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Abstract

Manifolds with Integral and Intermediate Ricci Curvature Bounds

by

Yousef K. Chahine

In this work, we study interactions between the curvature of a Riemannian manifold

and the geometry of its submanifolds. In particular, we consider manifolds with inter-

mediate Ricci curvature bounded below and manifolds with integral curvature bounds.

First, we develop the tools for studying manifolds with intermediate Ricci curvature

bounds. In particular, we prove a comparison theorem for the Hessian of the distance

function to a submanifold based on a lower bound for the k-Ricci curvature.

The main result is a generalization of the inequality of E. Heintze and H. Karcher [18]

for the volume of tubes around minimal submanifolds to an inequality based on integral

bounds for k-Ricci curvature. Even in the case of a pointwise bound, this generalizes

the classical inequality by replacing a sectional curvature bound with a k-Ricci bound.

This theorem is motivated by the estimates of Petersen-Shteingold-Wei for the volume

of tubes around a geodesic [27] and generalizes their result.

Finally, we give several applications of these comparison theorems to the geometry

and topology of submanifolds in spaces with curvature bounded below. The first is a

uniform lower bound on the volume of minimal submanifolds in spaces with integral

curvature bounds. We then bound the relative growth of the fundamental group of a

closed minimal submanifold in terms of the growth of the fundamental group of the

embedding space when the latter has nonnegative intermediate Ricci curvature. We

conclude with an application of the comparison theory for intermediate Ricci curvature

to certain geometric inequalities which are motivated by questions in general relativity.
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Chapter 1

Introduction

Intermediate Ricci curvature and integral curvature bounds

The curvature of a Riemannian manifold (M, g) is the fundamental local invariant of

the metric g which characterizes the geometry of the manifold. In its full form, it is a

smooth 4-tensor on M which assigns to three vector fields X, Y, Z on M the vector field

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

where ∇ is the covariant derivative induced by the metric g and [X, Y ] is the commutator

of X and Y . Since its discovery by Riemann as the coefficient of the second order term

in a series expansion of the metric, the curvature tensor has been the central object of

study in our attempts to understand the relationship between the local geometry of a

space and its global geometry and topology. As it has turned out, the curvature tensor is

a rather subtle object and this relationship is deep and complicated; far from completely

understood.

One of the natural assumptions to make on the curvature with important global con-

sequences is some type of positivity condition. The importance of this type of condition
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Introduction Chapter 1

has been evident since the foundations of the subject in the form of the Gauss-Bonnet

theorem together with the classification of surfaces. Generalizing this type of theorem

to higher dimensions is one of the main problems in Riemannian geometry. However, in

higher dimensions the curvature tensor is a much more complicated object (reducing to a

simple scalar quantity for surfaces) and so the nature of these generalizations is far more

complex. Even the notion of positivity becomes more complicated to formulate.

Early in the study of these spaces it was understood that the curvature tensor could

be completely described by the sectional curvature, a function on the space of 2-planes

Π in the tangent bundle TM defined by

sec(Π) = 〈R(e1, e2)e2, e1〉

where e1, e2 is any orthonormal basis of Π. Assuming a uniform lower bound on the

sectional curvature of the form sec ≥ K for some constant K is one of the strongest

senses in which one can consider the curvature to be bounded below.

Another positivity condition on the curvature tensor comes from its contraction, the

Ricci tensor defined by

Ric(X, Y ) =
n∑
i=1

〈R(ei, X)Y, ei〉

where e1, ..., en is any orthonormal basis of the tangent space. We say that the Ricci

curvature is bounded below if for every unit vector u ∈ TM we have Ric(u, u) ≥ (n −

1)K for some constant K. Aside from being the only non-trivial contraction of the full

curvature tensor, the study of the Ricci curvature is also motivated by the general theory

of relativity as it appears prominently in the Einstein equation relating the stress-energy

of matter to the curvature of spacetime. In this context, positivity of the Ricci curvature

is closely related to positive energy conditions for the stress-energy of matter.

2
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A lower bound on the Ricci curvature is equivalent to a lower bound on the average

of the sectional curvatures taken over all 2-planes containing a preferred vector u, since

Ric(u, u) =
n−1∑
i=1

〈R(ei, u)u, ei〉

where e1, ..., en−1 is any orthonormal basis for the subspace orthogonal to u. This has

led some to consider certain partial averages of the sectional curvatures known as the

intermediate Ricci curvature or k-Ricci curvature. The k-Ricci curvature interpolates

between sectional curvature and Ricci curvature by taking an average of sectional cur-

vatures over a k-dimensional subspace of the tangent space. Specifically, given a unit

vector u tangent to M and k-dimensional subspace V of the tangent space orthogonal to

u the k-Ricci curvature of (u,V) is defined by

Rick(u,V) =
1

k

k∑
i=1

〈R(ei, u)u, ei〉

where e1, ..., ek form an orthonormal basis of V . Notice that Ricn−1 is equivalent to the

Ricci curvature and Ric1 is equivalent to sectional curvature. We say that a manifold has

k-Ricci curvature bounded below by K if Rick(u,V) ≥ K for all unit vectors u ∈ TM

and k-dimensional subspaces V ⊥ u.

Some of the earliest global results using k-Ricci lower bounds as a partial positivity

condition for curvature were obtained by G. Galloway [11] and H. Wu [41], though the

notion had been introduced much earlier by Bishop and Crittenden [4, p. 253]. A

significant literature has since developed which bridges a gap between the global results

based on sectional curvature bounds and those based on Ricci curvature bounds [34, 35,

39, 31, 42, 17, 21].

In a different direction, it has been shown that some global results still hold even

3
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without pointwise curvature bounds, provided the part of the curvature which violates a

pointwise bound is small in an Lp sense [10, 43, 28, 27, 30, 2]. To make this precise, for a

real-valued function f let f+ = max{f, 0} and f− = max{−f, 0} denote the positive and

negative parts of f , respectively. Given a manifold (M, g), let ρk(x) denote the minimum

of Rick(u,V) where u ∈ TxM is a unit tangent vector at x and V is a k-dimensional

subspace orthogonal to u. For a fixed constant K we may then consider the integral

norms

‖(ρk −K)−‖p =

(∫
M

(ρk −K)p− dvolg

)1/p

(1.1)

which measure the amount of k-Ricci curvature below K.

The study of manifolds with bounds on the integral norms (1.1) appears to have orig-

inated in the work of S. Gallot who obtained an isoperimetric inequality on n-manifolds

with bounds on ‖(ρn−1)−‖p for p > n/2 which has a number of well-known consequences

[10]. One of the key tools in this work was an extension of an estimate of E. Heintze

and H. Karcher for the volume of the tube of a given radius around a compact hyper-

surface based on Ricci curvature bounds [18]. The original estimate of Heintze-Karcher

assumed a pointwise (p =∞) bound on the Ricci curvature, which was weakened to an

Lp bound by Gallot. A few years later, D. Yang [43] and then Petersen-Wei [28] obtained

volume estimates for geodesic balls based on integral norms of the Ricci curvature. The

latter established a Laplacian comparison using integral curvature bounds and led to the

generalization of many results based on pointwise curvature bounds to the setting of Lp

curvature bounds. At the same time, volume estimates for tubes around geodesics using

integral bounds on the sectional curvature were also obtained by Petersen-Shteingold-

Wei [27] and used to generalize the Grove-Petersen finiteness theorem to manifolds with

integral curvature bounds.

In this dissertation, we study the geometry of manifolds with pointwise and integral

4
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bounds on the intermediate Ricci curvature. In particular, we study the relationship

between the k-Ricci curvature of a manifold and the geometry and topology of its sub-

manifolds. In Chapter 3, we develop some basic comparison theory for manifolds with

k-Ricci curvature bounds. Our main result is to complete the program of generalizing

the volume estimate of Heintze-Karcher to the setting of integral curvature bounds by

obtaining a volume estimate for the tubes around a submanifold of arbitrary codimen-

sion (Chapter 4). In Chapter 5, we develop several applications of the comparison theory.

Before proceeding to the main work, we give a brief outline of the results.

Volume inequalities based on lower curvature bounds

The geodesic tube of radius r around a closed submanifold Σm of a Riemannian

manifold Mn, denoted T (Σ, r), is the set of all points whose distance to Σ is at most r.

In Chapter 4, we give upper bounds for the volume of T (Σ, r) based on Lp norms of the

negative part of the k-Ricci curvature of M . For p = ∞, we prove that the well-known

estimate of E. Heintze and H. Karcher based on pointwise sectional curvature bounds

requires only k-Ricci bounds (Theorem 3.18). The main result is the case p < ∞,

where we give the first estimates for the volume of tubes around submanifolds of general

codimension using integral curvature bounds.

Theorem 1.1. Let Mn be a complete Riemannian manifold and let Σm ⊂M be a closed

minimal submanifold with 0 < m < n− 1.

Put k = min{m,n−m− 1}. If K ≤ 0 and p > n− k then

vol(T (Σ, r)) ≤
(
f(r)n−m−1 + ‖(ρk −K)−‖βpp f(r)p

)
eκr

2α

(1.2)
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where 0 < α, β < 1 are constants, κ = C3|K|α,

f(r) = C1

(
vol(Sn−m−1) vol(Σ)rn−m

) 1
n−m−1 + C2 ‖(ρk −K)−‖1−β

p r2,

and C1(n,m), C2(n,m, p) and C3(n,m, p) are constants.

Remark 1.2. As mentioned above, estimates when Σ is a point or a hypersurface have

already been obtained in [10, 28] so we do not repeat this case.

Remark 1.3. In the case of a pointwise lower bound Ricm ≥ 0 (i.e. ‖(ρm)−‖p = 0) and

k = m (see also Remark 4.4) the estimate above reduces to

vol(T (Σ, r)) ≤ 1

n−m
vol(Σ) vol(Sn−m−1)rn−m.

In particular, this shows that the Heintze-Karcher estimate [18, Corollary 3.3.1] holds

for tubes around minimal submanifolds assuming only a k-Ricci lower bound in place

of a sectional curvature lower bound. In fact, in Theorem 3.18 below we show that the

Heintze-Karcher estimate holds for tubes around any closed submanifold assuming only

a pointwise k-Ricci lower bound (see also [16] for a related volume comparison using

pointwise k-Ricci bounds).

Loosely speaking, the estimate of Theorem 1.1 shows that it does not matter how the

negative part of the curvature concentrates around the submanifold, a uniform estimate

holds for all manifolds with ‖(ρk −K)−‖p bounded above by a constant as long as p is

chosen sufficiently large. The estimates of Gallot and Petersen-Wei for tubes around

hypersurfaces and geodesic balls require p > n/2, whereas the estimates of Petersen-

Shteingold-Wei for the tubes around a geodesic require p > n − 1. Notice that our

requirement p > n− k is a natural generalization of both of these conditions as n− k is

bounded below by n/2.

6
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The work of Petersen-Shteingold-Wei for the volume of the tube around a geodesic

illustrates the increase in difficulty in the case that the central submanifold has arbitrary

codimension. In particular, estimates were needed for certain quadratic invariants of the

Hessian of the distance function which were completely new to comparison geometry [27,

Lemma 3.1]. Our methods are based on the ideas of [27]; however, in that work a number

of simplifications were employed specific to the 1-dimensional case which make modifi-

cation to general codimension nontrivial. Indeed, if one naively adapts the arguments

of [27] the resulting volume estimates require stronger assumptions on the curvature of

M and on the second fundamental form of Σ than are necessary. As it turns out, an

understanding of the interaction between k-Ricci curvature and volume greatly facilitates

the generalization to tubes around submanifolds of all dimensions.

Thus, before proving Theorem 1.1 we introduce our main ideas by proving a new

Hessian comparison for distance functions based on k-Ricci curvature bounds which is of

independent interest. Specifically, if r(x) = d(x,Σ) is the distance to a closed submanifold

Σ we prove an upper bound for certain partial traces of the Hessian ∇2r given pointwise

lower bounds on Rick. This Hessian comparison unifies and generalizes a number of

distinct Hessian and Laplacian comparisons for the distance function to a point. Recall

that in a space of constant curvature K the eigenvalues of the Hessian of the distance

function to a point are given by csK(r)/ snK(r) where snK and csK are the generalized

trigonometric functions defined in Section 2.1.1.

Theorem 1.4 (Hessian Comparison). Let Σm be an m-dimensional submanifold of a

complete Riemannian manifold Mn and let r(x) = d(x,Σ) be the distance function to Σ.

Let γ be any geodesic segment satisfying r(γ(t)) = t.

If Rick(γ̇, ·) ≥ K then for any orthonormal k-frame {e1(t), ..., ek(t)} ⊂ γ̇(t)⊥ which

7
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is parallel along γ we have

k∑
i=1

∇2r(ei, ei) ≤


k log(csK +h0 snK)′(r) if {e1(0), ..., ek(0)} ⊂ TΣ

k log(snK)′(r) otherwise

where h0 = 1
k

∑k
i=1〈Sγ̇(ei), ei〉 and Sγ̇ is the shape operator of Σ for the normal γ̇(0).

Remark 1.5. Notice that taking Σ to be a point, the usual Hessian and Laplacian com-

parisons follow from this theorem by taking k = 1 and k = n − 1, respectively. When

Σ is a point, the result was proved by Shen [34, Lemma 11] and Li-Wang [23, Theorem

1.2].

Remark 1.6. This result implies the mean curvature comparison of [16] when Σ is totally

geodesic.

In Section 3.3 we give a slightly more general version of this theorem which also

treats the question of rigidity when equality holds. This comparison theorem should

be compared with that of Guijarro-Wilhelm which gives comparison along a family of

k-dimensional subspaces determined by Jacobi fields rather than parallel subspaces [17,

Lemma 2.23]. That comparison is based on Wilking’s transverse Jacobi equation; in

Section 3.2.1 we give another proof of that comparison and explain its connection to the

Hessian comparison above.

Applications to the geometry and topology of submanifolds

In Chapter 5, we develop a number of applications of the comparison theorems above

to the global geometry and topology of manifolds with intermediate Ricci curvature

bounds. The first is a uniform lower bound for the volume of closed minimal submanifolds

in spaces with integral curvature bounds.

8
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Corollary 1.7. Given integers n and m with n ≥ 3 and 0 < m < n−1, and real numbers

K ≤ 0, v0, D > 0 and p > n − k where k = min{m,n − m − 1}, there exist constants

ε(n,m, p,K, v0, D) > 0 and δ(n,m, p,K, v0, D) > 0 such that every closed n-dimensional

Riemannian manifold M satisfying

vol(M) ≥ v0, diam(M) ≤ D, ‖(ρk −K)−‖p ≤ ε

has the property that all closed m-dimensional minimal submanifolds have volume bounded

below by δ.

Remark 1.8. This should be thought of as a generalization of Cheeger’s lemma. For the

case of 1-dimensional minimal submanifolds (closed geodesics) this result was obtained

already in [27, Theorem 1.2]. The proof follows easily from the observation that our

uniform upper bound (1.2) for the tube around a minimal submanifold approaches 0 as

vol(Σ), ‖(ρk −K)−‖p → 0.

Continuing our study of minimal submanifolds, we give a Frankel-type theorem for

the image of the fundamental group of an immersed minimal submanifold Σ induced by

the immersion ι : Σ → M . Recall that Frankel’s theorem states that if Σ is a closed

minimal hypersurface in a complete manifold M with Ric > 0 then the induced map

ι∗ : π1(Σ) → π1(M) is a surjection [9]. Of course, if one reduces the assumption to

Ric ≥ 0 the map need not be surjective (consider e.g. the flat n-torus). G. Galloway

classified the image of the fundamental group ι∗(Σ) in the case that Σ is a minimal

hypersurface and M has nonnegative Ricci curvature and, in particular, showed that

the image is a “relatively large” subgroup of π1(M) (see Theorem 5.5). For minimal

submanifolds of higher codimension the situation is much less rigid; however, adapting

some ideas of J. Milnor and M. Anderson and using the volume comparison theorem for

minimal submanifolds above we show that if the growth of the fundamental group of M

9
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is sufficiently large, then the relative growth of the image ι∗(Σ) is large provided Rick ≥ 0

for suitably chosen k (refer to Section 5.2 for the relevant definitions).

Theorem 1.9. Let Mn be a complete Riemannian manifold with Rick ≥ 0. If the

fundamental group π1(M) has polynomial growth of order p and M has asymptotic volume

growth of order q then for any immersed compact minimal submanifold ι : Σm →M with

m ≥ k and either m = n − 1 or m ≤ n − k − 1 the image of the fundamental group

ι∗(π1(Σ)) ⊂ π1(M) has relative growth of order at least (p+ q)− (n−m).

In Section 5.4 we give another application of the Hessian comparison above to some

geometric inequalities which arise in connection to certain problems in general relativity.

Specifically, we generalize an inequality of G. Qiu and C. Xia relating the volume of a

compact manifold with boundary to the total inverse mean curvature of the boundary

[32, Theorem 1.3]. They originally proved this inequality assuming a lower bound on

sectional curvature and ask whether the inequality holds assuming only a Ricci lower

bound. In Theorem 5.40 we give a broader context for this inequality and show that an

(n− 2)-Ricci lower bound suffices.

Betti number bounds for Intermediate Ricci curvature

In 1981, Gromov showed that there exist universal constants C(n) depending only on

dimension such that all complete Riemannian n-manifolds with sec ≥ 0 have total Betti

number at most C(n) [15]. On the other hand, it is well-known that all complete n-

manifolds with Ric ≥ 0 have b1(M ;R) and bn−1(M ;R) bounded above by n (see Section

5.3). This begs the following very natural question.

Question 1.10. Do there exist constants C(n) depending on n such that all complete

10
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Riemannian n-manifolds with Rick ≥ 0 satisfy

bk(M,R) ≤ C(n)?

In Section 5.3 we give some limited evidence for this conjecture by showing that such

a bound exists for compact manifolds with a simple curvature operator. We say that the

curvature operator of a Riemannian manifold M is simple if its eigenvectors are simple

bivectors, i.e. bivectors of the form u ∧ v where u, v ∈ TM (see Section 5.3 for a more

thorough treatment of this condition).

Theorem 1.11. If (Mn, g) is a compact Riemannian manifold with simple curvature

operator and Rick ≥ 0 then

bk(M,R) ≤
(
n

k

)
and bk = 0 if Rick > 0 at some point.

The proof of this statement is based on a careful treatment of the curvature terms in

the Bochner formula for k-forms and this technique is not expected to work without the

assumption on the curvature operator. On the other hand, the result of Gromov suggests

that another approach may still yield an affirmative answer to Question 1.10.

Notation and conventions

In the following development all manifolds are assumed to be connected unless oth-

erwise noted. We refer to an embedded submanifold simply as a submanifold, explicitly

stating when a submanifold is immersed. As defined in Chapter 2, the normalized mean

curvature vector of a submanifold is denoted η, and more generally greek letters ν, ξ are

used for vectors normal to a submanifold with capital latin letters X, Y , etc. used for

general vector fields.

