UC Irvine
ICS Technical Reports

Title
Survey of partitioning techniques in silicon compilation

Permalink
https://escholarship.org/uc/item/1hv4d2kl|

Author
Wu, Allen C.H.

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1hv4d2k1
https://escholarship.org
http://www.cdlib.org/

Notice: This Material o'

may be protected Jin J1 15

by Copyright Law
(Title 17 U.S.C.)

Survey of Partitioning Techniques in Silicon Compilation

by

Allen C. H. Wu
Technical Report 91-15

Information and Computer Science Department
University of California, Irvine
Irvine, CA. 92717

Abstract

In the silicon compilation design process, partitioning is usually the first
problem to be investigated because partitioning algorithms form the backbone of
many algorithms including: system synthesis, processor synthesis, floorplanning,
and placement. In this survey, several partitioning techniques will be examined.
In addition, this paper will review the partitioning algorithms used by synthesis

systems at different design levels.

TABLE OF CONTENTS

I Introduction .evvveiennn.. e teveeerenienes AR
2. Definition of Problem T PN
3. Techiniques and Algorithms et e e te e st braeae e et e e e st baaaseee s rraraes
3.1 Overview of Partitioning Methods e
3.2 Counstructive Methoas
32,1 Cluster GTOWER vueiiviiriiicieet e eieiriitre e e st ser b e e eserre e e s ssaabbeaeessasenrnas
3.2.2 Hierarchical Clusteringcccoeciiiriiiiiiniirieeiiieen e esnieecniree e e enneeeenn
3.3 Iterative IMpProved Methods ..iociiveviviiierirereereeieiseeeseeeeretseereseseeeeeeeeeeseesssenens
3.3.1 Pairwise inteTChANER ...cvcveicererereieerericscteres e ses st etes ettt e s ssaesns
3.3.2 GrOUDP MIGTATION vrerirrireeirirerririieeesirieresiseesesieesssesaesesssneesssssneesseseessssesenns
3.3.2.1 The Kernighan-Lin Min-Cut Algorithmccccccovverininviiiniiinineccninnnnn.
3.3.3 Simulated annealing

4. Partitioning Algorithms in Silicon Compilatioh
4.1 System SYNtRESIS ..ocvvviviriiiiiiiiiiiiiiiii e s e
4.2 Processor Synthesis
4.3 FloOTPIanNING .eovruiiriiiiiiiiiiiieii ittt e s ebe st nesesn e e srane s snnee
4.4 PLACEIMIENT 1ieevrrirrirereerairreeeseitesesoieeeenrneessiiueaesssssesssssareassssenesssernnenssresssssssassssne
5. CONCLUSIONS .viiiiiirruneriseiiivieirresecsiiiirie e e siiitrrresesessosssabbeasas sosanressesssessessasssssssssnes

B, RETETOIICES 1ivvrueriiriiiiiriiiririieeteriiieerrrraeseearstoesseranssertessarsseenenssssresssrssnsesseennnnassennren

Page i

10

10

12

12

16

17

17

19

22

26

29

30

LIST OF FIGURES

Figure 1. The Y-chart representation of silicon compilationcccccevvvvvveiniiiennine

Figure 2. The cluster tree formation

cvrsssarersense e

resessaierreereeetraesssstutssnseressenteatiesanante

Figure 3. Divisive clustering method

ses . L R R R R R PP PR P

Figure 4. Multi-stage clustering

Figure 5. Two-way partition

resecensasanaas sesrssiessacretrsanarteeitttanaranes Pesessesisersrnssnsrestiinsrrene

Figure 6. Local search strategy e ettt ettt eee st e e st bbes ttaaeaenrebes s raae s e

Figure 7. Data closeness calculation

R R R R T Y TR

Figure 8. An example of cluster

Figure 9. The slicing tree formation .

R R R R R T R R R R PR P Ry PR P PR PP PR PP R PP R PR PR

Figure 10. Partitioning with external considerationccccvvvvvvmiiniicvniiniiinnnnnnne

Figure 11. Terminal propagation

Page

.0

n

€800 08 er e ret0inesssesesestestessstverreeneesrstiesetersssctransrosts

11

13

15

18

21

25

27

28

1. Introduction

Silicon compilation was introduced by Dave Johannsen [Joha79] for assembling
parameterized modules of layout. The term silicon compilation can be extended to

define a translation process that starts with a behavioral description and ends with a set
of fabrication masks.

To represent the design process of silicon compilation, Gajski and Kuhn [Gajs83)

introduced a Y-chart representation of silicon compilation (Figure 1). In the Y-chart,

the design process is classified into three different dimensions: (i) behavioral, (ii)
structural, and (iii) geometrical. The translation from behavior to structure is called
synthesis. There are four levels in the synthesis processes: (i) system, (ii) processor, (iii)
module, and (iv) cell [Gajs88]. In system synthesis, the program is decomposed into a
set of communicating processes. In processor synthesis, each process is decomposed into
a set of microarchitecture modules. In module synthesis, each module is then generated
into a set of cells. Finally, in module synthesis, each cell is decomposed into gates,
transistors, and fabrication masks. To obtain information about the physical domain of
a design, each synthesis is followed by a translation from the structure into geometry.

This translation is called floorplanning, placement and routing, or cell generation.

