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ABSTRACT: Model coliphages (e.g., ΦX174, MS2, and PRD1)
have been widely used as surrogates to study the fate and transport
of pathogenic viruses in the environment and during wastewater
treatment. Two groups of coliphages (F-specific and somatic) are
being explored as indicators of viral fecal pollution in ambient water.
However, the detection and quantification of coliphages still largely
rely on time-consuming culture-based plaque assays. In this study,
we developed an in-gel loop-mediated isothermal amplification
(gLAMP) system enabling coliphage MS2 quantification within 30
min using standard laboratory devices. Viral particles (MS2) were
immobilized with LAMP reagents in polyethylene glycol hydrogel,
and then viral RNAs were amplified through a LAMP reaction. Due
to the restriction effect of the hydrogel matrix, one viral particle
would only produce one amplicon dot. Therefore, the sample virus concentrations can be determined based on the number of
fluorescent amplicon dots using a smartphone for imaging. The method was validated by using artificially spiked and naturally
contaminated water samples. gLAMP results were shown to correlate well with plaque assay counts (R2 = 0.984, p < 0.05) and
achieved similar sensitivity to quantitative reverse-transcription polymerase chain reaction (RT-qPCR; 1 plaque-forming unit per
reaction). Moreover, gLAMP demonstrated a high level of tolerance against inhibitors naturally present in wastewater, in which
RT-qPCR was completely inhibited. Besides MS2, gLAMP can also be used for the quantification of other microbial targets (e.g.,
Escherichia coli and Salmonella). Considering its simplicity, sensitivity, rapidity, and versatility, gLAMP holds great potential for
microbial water-quality analysis, especially in resource-limited settings.

■ INTRODUCTION

Human pathogenic enteric viruses (e.g., adenovirus, enter-
ovirus, and norovirus) found in domestic wastewater have been
identified as important causative agents responsible for a wide
range of infections in humans.1 Previous studies suggest that
traditional fecal indicator bacteria (e.g., Escherichia coli and
Enterococcus) do not adequately predict the fate of human viral
pathogens because they respond differently to wastewater-
treatment processes and environmental degradation processes
from viruses.2 However, the direct detection and quantification
of specific viral pathogens in environmental water samples is
challenging due to methodological limitations.3 Therefore,
coliphages (viruses that infect E. coli cells) are being explored as
indicators of actual viral pathogens.4 Coliphages are not
pathogenic to humans but are similar to pathogenic enteric
viruses in terms of size, morphology, surface properties, and
genetic structures. Model coliphages (e.g., ΦX174, MS2, and
PRD1) are also widely employed as process indicators to

evaluate the viral removal efficiency of various water treatment
processes, such as sand filtration,5 reverse osmosis,6 UV,7 and
electrochemical disinfection.8 In 2015, the U.S. Environmental
Protection Agency (U.S. EPA) initiated a criteria-development
process considering the use of F-specific and somatic coliphages
as possible viral indicators of fecal contamination in ambient
water.3

A variety of methods are available for bacteriophage
detection. These include traditional culture-based plaque assays
and molecular-based methods. Two culture-based methods
were approved by the U.S. EPA for coliphage monitoring in
groundwater (U.S. EPA methods 1601 and 1602). Depending
on the incubation time, these methods require 18 to 72 h to
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obtain the final results. A genetic modified E. coli strain has
recently been developed to detect somatic coliphages based on
the color changes of the growth media triggered by the phage-
mediated release of intracellular enzyme β-glucuronidase. The
method reduces the culture time to between 3.5 and 5.5 h,
which is by far the fastest reported culture-based detection
method.9 In contrast, molecular-based methods, represented by
quantitative polymerase chain reaction (qPCR), provide better
sensitivity, specificity, and a much-shorter sample-to-result time
(1 to 4 h).10 Despite its wide acceptance, qPCR is limited by
the reliance on standard reference materials (standard curve)
for quantification. Unreliable and inconsistent commercial
standard reference materials were reported to affect the
accuracy of qPCR quantification.11,12 Also, qPCR is prone to
inhibition caused by substances naturally present in environ-
mental samples (e.g., heavy metals and organic matter), thereby
leading to inaccurate target quantification or false-negative
results. Compared to qPCR, the cutting-edge digital PCR
technique has shown to be a more-robust solution for virus
detection in environmental samples.11,13 A recent study by Cao
et al. highlighted that digital PCR was unaffected by humic acid
(HA) at concentrations up to 17.5 ng/μL, while the HA
tolerance level of qPCR was only 0.5 ng/μL.11 However, the
implementation of digital PCR methods to point-of-use
applications is challenging because it requires costly high-end
instruments, a well-equipped laboratory environment, and
highly trained personnel to conduct the assay. These factors
severely restrict the method’s accessibility and adoption in
resource-limited settings.
Alternatives to PCR-based nucleic acid amplification and

detection techniques, isothermal amplification methods such as
loop-mediated isothermal amplification (LAMP),14 helicase-
dependent amplification (HDA),15 multiple-displacement
amplification (MDA),16 and rolling circle amplification
(RCA),17 offer the opportunity to deliver the benefits of
molecular assays beyond centralized laboratories. With no need
for thermal cycling, isothermal reactions are more suitable for
coupling with miniaturized, portable, and battery-powered “lab-
on-a-chip” platforms.18 Initially described in 2000,19 LAMP has
become the most-popular isothermal amplification technique,
covering most microbial pathogens relevant to sanitation.20−22

