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Abstract 

In the silicon compilation design process, partitioning is usually the first 
problem to be investigated because partitioning algorithms form the backbone of 
many algorithms including: system synthesis, processor synthesis, floorplanning, 
and placement. In this survey, several partitioning techniques will be examined. 
In addition, this paper will review the partitioning algorithms used by synthesis 
systems at different design levels. 
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l. Introduction 

Silicon compilation was introduced by Dave Johannsen (Joha79] far assembling 

parameterized modules of layout. The term silicon compilation can be extended to 

define a translation process that starts with a behavioral description and ends with a set 

of fabrication masks. 

To represent the design process of silicon compilation, Gajski and Kuhn [Gajs83] 

in trod uced a. Y-chart represen tation of silicon compilation (Figure 1 ). In the Y-chart, 

the design process is classified into three different dimensions: (i) behavioral, (ii) 

structural, and (iii) georretrical. The translation from behavior to structure is called 

synthesis. There are four levels in the synthesis processes: (i) system, (ii) processor, (iii) 

m:xlule, and (iv) cell [Gajs88]. In system synthesis, the program is decomposed into a 

set of communicating processes. In processor syn thesis, each process is decomposed in to 

a set of microarchitecture modules. In module synthesis, each module is then generated 

in to a set of cells. Finally, in module syn thesis, each cell is decomposed in to gates, 

transistors, and fabrication masks. To obtain information about the physical domain of 

a· design, each synthesis is followed by a translation from the structure into geometry. 

This translation is called :floorplanning, placement and routing, or cell generation. 

In the silicon compilation design process, partitioning is the first problem to be 

in.vestigated because partitioning algorithms form the backbone of many algorithms, 

including those far system synthesis, processor synthesis, :floorplanning, and placement. 

Far example, in system synthesis, designers partition the design into a set of chips 

according to constraints such. as power dissipation, number of pins per chip, chip size, 

and speed. In processor synthesis, designers decompose chips into a set of datapaths 
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Figure l. The Y-chart representation of silicon compilation. 

and control units according to different layout architectures and constraints. At the 

placement level, partitioning is used to decompose thousands of objects (gates) in to 

manageable clusters that can decrease the complexity of placement. If the partitioning 

is done effectively, the design process is simplified without sacrificing the overall 

performance. 

In this survey, several partitioning techniques will be examined. In addition, this 

paper will review the partitioning algorithms used by synthesis systems at different 

design levels. Section 2 describes the definition· of the partitioning problem. Section 3 

presents basic partitioning techniques and algorithms. Section 4· describes the 
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algorithms that have been used m different synthesis systems. Section 5 contains the 

conclusion. 

2. Definition of Problem 

Pa.rtitioning is the task of decomposing a given set of objects into subsets so that 

(i) each subset contains objects that equal to or less than the given size constraints and 

(ii) the wire connections crossing subsets are minimized. 

Let 
G = (V,E) where V={vJ, i= l..n, be a set of nades and E={e), j= l..m, be a set of 
edges; 

V ={v.} be a subset p of nades; p 1 

S(~) be the number of nades in subset p and S(V) be the total number of nades in 
y. 

' 
C( V) be the size constrain t of V in terms of n umber of nodes; 

p p 

e . . is the net that connects nade nin V to nade m in V .. 
ns,mJ • J 

The problem of a k-way partition of Gis to partition Vinto k subsets, {V1,V2, ... ,v,J 
which can be formulated as follows: 

k 

and minimizing :E eni,mj 

neV meV 
1, ) 

The partitioning problem was shown to be NP-complete by [Gare79]. Consider the 

problem of partitioning graph G of n nodes into k subsets of equal size m, where km=n. 

There are (n) ways of choosing the :first subset, e- m) ways for the second, and so on. 
m · m 

The number of choices for such a partition is: 
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For example, for n=:30, m=lO, and k=3, 10
1

'.! computations are required to perform 

exhaustive .. search. Beca use the computation time grows at an exponential rate ( with 

the size of partitioning problem), it is impractical to perform an exhaustive search to 

find the optimal partition. Over the years, numerous heuristic methods have been 

proposed for solving the partitioning problem. Often in practical applications, heuristic 

methods can produce good results in a reasonable amount of time. 

