A

B C

Figure 3. Single-cell genome conformation with sci-L3-Hi-C. ( A ) Comparison of total read pairs and pairs at different contact distances per single cell 
betw een f our single-cell Hi-C methods: n = 910 (sci-Hi-C), 929 (sci-L3-Hi-C lo w and medium co v erage), 96 (sci-L3-Hi-C high co v erage), 6235 (droplet 
Hi-C), and 202 (s3-GCC). Cis to trans ratio uses cis pairs with contact distance of > 1 kb. ( B ) Ensemble ICE normalized contact map of chromosome 1. 
The contact map was plotted at 500 kb resolution from both low- and high-coverage cells, excluding any pairs with interaction distance of < 1 kb. Below 

the main heatmaps are tracks of the first eigen v ector sho wing A (+) and B ( −) compartments from bulk Hi-C data and from the ensemble sci-L3-Hi-C-seq 
data. ( C ) Example chromosome 1 contact maps from three single cells. Raw count contact maps were plotted at 2.5 Mb resolution, excluding any pairs 
with interaction distance of < 1 kb. Single-cell barcodes are shown below each plot. 
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n more detail. Applying the same 1-kb interaction distance
lter as in sci-L3-Hi-C to the published sci-Hi-C GM12878
ata and removing any cells with < 100 interaction pairs, we
btained 910 cells with a median of 1547 interaction pairs
 Supplementary Fig. S2 G and Supplementary Table S4 ). In
ontrast, our highly sequenced cells contained a median of
9 385 interaction pairs. However, the RNA-dependent RNA
olymerase activity of the T7 RNAP used during IVT permits
ranscription from self-primed or cross-primed RNA that can
result in truncated ends [ 2 , 43 ]. The variation in ends prevents
the complete removal of IVT duplicates with conventional
deduplication methods. To avoid inflating the number of pairs
per cell due to IVT duplicates in our data, only interactions be-
tween unique combinations of MboI fragments were counted.
As a result, the median unique fragment pairs per cell for sci-
Hi-C became 1390 (from 1547), while the high depth sci-L3-
Hi-C cells now contained a median of 7549 (from 19 385)
( Supplementary Fig. S2 H). The unique MboI fragment counts

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
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of our high-depth cells are on par with the median read counts
obtained with other higher depth sci-Hi-C libraries, despite
sci-L3-Hi-C omitting ligation junction enrichment [ 13 ]. 

We further attempted to normalize the two methods with
and without enrichment of ligation junctions to estimate se-
quencing effort required to obtain similar numbers of unique
chromatin interactions. First, we estimated the raw sequencing
depth for the GM12878 data in sci-Hi-C. Without enrichment
of ligation junctions, we require 6.4 × the amount of sequenc-
ing effort to obtain the same 1500 informative chromatin in-
teractions per cell. However, at higher sequencing depth, sci-
L3-Hi-C is not necessarily less cost-effective. Kim et al. [ 42 ]
performed sci-Hi-C at saturation (only ∼10% unique valid
pairs) but valid pairs plateaued at 5000 per cell, which is
substantially less than the 7500 unique RFs recovered with
sci-L3-Hi-C ( Supplementary Table S4 ). Meanwhile, the non-
interacting reads in sci-L3-Hi-C are useful WGS data for pro-
filing other aspects of the genome. Alternatively, we estimated
Hi-C-specific read counts ( > 1000 distance and trans ) rep-
resenting chromatin interactions in sci-L3-Hi-C to compare
with sci-Hi-C. sci-L3-Hi-C requires 49 000 read pairs per cell
(high depth) for 7500 unique RFs and 3500 read pairs per cell
(low or medium depth) for 1300 unique RFs, while sci-Hi-C
requires 9000 read pairs per cell for 1400 unique RFs. This
validated that sci-L3-Hi-C provides more complex libraries
of chromatin interactions. 

