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Massive multiple-input multiple-output (MIMO) is a promising technology for next

generation communication systems, where the base station (BS) is equipped with a large number

of antenna elements to serve multiple user equipments. With the large number of antenna

elements, the BS can perform multi-user beamforming with much narrower beamwidth, thereby

simultaneously serving more users with less interference among them. Furthermore, the large

antenna array results in large array gain which lowers the radiated energy. However, efficient

beamforming relies on the availability of channel state information at the BS. In a frequency-
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division duplexing massive MIMO system, the channel estimation is challenging due to the

need to estimate a high dimensional unknown channel vector, which requires large training

and feedback overhead for the conventional channel estimation algorithms. Moreover, massive

MIMO system with fully digital architecture, where a dedicated radio frequency chain and a

high-resolution analog-to-digital converter (ADC) are connected to each antenna element, will

cause too much power and hardware cost as the size of the antenna array becomes large.

To reduce the training and feedback overhead, compressive sensing methods and sparse

recovery algorithms are proposed to robustly estimate the downlink and uplink channel by

exploiting the sparse representation of the massive MIMO channel. Previous works model this

sparse representation by some predefined matrix, while in this dissertation, a dictionary learning

based channel model is proposed which learns an efficient and robust representation from the data.

Furthermore, a joint uplink/downlink dictionary learning framework is proposed by observing the

reciprocity between the angle of arrival in uplink and the angel of departure in downlink, which

enables a joint channel estimation algorithm. To save the power and hardware cost, a hardware-

efficient architecture which contains both hybrid analog-digital processing and low-resolution

ADCs is proposed. This hardware-efficient architecture poses significant challenges to channel

estimation due to the reduced dimension and precision of the measured signal. To address the

problem, the sparse nature of the channel is exploited and the transmitted data symbols are utilized

as the virtual pilots, both of which are treated in a unified Bayesian formulation. We formulate the

channel estimation into a quantized compressive sensing problem utilizing the sparse Bayesian

learning framework, and develop a variational Bayesian algorithm for inference. The performance

of the compressive sensing can be further improved by applying a well structured sensing matrix,

and we propose a sensing matrix design algorithm which can exploit the partial knowledge of the

support.
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Chapter 1

Introduction

1.1 Massive MIMO Systems

Massive multiple-input multiple-output (MIMO) systems have been considered as a key

technology for the next generation wireless communication system, which scale up MIMO by

possibly orders of magnitude compared to the current state of the art. As shown in Fig. 1.1,

in a massive MIMO system, the base station (BS) is equipped with a large antenna array and

simultaneously serves multiple user equipments (UEs) in the same time-frequency resource,

enabling significant gains in the capacity and the energy efficiency. With the large number of

antenna elements, the BS can perform multi-user beamforming with much narrower beamwidth,

thereby serving more UEs with less interference among them. Moreover, a large antenna array

also leads to larger antenna gains. In Fig. 1.2, we compare the beampattern of the uniform

linear array (ULA) with different number of antennas, all pointing to the array broadside. It can

be clearly seen from the plot that as the number of antenna elements increases, the beamwidth

becomes narrower and the beamforming gain becomes larger. As a result, the BS can focus the

power towards the desired direction and reduce the interference to other directions, leading to an

increase in the capacity (by spatial multiplexing) and energy efficiency (by energy concentration).
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Figure 1.1: A typical illustration of a massive MIMO system.

Many other benefits of massive MIMO have been shown in the literature [1, 2], e.g., massive

MIMO can be built with inexpensive and low-power components, the large antenna array in the

massive MIMO system provides a large surplus of degree of freedoms, and the massive MIMO

increases the robustness against both unintended man-made interference and intentional jamming.

However, efficient beamforming relies on the availability of channel state information

(CSI) at the BS for both the uplink and the downlink. To obtain the uplink channel, the UEs

transmit the pilot symbols and the BS perform the channel estimation. Since the channel is

estimated at the BS, there is no feedback needed. On the other hand, to estimate the downlink

channel, the BS sends out pilot symbols, and the downlink channel is estimated at UEs and

then fed back to the BS. For the optimal downlink channel estimation, the pilots should be

mutually orthogonal between the antennas, which means that the number of pilots scales with

the number of antennas at the BS. Moreover, each UE needs to feed back the estimated channel

information to the BS, so the feedback overhead is also proportional to the number of antennas. In

a massive MIMO system, the number of antennas is large, implying a large training and feedback
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Figure 1.2: Beampattern comparison for uniform linear array with different number of
antennas. (a) 2 antennas. (b) 4 antenna. (c) 8 antenna. (d) 16 antenna. (e) 32 antenna.
(f) 64 antennas.

overhead. Furthermore, the downlink training and feedback have to be performed within the

coherence time of the channel. As a result, the downlink channel estimation is very challenging in
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a massive MIMO system, especially with limited coherence time. On the contrary, uplink channel

estimation is relatively easy since typically the UE is assumed to have a single antenna or very

small number of antennas, so the training overhead for the uplink channel estimation only scales

with the number of UEs, which is assumed to be much smaller than the number of antennas at the

BS. Moreover, there is no feedback overhead since the channel estimation is performed at the BS.

Due to the challenges of downlink channel estimation, massive MIMO systems are

assumed to be operated in time-division duplexing (TDD) mode [1, 2], where the reciprocity

between the uplink and downlink channels is assumed. Therefore, only the uplink channel is

estimated at the BS, and the estimated channel response is directly applied for the downlink

beamforming, so the difficult downlink channel estimation can be completely avoided. However,

many current networks are operating in frequency-division duplexing (FDD) mode where the

uplink and the downlink use different frequency band, so the channel reciprocity between the

uplink and downlink is no longer valid and the downlink training and feedback are required,

imposing big challenges to the use of massive MIMO in a FDD system. With respect to the wide

deployment of the FDD system, the adoption of the massive MIMO would be much faster if the

downlink channel can be efficiently estimated. This dissertation will shed some light on this

direction by utilizing the sparse structure of the massive MIMO channel to reduce the training

and feedback overhead in the downlink channel estimation.

In a conventional MIMO system, fully digital architecture is assumed where each antenna

is equipped with a dedicated RF chain. Furthermore, a high-resolution analog-to-digital converter

(ADC) is typically used to transform the signal from the analog domain to the digital domain for

baseband processing. In a massive MIMO system, utilizing fully digital architecture and high-

resolution ADCs would incur a large power and hardware cost, since the number of RF chains and

the high-resolution ADCs would scale up with the number of antennas. To deal with the problem,

one option is to apply hybrid analog-digital (AD) processing, where only a limited number of RF

chains are used and each RF chain is connected to antennas through a group of phase shifters [3],
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so the total number of RF chains is no longer scaling with the number of antennas. Another option

is to replace high-resolution ADCs with low-resolution ADCs [4], which can greatly reduce the

power consumption. However, despite their hardware effectiveness, such architectures also pose

significant challenges to the channel estimation due to the reduced dimension and precision of the

received signal. In this dissertation, a hardware-efficient architecture is proposed which combines

both the hybrid AD processing and the low-resolution ADCs, and a Bayesian channel estimation

algorithm is developed to deal with the challenges posed by the hardware constraints.

1.2 Compressive Sensing

Compressive sensing, or more generally speaking, sparse signal recovery, is a powerful

technique which utilizes the sparse structure of the signal to reduce the number of measurements

that is required to robustly estimate the signal. More specifically, when the signal can be sparsely

represented in some basis or dictionary, which we call the sparsifying matrix, the number of

measurements required to robustly estimate the signal no longer scales with the ambient dimension

of the signal, but only scales with the sparsity level of the corresponding representation, if some

conditions on the measurement matrix and the sparsity level are satisfied. Moreover, such recovery

process can be performed using some convex optimization algorithms, or other highly efficient

algorithms. Over the past two decades, many theoretical results as well as practical algorithms

have been developed to show what performance can be achieved by compressive sensing and

sparse recovery methods, how to achieve that performance, and they have been successfully

applied in many different areas. Readers are referred to interesting tutorial papers [5,6] and useful

books [7–9] for more details. In the following, we will briefly review the basic concept of the

compressive sensing in a setup related to our specific channel estimation problem.

Denote the interested signal as x ∈ CN×1, and the measurement matrix as A ∈ CT×N .

Each measurement is performed by correlating one row ofA with the signal x. After performing
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T such measurements, the measured signal is given by

y = Ax+ n (1.1)

where n ∈ CT×1 denotes the measurement noise. Given y andA, the goal is to robustly estimate

x. Notice that x is an N dimensional signal and the number of measurements is T . Even without

the measurement noise n, it is required that T ≥ N such that (1.1) has a unique solution for

x. In other words, the number of measurements required to estimate the signal scales with the

dimension of the signal. For a high-dimensional signal x, the required number of measurements

is also large, which is impractical for many applications.

However, in practice, many high-dimensional signal actually resides in a low-dimensional

space, and there exists some basis or dictionary on which the high dimensional signal can be

much more efficiently represented. Assume there is a sparsifying matrixD ∈ CN×M such that

x = Dβ, where the coefficient vector β satisfies ‖β‖0 = s � N . Here the `0 norm ‖β‖0

denotes the number of nonzero elements in β. The measurement scheme in (1.1) can then be

written as

y = Ax+ n = ADβ + n, (1.2)

and now the goal is to estimate β given the knowledge of y,A andD. Notice that if the locations

of nonzero elements in β are known, then based on the same arguments as before the required

number of measurements is T ≥ s. Compared to T ≥ N , the number of measurements is greatly

reduced if s is much less than N , and it only scales with the underlying sparsity level of the signal

rather than the ambient dimension of the signal.

The requirements of knowing the sparsity level s and the locations of s nonzero elements

in β are hard to satisfy in practical applications, since they depend on the specific unknown signal

x. But with the prior knowledge that β is sparse, i.e., s = ‖β‖0 is small, the problem in (1.2) can

be regularized such that we aim to find the sparsest representation of x that is consistent with the
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measurement y by solving the following problem

arg min
β
‖β‖0 s.t. ‖y −ADβ‖2 ≤ ε (1.3)

where ε is the parameter that bounds the energy in the measurement noise. Notice that the `0 norm

is not a convex function, so solving (1.3) is very difficult. One has to exhaustively enumerate all(
M
k

)
possible locations of nonzero elements in β, starting with k = 1 and increasing k by 1 if no

solution is found. The complexity is prohibitive even for a moderate problem size. Fortunately,

many practical algorithms have been proposed to approximately solve the problem, and we briefly

list several types of algorithms which are commonly used in practice:

• Greedy algorithms: orthogonal matching pursuit (OMP) [10] and compressive sampling

matching pursuit (CoSaMP) [11].

• Convex relaxation algorithms: basis pursuit (BP) [12] and fast iterative shrinkage-thresholding

algorithm (FISTA) [13].

• Iteratively re-weighted algorithms: reweighted `1 algorithm [14], reweighted `2 algorithm

[15] and focal underdetermined system solver (FOCUSS) [16].

• Graphical model based algorithms: approximated message passing (AMP) [17] and gener-

alized approximated message passing (GAMP) [18].

• Bayesian algorithms: relevance vector machine (RVM) [19], sparse Bayesian learning

(SBL) [20, 21], and other Bayesian-based algorithms [22, 23].

Besides the algorithms listed above, there are many other algorithms [7–9]. Each algorithm has its

own advantages and disadvantages in terms of performance guarantee, complexity, and recovery

accuracy. In practice, trade-offs among those factors have to be made in order to choose the

appropriate algorithm.
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In addition to those practical algorithms, many theoretical results have been developed to

provide conditions on the equivalent sensing matrix Φ = AD and the sparsity level of β, such

that the problem in (1.3) (or its convex relaxation form by replacing ‖β‖0 with ‖β‖1) can be

solved. Generally speaking, the columns of Φ are expected to be as incoherent as possible, since

two highly correlated columns would mislead any recovery algorithms. Many useful measures,

such as mutual coherence [7], Spark [24], null space property (NSP) [8] and restricted isometry

property (RIP) [25], have been proposed to describe the incoherent property of Φ. And based

on those measures, the conditions imposed on the sparsity level s are provided to indicate when

specific algorithm can succeed, revealing (either explicitly or implicitly) the relationship between

the number of measurements T and the sparsity level s. One of the most notable results is

that, when specific conditions on Φ and s are satisfied, the required number of measurements

T to obtain a robust estimate of β is only proportional to the sparsity level s rather than the

signal dimension N [6]. So when the signal is very sparse, i.e., s� N , the required number of

measurements can be greatly reduced. This result shows the advantage of exploring the sparse

representation of the signal and applying compressive sensing algorithms to estimate the signal,

in terms of reducing the number of measurements.

1.3 Dissertation Overview

This dissertation is organized as follows.

In Chapter 2, we present the massive MIMO system model and formulate the channel

estimation problem for both the downlink and the uplink. For the downlink, we discuss the

challenges of using conventional channel estimation algorithm due to the large training and

feedback overhead that scale with the number of antennas at the BS. Then we utilize the com-

pressive sensing-based channel estimation which exploits the sparse structure of the massive

MIMO channel to reduce the number of pilots. For the uplink, we show the benefit of utilizing
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the channel sparse structure and propose sparse recovery-based channel estimation. With this

new formulation, robust channel estimate can be obtained with number of uplink pilots less than

the number of UEs, which is an underdetermined problem if one is using a conventional channel

estimation algorithm. A well structured sensing matrix can improve the performance of the sparse

recovery-based uplink channel estimation, indicating the importance of pilots design and user

scheduling.

In Chapter 3, we propose the dictionary learning-based channel model which learns an

efficient and robust channel representation from collected measurements. Compared to the prede-

fined sparsifying matrix, the learned dictionary leads to a more sparse channel representation and

is robust to any antenna uncertainties, which in turn can improve the performance of compressive

sensing-based channel estimation. Then we generalize the downlink sparse channel model to a

joint uplink/downlink sparse channel model based on joint uplink/downlink dictionary learning.

We discuss the motivation and present the optimization problem. A joint uplink/downlink chan-

nel estimation algorithm is proposed by utilizing the jointly learned dictionaries, which further

improves the performance compared to the downlink only channel estimation.

In Chapter 4, we consider the hardware-efficient architecture which applies both hybrid

analog-digital processing and low-resolution ADCs. Although this architecture can reduce the

hardware cost and power consumption, it also makes channel estimation challenging due to the

reduced number of measurements and the high quantization error in each measurement. We

formulate the channel estimation problem utilizing the sparse structure of the massive MIMO

channel, so the required number of measurements is decreased. Furthermore, part of the transmit-

ted data is jointly estimated with the channel, acting as the virtual pilots to improve the channel

estimation accuracy. We formulate the problem in a sparse Bayesian learning framework, and

apply the variational Bayesian method to solve the problem.

In Chapter 5, we study the sensing matrix design problem in compressive sensing, where

partial knowledge of support is assumed. When the signal can be sparsely represented using an
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overcomplete dictionary, a carefully designed sensing matrix can improve the performance of

compressive sensing algorithms. In this dissertation, we further assume the partial knowledge

of the support, and propose an algorithm to utilize such knowledge for sensing matrix design.

Simulation results show better recovery performance of the proposed algorithm compared to

previous sensing matrix design algorithms. The algorithm proposed in this chapter can be used

to design the pilots in the massive MIMO system, since the supports of the transformed domain

channel in two consecutive blocks of coherence time are similar when the channel changes slowly.

As a result, partial knowledge of the support of the transformed domain channel in the current

block of coherence time can be obtained from the estimated channel in the previous block of

coherence time. Therefore, better pilots can be designed using the proposed algorithm when the

compressive sensing method is applied for channel estimation.
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Chapter 2

Channel Estimation Utilizing Sparse

Channel Structure

Massive multiple-input multiple-output (MIMO) is a promising technology for next

generation communication systems, which can achieve significant gains in the capacity and the

energy efficiency by performing multi-user beamforming. However, efficient beamforming relies

on the availability of channel state information at the BS. In a frequency-division duplexing

massive MIMO system, the channel estimation is challenging due to the need to estimate a high

dimensional unknown channel vector, which requires large training and feedback overhead when

conventional channel estimation algorithms are used. Furthermore, the channel coherence time

may make the feedback delay unacceptably high. In this chapter, the compressive sensing and

sparse recovery algorithms are used to robustly estimate the downlink and uplink channel with

reduced overhead. We illustrate the intuition behind the sparse channel structure for massive

MIMO system, and utilize such structure for efficient channel estimation.
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2.1 Introduction

Massive multiple-input multiple-output (MIMO) systems have been proposed for the

next generation of communication systems [1, 2]. By deploying a large antenna array at the

base station (BS), both receive combining and transmit beamforming can be performed with

narrow beams, thereby eliminating multiuser interference and increasing the cell throughput. For

effective uplink (UL) combining and downlink (DL) precoding, it is essential to have accurate

knowledge of the channel state information (CSI) at BS. The common assumption in massive

MIMO is that each user equipment (UE) only has a small number of antennas, therefore it is

relatively easy to have the uplink CSI since the uplink training overhead is only proportional to

the number of users [26]. In a time-division duplexing (TDD) system, downlink CSI can also be

easily obtained by exploiting the uplink/downlink channel reciprocity. On the other hand, channel

reciprocity is no longer valid in a frequency-division duplexing (FDD) system because the uplink

and downlink transmission are operated at different frequencies. In order to have downlink CSI,

the BS has to perform downlink training. Subsequently, the user needs to estimate, quantize and

feedback the channel state information. When conventional channel estimation and feedback

schemes are used, the downlink training and feedback overhead are proportional to the number

of antennas at the base station. The large antenna array in the massive MIMO system makes

such training impractical due to the high overhead and infeasible when the coherence time of

the channel is limited. However, since FDD system is generally considered to be more effective

for systems with symmetric traffic and delay-sensitive applications, most cellular systems today

employ FDD [27, 28]. And the adopt of massive MIMO system would be much faster if the large

antenna array can also be applied in current FDD system.

To alleviate the overhead of downlink channel training and feedback in a FDD massive

MIMO system, one option is to explore possible underlying channel structure whereby the high

dimensional channel vector has a low dimensional representation [27–29]. Motivated by the
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framework of compressive sensing (CS), if the desired signal (channel response) can be sparsely

represented in some basis or dictionary, then it can be robustly recovered with the number of

measurements (downlink pilot symbols) only proportional to the number of nonzero entries in the

representation [6]. This indicates that when such basis or dictionary does exist and leads to a very

sparse representation, we are able to greatly reduce the downlink training overhead. Fortunately,

the limited scattering environment implies the low dimensionality of the channel, and the large

antenna array provides finer angular resolution to resolve the limited scattering and represent

channel sparsely [30, 31]. Many previous works have proposed efficient downlink channel

estimation and feedback algorithms based on this sparse assumption [27–29, 32]. Besides the

downlink channel estimation, we further formulate the uplink channel estimation explicitly into a

sparse recovery problem. Although the compressive sensing formulation has been applied widely

in the downlink channel estimation, utilizing sparse property for the uplink has only received

limited attention [33, 34]. We show that with both appropriate pilots design and non-overlapping

(or limited overlapping in practice) sparse supports of users, good estimation accuracy can be

achieved even with pilot symbols less than the number of users, which is the underdetermined

case for the conventional least square channel estimation.

The chapter is organized as follows. In Section 2.2, we introduce the system model.

In Section 2.3, we review the conventional channel estimation algorithms. The compressive

sensing-based downlink channel estimation algorithm is provided in Section 2.4, and we develop

the sparse recovery-based uplink channel estimation algorithm in Section 2.5. The chapter is

concluded in Section 2.6

Notations used in this chapter are as follows. Upper (lower) bold face letters are used

throughout to denote matrices (column vectors). (·)T , (·)H (·)† denotes the transpose, Hermitian

transpose, and the Moore-Penrose pseudo-inverse. Ai· andA·j represents the i-th row and j-th

column of A, and for a set S we denote AS to be the submatrix of A that contains columns

indexed by elements of S. For a vector x, diag(x) is a diagonal matrix with entries of x along
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its diagonal. ‖x‖1, ‖x‖2 denotes the `1 and `2 norm. ‖x‖0 represents the number of nonzero

entries in x and is referred to as the `0 norm. supp(x) denotes the set of indices such that the

corresponding entries of x are nonzero.

2.2 System Model

We consider a single cell massive MIMO system operated in FDD mode. The BS is

equipped with N antennas and each UE has a single antenna. Assume a narrowband block fading

channel, we adopt a simplified spatial channel model which captures the physical propagation

structure of the uplink and the downlink transmission as

hu =
Nc∑
i=1

Ns∑
l=1

αuila
u(Ωu

il)

hd =
Nc∑
i=1

Ns∑
l=1

αdila
d(Ωd

il)

(2.1)

where the superscript u and d denotes the uplink and downlink. Nc is the number of scattering

clusters, each of which contains Ns propagation subpaths. αuil and αdil are the complex gains

of the l-th subpath in the i-th scattering cluster for the uplink and downlink. For 2D channel

model [30, 31, 35], Ωu
il = {θuil} denotes the angle of arrival (AOA) for the uplink transmission

and Ωd
il = {θdil} is angle of departure (AOD) for the downlink. au(Ωu

il) and ad(Ωd
il) are the array

response vectors for the uplink and downlink, and for a uniform linear array (ULA)

au(θ) = [1, ej2π
d
λu

sin(θ), . . . , ej2π
d
λu

sin(θ)·(N−1)]T

ad(θ) = [1, ej2π
d

λd
sin(θ), . . . , ej2π

d

λd
sin(θ)·(N−1)]T

(2.2)

where d is the antenna spacing and λu (λd) is the wavelength of uplink (downlink) propagation.

For 3D channel model [36, 37], Ωu
il = {θuil, φuil}, Ωd

il = {θdil, φdil}, where θuil, φ
u
il are zenith angle
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of arrival (ZOA) and azimuth angle of arrival (AOA) for the uplink, and θdil, φ
d
il are zenith angle

of departure (ZOD) and azimuth angle of departure (AOD) for the downlink. For a uniform

rectangular array (URA) with N1 vertical antennas spaced by d1 and N2 horizontal antennas with

d2 spacing, N1N2 = N , the array response vectors is given as [36]

au(θ, φ) = q(vu)⊗ p(wu)

ad(θ, φ) = q(vd)⊗ p(wd)

(2.3)

where we have
p(w) = [1, ejw, . . . , ej(N1−1)w]T

q(v) = [1, ejv, . . . , ej(N2−1)v]T
(2.4)

and wu = 2πd1cos(θ)/λu, wd = 2πd1cos(θ)/λd, vu = 2πd2sin(θ)cos(φ)/λu, and vd =

2πd2sin(θ)cos(φ)/λd.

In order to model the scattering clusters, we consider the principles of Geometry-Based

Stochastic Channel Model (GSCM) [38], as illustrated in Fig. 2.1. For a specific cell, the locations

of the dominant scattering clusters are determined by cell specific attributes such as the buildings,

and are common to all the users irrespective of user position. We assume such scattering clusters

are far away from the base station, so the subpaths associated with a specific scattering cluster

will be concentrated in a small range, i.e., having a small angular spread (AS). While modeling

the scattering effects which are user-location dependent, for example the ground reflection close

to the user, or some moving physical scatterers near the user, we assume the UE is far away from

the base station, so subpaths associated with the user-location dependent scattering cluster also

have small angular spread. Since the BS is far away and is commonly assumed to be mounted at

a height, the number of scattering clusters that contribute to the channel responses is limited, i.e.,

Nc is small. Because the number of scattering clusters is limited and each of them spans a small

AS, there are only limited dimensions being occupied when viewed from the angular domain.

Furthermore, the large antenna array at the BS leads to narrower beamwidth, resulting in smaller
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Figure 2.1: Illustration of signal propagation in a typical cell

leakage effect of some scattering cluster to the other angular bins. Due to the limited scattering

effect and the large antenna array, it is reasonable to assume a low dimensional representation for

the large massive MIMO channel [27–29, 32].

2.3 Conventional Channel Estimation

For the downlink channel estimation in FDD system, the BS transmits training pilots. The

UE estimates the channel and feed back the channel state information to the BS. The received

signal yd at the UE is given as

yd = Ahd +wd (2.5)

where hd ∈ CN×1 denotes the downlink channel response, wd ∈ CT×1 is the received noise

vector such that wd ∼ CN (0, I). A ∈ CT d×N is the downlink pilots transmitted during the

training period of T d symbols, where ‖A‖2
F = ρdT d such that ρd measures the training SNR.

Using conventional channel estimation technique such as Least Square (LS) channel estimation,

the estimated channel is given by

ĥdLS = A†yd (2.6)
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whereA† is the Moore-Penrose pseudoinverse. Robust recovery of hd by LS channel estimation

requires T d ≥ N , which means the training period has to be larger than the number of antennas.

In a massive MIMO system N is very large making this infeasible. Moreover, the UE needs to

feed back channel information to the BS, which also requires feedback resources proportional to

channel dimension N . The finite channel coherence time further exacerbates the situation.

In contrast to the downlink channel estimation, uplink channel estimation is relatively

easy in a massive MIMO system. With the same assumption of N antennas at the BS and a single

antenna at the UE, for K UEs the uplink training can be written as

Y u =
K∑
k=1

huk
√
ρukT

usTk +W u = HuCS +W u (2.7)

whereHu = [hu1 , . . . ,h
u
K ] ∈ CN×K is the uplink channel for K UEs, Y u ∈ CN×Tu denotes the

received signal at the base station and W u ∈ CN×Tu is the received noise whose elements are

assumed to be i.i.d Gaussian with zero mean and unit variance. S = [s1, . . . , sK ]T ∈ CK×Tu

denotes the uplink pilots during training period T u, where ‖sk‖2
2 = 1. ρuk denotes the uplink

training SNR for the k-th UE, which incorporates the transmit power, path loss and shadow

fading, and is assumed to change slowly and known a priori. C = diag(
√
ρu1T

u, . . . ,
√
ρuKT

u).

Using LS channel estimation, we have

Ĥu
LS = Y u(CS)†. (2.8)

For the robust estimation, we only require T u ≥ K, i.e., the number of pilots to be greater than

the number of users. In massive MIMO systems, it is common to assume the number of users is

much smaller than the number of antennas. Comparing to T d ≥ N for the downlink estimation,

the uplink channel estimation task is simpler. Moreover, the uplink channel is estimated at the

BS, incurring no feedback overhead.

The comparison of training and feedback overhead for uplink and downlink is summarized
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Table 2.1: Comparison of overhead for uplink and downlink training and feedback

Training Feedback
Uplink (TDD) T u ≥ K No
Downlink (FDD) T d ≥ N ∝ N

in Table 2.1. For a TDD system, only uplink training is required, since the downlink CSI can be

directly obtained from uplink CSI by channel reciprocity. The uplink training overhead is only

proportional to the number of UEs, and there is no feedback overhead. As a result, conventional

massive MIMO system is assumed to be operated in TDD mode [1, 2]. For FDD system, both the

training and feedback overhead are proportional to the number of antennas at the BS, which is

impractical for massive MIMO system. However, since FDD mode is widely deployed in current

communication system, the adoption of massive MIMO would be much faster if it can be applied

in FDD system. In the following section, we discuss how to reduce the downlink training and

feedback overhead, such that they no longer scale with the number of antennas.

2.4 Compressive Sensing-Based Downlink Channel Estima-

tion

In order to robustly estimate downlink channel with limited training overhead, compres-

sive sensing-based channel estimation has been proposed in previous works [28, 29, 32]. In the

compressive sensing framework, methods to measure a high-dimensional signal have been pro-

posed with much smaller measurements, provided the original signal can be sparsely represented

in some sparsifying matrix [6]. In our scenario, the high-dimensional signal is the channel vector

hd, and the number of measurements corresponds to the number of downlink pilots T d. By

utilizing the compressive sensing, the goal is to robustly estimate hd with reduced T d such that

T d no longer scales with the dimension of hd.
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2.4.1 Downlink Training

Assume there exists a sparsifying matrix Dd ∈ CN×M (M ≥ N ) such that hd = Ddβd,

where the representation vector βd ∈ CM×1 is sparse, i.e., s = ‖βd‖0 � N . Then the downlink

channel estimation can be written as

yd = Ahd +wd = ADdβd +wd. (2.9)

Given yd,A and Dd, if we are able to solve for βd, then the channel estimate is obtained as

ĥd = Ddβd. However, (2.9) is an underdetermined system if we plan to use a small number of

training samples T d < N . The system will in general have an infinite number of solutions for

βd and the sparsity assumption provides a mechanism to regularize the problem. Consider the

minimum sparsity assumption that s� N and assuming ‖wd‖2 ≤ ε, then the problem, denoted

as compressive sensing-based downlink channel estimation, is given as

β̂d = arg min
βd
‖βd‖0 subject to ‖yd −ADdβd‖2 ≤ ε (2.10)

and ĥdCS = Ddβ̂d. Notice that the optimization formula in (2.10) is non-convex, and a number of

suboptimal but effective algorithms have been proposed to solve the problem [39]. One of the

most widely used framework is to relax the `0 norm ‖βd‖0 to the `1 norm ‖βd‖1, which solves

the following convex optimization problem

β̂d = arg min
βd
‖βd‖1 subject to ‖yd −ADdβd‖2 ≤ ε. (2.11)

It has been shown that under certain conditions onADd, based on the `1 norm criteria a solution

of βd with bounded error can be obtained with T d ≥ c · slog(N/s), where c is some constant [6].

Instead of using a training period proportional to the channel dimension N , we can compute good

channel estimate with training period proportional to sparsity level s, which is assumed to be
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much less than N . This makes downlink channel estimation feasible in a limited training period.

The CS-based downlink channel estimation in (2.11) is for single antenna at the UE, and

we show in the following how to extend it to scenario where UE has multiple antennas. Assume

NT antennas at BS and NR antennas at UE, then the channel Hd = [hd1, . . . ,h
d
NR

] ∈ CNT×NR

where the column hdk denotes the channel from NT BS antennas to the k-th UE antenna. Since the

antenna aperture at UE is much smaller than the distance between the antenna and the scattering

clusters in the environment, the scattering clusters that affect the signal transmission are the

same for all antenna elements at the UE side. With the sparse representation hdk = Ddβdk,∀k,

it implies the support of βdk is the same for all NR antennas, i.e., supp(βd1) = . . . = supp(βdNR).

