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Platelet-derived growth factor C promotes
revascularization in ischemic limbs of diabetic mice
Junji Moriya, MD, PhD,* Xiumin Wu, PhD, Jose Zavala-Solorio, PhD, Jed Ross, MS,
Xiao Huan Liang, MS, and Napoleone Ferrara, MD,* South San Francisco, Calif

Background: Platelet-derived growth factor C (PDGF-C) has been reported to promote angiogenesis independently of
vascular endothelial growth factor (VEGF), although its significance in postnatal angiogenesis in vivo remains poorly
understood. VEGF has been employed as a major molecular tool to induce therapeutic angiogenesis. However, VEGF
therapy is not very effective in models of cardiovascular diseases associated with diabetes, and the mechanisms of this
phenomenon still remain to be elucidated.
Methods: We used a murine model of hind limb ischemia and of streptozotocin-induced diabetes.
Results: Expression of PDGF-C and its receptor PDGFR-a were markedly upregulated in ischemic limbs. Treatment with
a neutralizing antibody against PDGF-C significantly impaired blood flow recovery and neovascularization after ischemia
almost to the same extent as a VEGF-neutralizing antibody. Mice deficient in PDGF-C exhibited reduced blood flow
recovery after ischemia compared with wild-type mice, confirming a strong proangiogenic activity of PDGF-C. Next, we
injected an expression vector encoding PDGF-C into ischemic limbs. Blood flow recovery and neovascularization after
ischemia were significantly improved in the groups treated with PDGF-C compared with controls. Attenuation of
angiogenic responses to ischemia has been reported in patients with diabetes even after VEGF treatment, although
a precise mechanism remains unknown. We hypothesized that PDGF-C might relate to the impaired angiogenesis of
diabetes. We tested this hypothesis by inducing diabetes by intraperitoneal injection of streptozotocin. Expression levels
of PDGF-C at baseline and after ischemia were significantly lower in limb tissues of diabetic mice than in those of control
mice, whereas expression levels of other members of the PDGF family and VEGF were not changed or were even higher in
diabetic mice. Introduction of VEGF complementary DNA expression plasmid vector into ischemic limbs did not improve
blood flow recovery. However, these changes were effectively reversed by additional introduction of the PDGF-C
complementary DNA plasmid vector.
Conclusions: These results indicate that downregulation of PDGF-C expression in limb tissues of diabetic mice contributes
to impaired angiogenesis and suggest that introduction of PDGF-C might be a novel strategy for therapeutic angio-
genesis, especially in the diabetic state. (J Vasc Surg 2014;59:1402-9.)

Clinical Relevance: Angiogenesis and arteriogenesis after ischemia are attenuated in most diabetic patients, although the
precise mechanisms remain unclear. Platelet-derived growth factors (PDGFs) have a variety of functions on many cell
types, and PDGF-C stimulates angiogenesis and revascularizes ischemic tissues. This study indicates the role for PDGF-C
as a critical regulator of impaired angiogenesis of diabetes and suggests that PDGF-C might be a novel target for the
treatment of ischemic cardiovascular diseases in diabetes.
Therapeutic angiogenesis, which involves the use of
proangiogenic factors or stem/progenitor cells for the
treatment of ischemic cardiovascular diseases, is a promising
concept. Vascular endothelial growth factor (VEGF) has
long been recognized as the key regulator of physiologic
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and pathologic angiogenesis1,2 and has been used as a major
molecular tool to induce therapeutic angiogenesis.3

However, the limited successes of therapeutic angio-
genesis, using VEGF or other angiogenic factors, empha-
size the challenges in reconstructing a functional vascular
network.3-6 Indeed, several clinical studies have shown
limited benefits of therapeutic angiogenesis in patients
with ischemic cardiovascular disease.7 This is presumably
because these patients tend to have multiple risk factors
for atherosclerosis, such as diabetes, that interfere with
the response to treatment.8,9 Therefore, it is important to
develop novel strategies for therapeutic angiogenesis, and
further research on the basic mechanisms of angiogenesis
needs to be performed.