In the silicon compilation design process, partitioning is the first problem to be
investigated because partitioning algorithms form the backbone of many algorithms,
including those for system synthesis, processor synthesis, floorplanning, and placement.
For example, in system synthesis, designers partition the design into a set of chips
according to constraints such as power dissipation, number of pins per chip, chip size,

and speed. In processor synthesis, designers decompose chips into a set of datapaths

Page 1

Behavioral

Structural
representation

representation

System synthesis /Pw:rams. algorithms

T — e,

Processor synthesis = — — Finite-state machines

Processors,
switches

t
ALY,
registers

Floor planning Boolean equations
Floor planning
Modute layout
Cell layout

L Mask artwork
- Module fioor plans
L Processor floor plans

L System floor plans

Geomelric
representation

Figure 1. The Y-chart representation of silicon compilation.

and control units according to different layout architectures and constraints. At the
placement level, partitioning is used to decompose thousands of objects (gates) in’éo
manageable clusters that can decrease the complexity 6f placement. If the partitioning
is done effectively, the design process is simplified without sacrificing the overall
performance.

In this survey, several partitioning techniques will be examined. In addition, this
paper will review the partitioning algorithms used by synthesis systems at different
design levéls. Section 2 describgs the definition of the partitioning problem. Section 3

presents basic partitioning techniques and algorithms. Section 4 describes the

Page 2

algorithms that have been used in different synthesis systems. Section 5 contains the

conclusion.

2. Definition of Problem

Partitioning is the task of decomposing a given set of objects into subsets so that
(i) each subset contains objectsithat equal to or less than the given size constraints and
(ii) the wire connections crossing subsets are minimized.

Let
G = (V,E) where V={v;}, i=l.n, be a set of nodes and E:{ej}, j=1.m, be a set of

edges;
V,={v,} be a subset p of nodes;

S(V,) be the number of nodes in subset p and S(V) be the total number of nodes in

’

C(V,) be the size constraint of V, in terms of number of nodes;

e is the net that connects node n in V. to node min V]

né,mj

The problem of a k-way partition of G is to partition Vinto k subsets, {V,,V,, ... ,\;}
which can be formulated as follows:

k
2 8(V) = 8(V), V,NV,=4, i#j, subject to c(v,) = 8(V,)

im]

and minimizing 3 e, .

neV meV
[

The partitioning problem was shown to be NP-complete by [Gare79]. Consider the

problem of partitioning graph G of n nodes into k subsets of equal size m, where kim=n.
n) n— m

There are () ways of choosing the first subset, [] ways for the second, and so on.
m ' m

The number of choices for such a partition is:

)00

kt m

Page 3

For example, for n=30, m=10, and k=3, 10" computations are required to perform
exhaustive ‘4search. Because the computation time grows at an exponential rate (with
the size of partitioning problem), it is impractical to perform an exhaustive search to
find the optimal partition. Over the years, numerous heuristic methods have been
proposed for solving the partitioning problem. Often in practical applications, heuristic

methods can produce good results in a reasonable amount of time.
3. Techniques and Algorithns

3.1. Overview of Partitioning Methods

There are two basic methodologies: (i) The constructive method and (ii) The
iterative improvement method [Sang87, Dona88, PrKa88]. The constructive method
uses a clustering,‘(aggregation) strategy [Ever74,Spat80,Rome84] to assign one node at a
time to a partition. The cluster growth process is based on closeness measurements of
nodes, such as functions and interconnections. Several clustering approaches are
reported in [Kurt65, HaKu72, Kodr72, ScUl72,nSchw76, CoCa80, Kang83, OdHa87]. A
variation of the traditional clustering algorithm is hierarchical cluster'ing
[Snea57,John67]. Hierarchical clustering uses different closeness measurements to group
the objects into clusters at different levels. Using hierarchical clustering, a cluster tree
is formed for further analysis.

The iterative improvement method starts with some initial partition, then improves
the results by moving nodes between partitions. There are three major iterative
improvement algorithms: (i) Pairwise interchange, (ii) Group migration, and (iii)

Simulated annealing.

Page 4

3.2. Constructive Methods

3.2.1. Cluster Growth

Cluster growth is a constructive method that does not need a given initial
partition. This approach starts with a nonpartitioned set and operates by selecting

unplaced objects and adding them to the proper clusters. Consider partitioning a set S

n
of n nodes into two subsets {S,, S2} such that IS1 =] S, | = —. Assume that the sizes of
2

nodes and weights of nets are equal. The cost function according to a given partition of

{s,, S,} is defined as:

where e, ., is the net that connects node nin S, to node min S,

The first step of cluster growth is to select the seed of the partitions. The seed
nodes may be chosen randomly, by the user, or determined algorithmically
[Schw76,WuGa90] in order to guide the partitioning process. Next, unplaced nodes are
selected according to cost function C(n), where n is an unplaced nodé. The internal
cost I(n) denotes the number of nets between node n in S, and other nodes in S;. The
external cost E(n) denotes the the number of nets between node nin S, and other nodes

in S,. C(n) is the difference between external and internal costs of node n such that

C(n) = E(n) - I(n). The unplaced node with minimal C(n) is chosen and clustered into

S,. The process is repeated until the number of nodes assigned to S, reaches its size

1°

constraint. Finally, all of the unplaced nodes are assigned to S,.

Page 5

The cluster growth algorithm is easy to implement and fast. However, each
clustering decision must be made based on the current existing cluster information
without taking into account the global consideration. Therefore, it often produces poor
results. The cluster growth algorithm is mostly used as an initial partition for an

iterative improvement method.

3.2.2. Hierarchical Clustering
In hierarchical clustering [Snea57,John67], the objects are clustered into groups.
The process will be executed repeatedly at different levels to form a tree. Hierarchical

techniques can be divided into two methods: (i) agglomerative and (ii) divisive.

The agglomerative method proceeds by successively fusing objects into groups. In
general, cluster analysis consists of three steps: (i) computing the closeness matrix, (ii)
executing the clustering method, and (iii) rearranging the closeness matrix. First, a
closeness matrix X = (xij) is formed, i=j=1.n, where X;; is the closeness coefficient
between object i and j (Figure 2(a)). Since the closeness between two objects is
symmetric, only the lower-left half of the matrix contains values. Second, the procedure
fuses individuals or groups of objects which are most similar or closest (Figure 2(b)).
Third, the closeness matrix is rearranged according to thé new cluster configuration.
Steps (ii) and (iii) are executed repeatedly until no more clusters can be merged (Figure
2(c)). Using this method, the clustering tree is formed in a bottom-up fashion.