3. Techniques and Algorithms 

3.1. Overview of Partitioning Methods 

There are two basic methodologies: (i) The constructive :nEthod and (ii) The 

iterative improve~nt :nEthod [Sang87, Dona88, PrKa88]. The constructive method 

uses a clustering,(aggregation) strategy [Ever74,Spat80,Rome84] to assign one node ata 

time to a partition. The cluster growth process is based on closeness measurements of 

nodes, such as functions and interconnections. Several clustering approaches are 

reported in [Kurt65, HaKu72, Kodr72, ScU172, Schw76, CoCa80, Kang83, OdHa87]. A 

variation of the traditional clustering algorithm is hierarchical clustering 

[Snea57,John67]. Hierarchical clustering uses different closeness measurements to group 

the objects in to clusters at different levels. U sing hierarchical clustering, a cluster tree 

is formed for further analysis. 

The iterative improvement method starts with sorne initial partition, then improves 

the results . by moving nodes between partitions. There are three major iterative 

improvement algorithms: (i) Pairwise interchange, (ii) Group migration, and (iii) 

Simulated annealing. 
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3.2. Constructive Methocls 

3.2.1. CTuster Growth 

Cluster growth is a constructive method that <loes not need a. given initial 

partition. This approach starts with a nonpartitioned set and operates by selecting 

unplacecl objects and adding them to the proper clusters. Consider partitioning a set S 

n 
of n nodes into two subsets {Sl' S2} such that 1S1 1=1 s2 I = -. Assume tha.t the sizes of 

2 

nodes a.nd weights of nets are equal. The cost function according to a given partition of 

C(S) = ~ enl,m2 

nt.S 
1 

mt.S 
2 

where enl,m2 is the net that connects nade nin sl to node m in s2 

The first step of cluster growth is to select the seed of the partitions. The seed 

nades may be chosen randomly, by the user, or determined algorithmically 

[Schw76,WuGa90] in arder to guide the partitioning process. Next, unplaced nades are 

selected according to cost function C(n), where n is an unplaced node. The internal 

cost I(n) denotes the number of nets between node nin S
1 

and other nodes in S1. The 

external cost E(n) denotes the the number of nets between node nin S1 and other nodes 

in S2 • C(n) is the difference between externa! and internal costs of nade n such that 

C(n) = F.(n) - I(n). The unpl~ced node with minimal C(n) is chosen and clustered into 

S1. The process is repeated until the number of nades assigned to S1 reaches its size 

constraint. Finally, ali of the unplaced nades are assigned to s;. 
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The cluster growth algorithm is easy to implement and fast. However, each 

clustering decision must be made based on the curren t existing cluster information 

without taking into account the global consideration. Therefore, it often produces poor 

results. The cluster growth algorithm is mostly used as an initial partition for an 

iterative improvement method. 

3.2.2. Hierarchical Clustering 

In hierarchical clustering [Snea57,.John67), the objects are clustered into groups. 

The process will be executed repeatedly at different levels to form a tree. Hierarchical 

techniques can be divided into two methods: (i) a.gglomerative and (ii) divisive. 

The agglomerative method proceeds by successively fusing objects into groups. In 

general, cluster analysis consists of three steps: (i) computing the closeness matrix, (ii) 

executing the clustering method, and (iii) rearranging the closeness matrix. First, a 

closeness matrix X = (x .. ) is formed, i=j=l..n, where x .. is the closeness coefficient 
IJ IJ 

between object i and j (Figure 2(a)). Since the G_loseness between two objects is 

symmetric, only the lower-left half of the matrix contains values. Second, the procedure 

foses individuals or groups of objects which are most similar or closest (Figure 2(b )). 