Platelet-derived growth factors (PDGFs) have a variety
of effects on many cell types. They stimulate proliferation,
migration, and differentiation of mesenchymal and other
cell types in developing and adult tissues. The PDGF family
comprises four genes: PDGF-A, PDGF-B, and the more
recently discovered PDGF-C and PDGF-D.10,11 PDGF
receptor a (PDGFRa) and PDGF receptor b (PDGFRb)
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are known to be the receptors for PDGFs. PDGF-C binds
to and activates PDGFRa. PDGF-C does not bind to
PDGFRb, but when PDGFRb is coexpressedwith PDGFRa
in the same cells, it can also be activated by PDGF-C.12,13

PDGF-C signaling through these receptors is important
for the development of connective tissues and for wound
healing.10,14,15 Recent studies have shown that PDGF-C
also stimulates angiogenesis in chick embryos and mouse
corneas12 and that it revascularizes ischemic tissues via
effects on endothelial or bone marrow-derived cells.16

Moreover, PDGF-C mediates the angiogenic properties of
tumor-associated fibroblasts, and inhibition of PDGF-C
signaling reduced angiogenesis in tumors refractory to
anti-VEGF treatment.17 Collectively, these studies support
the notion that PDGF-C is a promising target for thera-
peutic angiogenesis and antiangiogenic therapy.13,18

However, the precise roles of PDGF-C in pathologic and
postnatal angiogenesis remain largely unclear.

Diabetes is a risk factor for the development of cardio-
vascular diseases associated with impaired angiogen-
esis.19,20 Vascular complications of diabetes have been
generally explained by disorganized expression of angio-
genic factors such as VEGF.21 However, diabetes is a para-
doxical disease, associated with excessive angiogenesis in
the retina and, conversely, with impaired collateral vessel
formation in the ischemic limbs and hearts.22-24 An expla-
nation for this paradox still remains to be elucidated.

In this study, we investigated the role of PDGF-C in
postnatal angiogenesis and found that PDGF-C expression
is upregulated in ischemic tissues, along with neuropilin 1
(Nrp1) and Nrp2, which function as cell-surface receptors
for axon guidance molecules and also as coreceptors for
members of the VEGF family.25 These upregulations were
attenuated in a diabetic mouse model, possibly impairing
revascularization after ischemia. Introduction of PDGF-C,
but not VEGF, markedly improved revascularization after
ischemia in diabetic mice. These findings suggest that
PDGF-C might be a novel target for impaired angiogenesis
of diabetes in which VEGF treatment is ineffective.

METHODS

The animal experiments in this study were approved by
our Institutional Review Board.

Experimental animals. Male C57/BL6 mice (8 to 12
weeks old) were obtained from Charles River (Wilmington,
Mass). The generation of PDGF-C-deficient mice (in C57/
BL6 background) has been described previously.26 For
the type 1 diabetic model, mice were given daily intraperi-
toneal injections of streptozotocin (STZ) in 0.1 mol/L
sodium citrate (pH 4.5) at the dose of 50 mg/kg body
weight for 5 days.

Murine model of hind limb ischemia. After mice
were anesthetized with a mixture of oxygen and isoflurane
(3%-5% for induction and 2% for surgery), hind limb
ischemia was generated as described previously.27 Briefly,
the proximal part of the femoral artery and the distal portion
of the popliteal artery were ligated and removed after all side
branches had been dissected free.
For immunoneutralization studies, we performed two
intraperitoneal injections of antibodies (immediately and
5 days after ischemic surgery) at a dose of 5 mg/kg or
10 mg/kg body weight. The antibodies used for the study
were anti-Ragweed antibody (control), anti-VEGF anti-
body (Clone G6-31 or B20-4.1),28 anti-PDGF-C antibody
(Clone 1E5.9, 2E7.1.6.11; Liang et al unpublished data),
anti-PDGF-A antibody (Clone 1.6c12.12), anti-NRP1
antibody (Clone YW107.4.87), and anti-NRP2 antibody
(Clone YW68.11.70; Genentech Inc). Human VEGF165
or human PDGF-C complementary DNA (cDNA) was
subcloned into a pCAGGS expression vector.29 Empty
pCAGGS vector was used as a control. The authenticity
of the constructs was verified by sequencing.

