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ABSTRACT 

LBL-587 

For a function of two variables, we construct an optimal bicubi~ 

spline which interpolates to specified function values at the grid-

pOints of a rectilinear mesh over a rectangle. Additional conditions 

in the form of normal derivatives may be specified. By optimality, we 

mean that third derivative discontinuities are minimized in the least 

square sense . 
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INTRODUCTION 

The Domain and Mesh 

We consider a closed rectangular domain 

where 

with x > x 

with Y > X.' 

We further consider a partition of Ix by points x = Xl' x2"'" 

xm = x with m :::!5 and a partition of Iy by Y=Yl, Y2'" .Yn with n ~ 5. 

Neither partition need be uniform, but the points Xi for i=l to m and 

Yj for j=l to n must be strictly increasing with i and j respectively. 

We call the mn points (Xi,yj ) for i=l to mand j=l to n grid­

points for the mesh over R. See Figure 1. 

The Bicubic Spline 

As given in 1, the bicubic spline, u(x,y), defined on R with knots 

at the grid-points, (x., y.) for i=l to m and j=l to n has the following 
1. J 

properties: 

polynomial in x and Y; i.e., 

u(x, y) = 
3 3 
L'L 

£=0 k=O 

2. The bicubic spline has continuous second derivatives on 

R; i.e., ~x, uxy and llyy are continuous on R. 
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The following properties are readily deduced l 

3. For any fixed y=y* (in particular for any grid-line y=Yj) the 

functions, u(x,y*) ~ uy(x, . y*) are cubic splines in x. 

4. For any fixed x=x* (in particular for any grid-line x=xi) 

the functions, u(x*,y) and ux(x*,y) are cubic .. ~plines in y. 

5. On any subrectangle the bicubic polynomial "segment" of u is 

uniquely determined when u, llx' lly and uxyare known at each of its four 

vertices. (The sixteen values specified determine the sixteen coeffi-

dents O'tk)' 

6. On the retangle, R, the bicubic spline, u, is uniquely 

determined when u is known at all grid-points,when the normal derivative 
.\ 

ux, is known the boundary grid-points, (xl' Yj) and (Xm, Yj) and uy is 

known at the points, (Xi' Yl) and (xi' Yn) and the cross-derivative uxy 

is known at the four grid-points (vertices of R) (xV Yl), (xm, Yl), 

(Xm, Yn) and (Xl' Yn)' (A cubic· spline is uniquely determined when its 

values at its knots and its terminal first derivatives are known, con-

sequently the values required by property 5 can be readily computed by 

virtue of properties 3 and 4.) 

Optimization 

From property 6 above, we see that the bicubic spline on R with 

knots (Xi, Yj) for i=l to m and j=l to n is uniquely determined by 

mn + 2m + 2n + 4 parameters, namely 

(a) T~e mn values of u at the grid~points 

(b) The 2m values bf uy at grid-points along Yl and Yn 
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(c) The2n values of Ux at grid-points along xl and Xm 

(d) The 4 values of Uxy at the corners. 

If all these parameters are in fact specified, then the bicubic spline 

u is determined exactly and no optimization is possible. In general 

u, Ux and uy will have third derivative discontinuities at the internal 

grid-points. 

If we assume that the mnparameters (a) are always specified but 

that some or all of the remaining parameter sets are not, then we are 

free to compute values for the unspecified parameters which will minimize 

in the least square sense the afore-mentioned third-derivative dis-

continuities. The "smoothest" bicubic spline thus obtained is called 

the optimal bicubic spline for the given conditions. In the succeeding 

section we consider the construction of this bicubic·spline under a 

reasonable variety of circumstances. 
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( . CONSTRUcrION OFTHEOPi'IMAt BICUBIC SPLINE 

In general the construction of an optimal cUQic spline involves 

the following 

(a) Prescription 

(b) Specification 

(c) Optimization 

(d) Evaluation 

In (a) we prescribe the knots. This is done adequately by 

providing values for Xi fori;l to.m and Yj for j=lto n. In general' 

we must have m ~ 5 and n ~ 5. The sets (xi) a.nd {Y j} must be strictly 

increasing with respect to the pertinent index. Spacing need not be 

uniform. 

