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ARTICLE INFO ABSTRACT

The agent-based modelling (ABM) is commonly used to simulate urban land growth. A key challenge of ABM for
the simulation of urban land-use dynamics in support of sustainable urban management is to understand and
model how human individuals make and develop their location decisions that then shape urban land-use pat-
terns. To investigate this issue, we focus on modelling the agent learning process in residential location decision-
making process, to represent individuals' personal and interpersonal experience learning during their decision-
making. We have constructed an extended reinforcement learning model to represent the human agents' learning
when they make location decisions. Consequently, we propose and have developed a new agent-based procedure
for residential land growth simulation that incorporates an agent learning model, an agent decision-making
model, a land use conversion model, and the impacts of urban land zoning and the developers' desires. The
proposed procedure was first tested by using hypothetical data. Then the model was used for a simulation of the
urban residential land growth in the city of Nanjing, China. By validating the model against empirical data, the
results showed that adding agent learning model contributed to the representation of the agent's adaptive lo-
cation decision-making and the improvement of the model's simulation power to a certain extent. The agent-
based procedure with the agent learning model embedded is applicable to studying the formulation of urban
development policies and testing the responses of individuals to these policies.
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1. Introduction that, from 1990 to 2010, < 70% of urban growth was consistent with

urban land use plan in most cities with the lowest only 40.6% (Li et al.,

The process of urban land growth is one that has shaped, and con-
tinues to impact, both human society and nature in an irreversible way.
According to Nobel laureate Joseph Stiglitz in 2001, both under-
standing the urban transition and improving information technology
will be the two key factors that will affect human progress in the
twenty-first century (Seto & Fragkias, 2005). In China, where urbani-
zation is still one of the major means to boost economy, the complexity
of the urban growth, the incoordination between population urbani-
zation and land urbanization, combined with the lack of comprehensive
urban land use planning, has increased the pressure on planners and
caused disorder in urban land management, threatening the region's
sustainability. A survey of the seventeen cities in eastern China showed

2015). The difference between urban land growth and what is described
in the premier urban land use plan is indicative of the change of urban
development drivers from macro-control to mixed macro-micro in
China. Meanwhile, the World Bank's report on “Mind, Society and Be-
haviour” (Worldbank, 2015) also explicitly acknowledges the im-
portance of capturing the most advanced understanding of how humans
think and how context shapes thinking for the design and im-
plementation of policies. Both of them highlight an urgent need for
deeply understanding and modelling human location behavior to sup-
port the urban growth simulation modelling as a tool of urban land use
planning.

In a growing volume of literature, agent-based modelling (ABM)
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approaches have been applied to construct models and have made
achievements for the simulation of urban land-use change (Clarke,
2014; O'Sullivan, Millington, Perry, & Wainwright, 2012). It is due to
the fact that ABMs allow researchers to explore the relationships be-
tween micro-level individual decision-making and the emergent macro-
level phenomena (Batty, Crooks, See, & Heppenstall, 2012; Li & Liu,
2008; Matthews, Gilbert, Roach, Polhill, & Gotts, 2007; Miller, Hunt,
Abraham, & Salvini, 2004; Sun & Miiller, 2013; Verburg, 2006). A
number of studies have demonstrated that the appropriate inclusion of
human decision-making in agent-based geo-simulation models is of
fundamental importance (Filatova, Verburg, Parker, & Stannard, 2013;
Groeneveld et al., 2017; Le, Seidl, & Scholz, 2012; Miiller et al., 2013;
Parker, Hessl, & Davis, 2008; Schliiter et al., 2017). However, com-
prehensive descriptions of the human decision-making process have not
been a focal point of scholarly research on agent-based land use change
modelling until relatively recently (Miiller et al., 2013). Particularly, as
a typical social interaction within human system, learning processes, as
parts of or precursors to decision making, of real world decision makers
have been poorly represented (An, 2012; Bousquet & Le Page, 2004;
Groeneveld et al., 2017).

Aiming to construct a sound human decision-making model, we
intend to construct an agent learning model and include it into an
agent's decision-making model in ABMs for residential land growth si-
mulation. Given learning is inherently crucial for understanding the
adaptation of human agents' decision-making, there has been some
work endeavouring to model agent's learning in ABMs for ecological
and geographical simulations (e.g. An, 2012; Bennett & Tang, 2006;
Bone & Dragicevic, 2010a, 2010b; Bone, Dragicevic, & White, 2011;
Grimm et al., 2010; Le et al., 2012; Li et al., 2015; Morales, Fortin,
Frair, & Merrill, 2005; Miiller et al., 2013; Tang & Bennett, 2010).
Particularly, in the update of ODD protocol, which was proposed as a
standard protocol for describing agent-based models, Grimm et al.
(2010) added two design concepts including basic principles and
learning. Furthermore, Miiller et al. (2013) extended the content of
agent's learning in the ODD + D protocol which is an extension of ODD
protocol. However, answering how individuals change their location
decisions over time as a consequence of learning still has major short-
comings (Bousquet & Le Page, 2004; Le et al., 2012; Li et al., 2015).