LAMP is capable of amplifying a target DNA template 109

times in less than 60 min at a temperature around 65 °C.19

Similar to PCR, LAMP products can be detected by
fluorescence using intercalating dyes (e.g., EvaGreen, Sybr
Green, and SYTO9) or with unaided eyes through turbidity
changes caused by magnesium pyrophosphate precipitation as a
byproduct of amplification.14 Many portable devices have been
developed to facilitate the application of LAMP in point-of-care
disease diagnostics.18,23 In contrast, the application of LAMP in
environmental studies is lagging behind, with recent work by
Martzy et al., who developed a LAMP assay for the detection of
Enterococcus spp. in water, being a notable exception.21 This is
likely because most LAMP assays are qualitative but microbial
water-quality analysis generally requires quantitative data.
Although a few quantitative LAMP assays have been reported
in real-time or digital formats, they all require complex
instruments (i.e., real-time fluorescence detection devices)24

or customized microfluidic chips (e.g., Slipchip25 and
DropChip),26 making them hard to be adopted by a broader
user community.
Our vision is to take advantage of LAMP to develop a

quantitative, low-cost, and rapid coliphage detection tool that

can be easily adopted in resource-limited settings. Inspired by
earlier work on in situ PCR,27 immobilization of microbes in
hydrogels,28 PCR amplification in polyacrylamide gels,29 and
MDA amplification in polyethylene glycol (PEG) hydrogels,16

we have developed a smartphone-based in-gel LAMP (gLAMP)
system capable of quantifying coliphage MS2 in environmental
water samples within 30 min. gLAMP requires no specialized
equipment, no microfluidic chips, and limited personnel
training. It is worth to mention that the gLAMP system is
not restricted to MS2 detection. It is a nucleic acid
amplification testing platform, like qPCR, that can also be
used for the quantification of many other microbial targets (e.g.,
E. coli and Salmonella).

■ MATERIALS AND METHODS
Model Coliphage MS2 Preparation. Coliphage MS2

(ATCC 15597-B1) was chosen as the model virus for the
method development. For phage propagation, 0.1 mL [107

plaque-forming units (PFU)/mL] of MS2 was inoculated into
20 mL of actively growing E. coli-3000 (ATCC 15597) host
suspension in Luria−Bertani medium. The infected bacteria
were continuously aerated at 37 °C for 36 h. The host-
associated MS2 suspension was then centrifuged at 3000g for
10 min to pellet the bacterial cells and debris. The supernatant,
containing the MS2 virions, was further purified by 0.2 μm
syringe filter (GE Whatman, Pittsburgh, PA). The filtrate was
diluted 1000× in 1× PBS (pH of 7.5) (Corning, New York,
NY) and used as MS2 stock for seeding studies. The
concentration of MS2 stock was titrated by the double-agar-
layer method.30 An AllPrep PowerViral DNA/RNA Kit
(Qiagen, Germantown, MD) was used for MS2 RNA extraction
per the manufacturer’s protocol.

gLAMP Assay Design. Two types of hydrogels were
initially tested as the matrix for gLAMP. The polyacrylamide
(PA) gel was formed through the cross-linking between
acrylamide and bis-acrylamide (acrylamide/Bis 19:1) (Bio-
Rad, Hercules, CA) using 0.05% (w/v) ammonium persulfate
(Bio-Rad, Hercules, CA) as initiator and catalyzed by 0.05%
(w/v) tetramethylethylenediamine (TEMED) (Bio-Rad). The
PEG gel was formed through Michael addition between the
four-arm PEG acrylate [molecular weight (MW) of 10 000] and
thiol-PEG-thiol (MW of 3400; Laysan Bio, Arab, AL) at a mole
ratio of 1:2. The MS2 LAMP primers and probes originally
developed by Ball et al.31 were used and optimized in the
current study (Table S1). For each gLAMP assay (25 μL), the
optimized hydrogel reaction mix had the following composi-
tion: 10% (w/v) hydrogel, 12.5 μL of 2×WarmStart LAMP
Mastermix (a blend of Bst 2.0 WarmStart DNA polymerase and
WarmStart RTx reverse transcriptase; New England Biolabs,
Ipswich, MA), 1.25 μL of 20× virus primer mix (the final
concentrations of F3/B3, FIP/BIP and LF/LB were 0.2, 1.6,
and 0.4 μM, respectively), and 2 μL of MS2 RNA templates or
2 μL of water sample. For reactions using the complementary
fluorescent probe and quencher primers, quencher primer
(qFIP-3′IBFQ) was added (final concentration 3.2 μM) when
fluorophore-labeled primer (5′FAM-FIP) was used to sub-
stitute the regular FIP primer. The above-described 25 μL of
hydrogel reaction mix was loaded into an in situ PCR frame seal
chamber (9 × 9 mm; Bio-Rad) on a glass slide and then
covered with a transparent qPCR film (Sorenson, Salt Lake
City, UT). The hydrogel was polymerized at room temperature
(21 °C) for 5−15 min and then incubated on a PCR machine
(MJ Research PTC-100, Watertown, MA) or a mini dry bath
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(Benchmark, Edison, NJ) at 65 °C for 25 min. After
amplification, the gel was stained with 0.5× LAMP dye
(included in the WarmStart LAMP kit) in the dark for 15 min
and then washed twice with 2× TE buffer (pH of 7.8; Corning,
New York, NY). For reactions using the complementary
fluorescent probe and quencher primers, no post-reaction
staining was needed. The slides were illuminated with an E-Gel
Safe Imager (Invitrogen, Carlsbad, CA), and the amplicon dots
were documented with an iPhone 6s Plus. To verify the
sensitivity of the smartphone detection system, the slides were
also imaged using a fluorescence microscope (Leica DMi8;
Leica Co., Germany).
gLAMP Assay Optimization. Initial gLAMP development

