
UC Irvine
UC Irvine Previously Published Works

Title
Extending JAGS: A tutorial on adding custom distributions to JAGS (with a diffusion model
example)

Permalink
https://escholarship.org/uc/item/1hn8q7d7

Journal
Behavior Research Methods, 46(1)

ISSN
1554-351X

Authors
Wabersich, Dominik
Vandekerckhove, Joachim

Publication Date
2014-03-01

DOI
10.3758/s13428-013-0369-3

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1hn8q7d7
https://escholarship.org
http://www.cdlib.org/

Extending JAGS: A tutorial on adding custom distributions to
JAGS (with a diffusion model example)

Dominik Wabersich1,2 and Joachim Vandekerckhove1
1Department of Cognitive Sciences, University of California, Irvine

2Department of Psychology, University of Tübingen, Germany

Abstract

We demonstrate how to add a custom distribution into the general-purpose,
open-source, cross-platform graphical modeling package JAGS (“Just An-
other Gibbs Sampler”). JAGS is intended to be modular and extensible,
and modules written in the way laid out here can be loaded at runtime
as needed and do not interfere with regular JAGS functionality when not
loaded. Writing custom extensions requires knowledge of C++, but installing
a new module can be highly automatic, depending on the operating sys-
tem. As a basic example, we implement a Bernoulli distribution in JAGS.
We further present our implementation of the Wiener diffusion first passage
time distribution, which is freely available via https://sourceforge.net/

projects/jags-wiener/.

Keywords: Custom distributions; JAGS; Bayesian; diffusion model; HDM

Introduction

JAGS (“Just Another Gibbs Sampler”; Plummer, 2003) is a free software package for
analysis of Bayesian models. JAGS uses a suite of Markov chain Monte Carlo methods—
general-purpose stochastic simulation methods—to draw samples from the joint posterior
distribution of the parameters of a Bayesian model. These samples can then be used to
draw inference regarding the model parameters and model fit. JAGS uses a dialect of the
BUGS language (Thomas, Spiegelhalter, & Gilks, 1992; Lunn, Jackson, Best, Thomas, &
Spiegelhalter, 2012) to express directed acyclic graphs, a mathematical formalism to define
joint densities. What makes JAGS particularly interesting, however, is that it is designed

Correspondence concerning this article may be addressed to JV joachim@uci.edu or DW do-
minik.wabersich@gmail.com. This project was partially supported by a grant from the National Science
Foundation’s Measurement, Methods, and Statistics panel to JV, and a travel grant from German Academic
Exchange Service (PROMOS) to DW. We are endebted to Martyn Plummer for helpful comments on this
manuscript and helping us with compilation issues. We also thank two anonymous reviewers and the action
editor for constructive comments on an earlier draft of this article.

EXTENDING JAGS 2

to be extensible with user-defined functions, monitors, distributions, and samplers.1

The goal of the present paper is to provide a how-to guide on writing custom exten-
sions for JAGS. While JAGS is envisioned as a flexible and extensible (modular) framework
and contains an infrastructure for customization, at the time of writing no tutorials, tech-
nical manuals, or other sources on how to do that were available.

In the section titled Steps to extending JAGS with a new module, we describe in
detail how custom distributions may be implemented in JAGS. This section will assume
some knowledge of the C++ programming language (and object-oriented programming) on
the part of the reader. Throughout, we use the Bernoulli distribution as a didactic example,
but JAGS can accommodate all other types of probability distributions (continuous and
discrete, univariate and multivariate) with little extra effort.

In the second part of the paper, we present a module implementing a distribution of
particular interest to the cognitive science community. The JAGS Wiener module (JWM)
adds the first passage time distribution of a drift diffusion process to JAGS. We also provide
two sanity checks of the JWM: an extensive simulation study, showing good recovery, and
an application to a previously analyzed data set, showing parallel results.

Steps to extending JAGS with a new module

In this section, we detail the steps required to write a new module for JAGS. JAGS
modules are library files that are located in the JAGS /modules directory. These modules
can be loaded during JAGS runtime in order to extend its functionality with more functions
and distributions or even sampling algorithms or monitors.

Modules are written in C++. In order to write a custom module that provides a new
distribution, we need to define two new C++ classes: one for the module itself, and one for
the distribution we will use. Throughout, we will display much of the required code, as well
as templates for files used in building and compiling. The code can be copied from this
text, or can be found on our SourceForge archive (and can be used as a template for new
modules). The Appendix contains a quick reference table to the required steps.

We use the Bernoulli distribution as an example to illustrate the basics of extending
JAGS because the functions that define this distribution are relatively easy to write without
the need for calling advanced functions from extra libraries.2 Using the naming scheme3

from JAGS, we will name our module class BERNModule and the distribution class DBern.

1Another desirable feature of JAGS is that it is truly free software, as it is open-source and released under
a free, copyleft license—it is “free-as-in-speech” as opposed to merely “free-as-in-beer”. The advantages of
open-source scientific software are many: not only does it enable researchers to check underlying functions
for accuracy and appropriateness, but it also contributes to the exchange of information and reproducibility,
even across platforms. In the particular case of JAGS, its modular and open-source nature enables the
potential formation of a contributor community not unlike that of the R system.

2Note, however, that JAGS includes a version of R’s math library, JRmath.h, providing many basic
functions that can be useful in writing extensions (e.g., there is a function for the normal density and
distribution). It is also possible to link to third-party libraries such as the LAPACK and BLAS libraries, for
optimized performance.

3In the JAGS naming scheme, a new distribution is given a short name (in our case Bern) and a long
name (in our case Bernoulli). Module classes will be called <SHORTNAME>Module, distribution classes will be
called D<shortname>, the module namespace will be called <longname>. Naming schemes for filenames are
given in the Appendix.

EXTENDING JAGS 3

Step 1: Defining a module class

We start by creating a specific module class that is a child of the base Module class,
which JAGS provides. To make a new module class, create a new file like the one displayed
in Box 1—this is our Bernoulli.cc module file. Place it in src/, a subfolder of your
working directory for this project.

In the first lines, we reference two header files containing pre-made functions we will
use. Apart from the JAGS header file Module.h (which is available through JAGS), we will
include the Bernoulli distribution class file, which we will create at a later point.

The new functions and classes we create need to be defined within a single names-
pace—a named environment that is used to group programmatic entities that are frequently
used together. The third line of Box 1 names the namespace.

Then, we define the module class, which we will call BERNModule. BERNModule is a
subclass of Module with public inheritance, and needs to define two functions—both are
required.

Constructor and destructor for the BERNModule class. In Box 1, the constructor
function BERNModule() is called whenever an object of our Bernoulli class is instantiated.

The constructor function BERNModule() needs to do two things. First, it needs to
instantiate a generic Module by calling the constructor function of the parent Module class.
It calls that generic constructor with a single argument: the name of the module (as a
string). Second, our new module’s constructor needs to call the insert function with as
input a new instance of the class describing the new distribution (in our case, DBern, which
is detailed below).

The destructor function ~BERNModule() needs to remove the instance. To do so, we
use a for loop over all instances of the module.4

The last line of Box 1 actually calls the new module’s constructor function and in-
stantiates one BERNModule.