First, although modelling agent's learning can play an important
role in fostering understanding of the dynamics of agent's location de-
cision-making (An, 2012; Bennett & Tang, 2006; Bone et al., 2011; Le
et al.,, 2012; Li et al., 2015; Tang & Bennett, 2010), a systematic ap-
proach for analyzing and incorporating learning mechanisms in land-
use systems that guides the modelling of land-use change is lacking. The
learning behavior within human system, which is focused more in so-
cial, economic, and psychosocial studies, has not been fully explored in
the context of geo-simulation (Filatova et al., 2013; Li et al., 2015;
Meyfroidt, 2013). Furthermore, how agents learn from their past de-
cisions regarding the landscape is more often studied rather than how
agents learn from one another (recent work including Bone &
Dragicevic, 2010a, 2010b, Bone et al., 2011). Second, in most of the
ABMs for geo-simulation which consider agent's learning, collective
learning, which has been nourished by machine learning algorithms
(e.g. Bennett & Tang, 2006; Bone et al., 2011; Bone & Dragicevic,
2010a, 2010b; Bousquet & Le Page, 2004; Tang, 2008), is often simu-
lated to a much higher degree than individual-level learning in the
coupled human-environmental system. Relatively few models for geo-
simulation (such as Bennett & Tang, 2006, Morales et al., 2005, Bone &
Dragicevic, 2010a, 2010b, Bone et al., 2011) explicitly incorporate
agent's learning mechanism at the individual-level in ABMs for geo-
simulation. Modelling agent's learning on the population level sim-
plifies things, whereas neglecting details at the individual level comes
at with the risk that learning process details at this level may indeed
matter, which could lead to flawed predictions (Brenner, 2006). Third,
the application of explicitly spatial learning models to modelling
adaptations in an agent's decision-making in real-world ecological and
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geographical systems is still in its initial stage (An, 2012; Tang &
Bennett, 2010). In related studies, agents compare and imitate land-use
practices, residential location practices and products (usually a few
discrete choices) or adopt an innovation adopted by their neighbors or
peers to reduce risk and obtain a higher reward or benefit (e.g.
Benenson, Hatna, & Or, 2009; Benenson, Omer, & Hatna, 2002;
Caillault et al., 2013; Chen, Li, Wang, & Liu, 2012; Dung, Vinh, Tuan, &
Bousquet, 2005; Gotts & Polhill, 2009; Le et al., 2012; Manson, 2006;
Monticino, Acevedo, Callicott, Cogdill, & Lindquist, 2007; Sun &
Miiller, 2013). In most of these models, agent learning is discussed and
modelled implicitly in the agent's decision-making models. Computa-
tional approaches for individual-level agent's learning are infrequent in
ABMs for geo-simulation, which may be partly due to that relatively
few land-change models actively consider theories of human behavior
(Groeneveld et al., 2017; Irwin & Geoghegan, 2001; Manson, 2006).
Researchers consider that modelling an agent's learning explicitly and
at various levels will contribute to the model's quality and an increase
in confidence for the model's users to simulate spatial phenomena by
using ABM (An, 2012; Claessens, Schoorl, Verburg, Geraedts, &
Veldkamp, 2009; Le et al., 2012; Li et al., 2015; Meyfroidt, 2013).

Therefore, we intend to construct an individual-level learning model
to represent both the interpersonal and intrapersonal learning process
at individual level and include it into an agent's decision-making model
and an ABM for residential land growth simulation. We assume that
agent-based residential land growth models intend to model residents'
behavior as realistically as possible, in order to support deep under-
standing of urban development and people-oriented urban land use
planning. As a consequence, our model is based on research in psy-
chology because psychologists have established most of the actual
knowledge about human learning. As Brenner (2006) mentioned that,
since 1950s, psychologist have concentrated on the processes of cog-
nitive learning, meaning that the concept of reinforcement learning, in
which self-experience learning is emphasized, was transferred to in-
teractions and observation. Whereas, cognitive learning processes in the
form of equations are relatively rare given its complexity (Brenner,
2006). Thus, we intend to extend reinforcement learning (RL) model so
that not only agent's learning from personal experience, but also agent's
learning from one another can be depicted. We opted to extend a
computational RL algorithm by Roth and Erev (1995), which has been
extensively studied and successfully used in the field of economics (see
review by Brenner (2006)) as they utilize a similar essential process to
develop strategy decision-making by obtaining and utilizing knowl-
edge. Then, we define a hybrid utility function by combining the agent's
learning result with a land utility function, which is used in agent's
location decision-making model. Consequently, we propose an agent-
based procedure for residential land growth simulation by in-
corporating a hybrid utility function, a discrete location choice model
and a land use conversion model. The proposed agent-based procedure
was tested by application in a residential land growth simulation in our
study area, and the experiment results were analyzed and discussed
followed by a discussion of issues for future research.

2. Methods

The framework shown in Fig. 1, with reference to the framework
proposed by Li et al. (2015), illustrates our procedure for residential
land growth simulation. A household agent (HA) in this study is defined
as an entity with a desire to locate or relocate the place of residence. An
HA has his own attributes, learning ability and preference to the bio-
physical environment (see Section 2.1 for detailed description). Land is
the object of human action, and it provides the material environment to
support HAs' behaviors. Land is represented as pixels which have their
own attributes and states. Change in land use occurs as a result of
change in the states of the pixels, which is not only directly associated
with the HAs' location behavior, but also influenced by urban land use
plans and policies and the developers' desire. We define a land unit that
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is convertible at a certain scale as a location strategy for a household
agent, when that agent makes location decision. The location strategies
with similar attributes (such as similar accessibility, similar environ-
mental quality, or similar distance to a CBD, etc.) or with the same level
land utility value are defined as the like-location-strategies. The initial
location strategy set is composed of all the convertible land units.