was carried out using extracted MS2 viral RNA. Assays were
conducted to find the optimal staining strategy (post-reaction
staining with LAMP dye or using fluorescent probe),
incubation time (20, 25, and 30 min), and assay dynamic
range (low, 1−20 copies per reaction; medium, 20−200 copies
per reaction; and high, 200−2000 copies per reaction).
Subsequently, with the intention of simplifying the RNA
extraction step, we also explored simple heating (95 °C, 5 min)
as a pretreatment procedure or direct detection of MS2 viral
particles without RNA extraction. The assay sensitivity and
dynamic range were compared to RT-qPCR using Eppendorf
RealPlex2 (Hamburg, Germany). The primers and probe and
reaction conditions of the one-step RT-qPCR are provided in
Table S2.
Tolerance of gLAMP to Inhibitors Present in Environ-

mental Water Samples. A total of three environmental water
samples were tested in the present study to evaluate the
tolerance of gLAMP to inhibitors naturally present in
environmental wasters. Lake water (LW) was collected from
Echo Park Lake (Los Angeles, CA), which functions primarily
as a detention basin in the city’s storm-drain system while
providing recreational benefits and wildlife habitat. Pond water
(PW) was collected from the Turtle Pond at the California
Institute of Technology (Caltech). Wastewater (WW) was
collected from the sedimentation and storage tank of a pilot-
scale solar-powered mobile toilet system also located on the
Caltech campus. WW is composed of urine, feces, and hand-
washing and toilet-flushing water. More details about the design
and operational conditions of the toilet system were reported in
previous studies.8,32 Basic water-quality parameters of these
samples are summarized in Table S3. The dissolved organic
matter (DOM) in the environmental samples were charac-
terized by excitation−emission matrix (EEM) using a
fluorescence spectroscopy (Shimadzu RF-6000, Kyoto,
Japan). Corrected EEMs were generated from raw scans
(excitation wavelengths: 250−550 nm, 5 nm interval; emission

wavelengths: 300−600 nm, 2 nm interval) and used to estimate
the various DOM components (see Figure S5 for a graphical
illustration of these components). The concentrations of
indigenous MS2 (without preconcentration) in all these
samples were below the detection limit of plaque assays (1
PFU/mL) and RT-qPCR (1 plaque-forming unit per reaction).
Therefore, pure cultured MS2 was spiked to these samples and
a PBS buffer solution at the final concentration of 2 × 103-2 ×
104 PFU/mL (equaling 10−100 plaque-forming unit per
reaction). Spiked water samples were allowed to equilibrate
for 1 h before being directly analyzed with gLAMP, in-tube real-
time LAMP (see Table S1 for more details), and RT-qPCR
without RNA extraction. The MS2-spiked PBS served as a
control because no inhibition was expected in this buffer
solution. Inhibition effect was evaluated by comparing results
from environmental samples with those obtained from PBS: in
gLAMP, inhibition was reflected as fewer fluorescent dot
counts in environmental samples than those in PBS, while for
in-tube LAMP and qPCR, it was shown as increased time-to-
detection and larger quantitation cycle (Cq) values, respectively.

Detection of MS2 in Primary Effluent Samples. To
demonstrate the detection of MS2 in nonspiked natural water,
primary effluent wastewater sample was collected from a local
wastewater treatment plant serving 150 000 people. A 20 mL
water sample was filtered with 0.22 μm syringe filters (GE
Whatman, Pittsburgh, PA) to remove bacteria and debris before
further analysis. For double-layer plaque assays,30 F-specific
coliphages were enumerated using E. coli Famp (ATCC
700891) as the bacterial host, while E. coli C3000 (ATCC
15597) was used for total (somatic and F-specific) coliphage
enumeration. A total of 15 mL of the filtrate was further
concentrated to 150 μL using an Amicon Ultra-15 Centrifugal
Filter (30 KDa nominal molecular weight limit) (Millipore,
Burlington, MA). Virus RNA was extracted from 100 μL of
concentrate using the AllPrep PowerViral DNA/RNA Kit
(Qiagen, Germantown, MD) and then analyzed by gLAMP and
RT-qPCR.