Denoting Bd = [βd1 , . . . ,β
d
NR

], then Hd = DdBd and the matrix Bd is row sparse. Similar

observation can be made when applying the virtual channel model Hd = ATH̃
dAH

R [29, 31],

whereAT ∈ CNT×NT andAR ∈ CNR×NR are orthogonal DFT matrices, H̃d contains the virtual

channel coefficients and is assumed to be sparse. Assume the i-th row H̃d
i· = 01×NR , then the

whole i-th row of the combined matrix H̃dAH
R (act similarly as Bd) is zero, implying the row

sparsity of the matrix H̃dAH
R . The downlink training can be written as

Y d = AHd +W d = ADdBd +W d (2.12)

where Y d ∈ CT d×NR . With respect to the row sparsity ofBd, we cast the channel estimation into

solving a multiple measurement vector (MMV) problem [40–44] such as

B̂d = arg min
Bd
‖Bd‖1,2 subject to ‖Y d −ADdBd‖F ≤ ε, (2.13)

where ‖Bd‖1,2 =
∑M

i=1 ‖Bd
i·‖2, i.e., the summation of the `2 norm of each row in Bd. The

estimated channel is given by Ĥd
CS = DdB̂d. For the sparse recovery, it has been shown that

utilizing the row sparse property in the MMV formulation can achieve better recovery performance

compared to the single measurement vector (SMV) formulation as in the form of (2.11) [40–43].
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2.4.2 Downlink Feedback

By utilizing the compressive sensing, the number of downlink training pilots no longer

scales with the number of antennas but is only proportional to the sparsity level of the channel,

i.e., ‖β‖0. As mentioned in Chapter 2.2, it is reasonable to assume that there exists a sparse

representation which leads to small ‖β‖0 for the massive MIMO channel due to the limited

scattering effect and the large antenna array, so the downlink training overhead can be reduced.

However, for traditional channel estimation scheme, the channel is estimated at UE side, and then

UEs feed back the CSI to the BS through some quantization process. This scheme will cause

large feedback overhead, since the feedback is proportional to the channel dimension, i.e., the

number of antennas. To further reduce the feedback overhead, a new scheme has been proposed

that the UE feeds back the received measurements yd to the BS and the channel is estimated

at the BS utilizing the compressive sensing-based channel estimation (2.10). This is different

from the conventional channel estimation scheme where UEs estimate the channel and feed it

back to the BS. The scheme of feeding back yd has been proposed in previous works [28, 32, 45],

which has several advantages: firstly the dimension of yd is T d, i.e., the number of training pilots.

Since the CS is utilized for channel estimation, the required T d is only proportional to ‖β‖0 and

is much less than the channel dimension N , so the feedback overhead is reduced. Moreover, the

sparse recovery algorithms (channel estimation) can be complex so it is preferably done at the BS

thus saving energy for UE. In this work, perfect uplink feedback is assumed for simplicity.

2.5 Sparse Recovery-Based Uplink Channel Estimation

As shown in Chapter 2.3, uplink channel estimation is relatively easy since the uplink

training overhead is only proportional to the number of UEs K, which is typically much smaller

than the number of antennas N . Furthermore there is no feedback overhead for uplink training

since the channel is estimated at the BS. Interestingly, although the compressive sensing formula-
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tion (2.10) has been applied widely in the downlink channel estimation, utilizing sparse property

for the uplink channel estimation has only received limited attention [33], partially due to the ease

of the uplink training as shown in (2.8). However, given the channel is sparse, one can utilize

such prior knowledge to further improve the performance. In the following, we show that the

uplink channel can be accurately estimated even when T u < K by casting the channel estimation

problem into a sparse recovery problem.

2.5.1 Uplink Training

Similar to the sparse representation for the downlink, in the uplink we assume each

UE’s channel huk = Duβuk ,∀k, where Du ∈ CN×M is the sparsifying matrix and ‖βuk‖0 � N .

DenotingBu = [βu1 , . . . ,β
u
K ], then the uplink training (2.7) can be written as

Y u = HuCS +W u = DuBuCS +W u. (2.14)

Let yu = vec(Y u), then we have

yu = vec(Y u)

= vec(DuBuCS) + vec(W u)

= (ST ⊗Du)vec(BuC) + vec(W u)

= Ebu +wu

(2.15)

whereE = ST⊗Du ∈ CNTu×MK denotes the equivalent sparsifying matrix, bu = vec(BuC) =[
(
√
ρu1T

uβu1 )T , . . . , (
√
ρuKT

uβuK)T
]T is the concatenated sparse coefficients. If bu is a sparse

vector, i.e., ‖bu‖0 =
∑K

k=1 ‖βuk‖0 � NT u then we can form the sparse recovery problem as

b̂u = arg min
bu
‖bu‖0 subject to ‖yu −Ebu‖2 ≤ ε (2.16)
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where bu can be robustly estimated by many sparse recovery algorithms even when T u < K.

Once bu is estimated, the uplink channel for the user k is given by ĥuk = Duβuk since ρuk is

assumed to be known. Notice that T u < K means the number of pilots is less than the number of

users, which is underdetermined if using LS channel estimation (2.8). We denote the formulation

in (2.15) as the sparse recovery-based channel estimation, in contrast to the downlink compressive

sensing-based channel estimation (2.9) since there are no compressed measurements in the uplink.

In order to apply the sparse recovery algorithm to solve (2.16), columns inE are expected

to be incoherent to each other, since two closely related columns may confuse any sparse recovery

algorithm. Moreover, denoting Λ = supp(bu) where |Λ| = ‖bu‖0 < NT u, given Λ a priori the

sparse recovery problem in (2.15) reduces to

yu = EΛb
u
Λ +wu (2.17)

which can be solved by LS estimation. In this case,EΛ is required to be a well conditioned matrix

for the robust LS estimation. To summary, we hope columns in E and EΛ to be as uncorrelated

to each other as possible. In the following, we show how to decrease the correlation of columns

in E and EΛ by designing uplink training pilots S and performing uplink user scheduling.

2.5.2 Uplink Pilots Design

To quantitatively characterize the correlation between columns in a matrixX , we utilize

the mutual coherence [8]. Several other measures, e.g., null sparse property (NSP), restricted

isometry property (RIP), etc., can provide better characterization of the geometry of a matrix.

However those measures are difficult to evaluate explicitly [8]. The mutual coherence is defined

as the largest absolute and normalized inner product between different columns. Formally,

µ{X} = max
i 6=j

|XH
·i X·j|

‖X·i‖ · ‖X·j‖
. (2.18)
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The mutual coherence provides a measure of the worst similarity between the columns of X ,

which motivates us to minimize µ{E} and µ{EΛ} to obtain a matrix with uncorrelated columns.

Following this intuition, we first consider µ{E}, which is described in the following theorem [46]:

Theorem1 ( [46]) Given E = ST ⊗Du and the mutual coherence defined in (2.18), µ{E} =

max{µ{ST}, µ{Du}}.

Proof. To simplify the notation, denote di = Du
i ,dj = Du

j . For 1 ≤ i, j ≤M and 1 ≤ l, k ≤ K,

denote
eli = E[(l−1)M+i] = sl ⊗ di,

ekj = E[(k−1)M+j] = sk ⊗ dj.
(2.19)

Then we have

‖eli‖2
2 = eHli eli = (sl ⊗ di)H(sl ⊗ di) = (sHl sl)⊗ (dHi di) = ‖sl‖2

2‖di‖2
2. (2.20)

So ‖eli‖2 = ‖sl‖2‖di‖2, and similarly ‖ekj‖2 = ‖sk‖2‖dj‖2. Based on the same manipulation,

|eHli ekj| = |(sl ⊗ di)H(sk ⊗ dj)| = |(sHl sk)⊗ (dHi dj)| = |sHl sk||dHi dj|. (2.21)

According to (2.18), the mutual coherence can be written as

µ{E} = max
(l−1)M+i 6=(k−1)M+j

1≤l,k≤K,1≤i,j≤M

|eHli ekj|
‖eli‖2 · ‖ekj‖2

= max
(l−1)M+i 6=(k−1)M+j

1≤l,k≤K,1≤i,j≤M

|sHl sk||dHi dj|
‖sl‖2‖sk‖2‖di‖2‖dj‖2

=


µ{ST}µ{Du}, i 6= j, l 6= k;

µ{Du}, i 6= j, l = k;

µ{ST}, i = j, l 6= k.

(2.22)
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Notice that the mutual coherence is always smaller or equal to 1, i.e., µ{ST} ≤ 1, µ{Du} ≤ 1,

so we have µ{E} = max{µ{ST}, µ{Du}} for 1 ≤ l, k ≤ K, 1 ≤ i, j ≤M .

Theorem 1 indicates that to minimize µ{E}, the larger one of µ{ST} and µ{Du} needs

to be minimized. Notice thatDu is the sparsifying matrix which models the channel, and it has

been designed before the channel estimation. So during the channel estimation phase, µ{Du} is

fixed and could be small depending on whichDu is used. The only way we can minimize µ{E}

is by minimizing µ{ST}, which corresponds to design uplink pilots such that µ{ST} is small.

We discuss different situations regarding to the length of the uplink training duration T u:

• T u = 1. when T u = 1, ST = [s1, . . . , sK ] ∈ C1×K , so µ{ST} = 1 for any ST . This is the

worst case since even we pick sparsifying matrixDu such that µ{Du} = 0, we still have

µ{E} = 1, i.e., there exist fully correlated columns. No sparse recovery algorithm can

succeed in this situation.

• T u ≥ K. when T u ≥ K we have

min
ST

µ{ST} = 0 (2.23)

where the optimal ST has orthogonal columns, i.e., sHl sk = 0,∀l 6= k. So the optimal

uplink pilots design is S∗ST = IK . The orthogonal pilots among users in the same

cell are typically assumed for the uplink channel estimation in multiuser massive MIMO

systems [26, 47].

• 1 < T u < K. when 1 < T u < K, ST ∈ CTu×K is an overcomplete matrix. The famous

welch bound indicates that

µ{ST} ≥

√
K − T u
T u(K − 1)

(2.24)

where equality holds if and only if ST = [s1, . . . , sK ] forms an equiangular tight frame [8].

Unfortunately, equiangular tight frame does not exist for any pair {T u, K}. In [48], the
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solution ST to the problem minSTµ{ST} is called Grassmannian frame, and explicit

construction of Grassmannian frame has been provided for some specific pairs {T u, K}.

In general, the design of Grassmannian frames is challenging. Not only is the associated

optimization problem difficult, but there is no general procedure for deciding when a frame

solves the optimization problem unless it meets the Welch bound [49]. In this work, we

design ST following the algorithm proposed in [50] which targets an average measure of

the mutual coherence. The algorithm calculates the Gram matrix of ST asG = S∗ST , and

set the average mutual coherence µt%{ST} such that the top t% of |Gij| is greater than

µt%{ST}. The algorithm then shrinks those large |Gij| by some down-scaling factor γ to

have G̃ij = γGij , and keeps the small ones unchanged. The estimated ŜT is the solution

of minST ‖G̃ − S∗ST‖2
F , which is solved by SVD of G̃. Then new G is calculated and

such procedure is iteratively executed until some stopping rule is satisfied. By iterative

shrinkage of those large |Gij|, the µ{ST} is also reduced. It has been shown in [50] that

the algorithm practically converged and the resulted ST can lead to better performance for

the sparse recovery problem like (2.16). Interested readers are referred to [49, 50] for more

details.

By designing the uplink pilots S, a better structured sensing matrix E can be obtained, therefore

improve the sparse recovery performance of the uplink channel estimation.

2.5.3 Uplink User Scheduling

Next we consider minimizing µ{EΛ}. Denote Λk = supp(βk), then EΛ can be written as

EΛ =

[
s1 ⊗Du

Λ1
s2 ⊗Du

Λ2
. . . sK ⊗Du

ΛK

]
. (2.25)

We take a simple example in the following to see how Λk can affect the recovery performance

when T u < K. Assume K = 2, and both Λ1 and Λ2 are known a priori with |Λ1| = |Λ2| = 1.
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Let T u = 1, so s1 and s2 are scalars. If Λ1 ∩ Λ2 = ∅, then rank(EΛ) = 2 and we can robustly

recover buΛ from yu = EΛb
u
Λ +wu when the correlation ofDu

Λ1
andDu

Λ2
is small. However, if

Λ1 is overlapped with Λ2, which in this example means Λ1 = Λ2, then rank(EΛ) = 1 and we

have yu = Du
Λ1

(s1b
u
Λ1

+ s2b
u
Λ2

) +wu making recovery of buΛ1
and buΛ2

impossible. In this case,

T u ≥ 2 is required to estimate buΛ1
and buΛ2

. This example motivates how the non-overlapping

supports of different users can help sparse recovery when T u < K, as formally shown in the

following corollary.

Corollary1. Given EΛ in (2.25) and the mutual coherence defined in (2.18), then µ{EΛ} =

µ{Du} if Λl ∩ Λk = ∅,∀l 6= k.

Proof. Following the same steps as in the proof of Theorem 1, then the condition Λl ∩ Λk =

∅,∀l 6= k implies i 6= j for eli and ekj . So µ{EΛ} = max{µ{ST}µ{Du}, µ{Du}} = µ{Du}

since µ{ST} ≤ 1 for any ST .

Comparing to µ{E}, µ{EΛ} is no longer depending on µ{ST} when the support sets

of different users are non-overlapping. So even if µ{ST} is large 1, µ{EΛ} can still be small

if µ{Du} is small. This result sheds light on how user scheduling can affect the performance

of channel estimation. If given prior knowledge of Λk = supp(βk), for example from some

kind of control information or from previous estimate of βk when users are slowly moving, we

can schedule users whose supports satisfy Λl ∩ Λk = ∅,∀l 6= k, which will lead to smaller

µ{EΛ} and better channel estimation. This result is consistent with [51], which shows that in

a multi-cell network user interference can be eliminated by simple MMSE channel estimation

when the AOA of the desired user has no overlap with AOAs of interfering users. Interestingly,

authors in [28, 45] suggest to schedule users with overlapped supports for the downlink channel

estimation, since it can be formulated into a joint sparse recovery problem which exploits the

common support information among users. For the uplink training, in contrast, common support

1In the case when the number of users is much larger than the number of pilot symbols, i.e., K � Tu, we have
µ{ST } ≥ 1/

√
Tu from the welch bound in (2.24).
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increases mutual coherence when T u < K, causing decreased performance when applying sparse

recovery algorithm for channel estimation.

2.6 Conclusion

In this chapter, we study the downlink and uplink channel estimation problem in massive

MIMO systems. For conventional channel estimation algorithms, the downlink training and

feedback overhead are proportional to the number of antennas at BS. To reduce such overhead,

the sparse property of the massive MIMO channel is exploited and the compressive sensing-based

channel estimation algorithm is utilized, which can robustly estimate the downlink channel

with training and feedback overhead only proportional to the sparsity level of the channel. The

sparse channel property is also utilized for uplink channel estimation, and we develop sparse

recovery-based uplink channel estimation algorithm. The uplink channels from multiple UEs can

be robustly estimated with the number of uplink pilots smaller than the number of UEs, which

is an underdetermined problem when using the conventional channel estimation algorithm. To

efficiently perform the sparse recovery algorithm, uplink pilots design and uplink user scheduling

are required to construct a well structured sensing matrix.

Chapter 2, in part, is a reprint of the material as it appears in the paper: Y. Ding and

B. D. Rao, “Dictionary learning-based sparse channel representation and estimation for FDD

massive MIMO systems,” IEEE Trans. Wireless Commun., in press. The dissertation author was

the primary investigator and author of this paper.
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Chapter 3

Sparse Channel Representation Using

Dictionary Learning

To reduce the training and feedback overhead for the channel estimation in a massive

MIMO system, the sparse structure of the massive MIMO channel is exploited, and compressive

sensing methods and sparse recovery algorithms are utilized for efficient channel estimation.

The success of such algorithms depends on the assumption that the channel can be sparsely

represented under some sparsifying matrix. Previous works model the channel using some

predefined sparsifying matrix. Although useful in some scenarios, such predefined sparsifying

matrices are not efficient and robust enough for a specific cell or any antenna uncertainties,

leading to performance loss in a practical system. In this chapter, we present a dictionary

learning-based channel model such that a dictionary is learned from comprehensively collected

channel measurements. The framework is further extended into a joint uplink/downlink dictionary

learning by observing the reciprocity between the uplink and downlink transmission. Simulation

results show that the learned dictionary can achieve efficient and robust sparse representation,

thereby improving the channel estimation accuracy. Moreover, by utilizing the jointly learned

dictionary, the downlink channel estimation performance can be improved by utilizing simpler
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uplink training.

3.1 Introduction

Channel estimation is challenging for the frequency-division duplexing (FDD) massive

MIMO system. For downlink channel estimation, the base station (BS) transmits the pilot symbols,

the user equipment (UE) estimates the channel and feeds back the channel state information (CSI)

to the BS. This process causes training and feedback overhead proportional to the number of

antennas at the BS, which is large in massive MIMO system. To alleviate the overhead of downlink

channel training and feedback in a FDD massive MIMO system, sparse channel structure has been

exploited and channel estimation algorithms based on compressive sensing and sparse recovery

have been proposed which can estimate high-dimensional channel with reduced overhead. Those

algorithms are based on the assumption that there exists a sparse representation such that the high-

dimensional channel can be sparsely represented in some sparsifying matrix. Such sparsifying

matrix can either be an orthonormal basis, or an overcomplete dictionary. The corresponding

coefficient vector in the representation has only a limited number of nonzero elements, i.e., it is

a sparse representation. With this sparse representation, the number of measurements which is

required to robustly estimate the sparse coefficient is only proportional to the number of nonzero

elements in the sparse coefficient, rather than the dimension of the channel. In other words,

the training overhead only scales with the sparsity level of the channel rather than the number

of antennas. As a result, when such sparsifying matrix indeed exists and leads to a very spare

representation, the downlink training and feedback overhead can be greatly reduced.

Typically, the BS has high elevation and is far away from UEs, so the number of scattering

clusters between the BS and the UE is limited, supporting the low dimensionality of the channel.

Furthermore, the large antenna array leads to narrower beamwidth, resulting in less leakage

effect and providing finer angular resolution to resolve the scattering clusters in the environment.
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Consequently, it is reasonable to assume a low-dimensional representation of the large massive

MIMO channel from a physical point of view [27–29, 32]. Notice that although the motivation

is based on the limited scattering effect in the angular domain, from a theoretical point of view,

we only need a sparsifying matrix which can lead to a sparse representation mathematically.

In [30,31], a virtual channel model is proposed where the discrete Fourier transform (DFT) matrix

is used as the sparsifying matrix, when a uniform linear array (ULA) is assumed to be deployed

at the BS. Many previous works based on compressive sensing utilize such virtual channel model.

However, DFT matrix causes large leakage with practical channel and a moderate number of

antennas, leading to a non-sparse representation. To alleviate the problem, overcomplete DFT

matrix has been used as the sparsifying matrix [52–55]. The overcompleteness of the sparsifying

matrix introduces the flexibility into the representation, leading to a more sparse coefficient vector.

However, for both the DFT matrix and the overcomplete DFT matrix, they are predefined before

the application. Therefore, they can not adapt to the specific cell properties. Moreover, with

the strong assumption of ULA and far-field transmission, they are not robust to any antenna

uncertainties beyond the assumed structure.

In this chapter, a new channel modeling framework based on the learning techniques is

developed. We present a dictionary learning-based channel model (DLCM), where a learned

overcomplete dictionary is used to represent the channel in some specific cell. To learn the

dictionary, a large number of channel measurements need to be collected from different locations

in a specific cell at the cell deployment stage, and used as the training samples for the dictionary

learning algorithm. The learned dictionary is able to adapt to the cell characteristics as well as

ensure a sparse representation of the channel. Since no structural constraints are placed on the

dictionary, the approach is applicable to an arbitrary array geometry and does not require accurate

array calibration. We demonstrate the improved channel estimation performance when applying

the learned dictionary, compared to existing works which utilize some predefined basis. In [56],

an aperture shaping scheme has been proposed that promotes sparse representation in the virtual
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channel model. Notice that the dictionary learning concept itself has been widely investigated in

previous works [57–59], with many applications such as image denoising and feature extraction.

But to the best of our knowledge, our work is the first to utilize the dictionary learning framework

to model the massive MIMO channel.

By observing the reciprocity resides in the uplink and downlink channels, we further

develop a general framework of joint uplink/downlink dictionary learning-based channel model

(JDLCM) and channel estimation. Although in FDD systems the uplink and downlink are

operated in different frequency band, the propagation environment is the same for the uplink and

downlink transmission when the duplex distance is not large [60,61]. This motivates a joint sparse

representation of uplink and downlink channels, and enables the use of information from the more

easily obtained uplink training to help downlink channel estimation. In FDD systems, leveraging

uplink channel information for the downlink use has been proposed, for example using uplink

signals to compute direction of arrival (DOA) and construct downlink channel response [62], or

utilizing uplink channel covariance matrix to estimate downlink channel covariance matrix [63].

To the best of our knowledge, our work is the first to explore the jointly sparse representation

as an abstract model for the uplink and downlink channel reciprocity, and develop joint channel

estimation algorithms to improve the channel estimation performance.

The chapter is organized as follows. In Section 3.2, we provide the background knowledge

of the dictionary learning and review several dictionary learning algorithms. In Section 3.3, we

present the predefined sparsifying matrices which have been used in previous compressive sensing-

based channel estimation algorithms. The downlink dictionary learning framework is developed

in Section 3.4, and the extension to the joint uplink/downlink dictionary learning is presented in

Section 3.5. Numerical results are provided in Section 3.6 and we conclude the chapter in Section

3.7.

Notations used in this chapter are as follows. Upper (lower) bold face letters are used

throughout to denote matrices (column vectors). (·)T , (·)H (·)† denotes the transpose, Hermitian

32



transpose, and the Moore-Penrose pseudo-inverse. Ai· andA·j represents the i-th row and j-th

column of A, and for a set S we denote A·S to be the submatrix of A that contains columns

indexed by elements of S, and AS· to be the submatrix of A that contains rows indexed by

elements of S. For a vector x, diag(x) is a diagonal matrix with entries of x along its diagonal.

‖x‖1, ‖x‖2 denotes the `1 and `2 norm. ‖x‖0 represents the number of nonzero entries in x and

is referred to as the `0 norm. supp(x) denotes the set of indices such that the corresponding

entries of x are nonzero.

3.2 Dictionary Learning Methods

Consider a high dimensional signal x ∈ CN , we are interested in finding a representation

x ≈ Dβ, ‖β‖0 � N , such that the signal can be well approximated by a limited number of

columns inD. The sparsifying matrixD ∈ CN×M can either be a basis (N = M ) or a dictionary

(N < M ), and it can either be chosen as a predefined matrix or learned by adapting to a given set

of training samples. Choosing a predefined sparsifying matrix is appealing due to its simplicity,

and many basis and dictionary, such as wavelets, DFT matrix, overcomplete DFT matrix, etc.,

have been shown to lead to a sparse representation for practical applications. However, those

predefined sparsifying matrices are application-independent, meaning that they are generated

beforehand and unable to exploit specific properties of signals. Moreover, the choice of which

predefined sparsifying matrix to be used is mostly based on some assumed structure of the signal.

As a result, when the true signal’s structure deviates from the assumed one, those predefined

sparsifying matrices can not fit to the true signal, and the resulted representation will no longer be

sparse. In the following, we introduce a different route for designing the sparsifying matrixD

based on the learning techniques. Given a set of signals xl, l = 1, . . . , L, the goal is to find aD

such that every xl can be sparsely represented as xl ≈Dβl, ‖βl‖0 � N . We will review several

dictionary learning algorithms. Those algorithms are similar, in a sense that they all follow a two-
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step process which is based on the concept of block coordinate descent [64]. Specifically, the first

step finds the sparse coefficient by fixing the dictionary, which actually solves a sparse recovery

problem and is refer to as sparse coding. Then given the sparse coefficient, the dictionary is

updated. Different algorithms apply different methods for sparse coding and dictionary updating.

Since generally any sparse recovery algorithm can be used for sparse coding, we will focus on

how the dictionary is updated in different algorithms.

3.2.1 ML Method

In [65, 66], a maximum likelihood (ML) method is used to learnD by assuming

xl = Dβl + vl, ∀l (3.1)

where vl ∼ N (0, σ2I) denotes the possible measurement noise in the signal or the model

mismatch error. Given a set of independent signals xl, l = 1, . . . , L as the training samples, the

likelihood function ofD is given as

P (x1, . . . ,xl|D) =
L∏
l=1

P (xl|D) (3.2)

and for each signal we have

P (xl|D) =

∫
P (xl,βl|D) dβl

=

∫
P (xl|βl,D)P (βl) dβl

(3.3)

with the assumption thatD is independent of βl. Based on (3.1), we have

P (xl|βl,D) ∼ N (Dβl, σ
2I). (3.4)
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Regarding to the sparse coefficient βl , each element of βl is assumed to be zero-mean and

identically independently distributed (i.i.d.), and is highly peaked around zero to promote the

sparsity. For example, Cauchy distribution is used in [65] and Laplace distribution is used in [66].

However, the integration in (3.3) is difficult to be evaluated. In [65], it is assumed that P (xl,βl|D)

has a fairly tightly peaked maximum in βl space, so the integral can be approximated by evaluating

P (xl,βl|D) at its maximum. As a result, the dictionary learning problem becomes [65]

D̂ = arg max
D

logP (x1, . . . ,xl|D)

= arg max
D

L∑
l=1

logP (xl|D)

= arg max
D

L∑
l=1

max
βl

logP (xl,βl|D)

= arg min
D

L∑
l=1

min
βl

{
‖xl −Dβl‖2

2 + λ‖βl‖1

}
(3.5)

which is solved by a two separate phases. In the inner phase, for each xl, (3.5) is minimized with

respect to βl by fixingD. Then in the outer phase, for all the signals xl, (3.5) is minimized with

respect to D. Notice that there is no regularization on D, so the solution tends to increase the

columns of D so the corresponding elements in βl can be decreased, leading to a smaller cost

function. To alleviate the problem, the `2 norm of each columns in D is constraint so that the

output variance of the coefficients is kept at an appropriate level [65]. The dictionary is updated

based on the gradient descent procedure in [65]:

D(t+1) = D(t) − η
L∑
l=1

(D(t)βl − xl)βTl (3.6)

where η is the learning rate.

35



3.2.2 MAP Method

In [58], the ML formulation in [65] is generalized to a maximum a-posteriori (MAP)

formulation which considers the probability distribution of the dictionary D. Specifically, the

dictionary is assumed to belong to a compact submanifold D which is closed and bounded. The

dictionary is further assumed to be uniformly distributed on this constraint submanifold as

P (D) = c · 1(D ∈ D) (3.7)

where 1(·) is the indicator function and c is a constant which ensures P (D) is a valid distribution

function. Based on this, the MAP formulation aims to find D and βl,∀l by maximizing a-

posteriori probability density P (D,β1, . . . ,βL|x1, . . . ,xL) as

P (D,β1, . . . ,βL|x1, . . . ,xL)

=P (D,β1, . . . ,βL,x1, . . . ,xL)/P (x1, . . . ,xL)

∝P (D)
L∏
l=1

P (βl)P (xl|D,βl).

(3.8)

DenotingX = [x1, . . . ,xL] andB = [β1, . . . ,βL] and assume Laplace distribution on

each element of βl, the MAP formulation is given by

{D̂, β̂1, . . . β̂L} = arg max
D,β1,...,βL

log P (D,β1, . . . ,βL|x1, . . . ,xL)

= arg min
D∈D,β1,...,βL

‖X −DB‖2
F + λ

L∑
l=1

‖βl‖1.

(3.9)

Again, βl,∀l andD are iteratively updated. When no prior is chosen forD, the same updating

procedure as in [65] can be obtained. In [58], two types of constraint are considered. The first

constraint enforcesD to have the unit Frobenius norm, D = {D| ‖D‖F = 1}. And the second

constraint requires columns in D to have unit norm so D = {D| ‖D·k‖2 = 1, k = 1, . . . ,M}.
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Interested readers are referred to [58] for the updating rules and derivations.

3.2.3 MOD Method

In [57], method of optimal directions (MOD) algorithm is presented which provides a

simple way to update the dictionary. Assume the sparse coefficients B have been calculated

by any sparse recovery algorithm, then the D is calculated by minimizing the error for the

representation of all signals

D̂ = arg min
D

L∑
l=1

‖xl −Dβl‖2
2

= arg min
D
‖X −DB‖2

F

(3.10)

where the optimal solution is given by

D = XB† = XBT (BBT )−1. (3.11)

Then with the newly updatedD,B is calculated again. The update procedure has no regulariza-

tion onD, so after calculatingD, each of its columns is normalized to be 1. Notice that although

the updatedD given by (3.11) is optimal for fixedB, the calculation complexity is prohibitive

due to matrix inversion.

3.2.4 K-SVD Method

An appealing dictionary learning algorithm, named K-SVD algorithm, is presented in [59].

The algorithm is based on the concept of K-means algorithm for the vector quantization, but is

generalized to represent the signal by a linear combination of multiple columns inD. Furthermore,

the columns inD is updated sequentially by fixing all the other columns, and the corresponding

coefficients are simultaneously updated. Such update procedure is conducted by an efficient SVD
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operation.

In [59], the formulation of dictionary learning is

{D̂, B̂} = arg min
D,B

‖X −DB‖2
F s.t. ‖βl‖0 ≤ T0,∀l. (3.12)

where T0 constrains the number of nonzero elements in each βl. For the sparse coding stage,

D is assumed to be fixed, and the cost function in (3.12) can be written as the sum of L terms,

‖X −DB‖2
F =

∑L
l=1 ‖xl −Dβl‖2

2. Then the problem can be decoupled into L individual

sparse recovery problem of the form

β̂l = arg min
βl

‖xl −Dβl‖2
2 s.t. ‖βl‖0 ≤ T0 (3.13)

and can be solved efficiently by any sparse recovery algorithms. In [59], OMP algorithm is used.