The divisive method partitions the set of objects into clusters. The first task of the
divisive method is to split the initial set of objects into. two sub-sets. For a set of n
objects, there are 2" = possible ways to divide n objects into two sub-sets. It is

impractical to perform exhaustive procedure to find the partitions. One of the most

Page 6

Page 7

abocd e
a-----
b - - - .
c 1 - - -
dlo ®o -
el0 300 -
(a)
a

4
a (bd) ¢ e

_C al- - - =

o
'

Figure 2. The cluster tree formation

aﬁ
O

feasible of divisive techniques was proposed by MacNaughton-Smith et al. [MacNa64].
MacNaughton-Smith introduced a technique of dissimilarity analysis which measures

the dissimilarity between each object and the other objects in the group.

Consider a closeness matrix D={d; |i=1.nj=1.n} where n is the number of objects
and d,; is the closeness between object i and j. For example in Figure 3(a), there are 7
objects to be divided into two groups according to the dissimilarity analysis. The initial
partition is based on the average closeness between each object with the remaining
objects. For example, the average closeness between groups {1} and {2,3,4,5,6,7} is
calculated as (10+7+30+29+438+42)/6=26. The average closeness between objects 1,
2,3,4,5,6,and 7, and {2,3,4,5,6,7}, {1,3,4,5,6,7},..,{1,2,3,4,5,6}, are 26, 22.5, 20.7, 17.3,
18.5, 22.2, and 25.5 respectively. Thus, the initial two groups are {1} and {2,3,4,5,6,7}.
Next, the average closeness of objects in the two groups are calculated as shown in
Figure 3(b). For example, consider object #2 at row 1 in Figure 3(b), the average
closeness between {1} and {2} is 10 and between {2} and {3,4,5,6,7} is
(74+23+25+34+36)/5=25. The difference of merging {2} with {1} and {3,4,5,6,7} is 15.
After calculating the average closeness, the maximum difference is 16.4 for object 3.
Therefore, object 3 is merged with object 1. The new groups are {1,2} and {3,4,5,6,7}.
Repeating the analysis gives the result based on groups {1,3,2} and {4,5,6,7} as shown in
Figure 3(c). As all the differences are now negative, the partitioning into two sub-sets
is completed. The process continues until no more objects can be split. Using this

method, the clustering tree is formed in a top-down fashion.

A variation of hierarchical clustering is multi-stage clustering [DiTh89]. Multi-

stage clustering was proposed by Dirkes Lagnese and Thomas for solving the large scale

1 2 3 4 5 6 7_
(1 0 10 7 30 29 38 42
210 0 7 23 25 34 36
37 7 021 22 31 36
D= |430 23 21 0 7 10 13
529 25 22 7 0 11 17
63 34 3110 11 0 9
742 36 36 13 17 9 0
(a)
Average closeness
Individual
(1) 2 (@1
2 10.0 25.0 15.0
3 7.0 23.4 16.4
4 30.0 14.8 -15.2
5 29.0 16.4 -12.6
6 38.0 19.0 -19.0
7 42.0 22.2 -19.8
(b)
Average closeness
Individual
(1) (2) (2-1)
4 24.3 10.0 -14.3
5 253 11.7 -13.6
6 34.3 100 -243
7 38.0 13.0 -25.0
(c)

Figure 3. Divisive clustering method.

problem of architectural partitioning. This approach performs clustering processes in
several stages. Lach clustering stage is allowed to use a different closeness criteria. The
clustering stages are consecutive and each stage builds on the results of the previous
stage. A two-stage clustering example is shown in Figure 4. In the first clustering
| stage, the objects are clustered together according to their closeness measurements on
criterion A. As a result, it produces 4 clusters indicated as a, b, ¢, and d in Figure 4(a).
In the second stage, the clusters a, b, ¢, and d cut from the first stage are clustered

further according to closeness criterion B (Figure 4(b)).

The multi-stage clustering approach has two advantages over the traditional
clustering approach. The first advantage is that this approach decouples the clustering
criteria over several stages. Hence, it provides a hierarchy of criteria that can apply the
most important criterion first to ensure that the constraints are satisfied. However, it is
difficult to determine the proper weighting for the various criteria to ensure good
clustering results. The second advantage is that this approach allows objects to be
considered as groups rather than as individual objects. Thus, this approach can cluster

objects using more global considerations.
3.3. Iterative Improved Methods

3.3.1. Pairwise interchange

In the pairwise interchange algorithm, a pair of nodes are selected from different
partitions. A cost function determines the effect of interchanging the two nodes. If the
partitioning cost function is improved, then these two nodes are interchanged.
Otherwise, the nodes remain in their previoﬁs partitions. This algorithm results in n(n-

1)/2 trial exchanges which contributes O(nz) complexity, where n is the number of

Page 10

nodes.

interchange algorithm for placement. Pairwise interchange is a simple heuristic method,

and it is

Page 11

cut-line

1 2 3 4 5 6 7 8

(a). Clustering with criterion A

a b c d

(b). Clustering with criterion B

Figure 4. Multi-stage clustering.

Several layout systems [HaWo76, Schw76, IoKi83] have used a pairwise

not guaranteed to find even a local optimal solution.