The module class BERNModule is now complete. The second step in creating the JAGS
module is to define the DBern scalar distribution, which is inserted with the constructor call
in Box 1.

Step 2: Defining a scalar distribution

A new scalar distribution for JAGS is implemented through a new C++ class. The
new class will need, in addition to its own constructor function, the following four specific
functions:

• logDensity, a function to calculate and return the log-density
• randomSample, a function to draw and return random samples
• typicalValue, a function to return typical values

4For the present example, it is not strictly required to loop over many instances because the constructor
function only ever makes a single instance, but in general it is possible for a module to instantiate more
than one distribution on loading, so we write a more general destructor function that it will remove all
instantiated objects on unloading. Our current code will always loop over only one element, the instantiated
DBern object.

EXTENDING JAGS 4

1 #include <Module.h> // include JAGS module base class

2 #include <distributions/DBern.h> // include Bernoulli distribution class

3

4 namespace Bernoulli { // start defining the module namespace

5

6 // Module class

7 class BERNModule : public Module {

8 public:

9 BERNModule(); // constructor

10 ~BERNModule(); // destructor

11 };

12

13 // Constructor function

14 BERNModule::BERNModule() : Module("Bernoulli") {

15 insert(new DBern); // inherited function to load objects into JAGS

16 }

17

18 // Destructor function

19 BERNModule::~BERNModule() {

20 std::vector<Distribution*> const &dvec = distributions();

21 for (unsigned int i = 0; i < dvec.size(); ++i) {

22 delete dvec[i]; // delete all instantiated distribution objects

23 }

24 }

25

26 } // end namespace definition

27

28 Bernoulli::BERNModule _Bernoulli_module;

Box 1: The Bernoulli.cc module definition file.

• checkParameterValue, a function to check if the given parameter values are in the
allowed parameter space

We now create two new files in a subdirectory called src/distributions/. Our
files will be src/distributions/DBern.h, which will contain the class prototype and
src/distributions/DBern.cc, which will contain the actual computational implementa-
tion.

DBern.h. Box 2 contains our src/distributions/DBern.h. Near the top of the
code, we include the (JAGS) parent class ScalarDist in order to be able to use it as a
base class and inherit from it. Since we will be adding this to the namespace of our new
module, we use the same name for it here as in Box 1. What follows in Box 2 are the
prototypes of (1) the constructor function (which has the same name as the class), (2) the

EXTENDING JAGS 5

1 #ifndef DBERN_H_

2 #define DBERN_H_

3 #include <distribution/ScalarDist.h> // JAGS scalar distribution base

class

4

5 namespace Bernoulli {

6

7 class DBern : public ScalarDist // scalar distribution class

8 {

9 public:

10 DBern(); // constructor

11 double logDensity(double x, PDFType type,

12 std::vector<double const *> const ¶meters,

13 double const *lower, double const *upper) const;

14 double randomSample(std::vector<double const *> const ¶meters,

15 double const *lower, double const *upper,

16 RNG *rng) const;

17 double typicalValue(std::vector<double const *> const ¶meters,

18 double const *lower, double const *upper) const;

19 /** Checks that pi lies in the open interval (0,1) */

20 bool checkParameterValue(std::vector<double const *> const &

parameters) const;

21 /** Bernoulli distribution is discrete valued */

22 bool isDiscreteValued(std::vector<bool> const &mask) const;

23 };

24

25 }

26 #endif /* DBERN_H_ */

Box 2: The Bernoulli scalar distribution class header file DBern.h.

four required functions (which will be identical for other scalar distributions5), and (3) the
function isDiscreteValued, which will tell JAGS that the function has a discrete domain.

The logDensity function takes five input arguments:
1. The first argument (double x) contains the data point at which the function is to

be calculated.
2. The second argument, of the JAGS-specific type PDFType (defined in

Distribution.h, which is a parent of ScalarDist.h), defines different ways of calculating
the log density. During JAGS runtime, depending on how the node is used, this argument
can take different values. Possible values are PDF_FULL (for when the node is used for the
full evaluation of the likelihood, when the parameters and sampled values are not constant),

5These functions are implemented as virtual in the base class and need to be defined in the child class,
with the same name and arguments. It is possible to introduce new functions here.

EXTENDING JAGS 6

PDF_PRIOR (for when parameters are constant, so that terms that depend on them can be
omitted from the calculations), and PDF_LIKELIHOOD (used when the sampled value is con-
stant, so that terms that depend on it can be omitted from the calculations). The PDFType
can simply be ignored (as it is in our example).

3. The third argument (std::vector<double const *> const ¶meters) is a
reference to a vector that contains pointers for the parameters of the distribution. In our
case, the vector consists of a pointer to pi (the probability parameter of the Bernoulli
distribution; see Eq. 1).

4. The final two arguments (double const *lower and double const *upper) are
pointers to the lower and upper boundary of the distribution in case of truncated sam-
pling (see lib/graph/ScalarStochasticNode.cc in the JAGS code to find the call to the
logDensity function). In our example these are not used, and these arguments are ignored.

The arguments used in the other functions have similar definitions. One final input
argument, which appears only in the randomSample function, is the JAGS-specific RNG type
argument (RNG *rng). It points to an rng object that provides the following functions to
generate random numbers:

rng->uniform()

rng->exponential()

rng->normal()

These random number generating functions can be used to drive samplers for any
distribution.

DBern.cc. Now we need to implement the four functions and the constructor function
prototyped in Box 2. The distribution function of a Bernoulli distributed random variable
X, used as the basis for the computations, is in Equation 1.

P (X = 0) = (1− π)

P (X = 1) = π
(1)

Note that, while these four functions need to be present in the code, not all are strictly
speaking required to run an analysis. If drawing random samples from the distribution is not
a functionality your analyses require, it is possible to let randomSample return JAGS_NAN.
This will cause JAGS to throw an error if a model is defined that requires random sam-
pling from the new distribution, but it does not affect using the new node as a likelihood.
Similarly, if typicalValue is not implemented, JAGS won’t run a sampling process if no
starting values are supplied, but work otherwise. The checkParameterValue function is a
prerequisite for logDensity, however.

Further, as the Bernoulli distribution is a discrete valued distribution, we redefine
the function isDiscreteValued and let it return true (implementation of that particular
function is not necessary for continuous distributions: it will be inherited from the base
class and return false by default).

The implementations of the required functions are provided, with comments, in
Boxes 3, 4, and 5.

EXTENDING JAGS 7

Constructor and destructor for the DBern class. Finally, we need to set up constructor
and destructor functions for our ScalarDist class. The constructor function calls the
constructor for ScalarDist with three input arguments (as defined in the JAGS header file
distribution/ScalarDist.h). The first input argument is std::string const &name

and is used to give the distribution node a name, which can later be used in the JAGS
model file to define a node with this distribution (in this example, the distribution node will
be called “dbern2”). The second input argument of the constructor is unsigned int npar

and is used to define the number of arguments the new distribution node can take (that is
one parameter, the probability π, for this example). The third argument of the constructor is
Support support, a JAGS-specific variable that defines the support of our new distribution.
In our case, support is DIST_PROPORTION indicating a distribution that spans from 0 to
1. Other valid options for this argument are DIST_POSITIVE (for a distribution that has
support only on the positive real half-line), DIST_UNBOUNDED (for a distribution that spans
the entire real line) and DIST_SPECIAL (for other domains).