■ RESULTS AND DISCUSSION
Gel Selection. Clear polyacrylamide gels were formed

within 10−15 min, while the formation of PEG gel was faster,
taking 3−5 min at alkaline pH (the pH of the LAMP reaction
mix is 8.8). Both gels showed no fluorescent background, and
gLAMP was successfully carried out in either case (Figure 1).
We found that when the amplicon dot sizes were smaller than
20 μm (diameter), the detection would require a fluorescence
microscope. To facilitate the results reading with a smartphone
camera while still maintaining a practical assay dynamic range,
dot sizes between 50 to 200 μm were preferred in the current

Figure 1. gLAMP hydrogel selection. Assays using (A) polyacrylamide and (B, C) polyethylene glycol hydrogels. LAMP amplicon dots were stained
with 0.5× LAMP dye (A, B) after incubation or (C) using the QUASR primers without post-reaction staining. The images were taken by an iPhone
6s Plus. Extracted MS2 RNAs were used as templates, and the reaction time was 25 min.
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study. The size of amplicon dots was mainly decided by the
restriction effect of the gel matrix. Ideally, the gel matrix should
allow the free diffusion of small molecules (molecular weight
(MW) of <100 kDa) such as water, ions, primers (<50 bp, MW
< 15 kDa), and enzymes (Bst: 67 kDa) but restrict the
movement of DNA and RNA templates and the amplicons
(>150 bp, MW > 100 kDa). This can be achieved by tuning the
gel cross-linking degree and the length of cross-linkers to
control the gel mesh size and, thus, the macroscopic gel
properties (i.e., diffusion). Mitra et al. found that 514, 234, and
120 bp templates produced uniform PCR amplicon dots of 100,
400, and 800 μm in polyacrylamide hydrogel, respectively.29 It
should be noted that, unlike single length PCR amplicons,
products of LAMP are a mixture of concatemers of the target
region with various sizes. Based on the agarose gel electro-
phoresis profile (Figure S1), the shortest MS2 LAMP
amplicons were about 90 bp, while the longest amplicons
were up to several thousand base pairs. During gLAMP, longer
amplicons were retarded by the hydrogel matrix, but shorter
amplicons diffused away from the initial templates (the center
of the dot) and served as templates for further amplification
until they reached the diffusion limit or the LAMP reagents
(e.g., enzyme, primer, and dNTP) in the vicinity were depleted.
Due to the stochastic nature of LAMP, dots of different sizes
were produced in the hydrogels. According to previous studies,
the mesh size of the 2 hydrogels were similar and in the range
of 20−25 nm.33,34 However, the amplicon dots in the PEG gel
(Figure 1B) were significantly smaller and more-uniform than
those formed in polyacrylamide gel (Figure 1A). The results
showed that the PEG gel had a better restriction effect on the
smaller amplicons. Therefore, besides size exclusion, other
interactions (i.e., charge interaction) between the polymers and
the DNA templates may also affect the diffusion coefficient.
Given the better template-restriction effect, PEG hydrogel was
chosen for further method development.
gLAMP Amplicon Staining Strategies. Clear MS2

amplicon dot profiles were obtained through post-reaction gel
staining with intercalating LAMP dye (Figure 1B). Similar
profiles were obtained in gLAMP assays for E. coli and
Salmonella (see Table S4 and Figure S2 for more details). The
results highlight the feasibility of adapting established
qualitative LAMP assays into quantitative assays via the
gLAMP system. However, opening the frame seal chamber
and staining the gel after amplification added extra complexity

to the assay and may result in amplicon contamination to the
surrounding working environment. We also found that adding
intercalating fluorescent dyes into the reaction mix before heat
incubation was not an option because it resulted in a high level
of fluorescent background.
To develop a simpler gLAMP without the need for post-

reaction staining, a primer-dye and primer-quencher duplex,
previously reported as quenching of unincorporated amplifica-
tion signal reporters (QUASR) by Ball et al.,31 was adopted and
optimized in this study. In QUASR, the forward internal primer
(FIP) is labeled with a fluorophore at the 5′ prime end
(5′FAM-FIP). The probe is quenched by a complementary
primer with a quencher (Iowa Black FQ) at the 3′ prime end
(qFIP-3′IBFQ). Because the melting temperature (Tm) of the
complex is 5−10 °C lower than the reaction temperature (65
°C), the 5′FAM-FIPs are released and behave like regular FIPs
during the LAMP reaction. 5′FAM-FIPs are incorporated into
the LAMP amplicons when there are target templates present
in the sample. After the reaction, extra unincorporated 5′FAM-
FIPs are quenched again by the complementary quencher
primer qFIP-3′IBFQs. In contrast, 5′FAM-FIPs incorporated
into LAMP amplicons would not be quenched because they
already form a stable double-strand DNA structure during the
LAMP reaction. Compared with nonspecific DNA intercalating
dyes (i.e., the LAMP dye), QUASR significantly reduces the
issue of false positive results associated with LAMP assays.31