We additionally noticed that sci-L3-Hi-C cells contained
a lower proportion of trans reads compared to s3-GCC
and droplet Hi-C, while sci-Hi-C has the lowest propor-
tion as reflected by its high cis to trans ratio (Fig. 3 A and
Supplementary Table S4 ). The higher background noise com-
pared to sci-Hi-C may limit applications requiring fine resolu-
tion. Overall, we show that sci-L3 can be extended to examine
genome organization in thousands of single cells. 

sci-L3-RNA / A T AC 

With the potential for significant biological insights offered
by multi-omics assays [ 15 ], we lastly set out to extend sci-
L3 for the joint profiling of chromatin accessibility (A T AC)
and RNA. sci-L3-A T AC / RNA builds upon our previously de-
scribed single-cell WGS and RNA co-assay, which relied on
nucleosome depletion for the uniform genome-wide insertion
of barcodes by the Tn5 transposome complex [ 2 ]. By omit-
ting nucleosome depletion, we can instead obtain profiles of
chromatin accessibility together with RNA in a single proto-
col from fixed nuclei (Fig. 1 ). 

As proof of principle, we applied sci-L3-RNA / A T AC with
half of the input cells for a mixture of human BJ-5ta,
HEK293T, and mouse NIH / 3T3 cells. Alongside, we also per-
formed sci-L3-RNA / DNA on the other half, combining cells
from the two methods after the first-round barcode step. Alto-
gether, we sequenced 2700 (1512 for RNA / A T AC and 1188
for RNA / DNA) cells with 1200 (672 for RNA / A T AC and
528 for RNA / DNA) cells sequenced at around 11 × higher
depth than the remaining 1500 (840 for RNA / A T AC and
660 for RNA / DNA) cells. After applying initial filters with
depth-specific cutoffs to identify barcodes belonging to cells
( Supplementary Fig. S3 A), we obtained 1265 cells contain-
ing both chromatin accessibility and transcriptome data. Ex-
cluding a 5%–8% of doublet cells that contain both human
and mouse reads ( Supplementary Fig. S3 B and C), we re-
covered a total of 1164 / 1265 (92%) RNA / A T AC cells with- 
out collisions. We next confirmed that both the A T AC and 

RNA modalities were assigned to the same species for all 
the 1164 single cells ( Supplementary Table S5 ). Overall, at 
the lower sequencing depth we recovered 66.8% of the sci- 
L3-RNA / A T AC sorted cells (561 passing QC out of 840 

sorted, 149 human and 412 mouse cells) at a median of 
2396 A T AC reads and 97 RNA UMIs per cell (low cover- 
age) ( Supplementary Table S5 and Supplementary Fig. S4 A–
C). At the higher sequencing depth (around 329 000 reads per 
cell), we recovered 89.7% (603 passing QC out of 672 sorted,
241 human and 362 to mouse cells) at a median of 25 456 

A T AC reads (around 6700 unique fragments, 5 × compared 

to sci-CAR [ 17 ]) and 1292 RNA UMIs per cell (high cover- 
age). The method significantly improves recovery of A T AC 

reads per single cell somewhat at the cost of RNA recovery.
Similar cell recovery numbers were also obtained for sci-L3- 
RNA / DNA as expected from previous development of the sci- 
L3 RNA / DNA co-assay ( Supplementary Table S5 ). To evalu- 
ate the concordance of sci-L3-RNA / A T AC with open chro- 
matin, we first examined TSS enrichment and the fraction of 
reads within peaks (FRiP) (Fig. 4 A). Both measures showed 

significantly higher values for A T AC compared to our DNA li- 
braries (TSS enrichment P -value 2.12 × 10 

−274 , FRiP P -value 
3.52 × 10 

−271 ; Mann–Whitney U ), a difference consistent 
with open chromatin insertion. Similarly to previous reports 
of A T AC-seq from fixed nuclei, we did not observe a high 

sub-nucleosomal score in our A T AC ( Supplementary Fig. S4 E) 
[ 54 ]. We suspect that the removal of the SDS treatment step al- 
lows residual mitochondria to remain attached to the nucleus,
meaning aside from open chromatin, sci-L3-RNA / A T AC also 

captures mitochondrial reads ( Supplementary Fig. S4 D). Al- 
though generally undesired in A T AC-seq, mitochondrial reads 
have the potential to be used in somatic mutation detection 

and clonal lineage reconstruction [ 55 ]. We subsequently only 
focused on the performance of the sci-L3-RNA / A T AC subset 
of data to examine whether the enrichment of TSS and peaks 
in general is informative of cell types in agreement with the 
transcriptome. 