For in vivo gene transfer, we exposed thigh muscles by
incising the skin and injected the naked plasmid into the
muscle, immediately and 5 days after surgery, at the dose
of 100 mg in 100 mL phosphate-buffered saline. Buprenor-
phine was administered at a dose of 0.05 to 0.1 mg/kg
body weight subcutaneously for 2 days after surgery or
incision in the skin.

Ischemic limb samples were harvested for RNA
analysis. Vastus and rectus femoris muscle tissues were
removed from the ischemic limbs after systemic perfusion
with phosphate-buffered saline and immediately soaked in
RNAlater RNA stabilization reagent (Qiagen, Valencia,
Calif). according to the manufacturer’s instructions.

Laser Doppler perfusion analysis. Laser Doppler
perfusion imaging analyzer (Moor Instruments, Devon,
United Kingdom) was used to record blood flow measure-
ments on days 1, 3, 7, 10, 14, 21, and 28 after surgery.
For quantification, ratios of readable units from the images
in ischemic to nonischemic hind limb were determined.
Mice showing adverse effects (severe fightingwounds, black-
ened toes, self-mutilation of the compromised limb) were
euthanized immediately and excluded from the analysis.

RNA analysis. Limb muscle samples were homoge-
nized by using the TissueLyser (Qiagen) according to the
manufacturer’s instructions. Total RNA was prepared by
an RNeasy Fibrous Tissue Mini Kit (Qiagen) according
to the manufacturer’s instructions. cDNA was prepared
using High Capacity cDNA Reverse Transcription Kits
(Applied Biosystems, Foster City, Calif). Quantitative
real-time polymerase chain reaction (PCR) was per-
formed by using the Applied Biosystems 7500 Real-Time
PCR System with the Taqman Gene Expression Assays
and the Taqman Universal PCR Master Mix (Applied
Biosystems) according to the manufacturer’s instructions.
Glyceraldehyde-3-phosphate dehydrogenase messenger
RNA was used as the endogenous control for all experi-
ments. At least three biological replicates were included for
each condition.

Statistical analysis. Data are shown as means 6 stan-
dard error of the mean. In all experiments, comparisons
between two groups were based on a two-sided Student
t-test, and one-way analysis of variance was used to test for
differences among more groups. P values of <.05 were
considered statistically significant.



a

b

0

0.2

0.4

0.6

0.8

1

pre 3 7 10 14 21 28

Control
Anti-VEGF
Anti-PDGFC

Days after ischemia

Bl
oo

d 
flo

w
 ra

tio

(Is
ch

em
ic

/N
on

is
ch

em
ic

 li
m

bs
)

* *

**

*
*

*

0

1

2

3

R
el

at
iv

e 
m

R
N

A 
le

ve
l

pre 3 7 14 28

PDGFC

**
*

*

0

1

2

3

R
el

at
iv

e 
m

R
N

A 
le

ve
l

PDGFRα

**

**

**

0

0.5

1

1.5

R
el

at
iv

e 
m

R
N

A 
le

ve
l

VEGF

**

Days after ischemia
pre 3 7 14 28
Days after ischemia

pre 3 7 14 28
Days after ischemia

Fig 1. Platelet-derived growth factor (PDGF)-C contributes to revascularization in a murine model of hind limb
ischemia. a, Mice were treated with anti-Ragweed antibody (control), antivascular endothelial growth factor (VEGF)
antibody (anti-VEGF), or anti-PDGF-C antibody (anti-PDGFC) at the dose of 10 mg/kg body weight immediately
and 5 days after ischemia. Blood flow recovery was analyzed by laser Doppler perfusion imaging as described in the
Methods section. *P < .05, **P < .01 vs control (n ¼ 5-8 for each group). Data represent means 6 standard error of
the mean. b, The messenger RNA (mRNA) levels of PDGF-C, PDGF receptor a (PDGFRa), and VEGF in ischemic
limbs at several time points were assessed by real-time reverse transcription polymerase chain reaction analysis. *P <