However, QUASR cannot turn into a quantitative assay in a
real-time LAMP scheme because the fluorescent intensity of the
reaction mix is constantly at the highest level (all 5′FAM-FIP
released) instead of progressively increasing during heat
incubation. Therefore, it can only be used as a qualitative
assay for end point determination. In preliminary experiments,
we found that the QUASR primers did not reduce gLAMP
amplification efficiency, although a higher concentration of
quencher primer (2× of the complementary probe primer) was
needed to maintain a clean gel background at the end of the
gLAMP reaction. These results suggest that the PEG gel
allowed the free movement of the dye-labeled short
oligonucleotides, even though the diffusion coefficient would
be smaller in the gel matrix than that in a solution. As 5′FAM-
FIPs were incorporated into the amplicons and accumulated
around the initial templates, bright and defined amplicon dots
could be directly visualized with a smartphone camera upon

Figure 2. gLAMP optimization. Effect of (A) reaction time and (B) template concentration on the size of QUASR gLAMP amplicon dots. Box plots
with the original data of the amplicon dot diameters on the left side. Different letters indicate significant differences at the p < 0.05 level according to
one-way ANOVA followed by a Tukey’s post-hoc test. Template concentration definition: low, 1−20 copies per reaction; medium, 20−200 copies
per reaction; and high, 200−2000 copies per reaction. A medium template concentration was used in panel A, while the reaction time shown in panel
B was 25 min. Extracted MS2 RNA was used as templates.
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blue light exposure (Figure 1C). Therefore, QUASR primers
were used for further gLAMP optimization.
gLAMP optimization. Amplicon dots were visible as early

as 20 min under a fluorescence microscope (Figure 2A). The
dots developed to about 156 ± 33 μm (diameter) after 25 min,
and the fluorescence intensity was strong enough to be
detected with a smartphone camera (Figure 3). Although the
amplicon dots kept increasing in size and reached 212 ± 50 μm
after 30 min, the number of dots stayed similar to those at 25
min. Hence, 25 min was chosen as optimal reaction time for
MS2 gLAMP. The amplicon dot sizes showed no significant
difference at low (1−20 copies per reaction) and medium
template (20−200 copies per reaction) concentrations (Figure
2B). Under these conditions, amplicon dots were far from each
other and had very limited interactions. The dot sizes
represented the largest size that the amplicons could develop
within the given reaction time, while the size variability in a
single gel may result from variable initial template conforma-
tion, the degree of template denaturation or from local
inhomogeneities in the hydrogel structure (due to the free
dangling ends, self-looping, or entanglements of macromers).
In contrast, the size of amplicon dots at high concentration
(200−2000 copies per reaction) were significantly smaller than
those formed at the low and medium concentrations (Figure
2B). Similar template concentration-dependent amplicon size
variations were reported for an in-gel MDA assay.35 Xu et al.
concluded that the smaller amplicon sizes at higher template
concentration was due to a global autoinhibition, especially due
to a drop in pH.35 In gLAMP, however, we think that local
competition for enzymes, primers, and dNTP existed, as clear
separations were developed among the amplicons close to each
other (Figure 3G,H). The smaller amplicon sizes plus the clear
boundaries developed at higher template concentration
benefited the assay’s dynamic range by improving fluorescent
dot identifiability. For smartphone camera reading, the optimal
assay dynamic range was 1−1000 dots per reaction. When a
fluorescence microscope was used for reading results, each gel
can accommodate as many as 5000 dots without compromising
the precision. Automatic amplicon analysis for microscope and
smartphone images was realized by CellProfiler 2.2.0. The
results of each key step are shown in Figure S3. With

appropriate threshold settings, the difference between auto-
matic and manual counting was less than 5%.
For nucleic-acid-based detection methods, a simple DNA and

RNA extraction procedure is preferred in point-of-use
applications. In gLAMP analysis of MS2-spiked PBS solution,
crude samples, samples after a simple heating (95 °C, 5 min)
pretreatment, and samples extracted with commercial RNA
extraction kit showed no significant differences in terms of
amplicon dot counts (Figure S4, ANOVA, p > 0.05), dot sizes,
and the amplicon fluorescence intensity. Simple heating
pretreatment was previously reported to improve the detection
of bacteria in LAMP assays because the compromised cell
membranes were more-permeable to LAMP reagents and the
denatured DNA can facilitate the strand displacement activity
of the Bst enzyme.36 However, the current results indicate that
the LAMP primers and enzymes (RTx reverse transcriptase and
Bst 2.0 DNA polymerase) were able to penetrate the viral
capsid at the reaction temperature (65 °C), and denaturing may
not be necessary because the viral genome is much smaller
compared to that of bacteria.
To evaluate the sensitivity of direct gLAMP, we compared it

with traditional plaque assays and RT-qPCR (Figure 4).
gLAMP amplicon counts showed a good correlation to plaque
assay counts (R2 = 0.984, p < 0.05). The regression line (slope
of 1.036 and intercept of −0.290) indicates that 1 gel amplicon
dot was closely equal to 1 PFU. gLAMP achieved a similar
lower limit of detection (0.7 plaque-forming units per reaction)
compared to that of RT-qPCR (0.4 plaque-forming units per
reaction), while RT-qPCR still showed the advantage of a larger
upper detection limit. As discussed before, the dynamic range
of gLAMP (1−1000 plaque-forming units per reaction) could
be increased by reducing the amplicon dot sizes. Accommodat-
ing more amplicon dots in a single gel would be desirable for
applications such as mutation detection and in-gel sequenc-
ing.37 However, the ability to distinguish amplicon dots from
other contaminating fluorescent signals (i.e., autofluorescent
substances) may suffer at small dot sizes. Consequently, the
precision at low concentration (<20 plaque-forming units per
reaction) would be compromised.16 Because high-concentra-
tion samples can be easily diluted, we think maintaining the