3.3.2. Group migration

The group migration algorithm is also known as the Kernighan-Lin algorithm [KeLi70].
The Kernighan-Lin a,lgorighm uses the solution of two-way uniform partitions as the
basis for solving general partitioning problems. The basic idea is to interchange the
group of nodes that contribute the maximal partitioning improvement between two
groups. The Kernighan-Lin algorithm is guaranteed to find a local optimal solution.
Several group migration algorithms have been reported in [FiMa82, Kris84, ScKe72,
BhHi88, SaRa90]. Because group migration algorithms can produce excellent results
using a small amount of CPU time (linear complexity), this algorithm is widely used in
many applications.

Another approach used to solve the partitioning problem is network flow
algorithms [ChKu84, WeCh89]. This algorithm is based on the Ford and Fulkerson
maximurﬁ flow minimum cut algorithm [FoFu62] for finding a minimum cut between
two partitions in a network. The major difficulty of using this algorithm is the inability
to constrain the cut-set sizes. In practice, this algorithm usually generates subsets with
greatly uneven sizes and hence its applications. are limited. However, it does find the
minimal cost for unconstrained (without size constraints for subsets) two-way partitions

that can be used as lower bound for solutions produced by any partitioning method.

3.3.2.1. The Kernighan-Lin Min-Cut Algorifhm

The original Kernighan-Lin algorithm finds a minimal-cost partition of a given
graph of n nodes connected by edges into two equal subsets of n/2 nodes (Figure 5).
This two-way uniform partitioning algorithm uses heuristics to obtain the minimal

uniform partition. It interchanges the nodes in cut-set A and cut-set B, and then

Page 12

Cut-set A Cut-set B

\

size=n/2 }

A B

size=n/2

cutline

Figure 5. Two-way partition.

performs a local search to find a sequence of favorable swaps of nodes from the two

subsets.
Consider the partitioning of a set S of size n into two subsets {s,, 8,} with equal

size of n/2. e, denotes the net connected between node a and node b. Let us define

the external cost E, where a € S, by

E,=Xe,

zeS
2

and the internal cost by

Ia = 2 eay

ye.S'1

Page 13

Similarly, define E,, I, for each b € S,. Let
D, =E-I
be the difference between external and internal cost for all 1 € S.
Let C, denote a double counting correction coefficient if node a and node b
connect to the same net. The partition gain ,gain ,, by interchanging nodes a and b is
gain, = D, + D, - 2C,,
The idea of group migration is to search for a favorable group of swaps rather than

to search for one favorable swap. The Kernighan-Lin algorithm first generates a

sequence of gains as follows:

(1) Calculate D, for all nodes € S.

(2) Choose the pair (a, b),a € S, and b € S,, that generates the maximal gain.

(3) Swap a and b and recompute the D values for all unswapped nodes.

(4) Repeat steps 2 and 3, obtaining a sequence of swapped pairs {a b },..{a,, b }.
Once a pair is swapped, this pair will be locked and can not be considered for
swapping again.

As a result, the algorithm generates a sequence of gains gain,,...,gain . The total

gain from interchanging the set A = {a ,...,a,} with B ={b,,...,b,} is
K
GAINK) = ¥ gain

im1

Next, the algorithm uses local search to choose a k that maximizes the partial sum

of GAIN(k). If GAIN(k)>0, the algorithm interchanges the corresponding sets A and B
and starts the process over again from step 1. If GAIN(k)<0, the algorithm stops.

Based on the sequence of gain,, the algorithm produces the swapping-gain function

Page 14

f(GAIN(k)) as shown in Figure 6. In this example, the peak of the total gain is k = 7.
Thus the algorithm will interchange the first 7 nodes into sets A and B. This local

search strategy allows the algorithm to climb out of the local minima.

Kernighan and Lin also extended their two-way partitioning technique to perform

multi-way partitions. Consider the problem of partitioning a set S into k subsets such

k
that |S |= 3. S;. The multi-way partitioning algorithm executes two-way partitioning

i=]

n

repeatedly based on the cut-set size of (C,, C,) where C,=S; and Cy= 3 §;for1 =i

jmi+1

f(GAIN(K))

10 —

Figure 6. Local search strategy.

Page 15

=< n-1. Frequently, C, and C, are not edual; therefore, a set of dummy nodes are
added to the original set to allow unbalanced partitioning.

The complexity of the original Kernighan and Lin two-way uniform partitioning
algorithm is O(nzlogn). However, Fiduccia and Mattheyses [FiMa82] used a clever
implementation to achieve linear complexity in terms of the number of pins. Dunlop
and Kernighan [DuKe85] have compared the Kernighan/Lin and Fiduccia/Mattheyses
algorithms. They found that the results of Fiduccia and Mattheyses are not quite as
good as those of Kernighan and Lin but that the execution time is substantially
reduced. In addition, Krishnamurthy [Kris84] has proposed a look-ahead strategy to

guide the heuristics achieving more optimal partitions.

3.3.3. Simulated annealing

Simulated annealing was proposed by Kirkpatrick [KiGe83] for solving combinatorial
optimization problems. Using this technique, it is possible to extricate from a local
optimal solution and move to a global optimal solution. In physics, an annealing
process starts by melting a solid and then slowly lowering the temperature to find the
minimal energy state where a crystal is formed. This same idea can be applied to
combinatorial optimization. A simulated annealing algorithm can generate moves
randomly and calculate the new configuration cost Ac; for a move from configuration i
toj. If Ac; < 0 then a lower energy level is achieved and the move is accepted. If Ac;;

Yy

= (0 then the move is accepted with probability e . As the simulated temperature t

decreases, the probability of move acceptances decreases.