After solving for all βl, B = [β1, . . . ,βL] is fixed and the goal is to update D by minimizing

‖X −DB‖2
F similar to the MOD method. However, rather than calculating the whole D by

(3.11) as in MOD method, only one column is updated at a time. Assume the k-th column will be

updated, then the cost function can be written as

‖X −DB‖2
F = ‖X −

L∑
l=1

D·lBl·‖2
F

= ‖X −
∑
l 6=k

D·lBl· −D·kBk·‖2
F

= ‖Ek −D·kBk·‖2
F

(3.14)

whereEk = X−
∑

l 6=kD·lBl· represents the residue of the signals by removing the contributions

from all the other columns ofD except the k-th column. Notice that not all the elements inBk·

are nonzero, so not all the components of Ek can be reduced by adaptingD·k. Denoting Ωk as
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the set of indexes corresponding to the nonzero elements inBk·, then

Ωk = {l |Bkl 6= 0, 1 ≤ l ≤ L} (3.15)

which also represents the indexes of those signals that indeed utilize the k-th column ofD. Then

(3.14) can be written as

‖X −DB‖2
F = ‖Ek

Ωk
−D·kBkΩk‖2

F . (3.16)

Unlike the other methods which do not change any of βl during the update ofD, in the K-SVD

algorithm bothD·k andBkΩk can be updated simultaneously, which increases the convergence

speed. As a result, the optimal solution to solve (3.16) is to perform the SVD to find the closed

rank-1 matrix that approximates Ek
Ωk

. Denoting the SVD of Ek
Ωk

as Ek
Ωk

= UΣV T , then the

solution ofD·k andBkΩk are given by

D̂·k = U·1, B̂kΩk = Σ11V
T
·1 . (3.17)

After solving for B̂kΩk , B̂k· is obtained by setting the elements whose indexes are in Ωk as B̂kΩk

and the others as zeros. Note that in this solution, the columns inD are enforced to be normalized

and the support of each βl remain the same as the result of the sparse coding. The K-SVD

algorithm sweeps through all the columns and for each column a SVD operation is used to update

it. Also, the most updated sparse coefficients are used after the previous SVD step to increase the

convergence speed of the algorithm. Due to its fast convergence and the efficiency in the sparse

representation, we will utilized K-SVD method to learn the dictionary in this chapter.
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3.3 Predefined Sparsifying Matrix

Now we consider the sparse representation of the massive MIMO channel. In Chapter 2,

for both the compressive sensing-based downlink channel estimation and the sparse recovery-

based uplink channel estimation, the key assumption is that the channel can be represented in the

form of h = Dβ, where β is a sparse vector. The existing works [28–32] which consider such

a sparse representation typically use a normalized square DFT matrix as the sparsifying matrix

when an ULA is employed, i.e., h = Fβ, where

F =

[
f(−1

2
) f(−1

2
+ 1

N
) . . . f(1

2
− 1

N
)

]
∈ CN×N ,

f(ψ) =
1√
N

[1, ej2πψ, . . . , ej2πψ·(N−1)]T .

(3.18)

Such a model is also known as the “virtual channel model” which transforms spatial channel

response into the angular domain [29–31]. For a ULA, the array response with the antenna

spacing d and the transmission wavelength λ is given as

a(θ) = [1, ej2π
d
λ

sin(θ), . . . , ej2π
d
λ

sin(θ)·(N−1)]T (3.19)

where the θ denotes the AOA for the uplink and AOD for the downlink. Notice that the column

f(ψ) has the same structure as the array response a(θ), where ψ can be related to θ through

ψ = dsin(θ)/λ, indicating the validity of the DFT matrix . However, in practice signals come from

arbitrary directions, so ψ = dsin(θ)/λ rarely resides on the DFT bins {−1
2
,−1

2
+ 1

N
, . . . , 1

2
− 1

N
},

leading to the “leakage” effect. Moreover, for each scattering cluster the signals’ subpaths often

span an angular spread, resulting even more leakage. So for practical channels, there will be

a lot of nonzero elements in β when we apply the representation h = Fβ, making the sparse

assumption invalid.

To achieve a better sparse representation, our first suggestion in the same realm of
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“predefined matrix” for ULA is to apply the overcomplete DFT matrix F̃ , which has the form

F̃ =

[
f(−1

2
) f(−1

2
+ 1

M
) . . . f(1

2
− 1

M
)

]
∈ CN×M . (3.20)

The columns of F̃ has the same structure f(ψ), but the angular domain is sampled (in the sense of

ψ) more finely, i.e., M > N . The overcomplete DFT matrix introduces redundancy to the square

DFT matrix, which improves the flexibility of representing the signal as well as the capability of

inducing sparsity. When a uniform rectangular array (URA) with N1 vertical antennas and N2

horizontal antennas is applied, F̃ is constructed as the kronecker product of two overcomplete

DFT matrix such that

F̃ = F̃h ⊗ F̃v (3.21)

where F̃h and F̃v are N2 ×M2 and N1 ×M1 overcomplete DFT matrices as given in (3.20).

Although the overcomplete DFT matrix can alleviate the leakage effect to some extent,

both F and F̃ suffer from performance loss due to their inability to adapt to the real channels.

Firstly, since F̃ and F are predefined and independent of the specific cell properties, they lose

the ability to more efficiently represent the channel by exploring cell specific characteristics. For

example both F̃ and F uniformly sample the ψ domain, but for a specific cell it is possible that

no signals may be received from some directions, then the columns in F̃ and F corresponding

to those directions will never be used. On the other hand, for directions corresponding to those

fixed location scattering clusters, finer angular sampling can lead to a reduced leakage. Since

those fixed location scattering clusters can be seen by many different users, such finer sampling

can lead to more sparse representation for many users. Secondly, predefined matrices also lose

the ability to robustly represent the channel. They assume ideal mathematical models of channel

responses, e.g., far-field plane wave, equal antenna gain and antenna spacing, etc., which are not

robust to any propagation model mismatch or antenna array uncertainty.

41



3.4 Downlink Dictionary Learning

In this section, we propose a dictionary learning-based channel model (DLCM) which

learns an overcomplete dictionary. During the learning process, the sparse representation is

encouraged by the optimization function. Furthermore, the dictionary learning process adapts

the channel model to the channel measurements collected in the cell, which contain the specific

cell characteristics. The channel measurements describe the effect of scattering clusters on the

transmitted electromagnetic waves and the antenna array. Therefore, the underlying structure of

channel measurements collected in a specific cell can reflect the cell specific properties regarding

to both the scattering clusters and the antenna array. Notice that when the knowledge of the

underlying physical generation scheme of the channel is imperfect or even incorrect, e.g., antenna

gains and locations are different from the nominal values, or there exist near-field scattering

clusters, etc., the predefined matrix is no longer accurate and may cause severe performance

degradation. However, the learned dictionary does not have any predefined structural constraints

and is able to tune its own structure to adapt to the channel measurements, which leads to a more

robust channel representation. The insight behind the sparse dictionary learning is that the high

dimensional data (channel response in our case) usually has some structure correlated in some

dimensions, and the true degrees of freedom that generate the data is usually small. So by learning

from large amount of data, we are able to recover useful underlying structures or models, which

make the representation of the data more efficient for the desired application. In our situation,

one could view this as big data analytics applied to the physical layer.

3.4.1 Formulation of Dictionary Learning

From now, we denoteD ∈ CN×M as the learned dictionary from channel measurements.

To benefit from the flexibility of overcompleteness, we let N < M . Assuming we collect L

channel measurements as the training samples in a specific cell, the goal is to learnD such that
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for all the channel responses hi, i = 1, . . . , L, they can be approximated as hi ≈ Dβi. The

algorithms should be able to address both model fitting ‖hi−Dβi‖2 (robustness), and encourage

small ‖βi‖0 (efficiency) for the sparse representation. If we constrain the model mismatch error

of each channel response to be bounded by η, then the dictionary learning can be formulated as

min
D∈C

β1,...,βL

1

L

L∑
i=1

‖βi‖0 s.t. ‖hi −Dβi‖2 ≤ η,∀i (3.22)

where the constraint set C is defined as

C = {D ∈ CN×M , s.t. ‖D·j‖2 ≤ 1,∀j = 1, . . . ,M} (3.23)

in order to prevent the scaling ambiguity between columns of D and corresponding elements

in β. as well as avoiding the trivial solution if we replace ‖β‖0 to other norm, e.g., ‖β‖1. The

solvedD in (3.22) leads to the sparsest representation in the sense of representing all collected

channel measurements within the model mismatch tolerance η.

Two similar formulations could alternatively be used. If we know beforehand or want to

constrain the sparsity level of each coefficient βi, then we solve:

min
D∈C

β1,...,βL

1

L

L∑
i=1

1

2
‖hi −Dβi‖2

2 subject to ‖βi‖0 ≤ T0,∀i (3.24)

where T0 constrains the number of non-zero elements in each βi. In other words, we expect every

channel measurement can be approximately represented using at most T0 atoms from the learned

dictionary, and we solve the dictionary that minimizes the model mismatch given such constraint.

Notice that T0 is a cell specific parameter which trades off between the sparsity and the accuracy

of the representation. When larger value of T0 is used, it leads to smaller model mismatch error

since more atoms participate in the channel representation. But larger T0 also implies that more

training pilots are needed in channel estimation. In practice, we can test several different values

43



of T0 and choose the smallest one that leads to the satisfied model mismatch error.

If we do not have any explicit constraints on model mismatch error or sparsity level, we

can formulate the dictionary learning process in general form as

min
D∈C

β1,...,βL

1

L

L∑
i=1

1

2
‖hi −Dβi‖2

2 + λ‖βi‖0 (3.25)

where λ is the parameter that trades off the data fitting and sparsity.

To solve the dictionary learning problems (3.22), (3.24), and (3.25), block coordinate

descent framework has been applied where each iteration includes alternatively minimizing with

respect to eitherD or βi,∀i, while keeping the other fixed [57–59]. WhenD is fixed, optimizing

βi, ∀i is decoupled and each of them is a sparse recovery problem, which can be solved by

any sparse recovery algorithm. When we fix βi,∀i and solve for D, many dictionary learning

algorithm can be applied [57–59]. The convergence of the iteration depends on the specific sparse

recovery algorithm and dictionary update algorithm, and to the best of our knowledge, no general

guarantees have been provided. Interested readers are referred to [59, 64] for some discussion

about the convergence under specific assumptions. Notice that in our scenario, there exists no

“true” dictionary that generates the channel. Because each channel response combines signals

coming from both fixed location scattering clusters and user location dependent scattering clusters,

where the latter depends on arbitrary user’s location. So the goal of the dictionary learning here is

not to identify any true dictionary [67], but to find an efficient and robust channel representation.

For the purpose of this work, we will show experimentally that the learned dictionary can improve

the performance in terms of both sparse representation and channel estimation.

3.4.2 Discussion

We make some comments relative to the practical implementation of the dictionary

learning process. To learn a comprehensive dictionary for users located in any place of the cell,
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we need to collect channel measurements from all locations in a specific cell, i.e., cell specific

samples, based on an extensive measurement campaign. The learned dictionaries will only be

used for this specific cell. At this stage there is not much concern about reducing training and

feedback overhead and one would like to collect channel measurements as accurately and as

extensively as possible, since large amount of channel samples will prevent the learning algorithm

from overfitting. For example, one can perform conventional channel estimation using more

training pilots, larger transmitted power and more sophisticated equipment. Fortunately, such

channel measurements collection and dictionary learning process is offline, and assumed to be

done at the cell deployment stage. Another factor which will affect the convergence is the start

pointing of the algorithm. Due to the non-convex learning process, it is possible that the learned

dictionary converges to local optima. Starting from a reasonably good initial point, for example

an overcomplete DFT matrix, can help avoid such local optima and promote quicker convergence.

The learned dictionary Dd and Du are stored at the BS for use during downlink and

uplink channel estimation. It is straightforward for the uplink since the channel estimation is

performed at the BS, and we can directly appliedDu to estimate the uplink channel based on the

sparse recovery. In the downlink channel estimation, users feed back the received measurements

yd to the BS and the channel is estimated at the BS using compressive sensing-based downlink

channel estimation with the learned dictionaryDd. This is different from the conventional channel

estimation where users estimate the channel and feed back the channel state information to the

base station. The scheme of feeding back yd has been proposed in previous works [28, 32, 45],

which has several advantages: firstly the compressive sensing algorithms used for channel

estimation can be complex so it is preferably done at the BS thus saving energy for UE. Secondly,

yd has dimension T d which is much less than the channel dimension N in massive MIMO system,

so it also reduces feedback overhead which is now only proportional to the channel sparsity level.

Furthermore, for the downlink channel estimation, making the learned dictionary available to

all users involves significant overhead in storage at UE and also conveyance of dictionary. By
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feeding back yd only the BS needs to know the dictionaries. For simplicity, we assume perfect

uplink feedback.

3.5 Joint Uplink/Downlink Dictionary Learning

In compressive sensing-based downlink channel estimation, larger training period T d

leads to better recovery performance since more information about the downlink channel is

collected. However, larger T d also means more downlink resources for channel estimation and

leaves less time for actual data transmission. This motivates our search for alternative information

sources that can facilitate downlink channel estimation without increasing the downlink training

overhead. In this section, we will discuss about how to use the uplink training information by

exploiting the reciprocal structure between the uplink and downlink channels.

3.5.1 Motivation

For this we draw inspiration from TDD systems, where through channel reciprocity the

uplink channel estimate provides downlink channel information [26,47]. In FDD system we do not

have such channel reciprocity because uplink and downlink transmission are operated in different

frequency bands. However, if the duplex distance is not large, i.e., the frequency difference

between the uplink and the downlink is not large, a looser and more abstract form of reciprocity

is possible and appropriate. For instance, it is reasonable to assume the AOA of signals in the

uplink transmission is the same as the AOD of signals in the downlink transmission [35, 60–63].

In other words directions of signal paths are invariant to carrier frequency shift. Consider the

46



spatial channel model proposed in Chapter 2

hu =
Nc∑
i=1

Ns∑
l=1

αuila
u(Ωu

il)

hd =
Nc∑
i=1

Ns∑
l=1

αdila
d(Ωd

il)

(3.26)

This indicates that αuil in the uplink is different and uncorrelated from αdil in the downlink due to

the frequency separation. However, both links share the same Nc, Ns and Ωu
il = Ωd

il. So when

we treat hu and hd as a whole, they appear to be uncorrelated. But if we are able to resolve

them finely in the angular domain, which indeed can be achieved by the large antenna array, they

will show the common spatial structure which can be regarded as the reciprocity in the angular

domain. In [61], congruence of the directional properties of the uplink and the downlink channel

is observed experimentally, where the dominant uplink/downlink directions of arrival (DOA)

show only a minor deviation, and the uplink/downlink azimuth power spectrums (APS) have a

high correlation.

Furthermore, the directions in the angular domain are closely related to the locations of

nonzero entries in the sparse coefficients. Consider the uplink and the downlink sparse channel

model hu = Duβu and hd = Ddβd, the reciprocity in the angular domain translates to the

same locations of nonzero entries in βu and βd, i.e., supp(βu) = supp(βd). Consequently, if

we know hu, and utilize for the downlink channel estimation the common support information

supp(βu) = supp(βd), we have critical information about hd and can obtain better downlink

channel estimates without increasing the training overhead. Similar to the downlink dictionary

learning, an uplink dictionary learning is needed for efficiently and robustly uplink channel

representation. Moreover, the learned uplink dictionary should be able to encourage the support

structure supp(βu) = supp(βd) motivated from the reciprocity between the uplink and downlink

transmission.
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3.5.2 Formulation of Joint Dictionary Learning

Based on the DLCM in the previous section, we propose a joint dictionary learning

process whereDu andDd are learned jointly with the constraint on the support, i.e., supp(βu) =

supp(βd). In order to enforce such constraint, we collect channel samples {hui ,hdi } in pair. Each

pair of samples is measured at the same UE location, so the assumption of the same AOA/AOD is

valid. The joint dictionary learning can be formulated as

min
Du∈C,βu1 ,...,βuL
Dd∈C,βd1 ,...,βdL

1

L

L∑
i=1

‖βui ‖0 + ‖βdi ‖0

subject to ‖hui −Duβui ‖2 ≤ ηu, ‖hdi −Ddβdi ‖2 ≤ ηd,

supp(βui ) = supp(βdi ), ∀i

(3.27)

which is very similar to the dictionary learning problem as shown in (3.22), except for the

constraint supp(βui ) = supp(βdi ). This constraint is important since it builds the connection

between the uplink and downlink channel responses, which will be utilized in the joint channel

estimation. Two alternative joint dictionary learning formulation can be extended from (3.24) and

(3.25) straightforwardly.

To solve the joint dictionary learning, we minimize (3.27) iteratively similar to (3.22). We

first fix Du,Dd and solve for βui ,β
d
i ,∀i, and then fix βui ,β

d
i ,∀i and solve for Du,Dd. Notice

that when βui ,β
d
i ,∀i are fixed, the solution ofDu andDd are decoupled, and can be optimized

independently using any of dictionary learning algorithms [57–59]. When Du,Dd are fixed,

different pairs of {βui ,βdi } are decoupled. But for each of the pair, they are coupled through the

constraint supp(βui ) = supp(βdi ), and need to be solved jointly. Algorithms aiming to solve joint

sparse recovery have been proposed in previous works, such as OMP like algorithm [68], `1 norm

algorithm [69], reweighted `p norm algorithm [70] and sparse Bayesian learning algorithm [71]. It

has been shown that joint recovery can lead to more accurate results compared to the independent
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recovery.

In this work, we consider a group `1 formulation which is similar to the group-lasso

in [69] to solve the joint sparse recovery problem. By forming

h =

 hdi
hui

 ,β =

 βdi
βui

 ,G =

 Dd 0N×M

0N×M Du

 (3.28)

the joint sparse recovery of βdi ,β
u
i can be written as

min
β

M∑
j=1

‖β‖Kj
subject to ‖h−Gβ‖2 ≤ η (3.29)

where ‖β‖Kj
= (βHKjβ)1/2, Kj = diag([eTj e

T
j ]T ) is the group kernel, where ej ∈ RM×1 is

the standard basis with 1 in the j-th location and 0 elsewhere. The group kernel gathers the j-th

element in βdi and the j-th element in βui into the same group. The cost function in (3.29) is a

`2/`1 norm of β similar to the `p/`1 norm in [40], which encourages all the elements in the same

group to be zero or nonzero simultaneously, and the total number of nonzero groups to be small.

By applying this group `1 framework, we enforce the constraint of supp(βui ) = supp(βdi ) and

encourage a sparse representation.

3.5.3 Formulation of Joint Channel Estimation

After learningDu,Dd, we have the joint uplink and downlink sparse channel representa-

tion as hu ≈Duβu and hd ≈Ddβd. The goal is to utilize uplink training to help improving the

performance of the downlink channel estimation, by using the constraint supp(βu) = supp(βd).

Consider the uplink training for a single user, we have

Y u = hu
√
ρuT usT +W u (3.30)
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where s ∈ CTu×1 denotes the uplink training pilots during T u training duration, and ‖s‖2 = 1.

ρu includes the uplink training power and the large scale fading. Denote yu = Y u(
√
ρuT usT )†

and wu = W u(
√
ρuT usT )†, we have

yu = hu +wu = Duβu +wu. (3.31)

Combined with the downlink training which is given by

yd = Ahd +wd = ADdβd +wd (3.32)

where A ∈ CT d×N denotes the downlink training pilots, the joint uplink/downlink channel

estimation can be formulated as

{β̂u, β̂d} = arg min
βu,βd

‖βu‖0 + ‖βd‖0

subject to ‖yu −Duβu‖2 ≤ εu, ‖yd −ADdβd‖2 ≤ εd,

supp(βu) = supp(βd).

(3.33)

where we seek the most sparse uplink and downlink representation that are consistent with

the received uplink and downlink signal, which agree with the support constraint supp(βu) =

supp(βd). After solving for βu and βd, the uplink and downlink channel can be estimated as

ĥu = Duβ̂u and ĥd = Ddβ̂d.

Again, we face the same joint sparse recovery problem with structure constraint supp(βu) =

supp(βd) as in the joint dictionary learning problem. We utilize the same group `1 algorithm as

in (3.29) as following

min
β

M∑
j=1

‖β‖Kj
subject to ‖y −Gβ‖2 ≤ ε (3.34)
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where now we have

y =

 yd

τyu

 ,G =

 ADd 0T×M

0N×M τDu

 (3.35)

and the same definition ofKj . Notice that the norm of columns inADd can be much larger than

the norm of columns in Du when ρd is large, which deemphasizes the role of uplink training

in the noisy situation. So a constant τ is multiplied to make the columns of G to have similar

norms. The solved β has the form of β = [(βd)T (βu)T ]T . By joint sparse recovery of βu,βd,

we are able to achieve improved downlink channel estimates with the help of uplink training

measurements. Notice the dimension of yu is N while dimension of yd is T d. In the massive

MIMO system where N � T d, the uplink training actually has larger number of measurements,

which is beneficial for the sparse recovery algorithm. We can also improve the signal to noise

ratio of the uplink received signal by increasing the uplink training period T u. Due to the

constraint supp(βu) = supp(βd), yu and yd can regularize each other to achieve better recovery

performance compared to independent recovery. More importantly, the performance of the

downlink compressed channel estimation is improved without increasing the downlink training

period T d. In other words, we can reduce the downlink training overhead by leveraging the

information from uplink training.

3.5.4 Discussion

Similar to the DLCM, there is a joint dictionary learning phase and a joint channel estima-

tion phase. During the joint dictionary learning phase, a large amount of channel measurements

need to be collected as training samples. Each pair of uplink/downlink channel measurements has

to be collected at the same user location, in order to guarantee the same AOA/AOD for the uplink

and downlink. This requirement is important since for each pair of {hui ,hdi } the learning process

has the constraint supp(βui ) = supp(βdi ). The joint dictionary learning is implemented when the

cell is installed, and the learnedDu,Dd are stored at the base station. In the channel estimation
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phase, the BS transmits downlink pilots while the UE transmits uplink pilots, then the UE feeds

back the received signal. The joint channel estimation is performed at the BS, from which the

uplink and downlink channel state information is obtained.

3.6 Numerical Results

In the simulation, we test both 2D and 3D channel model. For 2D channel, we assume the

BS is equipped with an ULA with 100 antennas and each UE has a single antenna. The channel is

generated using parameters from non line-of-sight (NLOS) urban macro scenario in [35]. Since

the learned dictionary depends on the cell characteristics, we generate cell specific scattering

clusters following the principles of Geometry-Based Stochastic Channel Model (GSCM) [38]. At

the beginning of the simulation, 21 fixed location scattering clusters are uniformly generated in a

cell with radius 900 meters and θ ∈ [−π
2
, π

2
], and then kept constant for the simulation of both

dictionary learning and channel estimation. The user’s location is also randomly and uniformly

generated. For each channel response between the BS and the UE, it consists AOA/AOD of multi-

paths from 3 fixed location scattering clusters which are closest to the UE, and 1 user-location

dependent scattering cluster which is generated according to [35] based on the UE’s location. All

the other parameters, e.g., angular spread, delay spread, and path power, etc., are all generated

following [35]. The AOA/AOD values are identical between the uplink and downlink, while the

phases of subpaths are random and uncorrelated [35]. For 3D channel, the BS is assumed to be

equipped with a 10× 10 URA and the UE with a 3× 3 URA. The channel is generated following

the NLOS UMi-Street Canyon scenario in [37], where the carrier frequency is assumed to be

28 GHz. The generation of cell specific clusters is similar to the 2D model, except that the cell

radius is 200 meters with θ ∈ [0, π], φ ∈ [0, π], and each cluster has a height h ∈ [0.5, 30] while

hBS = 10 m and hUE = 1.5 m, so elevation angles ZOA/ZOD can be calculated. Since the carrier

frequency is 28 GHz, each channel response consists only 1 fixed location scattering cluster and 1
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user-location dependent scattering cluster consistent with the small number of scattering clusters

at the millimeter wave (mmWave) frequency [72].

Two kinds of antenna array are considered at the BS. The first is the perfectly calibrated

antenna array, e.g., equal spacing d = λ/2 between antenna elements and equal antenna gains

as 1. In the second case, there exist antenna uncertainties in the form of unknown but fixed

calibration errors, where the antenna spacing and gains are deviating from the nominal values.

We generate them as following: in 100 antennas, 20 antennas have gains 1 + e while the other

80 have gains 1. The e ∼ N (0, 0.1), and if 1 + e > 1.2 or 1 + e < 0.8, then the gain is set to

be 1.2 or 0.8. Among 99 antenna spacings, there are 20 having values d = (1 + v)λ/2 where

v ∼ N (0, 0.1). If 1 + v > 1.2 or 1 + v < 0.8, then the spacing is set to be 1.2λ/2 or 0.8λ/2. The

rest of antenna spacings are d = λ/2. After the antenna gains and spacings are generated, they

are fixed in the whole simulation of dictionary learning and channel estimation.

For the dictionary learning, L = 10000 channel responses are generated, and for each

channel responses the UE is randomly and uniformly located in the cell with at least 300 meters

(60 meters for the mmWave scenario) from the BS. K-SVD [59] combined with `1 or group `1

algorithm (implemented using SPGL1 toolbox [73]) are applied for the dictionary learning and

sparse coding. There are many other dictionary learning and sparse recovery algorithms, which

trade off between accuracy and speed. In this work our main objective is to demonstrate the

usefulness and potential of dictionary learning-based channel modeling, and leave the problem of

optimal algorithm design/selection for future work. Unless otherwise indicated, the dictionary

is learned from the true channel responses without accounting for any measurement noise. We

should emphasize that it is an ideal assumption and our results are only to prove the concept of

using dictionary learning for channel estimation. In the simulation, we provide an experimental

study to show the effect of inaccurate training channel measurements for the dictionary learning.

We compare 100× 400 learned dictionaryD (DLCM) with 100× 100 DFT matrix F (DFT) and

100× 400 overcomplete DFT matrix F̃ (ODFT).
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3.6.1 Sparse Representation Using DLCM

The motivation of using DLCM is to find a dictionary which can (a) more efficiently

represent the channel response, i.e., the sparse coefficient has fewer number of nonzero entries;

and (b) more robustly represent the channel response, i.e., adapting to any model mismatches

like antenna uncertainties. To compare the channel representation, we generate 1000 channel

responses hi, normalize them to have unit norm and calculate the sparse coefficient using `1

framework:

β̂i = arg min
βi
‖βi‖1 subject to ‖hi −Dβi‖2 ≤ η (3.36)

where η is set to be 0.1, so the tolerance of model mismatch is 10%. Notice that the sparse

representation can be obtained by any sparse recovery algorithm, where different algorithm may

lead to different sparse coefficient. We use `1 framework here to be consistent with the algorithm

applied in dictionary learning and channel estimation.

We then compute ‖β̂i‖0 and plot its cumulative distribution function (CDF) using 1000

channel responses. Fig.3.1 (a) shows that for perfectly calibrated antenna array, the learned

dictionary can represent channel responses using fewer number of nonzero entries. For example,

90% of channel responses can be represented using about 20 columns from the learned dictionary,

while it requires about 27 or 100 columns if using overcomplete DFT matrix or square DFT

matrix. In Fig.3.1 (b), we test antenna array with uncertainties. Both predefined sparsifying

matrices are no longer able to sparsely represent the channel, since the assumed structure of ULA

does not agree with the true antenna array whose gains and spacings deviate from nominal values.

However, the learned dictionary can achieve efficient sparse representation similar to Fig.3.1

(a), due to its ability to adapt the dictionary to the channel measurements. So even there exist

antenna array uncertainties, sparse representation can still be achieved given the limited scattering

environment.

Since `1 norm is used in (3.36), we also compute ‖β̂i‖1 and plot its CDF. Fig. 3.2 (a)
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Figure 3.1: Cumulative distribution function of ‖β‖0. (a) Perfectly calibrated antenna
array. (b) Antenna array with uncertainties. N = 100, η = 0.1.

shows the result for perfectly calibrated antenna array, and Fig. 3.2 (b) tests antenna array with

uncertainties. When the channel responses are represented using the learned dictionary, the
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(a) Perfectly calibrated antenna array
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(b) Antenna array with uncertainties

Figure 3.2: Cumulative distribution function of ‖β‖1. (a) Perfectly calibrated antenna
array. (b) Antenna array with uncertainties. N = 100, η = 0.1.

spare coefficient has smaller ‖β‖1, indicating a more sparse representation since `1 norm is the

convex relaxation of `0 norm. Similar to Fig. 3.1, the overcomplete DFT matrix can achieve
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comparable performance as the learned dictionary for perfectly calibrated antenna array, but has

big performance loss when antenna array with uncertainties is used.

The results indicate that for a perfectly calibrated antenna array, the suggested overcom-

plete DFT matrix is a reasonably good sparsifying matrix with only a little inferior than the learned

dictionary, since the columns of the overcomplete DFT matrix shares the same structure as the

channel responses, and the overcompleteness brings much flexibility in representing the channel.

However, when antenna array has uncertainties, predefined matrices degrades considerably due to

the huge structure mismatches. In contrast, the learned dictionary leads to efficient and robust

representation in both situations, since it is learned from the data without any structure constraint.

In the following, we will show how this efficient and robust representation will lead to improved

channel estimation performance in both downlink and uplink.

3.6.2 Downlink Channel Estimation

To evaluate how the channel representation affects the channel estimation, we compare

the performance of compressive sensing-based downlink channel estimation when different

sparsifying matrices are applied. The training pilots inA is generated as i.i.d. CN (0, ρd/N), so

E‖A‖2
F = ρdT d. The normalized mean square error (NMSE) is used as the performance metric

and defined as

NMSE = E
{‖h− ĥ‖2

2

‖h‖2
2

}
=

1

K

K∑
i=1

‖hi − ĥi‖2
2

‖hi‖2
2

. (3.37)

where K denotes the number of trials performed. We first consider the 2D channel model with

ULA. Fig.3.3 (a) plots the NMSE performance with respect to the number of downlink pilot

symbols T d, when a perfectly calibrated antenna array is applied. We also include the LS channel

estimation when T d = 100 for comparison. To achieve the same NMSE, both DLCM and ODFT

requires much less training pilots compared to DFT which is used in the virtual channel model,

and the DLCM saves more than ODFT. Antenna array with uncertainties is tested in Fig.3.3 (b).
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Figure 3.3: Normalized mean square error (NMSE) comparison of different sparsifying
matrices for CS-based downlink channel estimation with ULA. (a) Perfectly calibrated
antenna array. (b) Antenna array with uncertainties. SNR = 20dB.
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It shows that the performance of ODFT degrades considerably, while the DLCM achieves almost

the same accuracy as in Fig.3.3 (a). So when the antenna array is not perfectly calibrated, only

the learned dictionary can achieve great savings on downlink training overhead.