Step 3: Building the module

To configure and build our module, we used the GNU Autotools and libtool6 (these
are the same tools used in building the JAGS project), according to the steps below.

We will give a brief overview, together with all the information necessary to organize
the build process of the module described in this article. However, it cannot be guaran-
teed that these building methods will stay the same over time7, so that the build process
may be slightly different on newer machines and operating systems. However, build pro-
cesses are central to software development and are typically very well documented for new
architectures and operating systems.

Step 3.1: Creating a file structure. First, make sure that there exists a project direc-
tory with in it a subdirectory called src/, and that all the source files (that contain the
C++ code for the module) are present in the src/ subdirectory. For the given example, that
would be:

• The module main file: src/Bernoulli.cc
• In the sub-subdirectory src/distributions/, the distribution class files: DBern.h

and DBern.cc

Now create one configure.ac file in the main directory of the project and
one Makefile.am in every directory of the project (including all subdirectories). The
configure.ac file will contain information on how to correctly configure the project. The
Makefile.am files contain the necessary arguments for building, including libraries to link
to and the paths to the include directories (and more).

As the newly created module uses functions from the JAGS library, it needs to be
linked to the appropriate libraries and JAGS’ include files need to be available (i.e., JAGS
needs to be installed properly).

6GNU Autotools and libtool are well-documented, manuals are available via http://www.gnu

.org/software/autoconf/, http://www.gnu.org/software/automake/, http://www.gnu.org/software/

libtool/
7Fortunately, major changes to these kinds of tools are very rare—it is in the interest of the developers

to keep this process simple and relatively stable over time.

EXTENDING JAGS 8

1 #include <config.h> // system configuration file, created by Autoconf

2 // and defined in configure.ac

3 #include "DBern.h" // header file, containing class prototype

4 #include <rng/RNG.h> // provides random functions

5 #include <util/nainf.h> // provides na and inf functions etc.

6

7 #include <cmath> // library for standard math operations

8

9 using std::vector; // vector is used in code

10 using std::min; // min is used in code

11 using std::max; // max is used in code

12

13 #define PROB(par) (*par[0]) // makes code more readable

14

15 namespace Bernoulli { // module namespace

16

17 // The constructor function:

18 // also calls the constructor of the base class.

19 // The base class constructor takes as input arguments:

20 // 1 - the name of the distribution node, as used in the BUGS code

21 // 2 - the number of arguments of that node

22 // 3 - distribution type

23 DBern::DBern() : ScalarDist("dbern2", 1, DIST_PROPORTION)

24 {}

25

26 // missing functions, shown in Box 4, go here

27

28 }

Box 3: The DBern.cc file. Note that we need to include rng/RNG.h and util/nainf.h

from the JAGS library, to provide the RNG struct and the JAGS_* constants, as well as the
jags_* functions. cmath.h is needed for standard math operations.

EXTENDING JAGS 9

1 // this function checks if the probability parameter of the Bernoulli

2 // distribution lies between 0 and 1, and returns false if it doesn't

3 bool DBern::checkParameterValue (vector<double const *> const &

parameters) const

4 {

5 return (PROB(parameters) >= 0.0 && PROB(parameters) <= 1.0);

6 }

7

8 // this function calculates the log(density)

9 // at a given value (data point),

10 // for given parameter values

11 // (in this case for a given probability pi)

12 double DBern::logDensity(double x, PDFType type,

13 vector<double const *> const ¶meters,

14 double const *lbound, double const *ubound) const

15 {

16 double d = (x ? PROB(parameters) : 1 - PROB(parameters));

17 return (d == 0) ? JAGS_NEGINF : log(d);

18 }

19

20 // this function is used for drawing random samples for given parameter

21 // values (in this case for a given probability pi)

22 double DBern::randomSample(vector<double const *> const ¶meters,

23 double const *lbound, double const *ubound,

24 RNG *rng) const

25 {

26 return (rng->uniform() < PROB(parameters)) ? 1 : 0;

27 }

28

29 // this function returns a typical value of the distribution

30 // (in this case for a Bernoulli distribution with given probability pi)

31 double DBern::typicalValue(vector<double const *> const ¶meters,

32 double const *lbound, double const *ubound) const

33 {

34 return (PROB(parameters) > 0.5) ? 1 : 0;

35 }

Box 4: Functions from the DBern.cc file.

EXTENDING JAGS 10

1 // this redefined function is needed, as the Bernoulli distribution is

2 // discrete

3 bool DBern::isDiscreteValued(vector<bool> const &mask) const

4 {

5 return true;

6 }

Box 5: Further functions from the DBern.cc file.

Step 3.2: Creating the configure.ac file. Box 6 and Box 7 together show the
configure.ac file. All the functions used in this file are documented in the documen-
tation of Autoconf (see Footnote 6). This file contains instructions on how to prepare the
module for building (e.g., which compiler to use). Much in the file can remain unchanged.

The AC_INIT directive takes as its first argument the package name, as second ar-
gument the package version, as third argument a contact email address (for bug reports)
and as fourth argument the name for the .tar file. JAGS_MAJOR and JAGS_MINOR should be
edited to the current JAGS version that is used. AC_CONFIG_SRCDIR should contain a path
to a (any) file of the package. The AC_CONFIG_FILES directive at the end tells the con-
figuration process where to create Makefiles using the Makefile.am files as a template.8

The libltdl directory and its Makefile.am will be created automatically. If one follows
all directions given here, nothing else has to be changed.

Step 3.3: Creating several Makefile.am files. Box 8 shows the Makefile.am file in
the main directory. The configuration process will use a subdirectory called m4/, which
needs to be created manually. The file also needs to reference the building subdirectories:
the src/ directory containing the actual source, and a libtool/ directory, which will be
created automatically.

Box 9 shows the Makefile.am file in the src/ directory. It contains the instructions
to produce the module library.

The first directive, SUBDIRS, points to the subdirectories to be used; for JAGS modules
this will typically be distributions. The next directive defines the JAGSMODULE libtool
library to be created. The library file will be named <longname>.la (e.g., Bernoulli.la).
The next directive defines where to find the library source code. The following directive
gives the C++ compiler additional options. The -I path option passes to the compiler the
path of JAGS’ include directory (a subdirectory of the system’s include path indicated by
$(includedir)).

The next set of directives tell the compiler which object code (i.e., compiled code)
should be linked to the libraries. For the Bernoulli module this is the object code for the
Bernoulli distribution and the JAGS library. The -ljags argument searches for the JAGS

8The Makefiles files are system-specific and necessary for the build process, whereas the Makefile.am

files are system-independent. They contain directives to generate appropriate Makefiles for the system to
build the source.

EXTENDING JAGS 11

1 dnl Process this file with Autoconf to produce a configure script.