.05, **P < .01 vs pre (n ¼ 3-5 for each group). Data represent means 6 standard error of the mean.
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RESULTS

Upregulation of PDGF-C expression contributes
to revascularization in murine model of hind limb
ischemia. We sought to investigate the factors that
contribute to revascularization in hind limb ischemia. To
this end, we used specific antibodies directed against several
proangiogenic molecules. A murine model of hind limb
ischemia was generated by unilateral femoral artery liga-
tion, and each antibody was intraperitoneally administered
after ischemia. Revascularization was measured by laser
Doppler perfusion imaging. As expected, treatment with
anti-VEGF antibodies strongly inhibited blood flow
recovery for up to 28 days after ischemia (Fig 1, a). Among
the antibody treatments tested, anti-PDGF-C markedly
inhibited blood flow recovery, almost to the same extent as
anti-VEGF (Fig 1, a). In addition, treatment with anti-
Nrp1 or anti-Nrp2 significantly inhibited blood flow
recovery (Supplementary Fig 1, a, online only), whereas
anti-PDGF-A had no significant effect (Supplementary
Fig 1, b, online only). We also confirmed that the effects
of anti-PDGF-C on revascularization were dose-dependent
(Supplementary Fig 1, c, online only).

Next, we performed quantitative real-time reverse tran-
scription PCR analysis of ischemic tissues of mice to examine
the expression of these angiogenic factors. Expression of
PDGF-C and its receptor PDGFRa were markedly
increased in ischemic limbs at 3 days after surgery, and this
increase persisted until day 28 (Fig 1, b). Expression
of Nrp1 and Nrp2 was also significantly increased up to
28 days after surgery (Supplementary Fig 2, a, online
only). However, expression of VEGF in ischemic limbs
significantly increased only at day 28 (Fig 1, b). Expression
of other members of the PDGF family (PDGF-A, PDGF-B,
PDGF-D) and PDGFRb was increased only modestly at
an early stage of ischemia and showed no significant increase,
or even decreased at a later stage (Supplementary Fig 2, a,
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Fig 2. Platelet-derived growth factor (PDGF)-C positively regu-
lates revascularization after ischemia. a, Ischemic limbs of mice
were intramuscularly injected with empty vector (control), vascular
endothelial growth factor expression vector (VEGF), or PDGF-C
expression vector (PDGF-C). Blood flow recovery was analyzed.
*P < .05 vs control (n ¼ 5-11 for each group). Data represent
means 6 standard error of the mean. b, Ischemic limbs of
wild-type (WT) mice and PDGF-C knock-out (KO) mice were
analyzed for blood flow recovery. *P < .05, **P < .01 vs WT
(n ¼ 9-10 for each group). Data represent means 6 standard error
of the mean.
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online only). Upregulation of PDGF-C expression after
ischemia was not altered by injection of control or anti-
PDGF-C antibody (Supplementary Fig 2, b, online only).
These results indicate that other than VEGF, upregulation
of PDGF-C expression, along with Nrp1 and Nrp2,
contributes to revascularization after ischemia.