In Fig. 3.4, we test mmWave 3D channel model with a 10 × 10 URA at the BS and a

3× 3 URA at the UE. The MMV channel estimation

B̂d = arg min
Bd
‖Bd‖1,2 subject to ‖Y d −ADdBd‖F ≤ ε, (3.38)

is applied with respect to multiple antennas at the UE (see Chapter 2 for details). Performance

comparison with perfectly calibrated antenna array and antenna array with uncertainties are

shown in Fig. 3.4 (a) and Fig. 3.4 (b). Similar to the 2D channel model with ULA, the DLCM

achieves better performance than ODFT and DFT. The result demonstrates the applicability of the

proposed DLCM framework to different antenna geometry and frequency band. Fig. 3.5 plots the

performance with only a single antenna at the UE. Compared to Fig. 3.4 (a) where the UE has 9

antennas, the performance becomes worse. This shows the benefit of having multiple antennas at

UE and utilizing the proposed MMV formulation (3.38) to estimate the channel. The joint sparse

channel structure for different antennas at UE is exploited to improve the performance. To study

the channel estimation in low SNR range, Fig.3.6 depicts the performance when SNR = 5dB.

Compared to Fig.3.4 (a) where SNR = 20dB, the performances of all sparsifying matrices are

worse, and the differences among them become small. The reason is that when the noise is large,

the accuracy of the channel estimation is limited mostly by the noise, so the model mismatch

error from applying different sparsifying matrices has only small influence on the performance.

In a practical system, performance of channel estimation depends on many factors such as the

noise level, model mismatch error, the number of antennas, etc., and more studies are required to

show under what condition the DLCM can achieve the greatest improvement.

In previous experiments, perfect channel measurements are used for dictionary learning.
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Figure 3.4: Normalized mean square error (NMSE) comparison of different sparsifying
matrices for CS-based downlink channel estimation with URA in mmWave scenario.
(a) Perfectly calibrated antenna array. (b) Antenna array with uncertainties. BS: 10×
10,UE: 3× 3,SNR = 20 dB.
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Figure 3.5: Normalized mean square error (NMSE) comparison of different sparsifying
matrices for CS-based downlink channel estimation with URA in mmWave scenario.
Perfectly calibrated antenna array. BS: 10× 10,UE: 1× 1,SNR = 20 dB.
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Figure 3.6: Normalized mean square error (NMSE) comparison of different sparsifying
matrices for CS-based downlink channel estimation with URA in mmWave scenario.
Perfectly calibrated antenna array. BS: 10× 10,UE: 3× 3,SNR = 5 dB.
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Figure 3.7: Normalized mean square error (NMSE) versus learning measurements SNR
for CS-based downlink channel estimation with ULA. (a) Perfectly calibrated antenna
array. (b) Antenna array with uncertainties. T d = 40, SNR = 20dB.
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Figure 3.8: Normalized mean square error (NMSE) versus learning measurements
SNR for CS-based downlink channel estimation with URA in mmWave scenario. (a)
Perfectly calibrated antenna array. (b) Antenna array with uncertainties. T d = 40, SNR
= 20dB.
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Next we investigate the performance of DLCM when the dictionary is learned from channel

responses corrupted by the noise, since in practice channel measurements can have some esti-

mation error in them. We consider the 2D channel model using ULA, and add noise ñi to the

true channel response hi, where ñi ∼ CN (0, σ2
i I) and σi is chosen according to the “learning

measurements SNR” which is defined as

Learning Measurements SNR =
‖hi‖2

2

E‖ñi‖2
2

=
‖hi‖2

2

Nσ2
i

. (3.39)

Then the corrupted channel response is obtained as

h̃i = hi + ñi (3.40)

which is used as the training channel samples for the dictionary learning. Fig. 3.7 compares

the NMSE of downlink channel estimation with respect to the learning measurements SNR,

where for each learning measurements SNR a different dictionary is learned. We also include the

performance when the true channel response hi is used as the training samples, and denoted it as

∞ learning measurements SNR. When the learning measurements SNR is low, the performance

of DLCM degrades since the dictionary learning process can not accurately capture the channel

structure from too noisy channel measurements. As the learning measurements SNR increases,

the performance of DLCM becomes better and approaches the performance of learning from

noiseless measurements. Notice that when the antenna array is not perfectly calibrated, as shown

in Fig. 3.7 (b), DLCM can obtain better performance than predefined sparsifying matrices

even with dictionary learned from very noisy measurements, because the model mismatch error

plays the dominant role for the channel representation when there exist antenna uncertainties.

Similar observations can be made when consider the URA antenna array at mmWave scenario,

which are shown in the Fig. 3.8. In this scenario, even the dictionary learned from highly noisy

measurements can obtain better channel estimation performance compared to other predefined
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Figure 3.9: Normalized mean square error (NMSE) comparison of different sparsifying
matrices, pilots design and user scheduling schemes for SR-based uplink channel
estimation with ULA. Orthogonal users, perfectly calibrated antenna array. K =
6, T u = 6.

sparsifying matrices. Since the dictionary learning is performed at the cell deployment stage, a

high learning measurements SNR can be achieved by using more training pilots, higher transmitted

power, and more sophisticated equipment. As a result, the learned dictionary is expected to

efficiently represent the sparse channel and lead to a good channel estimation performance using

DLCM.

3.6.3 Uplink Channel Estimation

We now evaluate performance of the sparse recovery-based (SR-based )uplink channel

estimation using 2D channel model. Assume there are K = 6 users. In order to preserve fairness

and evaluate the average NMSE performance for all users, we first assume the same ρuk for

all users and plot the average NMSE versus the SNR. In Fig. 3.9, the number of uplink pilots

T u = K = 6, so orthogonal pilots are used for both LS and SR with different sparsifying matrices.
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Figure 3.10: Normalized mean square error (NMSE) comparison of different spar-
sifying matrices, pilots design and user scheduling schemes for SR-based uplink
channel estimation with ULA. Orthogonal users, perfectly calibrated antenna array.
K = 6, T u = 5.

We also compare SR with random pilots (SR-RP), which is possibly nonorthogonal. To encourage

non-overlapping or limited overlapping sparse support, the locations of users are generated to be

far away from each other, with each user’s LOS AOA constrained in a distinct π/K range. For the

whole SNR range, SR-DLCM and SR-ODFT are better than LS, while SR-DFT is worse than LS

at high SNR. The result corroborates the conclusions made in the downlink channel estimation,

such that when perfectly antenna array is used, the overcomplete DFT matrix can obtain similar

performance as the learned dictionary. Furthermore, it shows that SR-RP can not achieve good

performance, since random pilots can not lead to small µ{E}. So for SR-based uplink channel

estimation, it is important to design UE’s pilots to construct a well structured sensing matrix.

In Fig. 3.10, T u = 5 is tested. Compared to Fig. 3.9, the performance of LS degrades a

lot, since T u < K and the problem is underdetermined for LS estimation. On the other hand, SR

with pilots design suggested in Chapter 2.5 has only little degradation. LS using orthogonal pilots
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Figure 3.11: Normalized mean square error (NMSE) comparison of different sparsi-
fying matrices, pilots design and user scheduling schemes for SR-based uplink chan-
nel estimation with ULA. Non-orthogonal users, perfectly calibrated antenna array.
K = 6, T u = 5.

(LS-OP, where T u = 6) is also provided for comparison. Notably, SR-DLCM and SR-ODFT

with T u = 5 can achieve even better performance than LS with T u = 6, showing the great benefit

of using SR for uplink channel estimation.

In Fig. 3.11, users’ locations are randomly and uniformly generated, so their supports

can possibly be overlapped a lot. In this case the SR-based channel estimation degrades severely

at high SNR, indicating the importance of minimizing µ{EΛ} in order to achieve good sparse

recovery performance. In other words, it is important to perform uplink user scheduling when

SR-based uplink channel estimation is performed with uplink training duration smaller than the

number of UEs.

In Fig. 3.12, the antenna array with uncertainties is used to show the robustness of

the learned dictionary. Comparing to Fig. 3.10, the learned dictionary can achieve the similar

good NMSE, while the overcomplete DFT is no longer good. The reason is that only the
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Figure 3.12: Normalized mean square error (NMSE) comparison of different sparsify-
ing matrices, pilots design and user scheduling schemes for SR-based uplink channel es-
timation with ULA. Orthogonal users, antenna array with uncertainties. K = 6, T u = 5.

learned dictionary can lead to an accurately sparse representation by adapting to the channel

measurements.

The previous experiments assume the same SNR for all UEs, which can be done by user

scheduling or power allocation. However, in practice, it may not be able to ensure that all UEs

have exactly the same SNR. To show the performance when users have different SNR, we conduct

similar experiments as shown in Fig. 3.9 to Fig. 3.12, but with different ρuk assigned to each

UE. The NMSE performance of each user is evaluated separately since each user has a different

SNR and the results are plotted in Fig. 3.13 to Fig. 3.16. For UE1 to UE6, their SNRs are

−10,−4, 2, 8, 14, 20 dB. As shown in the plots, UEs with higher SNR can achieve lower NMSE.

And regarding to the performance comparison of different sparsifying matrices, pilots design, and

user scheduling, similar conclusions can be drawn as in the scenario of same SNR for all UEs.

The experiments in this subsection show the benefits of utilizing sparse property to perform

the uplink channel estimation, and the essential requirements are (a) sparsifying matrix which

68



1(-10 dB) 2(-4 dB) 3(2 dB) 4(8 dB) 5(14 dB) 6(20 dB)

User index (SNR)

10-4

10-3

10-2

10-1

100

101

N
M

S
E

SR - DLCM

SR - ODFT

SR - DFT

SR - RP

LS

Figure 3.13: Normalized mean square error (NMSE) comparison of different spar-
sifying matrices, pilots design and user scheduling schemes for SR-based uplink
channel estimation with ULA. Orthogonal users, perfectly calibrated antenna array.
K = 6, T u = 6.

can lead to efficient and robust sparse representation; (b) pilots design scheme which minimizes

µ{E}; and (c) user scheduling scheme which decreases µ{EΛ}. Even with T u < K, SR-based

channel estimation can still achieve good performance. Notice that all the experiments consider

the single cell scenario, but can be easily extended to multi-cell scenario for pilot decontamination.

For example, consider 6 cells and each of them has 6 users. Assume the total uplink training

duration constraint T u = 30. If LS channel estimation is applied, then each cell requires at least

6 training duration, so for all 6 cells their pilots can not be orthogonal to each other and pilot

contamination occurs. However, by using SR-based channel estimation, each cell requires only 5

training duration to achieve the similar (even better) performance than LS. Training duration of

30 is enough for 6 cells to have orthogonal pilots, so there is no pilot contamination anymore.
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Figure 3.14: Normalized mean square error (NMSE) comparison of different spar-
sifying matrices, pilots design and user scheduling schemes for SR-based uplink
channel estimation with ULA. Orthogonal users, perfectly calibrated antenna array.
K = 6, T u = 4.

3.6.4 Joint Uplink/Downlink Channel Estimation

For joint channel estimation, assume the uplink frequency is 1920 MHz and downlink

frequency is 2110 MHz. The antenna spacing d = c
2f0

where c denotes the light speed and

f0 = 2010 MHz. 10000 uplink/downlink channel responses pair {hui ,hdi } are generated to

perform the joint dictionary learning. During channel estimation, we set T u = 2, and ρu = ρd.

Fig. 3.17 (a) compares downlink joint and independent channel estimation performance. Besides

the jointly learned dictionary (JDLCM), we consider the joint overcomplete DFT matrix (JODFT)

obtained by setting ψu = dsin(θ)/λu, ψd = dsin(θ)/λd and sin(θ) ∈ [−1,−1 + 2
M
, . . . , 1− 2

M
]

as in (3.20). Smaller NMSE can be obtained by the joint channel estimation compared to

their independent counterpart. Such improvement is most obvious when T d is small, since the

additional measurements from the uplink training help a lot. Fig. 3.17 (b) shows the robustness

of JDLCM when there exist antenna uncertainties. The JODFT is no longer applicable in this
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Figure 3.15: Normalized mean square error (NMSE) comparison of different sparsi-
fying matrices, pilots design and user scheduling schemes for SR-based uplink chan-
nel estimation with ULA. Non-orthogonal users, perfectly calibrated antenna array.
K = 6, T u = 4.

case since the structure is incorrect, and for the large T d it becomes even worse than the ODFT.

With the help of small number of uplink training (T u = 2 in the experiment), one can further

improve the performance of downlink channel estimation therefore reduce the downlink training

overhead. The simulation is conducted in the microwave scenario. More investigation, especially

real experimental measurements, are needed to support the uplink/downlink angular reciprocity

in a mmWave scenario.

3.7 Conclusion

In this chapter, we developed a dictionary learning-based channel model which learns a

cell specific dictionary from comprehensively collected channel measurements from different

locations in the cell. The learned dictionary is able to adapt to the cell characteristics and any

antenna array uncertainties, leading to a more efficient and robust channel representation compared
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Figure 3.16: Normalized mean square error (NMSE) comparison of different sparsify-
ing matrices, pilots design and user scheduling schemes for SR-based uplink channel es-
timation with ULA. Orthogonal users, antenna array with uncertainties. K = 6, T u = 4.

to predefined sparsifying matrices. For both CS-based downlink and SR-based uplink channel

estimation, the learned dictionary can improve the performance and reduce the training overhead.

Motivated by the angular reciprocity between the uplink and downlink channel responses, we

further develop a joint dictionary learning-based channel model in order to utilize the relatively

simpler uplink channel training to help improving the downlink channel estimation. The results

of this chapter show that concepts of utilizing sparse property and learning from the data can

be useful for future communication systems. As the dimension of the channel vector increases,

sparse representation provides an avenue to deal with the curse of dimensionality. Moreover, with

the availability of more data and computational resources, learning from the data will bring new

opportunities to improve performance.

As future work, several topics are under consideration. To learn the dictionary, extensive

channel measurements are needed as the training samples. Besides using conventional drive

tests to collect data, minimization of drive tests (MDT), specified in 3GPP release 10 [74], is a
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Figure 3.17: Normalized mean square error (NMSE) comparison of different sparsify-
ing matrices for joint channel estimation with ULA. (a) Perfectly calibrated antenna
array. (b) Antenna array with uncertainties. SNR = 20dB.
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promising approach. The main concept is to exploit commercial user equipments, such as their

measurement capabilities and geographically spread nature, for collecting radio measurements.

Another option is to explore online dictionary learning [75], where an initial dictionary is first

learned from limited training samples, and then updated as more training samples are obtained.

Online dictionary learning can also be used to deal with the slowly changing cell and antenna

characteristics, and adapt to specific user distribution properties in the cell, which is hard to be

captured at cell deployment stage. For example, many users may appear in some specific area in

the cell, while some areas may be rarely visited. This phenomenon can be measured only after

the normal users perform real communication in the cell. Finally, for joint channel estimation,

a looser relationship between the supports of the uplink and downlink sparse coefficients may

be utilized instead of the strict constraint supp(βu) = supp(βd) to better model the angular

reciprocity, for example allowing some mismatch between supp(βu) and supp(βd) through a

Bayesian formulation.

Chapter 3, in part, is a reprint of the material as it appears in the papers: Y. Ding and B. D.

Rao, “Compressed downlink channel estimation based on dictionary learning in FDD massive

MIMO systems,” In Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2015, pp. 1-6,

Y. Ding and B. D. Rao, “Channel estimation using joint dictionary learning in FDD massive

MIMO systems,” In Proc. IEEE Glob. Conf. Signal Inf. Process. (GlobalSIP) , Dec. 2015, pp.

185-189, and Y. Ding and B. D. Rao, “Dictionary learning-based sparse channel representation

and estimation for FDD massive MIMO systems,” IEEE Trans. Wireless Commun., in press. The

dissertation author was the primary investigator and author of these papers.
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Chapter 4

Massive MIMO System with

Hardware-efficient Architecture

Conventional massive MIMO systems assume that each antenna element is connected to a

dedicated RF chain and a high-resolution ADC, which will incur a large hardware and power cost

when the number of antenna elements is large. To reduce the hardware and power cost, hardware-

efficient architectures have been proposed where both hybrid analog-digital (AD) processing and

low-resolution analog-to-digital converters (ADCs) are utilized [3, 4]. The hardware-efficient

architecture is attractive from a power and cost point of view, but poses two significant challenges

on the channel estimation. One is due to the smaller dimension of the measurement signal

obtained from the limited number of RF chains, and the other is the coarser measurements from

the low-resolution ADCs. We address this problem by utilizing two sources of information.

Firstly, by exploiting the sparse nature of the massive MIMO channel, the channel estimate is

enhanced and the required number of pilots is reduced. Secondly, by utilizing the transmitted

data symbols as the “virtual pilots”, the channel estimate is further improved without adding

more pilot symbols. The constraints imposed by the architecture, the sparsity of the channel

and the data aided channel estimation are treated in a unified manner by employing a Bayesian
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formulation. Simulation results show that the proposed algorithm can efficiently estimate the

channel even with the architectural constraints, and that significant improvements are enabled by

leveraging the transmitted data symbols.

4.1 Introduction

In massive MIMO system, the base station (BS) is equipped with a large scale antenna

array to serve multiple user equipments (UEs), enabling significant gains in the capacity and the

energy efficiency. However, conventional massive MIMO systems apply fully-digital architecture,

where each antenna element is connected to a dedicated radio-frequency (RF) chain and a high-

resolution analog-to-digital converters (ADC). Although the fully-digital architecture has more

flexibility and can achieve the largest possible gain, such architecture increases considerably

the hardware cost and power consumption of the RF circuits, due to the numerous usage of RF

chains and high-resolution ADCs. To make the massive MIMO practical, two hardware efficient

solutions have been proposed: hybrid analog-digital (AD) processing and low-resolution ADCs.

For the hybrid AD processing, instead of dedicating a separate RF chain for each antenna, there is

a limited number of RF chains each connected to all antenna elements through a network of analog

phase shifters, therefore dividing the transceiver processing into the analog and digital domains.

The power consumption can be further reduced by replacing the traditional high-resolution ADCs

with low-resolution ADCs, for example, 1-4 bit ADCs. Moreover, the amount of data that

has to be transferred from the RF sections to the baseband processor is reduced when coarser

quantization is performed, lowering the burden on the fronthaul links and digital signal processing.

However, despite their hardware effectiveness, such architectures also pose significant challenges

to the channel estimation, since both the dimension and the precision of the received signal are

reduced.

Channel estimation with hybrid AD processing has been previously studied for narrow-

76



band millimeter-wave (mmWave) systems [76], where the estimation is formulated as a sparse

recovery problem by exploiting the sparse structure of mmWave channels in the angular domain.

In [77], the dominant subspaces of the channel matrix are directly estimated through multiple

iterations of amplify-and-forward transmission between the transmitter and receiver. Observing

the large bandwidth in mmWave systems, a frequency domain channel estimation in an OFDM

setting is proposed in [78], where the frequency selective channel model is dealt with by for-

mulating the problem as distributed sparse recovery utilizing the joint sparse channel structure

over different frequency bands. Recently, a wideband mmWave channel estimation scheme [54]

has been proposed providing solutions for both frequency domain and time domain channel

estimation, which utilizes the sparsity in the delay domain in addition to the angular domain.

Channel estimation with low-resolution ADCs, especially 1-bit ADCs, has been widely

explored in previous works for both sub-6 GHz and mmWave scenarios. Also, many algorithms in

the area of compressive sensing (CS) has been applied for channel estimation. Channel estimation

using 1-bit ADCs [79,80] and multi-bit ADCs [4] are considered where the nonlinear quantization

effect is transformed into a linear form and solved by linear minimum mean square error (LMMSE)

estimation using the Bussgang decomposition. The correlation among the quantized received

signals (for 1-bit ADCs) is further considered in [80] to improve the performance. In [81, 82],

an expectation-maximization (EM) algorithm is used to obtain the maximum likelihood (ML)

channel estimation based on the quantized output, and a modified EM is proposed in [83] to

account for the sparse structure of the channel. The maximum a posteriori (MAP) channel

estimation is considered in [84], and formulated into a convex optimization problem similar

to [85] in CS. The generalized approximate message passing (GAMP) algorithm, which has been

proposed in CS [86] to deal with the quantized measurements, is also applied for the massive

MIMO channel estimation [87] and mmWave sparse channel estimation [83]. There are several

other algorithms in the area of quantized CS [88–90], which can be applied to the channel

estimation problem when the sparse structure of the channel is considered.
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In this chapter, we consider the multi-user massive MIMO channel estimation problem,

and provides a unified treatment for a system that employs hybrid AD processing and low-

resolution ADCs. The developed algorithm exploits the sparse property of the angular domain

channel and incorporates the joint processing of pilots and data (JPD). The combined architecture

of hybrid AD processing and low-resolution ADCs poses significant challenges on the channel

estimation due to the reduced number of effective measurements from both the decreased dimen-

sion (limited number of RF chains) and reduced precision (limited number of quantization levels)

of the received signal at the baseband. Conventional channel estimation requires more training

pilots to compensate for the reduction in effective measurements, causing larger training overhead.

Instead, the algorithm developed exploits the sparse structure of the massive MIMO channel

in the angular domain, so that the required number of pilots is greatly reduced. In addition, a

portion of the transmitted data is utilized as the virtual pilots to enhance the channel estimation.

Previous works which apply the hardware efficient architectures either consider only the hybrid

AD processing [54, 76–78], or consider only the low-resolution ADCs [4, 79–84, 87], but not

both architectures simultaneously. As examples of past works which utilize data symbols for the

channel estimation [87, 91–93], the sparse channel property is explored in [91, 92] but without

considering low-resolution ADCs, while in [87,93] low-resolution ADCs are assumed but without

utilizing the sparse channel property.

All the mentioned components, such as hybrid AD processing, low-resolution ADCs,

sparsity and data-aided estimation, are addressed using a Bayesian framework which is a robust

and extensible inference framework. We formulate the problem into an sparse Bayesian learning

(SBL) framework, where the sparse signal (angular domain channel in our case) is controlled

by a hyper-parameter. Such a framework provides a robust hierarchical Bayesian model where

the whole posterior distribution of the unknown variable can be learned from the data, rather

than a point estimate. The variational Bayesian (VB) method is used to solve the quantized SBL

problem, which aims to minimize the Kullback-Leibler (KL) divergence between the desired
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posterior density and the constrained family of distributions thereby enjoying the tractability

and the guarantees of convergence to the local optimum. Furthermore, due to the VB-SBL

framework, the approach is readily extensible to include the second order statistics of the channel

and the transmitted data symbols when estimating the channel with JPD, which leads to improved

performance and has not been considered in the previous works [91–93]. Our experimental study

shows that in terms of the channel estimation accuracy, the low-resolution ADCs lead to a small

performance gap compared to the high-resolution ADCs when the signal-to-noise ratio (SNR) is

low. By utilizing JPD, one can achieve similar or even better performance with a smaller number

of RF chains and low resolution ADCs, which is supportive of the proposed hardware-efficient

architecture. Such benefit is obtained without increasing the training overhead.

The chapter is organized as follows. In Section 4.2, we formulate the quantized sparse

channel estimation problem. In Section 4.3, we propose the VB-SBL algorithm to solve the

problem of quantized channel estimation. The channel estimation with JPD is presented in Section

4.4. Numerical results are provided in Section 4.5, and we conclude the chapter in Section 4.6.

Notations used in this chapter are as follows. Upper (lower) bold face letters are used

throughout to denote matrices (column vectors). (·)T , (·)H (·)† denotes the transpose, Hermitian

transpose, and the Moore-Penrose pseudo-inverse. Aij represents the i, j-th element of the matrix

A, andA·j (Ai· ) denotes the j-th column (i-th row) ofA. For a vector x, diag(x) is a diagonal

matrix with entries of x along its diagonal. ⊗ represents the Kronecker product, and 〈x〉p(x)

denotes taking the expectation of x under the distribution p(x). supp(x) denotes an index set

containing the indices of the nonzero entries of x.

4.2 Quantized Sparse Channel Estimation

The hardware-efficient architecture of hybrid AD processing and low-resolution ADCs

poses significant challenges on the channel estimation due to the reduced number of effective
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measurements. For conventional channel estimation algorithms, they require more training pilots

to compensate it. By utilizing the sparse property of the massive MIMO channel, the channel

estimation problem is formulated into a compressive sensing framework, so the required number

of pilots is reduced. Due to the usage of low-resolution ADCs, the received signals at the baseband

are highly quantized, leading to a quantized compressive sensing problem.

4.2.1 System Model

We consider a single-cell uplink massive MIMO system where the BS is assumed to

have N antennas and there are K UEs, each equipped with a single antenna. The BS employs a

hybrid AD architecture as shown in Fig. 4.1, which has R RF chains. Each RF chain connects

to all the antenna elements through a network of phase shifters on one side, and links to a

low-resolution ADC on the other side. Assuming a narrowband block fading channel model, the

small-scale fading channel between the BS and K UEs is denoted asH ∈ CN×K . For the uplink

transmission, let s[t] ∈ CK×1 be the transmitted symbols from K UEs at the time instance t and

E{s[t]s[t]H} = IK . For the k-th UE, denote ρk = Pkβk, where Pk is the transmit power and βk is

the large-scale fading, which is assumed to change slowly over time and that an accurate estimate

is available at the BS. DenotingW [t] ∈ CN×R as the RF combining matrix at the receiver, the

received signal y[t] ∈ CR×1 after the combining by the phase shifters at the BS can be written as

y[t] = W [t]H
(
HCs[t] + v[t]

)
= W [t]HH̃s[t] + n[t]

(4.1)

where C = diag(
√
ρ1, . . . ,

√
ρK), H̃ = HC, v[t] ∼ CN (0, σ2I) denotes the measurement

noise at the receiver antennas. n[t] = W [t]Hv[t] ∈ CR×1 and n[t] ∼ CN (0, σ2W [t]HW [t])

denotes the effective noise after combining using the phase shifters.

Each element ofW [t] represents a realization of a phase shift which can be modeled as
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Figure 4.1: Illustration of the uplink quantized massive MIMO system model. Each
UE has a single antenna, the BS utilizes the architecture of hybrid AD processing and
low-resolution ADCs.

c · exp(jθ), where c is some constant which is the same for all phase shifters. We design columns

ofW [t] ∈ CN×R to be cyclically shifted versions of a length N Zadoff-Chu sequence [94] with

the k-th element as:

wk =


1√
N

exp(jMπk2

N
), N is even;

1√
N

exp(jMπk(k+1)
N

), N is odd.
(4.2)

where k = 0, . . . , N − 1. M is an integer relatively prime to N . Since cyclically shifted versions

of Zadoff-Chu sequences have zero correlation with each other, we haveW [t]HW [t] = IR. In

some previous works [27, 95, 96], columns of the discrete Fourier transform (DFT) matrix are

utilized to design precoding/combining matrices, which aims to focus the beam direction during

the downlink data transmission to increase the beamforming gain and eliminate the multi-user

interference. In contrast, at the uplink channel estimation stage, a broader beam direction is
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Figure 4.2: Beam pattern of one column of W [t], columns of W [t] are from DFT
matrix.

preferred since the signal’s angle of arrival (AOA) is unknown. Focusing a narrow beam may lead

to very low SNR if the true AOA of the signal does not match the beamformer’s main beam. Fig.
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Figure 4.3: Beam pattern of one column of W [t], columns of W [t] are cyclically
shifted Zadoff-Chu sequences.

4.2 and Fig. 4.3 compare the beam patterns of differentW [t] whose columns are DFT matrix or

cyclically shifter Zadoff-Chu sequences. Fig. 4.2 shows the narrow beam of the DFT matrix, and
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the beamforming gain towards directions other than the main beam direction are very small. In

contrast, the wide beam of the Zadoff-Chu sequence can be seen in Fig. 4.3. The beam pattern

shows no favor to any specific directions, and the beamforming gains are the same for almost

all the directions. This property makes the Zadoff-Chu sequence more suitable for the channel

estimation purpose. Notice that designing columns of W [t] as cyclically shifted Zadoff-Chu

sequence is just one option and may not be optimal. For example, in [76], an adaptive algorithm

based on adaptive Compressive Sensing is proposed to design W [t] using a multi-resolution

codebook. Moreover, the combined matrix of W [t] and s[t] acts as the sensing matrix in the

CS-based sparse channel estimation, therefore designing W [t] (jointly with s[t]) can also be

formulated as a sensing matrix design problem. Designing the optimalW [t] is beyond the scope

of this chapter and is an interesting topic for the future work.

The received signal y[t] will be down-converted and then go through the ADCs to the

baseband. Unlike the conventional high-resolution ADCs which are commonly assumed in

conventional massive MIMO system, in this work we consider low-resolution ADCs, for example,

1-4 bit ADCs, and model the received signal at baseband as

z[t] = Q(y[t])

= Q
(
W [t]HH̃s[t] + n[t]

) (4.3)

where Q(·) is the quantizer that operates component-wise on y[t]. For the k-th element in y[t],

we have zk[t] = Q(yk[t]) = Q(<{yk[t]}) + jQ(={yk[t]}), i.e., the real and imaginary parts are

quantized independently. A b-bit quantizer Q(y) for a scalar input y ∈ R is defined as

Q(y) =



v1, y ∈ [u0, u1];

v2, y ∈ (u1, u2];

. . . , . . .;

vB, y ∈ (uB−1, uB],

(4.4)
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whereB = 2b denotes the number of quantization levels, u0 < u1 < . . . < uB are the quantization

thresholds and v1, . . . , vB are the quantizer output value. In this work, we consider a simple

mid-point uniform quantizer similar to [87] such that

uk = (−B/2 + k)∆, k = 0, . . . , B,

vk = (uk−1 + uk)/2, k = 1, . . . , B

(4.5)

where ∆ is the quantization step size. In practice, the automatic gain control (AGC) can be

ajusted to attain the desired step size ∆. Notice that we use mid-point uniform quantizer just

for simplicity. The algorithm proposed in the following sections which solves the estimation

problem given the quantized measurements can be applied to any quantizer given the thresholds

u0, . . . , uB, irrespective of the quantizer outputs v1, . . . , vB.

4.2.2 Challenges of Channel Estimation

Assume the training duration is Tp, then for t = 1, . . . , Tp, the UEs transmit the pilot

symbols s[t] and the BS receives z[t] as (4.3). Given s[t], z[t],W [t] and C, the goal of channel

estimation is to recover the uplink channel H . Below we discuss the challenges of channel

estimation due to the use of the hybrid AD processing and low-resolution ADCs.