Three sequential sub-models are constructed to simulate three key
sub processes in the HA-land interaction. They include the agent learning
sub-model, the agent decision-making sub-model, and the land use conver-
sion sub-model. In the procedure, the agent learning sub-model represents
the process by which agents obtain knowledge from the past-experi-
ences (both personal and interpersonal) within the human system for
their location decision-making before they finally settle down. The agent
decision-making sub-model indicates the process of agents' location se-
lection by taking into account the agent's learning result, as well as the
agents' preference for environmental conditions. The land use conversion
sub-model aims to link the results of the agents' location decision and
land-use type change, which accounts for the feedback of the biophy-
sical environment on the individuals' behavior. These models are linked
and processed in a sequential, nested, and systematic manner to de-
monstrate the essential process of human-induced alterations of the
urban land system.

In the process of model running, the estimated number of household
agents enters the modelling landscape and searches through the avail-
able pixels at each time step which is set to one year in the study. Each
household agent finds a pixel that satisfies their requirements about
housing location. Then, the land use type of the pixels selected by the
household agents is converted or not based upon urban land use plans
and the developers' development desire. Once the pixels selected by the
HAs are marked for conversion, the household agents settle down and
the states of the pixels are updated accordingly. The model then runs
until all household agents settle in appropriate pixels.

2.1. The household agents and their decision-making

We define Eq. (1) to demonstrate how HAs make residential location
decisions by using both their knowledge about the biophysical en-
vironment and prior experiences from the human system.

I_IAdecision = f (HAauributes 5 mlocationPref s HAleaming) (1)

HAs' ability to make decision and to learn, and their location pre-
ference differ from one another due to their varied characteristics, thus,
we define HA yuripures to represent HAs' major characteristics which can
be used to categorize HAs when needed. HA uripues CONtains a set of

variables that present a household agent's characteristics. We define the
household agents with similar attributes, such as similar family income,
education level, or family structure as like-agents. We assume like-
agents show similar preference to the environment conditions.
Furthermore, like-agents are more likely to learn from each other when
making location decisions.

We define HAjgcarionprer @s a land utility function that represents HAs'
location preferences to the biophysical environment. Both a set of
variables and a vector of preference coefficients are included in
HAjocationpres- Accessibility, the conditions of environmental amenities,
the public facilities (e.g. distance to CBD, distance to major medical
institutions) and neighborhood educational resources are included in
the land utility function, which are the major factors influencing HAs'
location decision according to the China Real Estate Chamber of
Commerce (2009) and Li et al. (2015).

Moreover, a learning function, HAjeqming is utilized to capture how
HAs learn to develop their location decisions through the experiences
learning among household agents. On the one hand, psychologist has
concentrated on the impact of social interaction and observation on
learning since 1950s, in which the basic argument was that people do
not only learn from their own experience but also from the experience
of others (Brenner, 2006). On the other hand, according to the results of
an investigation on house purchase behavior in Beijing, Guangzhou and
Tianjin in 2009 by the China Real Estate Chamber of Commerce (2009)
and Li et al. (2015), 75.9% of the house purchasers paid close attention
to the estimates of available housing by Internet users as current
homeowners. Both of them indicated that household agents refer to
experience learning when making residential location decisions.

2.2. The model of agent learning

We employ and extend RL algorithm for depicting how HAs develop
their location decision by interpersonal and intrapersonal learning. RL
studies place focus on the impact of personal past-experiences on
human decision-making, and the general consensus is that actions fol-
lowed by good or bad outcomes have their tendency to be reselected
altered accordingly — in other words an action may be repeated more
frequently based upon positive outcomes and less frequently based
upon negative outcomes (Sutton & Barto, 1998). On the one hand, RL
algorithms have been discussed and validated to be suitable for mod-
elling individual-level learning mechanism in geo-simulation (Bone &
Dragicevic, 2010b; Tang, 2008). On the other hand, as psychologist
have concentrated on the impact of social interaction and observation
on learning since 1950s (Brenner, 2006), we argue that the basic idea
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that social interaction and observation impact learning can be in-
corporated by extending the RL algorithm. Hence, we extend RL model
for depicting both the interpersonal experiences exchange and personal
past-experiences learning. In the extended RL model, we assign a new
computational equation to the payoff function and extend the to-be-
reinforced location strategy set for simulating the HAs' learning in their
location decision-making.