11
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Permissions and Attributions

The proof in Chapter 4 and elements of Chapter 5 are reproduced from their original

publication in the Journal of Geometric Analysis [7] under the rights retained by the

author.
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Chapter 2

Background

In this chapter, we review some of the basic tools for studying manifolds with curvature

lower bounds. The fundamental observation on which many results are based is that

curvature controls how families of neighboring geodesics spread out. In order to make this

notion precise, we review in the first section some basic tools involving geodesic vector

fields, Jacobi fields, and the Riccati equation. We then review the notion of distance

functions which can be thought of as potentials for an important class of geodesic vector

fields. Finally, we review some notions important in the geometry of submanifolds, in

particular those involving the normal bundle and the normal exponential map.

This chapter should serve as a reference for the material presented later, but also

fixes some notation and terminology. We have attempted to set off all notation and

terminology as a formal definition so the reader familiar with this material may skim this

section and proceed to the next chapter referring back as needed.

2.1 The Riccati equation and the Jacobi equation

Let (M, g) be a complete Riemannian manifold.

13
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Definition 2.1. A geodesic vector field on an open subset Ω ⊂ M is a smooth vector

field V on Ω such that ∇V V = 0.

Observe that the integral curves of a geodesic vector field V are geodesics with the

exception of constant curves where V = 0. This terminology should not be confused with

what is often termed the geodesic vector field, which is a unique global vector field on

the tangent bundle TM . To understand the local behavior of the congruence of geodesics

correspoding to a geodesic vector field V , we study the total covariant derivative ∇V

which we shall denote by HV .

Proposition 2.2 (Riccati equation). The total covariant derivative HV = ∇V of a

geodesic vector field V satisfies

H ′V +H2
V = −RV

where H ′V denotes the covariant derivative ∇VHV , H2
V denotes the composition HV ◦HV ,

and RV = R(·, V )V is the directional curvature operator in the direction V .

Proof. The proof is a simple computation using the identity ∇V V = 0,

(∇VHV )(X) = ∇V (∇XV )−∇∇VXV = ∇V∇XV −∇X∇V V −∇[V,X]V −∇∇XV V

where we recognize the expression on the right as R(V,X)V −H2
V (X).

Note that at this point we do not assume HV is self-adjoint, as is often the case (e.g.

if V is the gradient of a distance function). In particular, we observe that for any smooth

vector field X the tensor ∇X decomposes into symmetric and anti-symmetric parts via

the equation

g(∇X, ·) =
1

2
LXg +

1

2
dθX

14
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where LXg is the Lie derivative of the metric and θX = g(X, ·) is the one-form dual to

X.

Definition 2.3. A vector field X is irrotational if dθX = 0, i.e., if HX = ∇X is sym-

metric.

An irrotational geodesic vector field on a connected open set which vanishes at a point

is identically zero. By the Frobenius theorem a smooth non-vanishing geodesic vector

field V is irrotational if and only if the orthogonal distribution V ⊥ is integrable, i.e. the

vector field V is hypersurface orthogonal. In this case, V is locally the gradient of a

smooth function and the covariant derivative HV is equivalent to the Hessian operator.

The irrotational geodesic vector fields are of particular interest and we will return to this

special case in Section 2.2.

In addition to the total covariant derivative HV , another perspective for studying the

local behavior of geodesics tangent to V is via the vector fields which commute with V ,

that is, the vector fields which are invariant under the flow of V .

Definition 2.4. If V is a geodesic vector field then a vector field J is a V -Jacobi field if

LV J = 0.

Note that the condition defining a V -Jacobi field only requires J to be defined along

an integral curve γ of V . In this case, if we wish to be specific we may say that J is a

V -Jacobi field along γ. The relationship to the Riemannian structure of M is obtained

by computing the covariant derivative of the commuting vector fields along V .

Proposition 2.5 (Jacobi equation). If V is a geodesic vector field and J is a V -Jacobi

field then

J ′′ = −RV (J)

where J ′′ = ∇V∇V J denotes the second covariant derivative along V .

15
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Proof. Since ∇V V = 0 and [J, V ] = 0 implies ∇JV = ∇V J we have

RV (J) = ∇J∇V V −∇V∇JV −∇[J,V ]V = −∇V∇V J.

Although exceedingly simple in their derivation, a great deal of the geometry of

M can be understood by application of the two ordinary differential equations above.

The Riccati equation for HV and the Jacobi equation for V -Jacobi fields J are, in fact,

equivalent. The connection between the two is established by the fact that V -Jacobi

fields are precisely those vector fields which satisfy

HV (J) = J ′. (2.1)

Covariantly differentiating this equation along V we obtain

J ′′ = H ′V (J) +HV (J ′) = H ′V (J) +H2
V (J).

Since any vector u can be locally extended to a V -Jacobi field Ju this shows how the

Riccati equation is obtained from the Jacobi equation and vice versa.

Finally, we note the following relationship between the total covariant derivative and

the volume element spanned by a collection of commuting vector fields which will be of

central importance in the sequel.

Proposition 2.6. Let X be any smooth vector field. Given any linearly independent

vector fields J1, ..., Jk which commute with X we have

log(|J1 ∧ ... ∧ Jk|)′ = trV(HX)

16
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where HX = ∇X, V = span{J1, ..., Jk}, and the derivative is along X.

Remark 2.7. Here, we introduce the notation trV to denote the projected or partial trace

of a linear operator A on a subspace V of an inner product space defined by

trV(A) = tr(A ◦ P )

where P is the orthogonal projection onto V .

Proof. Recall that

|J1 ∧ ... ∧ Jk| =
√

det(Jij)

where Jij is the matrix of inner products Jij = 〈Ji, Jj〉. We may compute the logarithmic

derivative of the determinant using Jacobi’s formula

log(|J1 ∧ ... ∧ Jk|)′ =
1

2
tr(J−1

ij J
′
ij).

Note that at any fixed point x ∈ M , one can apply a constant change of basis to the

vector fields Ji so that Ji
∣∣
x

are orthonormal without changing the logarithmic derivative

above. Thus we may assume the vector fields Ji are orthonormal at the point we take

the derivative to get

log(|J1 ∧ ... ∧ Jk|)′ =
1

2
tr(J ′ij) =

1

2

k∑
i=1

X〈Ji, Ji〉 =
k∑
i=1

〈HX(Ji), Ji〉 = trV(HX).

The proposition above refines the following basic result of Riemannian geometry.

Corollary 2.8. Let (x1, ..., xn) be any local coordinates on a Riemannian manifold M .

17
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The density
√

det g of the volume element in these coordinates satsifies

∂i log(
√

det g) = tr(∇∂i) = div ∂i.

Our main interest, of course, will be in the case when X is a geodesic vector field. In

this case, we can use the Riccati equation to relate the curvature of M to the logarithmic

derivative of the k-dimensional volume element spanned by Jacobi fields via the previous

proposition.

Before moving to geometric applications, we briefly review the comparison theory for

these ordinary differential equations.

2.1.1 Comparison theory for Riccati ODEs

The perspective we take in this dissertation is primarily that obtained through the

analysis of the Riccati differential equation. There is a classical observation which corre-

sponds to the equivalence between the Jacobi and Riccati equations seen above, namely,

if a real-valued function h : (a, b)→ R satisfies the scalar Riccati equation

h′ + h2 + ρ = 0

for some real-valued function ρ then for any anti-derivative H of h the function f = eH

satisfies the scalar Jacobi equation

f ′′ + ρf = 0.

Conversely, if a non-vanishing function f satisfies the latter equation then h = f ′/f

satisfies the scalar Riccati equation.

18
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Although the Riccati equation introduced in the previous section is a matrix equation,

all of the analysis we require can be obtained through the comparison theory for the scalar

Riccati equation. The proof is standard but included for completeness.

Proposition 2.9 (Riccati Comparison Principle). Let f, h : (0, t0]→ R be differentiable

functions on the interval (0, t0] satisfying

f ′ + f 2 ≤ h′ + h2.

If lim inft→0 h is bounded below and lim supt→0[h(t)− f(t)] ≥ 0 then f ≤ h on (0, t0] with

equality at t0 if and only if f ≡ h on (0, t0].

Proof. First, rewrite the inequality in the form

(h− f)′ + (h+ f)(h− f) ≥ 0.

Multiply by an integrating factor µ(t) = eF (t) where F is any anti-derivative of h+f and

integrate from δ > 0 to t ≤ t0 to obtain

h(t)− f(t) ≥ e−F (t)eF (δ)[h(δ)− f(δ)].

By our assumptions F ′ = h + f is bounded below on (0, t0] and hence eF is bounded

above and so taking any sequence δ → 0 such that h(δ) − f(δ) → ε ≥ 0 shows that the

left hand side is nonnegative for all t > 0.

Moreover, if equality holds at t0 then the inequality above shows that h(δ) ≤ f(δ) for

all δ < t0, which together with the previous observation implies f ≡ h on (0, t0].

When applying this principle, we shall frequently make reference to specific model

solutions to dominate the geometric quantity of interest.
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Definition 2.10. For a given real constant K define the generalized sine snK : R → R

as the solution to the equation

f ′′ +Kf = 0

with f(0) = 0 and f ′(0) = 1. Similarly, the generalized cosine csK = sn′K is the solution

with f(0) = 1 and f ′(0) = 0.

Explicitly, we have

snK(t) =



1√
K

sin(
√
Kt) K > 0

t K = 0

1√
−K sinh(

√
−Kt) K < 0

csK(t) =


cos(
√
Kt) K > 0

1 K = 0

cosh(
√
−Kt) K < 0.

Since these form a complete basis of solutions to the scalar Jacobi equation f ′′+Kf = 0

one can see from our discussion above that every solution to the Riccati differential

equation

h′ + h2 +K = 0

on an interval (0, t0) with h(0+) = h0 ∈ [−∞,∞] is of the form

h(t) = log(α csK(t) + β snK(t))′ =


log(snK(t+ δ))′ h2

0 > −K

h0 h2
0 = −K

log(csK(t+ δ))′ h2
0 < −K

where h0 = β/α and the shift δ in the second form of the solution is defined by

csK(δ)/ snK(δ) = h0 or −K snK(δ)/ csK(δ) = h0 depending on whether h2
0 > −K or

h2
0 < −K, respectively.
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2.2 Distance functions, mean curvature, and volume

In this section we review the theory of distance functions on a Riemannian mani-

fold and the connection between the mean curvature and volume of its level sets. This

connection is a geometric realization of the connection between the Riccati and Jacobi

equations described above.

2.2.1 Distance functions and shape operators

We now turn to the special case of irrotational geodesic vector fields. Up to a constant

rescaling, these are completely captured by the following notion of a distance function.

Definition 2.11. A distance function on a Riemannian manifold M is a real-valued

function r : M → R which is smooth on a dense open subset Ω with |∇r| ≡ 1.

Examples are provided by the functions of the form r(x) = d(x,Σ) = infy∈Σ d(x, y)

where Σ is a submanifold of M and d(x, y) denotes the Riemannian distance in M . We

shall call the maximal open subset on which r is differentiable the regular set of r.

We now fix some notation for distance functions. For convenience we denote the

gradient of a distance function ∇r by ∂r. The Hessian operator of r is the (1, 1)-tensor

field H∂r = ∇∂r corresponding to the Hessian ∇2r.

Proposition 2.12. The gradient of a distance function is an irrotational geodesic vector

field on its regular set, and hence satisfies the Riccati equation

H ′∂r +H2
∂r = −R∂r . (2.2)

Proof. For any smooth vector field X on the regular set we have

〈∇X∂r, ∂r〉 = X〈∂r, ∂r〉 − 〈∂r,∇X∂r〉 = −〈∂r,∇X∂r〉
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which shows that the above expression vanishes. Since the Hessian operator is self-adjoint

we have 〈∇∂r∂r, X〉 = 〈∇X∂r, ∂r〉 = 0.

Since a distance function r has a non-vanishing gradient on its regular set Ω, the

level set Σt = r−1(t) ∩ Ω of a distance function restricted to its regular set is a smooth

embedded hypersurface with unit normal ∂r. Moreover, since ∂r is a unit normal along

Σt the Hessian operator H∂r = ∇∂r is related directly to the extrinsic geometry of the

level sets.

Definition 2.13. If Σm is a submanifold of a Riemannian manifold Mn and ξ is a unit

normal vector to Σ at a point x ∈ Σ the shape operator of Σ with respect to ξ is the

linear map Sξ : TxΣ→ TxΣ defined by

Sξ(X) = (∇Xξ)
>

where > denotes the orthogonal projection TxM → TxΣ and ξ is extended arbitrarily to

a unit normal vector field along Σ. The mean curvature of Σ with respect to the unit

normal ξ is given by the trace h(ξ) = tr(Sξ). The (normalized) mean curvature vector of

Σ is the normal vector field η along Σ defined by 〈η, ξ〉 = − tr(Sξ)/m for all unit vectors

ξ ⊥ Σ.

Note that in the case that Σ is a hypersurface with unit normal ξ, the orthogonal

projection in the definition of the shape operator is redundant. As a result, we have

Proposition 2.14. Let r be a distance function with regular set Ω and let Σt = r−1(t)∩Ω

denote the regular part of the level set. The gradient ∂r is a unit normal along Σt and so

the shape operator S∂r : TxΣt → TxΣt is given by

S∂r(X) = H∂r(X).
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Note that since the Hessian operator H∂r vanishes on the orthogonal complement

of TΣt, the trace of the Hessian H∂r is the same as the trace of S∂r which is just the

mean curvature h(∂r) of Σt. We thus have the equivalence of the Laplacian of a distance

function r, the divergence of the geodesic vector field ∂r, and the mean curvature of the

level hypersurfaces

∆r = div(∂r) = tr(H∂r) = tr(S∂r) = h(∂r). (2.3)

In order to make use of the Riccati equation for the Hessian operator of a distance

function, we naturally need initial conditions. In the next section we give the initial

conditions for the case of main interest to us, that corresponding to distance functions

from submanifolds.

2.2.2 Series expansion for the Hessian

In this section we show that the Hessian of the distance function to a submanifold

is the same as that in Euclidean space to leading order in the distance r from the sub-

manifold. This result is well-known but we give a proof for completeness since it is not

readily available in the literature.

Proposition 2.15. Let Σ be a submanifold of a Riemannian manifold M and let r(x) =

d(x,Σ) denote the distance to Σ. Let γ(t) be any geodesic with r(γ(t)) = t.

Identifying the subspaces Tγ(t)M via parallel transport along γ, the Hessian operator

satisfies

H∂r =
1

r
P + Sγ̇ +O(r) (2.4)

where P : Tγ(0)M → Tγ(0)M is the orthogonal projection onto (Tγ(0)Σ)⊥ ∩ γ̇⊥ and Sγ̇ is

the shape operator of Σ with respect to γ̇(0) extended to Tγ(0)M so as to vanish on the
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orthogonal complement of Tγ(0)Σ.

Proof. Since the function 1
2
r2 is smooth on a neighborhood of Σ, the Hessian ∇2(1

2
r2) =

r∇2r+ dr2 is a smooth tensor field in a neighborhood of Σ. Let B(t) : Tγ(t)M → Tγ(t)M

denote the Hessian operator of 1
2
r2 at γ(t) and note that for t > 0 we have B(t) =

tH∂r + Pγ̇ where Pγ̇ is the orthogonal projection onto span{γ̇}. Identifying the tangent

spaces Tγ(t)M via parallel translation along γ, we will now show that

B(t) = Pν + tSγ̇ +O(t2)

where Pν is the orthogonal projection onto the space νγ(0)(Σ) of normal vectors to Σ at

γ(0), from which the result follows.

To compute B(0), first note that since 1
2
r2 identically achieves its minimum on Σ it

follows that B(0) vanishes on Tγ(0)Σ. Moreover, for any vector ξ normal to Σ at γ(0) we

can extend it to a smooth local vector field X such that ∇XX = 0, and hence

〈B(0)ξ, ξ〉 = ξ(X(
1

2
r2))−∇ξX(

1

2
r2) =

1

2
ξ(X(r2)) = 〈ξ, ξ〉.

As this holds for all ξ normal to Σ it follows that B(0) = Pν , as required.

To show that B′(0) = Sγ̇, we use the Riccati equation (2.2) for t > 0 to get

B′(t) = H∂r + tH ′∂r = H∂r − tH2
∂r − tRγ̇ = H∂r [I − tH∂r ] +O(t),

where I is the identity on Tγ(t)M . To first order, tH∂r = Pν − Pγ̇ + tB′(0) +O(t2), so

B′(t) = H∂r(PΣ + Pγ̇)− tH∂rB
′(0) +O(t) = H∂rPΣ + (Pγ̇ − Pν)B′(0) +O(t). (2.5)
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where PΣ is the orthogonal projection onto Tγ(0)Σ. We thus have

B′(t) + (Pν − Pγ̇)B′(0) = H∂rPΣ +O(t).

Letting t → 0 we see that H∂rPΣ extends smoothly to t = 0 and that B′(0) = B′(0)PΣ.

Since B′(0) is self-adjoint, it follows that B′(0) = PΣB
′(0)PΣ and substituting this in

the equation above we see that B′(t) = H∂rPΣ + O(t). It is now easily checked that

H∂rPΣ → Sγ̇ as t→ 0 and hence B′(0) = Sγ̇, completing the proof of (2.4).

2.2.3 Mean curvature and volume

We have now seen that the gradient of a distance function is a geodesic vector field

and since it has unit length, the gradient of a distance function has the special property

that its total covariant derivative also describes the extrinsic geometry of its level sets.

In this section we take the dual point of view and study the vector fields which

commute with the gradient of a distance function. Distance functions are distinguished

in this regard by the fact that the volume element of its level sets has a very simple

relationship to the mean curvature of the level sets.

Proposition 2.16. Let r be a distance function and let (x1, ..., xn−1, r) be any local

coordinates on a subset Ω of its regular set such that (x1, ..., xn−1) restrict to coordinates

on the level hypersurfaces Σt = r−1(t). The density of the volume element J =
√

det g of

Σt in these coordinates and the mean curvature h of Σt define functions on Ω satisfying

∂r log(J ) = h(∂r).

Proof. The coordinate vector fields ∂1, ..., ∂n−1, ∂r are all ∂r-Jacobi fields and since ∂r is
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a unit vector orthogonal to ∂i we have

J = |∂1 ∧ ... ∧ ∂n−1| = |∂1 ∧ ... ∧ ∂n−1 ∧ ∂r|.

Now apply Corollary 2.8 together with Equation (2.3).

Having developed some of the basic properties of general distance functions, we now

develop further the theory of distance functions of the form r(x) = d(x,Σ) where Σ is

a submanifold of M . A useful tool for studying these distance functions is given by the

exponential map of M restricted to the normal bundle of Σ.

2.3 The normal exponential map of a submanifold

Let Σ be an m-dimensional submanifold of a complete Riemannian manifold M . Let

ν = ν(Σ) denote the normal bundle of Σ in M with projection π : ν → Σ. Denote

the fiber over x ∈ Σ by νx and let ν̂ denote the unit normal bundle. In this section,

r(x) = d(x,Σ) shall denote the distance to Σ.