Figure 3. Impact of template concentration on the size of gLAMP amplicon dots. (A, B) No template control; (C, D) low template concentration of
1−20 copies per reaction; (E, F) medium template concentration of 20−200 copies per reaction; and (G, H) high template concentration of 200−
2000 copies per reaction. Top panel images were taken by an iPhone 6s Plus, while the bottom panel images were taken by fluorescent microscope
for the same gel (scale bar of 1 mm). Extract MS2 RNA was used as templates, and the reaction time was 25 min.
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precision at low concentration is more valuable than expanding
the upper detection limit of gLAMP.
Tolerance to Inhibitors. Enzyme-driven nucleic-acid

amplification processes are susceptible to various inhibitory
substances (e.g., organic matter and heavy metals) commonly
found in environment samples.11 WW was yellow-brownish and
had a chemical oxygen demand (COD) level of 821 mg/L,
representing highly contaminated water. LW and PW were
clear and contained fewer organic contaminants, with COD
levels of 63 and 75 mg/L, respectively. gLAMP assays were
successfully carried out in all MS2-spiked environmental water
samples (spiking levels of 2 × 103 to 2 × 104 PFU/mL,
equaling 10−100 plaque-forming units per reaction) without
RNA extraction. No inhibition was observed because there
were no significant differences between the environmental
samples and the PBS control in terms of amplicon dot counts
(p > 0.05) (Figure 5A) as well as dot morphologies. For in-tube
real-time LAMP assay, no significant inhibition was found in
LW and PW (p > 0.05). However, 4 out of 6 in-tube real-time
LAMP assays were completely inhibited in WW, as no
amplification was observed at the end of the reaction (60
min) (Figure 5B). For RT-qPCR, the assay was completely
inhibited in WW because the Cq was beyond the lower limit of
detection (Cqmax = 40) (Figure 5C). In general, LAMP assays
have a more-robust chemistry than PCR in terms of handling
complex crude samples because: (1) it employs six primers to
initiate the amplification compared with two primers in PCR,
(2) the smaller 67 kDa Bst polymerase may enter target cells
and viral particles more easily than the 94 kDa Taq DNA
polymerase used in PCR,38 and (3) the yields of LAMP (10−20
micrograms per reaction) are about 50−100 times higher than
those of PCR (0.2 micrograms per reaction).22 Several studies
have reported LAMP assays with crude samples.39,40 It should
be noted that, similar to the in-tube real-time LAMP assay
demonstrated in this study, many of these assays are qualitative
or semiquantitative. The use of crude samples may not
compromise the lower limit of detection (still detectable),
but it usually resulted in an increase in the time-to-detection39

or a decrease in the signal-to-noise ratio40 at the end of the
reaction. In RT-qPCR, similar delayed amplification would

result in the increase of Cq values and, therefore, underestimate
the target concentration.
Figure S5 shows the EEM profiles of the LW, PW, and WW

samples. The primary fluorescent DOM peaks for PW and WW
were the C-peak and the M-peak, which were associated with
humic-like components. The concentration of humic-like DOM
in WW was 10−15 times higher than that in LW and PW,
which is in agreement with the COD and DOC data. WW also
contained low levels of proteinaceous material, as represented
by the B-peak and the T-peak. Considering the source of WW,
the inhibitors were likely to be organic in origin, similar to
those found in urine and feces samples. Urea present in urine
samples is known to prevent the noncovalent binding of
polymerase enzymes and interferes with primer annealing.41

The inhibition concentration of urea in PCR was as low as 50
mM,42 while the tolerance of LAMP to urea was reported to be
up to 1.8 M.43 However, the better performance of the gLAMP
in WW cannot be simply attributed to a more-robust LAMP
chemistry. In fact, we speculate that the gel matrix played a
more-important role in the enhanced tolerance against
inhibitors in WW. First, similar to digital PCR, gLAMP is an
end-point amplification-detection assay, counting the final
amplification products. Therefore, its quantification is less-
affected by amplification efficiency. Second, because the DNA
and RNA templates were spatially isolated, substrate competi-
tion during amplification should be minimized. Moreover,

Figure 4. Direct detection of MS2 in PBS solution without RNA
extraction. Correlation analysis indicates significant linear relationship
between direct gLAMP counts with traditional plaque assay counts (r2

= 0.984, p < 0.05). A similar relationship was also found between log10-
transformed plaque assay counts and the Cq values of RT-qPCR (r2 =
0.994, p < 0.05). Error bars represent the standard deviation of
triplicate independent experiments.