Third, the closeness matrix is rearranged according to the new cluster configuration. 

Steps (ii) and (iii) are executed repeatedly until no more clusters can be merged (Figure 

2( e)). U sing this method, the clustering tree is formed in a bottom-up fashion. 

The divisive method partitions the set of objects into clusters. The first task of the 

divisive method is to split the initial set of objects into two sub-sets. For a set of n 

objects, there are 2n-
1
-1 possible ways to divide n objects into two sub-sets. It is 

impractical to perform exhaustive procedure to find the partitions. One of the most 
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Figure 2. The cluster tree formation 
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feasible of divisive techniques was proposed by MacN aughton-Smith et al. (MacN a64]. 

MacN aughton-Smith introduced a tech11ique of dissirnilarity analysis which measures 

the dissimilarity between each object and the other objects in the group. 

Considera closeness matrix D={dij 1 i=l..nj=l..n} where nis the number of objects 

and dij is the closeness between object i a.nd j. For example in Figure 3( a), there are 7 

objects to be divided into two groups according to the dissimilarity analysis. The initial 

partition is based on the average closeness between each object with the remaining 

objects. For example, the av-erage closeness between groups {1} and {2,3,4,5,6,7} is 

calculated as (10+7+30+29+38+42)/6=26. The average closeness between objects 1, 

2, 3, 4, 5, 6, and 7, and {2,3,4,5,6,7}, {l,3,4,5,6,7}, .. ,{1,2,3,4,5,6}, are 26, 22.5, 20.7, 17.3, 

18.5, 22.2, and 25.5 respectively. Thus, the initial two groups are {1} and {2,3,4,5,6,7}. 

Next, the average closeness of objects in the two groups are calculated as shown in 

Figure 3(b ). For exa~ple, consider object #2 at row 1 in Figure 3(b ), the average 

closeness between {1} and {2} is 10 and between {2} and {3,4,5,6, 7} is 

(7+23+25+34+36)/5=25. The difference of merging {2} with {1} and {3,4,5,6,7} is 15. 

After calculating the average closeness, the maximum difference is 16.4 for object 3. 

Therefore, object 3 is merged with object l. The new groups are {1,2} and {3,4,5,6,7}. 

Repeating the analysis gives the result based on groups {1,3,2} and {4,5,6,7} as shown in 

Figure 3( e). As all the differences are now negative, the partHioning in to two sub-sets 

is completed. The process continues until no more objects can be split. Using this 

method, the clustering tree is formed in a top-clown fashion. 

A variation of hierarchical clustering is multi-stage clustering [DiTh89]. Multi­

stage clustering was proposed by Dirkes Lagnese and Thomas for solving the large scale 
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Figure 3. Divisive clustering rrethod. 



problem of architectural partitioning. This approach performs clustering processes in 

several sta.ges. Each clustering stage is allowed to use a differen t closeness criteria. The 

clustering stages are consecu ti ve and each stage builds on the results of the previous 

stage. A two-stage clustering example is shown in Figure 4. In the first clustering 

stage, the objects are clustered together according to their closeness measurements on 

criterion A. As a result, it produces 4 clusters indicated as a, b, e, and din Figure 4(a). 

In the second stage, the clusters a, b, e, and d cut from the first stage are clustered 

further according to closeness cri terion B (Figure 4(b)). 

The multi-stage clustering approach has two advantages over the traditional 

clustering approach. The first advantage is that this approach decouples the clustering 

criteria over several stages. Hence, it provides a hierarchy of criteria that can apply the 

most important criterion first to ensur~ that the constraints are satisfied. However, it is 

difficult to determine the proper weighting far the various criteria to ensure good 

clustering results. The second advantage is that this approach allows objects to be 

considered as groups rather than as individual objects. Thus, this approach can cluster 

objects using more global considerations. 

3.3. Iterative Improved Methods 

3.3.1. Pairwis.e interchange 

In the pairwise interchange algorithm, a pair of nades are selected from different 

partitions. A cost function determines the e:ffect of interchanging the two nades. If.the 

partitioning cost function is improved, then these two nodes are interchanged. 