2.2.1. The Roth-Erev reinforcement learning algorithm

In the Roth-Erev RL algorithm (Roth & Erev, 1995), if an agent
selects the ith strategy from the strategy set {a;, a, ..., a,} at time t — 1
and receives a payoff of r(t), then the propensity to select strategy i by
the agent at time ¢ is updated by Eq. (2).

q'(a) = ¢xq' = (a) + (1 — &)= (a;,y)*r(t — 1) (2

where g'(a;) represent the propensity to select strategy a; for an agent at
time t, ¢ €[0,1] is a forgetting parameter (or defined as recency
parameter) which is used to reduce the importance of past experience
gradually over time. § € [0,1] is an experimentation parameter which
represents the influence of an unselected strategy. When its value ex-
ceeds 0, the influence of past experience is extended to those unselected
strategies through learning function. The function I(a;, y) equals one if
a; = y holds and equals zero otherwise, in which y is the strategy that
other agents select. The payoff r(t) is obtained by an agent if he chooses
strategy a; at time t.

2.2.2. An extended reinforcement learning algorithm

We extend the RL model by refining the payoff function R/(f) and
extending the to-be-reinforced location strategy set. In the applications
of RL models in economics research, the reward calculated by a utility
function usually results in the enhancement of confidence in the se-
lected strategy. Similarly, for the HA's location decision-making, we
argue that when location strategy j (i.e. land unit j) is selected by an HA,
the expected return by the like-agents from selecting its neighbors will
be increased due to the similarity in the characteristics of neighbour
pixels according to the first law of geography (Tobler, 1970). In this
study, we assume that the reward when location strategy j is selected by
an HA increases as the number of newly-selected location strategies
increase in its neighborhood. Thus, the payoff function R/(f) is defined
as the proportion of the number of newly-selected location strategies in
the land-unit/'s neighborhood represented by ngecea(j) and the total
number of available land units in the land-unity's neighborhood de-
picted by Ny, and it can be calculated by using Eq. (3). In the ex-
periment conducted in our study area, the neighborhood scale is de-
fined as a 21 pixels by 21 pixels window centered on land unit j with a
pixel size of 50 m, which is a neighborhood of approximately 1 km by
1 km. In order to represent the randomness of HAs' location decisions
and to avoid the status that it is hard for some newly-added location
strategies to be selected and reinforced, R/(t) is set to be one-tenth of 1/
Npei when ngeecreq(j) is equal to 0.

Rij () = (Nsetected (j)/Nnei )*100 3

Furthermore, when a land unit is selected by an HA at iteration
t — 1, the to-be-reinforced location strategy set for the like-agents at
iteration t is extended to its neighbors and like-location-strategies. We
assume that the propensities for the like-agents to select its neighbors or
the like-location-strategies will be increased, when a location strategy is
selected by an HA. Here, all the selected location strategies by like-
agents (including itself) at iteration t — 1 are simplified to be equally
treated by the HAs who tend to make decisions at iteration t. That is,
personal experiences and the experiences of all like-agents about lo-
cation decision are assumed to equally affect the HAs' location decision-
making in the next iteration.

We define an attractiveness index (AI) for each location strategy to
represent an HA's learning result, which changes in the iterations until a
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final decision is reached. When a land unit is selected by an HA at
iteration t — 1, its neighbors and like-location-strategies will be marked
at iteration t whose Al values to like-agents will be increased. There are
two cases for the calculation of Al value at each iteration: one is when
location strategy j is selected by HA; at iteration t — 1 and the other is
when location strategy j is not selected by HA;. In the first case, Al
value is defined as Eq. (4).

A/ (1) = ¢=A (t = 1) + (1 — 8)*R/ () @

where the meaning of ¢ and § is the same as those defined in Eq. (2);
the payoff function R/(t) represents the reward when HA; selects loca-
tion strategy j at time t.

In the second case, when location strategy j is not selected by HA;,
the AI value of a location strategy is defined as Eq. (5).

8+R/ ()

J(t) = &*AJ (1 —
Al©=gal -1+ T ©

where N;(t) is the number of location strategies available to HA; at time
t.

We assume that all the location strategies show a similar attraction
to the like-agents at the beginning of each time step, since HAs have no
experiences at iteration t = 0. The initial Al value of location strategy j
for HA,; is calculated by Eq. (6).

K% (Zf\ilej(")/M)
n (6)

where n is the number of location strategies; M is the number of a
certain type of household agent; « is an initial strength parameter for
HA; and R/(0) is the initial reward when HA; selects land unit j at
iteration t = 0, we set its value as 1.

Aij 0) =

2.3. The model of agent decision-making with embedded agent learning

2.3.1. The traditional land utility function

In this study, we utilized a traditional land utility function to depict
HAs' preference to the environment conditions, in which accessibility,
the conditions of environmental amenities, the public facilities (e.g.
distance to CBD, distance to major medical institutions) and neigh-
borhood educational resources are considered according to an in-
vestigation by the China Real Estate Chamber of Commerce (2009) and
Li et al. (2015). The investigation by the China Real Estate Chamber of
Commerce (2009) indicated that residents in the cities of eastern China
show the importance of accessibility, neighborhood education quality,
environment quality and house price. Due to the difficulty of data ac-
quisition, house price factor is not included directly in this study. To a
certain extent, the house price factor can be represented by accessi-
bility, the conditions of environmental amenities, neighborhood edu-
cational resources and the public facilities.

2.3.2. The hybrid land utility function

We define a hybrid land utility function by combining the tradi-
tional land utility and the agent's learning result about location deci-
sion, which is used for HAs to make location decisions. The hybrid land
utility value of a land unit for an HA is calculated as a weighted linear
combination by using Eq. (7) for summing up the HA's learning result
and the preference to the environment factors.