PDGF-C positively regulates revascularization after
ischemia. To further investigate the effects of PDGF-C on
revascularization after ischemia, we introduced an expres-
sion vector encoding VEGF, a vector for PDGF-C cDNA,
or the vectors for both angiogenic factors. Because intra-
muscular naked plasmid injection using pCAGGS vector
allows long-term systemic delivery of target cDNA expres-
sion,30 we used this vector to induce PDGF-C and VEGF
expression. Injection of the VEGF vector into ischemic
limbs significantly increased blood flow recovery compared
with the control group (Fig 2, a). Intriguingly, injection of
the PDGF-C vector also accelerated blood flow recovery
almost to the same extent as that of the VEGF vector
(Fig 2, a). However, blood flow recovery did not differ
significantly between the VEGF group and the VEGF plus
PDGF-C group (Supplementary Fig 3, online only). Next,
we induced hind limb ischemia in PDGF-C-deficient mice
to examine the consequences of loss of function of this
molecule. Consistent with the results of our antibody
injection or gene transfer experiments, PDGF-C-deficient
mice showed less blood flow recovery than wild-type mice
(Fig 2, b). These results suggest that PDGF-C positively
regulates blood flow recovery after ischemia.

PDGF-C expression is downregulated in diabetic
mice. PDGF signaling is reported to play a critical role in
regulating pancreatic b-cell proliferation.31 Angiogenic
responses to ischemia were also shown to be attenuated in
patients with diabetes,32,33 although the precisemechanisms
still remain elusive. We hypothesized that PDGF-C might
relate to the impaired angiogenesis of diabetes. To test this
hypothesis, we used a murine model of type 1 diabetes
generated by an intraperitoneal injection of STZ (50mg/kg
daily for 5 days). We confirmed that body weights were
significantly lower and that blood glucose levels were much
higher in diabetic mice than in control mice (Supplementary
Fig 4, a and b, online only).

We next assessed the baseline gene expression of limb
tissues in diabetic mice by quantitative real-time reverse
transcription PCR analysis 14 days after the first STZ injec-
tion. Among the genes tested, PDGF-C was markedly
downregulated compared with control mice (Fig 3, a).
Interestingly, expression of Nrp1 and Nrp2 was also signifi-
cantly downregulated (Supplementary Fig 4, c, online only).
There was also a slight decrease in PDGF-B expression,
whereas expression of the other factors (PDGF-A, PDGF-D,
PDGFRa, and VEGF) showed no significant difference
(Fig 3, a).

At 14 days after the first STZ injection, mice under-
went hind limb ischemia surgery. The decreased expression
of the PDGF-C gene in diabetic mice persisted after
ischemia, along with significantly lower induction of
PDGFRa expression (Fig 3, b). Upregulation of Nrp1
and Nrp2 expression after ischemia was also diminished
in diabetic mice (Supplementary Fig 4, c, online only).
However, expression of VEGF did not significantly differ
from control mice at day 7 after ischemia, although it
showed a significant decrease at day 3 (Fig 3, b). Consistent
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with our hypothesis, these results raise the possibility that
decreased expression of PDGF-C may be a contributor to
impaired angiogenesis in diabetes.

Introduction of PDGF-C improves revasculariza-
tion after ischemia in diabetic mice. We first induced
hind limb ischemia in diabetic mice and analyzed blood
flow recovery. Laser Doppler perfusion imaging revealed
that blood flow recovery after ischemia was significantly
impaired in diabetic mice compared with controls
(Fig 4, a). Moreover, unlike control mice, injection of the
VEGF vector into ischemic limbs of diabetic mice did not
improve revascularization after ischemia (Fig 4, a; Fig 2, a).

Next, we injected an expression vector encoding
PDGF-C. Laser Doppler perfusion imaging revealed that
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the poor response of revascularization to VEGF treatment
was effectively overcome by PDGF-C vector injection
(Fig 4, b). However, just like in nondiabetic mice, intro-
duction of the PDGF-C cDNA plus the VEGF cDNA
did not have an additive effect compared with that of the
PDGF-C cDNA alone (Fig 4, b; Supplementary Fig 3,
online only). These results indicate that introduction of
PDGF-C is effective for promoting revascularization after
ischemia, especially when VEGF treatment is ineffective,
such as in the diabetic state.