Otherwise, the nades remain in their previous partitions. This algorithm results in n( n-

1 )/2 trial exchanges which contributes o(n
2

) complexity, where n is the number of 
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d 

1 2 3 4 5 6 7 8 

(a). Clustering with criterion A 

a b e d 

(b). Clustering with criterion e 

Figure 4. Multi-stage clustering. 

nodes. Several layout systems· (HaWo76, Schw76, IoKi83] have used a pairwise 

interchange algorithm for placement. Pairwise interchange is a simple heuristic method, 

and it is not guaranteed to find even a local optima! solution. 
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3.3.2. Group migration 

The group rnigration algorithm is also known as the Kernighan-Lin algorithm (KeLi70). 

The Kernighan-Lin algorithm uses the solution of two-way uniform partitions as the 

basis for solving general partitioning problems. The basic idea is to interchange the 

group of nodes that contribute the maximal partitioning improvement between two 

groups. The Kernighan-Lin algorithm is guaran teed to find a local optimal solu tion. 

Several group migra.tion algorithms have been reported in (FiMa82, Kris84, ScKe72, 

BhHi88, SaRa90). Because group migration algorithms can produce excellent results 

using a small amount of CPU time (linear complexity), this a.lgorithm is widely used in 

many applications. 

Another approach used to solve the partitioning problem is network fiow 

algorithms [ChKu84, WeCh89]. This algorithm is based on the Ford and Fulkerson 

maximum fiow mínimum cut algorithm [FoFu62) for finding a minimum cut between 

two partitions in a network. The major difficulty of using this algorithm is the inability 

to constrain the cut-set sizes. In practice, this algorithm usually generates subsets with 

greatly uneven sizes and hence its applications. are lirnited. However, it <loes find the 

minimal cost for unconstrained (without size constraints for subsets) two-way partitions 

that can be used as lower bound for solutions produced by any partitioning method. 

3.3.2.1. The Kernighan-Lin Min-Cut Algorithm 

The original Kernighan-Lin algorithm finds a minimal-cost partition of a given 

graph of n nodes connected by edges in to two equal subsets of n/2 nodes (Figure 5 ). 

This two-way uniform partitioning algorithm uses heuristics to obtain the minimal 

uniform partition. It interchanges the nodes in cut-set A and cut-set B, and then 
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Cut-set A Cut-set B 

cutline 

Figure 5. Two-way partition. 

performs a local search to find a sequence of favorable swaps of nodes from the two 

subsets. 

Consider the partitioning of a set S of size n into two subsets {Sl' S2} with equal 

s1ze of n/2. eab denotes the net connected between node a and node b. Let us define 

the externa! cost Eª where a E S1 by 

E= ~e 
a L..4 ax 

u.S 
l 

and the in ternal cost by 

1 =~e 
a L..4 ay 
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Similarly, define Ez,, lb for each b E S2 • Let 

be the difference between externa! and in ternal cost for ali i E S. 

Let Cab denote a double counting correction coefficient if node a and node b 

conne'Ct to the same net. The partition gain ,gainab' by interchanging nades a and b is 

gainab = Da + Db - 2Cab 

The idea of group migration is to search for a favorable group of swaps rather than 

to search for one favorable swap. The Kernighan-Lin algorithm first generates a 

sequence of gains as foliows: 

(1) Calculate D¡ for ali nades E S. 

(2) Choose the pair (a, b), a E S1 and b E S
2

, that generates the maximal gain. 

(3) Swap a and b and recompute the D values for ali unswapped nades. 

( 4) Repeat steps 2 and 3, obtaining a sequence of swapped pairs {a,_,b1}, ... ,{an, bn}. 

Once a pair is swapped, this pair will be locked and can not be considered for 

swapping again. 