U (1) = ax Z:lzl wekXy + BrAL (1) + €, Zm

et w=l,a+p=1

()

where U/(f) is the hybrid land utility value of land unit j for HAi at time
t; j indexes a specific land unit; i indexes a household agent; « is the
weight of an HA's preference for the biophysical environment condi-
tions, f is the weight of an HA's learning result; k indexes a specific
variable X; which represents an environment factor, and the value of



F. Li et al.

variable X; has been normalized to [0, 100]; m is the amount of variable
X, and wy is the preference coefficient of Xi. [X;, ...X4] delineates ac-
cessibility, the conditions of environmental amenities, the public fa-
cilities and neighborhood educational resources respectively in the
following experiments. The uncertainty term ¢/ is created by a random
number generator and accounts for the uncertainties inherent in the

HAs' decision-making.

2.3.3. The selection probability

The selection probability, which is the probability of a land unit to
be selected by an HA, is calculated by using a discrete location choice
model as given in Eq. (8):

) i ) n )
Pij(t) — EXP<U1 (t) /Z:;l exp(Uif(t))’ ijl Pij(t) =1 (8)

where P/(t) is the probability that agent i chooses land unit j; U/(¢) is the
hybrid utility value of the given land unit j, as perceived by the ith HA;
and n is the total number of available land units.

The land conversion probability can be calculated and updated
using a total probability formula (Eq. (9)), when we consider the HAs'
location decisions alone:

Pi(t) = Zimt P/ (0)P, (t)/M ©)

where P/(t) is the land conversion probability of land unit j with the
impact of location decisions of M HAs in one category; P(t) is the
probability of HA; being involved in the land use decision. The value of
P(t) is set to be 1 because all the agents were assumed to participate in
the location decision-making in this study.

2.4. The land use conversion model

2.4.1. Impact of urban land zoning and housing developers' desire

Land use conversions are influenced by various socio-economic
plans and housing developers' desire. Urban land zoning is one of the
prominent spatial plans for urban land use in China. It is the re-
presentation of the intentions and plans of local government for urban
development. A variable S €{0, 0.5, 1} is defined to represent whether
an available land unit is located in the planned urban development zone
or not. S is set to 1 when the available land units are located in the
planned urban development zone; S is set to 0 when the available land
units are located in the strictly protected areas where development is
restricted; otherwise, S is set to 0.5.

Additionally, new urban land formation is a direct consequence of
housing developers' land development behavior, which is characterized
by pursuing maximum profit and results in land use conversion directly.
For purpose of simplification, we assume that developers intend to
develop the land units close to the urban area and in the neighborhood

High

I Low

Fig. 2. The procedure's application experiment with hypothetical data.

a
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of existing resident communities which are highly valued by the
homeowners, as they can take full advantage of the existing ancillary
facility (such as schools, public transportation, new sub-CBD etc.) as
well as the predecessors' experience to reduce investment risk.
Accordingly, we define a variable D/(t) to represent the housing de-
velopers' preference for the pre-existing beneficial status. D/(t) is re-
presented by the percentage of residential land units in a fixed neigh-
borhood of a convertible land unit, a window of 21 pixel by 21 pixel
centered on land unit j with a pixel size of 50 m is used to calculate D/(f)
in this study, which is a neighborhood of approximately 1 km by 1 km.
DI/(¢) is set a value of one tenth of the reciprocal of the number of land
units in the fixed neighborhood, when no residential land exists in the
neighborhood.

2.4.2. Calculation of final land use conversion probability

We employ a multi-probability model to calculate the synthetic land
conversion probability (Eq. (10)) considering the HAs' location deci-
sion, the impact of urban land zoning and the housing developers' de-
sire:

Ti(t) = KI(t) %Pi () DI (t) S 10)

where K/(t) € [0,1] is the constraint of land use conversion, and its
value is set to be 1 in this study; T(t) is the final conversion probability
of land unit j to residential land.

A vector can be formed with calculation of T(¢) for all available land
units. We used a conditional stochastic model to determine whether a
land unit is converted or not (Eq. (11)).

true if q < T/rz}

transform’® =
i J { false otherwise

1)

where, qe[0,1] is a random number; Tj, = max (P); transform;” re-
presents whether land unit j will be converted to residential land or not.

3. Model implementation and analysis of the results
3.1. Experiment with hypothetical data

We tested the proposed model by applying it to hypothetical data.
We designed a scenario with a 101 pixels by 101 pixels artificial study
area with the highest traditional land utility value (i.e. agent's learning
result was not included) covering 798 pixels at the center of the study
area (Fig. 2(a)). The traditional land utility values decreased linearly
from the center to all directions. In the experiment, all pixels in the
experiment area had the possibility of being converted. We allowed 800
household agents to make location decisions in the study area. HAs'
decision-making with reference to traditional land utility values and
with reference to our hybrid land utility values were simulated

b c

a Suitability value distribution; b simulation result without agent's learning model; ¢ simulation result involving reinforcement learning model.
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separately. At the beginning of the simulation, the household agents
were randomly seeded with respect to location. At each iteration, parts
of the HAs could be located, and those who could not settle down would
enter the next iteration. The simulation was terminated when all the
HAs were located.