Use of hybrid AD processing

For now we assume that the high-resolution ADCs are used, so y[t] can be obtained

at the baseband. Since W [t]HH̃s[t] ∈ CR×1 is a column vector, we have W [t]HH̃s[t] =

vec(W [t]HH̃s[t]). By noting that vec(W [t]HH̃s[t]) = (s[t]T ⊗W [t]H)vec(H̃), and denoting

h = vec(H̃) ∈ CNK×1, we reformulate (4.1) as

y[t] = Φ[t]h+ n[t] (4.6)
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where Φ[t] = s[t]T ⊗W [t]H ∈ CR×NK . Notice that at each training time, only an R dimen-

sional signal can be measured due to the utilization of hybrid AD processing with R RF chains.

This makes a big difference compared to the conventional fully digital architecture where N

dimensional measurements are obtained during each training slot. Collecting all Tp received

signals y[t] together, and denote yp =
[
y[1]T , . . . ,y[Tp]

T
]T , Φp =

[
Φ[1]T , . . . ,Φ[Tp]

T
]T and

np =
[
n[1]T , . . . ,n[Tp]

T
]T , we obtain

yp = Φph+ np (4.7)

where Φp ∈ CRTp×NK . To robustly estimate h from yp, for example using the least square (LS)

estimation, one requires that RTp ≥ NK, which implies that Tp ≥ NK/R. Compared to the

fully digital architecture where one only requires that Tp ≥ K, hybrid AD processing leads to an

N/R times more training overhead. Since R is usually much smaller than N in order to lower the

hardware cost, the required training overhead is largely increased in order to robustly estimate the

channel.

Use of low-resolution ADCs

Now we consider the application of low-resolution ADCs where the received signal at the

baseband is

zp = Q(yp). (4.8)

Notice that now each element of the received signal zp,k only provides the range in which yp,k

lies. The use of low-resolution ADCs implies a very coarse indication, or in other words very

large quantization noise zp,k − yp,k, making recovering of h from zp challenging.

To handle the reduction of effective measurements in both the number and the quality, we

consider two options: exploiting the sparsity of the channel and applying the data-aided channel

estimation. We explore the sparse structure of the massive MIMO channel to reduce the required
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number of training pilots, and increase the dimension of the measured signal without sending

more training pilots by utilizing the transmitted data symbols as “virtual pilots”.

4.2.3 Formulation of Quantized Sparse Channel Estimation

As elaborated in Chapter 2, the low dimensionality of the massive MIMO channel in the

angular domain has been widely observed in previous works [27–29, 32, 51] and can be modeled

using the virtual channel model [30,31]. Typically, the BS is far away from the UEs and mounted

at a height with few scatterers around, while the UEs are located at low elevation with relatively

rich local scatterers, as shown in Fig. 4.1. This leads to a small angular spread (AS) in the angular

domain at the BS side, implying that only a small number of angular bins contain almost all the

energy from the multipath signals. In the 3GPP spatial channel model [35], for an urban macrocell

the mean AS at the BS can be 5◦, 8◦ or 15◦ depending on different scenarios. Denoting the AS as

σAS , we take σAS = 10◦ as an example [32, 51] and assume a uniform linear array (ULA) at the

BS. For a ULA with antenna spacing d = λ/2 (λ is the wavelength), the AOA θ ∈ [−90◦, 90◦],

which corresponds to the angular bin u = d/λsin(θ) ∈ [−1/2, 1/2]. For a specific user with

σAS = 10◦, if θ ∈ [−5◦, 5◦], it corresponds to u ∈ [−0.0436, 0.0436], i.e., only 8.72% of the

angular bins are occupied. If θ ∈ [80◦, 90◦] which corresponds to u ∈ [0.4924, 0.5], then only

0.76% of the angular bins are occupied. So after transforming the spatial channel into the angular

domain, it shows sparseness. Moreover, as the number of antennas increases, the resolution in the

angular domain becomes finer. This leads to less power leakage and smaller residues in adjacent

angular bins, which further promotes sparsity.

In this chapter, an ULA is used and we apply the sparse channel model

hk = Axk (4.9)

where hk ∈ CN×1 is the k-th column ofH that corresponds to the channel between the k-th UE
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and the BS.A denotes the sparsifying matrix, which is defined below

A =

[
a(−1

2
) a(−1

2
+ 1

M
) . . . a(1

2
− 1

M
)

]
∈ CN×M ,

a(u) =
1√
N

[1, ej2πu, . . . , ej2πu·(N−1)]T .

(4.10)

In the virtual channel model [29–31], N = M so A is an orthogonal DFT matrix that projects

the spatial domain channel at equally spaced virtual angular domain coordinates. A can also

be constructed as an overcomplete DFT matrix where M > N , which has more flexibility to

encourage sparsity [52–54, 97]. xk denotes the angular domain channel of the k-th UE, where

each element represents the angular bin that is an aggregation of all the paths whose AOAs fall

within the angular window. Based on the sparse assumption, most elements in xk are close to zero,

while only a small number of elements corresponding to AOAs of incoming multipath signals

have non-negligible values. Denoting X = [x1, . . . ,xk], we have H = AX , so H̃ = HC =

AXC = AX̃ , where X̃ = XC. As a result, h = vec(H̃) = (IK ⊗A)vec(X̃) = (IK ⊗A)x,

where x = vec(X̃) ∈ CMK×1. Then (4.7) can be written as

yp = Φp(IK ⊗A)x+ np (4.11)

with ‖x‖0 �MK, where ‖x‖0 denotes the number of nonzero elements in x. Notice that (4.11)

is in the form of the sparse recovery in CS [6, 39], with Φp as the sensing matrix, and IK ⊗A as

the dictionary. From the theories of CS, the required number of measurements, i.e., the number

of rows in Φp, needs to be proportional to ‖x‖0log(MK/‖x‖0) in order to robustly recover

x [6]. In other words, RTp ≥ c‖x‖0log(MK/‖x‖0) where c is some constant. Compared to

the previous requirement of LS estimation that RTp ≥ NK, the required Tp is now scaling with

‖x‖0 rather than NK. So the training overhead is greatly reduced when the channel is sparse,

therefore easing the challenges posed by the hybrid AD processing. After estimating x, we have

X̃ therefore obtain H̃ = AX̃ . Finally, the estimated channel is given byH = H̃C−1 since C
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is assumed to be known at the BS.

However, unlike the conventional CS recovery problem where the unquantized (or quan-

tized with high precision) measurements yp are available, we only have the coarse quantized

measurements

zp = Q(yp) = Q(Φp(IK ⊗A)x+ np). (4.12)

Many algorithms have been developed to solve this quantized CS problem, where Q(·) is a 1-bit

or multi-bit quantizer [85, 86, 88–90]. In this chapter, we develop an SBL framework [19–21] to

solve (4.12) using a VB approach [90, 98–100].

4.2.4 Extension to Wideband System and Multi-antenna UE

In this work, we focus on the conventional massive MIMO system operated in sub-6 GHz,

and assume narrowband channel and single-antenna UE for simplicity of illustration. However,

the framework of quantized sparse channel estimation is general and the formulation can be

readily extended to the wideband system and multi-antenna UE, which is of special interest for

the mmWave communication system. To show this, we first formulate the wideband channel

estimation where each UE is assumed to have multiple antennas and apply the hybrid AD

architecture [54, 78]. Then the formulation is transformed into the quantized CS problem that

shares the same form as (4.12). Due to the nonlinear nature of the operator Q(·) which performs

the quantization in the time domain, it is impossible to split the wideband channel into many

parallel narrowband channel like in an OFDM system [80, 84]. Therefore, we develop the time

domain wideband channel estimation similar to [54, 80, 84].

Assume the BS has Nr antennas and Rr RF chains, the UE has Nt antennas and Rt RF

chains. Denote the receiver analog combiner at the BS as W [t] ∈ CNr×Rr and the transmitter

analog precoder at the k-th UE as F k[t] ∈ CNt×Rt . The frequency selective channel is assumed

to have Nd delayed taps, where the d-th tap of the k-th UE is denoted asHk
d ∈ CNr×Nt . Assume
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perfect synchronization and a sufficiently long cyclic prefix (CP) or zero prefix (ZP). After

removal of the CP or ZP, the received signal after the phase shifters is given by

y[t] = W [t]H
( K∑
k=1

√
ρk

Nd−1∑
d=0

Hk
dF

k[t− d]sk[t− d] + v[t]
)

= W [t]H
[
H̃1

0 H̃
1
1 . . . H̃

K
Nd−1

]
F [t]s[t] + n[t]

(4.13)

where sk[t − d] ∈ CRt×1 is the transmitted symbols from the k-th UE at time t − d. s[t] =[
s1[t]T s1[t− 1]T . . . sK [t−Nd + 1]T

]T , F [t] = diag
(
F 1[t],F 1[t− 1], . . . ,FK [t−Nd + 1]

)
,

and H̃k
d =
√
ρkH

k
d . The received noise v[t] ∼ CN (0, σ2I), and n[t] ∼ CN (0, σ2W [t]HW [t]).

Denoting h = vec
([
H̃1

0 H̃
1
1 . . . H̃

K
Nd−1

])
∈ CKNrNtNd×1, with the same manipulation in (4.6)

we have
y[t] =

(
(s[t]TF [t]T )⊗W [t]H

)
vec
([
H0 H1 . . .HNd−1

])
+ n[t]

= Φ[t]h+ n[t]

(4.14)

where Φ[t] = (s[t]TF [t]T ) ⊗W [t]H ∈ CRr×KNrNtNd . Notice that due to the existence of Nt

antennas at each UE and Nd delayed taps, the dimension of h is augmented by NtNd compared to

(4.6). However, at each training time the dimension of the measured signal stays the same as Rr,

which makes the estimation more difficult. Collecting y[t],Φ[t] in the whole training duration

together, we have yp = Φph+ np similar as (4.7). In [54], the whole training duration is divided

into several frames where a ZP is appended to each frame. TheW [t] and F [t] are kept the same

when t belongs to the same frame, and reconfigured from one frame to the other during the ZP

guard time. Our formulation above is general and does not assume any specific training scheme

or transmission mode (single carrier or OFDM). The detailed development and comparison of

different wideband schemes are left for the future work.

The sparse formulation for the frequency selective channel is similar to the narrowband

one, where an additional domain, i.e., delay domain, can be explored [54, 78]. In [78], perfectly

delay domain sampling is assumed, while in [54] the residue coming from sampling the raised
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cosine pulse shaping filter is considered. For each channel Hk
d in the delay domain, we have

Hk
d = ArX

k
dA

H
t , whereAr ∈ CNr×Mr ,Mr ≥ Nr and At ∈ CNt×Mt ,Mt ≥ Nt are sparsifying

matrices which lead to the sparse coefficient Xk
d , e.g., orthogonal DFT matrices [30, 31] or

overcomplete DFT matrices [54]. Then the sparse channel representation can be formulated as

h = vec
([
H̃1

0 H̃
1
1 . . . H̃

K
Nd−1

])
= vec

(
Ar

[
X̃1

0 X̃
1
1 . . . X̃

K
Nd−1

](
IKNd ⊗AH

t

))
=
(
IKNd ⊗A∗t ⊗Ar

)
x

(4.15)

where X̃k
d =

√
ρkX

k
d , and x = vec

(
[X̃1

0 X̃
1
1 . . . X̃

K
Nd−1]

)
. Considering the effect of the low-

resolution ADCs, the received signal can be written as

zp = Q(yp) = Q(Φp

(
IKNd ⊗A∗t ⊗Ar

)
x+ np) (4.16)

which has the same form as (4.12). It can be solved by the VB-SBL algorithm which will be

proposed in this chapter. Notice that the combined sensing matrix Φp

(
IKNd ⊗A∗t ⊗Ar

)
has

the dimension RrTp ×KMrMtNd, resulting in a very large problem size when large antenna

arrays are applied at both the BS and the UE (large Mr and Mt), or there exists a large number of

delayed taps Nd. Developing fast algorithm that can accommodate large-scale problems will be

an interesting topic for the future work.

4.3 VB-SBL Channel Estimation Algorithm

In order to deal with both the sparse channel estimation and the data-aided channel

estimation (elaborated in the next section), we adopt a Bayesian approach. A Bayesian framework,

usually a MAP framework, for dealing with the unknown data symbols is natural as they are

assumed to be selected uniformly from a chosen constellation. To deal with the sparse channel
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Figure 4.4: Graphical model for the quantized channel estimation using SBL.

in the same setting, i.e., solving the quantized sparse recovery problem (4.12), we utilize the

SBL framework [19–21]. Conventional non-Bayesian approaches in sparse recovery or CS aim

to estimate x directly from zp, i.e., the point estimation of x. For example, `1 regularization is

used on x to encourage its sparsity in [85]. In a Bayesian formulation, sparsity of x is promoted

by utilizing a sparsity-promoting prior, usually a super-Gaussian density. For instance, when

x is given a Laplace prior, the MAP estimation of x under the Gaussian noise reduces to the

`1 regularized formulation. In SBL, x is further modeled by a hierarchical structure through an

additional layer introducing hyperparameter γ as shown in Fig. 4.4. A MAP estimate of γ is

sought and by utilizing the hierarchical structure, an approximation to the full posterior of x

given the data is obtained as p(x|zp; γ̂). Such an approach has been shown to yield a more robust

estimate of x [101]. Also importantly, such a framework is easier to extend to other scenarios

such as a temporally correlated channel model [32, 43] and integrate with data-aided channel

estimation, providing a framework for dealing with all issues synergistically.

4.3.1 Sparse Bayesian Learning Framework

Based on (4.12), we depict the graphical structure of the data generation model in Fig.

4.4, where squares and circles are used to denote constants and hidden variables, and a shaded

circle represents the observation. It is assumed that x conditioned on the hyperparameters is zero
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mean complex Gaussian such that

p(x|γ) = CN (0,Γ−1) (4.17)

where Γ = diag(γ) denotes the precision matrix. The hyperparameter γ = [γ1, . . . , γMK ]T ,

where each γi represents the reciprocal of the variance of the complex Gaussian distributed

variable xi, and is assumed to be Gamma distributed such that

p(γi) = Gamma(γi; a, b)

=
ba

Γ(a)
γa−1
i exp{−bγi}, γi > 0, ∀i

(4.18)

where Γ(a) is the Gamma function, a, b are the constant parameters and p(γ) =
∏MK

i=1 p(γi).

By choosing γi to be Gamma distributed, p(γi) is the conjugate prior to the likelihood function

p(xi|γi), which facilitates the calculation of the posterior distribution. Furthermore, by integrating

out the hyperparameter γi, the marginal distribution of xi can be obtained as

p(xi) =

∫ ∞
0

p(xi|γi)p(γi)dγi

=
baΓ(a+ 1

2
)

(2π)
1
2 Γ(a)

(b+ x2
i /2)−(a+ 1

2
)

(4.19)

which is a Student-t distribution by setting a = b [19]. With appropriate choice of a and b in the

Gamma distribution, the Student-t distribution is strongly peaked about the origin xi = 0, and

has heavy tails thereby promoting the sparsity of x. For example, the Student-t distribution with

a = b = 10−6 is plotted in Fig. 4.5. So, this hierarchical structure leads to a sparsity promoting

distribution of p(xi), which is consistent with our assumption of a sparse angular domain channel

x.

DenotingDp = Φp(IK ⊗A), the measurement equation (4.11) is given by yp = Dpx+

np, where np =
[
n[1]T , . . . ,n[Tp]

T
]T , n[t] ∼ CN (0, σ2W [t]HW [t]) and is independent for
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Figure 4.5: Student-t distribution

different t. Since columns ofW [t] are designed to be the cyclically shifted Zadoff-Chu sequence,

we haveW [t]HW [t] = IR. Consequently, np ∼ CN (0, σ2IRTp), and

p(yp|x) = CN (Dpx, σ
2IRTp). (4.20)

We assume that σ2 is known to the BS, which is a reasonable assumption given σ2 is a long term

statistic. Finally, given yp the observation data zp is distributed as

p(zp|yp) = 1(yp ∈ (l,u]) (4.21)

where 1
(
yp ∈ (l,u]

)
:= 1

(
<{yp} ∈ (<{l},<{u}]

)
· 1
(
={yp} ∈ (={l},={u}]

)
, l and u

denote the lower and upper limits of the range indicated by the quantizer output zp when a
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specific quantizer Q(·) is applied.

Considering the SBL model in Fig. 4.4, we denote all hidden (latent) variables asH, i.e.,

H = {γ,x,yp}, and the received signal zp is denoted as the visible (observed) variable. Ideally,

we would like to perform exact inference by finding the posterior marginal distribution p(x|zp).

Unfortunately, this is intractable due to the high dimensional integration of p(zp) =
∫
p(zp,H)dH.

In the following, we introduce an alternative method, i.e., VB method, to obtain a good and

tractable approximation of this posterior density and conduct effective inference.

4.3.2 Variational Bayesian Method

We now provide a brief summary of the VB method that is utilized in this chapter. The goal

in the VB inference is to find a tractable variational distribution q(H) that closely approximates

the true posterior distribution p(H|zp) [99, 100]. A starting point for this development is the

identity given below

ln p(zp) = L(q) + KL(q||p)

L(q) =

∫
q(H) ln

p(zp,H)

q(H)
dH

KL(q||p) = −
∫
q(H) ln

p(H|zp)
q(H)

dH

(4.22)

where KL(q||p) is the Kullback-Leibler divergence between the true posterior p(H|zp) and the

variational approximation q(H). Since KL(q||p) ≥ 0, it follows that L(q) is a rigorous lower

bound on ln p(zp). Therefore we choose some family of distributions to represent q(H) and seek

a member from that family which maximizes L(q), hence minimizing KL(q||p). The chosen

distribution family should render a tractable evaluation and efficient optimization of L(q), even

though ln p(zp) is intractable.

Here we consider the mean field approximation [99] such that disjoint group of variables
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in q(H) are independent. This is equivalent to choose q(H) such that

q(H) =
∏
i

q(Hi) (4.23)

where {Hi} are the disjoint groups of variables. Within this fully factorized distribution family,

L(q) can be written as

L(q)

=

∫ ∏
i

q(Hi)
{

ln p(zp,H)−
∑
i

ln q(Hi)
}
dH

=

∫
q(Hi)

{∫
ln p(zp,H)

∏
j 6=i

q(Hj) dH∼i
}
dHi −

∫
q(Hi)ln q(Hi) dHi + const

=

∫
q(Hi) ln p̃(zp,Hi) dHi −

∫
q(Hi)ln q(Hi) dHi + const

=− KL(q(Hi)||p̃(zp,Hi)) + const

(4.24)

where const denotes constants that are irrelevant with the interested random variablesHi, and we

have

ln p̃(zp,Hi) =

∫
ln p(zp,H)

∏
j 6=i

q(Hj) dH∼i (4.25)

where the integration is performed with respect to all q(Hj), j 6= i. This leads to

p̃(zp,Hi) =
1

Z
exp
{∫

ln p(zp,H)
∏
j 6=i

q(Hj) dH∼i
}

=
1

Z
exp
{
〈ln p(H, zp)〉∼q(Hi)

} (4.26)

where 〈·〉 denotes the expectation operator, and ∼ q(Hi) means to take expectation with all q(H)

except q(Hi). Z is the normalization factor making p̃(zp,Hi) a valid probability distribution. To

maximize L(q), the KL distance KL(q(Hi)||p̃(zp,Hi)) has to be minimized, so q(Hi) is chosen
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as
q(Hi) = p̃(zp,Hi)

=
1

Z
exp
{
〈ln p(H, zp)〉∼q(Hi)

}
∝ exp

{
〈ln p(H, zp)〉∼q(Hi)

}
.

(4.27)

When the probabilistic model can be expressed as a directed acyclic graph as in Fig. 4.4, the

solution for q(Hi) depends only on the distribution of variables which are in the Markov blankets

of the node i. Note that the equations for all of the factors are coupled since the solution for

each q(Hi) depends on expectations with respect to other factors q(Hj), j 6= i. The variational

optimization proceeds by cycling through each factor in turn replacing the current distribution

with the updated one given by (4.27).

4.3.3 Solving SBL Using VB Method

Applying the mean field approximation, we have

q(H) = q(γ,x,yp) = q(γ) · q(x) · q(yp). (4.28)

Based on (4.27), we derive the posterior density update for each variable γ,x,yp following

[90, 98].
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Derivation of q(yp)

Based on (4.20) and (4.21), q(yp) can be derived from (4.27) as

q(yp) ∝ exp
{

ln p(zp|yp) +
〈
ln p(yp|x)

〉
q(x)

}
∝ p(zp|yp) exp

{〈
ln p(yp|x)

〉
q(x)

}
∝ 1(yp ∈ (l,u]) exp

{〈
− 1

σ2
‖yp −Dpx‖2

2

〉
q(x)

}
∝ 1(yp ∈ (l,u]) exp

{
− 1

σ2
‖yp −Dp〈x〉q(x)‖2

2

}
(4.29)

which indicates that yp is distributed as a truncated multivariate complex Gaussian, and each

element yp,i is independent of the others. Notice that to obtain q(yp), 〈x〉q(x) is needed, which will

be evaluated when deriving q(x). This shows how q(yp) is coupled with the other distributions.

Similarly, 〈yp〉q(yp) will be needed in the later derivations. For the real part of yp,i,

i.e., <{yp,i}, it is distributed as a real truncated Gaussian with mean <{[Dp〈x〉q(x)]i}, vari-

ance σ2/2, and lies within the interval <{li} < <{yp,i} ≤ <{ui}. Define α =
√

2(<{li} −

<{[Dp〈x〉q(x)]i})/σ, β =
√

2(<{ui} − <{[Dp〈x〉q(x)]i})/σ, then from [102] we have

〈<{yp,i}〉q(yp) = <{[Dp〈x〉q(x)]i}+
σ√
2
· φ(α)− φ(β)

Φ(β)− Φ(α)
(4.30)

where φ(·) is the probability density function of the standard normal distribution, and Φ(·) is its

cumulative distribution function. Similarly, by defining α =
√

2(={li} − ={[Dp〈x〉q(x)]i})/σ,

β =
√

2(={ui} − ={[Dp〈x〉q(x)]i})/σ,

〈={yp,i}〉q(yp) = ={[Dp〈x〉q(x)]i}+
σ√
2
· φ(α)− φ(β)

Φ(β)− Φ(α)
. (4.31)

Combining the real and imaginary parts leads to

〈yp,i〉q(yp) = 〈<{yp,i}〉q(yp) + j 〈={yp,i}〉q(yp). (4.32)
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Applying the same approach, all 〈yp,i〉q(yp), i = 1, . . . , Tp can be obtained, leading to

〈yp〉q(yp) = [〈yp,1〉q(yp), 〈yp,2〉q(yp), . . . , 〈yp,Tp〉q(yp)]
T . (4.33)

Derivation of q(x)

Based on (4.17) and (4.20), we have

q(x) ∝ exp
{〈

ln p(yp|x)
〉
q(yp)

+
〈
ln p(x|γ)

〉
q(γ)

}
∝ exp

{〈
− 1

σ2
‖yp −Dpx‖2

2

〉
q(yp)

+
〈
− xHΓx

〉
q(γ)

}
∝ exp

{
− (x− µ)HΣ−1(x− µ)

} (4.34)

which indicates q(x) is a Gaussian distribution with

Σ =
( 1

σ2
DH

p Dp +
〈
Γ
〉
q(γ)

)−1

,

µ =
1

σ2
ΣDH

p 〈yp〉q(yp).

(4.35)

So we have 〈x〉q(x) which is needed in deriving q(yp) as

〈x〉q(x) = µ. (4.36)

Since Dp ∈ CRTp×MK , the inversion of the matrix in (4.35) requires O(M3K3) operations.

When RTp < MK, we can apply the matrix inversion lemma to reduce the complexity such that

Σ =
〈
Γ
〉−1

q(γ)
−
〈
Γ
〉−1

q(γ)
DH

p

(
σ2I +Dp

〈
Γ
〉−1

q(γ)
DH

p

)−1
Dp

〈
Γ
〉−1

q(γ)
(4.37)

where the inversion of the matrix
(
σ2I +Dp

〈
Γ
〉−1

q(γ)
DH

p

)−1 requires only O(R3T 3
p ) operations.

Notice that to obtain 〈x〉q(x), we need both 〈yp〉q(yp) and
〈
Γ
〉
q(γ)

. The former has been derived

when we calculated q(yp), and the latter will be given in the following.
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Derivation of q(γ)

Based on (4.17) and (4.18), q(γ) is derived as follows:

q(γ) ∝ exp
{〈

ln p(x|γ)
〉
q(x)

+ ln p(γ)
}

∝ exp
{〈
− xHΓx

〉
q(x)

+ ln |Γ|+
MK∑
i=1

ln p(γi)
}

∝
MK∏
i=1

exp
{
− 〈x2

i 〉q(x)γi

}
× γi × p(γi)

∝
MK∏
i=1

γ
(a+1)−1
i exp

{
− (b+ 〈x2

i 〉q(x))γi
}

(4.38)

which is the product of independent Gamma distribution, Gamma(γi; ã, b̃) with ã = a+ 1, b̃ =

b+ 〈x2
i 〉q(x). From the property of the Gamma distribution, we have

〈γi〉q(γ) =
ã

b̃
=

a+ 1

b+ 〈x2
i 〉q(x)

(4.39)

where we set a = b = 10−6 following [98], and 〈x2
i 〉q(x) is the i-th element in diag(µµH + Σ),

with µ and Σ given in (4.35). Finally, 〈Γ〉q(γ) is obtained as

〈Γ〉q(γ) = diag
([
〈γ1〉q(γ), . . . , 〈γMK〉q(γ)

])
(4.40)

which is needed when deriving 〈x〉q(x).

By iteratively updating between (4.29), (4.34) and (4.38), we obtain the variational

distributions q(yp), q(x) and q(γ), which approximate the posterior distributions p(yp|zp),

p(x|zp) and p(γ|zp) respectively. The VB method is guaranteed to converge to the local minimum

of the KL divergence [99, 100]. As with many iterative algorithms, it is important to have

a good initialization to ensure that the local minimum obtained is sufficiently close to the

global minimum. In the simulations, we found that initializing all γi to the same constant, and
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initializing yp = zp can lead to good results. In the iterative process, many γi tend to infinity

(numerically indistinguishable from infinity), indicating those xi having negligible values, which

is equivalent to havingDp with corresponding columns excluded. So for those columns inDp

whose corresponding γi are larger than some threshold, we prune those columns fromDp, which

reduces the size of Dp and speeds up the convergence of the algorithm. Finally, the angular

domain channel can be estimated as the posterior mean, i.e., x̂ = 〈x〉q(x), from which the spatial

domain channel is obtained as ĥ = (IK ⊗A)x̂.

4.4 Channel Estimation With Joint Processing of Pilots and

Data

In the previous section, we developed the algorithm to exploit the sparse nature of the

channel so that the required number of pilots is reduced. In this section, we develop a channel

estimation scheme which involves the JPD. The motivation for this is the observation that the

transmitted data symbols can be viewed as “virtual pilots” when they are jointly estimated with the

channel, therefore increasing the number of effective measurements for the channel estimation.

4.4.1 Data-aided Channel Estimation

We denote the JPD duration as T , which includes the whole training duration Tp, and part

of the data transmission duration T − Tp. During the channel training duration Tp, the received

signal zp is given by (4.12). By the similar manipulation, we can formulate the total received

signal in duration T as being given by

z = Q(y) = Q(Φ(IK ⊗A)x+ n). (4.41)
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Figure 4.6: Graphical model for the channel estimation with JPD using SBL.

where z =
[
z[1]T , . . . ,z[T ]T

]T , y =
[
y[1]T , . . . ,y[T ]T

]T , n =
[
n[1]T , . . . ,n[T ]T

]T . Φ =

[ΦT
p ΦT

d ]T , where Φp is given in (4.7) and Φd =
[
Φ[Tp + 1]T , . . . ,Φ[T ]T

]T is composed of

the transmitted data symbols such that Φ[t] = s[t]T ⊗W [t]H , t = Tp + 1, . . . , T . Notice

that Φ ∈ CRT×NK , Φp ∈ CRTp×NK , and T > Tp. So compared to (4.12), the number of

measurements, i.e., the number of rows in Φ, is larger than Φp. As a result, it is expected to

obtain a more accurate estimate of x if Φ is known at the receiver.

However, the s[t], t = Tp + 1, . . . , T in Φd is the transmitted data which is unknown to

the receiver, so the VB-SBL approach proposed in the previous section can not be directly applied

to solve it. Therefore, we incorporate the unknown variableD = Φ(IK ⊗A) into the Bayesian

framework as shown in Fig. 4.6. Notice that the actual random variable inD is the transmitted

data s[t], t = Tp + 1, . . . , T , which are discrete random variables with probability mass function

(pmf):

p(s[t]) =


p1, s[t] = S1;

. . . , . . .;

pQ, s[t] = SQ

(4.42)

where Sq is theK dimensional vector consisting of constellation points and pq is the corresponding
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probability. Q is the total number of discrete points for K users. For example if K = 4 and BPSK

is used, then Q = 24 = 16.

4.4.2 VB-SBL Algorithm For Channel Estimation With JPD

Similar to the previous section, we formulate the channel estimation with JPD into the

SBL framework as shown in Fig. 4.6, and develop the VB method to solve it. Note the similarity

between the structure of the graphical model in Fig. 4.4 and Fig. 4.6, we therefore omit the steps

similar to those in the previous section and only highlight the differences.

Derivation of q(y)

This is similar to (4.29) except thatD is now a random variable. We denote 〈D〉q(s) to

emphasize that the random variables that composeD are s = {s[Tp + 1], . . . , s[T ]}. The q(y) is

given below:

q(y) ∝ exp
{

ln p(z|y) +
〈
ln p(y|x,D)

〉
q(x)q(s)

}
∝ 1(y ∈ [l,u]) exp

{
− 1

σ2
‖y − 〈D〉q(s)〈x〉q(x)‖2

2

}
.