The normal exponential map of Σ is the map expν : ν →M defined as the restriction

of the exponential map of M to ν.

Definition 2.17. The segment domain of Σ is the subset seg(Σ) ⊂ ν defined by

seg(Σ) = {ν ∈ ν : r(expν(ν)) = |ν|}.

Proposition 2.18. The interior of the segment domain, denoted seg0(Σ), is given by

seg0(Σ) = {ν ∈ ν : r(expν((1 + ε)ν)) = (1 + ε)|ν| for some ε > 0}.
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The normal exponential map restricts to a diffeomorphism from seg0(Σ) onto its image

and the complement M \ expν(seg0(Σ)) has measure zero.

The proof in the case that Σ is a point is standard (see e.g. [29]). The submanifold

case can be found in [24].

The importance of this proposition is that it says that we can realize M , up to a set of

measure zero, as the diffeomorphic image of an open neighborhood seg0(Σ) of the normal

bundle ν which is star-shaped with respect to the zero-section of ν. This can be useful,

for example, by giving us a way to put local coordinates on M of the type described in

Proposition 2.2.4 with respect to the distance function r.

However, one can go further. In particular, we would like to use the exponential map

to relate the geometry of M to the geometry of Σ even far away from Σ using the radial

curvature R∂r . In order to do this, we introduce a canonical metric on ν for which Σ is

isometric to the zero section and the projection π is a Riemannian submersion.

2.3.1 The canonical metric on the normal bundle

The Riemannian connection on M induces a connection ∇ν on the normal bundle

defined for all smooth vector fields X tangent to Σ and sections ν of ν by

(∇ν
Xν) = (∇Xν)⊥

where ⊥ denotes orthogonal projection of TxM onto νx. Viewing ν as a smooth manifold,

we can define a metric on ν determined by

|ν̇|2 = |ẋ|2 + |Dν
t ν|2
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where ν(t) is any smooth curve in ν, x(t) = π(ν(t)), and Dν
t is the covariant derivative

along the base curve x(t) induced by the normal connection.

This metric can be understood as follows. For any point x in Σ and any small star-

shaped neighborhood U of x in Σ one can identify all of the fibers νu over u ∈ U with νx

by parallel translation along radial geodesics in Σ using the normal connection. One can

thus obtain a map Φx : π−1(U) → Rn−m by choosing any orthonormal basis of νx. The

metric described above has the property that π : ν → Σ is a Riemannian submersion

and all such maps Φx : ν → Rn−m restict to an isometry on each fiber νu of π and the

fibers of Φx are orthogonal to νx. In particular, since π is a Riemannian submersion one

can apply Fubini’s theorem to integrate over ν by first integrating over each fiber and

then integrating over the base Σ.

Using this metric we can understand the geometry of M in terms of the much simpler

geometry of ν together with the geometric properties of the normal exponential map.

2.3.2 The Jacobian determinant of the normal exponential map

and the polar volume density

In order to relate the volume element in M to that in ν, we can compute the Jacobian

determinant of the exponential map |(d expν)ν |. In fact, the differential of the normal

exponential map is related in a very natural way to the ∂r-Jacobi fields where r is the

distance function to Σ.

Fix a unit-speed geodesic γ(t) = expν(tξ) with γ(0) = x in Σ and γ̇(0) = ξ in ν̂. Let

x1, ..., xm denote normal coordinates for the zero-section σ of ν centered at σ(x) and put

spherical coordinates θ1, ..., θn−m−1, t on the fibers of ν near νx via the map Φx described

in the previous section, with the angular coordinates oriented so that the coordinate

singularities in νx are at vectors orthogonal to ξ. Here, the coordinate t is the radius
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with respect to the metric of M on the fibers of ν. On the interior of the segment domain

seg0(Σ) these can be pushed forward to give local coordinates x1
∗, ..., x

m
∗ , θ

1
∗, ..., θ

n−m−1
∗ , t∗

on a neighborhood of γ in M∩expν(seg0(Σ)) where the t-coordinate becomes the distance

t∗(p) = t(exp−1(p)) = r(p).

Let Y1(t), ..., Ym(t) denote the coordinate vector fields for the coordinates x1
∗, ..., x

m
∗

at γ(t), and let J1(t), ..., Jn−m−1(t) denote the coordinate vector fields corresponding to

the coordinates θ1
∗, ..., θ

n−m−1
∗ at γ(t). Since all of these coordinate vector fields commute

with the coordinate vector field ∂r, they are all ∂r-Jacobi fields. Moreover, they are the

push forward of the corresponding coordinate vector fields on ν via the exponential map

Yi(t) = (d expν)tξ

(
∂

∂xi

)
, Ji(t) = (d expν)tξ

(
∂

∂θi

)
, ∂r = (d expν)

(
∂

∂t

)
.

In particular, we can compute the Jacobian determinant of the exponential map as

|(d expν)tξ| =
|Y1(t) ∧ ... ∧ Ym(t) ∧ J1(t) ∧ ... ∧ Jn−m−1(t) ∧ ∂r|
| ∂
∂x1
∧ ... ∧ ∂

∂xm
∧ ∂

∂θ1
∧ ... ∧ ∂

∂θn−m−1 ∧ ∂t|
.

By our choice of spherical coordinates the denominator is just tn−m−1, and since ∂r is a

unit orthogonal vector to the surfaces of constant r we have

|(d expν)tξ| =
|Y1(t) ∧ ... ∧ Ym(t) ∧ J1(t) ∧ ... ∧ Jn−m−1(t)|

tn−m−1
.

Recalling Proposition 2.16, we are motivated to introduce the following function on ν.

Definition 2.19. The polar volume density of M with respect to Σ is the function

A : [0,∞)× ν̂ → R defined by

A(t, ξ) = |Y1(t) ∧ ... ∧ Ym(t) ∧ J1(t) ∧ ... ∧ Jn−m−1(t)|
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where Yi(t), Ji(t) are as defined as above for tξ in seg0(Σ), with A ≡ 0 otherwise.

The polar volume density is thus related to the Jacobian determinant of the expo-

nential map via

A(t, ξ) = |(d expν)tξ|tn−m−1. (2.6)

In particular, the volume of the tube of radius R can be written

vol(T (Σ, R)) =

∫
{ν∈seg0(Σ):|ν|<R}

|(d expν)ν |d volν =

∫ R

0

∫
ν̂

A(t, ξ)dξdt (2.7)

where dξ = d volν̂ is the volume element of ν̂.

Remark 2.20. A note on the terminology “polar volume density.” Observe that the polar

volume density A(t, ξ) is indeed the density of the volume element of M written in polar

coordinates around Σ where the spherical coordinates are oriented according to ξ so that

all of the factors involving sines of the angles θi become unity. Notice, however, that the

coordinate system which defines the density A depends on the direction of ξ; there is not

one single choice of coordinates for which A(t, ξ) is the density of the volume element of

M at all points expν(tξ). By defining the polar volume density this way, we hide all of

the factors involving the Jacobian determinant for spherical coordinates in the volume

element d volν̂ of the unit normal bundle.

Proposition 2.21. Let Σm be an m-dimensional submanifold of a complete Riemannian

manifold Mn and let r(x) = d(x,Σ) be the distance function to Σ. The polar volume

density of Σ satisfies

lim
t→0

A(t, ξ)

tn−m−1
= 1

and

A′(t, ξ) = h(t, ξ)A(t, ξ) (2.8)
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for tξ in seg0(Σ) where h(t, ξ) = tr(H∂r) evaluated at exp(tξ).

Proof. Since the normal exponential map is an isometry on the zero-section of ν, the Ja-

cobian determinant of the exponential map satisfies |(d expν)0ξ| = 1, from which the first

equation follows immediately. The second equation is a direct application of Proposition

2.16.

2.4 The symplectic vector space of Jacobi fields

In this section we briefly review another useful formalism for treating families of

geodesics. Sometimes it is useful to consider families of geodesics which may intersect,

and so cannot be fully described by a geodesic vector field as above. Although most com-

parison theorems only hold on domains free of such intersections which can be described

by the notions above, it is still useful to have a formalism which can fully describe such

families of geodesics, which we now review. The main references for this section are [14]

and [17].

Definition 2.22. Given a geodesic γ : R → M a Jacobi field along γ is a vector field

J(t) along γ such that J ′′(t) = −Rγ̇(J).

The set of Jacobi fields along γ forms a real 2n-dimensional symplectic vector space

J(γ) with symplectic form ω given by

ω(J1, J2) = 〈J ′1(t), J2(t)〉 − 〈J1(t), J ′2(t)〉

where the value on the right is independent of the choice of t by the Jacobi equation and

the symmetries of the curvature R. The set J⊥(γ) of normal Jacobi fields J(t) along γ

satisfying 〈J(t), γ̇〉 ≡ 0 forms a (2n− 2)-dimensional symplectic subspace of J(γ).

As a first step in relating this to the notions introduced above, we have
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Definition 2.23. A k-parameter family of geodesics is a smooth map Γ : (−ε, ε)k×R→

M such that the curves Γ(s1, ..., sk, t) = γs1,...,sk(t) are geodesics. A k-parameter variation

of γ through geodesics is a k-parameter family Γ such that Γ(0, t) = γ(t).

Proposition 2.24. Given any k-dimensional subspace V of J(γ) there exists a k-parameter

variation of γ through geodesics such that the vector fields

Ji(t) =
∂Γ

∂si
(0, t)

span V.

Proof. Let J1, ..., Jk be a basis of V . Any solution Ji(t) of the Jacobi equation is uniquely

determined by qi = Ji(0) and pi = J ′i(0). First define a smooth map Φ : (−ε, ε)k → M

by

Φ(s1, ..., sk) = expγ(0)(s
iqi)

where we use the Einstein summation convention over the indices i = 1, ..., k. Next, let

σ denote the radial line segment in (−ε, ε)k from (0, ..., 0) to (s1, ..., sk) and define vector

fields u(s1, ..., sk) and vi(s
1, ..., sk) to be the parallel transports of γ̇ and pi along the

curve Φ(σ), respectively.

Finally, we construct the variation

Γ(s1, ..., sk, t) = expΦ(s1,...,sk)(t[u(s1, ..., sk) + sivi(s
1, ..., sk)]).

Corresponding to the irrotational geodesic vector fields (distance functions) are the

Lagrangian subspaces of J(γ) defined by ω ≡ 0. More generally, we will consider the

isotropic subspaces. Given any isotropic subspace V ⊂ J⊥(γ) of dimension dimV = k
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define a family of subspaces Vt ⊂ Tγ(t)M by

Vt = {J(t) : J ∈ V} ⊕ {J ′(t) : J ∈ V , J(t) = 0}. (2.9)

It is easily shown that dimVt = dimV = k and that the sum is indeed direct with the

second summand vanishing for almost all t (see e.g. [14]). We shall call any point γ(t)

at which the second summand does not vanish a focal point of V . Define V⊥t as the

orthogonal complement of Vt in γ̇(t)⊥ so that

γ̇(t)⊥ = Vt ⊕ V⊥t .

Given any interval (0, t0) for which V has no focal points there is a well-defined

tangential Riccati operator S̄t : Vt → Vt associated to V defined by

S̄t(u) = Pt(J
′
u(t))

where Ju ∈ V is the (unique) Jacobi field such that Ju(t) = u and Pt : γ̇(t)⊥ → Vt is the

orthogonal projection (if V is Lagrangian the projection may be omitted). Similarly, we

also have a one parameter family of linear maps At : Vt → V⊥t defined by

At(u) = Qt(J
′
u(t)) (2.10)

where Qt is the orthogonal projection γ̇(t)⊥ → V⊥t . We shall refer to the map At as the

A-tensor of V ; it is also sometimes known as Wilking’s A-tensor.

Furthermore, if Λ is any Lagrangian extension of the isotropic subspace V then on

any interval (0, t0) on which Λ has no focal points there exists a well-defined transversal
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Riccati operator Ŝt : V⊥t → V⊥t associated to the pair (V ,Λ) on (0, t0), defined by

Ŝt(u) = Qt(J
′
u(t))

where Ju(t) ∈ Λ is the unique Jacobi field such that Ju(t) = u.

In the case that dimV = n − 1, i.e. V = Λ is itself a Lagrangian subspace, only the

tangential Riccati operator S̄ is non-trivial, and is given on any interval without focal

points simply by

S(v) = J ′v.

In this case we shall omit the overbar notation and simply refer to S as the Riccati

operator of Λ associated to an interval (0, t0). Note that since the Riccati operator of a

Lagrangian subspace is defined on the parallel subspace γ̇⊥, the covariant derivative of

S along γ is well-defined.

Proposition 2.25. The Riccati operator of a Lagrangian subspace of Jacobi fields satis-

fies the Riccati equation

S ′ + S2 = −Rγ̇ (2.11)

on any interval (0, t0) on which Λ has no focal points.

Proof. Since Λ has no focal points, for each vector v ∈ γ̇(t)⊥ there exists a unique Jacobi

field Jv ∈ Λ such that Jv(t) = v. We thus have

S ′(v) = S ′(Jv) = S(Jv)
′ − S(J ′v) = J ′′v − S2(Jv) = −Rγ̇(v)− S2(v).

We now establish the connection to the previous sections. First, we note that the

existence and uniqueness theorem for ordinary differential equations applied to the Jacobi
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equation implies that the vector space of Jacobi fields along a geodesic on some interval

(0, t0) is naturally isomorphic to the vector space on any larger interval.

Proposition 2.26. Given a geodesic vector field V on an open subset Ω ⊂ M and a

geodesic γ : (a, b) → Ω with γ̇ = V the set of V -Jacobi fields along γ forms an n-

dimensional subspace V ⊂ J(γ). Moreover, V is irrotational along γ if and only if V is

a Lagrangian subspace of J(γ).

Similarly, the space of normal V -Jacobi fields along γ forms an (n− 1)-dimensional

subspace of J⊥(γ) which is Lagrangian if and only if V is irrotational along γ.

Example 2.27. Let γ : [0, t0) → M be a geodesic and let r(x) = d(x, γ(0)) be the

distance function from γ(0) with gradient ∂r. The Lagrangian subspace Λ of J⊥(γ)

consisting of normal Jacobi fields with J(0) = 0 is precisely the vector space of normal

∂r-Jacobi fields along γ.

2.5 Comparison theorems for sectional and Ricci cur-

vature

In this section, we recall some of the basic comparison theorems in Riemannian geom-

etry. First, we recall the Hessian comparison theorem for sectional curvature bounds and

the Laplacian comparison for Ricci curvature bounds, which are comparison theorems for

the Hessian of the distance function to a point. We then discuss the comparison theorem

of Heintze-Karcher which is a generalization of these familiar results to include distance

functions to a submanifold. One of our main goals in Chapter 4 is a generalization of the

latter to the setting of intermediate and integral Ricci curvature bounds.
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2.5.1 Sectional curvature comparison

One of the earliest comparison theorems in Riemannian geometry is a result of Rauch

bounding the length of a ∂r-Jacobi field in terms of a lower sectional curvature bound

where r is the distance function from a point. There is a more modern formulation of

this theorem, known as the Hessian comparison theorem, which is stated explicitly in

terms of the distance function.

Theorem 2.28 (Hessian comparison). Let Mn+m, M̄n be complete Riemannian mani-

folds and let r(x) and r̄(x) denote the distance functions from points p ∈M and p̄ ∈ M̄ ,

respectively. Let γ, γ̄ : [0, t0)→M, M̄ be any geodesics with r(γ(t)) = r̄(γ̄(t)) = t.

If sec(γ̇(t), ·) ≥ sec( ˙̄γ(t), ·) then for all unit vectors u, ū orthogonal to γ̇(t), ˙̄γ(t) we

have

∇2r(u, u) ≤ ∇̄2r̄(ū, ū).

A proof can be found in [29], but we will prove a generalized version of the case

where M̄ is a space of constant curvature in Chapter 3. The dual point of view gives

the following theorem of Rauch bounding the length of ∂r-Jacobi fields for the distance

function to a point.

Theorem 2.29 (Rauch). Let γ : [0, t0] → Mn+m and γ̄ : [0, t0] → M̄n be unit speed

geodesics. Let J and J̄ be normal Jacobi fields along γ and γ̄, respectively, such that

J(0) = J̄(0) = 0

|J ′(0)| = |J̄ ′(0)|

If γ has no conjugate points on (0, t0] and sec(γ̇(t), ·) ≥ sec( ˙̄γ(t), ·) then

|J(t)| ≤ |J̄(t)|.
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We note that both of these comparisons are of local differential quantities, Jacobi fields

and the Hessian of a function. However, one can, in a sense, integrate these inequalities to

obtain global comparison theorems. The primary example of this is Toponogov’s triangle

comparison theorem. This global comparison theorem can be obtained either through a

rather technical argument using the Rauch comparison or via a much simplified proof

using a weak version of the Hessian comparison for modified distance functions (see e.g.

[29]).

2.5.2 Ricci curvature comparison

There is an analagous comparison theorem which comes from averaging the sectional

curvatures over all planes containing the radial vector field ∂r. In this case, one obtains

a comparison for the (n − 1)-dimensional volume element spanned by ∂r-Jacobi fields.

The modern formulation is given in terms of the Laplacian of the distance function. In

contrast to the sectional curvature case, the averaging of the sectional curvatures requires

that the comparison be made against a model space of constant sectional curvature K.

Theorem 2.30 (Laplacian comparison). Let M be a complete Riemannian manifold and

let r(x) = d(x, p) denote the distance from a point p ∈ M . Let γ : (0, t0) → M be any

geodesic with r(γ(t)) = t.

If Ric(γ̇, γ̇) ≥ (n− 1)K for some constant K then

(∆r)(γ(t)) ≤ (n− 1) log(snK)′(t).

In [4], Bishop-Crittenden proved the following related Jacobi field comparison for

∂r-Jacobi fields for the distance function to a point based on a k-Ricci curvature bound.

Theorem 2.31 (Jacobi field comparison I). Let γ : [0, t0]→Mn be a unit speed geodesic
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without conjugate points on [0, t0). Let J1, ..., Jk be normal Jacobi fields along γ with

initial conditions Ji(0) = 0 and 〈J ′i(0), J ′j(0)〉 = δij.

If Rick(γ̇, ·) ≥ K for any constant K, then

|J1(t) ∧ ... ∧ Jk(t)| ≤ snkK(t).

Again, these comparisons are of local differential quantities. Just as the Hessian com-

parison theorem can be integrated to obtain the global Toponogov triangle comparison,

the Laplacian comparison theorem can be integrated to obtain the global Bishop-Gromov

volume comparison (see e.g. [29]).

2.5.3 The Heintze-Karcher comparison theorem

All of the comparison theorems above are comparison theorems for V -Jacobi fields

where the geodesic vector field V is taken to be the gradient of the distance function

to a point. The Heintze-Karcher comparison theorem generalizes these theorems to a

comparison theorem for the distance functions r(x) = d(x,Σ) to any submanifold Σ.

The first part of the Heintze-Karcher comparison was a Jacobi field comparison for

families of ∂r-Jacobi fields for distance functions to a hypersurface Σ based on a sectional

curvature bound.