Figure 5. Direct detection of MS2 in spiked PBS, lake water (LW),
pond water (PW), and wastewater (WW) without RNA extraction.
(A) gLAMP counts, (B) time to detection in in-tube real-time LAMP,
and (C) Cq values in RT-qPCR. Error bars represent standard errors
of the means. Different letters indicate significant differences at the p <
0.05 level according to one-way ANOVA followed by a Tukey’s post-
hoc test. MS2 was spiked at the concentration of 2 × 103 to 2 × 104

PFU/mL, equaling 10−100 plaque-forming units per reaction.
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depending on their molecular weight, the movement of large-
molecular-weight organic inhibitors would be restricted by the
gel matrix, and thus, the local inhibitor concentrations close to
the templates are reduced.
MS2 in Primary Effluent.MS2 was successfully detected in

the RNA extracted from the primary effluent sample by gLAMP
(7.8 ± 7.7 PFU/mL). A similar result was obtained in RT-
qPCR (1.13 ± 0.98 PFU/mL), which confirms the sensitivity
and specificity of the gLAMP assay. However, gLAMP
detection of MS2 in the concentrated primary effluent sample
without RNA extraction was failed due to the interference of
co-concentrated autofluorescent substances (a highly fluores-
cent background). This issue could be alleviated by using other
virus concentration methods (i.e., the adsorption−elution
method);44,45 however, the optimization of the concentration
step to facilitate the direct detection of MS2 in this specific
sample is beyond the scope of this work. Culture-based plaque
assays generated much higher counts using E. coli C3000 [(6.9
± 0.4) × 103 PFU/mL] and E. coli Famp [(2.6 ± 0.7) × 103

PFU/mL] as host cells. The discrepancy was because the
bacterial hosts used in culture-based plaque assays were
susceptible to a wide range of coliphages contained in the
sample, while the gLAMP and RT-qPCR assays were specific to
MS2.
Perspectives of gLAMP in Environmental Monitoring.

In a recent meta-analysis, Amarasiri et al. concluded that MS2 is
the best validation and operational monitoring indicator for
membrane bioreactors (MBR) because the log removal values
(LRVs) of MS2 in MBR were shown to be lower than those of
human enteric viruses, while other bacteriophages (T4, somatic,
and F-specific) provided higher LRVs.46 MS2 may also be
employed as a microbial tracer in field studies to understand the
environmental fate of enteric viruses.47,48 The MS2 gLAMP
assay, demonstrated in this study, can be readily used for these
type of applications. In terms of using coliphages as indicators
for fecal contamination, gLAMP assays targeting certain groups
of coliphages would be more useful than an assay specific to
MS2. It was suggested that F-specific RNA coliphage
genogroups II (GII) and (GIII) are more frequently found in
human excreta, while the other two genogroups (GI and GIV)
are specific to animal excreta.49 Similar to RT-qPCR assays
detecting individual F-specific RNA genogroup,49 the design of
new gLAMP assays targeting similar genes is feasible in the
future.
Currently, only one molecular-based method (U.S. EPA

method 1611, qPCR for Enterococcus) has been certified for
ambient water-quality analysis. The high capital investment and
the complexity of data interpretation are likely the main
challenges thwarting the application of molecular-based
detection methods for routine microbial water quality analysis.
Table S5 compares the gLAMP system with traditional culture-
based plaque assays and the cutting-edge digital PCR system.
As shown in the graphic abstract, gLAMP can be carried out
with standard laboratory devices. A portable hand-held heating
and fluorescence detection device is under development.
Lyophilized LAMP reagents are also being tested to facilitate
the field-scale applications. Moreover, gLAMP is noticeably
faster than other available methods, taking less than 30 min
compared with 4 h for RT-qPCR and 24 h for plaque assays.
The amplified gel slides can be stored at room temperature for
more than 1 month without affecting the florescent-dot
visualization (Figure S6). This indicates that the gel matrix
provides a good protection for the amplicons, which would

allow for sample shipment in case further analysis is required.
Considering its outstanding simplicity, sensitivity, rapidity, and
versatility, the gLAMP system presented in this study holds
great potential for microbial water-quality analysis, especially in
resource-limited settings.
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Šinkovec, H.; Sommer, R.; Farnleitner, A. H.; Reischer, G. H. A loop-
mediated isothermal amplification (LAMP) assay for the rapid
detection of Enterococcus spp. in water. Water Res. 2017, 122, 62−69.
(22) Parida, M.; Sannarangaiah, S.; Dash, P. K.; Rao, P.; Morita, K.
Loop mediated isothermal amplification (LAMP): a new generation of
innovative gene amplification technique; perspectives in clinical
diagnosis of infectious diseases. Rev. Med. Virol. 2008, 18 (6), 407−
421.
(23) Njiru, Z. K. Loop-mediated isothermal amplification technology:
towards point of care diagnostics. PLoS Neglected Trop. Dis. 2012, 6
(6), e1572.
(24) Stedtfeld, R. D.; Stedtfeld, T. M.; Kronlein, M.; Seyrig, G.;
Steffan, R. J.; Cupples, A. M.; Hashsham, S. A. DNA extraction-free
quantification of Dehalococcoides spp. in groundwater using a hand-
held device. Environ. Sci. Technol. 2014, 48 (23), 13855−13863.
(25) Schoepp, N. G.; Schlappi, T. S.; Curtis, M. S.; Butkovich, S. S.;
Miller, S.; Humphries, R. M.; Ismagilov, R. F. Rapid pathogen-specific
phenotypic antibiotic susceptibility testing using digital LAMP
quantification in clinical samples. Sci. Transl. Med. 2017, 9 (410),
eaal3693.
(26) Schuler, F.; Siber, C.; Hin, S.; Wadle, S.; Paust, N.; Zengerle, R.;
von Stetten, F. Digital droplet LAMP as a microfluidic app on standard
laboratory devices. Anal. Methods 2016, 8 (13), 2750−2755.
(27) Nuovo, G. J. PCR in situ hybridization: protocols and applications;
Raven Press: New York, 1994.
(28) Heo, J.; Thomas, K. J.; Seong, G. H.; Crooks, R. M. A
Microfluidic Bioreactor Based on Hydrogel-Entrapped E. c oli: Cell