(4.43)

Compared to the derivation of q(yp), we replaceDp with 〈D〉q(s). For each component yi, <{yi}

is truncated Gaussian with mean <{[〈D〉q(s)〈x〉q(x)]i} and ={yi} is truncated Gaussian with

mean ={[〈D〉q(s)〈x〉q(x)]i}, while the other derivations are the same. The derivation of 〈D〉q(s)

is given in the Appendix 4.7.1. It involves the calculation of 〈s[t]〉q(s[t]), i.e., the posterior mean

of transmitted data symbols, which will be derived in the following. After those calculations we

are able to obtain 〈y〉q(y).
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Derivation of q(x)

Similar to (4.34), we have

q(x) ∝ exp
{〈

ln p(y|x,D)
〉
q(y)q(s)

+
〈
ln p(x|γ)

〉
q(γ)

}
∝ exp

{
− (x− µx)HΣ−1

x (x− µx)
}
.

(4.44)

And different from (4.35), we have

Σx =
( 1

σ2
〈DHD〉q(s) +

〈
Γ
〉
q(γ)

)−1

µx =
1

σ2
Σx〈D〉Hq(s)〈y〉q(y)

(4.45)

where for Σx, the term 〈DHD〉q(s) rather thanDH
p Dp is required. The calculation of 〈DHD〉q(s)

is given in Appendix 4.7.1, where the second order statistics 〈s[t]∗s[t]T 〉q(s[t]) is needed and

derived below. Finally, we have 〈x〉q(x) = µx.

Derivation of q(s[t])

Notice that when deriving 〈D〉q(s) and 〈DHD〉q(s) (in Appendix 4.7.1), 〈s[t]〉q(s[t]) and

〈s[t]∗s[t]T 〉q(s[t]) are needed. To obtain q(s[t]), we consider the form of the received signal as in

(4.1), where y[t] ∼ CN (W [t]HH̃s[t], σ2I), then

q(s[t]) ∝ exp
{〈

ln p(y[t]|H̃ , s[t])
〉
q(x)q(y)

+ ln p(s[t])
}

∝ exp
{〈
− 1

σ2
‖y[t]−W [t]HH̃s[t]‖2

2

〉
q(x)q(y)

}
p(s[t])

∝ exp
{
− (s[t]− µs)HΣ−1

s (s[t]− µs)
}
p(s[t])

=


c · w1p1, s[t] = S1;

. . . , . . .;

c · wQpQ, s[t] = SQ

(4.46)
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where we apply the distribution of p(s[t]) given in (4.42), and

Σs =
( 1

σ2

〈
H̃HW [t]W [t]HH̃

〉
q(x)

)−1

,

µs =
1

σ2
Σs

〈
W [t]HH̃

〉H
q(x)

〈
y[t]
〉
q(y)

,

(4.47)

wi = exp
{
− (Si−µs)HΣ−1

s (Si−µs)
}

and c = 1/(w1p1 + . . .+wQpQ) is the scaling constant.

The pmf of s[t] is given by q(s[t]). To obtain µs and Σs, both terms
〈
W [t]HH̃

〉
q(x)

and〈
H̃HW [t]W [t]HH̃

〉
q(x)

are needed, which are given in Appendix 4.7.2. Finally, the first and

second order statistics 〈s[t]〉q(s[t]) and 〈s[t]∗s[t]T 〉q(s[t]) which are needed before can be calculated

as

〈s[t]〉q(s[t]) =

Q∑
i=1

c · wipiSi

〈s[t]∗s[t]T 〉q(s[t]) =

Q∑
i=1

c · wipiS∗i STi .

(4.48)

Derivation of q(γ)

The derivation is the same as (4.38).

Similar to the VB-SBL algorithm in the previous section, we iteratively update q(y), q(x),

q(s[t]), t = Tp+1, . . . , T and q(γ). In terms of the initialization, it is found in the simulations that

using pilots only update to obtain an initial estimate of q(y) and q(x), then updating together with

q(s[t]), can lead to a good performance. Notice that there is a trade-off between the performance

and the complexity when applying the JPD. On one hand, the JPD can achieve better performance

by using transmitted data symbols as the “virtual pilots”, which will be shown in the simulations.

On the other hand, utilizing the transmitted data increases the problem size, thereby resulting

in higher computational complexity. For pilots only channel estimation, each iteration of the

VB-SBL algorithm requires O(R2T 2
pMK) operations when RTp < MK, and O(RTpM

2K2)

operations when RTp > MK. When JPD is applied, it requires O(M3K3) operations when

RT < MK, and O(RTM2K2) operations when RT > MK. Taking an example of a small
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training duration Tp with a large JPD duration T such that RTp < MK < RT , then utilizing JPD

will cause TMK
T 2
pR

times more operations compared to pilots only channel estimation.

4.4.3 Approximating the Distribution of Transmitted Data

In the previous derivation, s[t] is assumed to be a discrete random vector having pmf as

in (4.42), where Q = M̄K if M̄ -QAM is used. Notice that when either M̄ or K is large, Q will

be too large for the calculation of q(s[t]) in (4.46). For example, when 64 QAM is used, even for

4 users, Q = 644 which is impossible to calculate. In such a case, we approximate p(s[t]) as a

Gaussian distribution such that p(s[t]) ∼ CN (0, σ2
sI) where σ2

s is the average signal power. Then,

the derivation of q(s[t]) is modified to

q(s[t]) ∝ exp
{〈

ln p(y[t]|H̃ , s[t])
〉
q(x)q(y)

+ ln p(s[t])
}

∝ exp
{〈
− 1

σ2
‖y[t]−W [t]HH̃s[t]‖2

2

〉
q(x)q(y)

− ‖s[t]‖2
2

σ2
s

}
∝ exp

{
− (s[t]− µ′s)H(Σ′s)

−1(s[t]− µ′s)
} (4.49)

where
Σ′s =

( 1

σ2

〈
H̃HW [t]W [t]HH̃

〉
q(x)

+
1

σ2
s

I
)−1

µ′s =
1

σ2
Σ′s
〈
W [t]HH̃

〉H
q(x)

〈
y[t]
〉
q(y)

.

(4.50)

Based on the derivations above, q(s[t]) is also Gaussian distributed, and we have

〈s[t]〉q(s[t]) = µ′s

〈s[t]∗s[t]T 〉q(s[t]) =
(
µ′s(µ

′
s)
H + Σ′s

)T
.

(4.51)

We will show the usefulness of this approximation in the simulations.
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4.5 Numerical Results

In the simulation study, we consider an uplink single-cell massive MIMO system, and set

the number of antennas at the BS as N = 32, with R = 8 RF chains. There are K = 4 single-

antenna UEs. The training sequences of K UEs are cyclically shifted Zadoff-Chu sequences

so they are orthogonal to each other. The transmitted data is randomly drawn from QPSK

symbols unless otherwise indicated. We assume the same SNR for all UEs [51, 79, 80], i.e.,

ρk = ρ, ∀k, in order to compute the average performance of all UEs for ease of illustration,

and define SNR = 10log10(ρ/σ2). In practice, equal SNR can be achieved by some type

of power control or user scheduling, otherwise the channel estimation quality of the weaker

users will be heavily degraded, especially when ADCs with very low-resolution (e.g., 1-bit) are

used [79, 80]. The quantizer Q(·) is a mid-point uniform quantizer described in Section 4.2, and

for simplicity we set B∆/2 = maxi,t
{
|<{yi[t]}|, |={yi[t]}|

}
, i = 1, . . . , N, t = 1, . . . T , where

maxi,t
{
|<{yi[t]}|, |={yi[t]}|

}
is assumed to be obtained from AGC. Here we emphasize that

the proposed VB-SBL algorithm does not have to be confined to any specific quantizer. It can

be applied to any quantizer when the quantization thresholds u0, . . . , uB are given. The channel

is generated following the spatial channel model (SCM) in 3GPP standard under Urban Macro

Scenario [35], where each UE is randomly located with AOA θ ∈ [−90◦, 90◦] relative to the BS

broadside. In the sparse channel representation (4.9)A is constructed as an overcomplete DFT

matrix with M = 64. The performance metric is the normalized mean square error (NMSE)

defined as

NMSE = E
{‖ĥ− h‖2

2

‖h‖2
2

}
=

1

LK

L∑
l=1

K∑
k=1

‖ĥlk − hlk‖2
2

‖hlk‖2
2

(4.52)

where L = 1000 is the total number of experimental trials.
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4.5.1 Comparing ADCs with Different Resolutions

In Fig. 4.7, we evaluate the channel estimation performance using VB-SBL algorithm,

where hybrid AD processing is combined with ADCs of different resolutions. To compare, we also

include the result where high resolution ADC is applied, i.e., the unquantized signal y is assumed

to be available. It shows that for a specific resolution, there exists some SNR range where the

quantized channel estimation performs similarly to the unquantized one (denoted as∞-bit), and

this range enlarges as the resolutions of ADCs increase. For example, 4-bit ADC can obtain the

same performance as the∞-bit ADC when SNR is below 0 dB, while the 8-bit ADC can achieve

the same performance up to 20 dB SNR. So a decision on what resolution of ADC to be used

indeed depends on the operating SNR range. In massive MIMO system, inexpensive low-power

components can be used to improve the energy efficiency because the resulting distortions can be

eliminated by processing a large number of received signals coherently [1, 2]. Consequently, the

operating SNR range in m1assive MIMO systems is expected to be low, especially as systems

move to higher (e.g., millimeter wave) frequencies [80]. For channel estimation, we assume that

our interested SNR range is from −10 dB to 10 dB. Fig. 4.7 shows that the performance of 4-bit

ADCs is comparable to the performance of∞-bit ADCs in this SNR range.

Unlike the unquantized channel estimate, the NMSE of the quantized channel estimate

does not decrease monotonically with respect to the SNR. Above a certain SNR, the estimation

performance degrades, which means proper intensity of noise can help the estimation of the signal.

This phenomenon is known as the stochastic resonance or the dithering effect when dealing with

such nonlinear threshold systems [103], and has been observed previously for 1-bit [83] and

multi-bit (1-4 bits) [82] channel estimation using other algorithms. Fully exploring such effect is

beyond the scope of this work, and would be an interesting topic for future research.
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Figure 4.7: NMSE versus SNR for ADCs with different resolutions. Tp = 10, N =
32, R = 8, K = 4.

4.5.2 Comparing Different Algorithms

In this experiment, we compare the VB-SBL algorithm with several other channel estima-

tion algorithms:

• EM-LS [81, 82]: this algorithm solves the ML channel estimation using EM algorithm.

In the E step, the posterior mean ŷp = E{yp|zp, ĥ} is calculated, and in the M step the

channel is given by the LS estimation ĥ = (ΦH
p Φp)

−1ΦH
p ŷp. where no channel statistic

is assumed to be available. The LS estimation requires the number of rows in Φp to be at

least as large as the number of columns, i.e., RTp ≥ NK.

• EM-OMP [83]: this is a modified EM type algorithm which exploits the sparse property

of the channel. The E step is the same as EM-LS, and in the M step the update of ĥ is

given by ĥ = (IK ⊗A)x̂ where x̂ is calculated by the orthogonal matching pursuit (OMP)

algorithm.
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Figure 4.8: NMSE versus SNR for channel estimation using different algorithms.
N = 32, R = 8, K = 4, b = 4 bit.

• BPDN [73]: we apply the basis pursuit denoise (BPDN) algorithm directly on the received

signal zp, which inherently treats the quantization error as additive noise. The algorithm is

implemented using SPGL1 toolbox [73].

• ML-L1 [84, 85]: this algorithm solves the ML channel estimation with `1 norm penalty on

x̂ to promote the sparsity. The algorithm is implemented using the FASTA algorithm [104].

Except the EM-LS, all the other algorithms are based on CS algorithms and exploit the sparse

property of the channel, which lead to a smaller number of training pilots Tp compared to the

requirement of Tp ≥ NK/R for the EM-LS algorithm.

In Fig. 4.8, we compare the NMSE versus SNR for different algorithms when 4-bit ADCs

are used. For EM-LS, it is required that Tp ≥ 16, so we set Tp = 20. For the other CS-based

algorithms, Tp is set to 10. In Fig. 4.8, all the CS-based algorithms achieve better performance

than EM-LS at low SNR with even smaller Tp, showing the potential for reducing the number

of pilots by exploiting the sparse property of the channel. Moreover, the proposed VB-SBL
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Figure 4.9: NMSE versus training duration Tp for channel estimation using different
algorithms. N = 32, R = 8, K = 4,SNR = 5 dB, b = 4 bit.

algorithm can be seen to achieve the best performance among the various competing algorithms,

with larger performance gap as the SNR increases. In Fig. 4.9, we compare the NMSE with

respect to the number of training pilots Tp. Similarly, the results show that CS-based algorithms

which utilize the sparse channel property can obtain better performance with smaller Tp compared

to the EM-LS , and the VB-SBL algorithm is superior to the other algorithms.

With regards to complexity, since each algorithm requires different number of iterations

to converge, we consider only the complexity of each iteration for different algorithms. The

EM-LS can only be applied when RTp ≥ NK, and has complexity of O(RTpN
2K2). For all

the CS-based algorithms, since the dimension of the sparsifying matrixA in (4.9) is N ×M , so

the dimension of Dp is RTp ×MK. The complexity of EM-OMP is dominant by correlating

ŷp with every column ofDp, which scales as O(RTpMK). The complexities of SPGL1-based

BPDN [73] and FASTA-based ML-L1 [104] are dominant by the matrix-vector operationsDpx̂

and DH
p ŷp, so their complexities also scale as O(RTpMK). The complexity of VB-SBL is
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Figure 4.10: NMSE versus number of iterations for channel estimation using different
algorithms. N = 32, R = 8, K = 4,SNR = 5 dB, b = 4 bit, Tp = 20.

O(R2T 2
pMK) when RTp < MK, and O(RTpM

2K2) when RTp > MK. Compared to the

other algorithms, VB-SBL has higher complexity. In Fig. 4.10, we plot the NMSE versus

the number of iterations when different algorithms are applied. Fig. 4.10 shows that EM-LS

and EM-OMP converge fast, while it takes more iterations for ML-L1, BPDN and VB-SBL to

converge. However, with a few iterations, VB-SBL already obtains the smallest NMSE among all

the algorithms. In summary, VB-SBL is superior in terms of the channel estimation performance,

but it also has higher complexity. Some previous works have developed faster SBL algorithm

for the conventional unquantized problem [105, 106]. Extending those algorithms to handle the

quantized measurements would be an interesting topic for future work.

4.5.3 Comparing Different SNR

In previous simulations, we assume the same SNR for all UEs for ease of illustration of

the plot. In this experiment, we set different ρk for each UE. When all UEs have the same SNR,
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Figure 4.11: NMSE versus training duration Tp for VB-SBL algorithm with different
SNR for each UE. N = 32, R = 8, K = 4, b = 4bit.

we can compute the average NMSE of all UEs as the performance metric. However, when each

UE has different SNR, we need to plot the performance for each UE separately. Assume K = 4

UEs, and we set each UE’s SNR as ρ1 = −10 dB, ρ2 = −5 dB, ρ3 = 0 dB, ρ4 = 5 dB. Fig.

4.11 plots the NMSE versus the training duration Tp for each UE using the proposed VB-SBL

algorithm with 4-bit ADC. It shows that for all UEs, the NMSE decreases as the training duration

Tp increases. Moreover, the UE with higher SNR has much better NMSE compared to UE with

lower SNR. In practice, some type of power control or user scheduling should be done to make

UEs having the similar SNR and avoid the weaker UEs.

4.5.4 Channel Estimation with JPD

In this experiment, we investigate the performance of channel estimation with JPD and

compare it to the pilots only channel estimation (denoted as Pilot). Firstly, we compare the JPD

and the Pilot when different number of RF chains are used. In Fig. 4.12, we test Pilot with 8, 16,
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Figure 4.12: NMSE versus SNR for JPD and pilots only channel estimation with
different number of RF chains. (a) ∞-bit ADCs. (b) 4-bit ADCs. For pilots only
channel estimation, Tp = 10. For JPD, Tp = 10, T = 50. N = 32, K = 4.
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Figure 4.13: NMSE versus SNR for JPD and pilots only channel estimation with
different resolution ADCs. For pilots only channel estimation, Tp = 10. For JPD,
Tp = 10, T = 50. N = 32, R = 8, K = 4.

and 32 (fully digital) RF chains, and JPD with 8 RF chains. When both Pilot and JPD use 8 RF

chains, JPD has much better performance than the Pilot. Moreover, JPD with 8 RF chains can

obtain even smaller NMSE than Pilot with 16 RF chains. In Fig. 4.12 (b) where 4-bit ADCs are

applied, JPD with 8 RF chains only has small performance loss compared to the Pilot with fully

digital architecture. And in Fig. 4.12 (a) where∞-bit ADCs are used, JPD with 8 RF chains can

achieve the same performance as the Pilot with fully digital architecture from 0 to 10 dB. The

results imply the benefits of using JPD when hybrid AD processing is applied, such that one can

achieve better performance with reduced number of RF chains by utilizing JPD.

Next we compare the JPD and the Pilot when different resolution ADCs are used. Fig. 4.13

shows that for both high-resolution and low-resolution ADCs, JPD is better than the corresponding

Pilot. Notice that more improvements can be achieved by JPD as the resolution of ADCs increases.

Furthermore, with the help of JPD, better performance can be obtained using lower resolution

ADCs. For instance, 4-bit JPD has smaller NMSE than ∞-bit Pilot from −10 dB to 10 dB
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Figure 4.14: NMSE versus JPD duration T . For JPD, Tp = 10. For pilots only channel
estimation, Tp = T . N = 32, R = 8, K = 4,SNR = 5 dB.

SNR. And even 2-bit JPD is better than∞-bit Pilot at −10 dB SNR. This experiment shows the

advantages of applying JPD when low-resolution ADCs are utilized.

In Fig. 4.14, we investigate the performance of JPD with different T , i.e., utilizing

different number of data symbols. Tp in JPD is fixed as 10, and we gradually increase T from

10 to 50 (when T = Tp = 10, JPD is the same as Pilot). The performance of Pilot with Tp = T

is also provided as the benchmark, which can be treated as the best performance that JPD is

able to achieve. Fig. 4.14 shows that for both 4-bit and∞-bit ADCs, the performance of JPD

improves as more transmitted data, i.e., larger T , is utilized for the channel estimation. However,

the increment becomes slower as T increases, which means that most benefit of JPD can be

achieved with a modest T . Notice that with Tp = 10, 4-bit JPD with T = 20 is already better

than∞-bit Pilot with Tp = 10, showing the benefit of JPD even with small T . Compared to Pilot

with Tp = T , the NMSE of 4-bit JPD is only about 1 dB worse, while the∞-bit JPD can achieve

almost the same performance. Notice that the number of training pilots in JPD is only Tp = 10,

in contrast to Tp = T in Pilot. In other words, the training overhead can be reduced by using the
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JPD scheme.

4.5.5 Effect of Gaussian Approximation

We now investigate the effects of Gaussian approximation for JPD as proposed in Section

4.4.3. In Fig. 4.15, we denote “constellation” when p(s[t]) is set to be the true distribution of

the transmitted data symbols as in (4.42), and “Gaussian” when the Gaussian approximation

in Section 4.4.3 is used such that p(s[t]) ∼ CN (0, σ2
sIK) with σ2

s = 1. As shown in Fig.

4.15 (a) and Fig. 4.15 (b), the performance of JPD Gaussian is close to the JPD Constellation

when SNR = −10dB, which implies that the Gaussian approximation is useful at low SNR.

However, the performance loss due to the Gaussian approximation becomes larger as the SNR

increases. Specifically, the performance of JPD Gaussian with 4-bit ADC begins to saturate from

SNR = 5 dB.

When higher order modulation is used, for example, 64 QAM as in Fig. 4.16, applying

the true distribution to p(s[t]) becomes infeasible, whereas the Gaussian approximation provides

an simple alternative. Notice that even with the Gaussian approximation, for both∞-bit and 4-bit

ADCs there is about a 3 dB improvement when JPD is applied, especially for the SNR ranging

from −10 dB to 5 dB.

4.6 Conclusion

In this chapter, we developed a VB-SBL-based channel estimation algorithm for the

multi-user massive MIMO system where hybrid AD processing and low-resolution ADCs are

utilized at the BS. To overcome the limitations imposed by the reduced number of effective

measurements due to the hardware-efficient architecture, we exploit the sparse structure of the

massive MIMO channel to reduce the training overhead. We further leverage the transmitted data

symbols as “virtual pilots” to increase the measurement information. Experimental results show
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Figure 4.15: NMSE versus SNR for JPD with true distribution and Gaussian approx-
imation to QPSK data symbols. (a) ∞-bit ADCs. (b) 4-bit ADCs. For pilots only
channel estimation, Tp = 10. For JPD, Tp = 10, T = 50. N = 32, R = 8, K = 4.
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Figure 4.16: NMSE versus SNR for JPD with Gaussian approximation to 64 QAM
data symbols. (a)∞-bit ADCs. (b) 4-bit ADCs. For pilots only channel estimation,
Tp = 10. For JPD, Tp = 10, T = 50. N = 32, R = 8, K = 4.
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that the VB-SBL algorithm is superior than the other quantized channel estimation algorithms.

At low SNR, channel estimation with low-resolution ADCs can achieve very similar performance

as the high-resolution ADCs. Furthermore, the channel estimation using JPD can achieve better

performance with smaller number of RF chains and coarser ADCs compared to the traditional

pilots only channel estimation scheme, showing the significant benefits of applying JPD when the

proposed hardware-efficient architecture is used. Future work of interest would be in adaptively

designing the analog combining matrix based on previous channel estimate, developing faster

algorithms that can accommodate very large problem size, and utilizing the dithering effect to

improve the performance of low-resolution ADCs at high SNR.

Chapter 4, in part, is a reprint of the material as it appears in the paper: Y. Ding, S. Chiu,

and B. D. Rao, “Bayesian channel estimation algorithms for massive MIMO systems with hybrid

analog-digital processing and low resolution ADCs,” IEEE J. Sel. Topics Signal Process., vol. 12,

no. 3, pp. 499-513, June 2018. The dissertation author was the primary investigator and author of

this paper.

4.7 Appendices

4.7.1 Derivations About Transmitted Data

We present the derivation of 〈D〉q(s) and 〈DHD〉q(s) in this subsection. The term 〈D〉q(s)

is derived as following:

〈D〉q(s) = 〈Φ(IK ⊗A)〉q(s) = 〈Φ〉q(s)(IK ⊗A) (4.53)

where Φ = [ΦT
p ΦT

d ]T . Φp contains known pilot symbols, and only Φd contains unknown

transmitted data s[t], t = Tp + 1, . . . , T which is random. So 〈Φ〉q(s) = [ΦT
p 〈Φd〉Tq(s)]T and

〈Φd〉q(s) =
[
〈Φ[Tp + 1]〉Tq(s[Tp+1]), . . . , 〈Φ[T ]〉Tq(s[T ])

]T where for each 〈Φ[t]〉q(s[t]), t = Tp +
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1, . . . , T we have

〈Φ[t]〉q(s[t]) = 〈s[t]〉Tq(s[t]) ⊗W [t]H . (4.54)

The term 〈s[t]〉q(s[t]) needs to be calculated from the approximated posterior q(s[t]), which is

given in (4.48).

SinceD = [DT
p D

T
d ]T , onlyDd = Φd(IK ⊗A) contains the random variable s[t] in Φd.

Similarly we have

〈DHD〉q(s) = DH
p Dp + 〈DH

d Dd〉q(s)

= DH
p Dp + (IK ⊗A)H〈ΦH

d Φd〉q(s)(IK ⊗A)

(4.55)

where 〈ΦH
d Φd〉q(s) =

∑T
t=Tp+1〈Φ[t]HΦ[t]〉q(s[t]). And for each 〈Φ[t]HΦ[t]〉q(s[t]), we have

〈Φ[t]HΦ[t]〉q(s) =
〈(
s[t]T ⊗W [t]H

)H(
s[t]T ⊗W [t]H

)〉
q(s[t])

=
〈(
s[t]∗ ⊗W [t]

)(
s[t]T ⊗W [t]H

)〉
q(s[t])

= 〈s[t]∗s[t]T 〉q(s[t]) ⊗
(
W [t]W [t]H

) (4.56)

where 〈s[t]∗s[t]T 〉q(s[t]) is given in (4.48).

4.7.2 Derivations About Angular Domain Channel

In this subsection, we derive
〈
W [t]HH̃

〉
q(x)

and
〈
H̃HW [t]W [t]HH̃

〉
q(x)

. The deriva-

tion of
〈
W [t]HH̃

〉
q(x)

is straightforward such that

〈
W [t]HH̃

〉
q(x)

= W [t]H
〈
H̃
〉
q(x)

= W [t]HA〈X̃〉q(x). (4.57)

The term 〈X̃〉q(x) can be obtained by reshaping vec(〈X̃〉q(x)), where vec(〈X̃〉q(x)) = 〈x〉q(x) =

µx as given in (4.45).
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Similarly, regarding to the term
〈
H̃HW [t]W [t]HH̃

〉
q(x)

, it can be reshaped from its

vectorized form vec
(〈
H̃HW [t]W [t]HH̃

〉
q(x)

)
, which is given below:

vec
(〈
H̃HW [t]W [t]HH̃

〉
q(x)

)
= vec

(〈
X̃HAHW [t]W [t]HAX̃

〉
q(x)

)
=
〈
X̃T ⊗ X̃H

〉
q(x)

vec
(
AHW [t]W [t]HA

)
.

(4.58)

Notice that X̃T ⊗ X̃H consists of K × N blocks where each block is of size K × N . For

the (i, j)-th block of
〈
X̃T ⊗ X̃H

〉
q(x)

, its value is 〈x̃j,iX̃H〉q(x), whose conjugate transpose

is 〈X̃x̃∗j,i〉q(x). And the term 〈X̃x̃∗j,i〉q(x) can be further reshaped from vec
(
〈X̃x̃∗j,i〉q(x)

)
=[

µxµ
H
x +Σx

]
·,(i−1)N+j

, which is the ((i−1)N + j)-th column of µxµHx +Σx, with both µx and

Σx given in (4.45). By forming all K×N blocks together, we obtain the matrix
〈
X̃T ⊗X̃H

〉
q(x)

,

thereby having
〈
H̃HW [t]W [t]HH̃

〉
q(x)

.
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Chapter 5

Sensing Matrix Design With Partial

Knowledge of Support

In compressive sensing, it has been shown that a carefully designed sensing matrix is

able to improve the performance of signal recovery, when the signal can be sparsely represented

using an overcomplete dictionary. The designed sensing matrix is able to decrease the average

coherence of the combined equivalent dictionary. In this chapter, we propose a new framework

when partial knowledge of support is available. Observing that for an overcomplete equivalent

dictionary, it is impossible to make the coherence between all pairs of atoms to be arbitrarily

small, our algorithm leverages the partial knowledge of support and concentrates on minimizing

coherence between atoms where at least one of the columns belongs to the preferred support set.

In the noisy case, energy among atoms of the equivalent dictionary is non-uniformly distributed

such that atoms in the preferred support set are emphasized. To solve the underlying optimization

problem, we propose an algorithm for sensing matrix design with partial knowledge on support

(SMPKS) based on the majorization-minimization (MM) framework. Experimental results show

the superiority of the proposed SMPKS algorithm compared to other sensing matrix design

algorithms. Since the compressive sensing algorithms have been widely applied for channel
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estimation in massive MIMO system, the proposed SMPKS algorithm can be utilized to design

better pilot symbols to improve the channel estimation performance.

5.1 Introduction

In the framework of compressive sensing, the signal of interest x ∈ RN×1, is assumed

to have a sparse representation in a dictionary D ∈ RN×M , such that x = Dβ. The sparse

coefficient vector β ∈ RM×1 is assumed to have only a few nonzero entries such that ‖β‖0 �M .

The signal x is measured by a sensing matrix A ∈ RT×N such that

y = Ax = ADβ = Eβ (5.1)

where y ∈ RT×1 is the measured signal and E = AD ∈ RT×M is the combined equivalent

dictionary. The goal of compressive sensing is to recover x given y,A andD, even when the

number of measurements is less than the dimension of the signal, i.e., T < N . In [6], it has been

shown that whenD is an orthonormal basis, by utilizing a randomly generated matrixA and with

number of measurements T ∝ C · s log(N/s), the sparse coefficient β can be robustly recovered.

Here the constant C depends on the property of the sensing matrixA and s = ‖β‖0 represents the

sparsity level. The signal x can then be computed as x = Dβ. However in some applications,

the signal x can not be sparsely represented in any orthonomal basis [107], or more generally a

sparse representation of the signal is achieved using an overcomplete dictionary D which has

more columns than rows N < M , and is possibly learned from the data [58, 59]. The utilization

of an overcomplete dictionaryD will alter the geometric structure induced by the random sensing

matrixA and the equivalent dictionary E no longer satisfies the constraints required for robustly

recovering β. So a problem of interest is as follows: when given an overcomplete dictionaryD,

rather than using a randomly generatedA which is independent ofD, is it possible to design a

better sensing matrixA that adapts toD such that the performance of sparse recovery algorithms
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can be improved?

Existing works which aim to optimize sensing matrixA can be generally categorized into

two different types. The first type is to designA as a whole, which adapts to dictionaryD such

that the combined equivalent dictionary E = AD has good geometric properties [50, 108–111].

In [50], the author consider the “average” mutual coherence between atoms in E, and try

to decrease the large entries by a shrinkage process utilizing the Gram matrix G = ETE.

In [108, 109], the sensing matrix is designed such that the distance between the Gram matrix

and an identity matrix is minimized, which can be regarded as a way to minimize the average

level of coherence. The work in [109] considers the application of measurement matrix design

in MIMO radar, with optimality criterion depending on the coherence as well as the signal to

interference ratio (SIR). In [110], the special case when the signal has a block sparse representation

is considered, and the design of A is carried out by minimizing a weighted sum of sub-block

coherence and inter-block coherence. Motivated by Grassmannian frame design, the work

in [111] attempts to make the equivalent dictionary E to be an equiangular tight frame by using

an alternating minimization algorithm.

In the second category, rows ofA are sequentially designed, using previously collected

measurements as guidance, see [21, 112, 113] and references therein. The sparse model assumes

D to be an orthonormal basis or canonical coordinate. In [21], a Bayesian signal model is adopted

and a new row ofA is chosen to maximize the increment of differential entropy h(y) as a means

for making the new measurement most informative. In [112,113], a constraint on the total sensing

energy, i.e., ‖A‖2
F , is considered and sequential measurement is designed to focus sensing energy

towards the more probable non-zero elements based on knowledge from previous measurements.