Theorem 2.32 (Jacobi field comparison II). Let Σn−1 be an immersed hypersurface in

Mn, let ξ ∈ ν̂x(Σ) be a unit normal vector, and put γ(t) = expx(tξ). Let J1, ..., Jk be any

normal Jacobi fields along γ such that J ′i(0) = Sξ(Ji(0)) and |J1(0) ∧ ... ∧ Jk(0)| = 1.

If sec(γ̇, ·) ≥ K and Σ has no focal points on [0, t0) then for 0 ≤ t ≤ t0

|J1(t) ∧ ... ∧ Jk(t)| ≤ (csK(t) + λ snK(t))k
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where λ is the largest eigenvalue of Sξ.

The second part of the Heintze-Karcher comparison can be stated in modern form as

a Laplacian comparison for distance functions from a submanifold of any dimension. A

modern treatment of the following theorem is given by W. Ballmann in [3].

Theorem 2.33 (Laplacian comparison for submanifolds). Let Σm be a submanifold of a

complete Riemannian manifold Mn and let r(x) = d(x,Σ) denote the distance from Σ.

Let γ : (0, t0)→M be any geodesic with r(γ(t)) = t.

If sec(γ̇, ·) ≥ K or m = 0, n− 1 and Ric(γ̇, γ̇) ≥ (n− 1)K then

(∆r)(γ(t)) ≤ (n−m− 1) log(snK)′(t) +m log(csK −〈η, γ̇(0)〉 snK)′(t),

where η is the mean curvature vector of Σ.

Notice that when the dimension m of the submanifold Σ is between 0 < m < n− 1 a

sectional curvature bound is used to obtain the Laplacian comparison. The fundamental

reason for this is the initial conditions for the shape operator along geodesics which leave

Σ orthogonally split into an m-dimensional subspace with finite eigenvalues (principle

curvatures of Σ) and an (n − m − 1)-dimensional subspace where the eigenvalues are

asymptotic to 1/r (recall Proposition 2.15). Thus, averaging the sectional curvatures

over an (n − 1)-dimensional subspace one cannot take advantage of the finite initial

conditions. This observation suggests, however, that a bound on certain partial averages

of sectional curvatures might be sufficient in place of a sectional curvature bound. In

Chapter 3 it is shown that this is indeed the case.

Before proceeding to this generalization, we continue the pattern established in the

previous sections by noting that the local version of the Heintze-Karcher comparison can

be integrated to obtain a global volume comparison [18].
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Theorem 2.34 (Heintze-Karcher volume comparison). Let Mn be a complete Rieman-

nian manifold and let Σm be a closed m-dimensional submanifold. If sec ≥ K, or

m = 0, n− 1 and Ric ≥ (n− 1)K, then

vol(T (Σ, R)) ≤
∫
ν̂

∫ f(R,ξ)

0

(csK(t)− 〈η, ξ〉 snK(t))m snK(t)n−m−1dtdξ.

where f(R, ξ) denotes the minimum of R and the first zero of the integrand.
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Comparison theorems based on

intermediate Ricci curvature

In this chapter, we develop the comparison geometry of k-Ricci curvature bounds. The

motivating problem concerns the volume comparison for tubes around submanifolds given

in Section 3.4. The ideas developed in this Chapter will also be useful in understanding

the proof of the volume estimate for tubes around submanifolds using integral curvature

bounds given in Chapter 4.

In Section 3.1 we prove a Hessian comparison theorem in the context of abstract Jacobi

fields as introduced in Section 2.4. We show how this comparison immediately yields a

generalization of Jacobi field comparisons I and II as stated above (Theorems 2.31 and

2.32). In Section 3.2 we then study in more detail the evolution of a k-dimensional volume

element under the flow of a geodesic congruence and give a unified context for some recent

work of Ketterer-Mondino and Guijarro-Wilhelm on k-Ricci curvature bounds.

In Section 3.3 we combine the abstract Hessian comparison with the Taylor series ex-

pansion of Section 2.2.2 to obtain a Hessian comparison theorem for the distance function

to a submanifold based on k-Ricci curvature bounds. This yields a direct generalization

41



Comparison theorems based on intermediate Ricci curvature Chapter 3

of the Heintze-Karcher volume comparison based on k-Ricci curvature bounds.

3.1 Jacobi field comparison theorems for k-Ricci cur-

vature

In this section, we prove a general Jacobi field comparison theorem for k-dimensional

families of Jacobi fields based on k-Ricci curvature bounds. The theorem is a consequence

of the following comparison theorem for the Riccati operator of a Lagrangian subspace

of Jacobi fields.

Proposition 3.1 (Abstract Hessian comparison). Let γ : [0, t0]→Mn be a geodesic and

let Λ ⊂ J⊥(γ) be a Lagrangian subspace of normal Jacobi fields with no focal points on

(0, t0).

If Wt ⊂ γ̇(t)⊥ is any family of k-dimensional subspaces which are parallel along γ

and Rick(γ̇,Wt) ≥ K then the Riccati operator St of Λ on (0, t0) satisfies

trWt(St) ≤


k log(csK +(w0/k) snK)′(t) if W0 ⊂ {J(0) : J ∈ Λ}

k log(snK)′(t) otherwise

(3.1)

where w0 =
∑k

i=1〈J ′i(0), Ji(0)〉 and Ji(0) is any orthonormal basis of W0 with Ji ∈ Λ. If

equality holds at t then equality holds on (0, t] and

1. K is an eigenvalue of Rγ̇ with Wt contained in the corresponding eigenspace,

2. W⊥t is an invariant subspace of Rγ̇.

Proof. Using the fact that Wt is parallel along γ, we may choose a parallel orthonormal

frame {e1, ..., en−1, γ̇} along γ such that {e1, ..., ek} form a parallel orthonormal basis of
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Wt. The Riccati operator St of Λ satisfies the Riccati equation (2.11), and since Wt is

parallel along γ the projected trace trWt commutes with the covariant derivative along γ

and hence

trWt(St)
′ + trWt(S

2
t ) = −Rick(γ̇,Wt).

Putting sij = 〈Stei, ej〉 and noting that sij = sji since St is self-adjoint we have

trWt(S
2
t ) =

k∑
i=1

n−1∑
j=1

s2
ij ≥

k∑
i,j=1

s2
ij ≥

k∑
i=1

s2
ii ≥

1

k

(
k∑
i=1

sii

)2

=
1

k
trWt(St)

2

where the last inequality follows from the Cauchy-Schwarz inequality. Putting w(t) =

trWt(St)/k we have

w′(t) + w(t)2 ≤ −Rick(γ̇,Wt) ≤ −K. (3.2)

Noting that the model functions on the right hand side of Equation (3.1) satisfy the

scalar Riccati equation, we may apply the comparison theory for this equation developed

in Section 2.1.1 provided we match the initial conditions. If W0 ⊂ {J(0) : J ∈ Λ}

then w(t) → w0/k as t → 0. In any case, since every Jacobi field J has the form

J(t) = J(0) + tJ ′(0) + O(t2) it follows that limt→0 t〈J ′(t), J(t)〉/〈J(t), J(t)〉 ≤ 1 and

hence lim supt→0 tw(t) ≤ 1. The inequality then follows from the comparison theory for

the scalar Riccati equation given in Proposition 2.9.

If equality holds at t1 < t0, then the aforementioned Riccati comparison principle

implies that equality holds on (0, t1]. From the inequalities above, it follows that with

respect to the parallel basis {ei} the matrix representation of St on (0, t1] is block diagonal

of the form w(t)Ik 0

0 ∗


where Ik is the k× k identity matrix. Since this decomposition holds on (0, t1], it follows
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that Rγ̇ is also block diagonal of the same form, replacing w(t) with −w′ −w2 = K.

This Hessian comparison now leads immediately to the following Jacobi field com-

parisons. First, we give the case of Jacobi fields with initial conditions Ji(0) = 0.

Proposition 3.2 (Jacobi field comparison I). Let γ : [0, t0] → M be a geodesic without

conjugate points on [0, t0) and let J1, ..., Jk be Jacobi fields along γ with initial conditions

Ji(0) = 0 and 〈J ′i(0), J ′j(0)〉 = δij.

If Rick(γ̇, ·) ≥ K then for 0 ≤ t ≤ t0,

|J1(t) ∧ ... ∧ Jk(t)|
snkK(t)

≤ 1

and the ratio is non-increasing.

Remark 3.3. Note that if J̄1, .., J̄k are Jacobi fields along a geodesic γ̄ in a space form of

constant sectional curvature K satisfying J̄i(0) = 0 and 〈J̄ ′i(0), J̄ ′j(0)〉 = δij then

|J̄1(t) ∧ ... ∧ J̄k(t)| = snkK(t).

This theorem strengthens Theorem 2.31 by showing that the ratio is non-increasing (this

monotonicity is already well-known in the cases k = 1 and k = n− 1).

Proof. Let Λ be the Lagrangian extension of V consisting of Jacobi fields which vanish

at γ(0) and let St denote the Riccati operator of Λ on (0, t0). Using the abstract Hessian

comparison of Proposition 3.1 we have

log(|J1 ∧ ... ∧ Jk|)′(t) = trVt(St) ≤ log(snkK)′(t).
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Noting that any positive differentiable functions f1, f2 : (0, t0)→ R satisfy

(
f1

f2

)′
=
f1

f2

[log(f1)′ − log(f2)′],

the result follows since |J1 ∧ ... ∧ Jk| ∼ tk|J ′1(0) ∧ ... ∧ J ′k(0)| as t→ 0.

Note that the comparison does not necessarily hold all the way to the first focal point

of the subspace V = span{J1, ..., Jk} but only holds up to the first conjugate point, i.e.

to the first focal point of the Lagrangian extension of V consisting of all normal Jacobi

fields which vanish at γ(0). A similar restriction is required for non-zero initial conditions,

where in place of the notion of conjugate points we use the following definition.

Definition 3.4. Let γ : [0, t0] → M be a geodesic and let V ⊂ J⊥(γ) be an isotropic

subspace of normal Jacobi fields. We shall say that V is supported by a Lagrangian on

[0, t0) if either V is a Lagrangian subspace without focal points on (0, t0) or the A-tensor

of V vanishes at γ(0) and there exists a Lagrangian extension Λ of V without focal points

on (0, t0) such that

lim sup
t→0

λmax(Ŝt) ≤ lim inf
t→0

λmin(S̄t)

where λmax, λmin denote the largest and smallest eigenvalues, respectively.

First we note that an isotropic subspace Vk of normal Jacobi fields along a geodesic

γ consisting of Jacobi fields which vanish at γ(0) is supported by a Lagrangian on [0, t0)

if and only if γ has no conjugate points on [0, t0).

On the other hand, if Vk is an isotropic subspace and γ(0) is not a focal point then V

is supported by a Lagrangian on some interval if and only if there exists a hypersurface

orthogonal to γ(0) whose shape operator restricts to S̄0 on V0 such that the sum of

the largest k principle curvatures is no larger than the trace of S̄0, in which case V is

supported up to the first focal point γ(t0) of the hypersurface.
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Example 3.5. Suppose J1, ..., Jk are normal Jacobi fields along a geodesic γ such that

Ji(0) are linearly independent and J ′i(0) = 0. Let Bε denote a ball in γ̇(0)⊥ of radius

ε. Up to the first focal point γ(t0) of the hypersurface expγ(0)(Bε) in the direction γ̇,

the isotropic subspace V spanned by J1, ..., Jk is supported by the Lagrangian Λ = {J ∈

J⊥(γ) : J ′i(0) = 0} on [0, t0).

Proposition 3.6 (Jacobi field comparison II). Let γ : [0, t0]→ M be a geodesic and let

V be an isotropic k-dimensional subspace of normal Jacobi fields which is supported by a

Lagrangian on [0, t0) and assume that γ(0) is not a focal point of V.

If Rick(γ̇, ·) ≥ K then for any basis J1, ..., Jk of V with 〈Ji(0), Jj(0)〉 = δij and

v0 =
∑k

i=1〈J ′i(0), Ji(0)〉 we have for 0 ≤ t ≤ t0 that

|J1(t) ∧ ... ∧ Jk(t)|
(csK(t) + (v0/k) snK(t))k

≤ 1

and the ratio is non-increasing.

Remark 3.7. Note that if J̄1, ..., J̄k are parallel Jacobi fields along a geodesic in a space

form of constant curvature K with 〈J̄i(0), J̄j(0)〉 = δij and |J̄ ′i(0)| = v0/k then

|J̄1(t) ∧ ... ∧ J̄k(t)| = (csK(t) + (v0/k) snK(t))k.

Proof. Let Λ be a Lagrangian support for V on [0, t0), and let St denote the Riccati

operator of Λ on [0, t0). Using the abstract Hessian comparison of Proposition 3.1 one

has

trVt(St) ≤ k log(csK +(w0/k) snK)′(t).

where w0 = trW0(S0) and W0 is the subspace of γ̇(0)⊥ parallel to Vt. By the definition
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of a Lagrangian support we have

w0 = trW0(S0) ≤ trV0(S0) = v0

and hence

log(|J1 ∧ ... ∧ Jk|)′(t) = trVt(S) ≤ k log(csK +(v0/k) snK)′(t).

Noting that |J1(0) ∧ ... ∧ Jk(0)| = (csK(0) + (v0/k) snK(0))k the result follows as in the

proof of Proposition 3.2.

We conclude this section with a few remarks concerning the notion of a Lagrangian

support. First, we note that the vanishing of the A-tensor required by the definition

of a Lagrangian support is a necessary condition for the Jacobi field comparison above

to hold on any interval [0, ε). For example, one may consider the Jacobi field J(t) =

cos(t)E1(t) + sin(t)E2(t) along any geodesic γ in S4 where E1, E2, E3, γ̇ form a parallel

orthonormal frame along γ. The isotropic subspace V = span{J} admits the Lagrangian

extension

Λ = span{J(t), sin(t)E1 + cos(t)E2, cos(t)E3}

which satisfies λmax(Ŝ0) = 0 = λmin(S̄0).

Second, we note that if the A-tensor of an isotropic subspace Vk ⊂ J⊥(γ) vanishes

at γ(0) then there exists an ε > 0 such that V is supported by a Lagrangian on the

interval [0, ε). Specifically, one can construct a Lagrangian support by adjoining to V the

Jacobi fields J1, ..., Jn−k−1 defined by Ji(0) = ei and J ′i(0) = λei where e1, ..., en−k−1 is

any orthonormal basis of V⊥0 and λ = lim inft→0 λmin(S̄t) (if λ =∞ then V is supported

up to the first conjugate point of γ(0) by the Lagrangian subspace of Jacobi fields which

vanish at γ(0)).
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3.2 The projected Riccati equations

We now consider in more detail the evolution of a k-dimensional volume element

under the flow of a congruence of geodesics. Let γ : [0, t0] → M be a geodesic and let

V ⊂ J⊥(γ) be a k-dimensional isotropic subspace of normal Jacobi fields along γ with no

focal points on (0, t0).

Let Pt, Qt : γ̇(t)⊥ → γ̇(t)⊥ denote the orthogonal projections onto Vt and V⊥t , respec-

tively. Let Λ be any Lagrangian extension of V and decompose the Riccati operator St

with respect to these subspaces as

St = S̄t + Ŝt + At + A∗t

where S̄ = PSP, Ŝ = QSQ,A = QSP, and A∗ = PSQ is the adjoint of A. Note that

S̄, Ŝ, and A are just the tangential/transverse Riccati operators and A-tensor discussed

in Section 2.4, except that their domain of definition is extended to all of γ̇(t)⊥ so their

covariant derivatives along γ are well-defined. Note also that only Ŝ depends on the

extension Λ.

We now derive the evolution equations for the tangential and transverse operators S̄

and Ŝ. To state them, we decompose the curvature Rγ̇ in terms of the same projected

subspaces as

Rγ̇ = R̄ + R̂ + R̃ + R̃∗

where R̄ = PRγ̇P , R̂ = QRγ̇Q, and R̃ = QRγ̇P .

Proposition 3.8 (Projected Riccati Equations). The operators S and Rγ̇ satisfy

S̄ ′ + S̄2 − A∗A− [AS̄ + (AS̄)∗] = −R̄ (3.3)

Ŝ ′ + Ŝ2 + 3AA∗ + [ŜA+ (ŜA)∗] = −R̂ (3.4)
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where the terms in brackets are traceless. The A-tensor satisfies

A′ + 2AS̄ + [A∗A− AA∗] = −R̃. (3.5)

Before proving these identities, we observe that taking the trace yields the following

inequalities for the trace of the Riccati operator along the subspaces Vt and V⊥t .

Proposition 3.9. Let V be a k-dimensional isotropic subspace of normal Jacobi fields

along a geodesic. On any interval for which V has no focal points the tangential Riccati

operator S̄ and A-tensor satisfy

tr(S̄)′ +
1

k
tr(S̄)2 − ‖A‖2 ≤ −k ·Rick(γ̇,Vt) (3.6)

1

2
(‖A‖2)′ − 2‖S̄‖ ‖A‖2 ≤ ‖A‖ ‖R̃‖. (3.7)

Furthermore, for any Lagrangian extension Λ the transverse Riccati operator satisfies

tr(Ŝ)′ +
1

n− k − 1
tr(Ŝ)2 + 3 ‖A‖2 ≤ −(n− k − 1)Ricn−k−1(γ̇,V⊥t ). (3.8)

Remark 3.10. The inequality for tr(S̄) was given by Ketterer-Mondino [21] in the context

of characterizing k-Ricci curvature bounds in terms of optimal transport. The differential

inequality for tr(Ŝ) can also be obtained from Wilking’s transverse Jacobi equation which

was first used to study k-Ricci curvature bounds by Guijarro-Wilhelm [17] (as mentioned

in Section 2.4 the off-diagonal term A is sometimes referred to as Wilking’s A-tensor in

this context).

The projected Riccati equations as formulated above are obtained as a consequence

of a simple but remarkable lemma showing that the covariant derivative of the projection

operators Pt along γ is just the sum of the A-tensor and its adjoint.
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Lemma 3.11. The covariant derivative of the projection Pt along γ at any point which

is not a focal point of V is given by

P ′ = A+ A∗

The complementary projection Q satisfies Q′ = −A− A∗.

Proof. First we compute P ′ restricted to Vt. For any vector v in Vt let Jv be the Jacobi

field in V with Jv(t) = v. Since P (Jv) ≡ Jv and Q(Jv) ≡ 0, we have

P ′(v) = P ′(Jv) = P (Jv)
′ − P (J ′v) = J ′v − P (J ′v) = S(Jv)− PS(Jv) = QS(v).

It follows that P ′ = P ′(P +Q) = QSP + P ′Q = A+ P ′Q.