Focusing on the BJ-5ta and HEK293T human cell mix- 
ing experiment, we wanted to determine whether the A T AC 

or RNA profiles contained sufficient information to distin- 
guish the two cell types. We first examined the SNV private 
to each cell line to obtain a ground truth cell identity, ob- 
taining 383 / 390 cells (233 BJ-5ta, 150 HEK293T) with un- 
ambiguous assignment ( Supplementary Fig. S5 A). We first ex- 
amined both high- and low-coverage cells together. After per- 
forming normalization and dimensional reduction with ei- 
ther LSI or PCA for A T AC or RNA, respectively, we found 

that the first dimension for both modalities correlated with 

sequencing depth and was therefore excluded from down- 
stream analysis [ 45 , 56 ]. Applying UMAP separated cells into 

two clusters by both A T AC or RNA alone ( Supplementary 
Fig. S5 B). Based on these modality clusters, we observed 

that 92.6% of cells (355 / 383) were correctly clustered by 
RNA and 98.6% by A T AC (378 / 383) ( Supplementary Fig. 
S5 B and Supplementary Table S6 ). We validated that sequenc- 
ing depth was not driving clustering by observing that both 

high- and low-depth cells were interspersed within both clus- 
ters ( Supplementary Fig. S5 B). Examining the 7.4% (28 / 383) 
by RNA and 1.4% (5 / 383) by A T AC of cells with discor- 
dant assignment revealed that 87.9% (29 / 33—intersect of 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
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A

B

Figure 4. Cell identity assignment from RNA and open chromatin modalities with sci-L3-RNA / A T AC-seq. ( A ) A T AC signal is enriched o v er TSS and within 
peaks. A T AC signal enrichment centered o v er the TSS ± 1 kb, with the DNA signal from sci-L3-RNA / DNA-seq plot ted as control (lef t plot). Significant 
enrichment of TSS signal, tested with Mann–Whitney U (middle plot) (*** ≤ .001; P -value: 2.12 × 10 −274 ; ATAC: median 2.62, MAD 0.58; DNA: median 
0.84, MAD 0.06). Fraction of reads within peaks (FRiP) is shown for all MACS2 called peaks, independently called for A T AC and DNA showing 
significantly higher fraction in A T AC, tested with Mann–Whitney U (right plot) (*** ≤ .001; P -value: 3.52 × 10 −271 ; ATAC: median 0.103, MAD 0.029; 
DNA: median 0.018, MAD 0.003). ( B ) UMAP projection using ATAC and RNA modalities separates cells by identity. Separation of cells into individual 
populations with UMAP was used to label cells as either BJ or HEK for RNA and A T AC (left panel). Using these initial labels, the cell identities from A T AC 

w ere o v erlaid onto the RNA UMAP projection and vice v ersa (middle panel). As ground truth, the cell identities w ere assigned based on priv ate SNVs 
(right panel). The number of cells misassigned based on cluster and modality is shown in Supplementary Table S6 . Only high-coverage cells are plotted. 
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NA and A T AC) were in the low sequencing depth group
 Supplementary Table S6 ). Limiting our analysis to only high
equencing depth cells resulted in 97.8% (233 / 238) of cells
ith concordant assignment by RNA and 100% (238 / 238)

ssignment by A T AC (Fig. 4 B). Overall, we show that sci-L3-
NA / A T AC captures cell state features by both modalities

hat enable cell type assignment. 