This adaptive sensing can decrease the required magnitude of the smallest element in β for a

robust recovery [112, 113]. However, sequentially update rows of A such design requires the

accessibility of the previous measurements in an online fashion, which may not be feasible in

some applications.
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In this chapter, we follow the concept in the first category to design A ∈ RT×N as a

whole with respect to a given overcomplete dictionary D ∈ RN×M . In order to guarantee the

unique representation of x, we assume spark(D) = N + 1 and ‖β‖0 < T/2 [7]. In the scenario

of an overcomplete representation and compressed sensing such that T < N < M , we have

‖β‖0 < spark(D)/2. According to [16, 24], this condition implies that β is unique and sparsest

given the representation of x = Dβ. Moreover, we consider the situation where some partial

knowledge about the support of β is available, for example a prefered support set S. Defining the

true support of β as T S(β) (or T S when β is clear from the context), then we have S = ∆∪∆e,

where ∆ = S∩T S denotes the correct components in the preferred set, and ∆e = S\T S denotes

the error in the preferred set. Similarly, T S = ∆∪∆m where ∆m = T S\S represents the correct

components that are missing from S. To measure the quality of the the preferred support S, we

define the error rate as pe = |∆e|/(|∆|+ |∆e|), and the missing rate as pm = |∆m|/(|∆|+ |∆m|).

We do not put any constraints on the size of preferred support, i.e., |S| can be smaller, equal, or

larger than |T S|.

Such partial information about the sparse support set exists in many applications. For

example ifD is an discrete wavelet transform frame and β represents the coefficient of an image,

then the entries of β that correspond to the low frequency subbands are most likely to be nonzero

and carry most of the energy, so S can be the set of location indices of those coefficients [114].

For the time series problem, S can be ˆT S which is the estimated support from the previous time

slot. Then ∆e = S\T S corresponds to coefficients that were nonzero previously but are zero

at the current time, while ∆m = T S\S is the newly added coefficients. Both ∆e and ∆m are

typically much smaller than |S|, following the empirical observation that sparsity patterns change

slowly [115]. The channel estimation problem in massive MIMO systems is of particular interest

to us, where the channel x can be sparsely represented in an overcomplete DFT dictionary or

learned dictionaryD as x = Dβ [97]. In a closed loop training, the user estimated the channel

x̂ = Dβ̂ from the downlink training y = Ax + n, and feeds back information such as the
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support of sparse coefficients T S(β̂). Then the base station can utilize this information to design

pilotsA for the next training stage, i.e., S = T S(β̂). If the current channel is estimated correctly

and the feedback is perfect, when the channel is slowly changing the S obtained during the current

training stage would be a good indication for the next training stage. In the open loop training

where there is no feedback, when the duplex distance (frequency difference between the uplink

and downlink transmission) is small, it is reasonable to assume the uplink and downlink channel

have similar sparse support due to the common scattering objects during uplink and downlink

transmission, i.e., T S(βu) = T S(βd) [97]. Then the base station can utilize uplink training to

extract support information as the preferred support, S = T S(β̂u) and use it to design pilotsA

in the downlink channel estimation. When the uplink channel is correctly estimated, again S is a

good indication of the sparse support of the downlink channel.

In [115], a similar concept of partially known support was proposed, and a modified

basis pursuit algorithm was used to utilize such prior information and shown to require weaker

conditions for exact reconstruction. Similarly in [114] a weighted `1 minimization was proposed

where smaller weights are given to the elements in the preferred support. In our work, rather

than designing for a specific sparse recovery algorithm, e.g., modified-BP in [115], we develop a

framework to design a sensing matrix, and we demonstrate experimentally that for many sparse

recovery algorithms the designed sensing matrix leads to an improved recovery performance.

Designing sensing matrix with partial knowledge of support has also been considered in [116], in

which spectral characteristics of underlying signal are assumed to be known, and colored Gaussian

matrix with corresponding spectral shapes is used as sensing matrix to focus measurement energy.

Our work generalizes this work in that we consider an overcomplete dictionaryD, rather than

a Fourier transform matrix as used in [116] to extract spectral information. Also regarding the

design of A, we consider both structure optimization (decrease mutual coherence) as well as

energy focussing (increase signal to noise ratio), where [116] only considers the energy focussing.

The chapter is organized as follows. In Section 5.2, we review two representative works
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on sensing matrix design. In Section 5.3, we introduce our motivation for utilizing the partial

knowledge of support, and propose an efficient algorithm to solve the sensing matrix design

problem. We then extend it to the noisy case in Section 5.4. Simulation results are presented in

Section 5.5. Conclusions and future works are discussed in Section 5.6.

Notations used in this chapter are as follows. Upper (lower) bold face letters are used

throughout to denote matrices (column vectors). (·)T , (·)† denotes the transpose and the Penrose-

Moor pseudo-inverse. xi is the i-th entry of the vector x, and Aij is the (i, j)-th entry of the

matrixA. A·j andAi· represents the j-th column and i-th row ofA. When S is an index set,A·S

andAS· correspond to a submatrix collecting corresponding columns and rows ofA, respectively.

For a vector x, diag(x) is a diagonal matrix with x being its diagonal. IN×N is an N ×N identity

matrix. For a given vector x and matrix A, ‖x‖1, ‖x‖2 denotes the `1 and `2 norm, and ‖A‖F

denotes the Frobenious norm. tr(A) denotes the trace of a matrixA. ‖x‖0 represents the number

of nonzero entries in x and is referred to as the `0 norm. For an integer M , [M ] is defined as the

set {1, . . . ,M}. | · | denotes the absolute value of a scalar or cardinality of a set. bxc rounds x to

the nearest integer that is smaller than x.

5.2 Prior Work on Sensing Matrix Design

In this section we will introduce several basic concepts and terminologies which will be

used later in the chapter. We review past work and two representative algorithms [50, 108] that

motivate our work in some detail. These algorithms are used for comparison in the simulations.

5.2.1 The Basics

Mutual coherence plays an important role in compressive sensing to determine the recov-

ery performance [7, 10, 24], which is defined as [50]:

Definition1. For a dictionary E ∈ RT×M , its mutual coherence is defined as the largest absolute
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normalized inner product between different columns in E, which is given by

µ(E) = max
1≤i,j≤M,i 6=j

|ET
·iE·j|

‖E·i‖2 · ‖E·j‖2

. (5.2)

Another way to understand mutual coherence is by the Gram matrix G = ETE. The

diagonal elementsGii is the squared norm of the i-th column of E, i.e.,Gii = ET
·iE·i = ‖E·i‖2

2.

The off-diagonal entries Gij describes the coherence between E·i and E·j similar to (5.2), but

without normalization and maximization. If we denote Ẽ as E with normalized columns and

G̃ = ẼT Ẽ, then

µ(E) = max
i 6=j
|G̃ij|. (5.3)

We shall refer hereafter |Gij| and |G̃ij| as the unnormalized coherence and the coherence between

the i-th column and the j-th column of the dictionary E, to denote the similarity between two

columns.

The mutual coherence provides a measure of the worst similarity between the dictionary

columns, a value that exposes the dictionary’s vulnerability, as two closely related columns may

confuse any sparse recovery algorithm [50]. Suppose the signal x is sparse in the canonical

coordinate basis, i.e., D = IN×N , then (5.1) becomes y = ADβ = Aβ. It has been shown

that if ‖β‖0 <
1
2
(1 + 1

µ(A)
), then β is the uniquely sparsest solution to y = Aβ, and both

basis pursuit (BP) and orthogonal matching pursuit (OMP) algorithms are guaranteed to recover

β [7,10,24]. This result can be applied to (5.1) with a general overcomplete dictionaryD such as

‖β‖0 <
1
2
(1 + 1

µ(AD)
) = 1

2
(1 + 1

µ(E)
), and we can see that a smaller µ(E) implies a wider range

of solvable β (β whose sparse support has a larger cardinality). This is the motivation behind

the idea of designingA such that E = AD possesses good geometric properties, e.g., a smaller

µ(E).

However, as pointed in [50], mutual coherence µ(AD) is the worst-case measure of the

recoverability for a sparse recovery problem, which may be too pessimistic for practical problems.
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If one allows a small fraction of signals with the same representation cardinality to fail (which

relaxes the “guaranteed” essence in the proofs), then β with cardinality of support substantially

beyond the above bound can still be recovered by the pursuit algorithms. This motivates one to

consider properties of E that can lead to performance improvement in a more “average” sense,

which will be introduced in the following subsection.

5.2.2 Some Representative Work

In [50], a “t-averaged mutual coherence” is proposed aiming to reflect average behavior

of the dictionary:

Definition2. For dictionary E, it’s t-averaged mutual coherence is defined as the average of all

absolute and normalized inner products between different columns in E (denoted as G̃ij) that are

above t. Formally

µt(E) =

∑
1≤i,j≤M,i6=j 1(|G̃ij| ≥ t) · |G̃ij|∑

1≤i,j≤M,i6=j 1(|G̃ij| ≥ t)
. (5.4)

The notation 1(·) denotes the indicator function, such that 1(|G̃ij| ≥ t) = 1 if |G̃ij| ≥ t,

1(|G̃ij| ≥ t) = 0 if |G̃ij| < t. For t = 0, µt(E) is the average of the absolute off-diagonal

entries of G̃. As t grows, µt(E) grows and approaches µ(E) from below. Also from definition

µt(E) ≥ t. In [50], µt(E) was used as an “average” measure of coherence and the goal was to

minimize µt(AD) with respect toA givenD. Notice that µt(E) is defined via the entries of the

G̃, and an iterative algorithm is proposed such that in each iteration all G̃ij that are greater than t

are shrunk by a factor γ, 0 < γ < 1, andA is recalculated according to the new G̃. The iterations

are carried out until some termination requirement is satisfied. Although no convergence proof is

provided, it has been shown to achieve improved performance compared to the random sensing

matrix using both BP and OMP as recovery algorithms. Similar iterative shrinkage approach

has been applied to design Grassmanian frames that minimize the actual mutual coherence in

(5.2) [49]. Another related work [111], constructs a relaxed equiangular tight frame (ETF) using
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a gradient-based alternating minimization approach.

In [108],A is designed such that the distance between the Gram matrix and the identity

matrix is minimized. This formulation lead to the following design procedure.

Â = arg min
A
‖ETE − I‖2

F

= arg min
A
‖DTATAD − I‖2

F .

(5.5)

Notice that (5.5) is the same as minimizing µt(E), t = 0 if columns of E are enforced to have

unit norm. Rather than explicitly constraining columns of E to be unit norm, the diagonal terms

of DTATAD − I can be regarded as a penalty to encourage unit norm of columns of E. By

some manipulation, (5.5) can be transformed into ‖Λ−ΛΓTΓΛ‖2
F where V ΛV T is the eigen-

decomposition of DDT and Γ = AV . A K-SVD [59] like algorithm is used to progressively

solve forA [108].

5.3 Sensing Matrix Design with Partial Knowledge of Sup-

port

5.3.1 Motivation

The cost function in (5.5) can also be written in terms of entries in Gram matrixG = ETE.

As shown in [110], we have

‖ETE − I‖2
F = Trace(ETEETE − 2ETE + IM)

= Trace(EETEET − 2EET + IT ) + (M − T )

= ‖EET − IT‖2
F + (M − T )

≥M − T

(5.6)
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since we have ‖EET − IT‖2
F ≥ 0. Also, (5.6) can be written using the Gram matrixG as given

below:

‖ETE − I‖2
F =

∑
i 6=j

|Gij|2 +
∑
i=j

|Gij − 1|2 ≥M − T. (5.7)

This means for an overcomplete equivalent dictionary E, it is impossible to minimize coherence

to be arbitrarily small between all pairs of columns. In other words, it is impossible to make all

|Gij|, i 6= j and |Gij − 1|, i = j to be arbitrarily small at the same time. However, do we really

need to minimize coherence between all pairs of columns? To address this question we draw

some inspiration from past work.

In [7], it has been shown that for y = Ax = ADβ = Eβ, if ‖β‖0 <
1
2
(1 + 1

µ(E)
),

then OMP is guaranteed to find it exactly. An examination of the proof reveals that only the

coherence between two columns which are both in the true support, or the coherence between

two columns of which only one belongs to the true support and the other is outside of the

true support, are important. Coherence between columns which are both outside of the true

support do not play a role in establishing the result. In other words, the OMP algorithm can

always succeed if the sufficient condition in [7] is satisfied, no matter what value the coherence

between two columns that are both outside the true support is. Another work that supports the

above argument is [117], in which an Exact Recovery Condition (ERC) was proposed. With

the same measurement system y = Eβ as above, assume J as the true support of β, the ERC

states that if maxk 6∈J ‖E†·JE·k‖1 < 1, then the sparsest representation of the signal is unique.

Moreover, both OMP and BP identify the optimal atoms and their coefficients. Noting that

E†·J = (ET
·JE·J )−1ET

·J , then the ERC becomes maxk 6∈J ‖(ET
·JE·J )−1ET

·JE·k‖1 < 1. Again

in ERC, only coherence of columns that are both in the true support ET
·JE·J , or only one of

them is in the true support ET
·JE·k, are considered. It implies that when ERC is satisfied, the

coherence of columns that are both outside the true support do not play a role. Moreover in

both [7] and [117], by minimizing the coherence between pairs of columns when at least one
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belongs to the true support, one is able to achieve a more favorable bound for the recovery

condition to be satisfied. In [7], this corresponds to minimize |ET
·kE·t|, 1 ≤ k, t ≤ s and

|ET
·iE·t|, i > s, 1 ≤ t ≤ s, and in [117] it corresponds to minimize ‖(ET

·JE·J )−1‖1,1 and

‖ET
·JE·k‖1, k 6∈ J . Minimizing those terms will give tighter bounds such that the required

conditions tend to be more likely satisfied. Note that only the upper bounds but not the actual

interested terms, i.e., |
∑s

t=1 βtE
T
·kE·t|, 1 ≤ k ≤ s and |

∑s
t=1 βtE

T
·iE·t|, i > s in [7] and

‖E†·JE·k‖1 in [117], can be improved by minimizing those terms.

The above discussion reveals the benefit of reducing the coherence between columns

when at least one of them belongs to T S(β), or formally

|Gij| = |ET
·iE·j|, i or j ∈ T S(β) (5.8)

and we do not need to consider the coherence of columns when both are outside of the true

support,

|Gij| = |ET
·iE·j|, i and j 6∈ T S(β). (5.9)

Since E = AD where D is a given dictionary, we can only rely on designing A in order to

minimize |Gij| = |ET
·iE·j|. Moreover, rather than requiring the equivalent dictionary E = AD

to have a good geometric condition for every pair of atoms, which is demanding and potentially

unnecessary, it motivates one to concentrate on pairs of atoms when at least one has a high chance

of belonging to the true support T S(β). It is interesting to see that the previous works either

minimize mutual coherence defined in (5.3), which focusses on the maximum of all |Gij|, or

”t-averaged mutual coherence” defined in (5.4), which focusses on the average of all |Gij|. The

above observations indicate that we should choose discriminatively the more important |Gij|

rather than considering them all.

However, we do not know the true support beforehand, otherwise (5.1) reduces to a trivial

overdetermined linear inverse problem. In many practical applications, we may be able to gather
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some information on the support, potentially an approximation which we refer as the preferred

support set S . Observing the lower bound in (5.7), even if the S we obtain is only partially correct,

it is useful to utilize it. The more confidence we have in this preferred support set S, the more

emphasis one should put on it.

5.3.2 Designing the Sensing Matrix

Based on the above discussion, we focuss on minimizing |Gij| that at least i or j belongs

to the preferred set S . For a Gram matrixG = ETE = (AD)T (AD) with elementsGij , we aim

to solve optimized sensing matrixA by minimizing |Gij|2, corresponding to the unnormalized

coherence between Ei and Ej . Define sets that describe different conditions on {i, j}: P1 =

{{i, j}|i = j, i, j ∈ S},P2 = {{i, j}|i = j, i, j 6∈ S}, P3 = {{i, j}|i 6= j, i ∈ S and j ∈ S},

P4 = {{i, j}|i 6= j, only i or j ∈ S} P5 = {{i, j}|i 6= j, i 6∈ S and j 6∈ S}, and

Wd =
∑
{i,j}∈P1

|Gij − 1|2 +
∑
{i,j}∈P2

|Gij − 1|2,

Ws =
∑
{i,j}∈P3

|Gij|2 +
∑
{i,j}∈P4

|Gij|2,

Wns =
∑
{i,j}∈P5

|Gij|2.

(5.10)

Then the sensing matrix design problem is formulated as

Â = arg min
A

γWd + αWs +Wns (5.11)

where γ and α are positive constants. In (5.11), we do not explicitly normalize columns ofE to be

unit norm, but implicitly encourage such constraint by minimizing Wd [108,110]. Wd controls the

distance between the diagonal elementsGii and 1, whereGii represents the squared norm of the

i-th columnE·i . If Wd = 0, then every column of the equivalent dictionaryE is normalized, and
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the unnormalized coherenceGij reduces to the the coherence G̃ij . Ws represents the summation

of unnormalized coherence between two columns when at least one of them belongs to S. Wns

represents the summation of unnormalized coherence between two columns that are both out of

S.

We use γ and α to trade off among Wd,Ws and Wns. Typically we choose α > 1 to

emphasize Ws, which corresponds to the coherence of columns that are more important for

successful recovery. Since usually the dimension of sparse coefficient β is much larger than the

size of preferred support, i.e., M � |S|, the value of Wns is much larger than Ws, so we need a

larger value α to favor minimizing Ws. Also we need a large value for γ, in order to guarantee

every atom in E to be nearly normalized. Large γ avoids the situation that columns in S are

driven to have too small norm. For example, assume α� γ, and let i ∈ S . By makingE·i to be a

vector with all zeros will lead to a smaller Ws sinceGij = 0,∀j. Due to α� γ, the optimization

process will favor this result. But it leads to a very large coherence after normalization. In

other words, the process is favoring minimizing Ws by making E·i trivial rather than making E·i

distinct with other columns, where the latter is the true purpose of minimizing Ws. In (5.11) we

also minimize the term Wns which only relates to columns outside S. This is because S may

only contain part of the correct indexes (|∆m| > 0), there are still some columns belonging to the

true support T S that are outside of S, and minimizing coherence of those columns will give a

better recovery performance. But since we have no idea about those columns, we can only treat

them in an non-informative manner and use Wns to minimize the summation of the unnormalized

coherence corresponding to those columns.

5.3.3 SMPKS Algorithm

Although the cost function in (5.11) is in the quadratic form of entries in G, the actual

variable A that we are going to solve is coupled with G through the dictionary D such that

G = ETE = DTATAD, where A ∈ RT×N ,D ∈ RN×M . With the assumption T ≤ N and
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N ≤ M , the Gram matrix G is rank T (assume generally E = AD is full rank). Imposing

such rank constraint makes the problem non-convex, and relaxation is often used to transform

the problem into an approximate convex form. To solve (5.11), we can modify algorithms in

the existing literatures to our specific setting. For example, rather than shrink all Gij that are

larger than some threshold, we can only shrink those Gij if at least one of i or j belongs to S,

and then reduce the rank ofG and updateA following the same procedure as in [50]. However

as mentioned in [50], such an algorithm does not have any convergence guarantees, although

it works well in practice. Another possible approach is to follow [109], by settingB = ATA,

and treating B as the variable in G = DTATAD = DTBD. This transforms the problem

into convex form with respect to B, and can be solved by many software packages. Once B

is obtained, the eigenvalue decomposition is performed to reduce the rank and achieveA. But

notice theB is of size N ×N , and we need to constrain the norm of E to be one. Such a large

number of variables and constraint functions greatly increases the complexity of the approach

making it less suitable for large dimensional problems [109].

In this section, we propose an algorithm for sensing matrix design with partial knowledge

of support (SMPKS) which applies the majorization-minimization (MM) framework to iteratively

solve the problem [110, 118, 119]. In MM framework, the original cost function which is hard to

minimize is upper bounded by a surrogate function which is easier to minimize. Since the MM

approach is central to the SMPKS algorithm, we provide a brief background on the concept of

MM algorithm in general for ease of understanding. Consider a real-valued function f(θ). Let

θ(m) represents a fixed value of the parameter θ, and let g(θ|θ(m)) denote a real-valued function of

θ whose form depends on θ(m). Then the function g(θ|θ(m)) is said to majorize f(θ) at the point

θ(m) if
1. g(θ|θ(m)) ≥ f(θ), ∀θ,

2. g(θ(m)|θ(m)) = f(θ(m)).

(5.12)

In each iteration, g(θ|θ(m)) rather than f(θ) is minimized. Denotes θ(m+1) as the minimizer of
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g(θ|θ(m)) such that

θ(m+1) = arg min
θ
g(θ|θ(m)). (5.13)

Then the decrease of the original function f(θ) in the next iteration can be shown as follows:

f(θ(m+1)) ≤ g(θ(m+1)|θ(m))

≤ g(θ(m)|θ(m))

= f(θ(m))

(5.14)

where the first inequality comes from the property 1 in (5.12), the second inequality is from (5.13),

and the last equality is from the property 2 in (5.12). By iteratively minimizing the surrogate

function, it is able to achieve a stationary point of the original function. As the iteration goes on,

the value of f(θ) keeps decreasing until a stationary point is achieved. The key point of the MM

algorithm is to find the surrogate function g(θ|θ(m)) such that properties in (5.12) are satisfied,

and the surrogate function should be amenable to easy minimization in each iteration.

To solve for a good sensing matrixA, we hope to write the cost function in (5.11) in the

form ofG rather thanGij , so it will be easier to incorporate the variableA byG = DTATAD.

Similar to [110], we define matrixHd(G),Hs(G),Hns(G) as follows:

Hd
ij(G) =


c1 i = j and i, j ∈ S

c2 i = j and i, j 6∈ S

Gij otherwise

Hs
ij(G) =


0 i 6= j, i ∈ S or j ∈ S

Gij otherwise

Hns
ij (G) =


0 i 6= j, i 6∈ S and j 6∈ S

Gij otherwise

(5.15)
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and build coefficient matrix Ω as

Ω = diag(ω) (5.16)

where ω ∈ RM×1, ωi = 1√
c1
,∀i ∈ S and ωi = 1√

c2
,∀i 6∈ S . c1 and c2 are parameters that control

the norm of the columns of E and will be elaborated in the next section when the noisy case is

considered. For the noise free situation in this section, we just set c1 = c2 = 1, so Ω = I. Then

the cost function in (5.11) can be written as

f(G)

= γWd + αWs +Wns

= γ‖Ω(G−Hd(G))Ω‖2
F + α‖Ω(G−Hs(G))Ω‖2

F + ‖Ω(G−Hns(G))Ω‖2
F .

(5.17)

Note that (5.17) is in its general form. The noise free situation in this section can be regarded as a

special case where c1 = c2 = 1 and Ω = I. To avoid unnecessary duplication, the derivations and

proofs in the rest of the chapter are all based on this general form, and can be readily reduced to

the noise free case by setting Ω = I.

It is common to use a quadratic function as the surrogate function due to the ease in

minimization [110, 118, 119]. We build the surrogate function as follows:

Proposition1. g(G|G(m)) is a valid surrogate function of f(G) at the m-th iteration, where

g(G|G(m)) = γ‖Ω(G−Hd(G(m)))Ω‖2
F

+ α‖Ω(G−Hs(G(m)))Ω‖2
F

+ ‖Ω(G−Hns(G(m)))Ω‖2
F

(5.18)

andG(m) = DTA(m)TA(m)D.

Proof. See Appendix 5.7.1.

Minimizing g(G|G(m)) with respect toA leads to the solution of sensing matrixA(m+1)
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in the next iteration, such that

A(m+1) = arg min
A

g(G|G(m))

= arg min
A

g(DTATAD|G(m)).

(5.19)

The next proposition shows that the solutionA(m+1) has a closed form:

Proposition2. The minimizer of the surrogate function g(G|G(m)) at the m-th iteration is

A(m+1) = ∆
1
2
TV

T
T Λ−

1
2UT (5.20)

where UΛUT is the eigenvalue decomposition of DΩ2DT , and V∆V T is the eigenvalue

decomposition ofH ′(G(m)). H ′(G(m)) is defined as

H ′(G(m)) := Λ−
1
2UTDΩ2H(G(m))Ω2DTUΛ−

1
2 (5.21)

andH(G(m)) is defined as

H(G(m)) :=
γHd(G(m))T +αHs(G(m))T +Hns(G(m))T

γ + α + 1
. (5.22)

∆T denotes the T × T diagonal matrix that contains the largest T eigenvalues in ∆, and VT

denotes the corresponding T eigenvectors.

Proof. See Appendix 5.7.2.

We iteratively solve for A(m+1) and calculate the next g(G|G(m+1)) using (5.18) until

some stopping criterion is satisfied, and label the lastA(m+1) as Â. Notice that the solutionA(m+1)

is not unique. Actually multiplying any orthogonal matrix to the left side ofA(m+1) also leads to a

valid solution. To see this, denote Ā = QA(m+1) whereQ is an orthogonal matrix, i.e.,QTQ = I.

Then Ḡ = DT ĀT ĀD = DT (QA(m+1))T (QA(m+1))D = DTA(m+1)TA(m+1)D = G(m+1).
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5.3.4 Discussion

The goal of the sensing matrix design problem in (5.11) is to minimize the cumulative

coherence discriminatively. For the coherence corresponding to pairs of columns where at least

one of them belongs to the preferred support, it puts more weight on them. An important question

in this connection is why coherence and not other measures as the criteria for designing the

sensing matrix? Also, given that the performance bound in the form of coherence (or some

descendants of coherence) provided in [7, 117] are only sufficient conditions, is there a need to

justify that optimizing a sufficient condition provides a good sensing matrix?

The motivation of the sensing matrix design in this chapter is to designA such that the

combined dictionary E = AD has good structure. Specifically, we expect the columns in E

to be as distinct with each other as possible. Intuitively, if two columns are too alike to each

other, then it will be hard for any recovery algorithm to distinguish them. In order to measure

how distinct the columns in E are, this work utilizes coherence and tries to minimize them in

a cumulative sense. The reason we choose coherence is a pragmatic one. It is easy to compute.

There are some other measures that characterize the structure of the matrix, for example the

spark, the restricted isometry property, the null space property, etc. But these measures are

computationally intractable. On the other hand, when we deal with coherence in a cumulative

sense the summation of coherence can be transformed into the Gram matrix form, and it facilitates

the derivation of a closed form solution in each iteration by using the MM framework, which

converges under fairly general conditions. There are also other options to deal with coherence,

for example mutual coherence (largest among all coherence) and the t-averaged mutual coherence

as proposed in [50]. However, the iterative algorithm in [50] has no convergence guarantees. In

summary, the ultimate goal of minimizing coherence is not to achieve any sufficient conditions,

but to obtain a combined dictionary with better structure. We take a pragmatic approach by

utilizing an easy to compute metric, and develop a design algorithm that is easy to implement.
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5.4 Designing the Sensing Matrix in Noisy Situation

5.4.1 Motivation

In the previous section, the noise free case (5.1) was considered. In this section, we will

consider the case where there exists measurement noise such that

y = Ax+ n = ADβ+ n = Eβ+ n (5.23)

where n ∈ RT×1 is the random measurement noise and assumed to be Gaussian distributed

as n ∼ N (0, σ2I). Furthermore, we put the norm constraint ‖A‖F ≤ P , where P represents

the total power in the sensing matrix. Assumptions of the existence of measurement noise and

constraints on the power of sensing matrix are more suitable for real practical problems. For

example, for channel estimation in a wireless communication system, A represents the pilot

signals sent by the base station, x is the channel vector that we aim to measure. y is the received

signal at the user. Obviously y which will be contaminated by some noise and the total power in

the pilot signals is constrained by the power limit imposed by the base station.

Stable reconstruction conditions similar to the exact reconstruction conditions as in [7]

and [117] have been provided for OMP [120] and BP [121]. From the derivation steps in [120,121],

similar conclusions can be drawn regarding the importance of different |Gij|. So when designing

A in the noisy situation, once again it pays to focuss efforts on minimizing |Gij| when either i or

j belongs to S, or both i and j belong to S. One big difference compared to the noise free case

is that now not only the structure of the combined dictionary E, but also the noise term n will

affect the performance of the recovery algorithm. We take the OMP algorithm as an example, and

for simplicity we assume there is only one component in β that is nonzero, and its location is k.

Then y = Eβ + n = E·kβk + n = Ẽ·k‖E·k‖2βk + n, where Ẽ·k denotes the normalized k-th

column of E, Ẽ·k = E·k/‖E·k‖2. At the first step of OMP, y is correlated with each column of
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Ẽ and we determine the location of nonzero elements as l̂ = arg maxl |yT Ẽ·l|. Notice that

|yT Ẽ·l| = | (Ẽ·k‖E·k‖2βk + n)T Ẽ·l |

=

 | βk‖E·k‖2 + nT Ẽ·l |, l = k;

| βk‖E·k‖2(ẼT
·kẼ·l) + nT Ẽ·l |, l 6= k.

(5.24)

Even ifE has a good structure, i.e., ẼT
·kẼ·l is small, the existence of the term nT Ẽ·l can still make

| βk‖E·k‖2(ẼT
·kẼ·l) + nT Ẽ·l | greater than | βk‖E·k‖2 + nT Ẽ·l |, thus leading to the incorrect

estimation of l̂. So handling of noise requires additional considerations. However, if ‖E·k‖2 is

large, then at least |βk‖E·k‖2 +nT Ẽ·l | is more likely to be large, in other words, less affected by

the noise. This sheds light on how to make the recovery more robust in noisy case: with regards to

the locations of nonzero entries in β, making the corresponding columns in E to have large norm

will combat the interference from noise. In our situation, this translates to designing a sensing

matrix A such that the columns of E = AD which correspond to the locations of nonzero

entries in β to have large norms, i.e., making ‖E·i‖2 large if i ∈ T S(β). The goal is to tuneA,

such that effects of columns inD that consist the signal x are enlarged after the application of

the sensing matrixA.