To compute the second term, first observe that P ′Q = (PQ)′−PQ′ = −PQ′. Noting

that since Q′ is self-adjoint (since Q is self-adjoint) we can compute the adjoint of PQ′

〈PQ′(u), v〉 = 〈u,Q′(Pv)〉 = 〈u,Q′(JPv)〉 = 〈u,Q(JPv)
′ −Q(J ′Pv)〉 = 〈u,−QS(JPv)〉

where JPv is defined as above. We thus have

〈PQ′(u), v〉 = 〈u,−QS(JPv)〉 = 〈u,−QS(Pv)〉 = 〈u,−Av〉

and thus PQ′ = (−A)∗. It follows that P ′Q = A∗ and so P ′ = A+ A∗. The identity for

Q′ follows since (P +Q)′ = 0 implies Q′ = −P ′.

Using this observation, we now derive the projected Riccati equations.

Proof of Proposition 3.8. The proof is now a direct consequence of Lemma 3.11 obtained
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by conjugating the Riccati equation (2.11) by the projection operators

PS ′P + PS2P = −PRγ̇P.

Rewriting the first term as PS ′P = (PSP )′−P ′SP −PSP ′, the second term as PS(P +

Q)SP , and substituting P ′ = A + A∗ yields the first identity. The second is obtained

similarly by conjugating equation (2.11) by Q. To see that the bracketed terms are

traceless observe that

tr(AS̄) = tr(QSPSP ) = tr([PQ]SPS) = 0

and a similar computation shows that the traces of the other bracketed terms also vanish.

Finally, we obtain the inequalities of Proposition 3.9 from the projected Riccati equa-

tions.

Proof of Proposition 3.9. The inequalities for S̄ and Ŝ follow immediately from taking

the trace of the projected Riccati equations, and applying the Cauchy-Schwarz inequality

to the trace of the square of the projected Riccati operators. For example, since S̄ has

at most k non-zero eigenvalues λ1, ..., λk we have

tr(S̄2) =
k∑
i=1

λ2
i ≥

1

k

(
k∑
i=1

λi

)2

=
1

k
tr(S̄)2.

For the A-tensor inequality, we first multiply Equation (3.5) by A∗ and take the adjoint

51



Comparison theorems based on intermediate Ricci curvature Chapter 3

to obtain the identities

A∗A′ + 2A∗AS̄ + A∗[A∗A− AA∗] = −A∗R̃

(A∗)′A+ 2(A∗AS̄)∗ + [A∗A− AA∗]A = −R̃∗A

Summing these equations and taking the trace yields

tr(A∗A)′ + 4 tr(A∗AS̄) = −2 tr(A∗R̃).

Applying the Cauchy-Schwarz inequality to the second term and the right hand side we

obtain the inequality

(‖A‖2)′ − 4‖S̄‖ ‖A‖2 ≤ 2 ‖A‖ ‖R̃‖.

In interpreting the projected Riccati equations of Proposition 3.8, it may be helpful

to consider the case of a single Jacobi field J (i.e. k = 1). In this case, the Cauchy-

Schwarz inequality is not needed on the term A∗AS̄ as used above since the operators A∗A

and S̄ each have at most one non-zero eigenvalue α2 and h, respectively, with common

eigenvector J , and so in place of the inequalities of Proposition 3.9 we obtain a system

of coupled ordinary differential equations:

Corollary 3.12. Let γ be a geodesic and let J be a non-vanishing normal Jacobi field

on an interval (a, b). Putting h = log(|J |)′ and α = |Ĵ ′| where Ĵ = J/|J | we have

h′ + h2 − α2 = sec(γ̇, Ĵ) (3.9)

1

2
(α2)′ + 2hα2 = −αRm(Ĵ , γ̇, γ̇, EĴ ′) (3.10)
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where EĴ ′ is the unit vector orthogonal to Ĵ in the direction of Ĵ ′.

We now discuss the applications of Proposition 3.9.

3.2.1 Tangential Riccati comparison

Observe that the sign of the off-diagonal term ‖A‖2 in the inequality (3.6) for the

tangential Riccati operator is such that the term cannot be omitted. Moreover, the

inequality for the A-tensor given by (3.7) involves the off-diagonal term R̃ of the curvature

operator, which illustrates the fact that one cannot control the logarithmic growth of a

single k-dimensional family of Jacobi fields up to the first focal point purely in terms

of the k-Ricci curvature. This is precisely the reason that the notion of a Lagrangian

support was needed for the Jacobi field comparisons of Section 3.1.

Nonetheless, it was observed by Ketterer and Mondino [21] that the single inequality

(3.6), including the off-diagonal term ‖A‖2, is sufficient to completely characterize a k-

Ricci curvature lower bound (we note however, that the definition of k-Ricci curvature

used in that work is slightly different than the traditional definition that we have used

due to the fact that they do not restrict to normal Jacobi fields).

On the other hand, the sign of the off-diagonal term in the inequality (3.8) for the

transverse Riccati operator is such that the term can be omitted. This was observed by

Guijarro and Wilhelm [17] and immediately yields a direct analogue of Proposition 3.1

where the parallel subspacesWt are replaced by any family of subspacesWt = V⊥t where

Vn−k−1 ⊂ Λ is any subspace of the Lagrangian subspace Λ.

Remarkably, even though the tangential Riccati equation (3.6) does not directly yield

a comparison, by recalling our notion of a Lagrangian support, the transverse inequality

(3.8) yields a comparison for the tangential Riccati operator which also gives a Jacobi

field comparison for Jacobi fields of mixed type.
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Proposition 3.13 (Tangential Riccati comparison). Let γ : [0, t0]→M be a geodesic and

let Vm be an isotropic m-dimensional subspace of normal Jacobi fields which is supported

by a Lagrangian on [0, t0). Put k = dim{J(0) : J ∈ V}.

If Rick(γ̇, ·) ≥ K and Ricm−k(γ̇, ·) ≥ K then for 0 < t < t0

tr(S̄t) ≤ (m− k) log(snK)′(t) + k log(csK +(v0/k) snK)′(t)

where v0 =
∑
〈J ′i(0), Ji(0)〉 and Ji is any basis of V such that J1(0), ..., Jk(0), J ′k+1(0), ..., J ′m(0)

are orthonormal (cf. (2.9)). In particular, given any such basis we have for 0 ≤ t ≤ t0

|J1(t) ∧ ... ∧ Jm(t)|
(csK(t) + (v0/k) snK(t))k snm−kK (t)

≤ 1

and the ratio is non-increasing.

Remark 3.14. If k = 0 or m−k = 0 we omit the corresponding condition on the curvature.

These cases were already proved in Propositions 3.2 and 3.6.

Remark 3.15. If V is Lagrangian the comparison holds up to the first focal point of V ,

otherwise the comparison only holds up to the first focal point of a Lagrangian support

for V .

Proof. Let Λ be a Lagrangian support for V on [0, t0) and let St denote the Riccati

operator of Λ on (0, t0). Let F ⊂ V denote the subspace of Jacobi fields in V which

vanish at γ(0) and define Ht via the orthogonal decomposition Vt = Ft ⊕ Ht. Fix

τ ∈ (0, t0) and let W ⊂ Λ be the subspace defined by

W = {J ∈ Λ : 〈J(τ),Hτ 〉 = 0}.

In particular, note that W contains F and thus W⊥0 ⊂ F⊥0 and so by the definition of a
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Lagrangian support we have

lim sup
t→0

trW⊥t (St) ≤ v0.

Applying the inequality (3.8) for the trace trW⊥t (St) of the transverse Riccati operator of

W ⊂ Λ and using the Riccati comparison principle (2.9) we obtain

trHτ (Sτ ) = trW⊥τ (Sτ ) ≤ k log(csK +(v0/k) snK)′(τ).

On the other hand, it follows immediately from Proposition 3.1 that

trFτ (Sτ ) ≤ (m− k) log(snK)′(τ)

The result follows from the observation that tr(S̄τ ) = trHτ (Sτ ) + trFτ (Sτ ). The second

part of the proposition follows as in the proof of Proposition 3.2 from the observation

that |J1(t) ∧ ... ∧ Jm(t)| ∼ tm−k|J1(0) ∧ ... ∧ Jk(0) ∧ J ′k+1(0) ∧ ... ∧ J ′m(0)| as t→ 0.

Note that in the key step of the proof we apply the transverse Riccati equation (3.8)

not to the subspace V , but to the subspace W which is constructed in such a way as to

contain the Jacobi fields in V which vanish at γ(0).

3.3 Hessian comparison theorem for the distance to

a submanifold

Combining the abstract Hessian comparison given in Proposition 3.1 with the series

expansion for the Hessian of the distance function from a submanifold (Proposition 2.15)

we obtain the following comparison for distance functions to a submanifold.

Theorem 3.16 (Hessian Comparison). Let Σm be an m-dimensional submanifold of a

55



Comparison theorems based on intermediate Ricci curvature Chapter 3

complete Riemannian manifold Mn. Let r(x) = d(x,Σ) denote the distance to Σ and let

H∂r denote the Hessian operator. Let γ : [0, t0]→M be any geodesic with r(γ(t)) = t.

If Wt ⊂ γ̇(t)⊥ is any family of k-dimensional subspaces which are parallel along γ

and Rick(γ̇,Wt) ≥ K then for 0 < t < t0

trWt(H∂r) ≤


k log(csK +(w0/k) snK)′(t) if W0 ⊂ TΣ

k log(snK)′(t) otherwise

(3.11)

where w0 = trW0(Sγ̇(0)).

If equality holds at some t then equality holds on (0, t] and either W0 ⊂ ν(Σ) or W0 is

contained in an eigenspace of the shape operator Sγ̇(0). Moreover, Wt, W⊥t are invariant

subspaces of Rγ̇ with Wt contained in an eigenspace with eigenvalue K.

Proof. The Hessian operator H∂r can be identified with the Riccati operator S for the

set of ∂r-Jacobi fields along γ, which has no focal points on (0, t0) since γ is distance

minimizing on this interval. Now apply Proposition 3.1 together with the series expansion

(2.4).

From the proof of Proposition 3.1 it is easily seen that equality is realized if M is a

space of constant curvature K and Σ is a submanifold such that either W0 ⊂ ν(Σ) or

W0 is contained in an eigenspace of Sγ̇(0).

We will develop a number of applications of this lemma in the following sections;

however, we conclude this section by noting that it also recovers an upper bound on the

focal radius which was recently obtained by Guijarro and Wilhelm in [17].

Corollary 3.17. Let Σ be a submanifold of a complete Riemannian manifold Mn with

dim(Σ) ≥ k. If Rick ≥ K > 0 then the focal radius of Σ is at most π
2
√
K

and this focal

radius is achieved if and only if Σ is totally geodesic.
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Proof. Given x ∈ Σ let ξ ∈ ν̂(Σ) be any unit normal based at x, put γ(t) = expν(tξ). By

replacing ξ with −ξ if necessary, we may assume 〈η, ξ〉 ≥ 0 where η is the mean curvature

vector of Σ. PuttingW0 = TxΣ and applying the lemma, we find that trWt(H∂r) diverges

to −∞ for some t ≤ π/(2
√
K). Moreover, if equality holds for all ξ ∈ ν̂(Σ) then η ≡ 0

and it follows from the equality case of the lemma that Σ is totally umbilic, and hence

totally geodesic.

3.4 Volume comparison theorem for k-Ricci curva-

ture

Our first application of the Hessian comparison above is to prove that the Heintze-

Karcher volume comparison holds using k-Ricci lower bounds.

Theorem 3.18. Let Mn be a complete Riemannian manifold and let Σm be a closed

m-dimensional submanifold. Put k = min{m,n−m− 1}. If Rick ≥ K then

vol(T (Σ, R)) ≤
∫
ν̂

∫ f(R,ξ)

0

(csK(t)− 〈η, ξ〉 snK(t))m snK(t)n−m−1dtdξ.

where f(R, ξ) denotes the minimum of R and the first zero of the integrand.

Proof. Let r denote the distance function to Σ and let γ : [0, t0] → M be a maximally

extended geodesic such that r(γ(t)) = t. Put ξ = γ̇(0).

Let Wt and Vt denote the subspaces of Tγ(t)M parallel along γ to TxΣ and νx ∩ ξ⊥,

respectively. Since Wt, Vt, and ∂r are orthogonal, the trace h(t, ξ) = tr(H∂r) at γ(t) is

given by

h = ϕ+ ψ

where ϕ = trWt(H∂r) and ψ = trVt(H∂r). Using the assumption Rick ≥ K, Theorem 3.16
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gives

h(t, ξ) ≤ m log(csK −〈η, ξ〉 snK)′(t) + (n−m− 1) log(snK)′(t)

for 0 < t < t0. From Equation (2.8) we have for 0 < t < t0 the inequality

log(A)′ ≤ log[(csK −〈η, ξ〉 snK)m snn−m−1
K ]′

where A(t, ξ) is the polar volume density (2.6). Now, since A(t, ξ) ∼ tn−m−1 as t → 0

(Proposition 2.21) we can integrate from 0 to t ≤ t0 to obtain

A(t, ξ) ≤ (csK −〈η, ξ〉 snK)m snn−m−1
K .

The result follows from Equation (2.7).

Notice that we could also have proved this Theorem as an immediate consequence of

Proposition 3.13. Instead, we have chosen to give a proof based directly on the Hessian

comparison of Theorem 3.16 as it facilitates a more natural generalization to the volume

estimates for manifolds with integral curvature bounds developed in Chapter 4.
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Volume estimates using integral

curvature bounds

One of the primary motivations for developing the comparison theory of Chapter 3 is to

develop the background needed to generalize the inequality of E. Heintze and H. Karcher

[18] for the volume of tubes around submanifolds based on sectional curvature bounds

to the setting of integral curvature lower bounds.

As in the introduction, for a given Riemannian manifold (M, g) we define the function

ρk(x) on M to be the minimum of Rick(u,V) where u ∈ TxM is a unit tangent vector

at x and V is a k-dimensional subspace orthogonal to u. For a fixed constant K we may

then consider the norms

‖(ρk −K)−‖p =

(∫
M

(ρk −K)p− dvolg

)1/p

which measure the amount of k-Ricci curvature below K.

For convenience, we now recall the statement of the volume estimate given in Theorem

1.1 including the values of all constants.
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Theorem 4.1. Let Mn be a complete Riemannian manifold and let Σm ⊂M be a closed

minimal submanifold with 0 < m < n− 1.

Put k = min{m,n−m− 1}. If K ≤ 0 and p > n− k then

vol(T (Σ, r)) ≤
(
w(r)n−m−1 + 2p/α ‖(ρk −K)−‖βpp w(r)p

)
eκr

2α

where α = n−k−1
n−k , β = 1

n−m−1
− 1

p
,

w(r) =
(

α
n−m−1

) 1
n−k−1

(
vol(Sn−m−1) vol(Σ)rn−m

) 1
n−m−1 + δ ‖(ρk −K)−‖1−β

p r2,

and κ = (δ|K|)α/(2α) with

δ = 4(n− k − 1) +
4

k

(
2p− 1

p− n+ k

)
.

The proof given in this section is entirely independent of the theory developed in

Chapter 3; however, an understanding of the proof of the pointwise volume comparison

given in Theorem 3.18 will be helpful in understanding the general approach taken in the

proof below. The only necessary prerequisite is a review of the notation and preliminaries

given in Sections 2.2 and 2.3.

4.1 Proof of the volume estimate

Throughout this section we assume 0 < m < n− 1. In the proof of Theorem 3.18 we

assumed a pointwise lower curvature bound and used the projected traces of the Riccati

equation (2.2) to bound the mean curvature h of the distance level sets explicitly and

thus bound the logarithmic growth of the polar volume density A. Unfortunately, in

order to obtain a bound depending only on integrals of the curvature this approach fails
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since one cannot use the comparison theory for the Riccati differential equation.

As in the proof of Theorem 3.18, we fix ξ ∈ ν̂(Σ) and put γ(t) = expν(tξ). Let H∂r

denote the Hessian operator of the distance function to Σ and let A(t, ξ) and h(t, ξ) be

the polar volume density and mean curvature of the distance level sets as in Proposition

2.21. Differentiating Equation (2.8) gives

A′′ = (h′ + h2)A. (4.1)

Taking the trace of the Riccati equation (2.2) gives h′+tr(H2
∂r

) = −Ric(γ̇, γ̇) which leaves

us to control the second order invariant tr(H∂r)
2− tr(H2

∂r
) in (4.1) in terms of curvature.

This motivates us [10, 43] to consider in place of A the function J with A = Jn−1 which

satisfies

J ′′ =
1

n− 1

(
h′ +

h2

n− 1

)
J ≤ −Ric(γ̇, γ̇)

n− 1
J

allowing us to control the second order invariant of H∂r using the Cauchy-Schwarz in-

equality. However, if 0 < m < n − 1 then the initial conditions for the function J are

unusable, namely J(0) = 0 and J ′(0) =∞.

The remarkable observation of [27] was that one can control certain products of

eigenvalues of H∂r directly in terms of integrals of sectional curvature without relying

on the Cauchy-Schwarz inequality, provided one of the eigenvalues vanishes at Σ. For

m = 1, putting A = Jn−2 (so that J ′(0) = 1) and assuming Σ is a geodesic then allows

control of the second order invariant of H∂r . However, generalizing this directly to higher

dimensional submanifolds by setting A = Jn−m−1 then yields an estimate only when Σ

is totally geodesic.

Instead, motivated by the pointwise comparison of the previous section, we decompose

the mean curvature as h = ϕ+ ψ as in the proof of Theorem 3.18, and then decompose
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the polar volume density A into two functions A(t) = J (t)Y(t) where J (t) is defined by

the equation  J
′ = ϕJ ,

J (0) = 1

from which it follows that Y satisfies Y ′ = ψY . Putting J = Jm and Y = Y n−m−1 we

have A = JmY n−m−1 with

J ′′ =
1

m

(
ϕ′ +

ϕ2

m

)
J ≤ −Ricm(γ̇,Wt)J (4.2)

and

Y ′′ =
1

n−m− 1

(
ψ′ +

ψ2

n−m− 1

)
Y ≤ −Ricn−m−1(γ̇,Vt)Y. (4.3)

The initial conditions for J and Y are easily found to be

 J(0) = 1,

J ′(0) = −〈η, ξ〉,

 Y (0) = 0,

Y ′(0) = 1.

The main challenge introduced with this decomposition is that we only want to con-

sider expressions involving curvature multiplied by the full volume density A, rather than

curvature multiplied by just the function J or Y as in (4.2) and (4.3). With this in mind,

rather than integrating the two inequalities directly these considerations motivate the

following lemma.

Lemma 4.2. If 0 < m < n− 1 the functions J and Y defined above satisfy

J ′(t)Y
n−m−1

m (t) ≤
∫ t

0
(ρm)−A1/mds+

1

m2

∫ t

0
(ϕ+ψ+)A1/mds (4.4)
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and

Y ′(t)J
m

n−m−1 (t) ≤ 1 +

∫ t

0
(ρn−m−1)−A

1
n−m−1ds+

1

(n−m− 1)2

∫ t

0
(ϕ+ψ+)A

1
n−m−1ds.

Proof. For the first inequality, for any δ > 0 we have

(J ′Y δ)′ = J ′′Y δ + δY δ−1J ′Y ′.

Using the identities J ′ = (ϕ/m)J and Y ′ = [ψ/(n −m − 1)]Y together with eqs. (4.2)

and (4.3) we get

(J ′Y δ)′ ≤
(
−ρm + δ

ϕψ

m(n−m− 1)

)
JY δ.