As a result, the algorithm generates a sequence of gaiils g~, ... ,gainn. The total 

gain from interchanging the set A= {a1 , ... ,ak} with B = {b1, ... ,bk} is 

k 

GAIN(k) = :E gain, 

N ext, the algorithm uses local search to choose a k that maximizes the partial sum 

of GAIN(k). If GAIN(k)> O, the algorithm interchanges the corresponding sets A and B 

and starts the process over again from step l. If GAIN(k):SO, the algorithm stops. 

Based on the sequence of gain" the algorithm produces the swapping-gain function 
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f( GAIN(k)) as shown in Figure 6. In t his example, the peak of the total gain is k = 7. 

Thus the algorithm will interchange the first 7 nodes into sets A and B. This local 

search strategy allows the algorithrn to climb out of the local mínima. 

Kernighan and Lin also extended their two-wa.y partitioning technique to perform 

rnulti-way partitions. Consider the problem of partitioning a set S into k subsets such 

k 

that 1 S 1 = I; S¡. The multi-way partitioning algorithrn executes two-way partitioning 

í•l 

n 

repeatedly based on the cut-set size of (CA, C8 ) where CA =S¡ and C8 = ~ Si for 1 < i 

f(GAIN(k)) 

10 

5 

1 2 3 4 5 6 7 8 9 10 

Figure 6. Local search strategy. 
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< n-1. Frequently, CA and CE are not equal; therefore, a set of dummy nades are 

added to the original set to allow un balanced partitioning. 

The complexity of the original Kernighan and Lin two-way unifarm partitioning 

algorithm is O(n
2
logn). However, Fiduccia and Mattheyses [FiMa82] used a clever 

implementation to achieve linear complexity in terms of the number of pins. Dunlop 

and Kernighan [DuKe85] ha ve· compared the Kernighan/Lin and Fiduccia/Mattheyses 

algorithms. They found that the results of Fiduccia and Mattheyses are not quite as 

good as those of Kernighan and Lin bu t that the execution time is substan tially 

reduced. In addition, Krishnamurthy [Kris84] has proposed a look-ahead strategy to 

guide the heuristics achieving more optimal partitions. 

3.3.3. Simulated annealing 

Simulated annealing was proposed by Kirkpatrick [KiGe83] far solving combinatorial 

optimization problems. U sing this technique, it is possible to extricate from a local 

optimal solution and move to a global optimal solution. In physics, an annealing 

process starts by melting a solid and then slowly lowering the temperature to find the 

minimal energy state where a crystal is formed. This same idea can be applied to 

combinatorial optimization. A simulated annealing algorithm can generate moves 

randomly and calculate the new configuration cost ~cii far a move from configuration i 

to j. If ~cij < O then a lower energy level is achieved and the move is accepted. If ~cij 

- de 
IJ 

~ O then the move is accepted with probability e t • As the simulated temperature t 

decreases, the probability of move acceptances decreases. 
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Theoretical studies (RoSa85] have shown that simulated annealing ca.n climb out of 

local rninima and find the globally optimal solution. However, it is impractical to find 

the optimal solution by performing an infinite number of iterations atea.ch temperature. 

Severa! heuristics [KiGe83, RoSa84, HuRo86] have been developed to reduce run time. 

Sirnulated annealing usually produces very good results; however, it suffers from very 

long run times. 

4. Partitioning Algorithms in Silicon C-Ompilation 

4.1. System Synthesis 

APARTY (DiTh89] is an architectural partition.er. It uses a multi-stage clustering 

algorithm to extract high level structural information from the behavioral description. 

The high level structure reflects physical design considerations such as interconnects. 

APARTY attempts to examine physical considerations in the early design stage so that 

the syn thesis tools can choose a better design in terms of are a. 

The multi-stage clustering consists of three majar clustering stages: (i) control 

clustering, (ii) data clustering, and (iii) schedule clustering. 