5.4.2 Sensing Matrix Design

Similar to the noise free case, we do not have the knowledge of T S and assume a preferred

support set S. To incorporate the ideas of producing larger norms to columns in S, using the
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same definitions of P1, . . . ,P5 as before,we define

Wd =
∑
{i,j}∈P1

|Gii − c1|2

c2
1

+
∑
{i,j}∈P2

|Gii − c2|2

c2
2

Ws =
∑
{i,j}∈P3

|Gij|2

c2
1

+
∑
{i,j}∈P4

|Gij|2

c1c2

Wns =
∑
{i,j}∈P5

|Gij|2

c2
2

(5.25)

where we use Wd to optimize norm of columns contained in S and columns out of S. c1 and c2

can be regarded as “expected” squared norm of ‖E·i‖2
2 for i ∈ S and i 6∈ S . So as discussed above,

we set c1 to be a large number and c2 to be a small number in order to focus the measurement

energy to the parts where we believe the true nonzero elements are. If S is believed to contain a

higher percentage of true locations, then a larger value should be given to c1 in order to focus

more energy to those columns in the S. As opposite to c1, c2 should be set to a smaller number

if S contains higher percentage of true locations, since we do not want to waste measurement

energy on locations where entries of β are zero. Ws and Wns are similar to the corresponding

terms in (5.11), which control coherence between pairs. Since now the columns are optimized to

have different norms, we normalize Wd,Ws and Wns using the expected squared norm c1 and c2.

The optimization problem then becomes

Â′ = arg min
A

γWd + αWs +Wns

Â =
Â′

‖Â′‖F
P.

(5.26)

In (5.26) the cost function does not enforce the constraint ‖A‖F ≤ P , since explicit enforcement

of the constraint ‖A‖F ≤ P requires solving (5.26) in a constrained set and is hard to be

incorporated into the MM framework. Moreover, the cost function in (5.26) which uses Gij

to describe the coherence is just an approximate way since the columns in E are not strictly
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normalized. Actually once Â′ is solved, scaling it with any positive constant does not change G̃ij ,

the coherence of columns inE, as well as the ratio of two columns’s norms, i.e., ‖E·i‖2/‖E·j‖2 is

preserved. So we first solve for Â′ in (5.26) without the constraint ‖A‖F ≤ P , considering only

the coherence minimization and energy distribution, using the SMPKS algorithm (with c1 6= c2)

proposed in last section. Then we scale it to the largest energy limitation such that Â = Â′

‖Â′‖F
P ,

with respect to the energy limitation and the existence of noise. Since scaling up ‖E·i‖2 will

make the recovery algorithm more robust to the noise if i ∈ T S while make no difference if

i 6∈ T S. So we scale up ‖A‖F to its largest possible value to improve the performance.

5.4.3 Summary of the Algorithm

The detailed steps of the SMPKS algorithm is summarized in Algorithm 1, which is for the

noisy case. To differentiate the noise free case from the noisy case, we denote it as SMPKS-NF.

For SMPKS-NF, we do not have the norm constraint of ‖A‖F ≤ P , and we set c1 = c2 = 1. In

the algorithm, the start pointA(m),m = 1 is set to be a random matrix, where we do not assume

knowledge of any other A. Since the MM framework can not guarantee to converge to global

optimum, a good start point will help to avoid the algorithm being trapped in a local minimum.

For example, we can initialize our algorithm with anA learned from other sensing matrix design

algorithms. In the algorithm we set the stopping criterion by limiting the number of iterations

by some chosen maximum number. We can also choose other stopping criterion such as when

A(m+1) does not change much compared toA(m), or the value of cost function f(G(m+1)) does

not change much as the iteration proceed.

5.5 Numerical Results

In this section, we evaluate the performance of the proposed algorithm experimentally. The

goal is to show that when there exists a reasonable preferred support S, the proposed algorithm
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Algorithm 1 SMPKS Algorithm
Input: Use the following parameters:

• D - the sparsifying dictionary,

• c1 - expected norm for columns belonging to S,

• c2 - expected norm for columns out of S,

• γ - weights for Wd,

• α - weights for Ws,

• MaxIter - maximal number of iterations,

• P - power constraint of sensing matrix.

Initialize:
• Set m = 1,

• SetA(m) to a random matrix,

• CalculateG(m) = DT (A(m))TA(m)D,

• Calculate Ω using (5.16),

• Calculate UΛUT as eigenvalue decomposition ofDΩ2DT .

Loop: until m > MaxIter

• CalculateH ′(G(m)) using (5.21),

• Calculate V∆V T as eigenvalue decomposition ofH ′(G(m)),

• UpdateA(m+1) = ∆
1
2
TV

T
T Λ−

1
2UT ,

• UpdateG(m+1) = DT (A(m+1))TA(m+1)D,

• Update m = m+ 1.

Output: A = A(m)

‖A(m)‖F
P

145



that utilizes this information will lead to a more informative sensing matrixA, which can improve

the recovery performance. The basic setting of the experiment is as follows. D ∈ RN×M is the

dictionary consisting of i.i.d standard Gaussian variables. The signal of interest x is computed

as x = Dβ, where βk, k ∈ T S(β) are also i.i.d standard Gaussian variables with locations

uniformly distributed. For |T S(β)|, |S|, pe, pm, given any three we can obtain the fourth, as well

as |∆|, |∆m|, |∆e| (recall that |T S(β)| = |∆| + |∆m|, |S| = |∆| + |∆e|, pe = |∆e|/|S|, pm =

|∆m|/|T S| ). Then the preferred support S is generated as S = ∆ ∪∆e, where |∆| elements are

randomly picked from T S, and |∆e| elements are randomly picked form [M ]\T S. Regarding

sensing matrix A, we compare: random sensing matrix, where the elements are i.i.d Gaussian

with mean 0 and variance 1/
√
T (random), Elad’s algorithm in [50] (Elad), Duarte-Carvajalino

and Sapiro’s algorithm [108] (DS) the proposed algorithm for noise free case (5.11) (SMPKS-NF)

and noisy case (5.26) (SMPKS).

We run L = 1000 trials to compute an average measure of performance. In terms of

performance metric, we use success rate and location distance [7, 50]:

• Success rate: after obtaining x̂, we calculate the relative `2 distance Dist `2 as

Dist `2(x, x̂) =
‖x− x̂‖2

2

‖x‖2
2

. (5.27)

When Dist `2 is smaller than some threshold, it is considered as a successful recovery. We

calculate the percentage of successful recovery out of L experiments as the success rate.

Notice that Dist `2 is calculated using x rather than β. Because D is an overcompleted

dictionary, Dist `2 calculated using x is different from using β.

• Location distance: for some application, it is important that the locations of the nonzero

entries in β are correctly detected. For example in a classification task, columns of

dictionary D represent features. Given the measurement y, classification of signal x is

achieved by detecting which features contribute to x, i.e., the location of nonzero entries in
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β. The location distance Dist sup is defined as

Dist sup(T S(β), T S(β̂)) =

max{|T S(β)|, |T S(β̂)|} − |T S(β) ∩ T S(β̂)|
max{|T S(β)|, |T S(β̂)|}

.
(5.28)

5.5.1 Comparing the Distribution of Coherence

In Fig. 5.1, we present the distribution of the coherence, i.e., |G̃ij|, i 6= j, obtained

from combining the sensing matrixA designed using different sensing matrix design algorithms

and the same dictionary D. The distribution is calculated by the percentage of all |G̃ij|, i 6= j

which falls between the range [0.05(l − 1), 0.05l], where l = 1, . . . , 20. In Fig. 5.1 (a), the

coherence is calculated using all pairs of columns in the equivalent dictionary E = AD. It

shows that both the DS algorithm and the SMPKS-NF algorithm can reduce the percentage of

large coherence and increase the percentage of small coherence compared to the random sensing

matrix. Elad’s algorithm also reduces the large coherence, but makes no more effort when the

coherence becomes small enough. This is reason why there exists a peak at 0.175, where 40%

of coherence values fall between 0.15 and 0.2. Fig. 5.1 (b) shows the distribution of coherence

corresponding to columns where at least one of them belongs to S , i.e., |G̃ij|, i ∈ S or j ∈ S. It

shows that except for the SMPKS-NF, the distributions of the coherences corresponding to the

other three sensing matrices are very similar compared to Fig. 5.1 (a), implying that those sensing

matrix design algorithms have to favor of column pairs which includes at least one column in the

S. For SMPKS-NF, the distribution of the coherence is more concentrated around small values

compared to Fig. 5.1 (a), showing that more efforts have been put by the SMPKS-NF algorithm

to reduce the coherences of those column pairs that contain columns from S. In other words,

although the coherence distributions for all columns are similar for DS and SMPKS-NF, when

it comes to the coherence values of interest columns, SMPKS-NF is able to drive them smaller,

which is exactly the goal of minimizing (5.11). In the following subsections, we will show how
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Figure 5.1: Distribution of the coherence between two columns in the equivalent
dictionary. (a) All pairs of columns in the equivalent dictionary. (b) Pairs of columns
that at least one column belongs to S. T = 40, N = 80,M = 160, |T S| = |S| = 12.

such effect can improve the performance of compressive sensing algorithms.
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5.5.2 Comparing Different Error Rate and Missing Rate

In this subsection, the OMP algorithm is applied to perform the sparse recovery, and the

recovery performances using different sensing matrices are compared for different values of pe

and pm in the noise free scenario. Setting T = 40, N = 80,M = 160, and |T S| = |S| = 12

(so pe = pm), we gradually increase pe(pm) from 0 to 1 with step 0.1. Correspondingly, T S

and S change from fully overlapped, to partially overlapped, until they are non-overlapping.

Fig. 5.2 shows that the recovery performance of SMPKS-NF degrades as the pe(pm) increases,

indicating that large error rate and missing rate will make the recovery performance worse due to

the incorrect prior knowledge of the support. The performances of other sensing matrices do not

change with pe and pm, since the knowledge of preferred support is not used in those algorithms.

When pe (pm) is less than 0.7 in this setting, the SMPKS-NF can achieve better performance than

Elad and DS algorithm, and for all pe (pm) SMPKS-NF is much better than the random sensing

matrices. Notice that pe = pm = 0.7 corresponds to |∆| = 4, |∆e| = |∆m| = 8, which means for

a preferred set S containing 12 indices, only 4 of them are from the true support, and it contains 8

error indies and misses 8 true indices. The result shows that when the preferred support set is

moderately accurate, the proposed sensing matrix leads to an improved recovery performance

compared to other sensing matrices.

Next we examine the situation when the size of S is small and it is contained in T S , or the

size of S is large and it contains T S . Notice that in practice we do not know whether S is large or

small compared to the true support, or what pe and pm are. First we test S ⊆ T S such that pe = 0.

|T S| is fixed to 12 in order to keep the difficulty of the recovery problem the same, and pm

changes from 0 to 0.9 with step 0.1, corresponding to |S| changing from 12 to 1. Fig. 5.3 shows

that when pe = 0 the SMPKS-NF can achieve better recovery performance for all pm. Notice that

the best performance is achieved at pm = 0.1 rather than pm = 0. When pm = 0.1, |S| = ∆ = 11

while |S| = ∆ = 12 when pm = 0. This shows that when S ⊆ T S, a relatively small preferred

set may result in better performance, since it is easier for the SMPKS-NF algorithm to perform
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Figure 5.2: Performance comparison with different pe(pm). T = 40, N = 80,M =
160, |T S| = |S| = 12.

the optimization process when |S| is small. However, |S| should not be too small compared to

T S , in which case there will be too many missing indices from T S . The results show the benefits
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Figure 5.3: Performance comparison with different pm. T = 40, N = 80,M =
160, |T S| = 12, pe = 0.

of utilizing the SMPKS-NF algorithm to explore the knowledge of the preferred support if we

have high confidence on it, even a preferred support of small size would help to improve the
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Figure 5.4: Performance comparison with different pe. T = 40, N = 80,M =
160, |T S| = 12, pm = 0.

performance.

Lastly we consider the situation when T S ⊆ S , which means we have a preferred support
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with size larger than the true support. Again |T S| is set to 12 as in the previous simulations, and

pe changes from 0 to 0.9 with step 0.1. This results in a preferred support S with larger size,

corresponding to |S| ∈ {12, 13, 15, 17, 20, 24, 30, 40, 60, 120}. Fig. 5.4 shows that when pe is

smaller than 0.3, the SMPKS-NF has better performance than the other sensing matrices. Notice

that when pe = 0.3, |S| = 17. Higher pe results in larger |S| which contains many more error

indices and degrades the recovery performance.

5.5.3 Comparing Different Levels of Noise

We now consider the noisy case where the sensing process is performed as in (5.23),

y = Ax + n where n ∼ N (0, σ2I). The signal to noise ratio (SNR) is defined as SNR =

10log10(
‖x‖22
Tσ2 ). Again we use OMP for sparse recovery and compare different sensing matrix

design algorithms. For the proposed SMPKS algorithm, we solve (5.26) with different norms for

columns in and out of the preferred support, so c1 6= c2. Notice that we only need to set the ratio

c1/c2 rather than the specific values of c1 and c2, since after determining sensing matrixA using

(5.26), it is normalized which changes the specific values of ‖E·i‖2
2, i ∈ S and ‖E·j‖2

2, j 6∈ S , but

not the ratio of ‖E·i‖2
2/‖E·j‖2

2. The ratio c1/c2 determines how much preference to give to the

columns in the preferred support. In the simulation, we set c1/c2 = 2, which means within the

power constraint ‖A‖F ≤ P , the algorithm tries to achieve ‖E·i‖2
2 = 2‖E·j‖2

2, i ∈ S, j 6∈ S . The

SMPKS-NF algorithm which solves (5.11) in the noise free case is also included. The goal is

to compare how unequally distributed energy will affect the recovery performance. All sensing

matrices are normalized as ‖A‖F = P , and the constrained power is set as P = T . Due to the

existence of the noise, the previous threshold of 10−3 for determining the success rate in the noise

free case is too strict for low SNR scenarios, so we set different thresholds for success rate with

respect to different levels of noise. For many algorithms, the performance results show that the

recovery error is at worst proportional to the noise level ‖n‖2 [6, 11, 120], which motivates us to

set thresholds according to the noise level. Specifically, we use C · E(‖n‖2
2) = C · Tσ2 as the
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Figure 5.5: Performance comparison with different SNR. T = 40, N = 80,M =
160, pe = pm = 0.2, |T S| = |S| = 12.

threshold where C = 2 in the simulation.

In Fig. 5.5, we set T = 40, N = 80,M = 160, pe = 0.2 and |T S| = |S| = 12. It shows
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the success rates for both SMPKS and SMPKS-NF are much higher than other algorithms, while

the location distances are much lower. Also the SMPKS algorithm achieves better performance

than SMPKS-NF, demonstrating the benefit of uneven energy distribution in the noisy situation.

Notice that to compute success rate we set different thresholds for different SNRs, so it is not

proper to compare performance across different SNR scenarios using theses plots. For example,

in Fig. 5.5 (a) the success rate of all sensing matrices at SNR=5 dB is higher than other noise

level. It does not mean that we can achieve better recovery performance at low SNR, and is just

a result of larger threshold for higher noise. In Fig. 5.6, we increase the size of both the true

support set and the preferred set to |T S| = |S| = 16 and perform the same experiment with

different SNR level. Again both SMPKS and SMPKS-NF can achieve much better performance.

Moreover the performance gap between the SMPKS-NF and SMPKS becomes larger compared

to |T S| = |S| = 12 in Fig. 5.5, showing the ability of SMPKS to handle the more difficult

recovery task in the noisy situation.

5.5.4 Comparing Different Recovery Algorithms

For both SMPKS and SMPKS-NF, the goal is to design sensing matrix that has better

structure, i.e., the columns of the combined dictionary E are distinct from each other. Such

design is expected to lead to an improved performance for different recovery algorithms. In

previous simulations, we only evaluated the OMP algorithm and the results are consistent with our

expectation. In this subsection, we compare the performance when different recovery algorithms

are applied, such as compressive sampling matching pursuit (CoSaMP) [11], basis pursuit

(BP) [12], re-weighted `2 (Rel2) algorithm [15] and sparse Bayesian learning algorithm [20, 43].

In Fig. 5.7, we test the noise-free situation. We set |T S| = |S| = 12, pe = 0.2, and

compare the performance of different sensing matrices when different recovery algorithms are

utilized. It shows that for BP and Rel2, the SMPKS-NF can achieve the best success rate and

locations distance. Especially for BP, there is a big advantage of SMPKS-NF over the other
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Figure 5.6: Performance comparison with different SNR. T = 40, N = 80,M =
160, pe = pm = 0.2, |T S| = |S| = 16.

algorithms. We also observe that for SBL, the SMPKS-NF does not show benefit compared to the

other sensing matrices. And for CoSaMP, although the SMPKS-NF is better than DS and Elad,
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Figure 5.7: Performance comparison with different algorithms. T = 40, N = 80,M =
160, |T S| = |S| = 12, pe = pm = 0.2.

the random sensing matrix achieves the best performance. Fig. 5.7 implies that different recovery

algorithms may take advantage of different properties of the sensing matrix, and the structure of
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the combined dictionary may not play a role in improving the performance for some algorithm.

For example, all designed sensing matrices are worse than the random matrix for the CoSaMP

algorithm.

Fig. 5.8 shows the performance in the noisy situation where we utilize SMPKS to obtain

sensing matrix with unequally distributed energy. For all recovery algorithms, SMPKS can

achieve the best performance with regards to both success rate and location distance, which

demonstrates the benefit of unequally distributed energy in the noisy situation. Similar to the

noiseless case, the benefit of SMPKS is much more obvious when BP and Rel2 are applied rather

than SBL and CoSaMP. And for CoSaMP, although the random matrix is a little worse than

SMPKS, it still achieves better performance than DS and Elad. In summary, both SMPKS-NF and

SMPKS can achieve better performance when OMP, BP and Rel2 are applied for sparse recovery.

There exist some algorithms for which SMPKS-NF does not obtain improved performance.

Analysis of the specific properties of these algorithms is beyond the scope of this work, and we

leave this for the future work.

5.5.5 Discussion

The simulations in the previous subsections show that by utilizing the preferred support

set, we can achieve improved recovery performance by designing the sensing matrix. Such

improvement can be obtained without increasing the number of measurements, i.e., the number

of rows inA, which is important for applications where performing additional measurements is

expensive or infeasible. For example, in the channel estimation task of wireless communication,

the number of measurements corresponds to the training duration. Given the limited channel

coherence time in which one performs both channel estimation and data transmission, it is

desirable to keep the training duration as small as possible, so that one can have more time for real

data transmission. Then by designing pilots symbolsA, we can achieve improved performance

without increasing the training duration. Practically, we do not know beforehand the missing rate
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Figure 5.8: Performance comparison with different algorithms. T = 40, N = 80,M =
160, |T S| = |S| = 12, pe = pm = 0.2,SNR = 25dB.

pm and error rate pe, and so it is hard to tell whether it is beneficial to utilize the proposed sensing

matrix or other sensing matrices. In the first experiment, it shows that when pe = pm ≤ 0.7, the
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SMPKS-NF can achieve better performance. For many applications, it is reasonable to assume a

small pe and pm, for example in a time sequence problem mentioned in [115]. For the channel

estimation task in wireless communication, if the channel changes relatively slowly, and the

channel estimation is mostly correct in the current coherence block, then it is reasonable to assume

pe and pm are small when utilizing the current support estimation as the preferred support for the

channel estimation task in the next coherence block.

Also in the previous simulations, the sparse recovery algorithms are applied without

utilizing the knowledge of the preferred support set. The focus of this work is at the sensing

stage, aiming to design a better sensing matrix which can improve the recovery performance for

various types of sparse recovery algorithms without any changes in exiting codes. Integrating

the prior knowledge into the recovery algorithm would further improve the performance. This

would require using recovery algorithm that can leverage prior knowledge effectively at the

recovery stage, for example modified BP [115] and weighted `1 [114] algorithms. A more optimal

approach is to design sensing matrix for a designated recovery algorithm, for example BP, by

taking into account the specific properties of the recovery algorithm and utilizing the preferred

support information both at the sensing and recovery stage. However, this topic would be more

complex and beyond the scope of this chapter, and we will leave it for the future work.

5.6 Conclusion

In this chapter, we present a framework for designing sensing matrix with partial knowl-

edge of support which is captured in the form of a preferred set. For a number of application

scenarios, it is reasonable to have some partial knowledge of the sparse support. The framework

in this chapter provides a way to utilize the preferred set to achieve improved performance.

Motivated by the theoretical proofs of guaranteed recovery using OMP and BP, as well as the

difficulty of decreasing the coherence of all pairs of columns to be arbitrarily small in an overcom-
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plete dictionary, we propose a sensing matrix design process that concentrates on decreasing the

coherence between pairs of columns where at least one of the columns belongs to the preferred

support set. We further extend the algorithm to the noisy case, which focuses more sensing energy

to the preferred support set. An algorithm based on majorization-minimization framework is

utilized to solve the problem, which can converge under fairly general conditions.

The simulation results show the superiority of the proposed SMPKS algorithm in a wide

range of scenarios. We test the performance with various error rate and missing rate, as well

as different size of true support and preferred support. We also evaluate the performance in the

noisy case, which again shows the advantages of the proposed algorithm. For different recovery

algorithms, the proposed sensing matrix achieves the best performance for OMP, BP and Rel2, for

both noise free and noisy case. This indicates that the proposed sensing matrix design algorithm

leads to more informative measurements, which in turn results in an improvement in sparse

recovery.

Although in this chapter we use an MM framework to solve for the sensing matrix, other

algorithms can also be adjusted to solve the problem, such as the convex optimization framework

in [109] and shrinkage procedure in [50]. It would be interesting to compare these different

methods to see which one could lead to the best solution of (5.11) and (5.26). Also our focus in this

work is only at the sensing stage, i.e., designing a good sensing matrix with the preferred support,

rather than developing recovery algorithm that can benefit from the preferred support [114, 115].

Bridging the sensing stage and recovery stage, such that developing algorithm that utilizes the

preferred support jointly for both sensing and recovery, would be another interesting topic for

future work.

Chapter 5, in part is currently being prepared for submission for publication of the material.

The dissertation author was the primary investigator and author of this material, and Bhaskar D.

Rao supervised the research.
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5.7 Appendices

5.7.1 Proof of Proposition 1

In proposition 1, we developed the surrogate function g(G|G(m)) at the m-th iteration as

following

g(G|G(m)) = γ‖Ω(G−Hd(G(m)))Ω‖2
F

+ α‖Ω(G−Hs(G(m)))Ω‖2
F

+ ‖Ω(G−Hns(G(m)))Ω‖2
F

Now we prove that it satisfies the two properties required in (5.12) to be a valid surrogate function.

Proof. We first prove that g(G|G(m)) satisfies the first property in (5.12). Define sets that describe

different conditions of {i, j} as the same as in Section 5.3: P1 = {{i, j}|i = j, i, j ∈ S},P2 =

{{i, j}|i = j, i, j 6∈ S}, P3 = {{i, j}|i ∈ S and j ∈ S, i 6= j}, P4 = {{i, j}|only i or j ∈

S, i 6= j} P5 = {{i, j}|i 6∈ S and j 6∈ S, i 6= j}. We now treat each term in the summation of

(5.18) separately.

The first term is

‖Ω(G−Hd(G(m)))Ω‖2
F

=
∑
{i,j}∈P1

|Gij − c1|2

c2
1

+
∑
{i,j}∈P2

|Gij − c2|2

c2
2

+
∑
{i,j}∈P3

|Gij −G(m)
ij |2

c2
1

+
∑
{i,j}∈P4

|Gij −G(m)
ij |2

c1c2

+
∑
{i,j}∈P5

|Gij −G(m)
ij |2

c2
2

= Wd +
∑
{i,j}∈P3

|Gij −G(m)
ij |2

c2
1

+
∑
{i,j}∈P4

|Gij −G(m)
ij |2

c1c2

+
∑
{i,j}∈P5

|Gij −G(m)
ij |2

c2
2

≥ Wd

(5.29)
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Similarly, the second term is

‖Ω(G−Hs(G(m)))Ω‖2
F

=
∑
{i,j}∈P3

|Gij|2

c2
1

+
∑
{i,j}∈P4

|Gij|2

c1c2

+
∑
{i,j}∈P1

|Gij −G(m)
ij |2

c2
1

+
∑

{i,j}∈P2∪P5

|Gij −G(m)
ij |2

c2
2

= Ws +
∑
{i,j}∈P1

|Gij −G(m)
ij |2

c2
1

+
∑

{i,j}∈P2∪P5

|Gij −G(m)
ij |2

c2
2

≥ Ws

(5.30)

And the third term is

‖Ω(G−Hns(G(m)))Ω‖2
F

=
∑
{i,j}∈P5

|Gij|2

c2
2

+
∑

{i,j}∈P1∪P3

|Gij −G(m)
ij |2

c2
1

+
∑
{i,j}∈P2

|Gij −G(m)
ij |2

c2
2

+
∑
{i,j}∈P4

|Gij −G(m)
ij |2

c1c2

= Wns +
∑

{i,j}∈P1∪P3

|Gij −G(m)
ij |2

c2
1

+
∑
{i,j}∈P2

|Gij −G(m)
ij |2

c2
2

+
∑
{i,j}∈P4

|Gij −G(m)
ij |2

c1c2

≥ Wns

(5.31)

Since c1 > 0, c2 > 0, the summation of squared terms are greater or equal to zero. Combine

(5.29), (5.30) and (5.31), and notice that the coefficient γ ≥ 0 and α ≥ 0, we have ∀G

g(G|G(m)) ≥ γWd + αWs +Wns = f(G)
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which shows the first property in (5.12) holds with respect to g(G|G(m)).

The satisfaction of second property follows by our construction of g(G|G(m)) such that

g(G(m)|G(m))

= γ‖Ω(G(m) −Hd(G(m)))Ω‖2
F

+ α‖Ω(G(m) −Hs(G(m)))Ω‖2
F

+ ‖Ω(G(m) −Hns(G(m)))Ω‖2
F

= f(G(m))

(5.32)

which follows directly from the definition of g(G|G(m)) in (5.18) and f(G) in (5.17). Because

the two properties in (5.12) are all satisfied, g(G|G(m)) is a valid surrogate function used for MM

algorithm

5.7.2 Proof of Proposition 2

We prove the surrogate function (5.18) is minimized atA(m+1) in (5.20).

Proof. We rewrite the surrogate function g(G|G(m)) as following [108, 110]

g(G|G(m))

= γ‖Ω(G−Hd(G(m)))Ω‖2
F +α‖Ω(G−Hs(G(m)))Ω‖2

F

+ ‖Ω(G−Hns(G(m)))Ω‖2
F

= Trace
(

(γ + α + 1)(ΩGTΩ2GΩ)− 2Ω
[
γHd(G(m))T

+ αHs(G(m))T +Hns(G(m))T
]
Ω2GΩ

)
+ Const

≡ Trace
(
ΩGTΩ2GΩ− 2ΩH(G(m))Ω2GΩ

)

(5.33)
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where Const denotes some constant term which is irrelevant toG. H(G(m)) is defined as

H(G(m)) :=
γHd(G(m))T +αHs(G(m))T +Hns(G(m))T

γ + α + 1

and the equivalence symbol ≡ is with respect to the same result of minimizing g(G|G(m)), since

γ + α + 1 > 0 and Const is independent of G. Substituting G = DTATAD into (5.33), we

have

g(G|G(m)) = Trace
(
Ω2GTΩ2G− 2Ω2H(G(m))Ω2G

)
= Trace

(
Ω2DTATADΩ2DTATAD − 2Ω2H(G(m))Ω2DTATAD

)
= Trace

(
ADΩ2DTATADΩ2DTAT − 2ADΩ2H(G(m))Ω2DTAT

) (5.34)

Let UΛUT be the eigenvalue decomposition ofDΩ2DT , it is reasonable to assumeD has full

row rank such that Λ has nonzero diagonal elements. Define Γ = AUΛ
1
2 , so A = ΓΛ−

1
2UT

and is one-to-one with Γ. Then we have

g(G|G(m)) = Trace
(
AUΛUTATAUΛUTAT − 2ADΩ2H(G(m))Ω2DTAT

)
= Trace

(
ΓΓTΓΓT − 2ΓΛ−

1
2UTDΩ2H(G(m))Ω2DTUΛ−

1
2 ΓT

)
= Trace

(
ΓTΓΓTΓ− 2Λ−

1
2UTDΩ2H(G(m))Ω2DTUΛ−

1
2 ΓTΓ

)
≡ ‖ΓTΓ−Λ−

1
2UTDΩ2H(G(m))Ω2DTUΛ−

1
2‖2

F

(5.35)

where the symbol ≡ is with respect to the same optimization result by omitting terms that are

independent of Γ.

Let H ′(G(m)) := Λ−
1
2UTDΩ2H(G(m))Ω2DTUΛ−

1
2 . Since A and Γ has one-to-one
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correspondence, the original problem of minimizing g(G|G(m)) to getA can be reformulated as

Γ(m+1) = arg min
Γ
‖ΓTΓ−H ′(G(m))‖2

F

A(m+1) = Γ(m+1)Λ−
1
2UT

(5.36)

Notice thatH ′(G(m)) is an N ×N matrix, while Γ is with size T ×N . Let V∆V T be

the eigenvalue decomposition ofH ′(G(m)), then (5.36) can be solved in closed form as

Γ(m+1) = arg min
Γ
‖ΓTΓ− V∆V T‖2

F

= ∆
1
2
TV

T
T

(5.37)

where ∆T denotes the T × T diagonal matrix that contains the largest T eigenvalues in ∆, and

VT denotes the corresponding T eigenvectors. Based on Γ(m+1), we have

A(m+1) = ∆
1
2
TV

T
T Λ−

1
2UT (5.38)

which is the sensing matrix that minimizes the surrogate function g(G|G(m)) at the m-th step.

166



Bibliography

[1] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station
antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600, Nov. 2010.

[2] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next
generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.

[3] A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and K. Haneda, “Hybrid
beamforming for massive MIMO: A survey,” IEEE Commun. Mag., vol. 55, no. 9, pp.
134–141, Sept. 2017.

[4] S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, and C. Studer, “Throughput analysis
of massive MIMO uplink with low-resolution ADCs,” IEEE Trans. Wireless Commun.,
vol. 16, no. 6, pp. 4038–4051, June 2017.

[5] R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag., vol. 24, no. 4, pp.
118–121, July 2007.

[6] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal
Process. Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008.

[7] M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal
and Image Processing. Springer-Verlag New York, 2010.

[8] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing.
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