In the simulation results, most of the newly-converted residential
land units were those with relatively high traditional land utility value
in both Fig. 2(b) and (c). 95% and 85% of the newly-converted re-
sidential land units were located in the area with highest traditional
land utility value in Fig. 2(b) (traditional land utility values were used)
and Fig. 2(c) (hybrid land utility values were used) respectively. The
simulation result in Fig. 2(c) shows a little more dispersal around the
high land utility value than in Fig. 2(b). On the one hand, the results
indicated that both of the models could reflect the HAs' location deci-
sion-making process which is characterized by pursuing most suitable
locations or locations with high utility value. On the other hand, in
Fig. 2(c), the household agents were not all located in the spots with
highest land utility value and some were dispersed around the area with
highest utility value. It indicated that HAs' location decision-making is
affected by the learning process. It conforms to the understanding that
HAs often select the locations with relatively high land utility value
rather than the optimal ones given that HAs possess limited computa-
tional resources and information on which to base decisions (Simon,
1997).

3.2. Application in the Nanjing residential land growth simulation

3.2.1. Study area and data

We applied the proposed model to the simulation of residential land
growth in Nanjing, China during 2001-2007 to test the model. The city
of Nanjing (Fig. 3) is located in the lower Yangtze River drainage basin
(31°14-32°17’'N, 118°21-119°14’E), and it is one of the important
commercial and industrial cities in eastern China. The level of urbani-
zation is above 80% with over 8.2 million permanent residents in 2014.
Urban land use increased almost 14 times during 1949-2007, and
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urban land mainly extended in the North East and South West portions
of the city along the Yangtze River (Li, Li, Liu, Liang, & Chen, 2007).

A region with an area of 600 km? located to the south of the Yangtze
River was selected as the experiment area, as this is a region where
much surrounding farmland has been developed and substantial
changes to the landscape have occurred. The residential land distribu-
tion map of 2001 was used for the simulation of residential land growth
during 2001-2007. We represented the study area using pixels with a
resolution of 50 m. There are 239,384 pixels in the study area totally, in
which 127,879 pixels are convertible considering the land use in 2001
and the urban land zoning. The distribution maps of the environment
factors scores are shown in Fig. 4. The weights of the environment
factors were computed using the analytic hierarchy process (AHP)
method (Satty, 1980) and the entropy-weight method (He & Shang,
2017; Hou & Huang, 2010). The weight vector {W,, W,, W,,, W4} is set
as {0.2423, 0.2132, 0.2831, 0.2615} which represents the weight of
accessibility, the weight of conditions of environmental amenities, the
weight of public facilities, and the weight of neighborhood educational
resources.

The number of HA participating in the simulation was set as 39,620,
approximating the residential land growth scale (39,620 pixels) span-
ning 2001-2007. Given that young people were the principal migrants
in the study area during the simulation period, no demographic cate-
gories were defined in the experiment for purpose of simplification. At
each time step (one year), about 6603 household agents entered the
simulation landscape. They were randomly seeded with respect to lo-
cation and searched for pixels to settle down. The iterations were ter-
minated when all the entering household agents were able to settle
down in appropriate pixels.

We estimate the initial values of the model parameters by referen-
cing the application of RL model in economic simulations, and we ran
our model and then modify the initial values for these parameters.
Ultimately, for this application, values of ¢, § and kx were set to 0.9, 0.4
and 1.0 respectively, which are the best fit values for residential land
growth simulation in the study area.
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Fig. 3. Location of study area.

(a) Accessibility; (b) environmental amenity; (c) public facilities (considering CBD and hospital); (d) neighborhood education resources; (e) suitability value dis-

tribution; (f) urban land zoning.
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(a) Accessibility,; (b) environmental amenity, (c) public facilities (considering CBD and hospital);

(e) suitability value distribution;  (f) urban land zoning
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(d) neighborhood education resources;

Fig. 4. Assessment of the environmental conditions in the study area.

3.2.2. Experiment results and analysis

Two residential land growth simulation experiments were im-
plemented in the study area. In the experiment 1, the land utility values
were calculated by using accessibility factor only. In the experiment 2,
accessibility, conditions of environmental amenities, public facilities,
and neighborhood educational resources were considered in the land
utility function.

(1) Experiment 1

In the experiment 1, results of a site-specific accuracy assessment
reveal an accuracy of 44.33% for the simulation with embedded ex-
tended RL model, and 40.70% for the simulation without it. The site-
specific assessment of the simulation results showed that the integration
of the extended RL model is helpful for improving the predictive power
of an ABM for residential land growth simulation. To evaluate the
model performance further, the predicted pixels were categorized into
perfect match, close match, and poor match with reference to the study
by Dahal and Chow (2014). The perfect match category includes con-
verted pixels in the predicted map that spatially agree with the devel-
oped area in the reference map. The close match indicates the con-
verted pixels in the predicted map that are adjacent to or within a
distance of 300 m from the developed pixels in the observed map. Any
predicted pixels beyond this distance from the developed pixels in the
reference map were categorized into the poor match group. A distance
of 300 m is used in the study, given that 300 m « 300 m is the normal
residential land size that a land developer can get through bid invitation,
auction and listing system in urban land transfer in Nanjing, China. The
results showed that 86.63% of the predicted units in simulation ex-
periment with the extended RL learning model embedded fell within a
distance of 300 m from the developed sites in the reference data while
79.98% in the simulation experiment without it. It indicated that the
including learning model affects HAs' location decision-making

simulation, which contribute to the improvement of the model's simu-
lation power.