 

Discussion 

Here we have described the extension of sci-L3 to three
new methods that together demonstrate the versatility of the
toolkit and its potential to scale up low-throughput assays
with combinatorial indexing and linear amplification. Empir-
ically under the sci framework, adding additional rounds of
cell barcoding typically reduces the number of recovered sin-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf101#supplementary-data
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gle cells expected by the number of cells sorted, as a result of
loss of per cell coverage. One general advantage of sci-L3 is the
high sorted cell recovery rate of around 90% with three lev-
els of barcoding, consistent across all extensions of this frame-
work, which for other two-level sci methods is usually around
60% and even lower with additional rounds of barcoding. We
think that this is due to the improved uniformity and cover-
age by linear amplification. Below we summarize features and
limitations for the three extended methods. 

We establish that sci-L3-Strand-seq generates high-quality
libraries with low background for more than half of the se-
quenced cells. We also find that adding UDG + EndoVIII after
UV treatment is not only helpful but also necessary to ob-
tain a Strand-seq library. Note that although our assay uses
IVT-based linear amplification, which is distinct from PCR
polymerase used in the original development of the Strand-
seq [ 1 , 4 ], the T7 RNA polymerase cannot bypass single-
stranded nick or 1-nt gaps; therefore, we think that the ne-
cessity of UDG + EndoVIII is unlikely to be IVT-specific. The
ease to leverage the inherent cell sorting step in sci-L3 to en-
rich for BrdU-labeled cells of the right cell cycle, the increased
throughput, and the improved uniformity of whole-genome
amplification substantially advance the Strand-seq applicabil-
ity. We foresee that this assay will be vastly useful for profiling
mitotic crossovers including the genetically silent sister chro-
matid exchange, as well as other types of genome rearrange-
ment [ 3 ]. 

With sci-L3-Hi-C, we captured previously described fea-
tures of genome organization such as AB compartments and
showed that our three-level barcoding has comparable per-
formance to the previous two-level barcoding of sci-Hi-C
[ 13 ]. Without ligation junction enrichment, the combination
of WGS and chromatin conformation from the same single
cell in one experiment provides a higher sequencing cover-
age per cell to aid in the annotation of structural and copy
number variation. Other single-cell Hi-C methods without
ligation junction enrichment utilize more frequent cutters by
2–4 ×, obtaining a higher capture of cis interactions, which
provides an easy way to improve future implementations of
sci-L3-Hi-C. 

Lastly, we show that sci-L3-RNA / A T AC captures distin-
guishing features of cell identity from both modalities based
on the high agreement between the cell type assignment from
RNA and A T AC. W e establish the capture of open chromatin
with a 5 × enrichment of reads over TSS as compared to sci-
L3-WGS, and a significant improvement by five-fold of the
single-cell A T AC performance in such co-assays with two-level
indexing [ 17 ]. However, a limitation of the current approach
is the low recovery of RNA reads per cell. We speculate that
RT enzymes may also use DNA as a template and generate
double-stranded cDNA in reverse transcription. They could
then be inserted by Tn5 in a single-ended fashion, preventing
further amplification. Direct RNA library preparation with-
out reverse transcription [ 57 ] has the potential to significantly
improve the performance of RNA / A T AC co-assay. Neverthe-
less, as small amounts of RNA reads typically inform cell types
quite well, the sci-L3-A T AC / RNA co-assay is still useful in
applications that aim at exploring new biology on the open
chromatin aspect and only require crude cell type information
from the transcriptome. Single-cell transcriptome analysis has
seen an explosion of applications. Where single-cell RNA at-
lases are already available, one can easily use a reference-based
approach to assign single cells to an annotated mini-bulk or
lineages for a large number of cells, while obtaining high- 
quality accompanying single-cell A T AC data from the same 
cells. 

Overall, the ability to use the same reagents and barcod- 
ing scheme across a multitude of different techniques makes 
the sci-L3 suite of methods an attractive option for a wide 
variety of biological questions. While we have shown three 
new methods here, we envision sci-L3 can be further extended 

to DNA methylation [ 58 ], chromatin-associated factors [ 59 ,
60 ], and combinations thereof such as RNA / Hi-C [ 61 ] and 

RNA / Strand-seq co-assays. 
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