Now, if J ′(t) ≤ 0 the inequality (4.4) holds automatically so we only need to show the

inequality for all values of t such that J ′(t) > 0. Moreover, since J ′(0)Y δ(0) = 0 it follows

that all such values of t are contained in an interval [t0, t] such that J ′(t0)Y δ(t0) = 0 and

J ′ ≥ 0 on [t0, t]. On such an interval, J ′ ≥ 0 implies ϕ ≥ 0 and hence ϕψ ≤ ϕ+ψ+ on

[t0, t]. Using also that −ρm ≤ (ρm)− and integrating over the interval [t0, t] gives

J ′(t)Y δ(t) ≤
∫ t

t0

(ρm)−JY
δ + δ

∫ t

t0

ϕ+ψ+

m(n−m− 1)
JY δ.

Since the integrands are nonnegative, we can replace the lower bound t0 with 0 and

preserve the inequality. Finally, taking δ = (n−m− 1)/m gives the result (4.4).

Analogous reasoning leads to the second inequality, except that the initial condition

Y ′(0)Jδ(0) = 1 leads to the extra term on the right hand side of the inequality.

Based on this lemma, one now only needs to control the product ϕ+ψ+ in terms of

curvature. We prove that this is possible provided ϕ+ vanishes at Σ, generalizing the

eigenvalue estimate in [27].
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Lemma 4.3. Let ϕ, ψ, and A be as above. Put k = min{m,n −m − 1}. If ϕ+(t)ψ+(t)

is bounded as t→ 0 then for any p > n− k,

(∫ t

0

(ϕ+ψ+)pAds
) 1

p

≤ 2p− 1

p− (n− k)

(∫ t

0

(ρk)
p
−Ads

) 1
p

.

The proof is given at the end of this section and is a straightforward modification of

the proof in [27]. Note that if the submanifold Σ is minimal then it follows from equation

(2.4) that ϕ+ψ+ is bounded as t→ 0.

Using these inequalities, we now consider the area of the equidistant hypersurfaces

v(t) = vol(Σt) given by the integral

v(t) =

∫
ν̂

Jm(t, ξ)Y n−m−1(t, ξ)dξ. (4.5)

The volume V (r) = vol(T (Σ, r)) can then be written

V (r) =

∫ r

0

v(t)dt.

We wish to differentiate v(t) via the expression (4.5). Note that the integrand is smooth

and nonnegative on the interior of the segment domain seg0(Σ) defined in Section 2.3 and

vanishes on ν \ seg0(Σ), but may be discontinuous on the boundary of seg0(Σ). However,

since seg0(Σ) is star-shaped with respect to the zero section of ν (i.e. ν ∈ seg0(Σ) implies

λν ∈ seg0(Σ) for 0 ≤ λ ≤ 1) it follows that v is an almost everywhere differentiable lower

semi-continuous function (see [2]) and

v′(t) ≤
∫
ν̂

mJm−1Y n−m−1J ′ + (n−m− 1)JmY n−m−2Y ′dξ.

We now substitute the two inequalities of Lemma 4.2 and use two applications of Hölder’s
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inequality. For example, the first term satisfies

m

∫
ν̂
Jm−1Y n−m−1J ′dξ ≤ m

∫
ν̂
A

m−1
m

(∫ t

0
(ρm)−A

1
mds+

1

m2

∫ t

0
(ϕ+ψ+)A

1
mds

)
dξ

≤ mv(t)
m−1
m

[(∫
ν̂

(∫ t

0
(ρm)−A

1
mds

)m
dξ

) 1
m

+
1

m2

(∫
ν̂

(∫ t

0
(ϕ+ψ+)A

1
mds

)m
dξ

) 1
m

]

≤ mv(t)
m−1
m t

m−1
m

[(∫
ν̂

∫ t

0
(ρm)

m
−Adsdξ

) 1
m

+
1

m2

(∫
ν̂

∫ t

0
(ϕ+ψ+)

mAdsdξ
) 1
m

]
.

Handling the second term of the integral in a similar fashion one easily checks that

v′(t) ≤ (n−m− 1) vol(ν̂)
1

n−m−1 v(t)
n−m−2
n−m−1

+
[
(n−m− 1) ‖(ρn−m−1)−‖n−m−1,t +

1
n−m−1 ‖ϕ+ψ+‖n−m−1,t

]
(tv(t))

n−m−2
n−m−1

+
[
m ‖(ρm)−‖m,t +

1
m ‖ϕ+ψ+‖m,t

]
(tv(t))

m−1
m

(4.6)

where ‖·‖p,t is the usual Lp norm on the tube T (Σ, t). In order to make use of the estimate

in Lemma 4.3 it is necessary to raise the exponents in the expression above at the cost

of a volume term via the inequality

‖f‖q,t ≤ ‖f‖p,t V (t)
1
q
− 1
p (4.7)

provided p ≥ q ≥ 1.

Henceforth, set k = min{m,n − m − 1} and note that ρk ≤ ρn−k−1. Using the

inequality (4.7) together with Lemma 4.3, we have for any p > n− k ≥ q

‖ϕ+ψ+‖q,t ≤
2p− 1

p− (n− k)
V (t)

1
q
− 1
p ‖(ρk)−‖p,t .
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Applying these observations to (4.6) we obtain

V ′′(t) ≤ (n−m− 1) vol(ν̂)
1

n−m−1V ′(t)
n−m−2
n−m−1

+ ‖(ρk)−‖p,t
(
C1V (t)

1
m
− 1
p (tV ′(t))

m−1
m + C2V (t)

1
n−m−1

− 1
p (tV ′(t))

n−m−2
n−m−1

)

where

C1 = m+
2p− 1

m(p− n+ k)
,

C2 = (n−m− 1) +
2p− 1

(n−m− 1)(p− n+ k)
.

In order to obtain an inequality which depends more generally on ‖(ρk −K)−‖ we observe

that for K ≤ 0,

(ρk)− ≤ (ρk −K)− + |K|

and hence (ρk)
p
− ≤ 2p−1

(
(ρk −K)p− + |K|p

)
. It then follows that

‖(ρk)−‖p,t ≤ 2
p−1
p

(
‖(ρk −K)−‖p,t + |K|V (t)

1
p

)
.

Substituting this back into the inequality above and estimating 2
p−1
p < 2 we obtain

V ′′(t) ≤ (n−m− 1) vol(ν̂)
1

n−m−1V ′(t)
n−m−2
n−m−1

+ 2 ‖(ρk −K)−‖p
(
C1V (t)

1
m
− 1
p (tV ′(t))

m−1
m + C2V (t)

1
n−m−1

− 1
p (tV ′(t))

n−m−2
n−m−1

)
+ 2|K|

(
C1V (t)

1
m (tV ′(t))

m−1
m + C2V (t)

1
n−m−1 (tV ′(t))

n−m−2
n−m−1

)
.

It remains to use this differential inequality to obtain an estimate for V (t). To simplify
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notation we introduce the constants

a = (n−m− 1)(vol(Sn−m−1) vol(Σ))
1

n−m−1 ,

b = ‖(ρk −K)−‖p ,

c = 2(n− k − 1) +
2

k

(
2p− 1

p− n+ k

)
.

Noting that vol(ν̂) = vol(Sn−m−1) vol(Σ) the previous inequality then implies

V ′′(t) ≤ a(V ′)1− 1
n−m−1 + cb

(
V

1
m
− 1
p (tV ′)1− 1

m + V
1

n−m−1
− 1
p (tV ′)1− 1

n−m−1

)
+ c|K|

(
V (t)

1
m (tV ′(t))1− 1

m + V (t)
1

n−m−1 (tV ′(t))1− 1
n−m−1

)
.

(4.8)

Multiplying through by the nonnegative quantity (V ′)
1

n−k−1 and putting

δ1 =
1

n−m− 1
− 1

n− k − 1
, δ2 =

1

k
− 1

n− k − 1
, δ3 =

1

n− k − 1
− 1

p
,

and α = (n− k − 1)/(n− k) gives

V ′′(t)(V ′)
1

n−k−1 ≤ a(V ′)1−δ1 + cbt
k−1
k V δ2+δ3(V ′)1−δ2 + cb

1+δ3
t
n−k−2
n−k−1 (V 1+δ3)′

+ c|K|t
k−1
k V

1
k (V ′)1−δ2 + αc|K|t

n−k−2
n−k−1 (V 1/α)′

(4.9)

We now integrate both sides from 0 to t as follows. Noting that 0 ≤ δ1, δ2, δ3 < 1 and

using Hölder’s inequality we get the inequalities

∫ t

0

(V ′)1−δ1ds ≤ tδ1
(∫ t

0

V ′ds

)1−δ1

= tδ1V (t)1−δ1
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and

∫ t

0

s
k−1
k V δ2+δ3(V ′)1−δ2ds ≤ t

k−1
k

∫ t

0

V δ2+δ3(V ′)1−δ2ds

≤ t
k−1
k tδ2

(∫ t

0

V (δ2+δ3)/(1−δ2)(V ′)ds

)1−δ2

= t
n−k−2
n−k−1

(
1− δ2

1 + δ3

)1−δ2
V 1+δ3 .

Handling the integral of the fourth term on the right hand side of equation (4.9) in the

same manner, we integrate equation (4.9) from 0 to t to obtain

(V ′)1/α ≤ 1

α

(
atδ1V 1−δ1 + cb

[(
1−δ2
1+δ3

)1−δ2
+ 1

1+δ3

]
t
n−k−2
n−k−1V 1+δ3

)
+
c|K|
α

([(
1− α

k

)1−δ2 + α
]
t
n−k−2
n−k−1V 1/α

)
.

Noting that both quantities in brackets are bounded above by 2 and since 0 < α < 1 the

inequality (x+ y)α ≤ xα + yα for x, y ≥ 0 implies

V ′ ≤ α−α
(
atδ1V 1−δ1 + 2cbt

n−k−2
n−k−1V 1+δ3

)α
+ (2c|K|/α)α t2α−1V

Multiplying by the integrating factor µ(t) = e−κt
2α

where κ = (2c|K|/α)α/(2α) trans-

forms this inequality into

(µV )′ ≤ α−α
(
atδ1V 1−δ1 + 2cbt

n−k−2
n−k−1V 1+δ3

)α
µ

and using the fact that 0 < µ ≤ 1 for t ≥ 0 we can write

(µV )′ ≤ α−α
(
atδ1(µV )1−δ1 + 2cbt

n−k−2
n−k−1 (µV )1+δ3

)α
. (4.10)
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Put r0 = inf{r : bµ(r)V (r) ≥ 1} with r0 = ∞ if bµ(r)V (r) < 1 for all r > 0. Define the

function f : [0,∞)→ R by

f(t) =


µ(t)V (t) if t ≤ r0

max{µ(t)V (t), 1/b} if t > r0

and observe that f is absolutely continuous and satisfies the differential inequality (4.10)

with f in place of µV . We now use this inequality to derive an upper bound for the

function f(t). To integrate this inequality, first notice that the exponents satisfy 1−δ2 <

1 + δ3. On the interval [0, r0], since bf ≤ 1 we thus have

f ′ ≤ α−α
(
atδ1 + 2cb1−δ1−δ3t

n−k−2
n−k−1

)α
f 1− α

n−m−1 , (t ≤ r0).

Putting β = δ1 + δ3 it follows that for 0 ≤ t ≤ r0 there holds

(
f

α
n−m−1

)′
≤ 1

n−m−1
α1−α

(
atδ1 + 2cb1−βt

n−k−2
n−k−1

)α
, (t ≤ r0).

Integrating the right hand side from 0 to r ≤ r0 using Hölder’s inequality we find

∫ r

0

(
atδ1 + 2cb1−βt

n−k−2
n−k−1

)α
dt ≤ r1−α

(∫ r

0

atδ1 + 2cb1−βt
n−k−2
n−k−1dt

)α

and so carrying out the integration yields

f(r) ≤
(

α1−α

n−m−1

)n−m−1
α

(
a

1 + δ1

r
n−m
n−m−1 +

2cb1−β

2− 1
n−k−1

r2

)n−m−1

, (r ≤ r0).

Simplifying the expression, noting that 1/(1 + δ1) ≤ 1, 2 − 1/(n − k − 1) ≥ 1, and
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α1−α/(n−m− 1) ≤ 1 we finally obtain

f(r) ≤ w(r)n−m−1, (r ≤ r0) (4.11)

where

w(r) =
(

α
n−m−1

) 1
n−k−1 vol(ν̂)

1
n−m−1 r

n−m
n−m−1 + 2cb1−βr2.

For t ≥ r0 we may assume b 6= 0 and since bf ≥ 1 we have

f ′ ≤ α−α
(
abδ1+δ3tδ1 + 2cbt

n−k−2
n−k−1

)α
f 1−α

p , (t ≥ r0).

Proceeding as above except that we integrate from r0 to r > r0 it is easy to check that

for r ≥ r0,

f(r) ≤ 1

b

[
1 + b

α
n−m−1w(r)α

]p/α
.

Moreover, for r ≥ r0 we have bw(r)n−m−1 ≥ bw(r0)n−m−1 ≥ bf(r0) = 1 and hence

b−1(1 + b
α

n−m−1w(r)α)p/α ≤ b−1(2b
α

n−m−1w(r)α)p/α = 2p/αbβpw(r)p

and thus for r ≥ r0 we have

f(r) ≤ 2p/αbβpw(r)p, (r ≥ r0). (4.12)

Combining equations (4.11) and (4.12) it then follows that for all r ≥ 0 the function f

satisfies

f(r) ≤ w(r)n−m−1 + 2p/αbβpw(r)p.
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Noting that f(r) ≥ µ(r)V (r) it follows that the volume of the tube T (Σ, r) satisfies

V (r) ≤
(
w(r)n−m−1 + 2p/αbβpw(r)p

)
eκr

2α

This completes the proof of Theorem 1.1 contingent on our proof of Lemma 4.3.

Remark 4.4. As mentioned in the introduction, in the case of a pointwise lower curvature

bound ‖(ρk)−‖p = 0 with k = m, the estimate reduces to

V (r) ≤ 1

n−m
vol(Σ) vol(Sn−m−1)rn−m (4.13)

which is precisely the volume of a tube around a piece of an m-plane in Rn. The loss of

sharpness in the pointwise case when k 6= m comes from the use of Hölder’s inequality

above, and could be removed by setting ‖(ρk)−‖p = 0 in (4.8) earlier in the computation.

Proof of Lemma 4.3. Define

σ = min{ϕ+/m, ψ+/(n−m− 1)}

τ = max{ϕ+/m, ψ+/(n−m− 1)}

and observe that both σ and τ are absolutely continuous and from equation (3.2), using

the fact that 0 ≤ (ρn−k−1)− ≤ (ρk)− they satisfy

σ′ + σ2 ≤ (ρk)−

τ ′ + τ 2 ≤ (ρk)−.
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Multiplying the first equation by (στ)p−1A and integrating, we have

∫ r

0

σ′(στ)p−1Adt+

∫ r

0

σp+1τ p−1A ≤
∫ r

0

(ρk)−(στ)p−1Adt. (4.14)

Integrating the first term by parts we find that

1

p

∫ r

0

(σp)′τ p−1Adt =
1

p
σpτ p−1A

∣∣∣r
0
− p− 1

p

∫ r

0

σpτ p−2τ ′Adt− 1

p

∫ r

0

σpτ p−1hAdt

≥ 0− p− 1

p

∫ r

0

σpτ p−2((ρk)− − τ 2)Adt− n− k − 1

p

∫ r

0

σpτ p−1(σ + τ)Adt

where we have used the fact that στ is bounded as t → 0 and A(0) = 0 for m < n − 1.

The last term uses the observation h = ϕ + ψ ≤ (n − k − 1)(σ + τ). Substituting back

into (4.14), we now have

p− (n− k)

p

∫ r

0

(στ)pAdt+

(
1− n− k − 1

p

)∫ r

0

σp+1τ p−1Adt

≤ p− 1

p

∫ r

0

(ρk)−σ
pτ p−2Adt+

∫ r

0

(ρk)−(στ)p−1Adt.

Assuming p > n − k the first term is positive, the second term is non-negative and can

be dropped, and since 0 ≤ σ ≤ τ we can use σpτ p−2 ≤ (στ)p−1 to obtain

∫ r

0

(στ)pAdt ≤ 2p− 1

p− (n− k)

∫ r

0

(ρk)−(στ)p−1Adt.

Finally, using Hölder’s inequality on the right hand side we have

∫ r

0

(ρk)−(στ)p−1Adt ≤
(∫ r

0

(ρk)
p
−Adt

)1/p(∫ r

0

(στ)pAdt
)1− 1

p

and the lemma follows immediately.
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Applications

5.1 Volume estimates for minimal submanifolds

As discussed in the introduction, Theorem 1.1 implies the following uniform lower

bound for the volume of closed minimal submanifolds in spaces with integral curvature

bounds, which can be thought of as a generalization of Cheeger’s lemma concerning the

length of the shortest closed geodesic. As in Chapter 4, we denote by ρk(x) the minimum

of the k-Ricci curvatures in the tangent space at x.

Corollary 5.1. Given integers n and m with n ≥ 3 and 0 < m < n−1, and real numbers

K ≤ 0, v0, D > 0 and p > n − k where k = min{m,n − m − 1}, there exist constants

ε(n,m, p,K, v0, D) > 0 and δ(n,m, p,K, v0, D) > 0 such that every closed n-dimensional

Riemannian manifold M satisfying

vol(M) ≥ v0, diam(M) ≤ D, ‖(ρk −K)−‖p ≤ ε

has the property that all closed m-dimensional minimal submanifolds have volume bounded

below by δ.
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Proof of Corollary 5.1. Fix n,m, p,K, v0, D as in the statement of the Corollary. By The-

orem 1.1, there exists a function F (a, b, r) with the property that F → 0 as a, b→ 0 such

that for any closed m-dimensional minimal submanifold Σ of a complete n-dimensional

Riemannian manifold M the volume of the tube around Σ satisfies vol(T (Σ, r)) ≤

F (vol(Σ), ‖(ρk −K)−‖p , r).

Given a closed minimal submanifold Σm of an n-dimensional closed Riemannian man-

ifold satisfying vol(M) ≥ v0 and diam(M) ≤ D, since M ⊂ T (Σ, D) we have

v0 ≤ vol(M) = vol(T (Σ, D)) ≤ F (vol(Σ), ‖(ρk −K)−‖p , D).

Since v0 is fixed, for sufficiently small ε there exists a number δ > 0 such that if

‖(ρk −K)−‖p ≤ ε then vol(Σ) ≥ δ.

The case of compact 1-dimensional minimal submanifolds (closed geodesics) was

proved by Petersen-Shteingold-Wei as a fundamental tool in the generalization of the

Grove-Petersen finiteness theorem to the setting of integral curvature bounds.

5.2 The fundamental group of a minimal submani-

fold

In this section, we continue our study of minimal submanifolds by proving a Frankel-

type theorem for the image of the fundamental group of an immersed minimal submani-

fold induced by the immersion for spaces with nonnegative k-Ricci curvature.