Control clustering. Control clustering groups the operators in the same control path 

together so that the control flow passing between two clusters can be reduced. Control 

flow between clusters is measured based on the probability that control will be passed 

from one operator to another. The con trol closeness between two operators a and b is: 

ce = P( OPb 1 OPª) 
a,b 

where P(OPb 1 OPª). denotes the probability that OPb will be activated by OPª. For 

example, if operators a and b are in the same path without branches then P(OPb 1 
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OPª)=l. On the other hand, if operators a and b are on the different paths then P(OPb 

1 OPª)=O. 

Data clustering. Data clustering considers data similarities between in di vidual 

operators. The goal of this stage is to reduce the amount of data passed between two 

clusters. The closeness of the number of common values between two operator clusters 

is: 

Common(a,b) 
= 

V(a)+ V(b) 

where Common( a ,b) measures the n umber of common values between cluster a and 

cluster b. V( a) is the n umber of values flowing to and from a. For example in Figure 7, 

the "+" and "-" operators each ha ve 2 out of 3 connections (B and C) in common. 

A B e B 

e o 

Figure 7. Data closeness calculation. 
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Thus the data similarity is: 

= 
3+3 

Schedule clustering. Since the data clustering merges operators according to data 

similarities only, it may prevent sorne operators that share hardware from being 

scheduled simultaneously. As a res1tlt, this leads to a poor schedule. Schedule 

clustering considers the potential low level parallelism to ensure a reasonable schedule 

with minimum hardware. The schedule closeness calculation for two clusters a and bis: 

Cs = CD X (l-INCa,b) 
a ,b a ,b 

where INCa,b is the incompatibility for the clusters a and b. INCa,b measures the 

incompatibility of all the operators in a as compared with the operators in b. If any two 

operators are incompatible, the penalty is calculated as the excessive hardware for 

putting two incompatible operators into same partitions for maintaining the same 

schedule. The data clustering tends to group operators that share data. In the mean 

time, the incompatible measurement tends to push incompatible operators into different 

partitions. 

Based on the information obtained from these clustering stages, the area and delay 

of different designs can be estimated for guiding scheduling, datapath allocation, and 

the selection of busses. The choice of which stages and the order to be run is decided 

by the user. 

4.2. Processor Synthesis 

BUD [McFa86, McKo90] uses a bottom-up analysis of the synthesis process in two 

ways. First, it obtains the physical and logical information about the primitives 
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available for use in the design from a data.base [\Volf8G). Second, the data operations 

are partitioned into clusters [McFa83), using a metric that takes into account functional 

unit sharing, interconnect, and parallelism. Each cluster represents a portion of the 

chip. A leaf cluster contains one or more function units. N onterminal clusters contain 

a set of leaf clusters and nonterminal clusters with the interconnects among them. The 

database offers size and timing information for the individual module. For example, the 

fioorplan of Figure 8( a) is shown in Figure 8(b ). Clusters 1 and 2 are leaf clusters which 

consist of a functional unit and storage interconnected by busses. Clusters 3 and 4 are 

non terminal clusters which consist of lower level clusters plus the wires interconnecting 

them. 

BUD groups operations using a matrix that measures the closeness of putting two 

operations into same cluster. The closeness between operations depends on three 

factors: their common functionality, degree of interconnection, and potential 

parallelism. The closeness between operations x and y is defined as follows: 

closeness(x,y) = -S
1 

X fprox(x,y) - S
2 

X cprox(x,y) + N X S3 X par(x,y) 

where 

fcost(x)+ fcost(y)- fcost(x,y) 
fprox(x,y) = 

fcost(x,y) 

commconn(x,y) 
cprox( x,y) = 

totalconn(x ,y) 

par(x,y) = 1 if x and y can be done in parallel, and O otherwise 

Here fcost(x,y,z, .. ) denotes the mínimum number of function units required to perform 

ali the operations x,y,z,.. in the list. fprox(x,y) denotes the ratio of the shared 

functionality of x and y. cprox(x,y) is the ratio oí the datafl.ow connections shared by x 
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and y. The S1 and S2 factors are the ratio of the area of the function unit required to 

do operatioii x1 and x 2 to the total area of the design. S
3 

is the probability of either x1 

or x2 being executed in one major cycle. N denotes the relative weight given by the 

user to speed. 