Page 16

Theoretical studies [RoSa85] have shown that simulated annealing can climb out of
local minima and find the globally optimal solution. However, it is impractical to find
the optimal solution by performing an infinite number of iterations at each temperature.
Several heuristics [KiGe83, RoSa84, HuRo86] have been developed to reduce run time.
Simulated annealing usually produces very good results; however, it suffers from very

long run times.
4. Partitioning Algorithms in Silicon Compilation

4.1. System Synthesis

APARTY [DiTh89] is an architectural partitioner. It uses a multi-stage clustering
algorithm to extract high level structural information from the behavioral description.
The high level structure reflects physical design considerations such as interconnects.
APARTY attempts to examine physical considerations in the early design stage so that

the synthesis tools can choose a better design in terms of area.

The multi-stage clustering consists of three major clustering stages: (i) control
clustering, (ii) data clustering, and (iii) schedule clustering.
Control clustering. Control clustering groups the operators in the same control path
together so that the control flow passing between two clusters can be reduced. Control
flow between clusters is measured based on the probability that control will be passed

from one operator to another. The control closeness between two operators a and b is:

C; = P(OP, |oP,)

where P(OP, I OP,) denotes the probability that OP, will be activated by OP,. For

example, if operators a and b are in the same path without branches then P(OP, |

Page 17

OP,)=1. On the other hand, if operators a and b are on the different paths then P(OP,
| oP,)=0.
Data clustering. Data clustering considers data similarities between individual
operators. The goal of this stage is to reduce the amount of data passed between two
clusters. The closeness of the number of common values between two operator clusters
is:

Common(a,b)

“ Y(a)+V(b)

where Common(a,b) measures the number of common values between cluster a and
cluster b. V(a) is the number of values flowing to and from a. For example in Figure 7,

the "+" and "-" operators each have 2 out of 3 connections (B and C) in common.

Figure 7. Data closeness calculation.

Page 18

Thus the data similarity is:

2+2

c, ="

* 3+3

Schedule clustering. Since the data clustering merges operators according to data
similarities only, it may prevent some operators that share hardware from being
scheduled simultaneously. As a result, this leads to a poor. schedule. Schedule
clustering considers the potential low level parallelism to ensure a reasonable schedule

with minimum hardware. The schedule closeness calculation for two clusters a and b is:

CSM = CDa,b X (1—]NCa'b)

where INC,, is the incompatibility for the clusters a and b. INGC,, measures the
incompatibility of all the operators in a as compared with the operators in b. If any two
operators are incompatible, the penalty is calculated as the excessive hardware for
putting two incompatible operators into same partitions for maintaining the same
schedule. The data clustering tends to group operators that share data. In the mean
time, the incompatible measurement tends to push incompatible operators into different
partitions.

Based on the information obtained from these clustering stages, the area and delay
of different designs can be estimated for guiding scheduling, datapath allocation, and

the selection of busses. The choice of which stages and the order to be run is decided

by the user.

4.2. Processor Synthesis

BUD [McFa86, McKo090] uses a bottom-up analysis of the synthesis process in two

ways. First, it obtains the physical and logical information about the primitives

Page 19

available for use in the design from a database [Wolf86). Second, the data operations
are partitioned into clusters [McFa83], using a metric that takes into account functional
unit sharing, interconﬁect, and parallelism. Each cluster represents a portion of the
chip. A leaf cluster contains one or more function units. Nonterminal clusters contain
a set of leaf clusters and nonterminal clusters with the interconnects among them. The
database offers size and timing information for the individual module. For example, the
floorplan of Figure 8(a) is shown in Figure 8(b). Clusters 1 and 2 are leaf clusters which
consist of a functional unit and storage interconnected by busses. Clusters 3 and 4 are
nonterminal clusters which consist of lower level clusters plus the wires interconnecting
themn.

BUD groups operations using a matrix that measures the closeness of putting two
operations into same cluster. The closeness between operations depends on three
factors: their common functionality, degree of interconnection, and potential
parallelism. The closeness between operations x and y is defined as follows:

closeness(x,y) = -S, X fprox(xy) — S, X cprox(xy) + N X S, X par(x,y)

where

feost(z)+ feost(y)- ‘fcost(m,y)

fprox(x,y) =
feost(z,y)

commeconn(z,y)

cprox(x,y) =
totalconn(z,y)

par(x,y) = 1 if x and y can be done in parallel, and 0 otherwise
Here fcost(z,y,z,..) denotes the minimum number of function units required to perform
all the operations x,y,z,.. in the list. fprox(x,;y) denotes the ratio of the shared

functionality of x and y. cprox(x,y) is the ratio of the dataflow connections shared by x

Page 20

Page 21

A B | ADR
Add Add
(a)
Fmmmmmmmm e m——— -
l |
' |
|
| | X
| A B || ADR
l 1
| 1
|)
| F ' MUX
[
| +
| | F
b | M
| 3 | 2
| 4 e e - — —— - _—C

Figure 8. An example of cluster.

and y. The S, and S, factors are the ratio of the area of the function unit required to
do operation z; and z, to the total area of the deéign. S, is the probability of either z,
or z, being executed in one major cycle. N denotes the relative weight given by the
user to speed.

Based on this closeness function, a closeness matrix is computed. Then, a
hierarchical clustering tree is formed from these closeness data. Different configurations
are formed by cutting the tree at different levels. Each configuration represents a
particular hardware configuration. The cluster tree guides the search of the design
space. The cut line starts at the root and moves toward the leaves. Each time a new
cut line is formed, a new design configuration is evaluated in terms of area and delay.
The configuration that best meets the design objectives is chosen as the final design.
This partitioning approach leads to a simple method for systematically exploring the

space of possible designs to find the optimal design.

4.3. Floorplanning

Floorplanning is the first step of VLSI chip design. Designers first partition the
chip into macro modules. Next they determine the areas, relative positioné, aspect
ratios, and I/O pin locations of these modules é,nd try to optifn.ize the overall area
utilization, power dissipations, and delays along critical paths.