DISCUSSION

The present study demonstrates that PDGF-C acceler-
ates revascularization in a murine model of hind limb
ischemia. Cerebral vascular abnormalities with incomplete
vascular smooth muscle cell coverage have been described
in PDGF-C-deficient mice in C57/BL6 background, indi-
cating that PDGF-C has an important role in vascular
development.26 Moreover, Li et al16 reported that exoge-
nous administration of PDGF-C stimulates vessel growth
in the ischemic hind limb. We found in the present study
that pharmacologic inhibition or genetic disruption of
PDGF-C leads to impaired revascularization after ischemia,
suggesting that endogenous PDGF-C also has a crucial role
in postnatal angiogenesis.

Our results also suggest that expression of PDGF-C is
downregulated in ischemic tissues of diabetic mice, thereby
contributing to their impaired blood flow recovery after
ischemia; however, expression of VEGF was not impaired.
A very recent study reported that PDGF signaling controls
pancreatic b-cell proliferation, suggesting a link between
PDGF and pathogenesis of diabetes.31 On the basis of
our present findings, we suggest that PDGF plays a role
in the development of diabetes-related vascular complica-
tions. Further studies are clearly needed to confirm these
findings in additional models of diabetes.

Recent evidence suggests that PDGF is a potent neuro-
protective factor and that its introduction can reduce neu-
rodegeneration.34,35 The vascular and nervous systems
have several anatomic similarities, and the parallels between
these systems extend to the molecular level.36-38 Thus, it is
possible that PDGF treatment not only augments blood
flow but also rescues neurons from degeneration after
ischemic insult.

That PDGF-C has a variety of cellular targets is well
established. Previous reports have shown that PDGF-C
promotes proliferation, survival, and migration of pericytes,
endothelial cells, and fibroblasts.39 Thus, PDGF-C very
likely exerts its proangiogenic effect not only through direct
effects on endothelial cells but also by acting on other
vascular and perivascular cell types. Addressing these issues
is the subject of future studies. How PDGF-C expression
is downregulated in ischemic tissues of diabetic animals
also remains to be determined. Because the angiogenic
pathways induced by PDGF-C are known to be mostly
VEGF-independent,39 the downregulation of PDGF-C
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expression in diabetes might be mediated by VEGF-
independent mechanisms as well.

We found that expression levels of Nrp1 and Nrp2
were significantly downregulated in diabetic mice. This is
consistent with the previous study by Schiekofer et al21 in
a model of type 2 diabetes. They concluded that impaired
ischemia-induced neovascularization in type 2 diabetes is
associated with the collapse of an “angiogenic network”
in the ischemic limb. However, it still remains unknown
how Nrp1 and Nrp2 are downregulated and contribute
to the pathogenesis of angiogenic impairment of diabetes.
Neuropilins are known to be the coreceptors for VEGF
and class 3 semaphorins, potentiating signals of these mole-
cules.40 Although VEGF signals promote angiogenesis,
semaphorin signals mainly inhibit angiogenesis. Therefore,
together with reduced PDGF-C, lower expression of Nrp1
and Nrp2 might lead to impaired angiogenesis after
ischemia in diabetes. Further studies are needed to deter-
mine the role of neuropilins under diabetic state.