2

3 AC_PREREQ([2.68])

4

5 AC_INIT([JAGS-BERN],[1.1],[emailof@auth.or],[JAGS-BERN-MODULE])

6 JAGS_MAJOR=3

7 JAGS_MINOR=3

8 AC_SUBST(JAGS_MAJOR)

9 AC_SUBST(JAGS_MINOR)

10

11 AC_CANONICAL_HOST

12 dnl The following lines check if the required files exist

13 AC_CONFIG_SRCDIR([src/distributions/DBern.cc])

14 AC_CONFIG_MACRO_DIR([m4])

15 dnl The configure process creates a header file called config.h

16 AC_CONFIG_HEADERS([config.h])

17 AM_INIT_AUTOMAKE

18

19 dnl libtool and ltdl configuration

20 LT_PREREQ(2.2.6)

21 LT_CONFIG_LTDL_DIR([libltdl])

22 LT_INIT([dlopen disable-static win32-dll])

23 LTDL_INIT([recursive])

24

25 dnl Indicate C++

26 AC_PROG_CXX

Box 6: The first part of the configure.ac file (file continues in Box 7). Lines beginning
with dnl (“delete to new line”) denote comments.

library in the system library directory (note that since Windows organizes its libraries
differently and the JAGS library will be in a slightly different location, we need to add a
Windows-specific part here). Had we used additional external libraries, then we could add
thes here as well. For example, we could link to the JRmath.h library, with -ljrmath (and
-ljrmath-0 in the Windows part).

Box 10 shows the Makefile.am file of the src/distributions/ directory. It contains
the instructions to build the Bernoulli distribution code, which will then be included in the
package library. The sub-library distributions/Bernoullidist.la is named on line 1
of Box 10. This name must be matched in the src/Makefile.am (line 9 of Box 9). In
Box 10, the directive noinst_LTLIBRARIES will cause the sub-library to be built, but not
installed (i.e., the code will be compiled but not copied to a system location). The sub-
library will be incorporated in the module library by src/Makefile.am. As before, the
Bernoullidist_la_CPPFLAGS directive takes arguments to be passed to the compiler. In

EXTENDING JAGS 12

1 dnl Optionally, reference the Rmath library

2 AC_DEFINE(MATHLIB_STANDALONE, 1, [Define if you have standalone R math

library])

3

4 case "${host_os}" in

5 mingw*)

6 win=true ;;

7 *)

8 win=false ;;

9 esac

10 AM_CONDITIONAL(WINDOWS, test x$win = xtrue)

11

12 jagsmoddir=${libdir}/JAGS/modules-${JAGS_MAJOR}

13 AC_SUBST(jagsmoddir)

14

15 AC_CONFIG_FILES([

16 Makefile

17 libltdl/Makefile

18 src/Makefile

19 src/distributions/Makefile

20])

21 AC_OUTPUT

Box 7: The second part of the configure.ac file (continued from Box 6).

1 ACLOCAL_AMFLAGS = -I m4

2 SUBDIRS = libltdl src

Box 8: The Makefile.am file.

this case, it passes the include directories where the header files for the code can be found.
With all the files organized as described in this section, we can now proceed to con-

figure and build the module using the steps below. We first provide the steps for building
on a unix-like (i.e., Mac or linux) environment, in which building is much easier than under
Windows systems. Unfortunately, building on Windows systems is a tedious and involved
affair. In particular, the autoreconf -fvi command on a Windows system is not possible
with standard emulators like MinGW. It is, however, possible to perform the first two steps
below on a Mac/linux system, then creating a source .tar file, copy and extract that on a
Windows machine, and then using the MinGW environment with msys to configure and
build the source. We will outline the full building process for Mac/linux systems, and then
describe the steps needed to compile for Windows systems.

Step 3.4a: Building the module (Mac/linux). To proceed in a Mac/linux system,
follow these steps:

EXTENDING JAGS 13

1 SUBDIRS = distributions

2

3 jagsmod_LTLIBRARIES = Bernoulli.la

4

5 Bernoulli_la_SOURCES = Bernoulli.cc

6

7 Bernoulli_la_CPPFLAGS = -I$(includedir)/JAGS

8

9 Bernoulli_la_LIBADD = distributions/Bernoullidist.la

10 if WINDOWS

11 Bernoulli_la_LIBADD += -ljags-$(JAGS_MAJOR)

12 else

13 Bernoulli_la_LIBADD += -ljags

14 endif

15

16 Bernoulli_la_LDFLAGS = -module -avoid-version

17 if WINDOWS

18 Bernoulli_la_LDFLAGS += -no-undefined

19 endif

Box 9: The src/Makefile.am file.

1 noinst_LTLIBRARIES = Bernoullidist.la

2

3 Bernoullidist_la_CPPFLAGS = -I$(top_srcdir)/src -I$(includedir)/JAGS

4

5 Bernoullidist_la_LDFLAGS = -no-undefined -module -avoid-version

6

7 Bernoullidist_la_SOURCES = DBern.cc

8

9 noinst_HEADERS = DBern.h

Box 10: The src/distributions/Makefile.am file.

EXTENDING JAGS 14

• autoreconf -fvi: this command will generate a number of auxiliary files that are
necessary for the configuring and building process.

• ./configure: this command configures the source package for building on your
system.

• make: this command compiles the source code into system-specific object code.
• make install: this command creates local copies of the object code, placing it in

the correct locations in the filesystem (this step typically requires administrator/superuser
privileges). In our case, this command will copy the module library to an appropriate
location in the system where JAGS can find it and load it.9 Alternatively, this can be done
manually by copying the libraries to the JAGS directory that contains the other module
libraries.

Additionally, after running the first two commands (the configuration process), one
can easily create source .tar files with make dist-gzip or make dist-bzip2 (or whichever
format one prefers and is supported by the Makefile routines).

Step 3.4b: Building the module (Windows). Building under Windows follows a similar
process, with some added steps. First, create the Windows libraries.

We start with installing MinGW (MinGW installer including msys) and the TDM-
GCC Compiler Suite, which can be obtained via http://www.mingw.org and http://

tdm-gcc.tdragon.net.10 In the rest of this paragraph, it will be assumed that MinGW
and TDM-GCC are installed in their default directories.

Second, delete all *.dll.a files in the TDM-GCC directory, to force the compiler to
link to the static libraries (the *.dll files). This is necessary to build libraries that will
work on systems that don’t have TDM-GCC.

Third, change the path in the file C:\mingw\msys\1.0\etc\fstab from C:\mingw

/mingw to C:\MinGW64 /mingw.11 This is necessary in order to use the TDM-GCC compilers
instead of the standard MinGW compilers.

Now the actual configuration and building process can commence. The module needs
to locate the JAGS include files and the JAGS libraries. As Windows has no standard path
where to look for these files, this needs to be done manually. Edit the code in Box 11 to
reflect the paths to the JAGS libraries (with the -L option) and the JAGS include files
(with the -I option). The code is given for a standard installation of JAGS 3.3.0.

Start msys (the MinGW shell), extract the source .tar file in any directory, navigate to
that directory by using the cd command and run the appropriate commands given in Box 11.
Executing these commands will create a number of files in the src/.libs/ directory. Now
copy those files that are named after your module and ending in .dll, .dll.a and .la to
your JAGS modules directory (where all the other module libraries are located). You can

9Unfortunately, this command does not work under Windows. It is possible, however, to create installers
for Windows machines that include precompiled binaries and copy them to the correct locations. One
easy-to-use third-party tool to create such installers is NSIS (http://nsis.sourceforge.net).