(2) Experiment 2

Because of the stochasticity of our agent-based model, the two
models (i.e. the model with learning model embedded and the model
without learning model) were run one hundred times. Results of a site-
specific accuracy assessment reveal an accuracy ranging from 69.9% to
70.4% for the simulations with embedded extended RL model and a
range of 68.4% to 68.7% for the simulations without it. The site-specific
assessment of the simulation results showed that the integration of the
extended RL model is helpful for improving the predictive power of an
ABM for residential land growth simulation. In the one hundred si-
mulations, 85.8% of the convertible pixels have a conversion prob-
ability over 80%, while 90.2% of the convertible pixels have a con-
version probability over 50% for the simulation results with the
learning model embedded. The pixels with low conversion probability
located at the edge of the simulated converted pixels.

A simulation result with 70.4% overall accuracy by using our pro-
cedure is analyzed in the study. The predicted residential land units
were categorized into perfect match, close match, and poor match, and
a spatial agreement map was created (Fig. 6). The results showed
that > 90.4% of the converted pixels in the simulation fell within a
distance of 300m from the developed sites in the reference data
(i.e. <9.6% fell in the “poor match” category). Thus, we consider that
the model performs adequately despite the fact that it has not a com-
paratively high overall accuracy.

To examine whether the model correctly predicted direction trends,
we evaluated the spatial accuracy directionally in the eight principal
compass directions (shown in Table 1). According to the statistics of
newly developed pixels in the reference map and simulation results
shown in Fig. 8 and Table 1, the residential land distribution maps of
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Table 1
The spatial accuracy assessment in the eight principal compass directions of the
model outputs.

Orientation  Perfect matched Newly-developed Accuracy for
simulated pixels in pixels in reference map  Fig. 5.b
Fig. 5.b
E 2863 5765 49.66%
NE 3223 7793 41.36%
N 576 746 77.21%
NwW 466 568 82.04%
w 384 568 67.61%
SwW 3383 4616 73.29%
S 6277 11,249 55.80%
SE 3501 8315 42.10%

2007 showed a pattern of residential land expansion extending ap-
proximately along the Yangtze River (that is extending to both the East-
Northeast and the South-Southwest) and from the existing urban areas
to the South during 2001-2007. The accuracy of the spatial distribu-
tions also showed a relatively higher accuracy in these major urban
expansion directions: East, Southwest, and Southeast in the simulation
experiment with an embedded extended RL model as shown in Fig. 5(b)
during 2001-2007. The directional statistics of the simulation results
indicated that the simulated residential land growth pattern was in
accordance with the actual residential land growth pattern in the study
area.

According to the error distribution map (Fig. 7), 24.1% of the over-
estimated error pixels were located in the south western area of the
study area, while 51.6% of the under-estimated error pixels were lo-
cated in the southern part of the study area. The over-estimated pixels
are in the Hexi area, which is an early-developed new urban sub-CBD
with relatively mature ancillary facilities (such as subway, elementary
and middle schools, parks, etc.), thus showing higher attraction to the
individuals when they make location or relocation decisions. In the
meanwhile, the under-estimated zone is in Dongshan town, where a
newly urban sub-CBD is planned. The local government intends to de-
velop Dongshan town and has proposed preferential policies to the
developers for investing in and developing the area. Thus, some land
pixels had been converted to residential land at the end of simulation
period. However, this area showed less attraction to the individuals due
to lack of ancillary facility and the infrastructure still being under
construction.
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Fig. 6. Spatial agreement map of developed areas for residential land with the
simulation outputs.

4. Discussion

4.1. Including a learning model contributes to both ABMs for residential
land growth simulation and aiding in human-oriented urban planning

In this study, we focused on agent learning modelling and its in-
tegration into the agent decision-making model, a pilot application in
residential land growth simulation in the study area was implemented
for testing our model. Our model supports the initiative in the ODD
protocol (Grimm et al., 2010) and its extension ODD + D protocol
(Miiller et al., 2013) that learning should be included in the design of
agent-based models, which were proposed as standard protocols for
describing agent-based models and has been tested by modellers within
ecology. We argue that including a learning model into individual's
decision-making model is helpful for modelling agent's location deci-
sion-making more comprehensively, for in which how agents learn from
past-experiences (both personal and interpersonal) to develop their
location decisions is taken into account. The implementation of simu-
lation experiments in the study area has provided reliable simulation
results, which supports our argument that to model agent learning
advances the literature (Bennett & Tang, 2006; Gotts & Polhill, 2009; Le

- New Developed Land - Urban Land - Ecological Land [:I Water Area I:l Transform able Land

(@ (b

(c) (d)

(a) Land use map of the study area in 2001; (b) simulation map of model with reinforcement learning model embedded for 2007;
(¢) simulation map of model without learning model for 2007, (d) reference map for 2007.