Given an immersed submanifold ι : Σm → Mn the immersion naturally induces a

homomorphism of the fundamental group ι∗ : π1(Σ) → π1(M) for which it is natural

to study the image ι∗(π1(Σ)) ⊂ π1(M). For minimal hypersurfaces in spaces of positive
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Ricci curvature, Frankel proved [9]

Theorem 5.2 (Frankel, 1966). Let Mn be a complete Riemannian manifold with positive

Ricci curvature. Let Σn−1 be a compact immersed minimal hypersurface. Then the natural

homomorphism of fundamental groups ι∗ : π1(Σ)→ π1(M) is surjective.

The fundamental observation on which this result is based is that two minimal hyper-

surfaces in a complete manifold of positive Ricci curvature must intersect (a consequence

of the Laplacian comparison theorem).

At the same time, Frankel also proved

Theorem 5.3 (Frankel, 1966). Let Mn be a complete Riemannian manifold with positive

sectional curvature. Let Σm be a compact totally geodesic submanifold with 2m ≥ n. Then

the natural homomorphism of fundamental groups ι∗ : π1(Σ)→ π1(M) is surjective.

This theorem is based on a similar idea, namely that any two totally geodesic sub-

manifolds, whose dimension sum is at least n must intersect. It was observed by K.

Kenmotsu and C.Y. Xia [20] that one can weaken the assumption of positivity of the

sectional curvature to positivity of the k-Ricci curvature at the cost of requiring the

dimension sum to be at least n+ k − 1.

Theorem 5.4 (Kenmotsu-Xia, 1995). Let Mn be a complete Riemannian manifold with

positive k-Ricci curvature. Let Σm be a compact totally geodesic submanifold with 2m ≥

n + k − 1. Then the homomorphism of fundamental groups ι∗ : π1(Σ) → π1(M) is

surjective.

The basic idea of all of these theorems is the same, namely, to use the Laplacian

comparison in strictly positive curvature to show that two submanifolds must intersect.

Naturally, one might consider what can be said about the image of the fundamen-

tal group of a minimal submanifold in the case of nonnegative curvature. Of course,
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in nonnegative curvature two minimal submanifolds need not intersect. For minimal

hypersurfaces, a classification of the image of the fundamental group in manifolds of

nonnegative Ricci curvature was given by Galloway [12].

Theorem 5.5 (Galloway, 1987). Let Mn be a complete Riemannian manifold with non-

negative Ricci curvature. Suppose ι : Σn−1 → M is a minimal immersion of a compact

manifold Σ.

If the homomorphism ι∗ : π1(Σ) → π1(M) is not surjective, then ι(Σ) is a totally

geodesic embedded submanifold and either π1(M)/ι∗(π1(Σ)) = Z/2Z or M (or its double

cover) is isometric to a possibly twisted product of S1 and Σ (or a double covering of Σ).

On the other hand, much of the work on the case of minimal submanifolds of higher

codimension in nonnegative sectional curvature typically introduces additional assump-

tions [13, 31].

In this section, we study what can be said about the image ι∗(π1(Σ)) ⊂ π1(M) for

general minimal submanifolds ι : Σ → M assuming only nonnegative k-Ricci curvature.

Loosely speaking, we show that if the fundamental group of M is sufficiently large, then

the image of the fundamental group of the minimal submanifold is correspondingly large.

As a preliminary, the following examples should serve to illustrate how Frankel’s theorem

fails in nonnegative curvature.

Example 5.6. The n-dimensional torus Tn = Tm × Tn−m has many totally geodesic

submanifolds of the form Tm × {p} for which the fundamental group injects as a free

abelian subgroup Zm of rank m in the fundamental group π1(Tn) = Zn.

Example 5.7. The Riemannian product manifold Mn = Sm × Tn−m has many totally

geodesic submanifolds of the form Sm × {p}, and the image of the fundamental group

ι∗(π1(Sm × {p})) ⊂ π1(M) is trivial.
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These examples show that surjectivity is not expected, and moreover the image can

be trivial. However, one can rule out the latter possibility by assuming the fundamental

group of M is sufficiently large, as in the case of the n-torus of the first example. This

can be made precise in the sense of the asymptotic growth of the fundamental group.

Definition 5.8. Let Γ be a finitely generated group and let {γ1, ..., γr} be a set of

generators. A word in the generators is any ordered sequence γ±1
i1
γ±1
i2
...γ±1

i`
; the length of

a word is the length ` of the sequence. The length |g| of an element g ∈ Γ with respect

to the generating set is the minimal length of all words which represent g. For any s > 0

define

Γ(s) = {g ∈ Γ : |g| ≤ s}.

and define the growth function of Γ with respect to the generating set as the number of

elements in the set

|Γ(s)| = #{g ∈ Γ : |g| ≤ s}.

Definition 5.9. A finitely generated group Γ has polynomial growth of order at most p

if there exists a finite generating set such that |Γ(s)| = O(sp) as s→∞. Similarly, Γ has

at least polynomial growth of order p if lim infs→∞ |Γ(s)|/sp > 0.

A subgroup Γ′ ⊂ Γ has relative growth of order at least p if lim infs→∞ |Γ′(s)|/sp > 0

where Γ′(s) = Γ(s) ∩ Γ′, i.e. it is the set of all elements of Γ′ which can be represented

as a word of length less than s in the chosen generating set of Γ.

It can be readily shown that the order of growth of a group and the relative growth of

its subgroups is independent of the choice of generating set. However, we note that if the

subgroup is itself finitely generated, the relative growth of a subgroup may be different

from the absolute growth with respect to its own generating set.
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Example 5.10. Let Γ denote the Heisenberg group

Γ = 〈a, b, c | [a, b] = c, [a, c] = [b, c] = 1〉.

The cyclic subgroup Γ′ = 〈c〉 has quadratic relative growth in Γ. To see that Γ′ has

at least quadratic relative growth, note that a−nb−nanbn = cn
2
. Multiplying by cm for

0 ≤ m ≤ 2n + 1 shows that |Γ′(4n + 2n + 1)| ≥ (n + 1)2 for all n. On the other hand,

the absolute growth of any infinite cyclic group is linear.

An easy exercise shows that the relative growth of a subgroup is bounded below by

the absolute growth, and in the case of a finitely generated abelian group Γ, the relative

growth of its subgroups is the same as the absolute growth.

The classical theorem of Milnor [25] demonstrated the connection between the growth

of the fundamental group of a complete Riemannian manifold and the asymptotic volume

growth of its universal cover.

Definition 5.11. A complete Riemannian manifold M has asymptotic volume growth

of order at least q if

lim inf
r→∞

vol(B(x, r))/rq > 0

for some (and hence any) point x ∈M .

M. Anderson [1] later refined these methods with further applications of volume com-

parison in the universal cover. Inspired by this work, we obtain the following Frankel-type

theorem for the image of the fundamental group of a compact minimal submanifold under

inclusion.

Theorem 5.12. Let Mn be a complete Riemannian manifold with Rick ≥ 0. If the

fundamental group π1(M) has polynomial growth of order at least p and M has asymptotic
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volume growth of order at least q then for any immersed compact minimal submanifold ι :

Σm →M with m ≥ k and either m = n−1 or m ≤ n−k−1 the image of the fundamental

group ι∗(π1(Σ)) ⊂ π1(M) has relative growth of order at least (p+ q)− (n−m).

Remark 5.13. In the assumption of polynomial growth we implicitly assume that π1(M)

is finitely generated. By Milnor’s theorem, the assumption Ric ≥ 0 then implies the

growth of π1(M) is polynomial of order at most n.

Remark 5.14. Note that if q > n−m then the theorem implies that M has no compact

minimal submanifolds of dimension m. This is also a direct consequence of Theorem

3.18.

Remark 5.15. If M is compact, the splitting theorem of Cheeger and Gromoll implies

that the fundamental group π1(M) has a finite index subgroup Zp for some p ≥ 0. Thus,

in this case the assumption on the growth of π1(M) amounts to an assumption on the

size of this finite index subgroup.

Remark 5.16. In the case of nonnegative Ricci curvature, the theorem states that for any

immersed compact minimal hypersurface ι : Σn−1 → M the image of the fundamental

group has relative growth of order at least p + q − 1 where π1(M) has growth of order

p and M has asymptotic volume growth of order q. This is of course already clear from

the theorem of Galloway above.

Proof. Let ι : Σm →M be a minimal immersion of a compact manifold Σ and fix a point

x0 in ι(Σ). Put Γ = π1(M,x0) and let ΓΣ denote the image of π1(Σ) in π1(M,x0) induced

by the immersion ι : Σ ↪→M .

Fix any generating set {γ1, ..., γr} for Γ and let Γ(s) and ΓΣ(s) be defined as above.

For each s > 0 consider the collection of cosets

Γ̄(s) = {gΓΣ : there exists σ ∈ ΓΣ with |gσ| ≤ s}.
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Observe that

|Γ̄(s)| ≥ |Γ(s)|/|ΓΣ(2s)| (5.1)

since the mapping Γ(s) → Γ̄(s) defined by g 7→ gΓΣ has at most |ΓΣ(2s)| elements in

each fiber, for if g1ΓΣ = g2ΓΣ then g−1
1 g2 ∈ ΓΣ has length less than 2s and hence all

elements in the fiber are of the form g1σ for some σ ∈ ΓΣ(2s).

The quotient M̄ = M̃/ΓΣ gives a sequence of covering spaces

M̃
ϕ−→ M̄

π−→M

such that the covering map π : M̄ → M has the property that ι∗(π1(Σ)) = π∗(π1(M̄));

hence, the immersion ι : Σ→M lifts to an immersion ῑ : Σ→ M̄ whose image Σ̄ is thus

an immersed compact minimal submanifold of M̄ .

Let F be the Dirichlet fundamental domain for the action of π1(M,x0) on the universal

cover M̃ defined by

F =
⋂

g∈π1(M)

{x̃ ∈ M̃ : d(x̃, x̃0) ≤ d(g · x̃, x̃0)}

where x̃0 in the fiber over x0 is chosen so that ϕ(x̃0) = x̄0 ∈ Σ̄. Put ` = maxi d(γi · x̃0, x̃0).

Note that since ϕ is distance non-increasing, for each gΓΣ ∈ Γ̄(s) taking a representative

with |g| < s we have

ϕ (g · (B(x̃0, s) ∩ F )) ⊂ ϕ(B(x̃0, (`+ 1)s)) ⊂ B(x̄0, (`+ 1)s).

Note that ϕ(g1F ) = ϕ(g2F ) if g1ΓΣ = g2ΓΣ and otherwise the two sets are disjoint up to
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a set of measure zero. Since vol(B(x̃0, s) ∩ F ) = vol(B(x0, s)) it follows that

|Γ̄(s)| vol(B(x0, s)) ≤ vol(B(x̄0, (`+ 1)s) ≤ vol(T (Σ̄, (`+ 1)s))

where T (Σ̄, s) denotes the tube around Σ̄ of radius s. Using the volume comparison

theorem (Theorem 3.18) we have

|Γ̄(s)| vol(B(x0, s)) ≤
ωn−m−1

n−m
vol(Σ̄)(`+ 1)n−msn−m

where ωn−m−1 is the volume of the unit (n−m− 1)-sphere. By equation (5.1) we have

|Γ(s)|vol(B(x0, s))

sn−m
≤ ωn−m−1

n−m
vol(Σ̄)(`+ 1)n−m|ΓΣ(2s)|

and thus

|ΓΣ(2s)| ≥ Cs(p+q)−(n−m)

from which the theorem follows immediately.

One can see that the lower bound (p+q)−(n−m) is sharp by considering the examples

Tm × Tn−m−q × Rq and Sm × Tn−m−q × Rq. As a final remark, we emphasize that it is

the relative growth of ι∗(π1(Σ)) in π1(M) that determines the asymptotic volume growth

of the quotient M̃/ι∗(π1(Σ)). A recent study of the relationship between the relative

growth and absolute growth of subgroups by can be found in [8], while earlier work can

be found in the references therein.
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5.3 Betti number bounds for k-Ricci curvature

In manifolds of strictly positive k-Ricci curvature, the following theorem of Z. Shen

showed that under certain conditions the higher Betti numbers vanish. To state the

theorem, we say that a complete open n-manifold M is proper if the Busemann function

at some point p is proper.

Theorem 5.17 (Shen [34]). Let M be a proper open n-manifold with Rick > 0. Then

M has the homotopy type of a CW complex with cells each of dimension at most k − 1.

In particular, Hi(M,R) = 0 for i ≥ k.

We now investigate what might be said about the Betti numbers of a manifold with

nonnegative k-Ricci curvature. Of course, a remarkable theorem of Gromov showed that

for k = 1, there exists a universal constant bound for the total Betti number [15].

Theorem 5.18 (Gromov, 1981). If Mn is a complete Riemannian manifold with sec ≥ 0.

There exists a constant C(n) such that

n∑
i=1

bi(M,R) ≤ C(n).

On the other hand, in the Ricci curvature case k = n − 1 one obtains a finiteness

theorem for bn−1. The result follows from the Bochner technique for compact manifolds

and the noncompact case was proved by Yau [44] (see also [36]).

Theorem 5.19 (Yau, 1976). If M is a complete Riemannian manifold with Ric ≥ 0

then

bn−1(M,R) ≤ n

and bn−1(M,R) = 0 if Ric > 0 at some point.
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Considering the previous result of Shen on noncompact manifolds, this motivates the

following very natural question.

Question 5.20. Does there exist a constant C(n) depending on n such that all complete

Riemannian n-manifolds M with Rick ≥ 0 satisfy

bk(M,R) ≤ C(n)?

From the discussion above this question has an affirmative answer in the cases of

nonnegative sectional and Ricci curvature, corresponding to k = 1 and k = n − 1,

respectively. The proofs in the two cases are very different; the latter uses some analysis

of the Laplacian operator and subharmonic functions on a Riemannian manifold [44],

while the proof of the former uses an ingenious geometric argument of Gromov.

In the compact case, a much simpler approach is available through the Bochner

technique. For nonnegative Ricci curvature, the Weitzenböck formula establishes the

finiteness of b1 and bn−1; however, for nonnegative sectional curvature, in order to make

use of the Weitzenböck formula one has to make the stronger assumption of a nonnegative

curvature operator in place of nonnegative sectional curvature.

In this section we provide some evidence for the conjecture above by showing that it

holds in the compact case under the additional requirement that the eigenvectors of the

curvature operator are simple bivectors.

Definition 5.21. We shall say that the curvature operator R̂ of a Riemannian manifold

is simple if at each point p ∈M it can be diagonalized by a basis of simple bivectors, i.e.

vectors of the form x ∧ y where x, y ∈ TpM .

Example 5.22. A Riemannian manifold (M, g) with nonnegative sectional curvature

has a simple curvature operator only if it has a nonnegative curvature operator.
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Example 5.23. Any Riemannian manifold (Mn, g) which can be locally isometrically

immersed as a hypersurface in a space of constant curvature K has a simple curvature

operator given by the Gauss equation

R̂ = S ∧ S −K(I ∧ I)

where S is the shape operator of the immersed hypersurface, I is the identity map of

TpM , and ∧ denotes the product defined for linear operators A,B : TpM → TpM by

(A ∧B)(x ∧ y) =
1

2
(Ax ∧By +Bx ∧ Ay).

If {e1, ..., en} is an orthonormal eigenbasis for the self-adjoint operator S then ei∧ej form

an orthonormal eigenbasis for the curvature operator.

Example 5.24. If the Weyl curvature W of (M, g) vanishes then the curvature operator

is simple since the curvature operator decomposes as

R̂ = 2R̂ic ∧ I − (2n− 3)s

n(n− 1)
I ∧ I + Ŵ

where s is the scalar curvature and R̂ic and Ŵ are the endomorphisms corresponding to

the Ricci and Weyl tensors, respectively. If Ŵ = 0 then taking an orthonormal eigenbasis

{e1, ..., en} for the self-adjoint operator R̂ic gives a simple eigenbasis ei ∧ ej of R̂. Thus,

all 3-dimensional Riemannian manifolds and locally conformally flat manifolds have a

simple curvature operator.

Example 5.25. Any product of Riemannian manifolds with simple curvature operators

has a simple curvature operator. More generally, a curvature operator is simple if it can
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be written as a sum

R̂ =
∑
i

Bi ∧Bi

where Bi : TpM → TpM are commuting self-adjoint linear operators.

Example 5.26. There are smooth manifolds which do not admit a metric with sim-

ple curvature operator. For example, if a Riemannian manifold has a simple curvature

operator then the Pontryagin forms must vanish [5].

Theorem 5.27. If (Mn, g) is a compact Riemannian manifold with simple curvature

operator and Rick ≥ 0 then all harmonic k-forms and (n − k)-forms are parallel and

vanish if Rick > 0 at some point.

Corollary 5.28. If (Mn, g) is a compact Riemannian manifold with simple curvature

operator and Rick ≥ 0 then

bk(M,R) ≤
(
n

k

)
and bk = 0 if Rick > 0 at some point.

Remark 5.29. For the case of strictly positive curvature one cannot remove the assump-

tion on the curvature operator. For example, CP 2 with the Fubini-Study metric has

Ric2 > 0 but b2(CP 2) = 1.

Remark 5.30. As mentioned above, a sufficient condition which implies the curvature

operator is simple is local conformal flatness. However, a classification of compact locally

conformally flat manifolds with nonnegative Ricci curvature is already known [46]: the

universal cover is either conformally equivalent to Sn or isometric to Rn or R× Sn−1.

Proof. Recall the Weitzenböck formula for k-forms gives

4ω = ∇∗∇ω +
1

4

n∑
i,j=1

[θi · θj, R(ei, ej)ω]
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where e1, ..., en is any orthonormal frame, θ1, ..., θn the dual coframe, and ω is any smooth

k-form. Here, θi · θj denotes Clifford multiplication on the space of forms. A simple

computation [29, p. 220] yields

n∑
i,j=1

g([θi · θj, R(ei, ej)ω], ω) =
∑
α

λα|[Θα, ω]|2

where Θα are the duals of any eigenvector basis for the curvature operator with corre-

sponding eigenvalues λα.