10Note that when compiling a module it is necessary to use the same tool chain as was used to compile
JAGS, which at the time of writing means TDM-GCC v4.6.1. Newer versions of TDM-GCC will probably
cause errors (and note also that older versions of TDM-GCC will by default update themselves during
installation unless the user unchecks that option). For future releases of JAGS, check the JAGS Manuals for
information on which compiler version was used.

11These are the default paths. They might be different, depending on where the software was installed.

EXTENDING JAGS 15

1 # For building 32bit binaries

2 CXX="g++ -m32" \

3 ./configure LDFLAGS="-L/c/Progra~1/JAGS/JAGS-3.3.0/i386/bin" \

4 CXXFLAGS="-I/c/Progra~1/JAGS/JAGS-3.3.0/include"

5 make

6

7 # For building 64bit binaries

8 CXX="g++ -m64" \

9 ./configure LDFLAGS="-L/c/Progra~1/JAGS/JAGS-3.3.0/x64/bin" \

10 CXXFLAGS="-I/c/Progra~1/JAGS/JAGS-3.3.0/include"

11 make

Box 11: Building the source code under Windows. Note that if you build libraries for both
32bit and 64bit you need to run make clean between the two building processes.

also use these files to create an installer (e.g., with NSIS; see Footnote 9).
After installing the new module, JAGS will recognize a new stochastic node, to be

used as follows: x ~ dbern2(pi), where the string “dbern2” is defined by us in Box 3
(line 23) and its parameter is interpreted through line 13.

Extending the module with logical nodes

Adding a custom distribution is only one of several possible extensions a JAGS module
can provide. One other possible extension is the creation of logical nodes (i.e., deterministic
functions, rather than stochastic ones; logical nodes are useful for transforming variables
within a JAGS model file, and are always preceded by an assignment operator <-.).

Here we demonstrate how to supplement our Module example with a logical node that
calculates the Bernoulli log-density at a given data point for a given parameter set.12 To do
so, we will write a scalar function. Much like the scalar distribution, the ScalarFunction

class requires the implementation of two functions:
• evaluate: the function which does the calculations and returns the result.
• checkParameterValue: a function to check if the parameter values are in the do-

main of the function.
In the src/ directory of our module, add a subdirectory functions/ and in it the

two files: LogBernFun.h and LogBernFun.cc. Box 12 and Box 13 show examples of such
files.

After the function class is ready, we need to add it to the Bernoulli.cc module by
loading it with the constructor and deleting it with the destructor (as in Box 1). See Box 14
for the lines to add.

12Of course, it is possible to write a module that contains only a logical node without tacking it on to
another module.

EXTENDING JAGS 16

1 #ifndef BERN_FUNC_H_

2 #define BERN_FUNC_H_

3

4 #include <function/ScalarFunction.h> // the base class used

5

6 namespace Bernoulli { // module namespace

7

8 class LogBernFun : public ScalarFunction

9 {

10 public:

11 LogBernFun(); // the constructor function

12

13 // the two necessary functions that have to be implemented

14 bool checkParameterValue(std::vector<double const *> const &args)

const;

15 double evaluate(std::vector<double const *> const &args) const;

16 };

17

18 }

19

20 #endif /* BERN_FUNC_H_ */

Box 12: The src/functions/LogBernFun.h file.

Finally, add an appropriate Makefile.am to the newly created src/functions/ direc-
tory. In src/functions/Makefile.am, the sub-library is named (here: Bernoullifunc.la).
Also add the name of that sub-library to src/Makefile.am like this: bernoulli_la_LIBADD
+= functions/Bernoullifunc.la (in order to incorporate the sub-library in the common
Bernoulli library). Additionally, add the name of the subdirectory (/functions) to the
SUBDIRS directive in the first line of src/Makefile.am, and add the appropriate directives
to generate the Makefile file in the configure.ac file. The required Makefile.am will be
similar to that in Box 10 with only small edits (replacing the filenames and the name for
the sublibrary in the first line and in the following lines, where it is part of the directive).
In the configure.ac file, merely add a line to the last directive to tell Autoconf to create
a Makefile in the src/functions/ directory.

Now, once the module is installed, JAGS will recognize a new logical node that can
be used as follows: p <- logbern(x,pi), where the name of the node is defined in Box 13
(line 18), and the order of the parameters is defined in lines 10 and 11. This line, when
used in a JAGS model file, will store in the variable p the log-likelihood under a Bernoulli
distribution of data point x given parameter pi. Storing the log-likelihood at every iteration
of the Gibbs sampler can be useful for convergence checks or to compute model fit statistics
in the Bayesian framework.

Note that there exist still more ways to extend JAGS. One can, for example, write
custom sampling algorithms, or multivariate distributions—fully describing the installation

EXTENDING JAGS 17

1 #include <config.h>

2 #include "LogBernFun.h" // class header file

3 #include <util/nainf.h> // provides na and inf functions

4

5 #include <cmath> // basic math operations

6

7 using std::vector; // vector is used in the code

8 using std::string; // string is used in the code

9

10 #define x(par) (*args[0])

11 #define prob(par) (*args[1])

12

13 namespace Bernoulli { // module namespace

14

15 // constructor function, also calls the constructor of the base class

16 // with 2 arguments: the name of the logical node, as used later

17 // in a model file and the number of arguments

18 LogBernFun::LogBernFun() :ScalarFunction("logbern", 2)

19 {}

20

21 // checks if the parameter pi lies between 0 and 1

22 bool LogBernFun::checkParameterValue(vector<double const *> const &args)

23 const

24 {

25 return (x(par) == 0.0 || x(par) == 1.0

26 && (prob(par) <= 1.0 && prob(par) >= 0.0));

27 }

28

29 // does the computation that the logical node is supposed to do

30 double LogBernFun::evaluate(vector<double const *> const &args) const

31 {

32 double d = ((x(par) == 1) ? prob(par) : 1-prob(par));

33 return (d == 0) ? JAGS_NEGINF : log(d);

34 }

35

36 }

Box 13: The src/functions/LogBernFun.cc file.

EXTENDING JAGS 18

1 // add this to the constructor function

2 // to instantiate a function object when the module is loaded

3 insert(new LogBernFun);

4

5 // add this to the destructor function

6 // to remove the instantiated funtion object when the module is unloaded

7 vector<Function*> const &fvec = functions();

8 for (unsigned int i = 0; i < fvec.size(); ++i) {

9 delete fvec[i];

10 }

Box 14: The code to add to src/Bernoulli.cc file.

procedure of every possible extension would be beyond the scope of a single article. However,
the open-source nature of JAGS allows enterprizing researchers to study the implementation
of various components of the program13 (we would recommend the multivariate normal
distribution, DMNorm.cc, as an example of a multivariate distribution, and the code for the
slice sampler, Slicer.cc, as a sampler example).

The generic method of creating modules presented here will work for more sophisti-
cated components as well. The main difference between the workflow outlined here and that
for a new component will be in the time that needs to be invested in studying the JAGS
framework for the appropriate function class.

The next section focuses on the installation—from a end user point of view—of a
custom stochastic node that we believe to be of use for the cognitive science community.