Fig. 5. Residential land growth simulation of the study area.
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Fig. 7. Error distribution map for residential land growth simulation in the
study area.

et al., 2012; Manson, 2006).

Our procedure will aid in a better understanding of micro-me-
chanism of urban growth and forming human-centered urban plans, in
which individual learning is employed as independent part of agent
cognition about their surroundings (including the environment and
other individuals). The results of applying our procedure can show the
changes in both urban patterns and processes and individuals' location
decisions. Our procedure is applicable to scenario simulations of urban
growth, which could provide references for human-centered urban
planning. It can also be applied to analyzing the potential responses of
urban residents to series of urban land use drafts, as well as the un-
certainties of urban futures. Our procedure can provide decision-makers
a more fundamental understanding of the interaction process between
individuals' location decisions and urban residential land dynamics. As
a result, they can aid to make more proactive urban land use plans.
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4.2. The extended reinforcement learning model can be used for modelling
agent learning in an ABM for geo-simulation

We proposed an extended reinforcement learning model by as-
signing a new computational equation to the payoff function and ex-
tending the to-be-reinforced location strategy set for simulating the
HAs' learning in their location decision-making. The to-be-reinforced
location strategy set is extended to the like-location-strategies and the
neighbors of the land units that are selected by HAs. This conforms to
the urban individual's characteristics and actual learning processes
when they make location decisions, that is not only the personal ex-
perience but also the social interaction and observation impact their
decision, which is appropriate for modelling learning behavior at the
individual level (Bone & Dragicevic, 2010a, 2010b; Tang, 2008).

Moreover, we assign new computational equation to the payoff
function based on the assumption that the expected return by the like-
agents from selecting the neighbors of land unit j and the like-location-
strategies, when it is selected by an HA, will be increased due to the
similarity among neighbouring pixels according to the first law of
geography (Tobler, 1970). This is an extension of the basic idea of re-
inforcement learning model in terms of spatial context, that is suc-
cessful experiences and their spatial neighbors will be put into practice
much more than other experiences. This holds even more so under
conditions of high uncertainty about differences in the outcomes from
choices and the high-level of need satisfaction, which is the current
reality of the individuals' housing decisions in Chinese cities during
China's transition from a government-oriented to a more market-or-
iented economic system.

4.3. The individual-level learning model we proposed is a modest step
towards depicting the systematic human's learning process

As human learning behavior is a complicated process and different
learning processes take place in different situations (Brenner, 2006;
Duffy, 2006), comparison and improvement of agent learning models,
and even integrating multiple learning algorithms would contribute to
the plausibility of an ABM for residential land growth prediction. Our
individual-level learning model covers two fundamental types of
learning mechanism — interpersonal learning and intrapersonal learning

Simulation A
Simulation B

Reference map

Simulation A: model with reinforcement learning model embedded, simulation B: model without learning model embedded

Fig. 8. Directions trends analysis of newly-developed residential pixels distribution in simulation results and reference map.
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in the residents' location decision process. Furthermore, multi-stages
learning process should be further modelled that includes result-or-
iented learning, rule-oriented learning and goal-oriented learning ac-
cording to Piaget's cognition development theory and the opinions
about the agent learning in complex urban system (Filatova et al., 2013;
Le et al., 2012; Scholz, Gallati, Le, & Seidl, 2011; Smajgl, 2007). The
result-oriented learning means that an agent learns by observing the
decision results of one another, which has been focused and modelled in
our study. We assumed that no great changes happened to the house-
hold agent's location decision program considering that the housing and
land use policies remained stable in the study area during the simula-
tion period. The rule-oriented learning over a relatively long period
leads to reframing the agent's behavioral program. The rule-oriented
learning should be modelled further regarding the procedure's general
applicability. Moreover, human agents can fundamentally cope with
critical environmental transitions by changing their goal system and
action programs (Le et al., 2012). This means that the agent's behavior
goal can change over numerous human-environment interactions,
which should be modelled and integrated into the agent decision-
making simulation as goal-oriented learning when needed.

5. Conclusion

This paper outlines a new agent-based procedure with agent
learning modelled and embedded for geo-simulation. We have con-
structed an extended reinforcement learning model to depict both in-
trapersonal and interpersonal past-experiences learning in the in-
dividuals' decision making and decision developing processes. This
extended reinforcement learning model makes a significant attempt at
representing individual-level agent learning explicitly, modelling it in-
dependently and then integrating it into an ABM for geo-simulation.
The application experiment results showed that, it contributed to the
improvement of the model's simulation power and modelling agent's
adaptive decision-making process to a certain extent. The agent-based
procedure with the agent learning model embedded is applicable to
studying the formulation of human-oriented urban land use plans and
testing the responses of individuals to these plans, as well as to scenario
simulations of urban land use change. Similarly, the model is also a
valuable tool for housing developers to explore, allocate, and manage
profitable sites for future development.

The proposed procedure can benefit from further refinements.
Modelling multi-stages agent's learning processes, comparison or com-
bination of learning algorithms, as well as definition of a social network
as a scope for agent's learning and experiences exchange would enhance
the procedure's representational power and the predictive power of
ABMs for geo-simulation. Similarly, the simplified assumption in terms
of homogenous learning ability of household agents would be addressed
by categorizing the household agents to improve the plausibility of the
simulation.
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