Viability, Lysis, and Intracellular Enzyme Reactions. Anal. Chem. 2003,
75 (1), 22−26.
(29) Mitra, R. D.; Church, G. M. In situ localized amplification and
contact replication of many individual DNA molecules. Nucleic Acids
Res. 1999, 27 (24), e34−e39.
(30) Kropinski, A. M.; Mazzocco, A.; Waddell, T. E.; Lingohr, E.;
Johnson, R. P. Enumeration of bacteriophages by double agar overlay
plaque assay. Methods Mol. Biol. 2009, 501, 69−76.
(31) Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E.,
Johnson, R. P. Enumeration of Bacteriophages by Double Agar
Overlay Plaque Assay. In Bacteriophages. Methods in Molecular Biology;
Clokie, M. R., Kropinski, A. M., Eds.; Humana Press: New York, NY,
2009; vol 501.
(32) Cho, K.; Qu, Y.; Kwon, D.; Zhang, H.; Cid, C. A.; Aryanfar, A.;
Hoffmann, M. R. Effects of Anodic Potential and Chloride Ion on
Overall Reactivity in Electrochemical Reactors Designed for Solar-
Powered Wastewater Treatment. Environ. Sci. Technol. 2014, 48 (4),
2377−2384.
(33) Raeber, G.; Lutolf, M.; Hubbell, J. Molecularly engineered PEG
hydrogels: a novel model system for proteolytically mediated cell
migration. Biophys. J. 2005, 89 (2), 1374−1388.
(34) Stellwagen, N. C. Apparent pore size of polyacrylamide gels:
Comparison of gels cast and run in Tris-acetate-EDTA and Tris-
borate-EDTA buffers. Electrophoresis 1998, 19 (10), 1542−1547.
(35) Xu, P.; Janex, M.-L.; Savoye, P.; Cockx, A.; Lazarova, V.
Wastewater disinfection by ozone: main parameters for process design.
Water Res. 2002, 36 (4), 1043−1055.
(36) Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated
isothermal amplification (LAMP) of gene sequences and simple visual
detection of products. Nat. Protoc. 2008, 3 (5), 877−882.
(37) Shendure, J.; Porreca, G. J.; Reppas, N. B.; Lin, X.; McCutcheon,
J. P.; Rosenbaum, A. M.; Wang, M. D.; Zhang, K.; Mitra, R. D.;
Church, G. M. Accurate multiplex polony sequencing of an evolved
bacterial genome. Science 2005, 309 (5741), 1728−1732.
(38) Maruyama, F.; Kenzaka, T.; Yamaguchi, N.; Tani, K.; Nasu, M.
Detection of bacteria carrying the stx2 gene by in situ loop-mediated
isothermal amplification. Appl. Environ. Microbiol. 2003, 69 (8), 5023−
5028.
(39) Suzuki, R.; Fukuta, S.; Matsumoto, Y.; Hasegawa, T.; Kojima,
H.; Hotta, M.; Miyake, N. Development of reverse transcription loop-
mediated isothermal amplification assay as a simple detection method
of Chrysanthemum stem necrosis virus in chrysanthemum and tomato.
J. Virol. Methods 2016, 236, 29−34.
(40) Patterson, A. S.; Heithoff, D. M.; Ferguson, B. S.; Soh, H. T.;
Mahan, M. J.; Plaxco, K. W. Microfluidic chip-based detection and
intraspecies strain discrimination of Salmonella serovars derived from
whole blood of septic mice. Appl. Environ. Microbiol. 2013, 79 (7),
2302−2311.
(41) Hedman, J., Rad̊ström, P. Overcoming Inhibition in Real-Time
Diagnostic PCR. In PCR Detection of Microbial Pathogens. Methods in
Molecular Biology (Methods and Protocols); Wilks, M., Ed.; Humana
Press: Totowa, NJ, 2013; vol 943.
(42) Khan, G.; Kangro, H.; Coates, P.; Heath, R. Inhibitory effects of
urine on the polymerase chain reaction for cytomegalovirus DNA. J.
Clin. Pathol. 1991, 44 (5), 360−365.
(43) Edwards, T.; Burke, P. A.; Smalley, H. B.; Gillies, L.; Hobbs, G.
Loop-mediated isothermal amplification test for detection of Neisseria
gonorrhoeae in urine samples and tolerance of the assay to the
presence of urea. Journal of clinical microbiology 2014, 52 (6), 2163−
2165.
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