Many partitioning approaches have been proposed for solving floorplanning
problems. These approaches can be divided into three groups: (i) cluster growth, (ii)
connectivity clustering, and (iii) partitioning and slicing.

Cluster growth. The cluster growth floorplanning method operates in a bottom-up

fashion. Preas [Prva79] used a clustering method to estimate and define cell shapes.

Page 22

Horng and Lie [HoLi81] build the floorplan by starting in the lower left corner and
clustering cells toward the upper right corner. The cluster growth floorplanning method
is easy to implement. However, the layout quality is not as good as other @ethods.
Connectivity clustering. Dai and Kuh [DaKu86,DaEs89] introduced a connectivity
clustering method which provides a simultaneous solution of floorplanning and global
routing. Their approach consists of two steps: bottom-up clustering and top-down
space allocation.

In the bottom-up phase, modules are hierarchically clustered according to their
size and connectivity. The cluster size for each level is limited to five for two reasons:
(i) five is the minimal number of elements necessary to form a non-slicing floorplan
topology and (ii) the number of different floorplans for five components is 92 which can
be examined exhaustively. During the clustering stage, the optimal shape, aspect ratio,
and the information about connectivity among clusters are passed up along the cluster
tree. At the final cluster level, the chip has at most five components which contain

clusters formed at previous steps.

In the top-down phase, all different floorplans are evaluated starting at the top
level of the hierarchy. Since the number of components in each cluster level is limited
to five, all possible floorplans can be exhaustively examimed. The floorplan with
minimal total area is chosen as the final design. This approach demonstrates that
hierarchical decomposition can simplify the floorplanning problem and produce high
quality results.

Partitioning and slicing. Lauther [Laut79] first applied the min-cut partitioning

approach to p_lace general cells. Later, LaPotin and Director [LaDi86] applied the min-

Page 23

cut method to solve the floorplanning problem. Using a min-cut method, the
rectangular chip area is first decomposed to form a slicing tree. To take
interconnectivity into account, LaPotin and Director proposed an in-place partitioning
method that is identical to the terminal propagation algorithm [DuKe85] which will be
described in the next section. The purpose of forming the slicing tree is to represent the
partitioning hiefarchy. A min-cut partitioning and slicing tree formation example of
five modules is shown in Figure 9. The slicing tree determines the relative positions of
modules. After forming the slicing tree, a two-phase traversal is performed to determine
the absolute position of the modules. In the first phase, a postorder traversal is used to
determine a set of possible floorplan dimensions. In the second phase, preorder

traversal is performed to determine the aspect ratio and location of each module in the
slicing tree.

Another alternative partitioning approach for floorplanning is: Multi-Terrain

Partitioning [LuDe89a,LuDe89b]. There are three types of terrains for a datapath chip:

random logic, datapath stack, and large macros. The multi-terrain partitioning
approach uses a min-cut algorithm to partition the objects into terrains. Then, it
evaluates all possible terrain configurations and selects the optimal floorplan.

Another approach is termed Capacity-Based Partitioning [WuGa90]. This
approach dissects the layout area into area blocks according to the given constraints.
The algorithm estimates the transistor capacity for each area block, then uses a seed-
based multiway partitioning strategy to assign glue-logic components iﬁto area blocks.
The algorithm runs iteratively and selects the partition with the minimum total area as

the final floorplan.

Page 24

Page 25

(a) . Min-cut partitioning

(b). Slicing tree

Figure 9. The slicing tree formation.

4.4. Placement

The goal of placement is to determine the positions of components on a layout. To
place hundreds or thousands of components and successfully satisfy a set of given
constraints is a very complex problem. To reduce the complexity of placement,
partitioning approaches are widely used for solving placement problems. Kernighan
and Lin [KeLi70] developed a two-way min-cut partitioning scheme for general graph
partitioning. Schweikert and Kernighan [ScKe72] extended the min-cut algorithm to
take into account special properties of electrical circuits such as multi-net connections.
Based on this min-cut partitioning foundation, many algorithms
[Schw76,Breu77,Corr79,Laut79,Burs82,DuKe85,SuKe87,Bh Hi88,Hill88] have been

reported for solving cell placement problems.

The basic concept of min-cut placement is to partition components into two
clusters so that the number of interconnections crossing the cut is minimized. The
min-cut algorithm is executed recursively until each cluster contains only a few cells.
Using min-cut partitioning, it is not a,de‘qua,te to simply partition components into
clusters without considering the external connections. For instance, by swapping node
X and node Y (Figure 10), the partitioning cost increases by 1 if the external
connections between the nodes in the block A and the node X in block B are not taken
into account. However, the actual partitioning cost decreases by 1 when the external

connections are taken into account.

To solve this problem, Dunlop and Kernighan [DuKe85] have proposed a
modification of the Kernighan and Lin min-cut algorithm. They introduced a terminal

propagation strategy to take the external connections into account more accurately.

Page 26

block A block B block C

|

|

|
-
_+—1Oy

after partitioning current partitioning sets

external boundary

Figure 10. Partitioning with external consideration.

For example, a penalty external cost PE_, can be added to calculate the partitioning

cost. PE_, can be (i) zero, (ii) negative, or (iii) positive. In case (i) (Figure 11(a)),

block B and block C are adjacent to block A. Thus, PE,, can be set to zero by
swapping node X and node Y. In case (ii) (Figure 11(b)), if node X connects to block A
and block D is not adjacent to block A, PE_, will be made negative by swapping node
X and node Y (it needs one more extra vertical routing track). In case (iii) (Figure
11(c)), if element X connects to block B and block D is adjacent to block A, PE,_ , will

be made positive by swapping node X and node Y (it reduces one vertical routing

Page 27

track).

one improvement to min-cut placement is: (i) Quadrisection [SuKe87]. Instead of
using a bi-partitioning approach, quadrisection partitions the given set along horizontal
and vertical division lines into four partitions simultaneously. This approach obtains
results comparable to the simulated annealing approach but with a much shorter run

time and (ii) The Min-Cut Shuffle [BhHi88] approach that takes into account of the

A B

(c)

Figure 11. Terminal propagation.