Based on this closeness function, a closeness matrix is computed. Then, a 

hierarchical clustering tree is formed from these closeness data. Different configurations 

are formed by cutting the tree at d1ifferent levels. Each configuration represents a 

particular hardware configuration. The cluster tree guides the search of the design 

space. The cut line starts at the root and moves toward the lea ves. Each time a new 

cut line is formed, a new design configuration is evaluated in terms of are a and delay. 

The configuration that best meets the design objectives is chosen as the final design. 

This partitioning approach leads to a simple method for systematically exploring the 

space of possible designs to find the optima! design. 

4.3. Floorplanning 

Floorplanning is the first step of VLSI chip design. Designers first partition the 

chip in to macro modules. N ext they determine the areas, relative positions, aspect 

ratios, and I/O pin locations of these modules and try to optimize the overall area 

utilization, power dissipations, and delays along critical paths. 

Many partitioning approaches have been proposed for solving floorplanning 

problems. These approaches can be divided into three groups: (i) cluster growth, (ii) 

connectivity clustering, and (iii) partitioning and slicing. 

Cluster growth. The cluster growth floorplanning method operates in a bottom-up 

fashion. Preas [Prva79] used a clustering method to estímate and define cell shapes. 
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Horng and Líe (HoLi81] build the fl.oorplan by starting in the lower left comer and 

clustering cells toward the upper right comer. The cluster growth floorplanning method 

is easy to implement. However, the layout quality is not as good as other methods. 

C.Onnectivity clustering. Dai and Kuh [DaKu86,DaEs89] introduced a connectivity 

clustering method which provides a simultaneous solution of floorplanning and global 

rou ting. Their approach consists of two steps: bottom-up clustering and top-down 

space allocation. 

In the bottom-up phase, modules are hierarchically clustered according to their 

size and connectivity. The cluster size for each level is limited to five for two reasons: 

(i) five is the minimal number of elements necessary to form a non-slicing floorplan 

topology and (ii) the number of different fl.oorplans for five components is 92 which can 

be examined exhaustively. During the clustering stage, the optima! shape, aspect ratio, 

and the information about connectivity among clusters are passed up along the cluster 

tree. At the final cluster level, the chip has at most five components which contain 

clusters formed at previous steps. 

In the top-down phase, ali different :floorplans are evaluated starting at the top 

level of the hierarchy. Since the number of components in each cluster level is limited 

to five, all possible :floorplans can be exhaustively examirred. The fl.oorplan with 

minimal total area is chosen as the final design. This approach demonstrates that 

hierarchical decomposition can simplify the fl.oorplanning problem and produce high 

quality results. 

Partitioning and slicing. Lauther [Laut79] first applied the min-cut partitioning 

approach to place general cells. Later, LaPotin and Director (LaDi86] applied the min-
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cut method to salve the floorplanning problem. Using a min-cut method, the 

rectangular chip area is first decomposed to form a slicing tree. To take 

interconnectivity into account, LaPotin and Director proposed an in-place partitioning 

method that is identical to the terminal propagation algorithm [DuKe85) which will be 

described in the next section. The purpose of forming the slicing tree is to represent the 

partitioning hierarchy. A min-.cut partitioning and slicing tree formation example of 

five modules is shown in Figure 9. The slicing tree determines the relative positions of 

modules. After forming the slicing tree, a two-phase traversa! is performed to determine 

the absolute position of the modules. In the first phase, a postorder traversa! is used to 

determine a set of possible floorplan dimensions. In the second phase, preorder 

traversa! is performed to determine the aspect ratio and location of each module in the 

slicing tree. 

Another alternative partitioning approach for floorplanning is: Multi-Terrain 

Partitioning [LuDe89a,LuDe89b ). There are three types of terrains for a datapath chip: 

random logic, datapath stack, and large macros. The multi-terrain partitioning 

approach uses a min-cut algorithm to partition the objects into terrains. Then, it 

evaluates all possible terrain configurations and selects the optimal floorplan. 