In (b) we specify known values relative to u..We must always 

provide all values 

Uij = u(Xf.' Yj) for i=lto m and j=l to n 
/ 

and none or any or all of the following sets of values: 

(1) Uy(xi, Yl) for i=l to m 

(2) ux(xm, Yj) for j=l to n 

(3) Uy(Xi, Yn) for i=l to m 

(4 ) ux(xl' Yj) for j=l ton 

In case all the bouhdary normal-derivatives are specified, we may ',I 

also specify the, .cross derivatives 

Uxy(xv YI) , uxy(xIrI' Yl) , uxy(xm, Yn) and Uxy(Xl, Yn) 

For this case no optimization is possible arid we proceed to evaluation. 
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In (c) we compute values not specified above for boundary normal 

derivatives and corner cross-derivatives. These computed values are 

optimal in that they minimize third derivative discontinuities in the 

least square sense. 

In·(d) we compute values for ux , uy and Uxy (not otherwise specifed 

or computed) at every grid-point, (xi' Yj). From these values (in 

accordance with property 6) values for u and any desired first or second 

derivatives may be computed at any point (x, y) in any subrectangle and, 

consequently at any point in R. 
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OPrIMIZATION-

In the simplest case for optimization, we know u at" all grid-points 

and all normal derivatives at boundary grid-points. 

Let si = Uy(Xb Yll for i=l to m arid from the point set, (Xi' Si) 

for i=lto m determine2 the optimal values fors" (Xl) and sIt (xm) so that 

the cubic spline s has minimum third derivative discontinuity and compute 

s' (Xl) and s I (xm) • We then set 

In effect we have minimized the discontinuity in Uyxxx- along YI. 

Similarly, iet ti = Uy(Xi' Yn) compute the optimal cubic spline t 

and obtain, t' (Xl) and t '(m) and then set 

Uxy(XI, Yn) = t' (Xl) 

In effect we have minimized the discontinuity in"Uyxxx along Yn. 

We can apply the same process to ux(xI' yj} and ux(xm, Yj) obtain 

values for 

and 

Uxy(XI, YI) anduxy(xv Yn) 

ilxy(Xm, Yl) and uxy(xm, Yn) 

Essentially we have minimized the discontinuity in uxyyy along Xl and Xm. 

Now it is unlikely that corresponding corner values for uyx and 

Uxy will be in full agree~ent. We- believe that with most data the" 

disagreement '"/ill not be great and a reasonable modicum of optimality 

"can be attained by using the averages of corresponding uyx and uxy for 

, 
{ 
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optimal corner values of the cross-derivative. 

If the above method does not .seem satisfactory for some data, a 

procedure can be readily devised for minimizing simultaneously the third 

derivative discontinuities in all four boundary normal derivative cubic 

splines subject to four parameters, namely, the values of uxy at the 

four corners. 

In the next case of optimization we consider that we know u at all 

grid-points and uyat grid-points along boundaries y=y~and y=Yn. To 

find Ux at grid-points along x=xl and x=xm, we set for j=l to n 

r .(x.) = U· . J ~ , l.J 

and solve for the optimal cubic splines rj(x) and set 

ux(xl' Yj) = rj(xl ) 

In effect we have minimized the discontinuity of uxxx , We now proceed 

as in the simplest case. 

The case where vie know u at all grid-points ,and Ux at grid-points 

along Xl and ~ is treated in an analogus manner. 