CONCLUSIONS

Our results indicate that PDGF-C expression is down-
regulated in ischemic tissues in a mouse model of diabetes,
resulting in angiogenic impairment. Delivery of the PDGF-
C gene is sufficient to restore blood flow after ischemia.
Therefore, PDGF-C might be a novel therapeutic option
for ischemic cardiovascular diseases in diabetic patients.
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Supplementary Fig 1 (online only). Neuropilin (Nrp)1 and Nrp2, along with platelet-derived growth factor
(PDGF)-C, contribute to revascularization after ischemia. a, Mice were treated with anti-ragweed antibody (control),
anti-Nrp1 antibody (anti-Nrp1), or anti-Nrp2 antibody (anti-Nrp2) at the dose of 10 mg/kg body weight immedi-
ately and 5 days after induction of ischemia. Blood flow recovery was analyzed by laser Doppler perfusion imaging.
*P < .05 vs control (n ¼ 5 for each group). Data represent means 6 standard error of the mean (SEM). b, Mice were
treated with anti-ragweed antibody (control), or anti-PDGF-A antibody (anti-PDGFA) at the dose of 10 mg/kg body
weight immediately and 5 days after ischemia induction, and blood flow recovery was analyzed. Data represent
means 6 SEM (n ¼ 5 for each group). c, Mice were treated with anti-ragweed antibody (control), anti-PDGF-C
antibody at the dose of 5 mg/kg body weight (anti-PDGFC low) or 10 mg/kg body weight (anti-PDGFC high)
immediately and 5 days after ischemia, and blood flow recovery was analyzed as above described. *P < .05, **P < .01
vs control (n ¼ 3-8 for each group). Data represent means 6 SEM.
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Supplementary Fig 2 (online only). Expression levels of neuropilin 1 (Nrp1), Nrp2, and platelet-derived growth
factor (PDGF) family members after ischemia. a, The messenger RNA (mRNA) levels of Nrp1, Nrp2, platelet-derived
growth factor receptor b (PDGFRb), PDGF-A, PDGF-B, and PDGF-D in ischemic limbs at several time courses were
assessed by real-time reverse transcription polymerase chain reaction analysis. *P < .05, **P < .01 vs pre (n ¼ 4-8 for
each group). Data represent means 6 standard error of the mean. b, The PDGF-C mRNA levels in ischemic limbs of
mice treated with an anti-ragweed antibody (control Ab) or anti-PDGF-C antibody (anti-PDGFC Ab) were assessed as
described above. *P < .05, **P < .01 vs pre (n ¼ 4-6 for each group). Data represent means 6 standard error of the
mean.
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Supplementary Fig 3 (online only). Effect of combined intro-
duction of the platelet-derived growth factor C (PDGFC) and the
vascular endothelial growth factor (VEGF) expression vectors into
ischemic limbs on blood flow recovery after ischemia. a, Ischemic
limbs of mice were injected with empty vector (control), VEGF
expression vector (VEGF), or VEGF expression vector plus
PDGF-C expression vector (VEGF þ PDGFC) as described in the
Methods section. Blood flow recovery was analyzed. *P < .05,
**P < .01 vs control (n ¼ 6-13 for each group). Data represent
means 6 standard error of the mean.

JOURNAL OF VASCULAR SURGERY
1409.e3 Moriya et al May 2014



a b
B

od
y 

w
ei

gh
t (

g)

01 2 4 14 21

Days after STZ injection
pre 14 21

B
lo

od
 g

lu
co

se
 le

ve
l (

m
g/

dL
)

*

3

*
** ** * **

**

Days after STZ injection

0

100

200

300

400

500

Control

STZ

Control
STZ

0

5

10

15

20

25

30

c

Days after ischemia

pre 3 7

R
el

at
iv

e 
m

R
N

A
 le

ve
l

0

1

2

Nrp1
3

Control

STZ

0

2

4

6

8

Days after ischemia

pre 3 7

Nrp2

**
**

##

**

*

##

##

Supplementary Fig 4 (online only). Expressions of neuropilin 1 (Nrp1) and Nrp2 are downregulated in diabetic
mice. a, Mice treated with an intraperitoneal injection of sodium citrate buffer (control) or streptozotocin (STZ) were
weighed. The black arrows indicate the timing of injection. *P < .05, **P < .01 vs control (n ¼ 5 for each group). Data
represent means 6 standard error of the mean (SEM). b, Blood glucose levels of mice injected with sodium citrate
buffer (control) or STZ were measured. **P < .01 vs control (n ¼ 5 for each group). Data represent means 6 SEM. c,
Time course of relative Nrp1 and Nrp2 messenger RNA (mRNA) expression in ischemic limbs of nondiabetic (control)
or diabetic (STZ) mice. *P < .05, **P < .01 vs control; ##P < .01 vs precontrol; yyP < .01 vs pre-STZ (n ¼ 4-8 for each
group). Data represent means 6 SEM.
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