Another approach is termed Capacity-Based Partitioning [WuGa90). This 

approach dissects the layout area into area blocks according to the given constraints. 

The algorithm estimates the transistor capacity for each area block, then uses a seed­

based multiway partitioning strategy to assign glue-logic components into area blocks. 

The algorithm runs iteratively and selects the partition with the minimum total area as 

the final fl.oorplan. 
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4.4. Placerrnnt 

The goal of placement is to determine the positions of components on a layout. To 

place hundreds or thousands of components and successfully satisfy a set of given 

constraints is a very complex problem. To reduce the complexity of placement, 

partitioning approaches are widely used for solving placement problems. Kernighan 

and Lin [KeLi70] developed a two-way min-cut partitioning scheme for general graph 

partitioning. Schweikert and Kernighan (ScKe72] extended the rnin-cut algorithm to 

take in to accou n t special properties of ele e trie al circuits su ch as multi-net connections. 

Based on this min-cut partitioning foundation, man y 

[Sch w76,Breu 77 :Corr79,Laut79,Burs82,DuKe85,SuKe87 ,BhHi88,Hill88] 

reported for solving cell placement problems. 

algorithms 

ha ve be en 

The basic concept of min-cut placement is to partition components into two 

clusters so that the number of interconnections crossing the cut is minimized. The 

min-cut algorithm is executed recursively until each cluster contains only a few cells. 

Using min-cut partitioning, it is not adequate to simply partition components into 

clusters withou t considering the external connections. For instan ce, by swapping no de 

X and node Y (Figure 10), the partitioning cost increases by 1 if the external 

connections between the nodes in the block A and the node X in block B are not taken 

into account. However, the actual partitioning cost decreases by 1 when the external 

connections are taken into account. 

To solve this problem, Dunlop and Kernighan [DuKe85] have proposed a 

modification of the Kernighan an.d Lin min-cut algorithm. They introduced a terminal 

propagation strategy to take the externa! connections into account more accurately. 
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Figure 10. Partitioning with externa! consideration. 

For example, a penalty external cost PEcoat can be· added to calculate the partitioning 

cost. PEcoat can be (i) zero, (ii) negative, or (iii) positive. In case (i) (Figure 11( a)), 

block B and block C are adjacent to block A. Thus, PEco•t can be set to zero by 

swapping node X and· node Y. In case (ii) (Figure ll(b )), if node X connects to block A 

and block D is not adjacent to block A, PEcoat will be made negative by swapping node 

X and node Y (it needs one more extra vertical routing track). In case (iii) (Figure 

11( c) ), if element X .connects to block B and bloc}\ D is adjacent to block A, PEcoat will 

be made positive by swapping node X and node Y (it reduces one vertical routing 

Page 27 



track). 

one improvement to rnin-cut placement is: (i) Quadrisection [SuKe87]. Instead of 

using a bi-partitioning approach, quadrisection partitions the given set along horizontal 

and vertical division lines into four partitions simultaneously. This approach obtains 

results comparable to the simulated annealing approach bu t with a much shorter run 

time and (ii) The Mn-Cut Shuffie [BhHi88) approach tha.t takes in to accoun t of the 

A 

A 
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order of partitioning to achieve a solution with global considerations. 

5. Conclusion 

This survey paper has presented the partitioning techniques used in different VLSI 

design processes. From the variety of partitioning implementations, it demonstrates 

that partitioning methods are suitable for solving la.rge sea.le prohlems. f n the past 

years, partitioning techniques ha ve been widely used in layout syn thesis. However, the 

usage of partitioning techniques in processor and system syn thesis levels is still in the 

germinan t stage. Differen t approaches for system and processor pa.rtitioning need to be 

investigated further. Thus, system and processor partitioning will become one of the 

most active research are as in the years to come. 
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