Page 28

order of partitioning to achieve a solution with global considerations.

5. Conclusibn

This survey paper has presented the partitioning techniques used in different VLSI
design processes. From the variety of partitioning implementations, it demonstrates
that partitioning methods are suitable for solving large scale problems. [n the past
years, partitioning techniques h#ve been widely used in layout synthesis. However, the
usage of partitioning techniques in processor and system synthesis levels is still in the
germinant stage. Different approaches for system and processor partitioning need to be
investigated further. Thus, system and processor partitioning will become one of the

most active research areas in the years to come.

Page 29

6. References

[BhHi88]

[Breu77]

[Burs82]
[ChKu84]

[CoCa80]

[Corr79]

[DaEs89]

[DiTh89]

[Dona88]
[DuKe85]

[Ever74]
[FiMa82]
[FoFu62]
[Gajs88|
[Gajs83]

[Gare79]
[HaKu72]
(HaWo76)

 [Hill88]

Page 30

Bhandarl, I., Hirsch, M., and Siewlorek, D., “The Min-Cut Shuffle: Toward a
Solution for the Global Effect Problem of Min-Cut Placement,” Proc. 25th
DAC, pp.681-685, 1988,

Breuer, M. A., "A Class of Min-Cut Placement Algorithms," Proc. of the
14th DAC., pp.284-290, 1977.

Burstein, M., "Partitioning of VLSI Networks," Proc. 19th DAC, 1979.

Chen, C. K., and Kuh, E. S., "Module Placement Based on Resistive
Network Optimization," IEEE Trans. on CAD, Vol. CAD3, No. 3,pp.218-
225, 1984.

Cox, G. W., and Carroll, B. D., "The Standard Transistor Array (star), part
II: Automatic Cell Placement Techniques,” Proc. 17th DAC, pp.451-457,
1980.

Corrigan, L. I., "A Placement Capability Based on Partitioning," Proc. 16th
DAC, 1979.

Dai, W. M., Eschermann, B., Kuh, E. S., and Pedram, M., "Hierarchical
Placement and Floorplanning in BEAR," IEEE Trans. on CAD, Vol. 8, No.
12, pp.1335-1349, 1989.

Dirkes Lagnese, E., and Thomas, D. E., "Architectural Partitioning for
System Level Design,” Proc. 26th DAC, pp.62-67, 1989.

Donath, W. E., "Logic Partitioning” in Physical Design Automation of
VLSI Systems (Preas, B. T., and Lorenzetti, M editors),
Benjamin/Cumming, 1988.

Dunlop, A. E., and Kernighan B. W., "A Procedure for Placement of
Standard-Cell VLSI Circuits," IEEE Trans. on CAD, Vol. CAD-4, No. 1,
pp. 92-98, January, 1985.

Everitt, B., Cluster Analysis, Heinemann Educational Books Ltd., 1974.
Fiduccia, C. M., and Mattheyses, R. M., "A Linear-Time Heuristic for
Improving Network Partitions,” Proc. 19th DAC., pp.175-181, 1982.

Ford, L. R., and Fulkerson, D.R., “Flows in Networks," Princeton University
Press, 1962.

Gajski, D. D., Silicon Compilation, Addison-Wesley Publishing Company,
1988.

Gajski, D. D. and Kuhn, R. H., "New VLSI Tools," Computer, Vol. 16, no.
12, pp.11-14, December, 1983.)

Garey, M. R., and Johnson, D. S., Computers and Intractability, A Guide to
the Theory of NP Completeness, W. H. Freeman and Co., San Francisco,
Califonia, pp.209-210, 1979.

Hanan, M., and Kurtzberg, J. M., "Placement Techniques" in Design
Automation of Digital Systems (Breuer, M. A. editor), Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, pp.213-282, 1972.

Hanan, M., and Wolff, Sr., P. K., and Agule, B. J., "Some Experimental
Results on Placement Techniques,” Proc. 13th DAC, pp.214-224, 1976.

Hill, D. D., "Alternative Strategies for Applying Min-Cut to VLSI
Placement,” Proc. ICCD, pp.440-444, 1988.

[HoLi81]
[HuRo86]

[IoKi83]

[JohaT79]
[John67]
[Kang83]

[KeLi70]

[KiGe83]

[Kodr72]

[Kris84]
[Kurt65]

[LaDi86)]

[Laut79]
[LuDe89a]

[LuDe89a]

[McFa83]

[McFa86]

[McKo090]

Horng, C., and Lie, M., "An Automatic/Interactive Layout Planning System
for Arbitrarily-Sized Rectangular Building Blocks," Proc. 18th DAC,
pp.293-300, 1981.

Huang, M. D., Romeo, F., and Sangiovanni-Vincentelli, A., "An Efficient
General Cooling Schedule for Simulated Annealing," Proc. ICCAD,pp. 381-
384,1986.

Iosupovici, A., King, C., and Breuer, M. A., "A Module Interchange
Placement Machine," Proc. 20th DAC, pp.171-174, 1983.

Johannsen, D., "Bristle Blocks: A Silicon Compiler,” Proc. 16th DAC,
pp.310-313, 1979.

Johnson, S. C., "Hierarchical Clustering Schemes,” Psychometrika, pp.241-
254, September, 1967.

Hang, S., "Linear Ordering and Application to Placement," Proc. 20th DAC,
pp.457-464, 1983.