The JAGS Wiener module

Few cognitive models have had as much success as the diffusion model for two-choice
response times (see Wagenmakers, 2009, for a review). Recently, there has been a boom of
research actually applying the diffusion model, since practical, user-friendly software has be-
come available (Vandekerckhove & Tuerlinckx, 2007; Voss & Voss, 2007; Wagenmakers, Van
Der Maas, & Grasman, 2007; Wiecki, Sofer, & Frank, 2011). The extension into hierarchi-
cal Bayesian modeling provides the most flexible modeling framework yet (Vandekerckhove,
Tuerlinckx, & Lee, 2011). However, flexible implementations of the hierarchical diffusion
model (HDM) are currently limited to WinBUGS (Lunn, Thomas, Best, & Spiegelhalter,
2000), which is not truly free software (although it is gratis14) and only runs natively on
Windows systems. The present paper hence addresses a collateral need by providing an
HDM implementation in an open-source, platform-independent framework.

The JWM is an extension for JAGS and is designed to integrate seamlessly with the
existing JAGS platform. It extends JAGS to recognize dwiener, the first passage time
density of a drift diffusion process as a new stochastic node with four parameters: the
boundary separation α, the nondecision time τ , the initial bias β and the drift rate δ. The

13In fact, studying the source code is how the present methods came about.
14There exists, however, an open-source port of WinBUGS: OpenBUGS (http://www.openbugs.info).

EXTENDING JAGS 19

Symbol Parameter Interpretation

α Boundary separation Speed-accuracy trade-off
(high α means high accuracy)

β Initial bias Bias for either response
(β > 0.5 means bias towards response ‘A’)

δ Drift rate Quality of the stimulus
(close to 0 means ambiguous stimulus)

τ Nondecision time Motor response time, encoding time
(high means slow encoding, execution)

Table 1:: The four main parameters of the Wiener diffusion model, with their substantive
interpretations (reprinted with permission from Vandekerckhove, 2009).

psychological interpretations of the four Wiener distribution parameters are summarized
in Table 1, but for a more detailed description of the assumptions of the Wiener diffusion
model we refer to Vandekerckhove et al. (2011).

Installing and using the module is straightforward, as described below.

Installation

In order to install and run the JWM, a recent version of JAGS is required.15 JAGS
can be freely downloaded from http://mcmc-jags.sourceforge.net/, but is also available
as a package for various Linux distributions that use the RPM Package Manager, as well as
Debian and Ubuntu. For the purposes of the installation procedure, we will assume that a
recent version of JAGS is already available.

Because JAGS is designed with the capacity for extension in mind and it is capable
of dynamically loading libraries, installing a module does not compromise the regular func-
tioning of JAGS. To activate the extensions, modules have to be loaded explicity by JAGS.
To allow the program to locate the new libraries, they need to be installed according to the
instructions below.

We have split up the installation instructions between a procedure for Windows sys-
tems and one for Linux and Mac systems.

Windows systems. We provide precompiled libraries for Windows that can be readily
downloaded from the SourceForge repository. The installation proceeds along the following
steps:

1. Obtain the Windows installer from SourceForge at: https://sourceforge.net/

projects/jags-wiener/files.
2. Execute the installer and make sure to save the libraries at the correct position

so that JAGS will be able to find the module. The correct location will be C:\Program

Files\JAGS\JAGS-3.3.0\i386\modules\ (for JAGS Version 3.3.0, the Version number
in the path changes for older or newer releases) on 32-bit systems and C:\Program

Files\JAGS\JAGS-3.3.0\x64\modules\ (for JAGS Version 3.3.0) on 64-bit systems (pos-
sibly replacing the JAGS root directory with its actual installation directory). The installer
just needs the JAGS root directory to install the libraries at the correct position.

15The module is written and tested using JAGS version 3.3.0, but works for versions ≥ 3.0.0. Note that
our compiled binaries may not be compatible with future versions of JAGS.

EXTENDING JAGS 20

Linux and Mac systems, compiling from source. The general way to install our module
on Linux and Mac systems is to compile the source for your system and then install them.
For this operation, some general knowledge of GNU Tools and using a console interface
(i.e., the terminal) is required. The following instructions are linux- and Mac-specific. The
installation instructions will assume that JAGS is already installed, so that it is possible to
link correctly to the JAGS library.

For those interested in compiling under Windows, please note that the MinGW envi-
ronment with mysys needs to be installed, as well as the TDM-GCC compiler suite. Please
see the previous instructions of the subsection titled Step 3: Building the module and
the README.win file, present in the win source directory, for further instructions on compiling
under Windows.

1. Get the JWM tar archive, containing the source code, from SourceForge at
https://sourceforge.net/projects/jags-wiener/files and extract it.16

2. cd into the directory containing the source code.
3. In case you are compiling the source from a cloned repository, run autoreconf

-fvi before configuring (not necessary if you use the stable .tar file release).
4. Configure and compile the source code for your system with the following com-

mands in a terminal window: ./configure && make. When this is done, install the li-
braries on your system with the following command, which usually requires root privileges:
sudo make install.
The JWM should now be installed on your system.

Ubuntu Linux, with the Advanced Packaging Tool. If you use Ubuntu Linux, you
can alternatively install the JWM with the Advanced Packaging Tool (APT). The authors
maintain an online repository (a personal package archive, or PPA, called cidlab) from
which the module can be downloaded. Adding the PPA, updating APT, and installing the
module is achieved with this code:

sudo apt-add-repository ppa:cidlab/jwm

sudo apt-get update

sudo apt-get install jags-wiener-module

Testing the installation

The successful installation can be confirmed by loading the Wiener module in JAGS.
In order to do that, bring up a terminal or command window and start JAGS. Then do the
following in the JAGS interface:

$ load wiener

Loading module: wiener: ok

Alternatively, R users can use the rjags package to interface with JAGS. Loading the
module in R works like this:

> library(rjags)

16Instead of the tar archive, you can also get the current developers’ version from the web-based mercurial
repository, hosted on SourceForge at https://sourceforge.net/projects/jags-wiener/code. For normal
usage, it is generally recommended to use the stable release, that is, the .tar file.

EXTENDING JAGS 21

Loading required package: coda

Loading required package: lattice

linking to JAGS 3.3.0

module basemod loaded

module bugs loaded

> load.module("wiener")

module wiener loaded

We have also made available a version of the MATJAGS MATLAB-to-JAGS interface
that loads extra modules, as specified. The MATJAGS interface is a single MATLAB file
that can be downloaded from the SourceForge repository. Documentation is provided within
that file.

Using the JAGS Wiener module

With the JWM installed, the dwiener stochastic node is now available for use in
a model definition. To define that a certain node is distributed according to a Wiener
distribution with the four parameters given in Table 1, the following stochastic node can be
used:

x ~ dwiener(alpha,tau,beta,delta)

This syntax is almost identical to that used in the wiener.odc extension to WinBUGS
as presented in the supplemental material to Vandekerckhove et al. (2011). The main differ-
ences to that implementation are that (a) the diffusion coefficient s is set to 1 in our JAGS
implementation (rather than 0.1 in the WinBUGS one) and (b) the JAGS implementation
takes as third input argument the relative bias parameter β (rather than the absolute start-
ing point ζ0 = αβ in the WinBUGS version). Setting the diffusion coefficient s to 1 instead
of 0.1 is computationally more efficient and further yields a more natural interpretation of
the drift rate parameter (because it now has a range similar to that of a standard normally
distributed variate). To convert to a different evidence scale (i.e., a different value for s),
multiply the obtained17 drift rate and boundary separation parameters by s. We use the β

parameter instead of the ζ0 starting point primarily because β has an interpretation on an
absolute scale (the unit scale), whereas ζ0 can only be interpreted relative to the boundary
separation α.