Now, suppose the curvature operator can be diagonalized by simple bivectors ei ∧ ej

in Λ2TpM . In this case, we have

n∑
i,j=1

g([θi · θj, R(ei, ej)ω], ω) =
∑
i<j

sec(ei, ej)|[θi · θj, ω]|2. (5.2)

Writing the k-form ω in terms of the basis θi1 · ... · θik (i1 < i2 < ... < ik) of ΛkT ∗pM we

have for any i < j

[θi · θj, ω] =
∑

i1<...<ik

ωi1i2...ik [θ
i · θj, θi1 · ... · θik ]

=
∑

i1<...<ik

ωi1...ik(1− σii1 ...σiikσji1 ...σjik)θi · θj · θi1 · ... · θik

where σab = 1 if a = b and σab = −1 if a 6= b. This mixed form decomposes into

three components, a (k + 2)-form, a k-form, and a (k − 2)-form. However, by pairing

up the terms σiilσjil for each l = 1, ..., k, we see that both the (k + 2) and (k − 2)

components vanish. Indeed, if neither i nor j is in {i1, ..., ik} then each of these pairs

satisfies σiilσjil = 1 and so all of the coefficients of the (k + 2)-forms vanish. Similarly,

if both i, j are contained in {i1, ..., ik} then since i 6= j precisely two of the pairs satisfy

σiilσjil = −1 and so once again all of these coefficients vanish. We are thus left only with
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the k-form

[θi · θj, ω] =
∑

i∈{i1,...,ik}
j 6∈{i1,...,ik}

±2ωi1...ikθ
j · θi1 · ... · θ̂i... · θik

+
∑

i 6∈{i1,...,ik}
j∈{i1,...,ik}

±2ωi1...ikθ
i · θi1 · ... · θ̂j... · θik

where the sign of the coefficients is not important for us so we have left them indetermi-

nate. Note that the first summation is orthogonal to the second, and hence

∣∣[θi · θj, ω]
∣∣2 =

∑
i∈{i1,...,ik}
j 6∈{i1,...,ik}

4ω2
i1...ik

+
∑

i 6∈{i1,...,ik}
j∈{i1,...,ik}

4ω2
i1...ik

.

Referring back to our equation (5.2) and rearranging terms we can obtain

1

4

∑
i<j

sec(ei, ej)
∣∣[θi · θj, ω]

∣∣2 =
∑

i1<...<ik

ω2
i1...ik

∑
m6∈{i1,...,ik}

k∑
l=1

sec(em, eil). (5.3)

Thus, if Rick ≥ 0 then the last summation is nonnegative, and hence the entire expression

is nonnegative. Similarly, switching the order of the double summation we see that

Ricn−k ≥ 0 also implies this expression is nonnegative. In either case, applying the

Weitzenböck formula we have

0 =

∫
M

g(4ω, ω) =

∫
M

g(∇∗∇ω, ω)dVg +

∫
M

1

4

n∑
i,j=1

g([θi · θj, R(ei, ej)ω], ω)dVg

≥
∫
M

|∇ω|2dVg

≥ 0.

Thus, if either Rick ≥ 0 or Ricn−k ≥ 0 then |∇ω| = 0 and so ω is parallel. It follows that
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if Rick ≥ 0 then all harmonic k-forms and (n− k)-forms are parallel and if Rick > 0 at

some point p then any such form must vanish at p by (5.3).

From the example in Remark 1, we cannot expect this argument to work without the

assumption on the eigenvectors of the curvature operator. However, Gromov’s bound on

the total Betti number using nonnegative sectional curvature gives some suggestion that

another approach might still yield an affirmative answer to Question 5.20.

5.4 Geometric inequalities for manifolds with mean-

convex boundary

As a further application of the Hessian comparison (Theorem 3.16) we give a gener-

alization of another Heintze-Karcher type inequality given by G. Qiu and C. Xia in [32].

The inequality of Qiu-Xia is inspired by similar inequalities of A. Ros and S. Brendle

which have been used to prove Alexandrov’s Theorem in various contexts (see [33, 6, 32]).

Recall that Alexandrov’s theorem states that every compact embedded hypersurface of

constant mean curvature in Euclidean space is a sphere.

These geometric inequalities and their application to generalizations of Alexandrov’s

theorem are motivated by certain problems that arise from considerations in general

relativity. The notions of mass and energy in the context of general relativity are still

not completely understood; specifically, there are difficulties in characterizing the energy

associated to the gravitational field itself. It is now a widely accepted consequence of the

equivalence principle that there is no purely local description of the energy-momentum of

the gravitational field; i.e. an expression for a local energy density as a covariant quantity

constucted from derivatives of the metric tensor. The Hamiltonian formulation of the

Einstein equations introduced by Arnowitt, Deser, and Misner led to an accepted notion
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of the total mass of an isolated system; however, it is still an active area of research to

determine if there is a good “quasi-local” notion of mass which may be used to refine the

expression for the total ADM mass (see e.g. the survey [37]).

In addition to the total mass, several suggestions have been made to introduce a

notion of the center of mass of an isolated system, i.e. a conserved quantity associated

to the boost symmetry of Minkowski space. Motivated by this latter problem, it was

shown by Huisken and Yau that any asymptotically flat 3-manifold with positive ADM

mass can be foliated by constant mean curvature surfaces outside a compact set, which is

unique under certain additional assumptions [19, 45]. The uniqueness of the foliation is

an important step in justifying an interpretation of the constant mean curvature foliation

as being associated to the center of mass of the initial data set represented by the asymp-

totically flat Riemannian 3-manifold. A further justification was provided by Brendle,

who classified the constant mean curvature surfaces in the Schwarzshild manifold [6] (see

Example 5.34).

Theorem 5.31 (Brendle, 2013). Every closed, embedded hypersurface of constant mean

curvature in the Schwarzschild manifold is a sphere of symmetry.

More generally, Brendle classified the constant mean curvature surfaces in a broad

class of warped product manifolds which also includes the de Sitter-Schwarzschild and

Reissner-Nordstrom manifolds (initial data sets for the associated black hole spacetimes).

The proof of these generalized versions of Alexandrov’s theorem are based on a

Heintze-Karcher type inequality which was first used by Montiel and Ros [26] to greatly

simplify Alexandrov’s original proof.

Theorem 5.32 (Heintze-Karcher inequality). Let (Mn, g) be a compact Riemannian

manifold with mean-convex boundary Σ, i.e. the mean curvature vector η is an inward-
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pointing normal. If Ric ≥ 0 then

∫
Σ

1

|η|
≥ n vol(M).

This inequality is a direct consequence of the Heintze-Karcher volume comparison

applied to the distance function from the boundary (Theorem 3.18), and together with

the Minkowski formula for compact hypersurfaces Σ in Euclidean space

vol(Σ) = −
∫

Σ

〈η(x), x〉dx

yields a simple proof of Alexandrov’s theorem for constant mean curvatures hypersurfaces

in Euclidean space [33].

Brendle (together with an observation of Eichmair [6, p. 257]) generalized the Heintze-

Karcher inequality by replacing the nonnegative Ricci curvature condition with the notion

of a substatic potential.

Definition 5.33. Given a Riemannian manifold (M, g), a positive function u ∈ C∞(M)

is a static potential on M if

∆u

u
g − ∇

2u

u
+Ric = 0.

A positive function u is a substatic potential if

∆u

u
g − ∇

2u

u
+Ric ≥ 0.

The notion of a static potential is very natural in the context of general relativity.

Given a Riemannian 3-manifold (M, g), one can naturally attempt to construct a static

spacetime (i.e. Lorentzian 4-manifold with hypersurface orthogonal timelike Killing field)
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of the form M ×u R with metric

g − u2dt2

where u is any positive smooth function on M . The Einstein equations for the spacetime

M ×u R with a general stress-energy tensor T = T̄ + ρu2dt2 where T̄ is a symmetric

2-tensor on M representing the stress-tensor of the static frame can then be written

∆u

u
g − ∇

2u

u
+

(
Ric− 1

2
s

)
g = T̄ (5.4)

1

2
s = ρ (5.5)

where Ric and s are the Ricci and scalar curvatures of M , respectively. In other words,

given a Riemannian 3-manifold (M, g) and a positive function u ∈ C∞(M) the Lorentzian

warped product M ×u R satisfies the Einstein equations for the stress energy tensor

T = −1

2
s
(
g − u2dt2

)
+

(
∆u

u

)
g − ∇

2u

u
+Ric. (5.6)

Thus, the function u is static precisely if the stress-energy tensor above is either vacuum

(T = 0) or a perfect fluid of the form T = −ρ(g − u2dt2). Moreover, the notion of a

substatic potential corresponds directly to common energy conditions in general relativ-

ity. Specifically, the null energy condition holds if and only if u is substatic, the weak

energy condition holds if and only if u is substatic and the scalar curvature s is nonnega-

tive, and the strong energy condition holds if and only if u is substatic and subharmonic

(∆u ≥ 0). The definitions of these energy conditions can be found in any standard refer-

ence on general relativity (e.g. [38]) and the proof of these statements is a straightforward

consequence of the expression (5.6) for the stress-energy tensor.

Example 5.34 (Schwarzschild manifold). The Schwarzschild manifold is defined by
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Mn = Sn−1 × (2m,∞) with metric

g =
1

1− 2m/rn−2
dr2 + r2gSn−1 .

The function u =
√

1− 2m/rn−2 is a static potential on M . The Lorentzian warped

product M ×u R is the well-known exterior Schwarzschild black hole spacetime.

Example 5.35. If M has constant sectional curvature K then for any fixed point p ∈M

putting r(x) = d(x, p) the function csK(r) is a substatic potential on M \ cut{p}.

Example 5.36. If M is any Riemannian manifold with Ric ≥ 0 then the constant

function u ≡ 1 is a substatic potential on M .

With this background, we now state Brendle’s inequality.

Theorem 5.37 (Brendle, 2013). Let Mn be a compact Riemannian manifold with con-

nected mean-convex boundary Σ and substatic potential u ∈ C∞(M). Then

∫
Σ

u

|η|
dvolΣ ≥ n

∫
M

u dvolM

with equality only if Σ is umbilic.

A more general version with multiple boundary components was proved by J. Li and

C. Xia [22]. In Example 5.36 we observed that for any manifold M with Ric ≥ 0 the

constant function u ≡ 1 is a substatic potential, which recovers the previous Heintze-

Karcher inequality.

In light of the fact that every manifold M with Ric ≥ 0 admits a Brendle-type

inequality, one may ask if such an inequality holds for manifolds with other curvature

bounds. In [32], G. Qiu and C. Xia obtained a version of Brendle’s inequality which holds

for manifolds with a sectional curvature bound sec ≥ −1.
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Theorem 5.38 (Qiu-Xia, 2014). Let (Mn, g) be a compact Riemannian manifold with

mean-convex boundary Σ and sec ≥ −1. If M is star-shaped with respect to p ∈ M and

u(x) = cosh(r(x)) where r(x) = d(x, p) then

∫
Σ

u

|η|
dvolΣ ≥

∫
M

(∆u)dvolM . (5.7)

Equality holds only if M is a geodesic ball in a space form of constant sectional curvature

−1.

In that paper, the authors ask if the inequality holds assuming only a Ricci lower

bound Ric ≥ −(n− 1)g. In this section, we show that the inequality holds under a lower

bound for the (n− 2)-Ricci curvature.

Before proving this, we remark that this inequality, despite its apparent similarity

with Brendle’s inequality, is of quite a different nature. In particular, no claim is made

that the function u is a substatic potential, in fact, in the course of the proof one finds

that

∆u

u
g − ∇

2u

u
− (n− 1)g ≤ 0 (5.8)

which appears to be in the opposite direction from the substatic potentials used in Bren-

dle’s inequality. At the same time, the resulting inequality (5.7) is weaker since it follows

from (5.8) that ∆u ≤ nu.

To better understand this situation, we will show that the inequality of Qiu-Xia

can be understood more generally in terms of static solutions to the Einstein equations

with cosmological constant. To emphasize this distinction we introduce the following

definition.

Definition 5.39. Given a Riemannian manifold (M, g) we shall call a positive continuous

function u on M which is twice differentiable almost everywhere a static Einstein potential
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with Einstein constant λ if

∆u

u
g − ∇

2u

u
+ λg = 0.

for some constant λ. We say that u is a substatic Einstein potential if

1

λ

(
∆u

u
g − ∇

2u

u

)
+ g ≥ 0.

Note that if (M, g) is an Einstein manifold with Ric = λg then a static Einstein

potential is equivalent to a static potential. Note also that when λ < 0, the substatic

condition implies an upper bound on the tensor in brackets as in (5.8). These notions

can again be interpreted in terms of the Lorentzian warped product M ×u R above.

Specifically, adding a non-zero cosmological constant λ to the Einstein equation (5.4) the

stress tensor of the static rest frame becomes

T̄ =
∆u

u
g − ∇

2u

u
+ λg +

(
Ric− 1

2
sg

)
.

Thus, a positive function u is a static Einstein potential precisely when the stress tensor

T̄ of the static frame reduces to the Einstein tensor G = Ric−(1/2)sg of M . For non-zero

cosmological constant λ, the substatic condition is equivalent to T̄ /λ ≥ G/λ.

We now show that the inequality of Qiu-Xia can be understood in terms of a general

inequality for substatic Einstein potentials in spaces with Ricci curvature bounded below.

Theorem 5.40. Let (Mn, g) be a compact Riemannian manifold with mean-convex bound-

ary Σ and Ric ≥ (n− 1)Kg for some non-zero constant K. If u is a substatic Einstein

potential for the Einstein constant λ = (n− 1)K, then

∫
Σ

u

|η|
dvolΣ ≥ −

1

K

∫
M

(∆u)dvolM . (5.9)

94



Applications Chapter 5

Equality holds only if M is a geodesic ball in a space form of constant curvature K and

u(x) = csK(r(x)) where r(x) = d(x, p) for p ∈M .

Before giving the proof, we prove the following proposition showing that spaces with

a lower bound on the (n− 2)-Ricci curvature admit many substatic Einstein potentials.

Proposition 5.41. Let (Mn, g) be a Riemannian manifold (possibly with boundary)

which is star-shaped with respect to p ∈M and put r(x) = d(x, p). If Ricn−2(∇r, ·) ≥ K

for some non-zero constant K and f ∈ C2([0,∞)) is any positive function satisfying

(i) 0 ≤ − f ′

Kf
≤ snK

csK

(ii) − f ′′

Kf
≤ 1

then the radial function u(x) = f(r(x)) is a substatic Einstein potential on M for the

constant λ = (n− 1)K.

Remark 5.42. This proposition, together with Theorem 5.40 implies that the Qiu-Xia

inequality of Theorem 5.38 holds with the sectional curvature lower bound replaced by

an (n− 2)-Ricci lower bound.

Proof. Let f be as in the statement of the proposition and put u(x) = f(r(x)). A direct

computation gives

∆u

u
g − ∇

2u

u
=
f ′′(r)

f(r)
[g − dr2] +

f ′(r)

f(r)
[(∆r)g −∇2r].

Multiplying both sides by 1/K and using the first condition on f , together with the

k-Ricci Hessian comparison theorem (Theorem 3.16) we obtain

1

K

(
∆u

u
g − ∇

2u

u

)
≥ (n− 1)

f ′

Kf

csK
snK

dr2 +

(
f ′′

Kf
+ (n− 2)

f ′

Kf

csK
snK

)
[g − dr2].
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Again applying both conditions we find

1

K

(
∆u

u
g − ∇

2u

u

)
≥ −(n− 1)g.

Finally, we conclude with the proof of Theorem 5.40. In the case of a negative Einstein

constant λ < 0 the proof is essentially the same as that given by Qiu-Xia and is based

on the following weighted version of Reilly’s formula [32].

Lemma 5.43 (Qiu-Xia, 2014). Let (Mn, g) be a compact Riemannian manifold with

smooth boundary Σ and outward unit normal ξ and let u : M → R be a.e. twice differ-

entiable. For any real constant K and smooth function f ∈ C∞(M) such that f |Σ = f0

is constant

(n− 1)

∫
Σ

2u〈∇f, ξ〉Kf0 − 〈∇u, ξ〉Kf 2
0 − u〈η, ξ〉〈∇f, ξ〉2dvolΣ

=

∫
M

u
(
(∆f + nKf)2 − |∇2f +Kfg|2 − [Ric− (n− 1)Kg](∇f,∇f)

)
dvolM

+

∫
M

(
∆ug −∇2u+ u(n− 1)Kg

)
(∇f,∇f)− (n− 1)K(∆u+ nKu)f 2dvolM

where η is the mean curvature vector of Σ.

In the case of a positive Einstein constant λ > 0, the integral formula above does not

appear to yield the inequality (5.9) due to the sign of the last term on the right hand

side. However, in this case, we show that the inequality (5.9) is actually a consequence

of Brendle’s inequality.

Proof of Theorem 5.40. First we consider the case of substatic Einstein potential u for a

negative constant λ = (n − 1)K < 0. Let f be the solution to the Dirichlet boundary
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value problem

 ∆f = −nKf

f |Σ = c > 0

From the substatic inequality it follows that

(
∆ug −∇2u+ u(n− 1)Kg

)
(∇f,∇f) ≤ 0

and

−(n− 1)K(∆u+ nKu)f 2 ≤ 0

and hence the integral formula of Theorem 5.43 gives

∫
Σ

u|η|〈∇f, ξ〉2 ≤ −K
∫

Σ

(
2u〈∇f, ξ〉c− 〈∇u, ξ〉c2

)
. (5.10)

Now, using Hölder’s inequality followed by the previous inequality we get

(∫
Σ

u〈∇f, ξ〉
)2

≤
∫

Σ

u

|η|

∫
Σ

u|η|〈∇f, ξ〉2

≤ −K
∫

Σ

u

|η|

∫
Σ

(
2u〈∇f, ξ〉c− 〈∇u, ξ〉c2

)
.

It follows that

(∫
Σ

u〈∇f, ξ〉+ cK

∫
Σ

u

|η|

)2

− c2K2

(∫
Σ

u

|η|

)2

≤ c2K

∫
Σ

u

|η|

∫
Σ

〈∇u, ξ〉.

Dropping the first term (since it’s nonnegative) and dividing out non-zero factors we

obtain ∫
Σ

u

|η|
≥ − 1

K

∫
Σ

〈∇u, ξ〉 = − 1

K

∫
M

∆u
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as desired. If equality holds than equality must hold in (5.10) and hence (∆f +nKf)2 =

|∇2f + Kfg|2. By construction ∆f + nKf = 0 and hence in the equality case we have

∇2f = −Kfg in M . Since f |Σ = c it follows from an Obata type rigidity result that M

must be a geodesic ball in a space form of constant curvature −1 (see e.g. [40, Theorem

5.1]).

The case of a substatic Einstein potential u with positive constant λ = (n− 1)K > 0

follows from Brendle’s inequality. Specifically, since Ric ≥ (n − 1)Kg it follows that u

is, in particular, a substatic potential

∆u

u
g − ∇

2u

u
+Ric ≥ 0.

Applying Brendle’s inequality, we find

∫
Σ

u

|η|
dvolM ≥

∫
M

nu dvolM .

Moreover, taking the trace of the defining inequality for a substatic Einstein potential

with λ = (n− 1)K gives

1

K

∆u

u
+ n ≥ 0 (5.11)

and hence ∫
Σ

u

|η|
dvolM ≥

∫
M

nu dvolM ≥ −
1

K

∫
M

∆u dvolM .

If equality holds, then equality holds in (5.11). Since u is a substatic Einstein potential

we thus have ∇2u ≤ (∆u)g + u(n − 1)Kg = −uKg which combined with ∆u = −nKu

implies ∇2u = −uKg. As above, it follows from Obata rigidity that M has constant

sectional curvature K and u = csK(d(x, p)). By rigidity in Brendle’s inequality Σ is

totally umbilic and hence is a geodesic sphere.
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