Kernighan, K. H., and Lin, S., "An Efficient Heuristic Procedure for
Partitioning Graphs,” Bell System Technical Journal, vol. 49, no. 2, pp.291-
307, February, 1970.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., "Optimization by
Simulated Annealing,” Science, vol. 220, no. 4598, pp.671-680, 1983.
Kodres, U. R., "Partitioning and Card Selection” in Design Automation of
Digital Systems (Breuer, M. A. editor), Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, pp.173-212, 1972. ,

Krishnamurthy, B., "An Improved Min-Cut Algorithm for Partitioning VLSI
Networks," IEEE Trans. on CAD, vol. C-33, pp.438-446, May, 1984.
Kurtzberg, J. M., "Algorithms for Backplane Formation" in Microelectronics
tn Large Systems, Spartan Books, pp.51-76, 1965.

La Potin, D. P., and Director, S. W., "Mason: A Global Floorplanning
Approach for VLSI Design,” IEEE Trans. on CAD, vol. CAD-5, no. 4,
pp.477-489, October, 1986.

Lauther, U., "A Min-Cut Placement Algorithm for General Cell Assemblies
Based on A Graph Representation,” Proc. 16th DAC., pp.1-10, 1979.

Luk, W. K., and Dean, A. A., "Multi-Stack Optimization for Data-Path
Chip (Microprocessor) Layout,” Proc. 26th DAC, pp.110-115, 1989.

Luk, W. K., Dean, A. A., and Mathews, J. W., "Multi-Terrain Partitioning
and Floorplanning for Data-Path Chip (Microprocessor) Layout,” Proc.
ICCAD’89, pp.492-495, 1989.

McFarland, S.J. M. C., "Computer-Aided Partitioning of Behavioral
Hardware Descriptions,” Proc. 20th DAC, pp.472-478, 1983.

McFarland, S.J. M. C., "Using Bottom-Up Design Techniques in the
Synthesis of Digital Hardware from Abstract Behavioral Descriptions," Proc.
23rd DAC, pp.330-336, 1988.

McFarland, S.J. M. C. and Kowalski, T. J., “Incorporating Bottom-Up
Design into Hardware Synthesis,” IEEE Trans. on CAD, vol. 9, no. 9,

pp.938-950, September, 1990.

[MacNa64] MacNaughton-Smith, P., Williams, W. T., Dale, N. B., and Mockett, L. G.,

Page 31

"Dissimilarity Analysis," Nature, Lond., 202, 1034-1035, 1964.

[OdHa87]

[PrKa88]

[Prva79]
[Rome84]

[RoSag4]

[RoSag5]

[Sang87]

[SaRa90]
[Schw76]
[ScKeT72]
[ScU172]
[Snea57]

[Spat80]
[SuKe87]

[WeCh89]
[Wolfs6)

[(WuGa90]

Page 32

Odawara, G., Hamuro, T., [ijima, K., Yoshino, T., and Dai, Y., "A Rule-
based Placement System for Printed Wiring Boards,” Proc. 22rd DAC,
pp.777-785, 1987.

Preas, B. T., and Karger, P. G., "Placement, Assignment and
Floorplanning” in Physical Design Automation of VLSI Systems (Preas, B.
T., and Lorenzetti, M editors), Benjamin/Cumming, 1988. A
Preas, B. T., and vanCleemput, W. M., "Placement Algorithms for
Arbitrarily Shaped Blocks," Proc. 16th DAC, pp.474-480, 1979.

Romesburg, H. C., Cluster Analysis for Researchers, Wadsworth, Inc.,
1984.

Romeo, F., Sangiovanni-Vincentelli, A., and Sechen, C., "Research on
Simulated Annealing at Berkeley," Proc. of the Intl. Conf. on Computer
Design, pp.652-657, 1984.

Romeo, F., and Sangiovanni-Vincentelli, A., "Probabilistic Hill Climbing
Algorithms: Properties and applications,” Proc. of the 1985 Chapel Hill
Conf. on VLSI, PP.393-417, 1985.

Sangiovanni-Vincentelli, A., "Automatic Layout of Integrated Circuits” in
Design Systems for VLSI Circuits: Logic Synthesis and Stlicon
Compilation (DeMicheli, Sangiovanni-Vincentelli, Antognetti, editors),
Kluwer Academic Publishers, 1987.

Saab, Y. G., and Rao, V. B., "Fast Effective Heuristics for the Graph
Bisectioning Problem,” IEEE on CAD, vol.9, no.1, pp.91-98, January, 1990.
Schweikert, D. G., "A 2-Dimensional Placement Algorithm for The Layout of
Electrical Circuits,"” Proc. 13th DAC, pp.408-416, 1976.

Schweikert, D. G., and Kernighan, B. W., "A Proper Model for the
Partitioning of Electrical Circuits,” Proc. 9th DAC, pp.56-62, 1972.

Schuler, D. M., and Ulrich, E. G., "Clustering and Linear Placement,” Proc.
9th DAC, pp.475-481, 1982.

Sneath, P.H.A., "The Application of Computers to Taxonomy,” J. gen,
Microbiol., 17, 201-226, 1957.

Spath, H., Cluster Analysis Algorithms Ellis Horwood Ltd., 1980.

Suaris, P. R and Kedem, G., "Quadrisection: A New Approach to Standard
Cell Layout," Proc. ICCAD’87 PP AT4-477, 1987.

Wei, Y-C., and Cheng, C-K., "Towards Efficient Hierarchical Designs by
Ratio Cut Partitioning,” Proc. ICCAD’SQ, pp.298-301, 1989.

Wolf. W., "An Object-Oriented, Procedural Database for VLSI Chip
Planning,"” Proc. 23rd DAC, 1986.

Wu, A. C. H. and Gajski, D., "Partitioning Algorithms for Layout Synthesis
from Register-Transfer Netlists," Proc. ICCAD’90, 1990.