Some of the parameters have limited domains: α, τ > 0 and 0 < β < 1. Note that
the distribution is implemented as a univariate distribution. To use the distribution, choice
response time data should be coded in such a way that error response times (or whichever
response type is associated with the lower boundary) are given negative values. Specifically:

x =

{

RT if correct
−RT if error

For a worked example on how the module can be used, see the examples directory in
the JWM repository on SourceForge, or download a zipfile of the example from SourceForge
at https://sourceforge.net/projects/jags-wiener/files.

17Alternatively, s can be coded directly in the BUGS file, using the stochastic node as follows: y ~

dwiener(alpha/s,tau,beta,delta/s).

EXTENDING JAGS 22

Testing of the JAGS Wiener Module

In this section, we report results of some of the extensive testing of our JAGS Wiener
Module, which we created and built according to the instructions above. The first part
describes results from a numerical simulation experiment, while the second part describes
an application to a benchmark data set.

Parameter recovery simulations

To affirm the accuracy of our implementation of the Wiener distribution, we ran a
comprehensive numerical experiment. Using the DMAT toolbox (Vandekerckhove & Tuer-
linckx, 2008) we generated data from known parameter sets and then used JAGS to recover
the parameters. In all cases, we generated 1, 000 data sets with three conditions, which
differed in their drift rates only. The three drift rates were always (−3.0, 1.0, 4.0). The
boundary separation was either 0.6, 1.2, or 3.0, the bias was either 0.3, 0.5, or 0.7, and the
nondecision time was always 0.4s, yielding a total of nine distinct parameter sets. Using
these parameters, we generated data sets with 200 data points per condition. We then
used JAGS to estimate parameters. Our estimate was the posterior mean obtained after
running four chains for 2, 000 iterations and discarding the first 1, 000 as burnin and using
no thinning, for a total of 4, 000 samples.

In only one case (0.01%) was the R̂ < 1.05 criterion for convergence (see Gelman,
Carlin, Stern, & Rubin, 2004) violated. This case was discarded. In general, recovery was
good. Figure 1 shows the distributions of each parameter’s estimates by parameter set.
Though some parameters in some conditions, particularly the drift rate parameter, show
some variability, no systematic biases are evident for any parameter.

Benchmark data

Data set and theoretical framework. To further illustrate the functionality and utility
of our module, we applied a Bayesian hierarchical diffusion model analysis to benchmark
data from Vandekerckhove, Panis, and Wagemans (2007, data used with permission). The
data come from nine participants, who performed a visual detection task (i.e., they reported
whether or not a change occured in a figure in a temporal 2AFC task). The difficulty of this
task was manipulated in a 2-by-2 factorial design, resulting in four experimental conditions
plus one control condition (where no change in the figure occured). The dependent variables
X (binary, 1 if the correct response was given, 0 otherwise) and T (the reaction time) were
recoded into a single variable Y = (2X−1)T , preserving all the information in the bivariate
data. For a more detailed description on the data and the research question, we refer the
reader to Vandekerckhove et al. (2007).

Vandekerckhove et al. (2011) have previously used the same data to show the ad-
vantages of a hierarchical diffusion model in a Bayesian framework. Here the focus lies on
demonstrating how we use the same theoretical framework with the presented, open-source
software. Moreover, we will do our analysis with two different models, differing in the exact
specification of the hierarchical structure. For a more detailed description of the model
framework, see Vandekerckhove et al. (2011).

Model definitions. Following Vandekerckhove et al. (2011), we assumed an unbiased
diffusion process and set β = .5 accordingly. We further allowed the boundary separation

EXTENDING JAGS 23

1 2 3 4 5 6 7 8 9
0

1

2

3

Boundary separation (α)

1 2 3 4 5 6 7 8 9
−4

−2

0

Drift rate 1 (δ
1
)

1 2 3 4 5 6 7 8 9
0.2

0.4

0.6

0.8

Bias (β)

1 2 3 4 5 6 7 8 9
0

2

4

Drift rate 2 (δ
2
)

1 2 3 4 5 6 7 8 9
0.3

0.4

0.5
Nondecision time (τ)

1 2 3 4 5 6 7 8 9
3

4

5

6

Drift rate 3 (δ
3
)

Figure 1. : Results of the parameter recovery simulations. In all panels, the nine levels refer
to the nine different parameter sets. True parameter values are given in the text. Values are
recovered as posterior means, and the plots display the population of parameter sets over
1, 000 simulated data sets. Circles indicate mean recovered values, whiskers span 1.5 times
the interquartile range, and the edges of the boxes are the 25th and 75th percentiles. The
results indicate very good recovery, with slightly more variability in the drift rate estimates
than in the other parameters, especially in the conditions with low boundary separations.

EXTENDING JAGS 24

parameter α to differ between persons as a random effect. In other words, every person p

is allowed to have their own boundary separation parameter α(p), which is a draw from a
joint population distribution: α(p) ∼ N(µα, σ

2
α).

The nondecision time τ(pij) is also allowed to differ between persons p, conditions i

and trials j. It is a random variable with mean θ(p) and variance χ2
(p), both of which are

themselves seen as random variables, differing between persons, with respective population

means µχ and µθ and variances σ2
χ and σ2

θ : τ(pij) ∼ N
(

θ(p), χ
2
(p)

)

and θ(p) ∼ N
(

µθ, σ
2
θ

)

and

χ(p) ∼ N
(

µχ, σ
2
χ

)

.
In the first model, M1, we will not estimate µχ and σχ, but set them to the fixed

values µχ = .35 and σχ = .125, casting these as fixed effects rather than random ones.18

The drift rate parameter δ(pij) is also allowed to differ between trials, conditions and
persons. Moreover, it is cast as a random variable with a condition-by-person-specific mean
ν(pi) and person-specific variance η2(p). The mean ν(pi) is itself a random parameter with

mean µν(i) and variance σ2
ν(i), which both differ between conditions as fixed effects. The

variance η2(p) differs between persons and is a random variable with the population mean

µη and variance σ2
η . In the M1 model, we will not estimate µη and ση, but set them to 3.5

and 3.5, respectively.
The second model (M2) differs from the first (M1) only in that µχ, σχ, µη and ση

are free parameters whose values are estimated by JAGS. Figure 2 shows a graphical model
representation of the second model. A graphical representation of the first model would
look identical, but for the removal of the four now fixed nodes.

Results—technical. We ran three chains with 50,000 iterations each for the M1 model
and three chains with 250,000 iterations each for the M2 model. For no parameters did
the potential scale reduction factor R̂ exceed 1.02 in M1. In M2, ηµ and ησ exceeded
an acceptable value with 1.8 and 2.88, respectively, whereas all other parameters, and the
deviance (i.e., the log-posterior), had R̂-values of approximately 1.

The Monte Carlo chains ofM1 showed high autocorrelation and poor mixing, prompt-
ing us to subsample the chains by a factor of 1,000 in addition to using a burn-in period of
1,000, resulting in 150 independent samples. The overall shape of the thinned chains was
satisfactory, based on visual examination. Figure 3 shows the deviance chain of the easy
model before and after burning and thinning, with the chain after burning and thinning
showing good mixing.