We now consider the case where u is known at all grid-points and 

Ux is knm-Tnonly at grid-points along x=xl" In this case we must first 

solve for optimizing values fbr Ux at grid-points along x=xm• vIe set 

for j=l to n 

and 
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Then we use a one-parameter(the valu~of r1t(Xm» to determine an optimal 

cubic spline, rj(x) for which third derivative d:LscQntinuities are 

minimized. Again we are minimizing discontinuities in llxxx. We now set 

and proceed as outlined above. 

When only .llx is known along XJn, or Uy. along Yl or uy along Yn' the 

procedure is analogous 'to that just described •. Likewise any combination' 
. . 

of specifications dfbOundary normal derivative sets can be handled. 

The most complete case for optimization occurs when only values 

for u are known at t'he grid-points. In this case we compute optimal: 

cubic splines in x for u(Xi' Yi)for every jand in y for u(xi' Yj) for 
./ 

every i thereby determining optimizing values for normal derivatives at 
" 

all boundary grid-points. We then proceed as in the first -paragraph 

of this section. It is interesting to note that in. this case alternative 

values Uyx and uxy at the corners do agree. 

r 

.. ~ -
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EVALUATION 

After the optimization process (if any) we need to compute values 

for llx' uy and uxy at all grid-points where they are not presently known. 

We set for j=l, n 

rji = ~j 

rjl = ul(xl' Yj) 

, r jm = u(Xm' Yj) 

and for the (uniquely determined) cubic spline rj(x) we compute 

r~(xi) for i=2 to m-l 

and set 

By a similar process for i=l to m we obtain 

For j=l and n, we use the corresponding cubic spline in x for uy 

with the known values of uxy as terminal derivatives to compute 

and 

Uxy(Xi' Yl)} 

for i = 2 to m-l. 

uxy(xx, Yn) 

For i=l tom, we use cubic splines in y'corresponding to Ux(Xi, Yj) 

having terminal first derivatives Uxy(Xi' Yl) and Uxy(Xi' Yn) to 

determine 
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COMPUTER CODE 

A FORTRAN.computer subroutine, OBCSPY; has been written to perform 

the computation described in the optimization and evaluation sections 

above •. Under its various options, any of the specifications discussed 

above and, as 'tlell, the case where the bicubic l:lpline is completely 

specified can be handled by the code. Listings and instructions for use 

of OBCSPY can be obtained from the authors. 

-1 . 
\. 
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CONCLUSION 

The problem of surface fitting over a rectangle for a function, 

f(x, y), when f is known only at grid-points of a rectilinear mesh over 

and including the boundaries of R is readily handled ?y the technique 

described above. We s imply set Uij = f(xi' Yj) and. compute the optimal 

bicubic spline u. Cases where boundary normal derivatives for fare 

known can likewise be solved by simply requiring u to agree. with f in 

these particulars. 

Like cubic spline fitting3, bicubic spline fitting has the 

advantage over local (relatively low degee) bipolynomial fitting in that 

it obtains second derivative continuity over all of R. Its advantage 

over high degree bipolynomial fitting is that it avoids the extreme 

inflection which sometimes occurs under the latter. In contrast with 

least square bipolynomial fitting the bicubic spline is an exact fit of 

known data while the latter is not. 

Bicubic spline fitting is quite convenient for interpolation to 

obtain approximated values of the fitted function f at any non-grid 

point in R. Let (x*, Y*) be such a point, then (x*, Y*) lies in the 

interior of some sub-rectangle (xi' xi+l) X (Yj' yj+l). We compute 

u(x*, Y*) as an approximation for f(x*, Y*). We use the fact that u 

and uy are cubic in x between xi and xi+l along- both Yj and Yj+l. The 

knmm values of u, uy and uxy at (Xi, Yj) and (xi+l' Yj) are sufficient 

to determine u and uy at (x-)(-, y j). Similarly we can determine u and 

Uyat (x-l<-, Yj+l). lie use the fact that u is a cubic in Y between Yj 

and Yj+l along x*, and the values for u an uy at (x*, Yj) and (x*, Yj+l) 

sufficient to determine u(x-l(', y*). 
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