Similar results held for the more complex model M2: High autocorrelation and un-
converged chains at the beginning were removed by burning the chains with 20,000 and
thinning them by 2,000, resulting in 348 independent samples. Figure 4 shows a typical
chain of M2. Two parameters showed poor mixing even after burning and thinning: ηµ and
ησ. However, the total deviance of the model did not show convergence issues, suggesting
that these two parameters converge poorly due to the modest impact they have on the
model’s fit to the data (i.e., they are poorly identified by the data).

18The theoretical difference between fixed and random effects is subtle. We refer to De Boeck (2008) and
Gelman and Hill (2007) as good starting points regarding the issue. For our purposes, it suffices to know
that, while random effects are particularly useful as generalization tools, they occasionally carry an additional
computational burden that may not be warranted if the particular parameter is not of core interest. This is
why we provide an example for each scenario.

EXTENDING JAGS 25

y(pij)τ(pij)

χ(p)

µχ σχ

δ(pij)

ν(pi)

µν(i)

σν(i)

θ(p)

µθ σθ

η(p)

µη ση

α(p)

µα σα

j = 1, ..., J

i = 1, ..., I

p = 1, ..., P

**

* *

Figure 2. : The graphical model for the M2 model. The nodes that are indicated with stars
and connected with dashed arrows— µχ, σχ, µη and ση —are set to fixed values in the M1

model.

Finally, Table 2 shows the summary statistics of the drift rate population distributions
for the M1 model and the M2 model. As the table shows, the parameters differ between
conditions. The outcome of our analysis with JAGS did not substantially differ from the
results reported Vandekerckhove et al. (2011).

Summary

JAGS is an open-source software package for the analysis of graphical models, and
is written with extensibility in mind. Additionally, open-source software is advantageous
for academic research because of its permanency and accessibility. We provide step-by-
step instructions on how to implement custom distributions and logical nodes in JAGS.
It is hoped that our documenting the process of extending JAGS will contribute to the
formation of a collaborative community that will extend the usefulness of JAGS even more.

We implement the first passage time distribution of a Wiener diffusion model as a
worked example, and provide the resulting module as freely downloadable package.

References

De Boeck, P. (2008). Random item IRT models. Psychometrika, 73 (4), 533–559.
Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2004). Bayesian data analysis. New York: Chapman

& Hall/CRC.

EXTENDING JAGS 26

Bad chain

Iterations

D
ev

ia
nc

e

40000 40025 40050

−
90

00
−

60
00

Lag

A
ut

oc
or

re
la

tio
n

0 10 20

−
1

0
1

Good chain

Iterations

D
ev

ia
nc

e

0 25 50

−
90

00
−

60
00

Lag

A
ut

oc
or

re
la

tio
n

0 10 20

−
1

0
1

Figure 3. : Examples of a good and a bad chain. The upper left panel shows the deviance
chain, as it was sampled. The lower left panel shows the deviance chain after thinning and
burning. The two panels on the right show autocorrelation plots before and after thinning,
respectively.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models.
Cambridge, MA: Cambridge University Press.

Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D. (2012). The BUGS Book: A
practical introduction to Bayesian analysis. CRC Press.

Lunn, D., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS—A Bayesian modelling
framework: concepts, structure, and extensibility. Statistics and computing, 10 (4), 325–337.

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs
sampling.

Thomas, A., Spiegelhalter, D., & Gilks, W. (1992). BUGS: A program to perform Bayesian inference
using Gibbs sampling. Bayesian statistics, 4, 837–842.

Vandekerckhove, J. (2009). Extensions and applications of the diffusion model for two-choice response
times. Unpublished doctoral dissertation, University of Leuven.

Vandekerckhove, J., Panis, S., & Wagemans, J. (2007). The concavity effect is a compound of local
and global effects. Attention, Perception, & Psychophysics, 69 (7), 1253–1260.

Vandekerckhove, J., & Tuerlinckx, F. (2007). Fitting the Ratcliff diffusion model to experimental

EXTENDING JAGS 27

Iterations

ν (
1)

0 20 40 60 80 100

−
0.

5
0.

5
1.

5

Lag

A
ut

oc
or

re
la

tio
n

0 10 20

−
1

0
1

Figure 4. : Trace and autocorrelation plot for the first drift rate mean of the M2 model.

M1 M2

Type Quality µν(i) σν(i) µν(i) σν(i)
ν1 1 0 1.0078 0.3508 0.9442 0.3987
ν2 0 0 −0.4347 0.5615 −0.3925 0.5510
ν3 1 1 3.0505 0.5353 2.8907 0.5535
ν4 0 1 0.4699 0.4667 0.4099 0.4304
ν5 3.6166 0.3698 3.3758 0.4099

Table 2:: Estimates (posterior means) of the five population means (µ) and standard devi-
ations (σ) of the drift rate parameters for the two models.

data. Psychonomic Bulletin & Review, 14 (6), 1011–1026.
Vandekerckhove, J., & Tuerlinckx, F. (2008). Diffusion model analysis with MATLAB: A DMAT

primer. Behavior Research Methods, 40 (1), 61–72.
Vandekerckhove, J., Tuerlinckx, F., & Lee, M. (2011). Hierarchical diffusion models for two-choice

response times. Psychological Methods, 16 (1), 44.
Voss, A., & Voss, J. (2007). Fast-dm: A free program for efficient diffusion model analysis. Behavior

Research Methods, 39 (4), 767–775.
Wagenmakers, E. (2009). Methodological and empirical developments for the Ratcliff diffusion model

of response times and accuracy. European Journal of Cognitive Psychology, 21 (5), 641–671.
Wagenmakers, E., Van Der Maas, H., & Grasman, R. (2007). An EZ-diffusion model for response

time and accuracy. Psychonomic Bulletin & Review, 14 (1), 3–22.
Wiecki, T. V., Sofer, I., & Frank, M. J. (2011). Fitting drift-diffusion models in a hierarchical

Bayesian framework: methods and applications. In Frontiers in Neuroinformatics Conference
Abstract: 4th INCF Congress of Neuroinformatics. NIPS.

E
X
T
E
N
D
IN

G
J
A
G
S

28
Appendix

JAGS custom distribution quick reference table

Step Files involved Contains

1. Define a module class src/<longname>.cc Constructor and destructor

2. Define scalar distribution src/distributions/D<shortname>.h Function prototypes
src/distributions/D<shortname>.cc Computational implementation

Defines name of new stochastic node in BUGS
3.1. Create directory stucture m4/ (directory) Nothing
3.2. Create configuration file configure.ac Configuration instructions as per Autoconf

3.3. Create Make files Makefile.am Compilation instructions
src/Makefile.am Compilation instructions
src/distributions/Makefile.am Compilation instructions

3.4. autoreconf -fvi && ./configure (generates files) Produces auxiliary files suitable for system
make && make install∗ (generates files and compiles) Produces binary files

Copies binaries to correct system locations

Note: Replace longname and shortname with the long and the short form of the distribution name (e.g., Bernoulli and Bern). ∗: On linux systems. See
text for Windows procedure.

