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Abstract

Age is a major risk factor for severe coronavirus disease 2019 (COVID-19), yet the mechanisms 

behind this relationship have remained incompletely understood. To address this, we evaluated the 

impact of aging on host immune response in the blood and the upper airway, as well as the nasal 

microbiome in a prospective, multicenter cohort of 1031 vaccine-naïve patients hospitalized for 

COVID-19 between 18 and 96 years old. We performed mass cytometry, serum protein profiling, 

anti–severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody assays, and blood 

and nasal transcriptomics. We found that older age correlated with increased SARS-CoV-2 viral 

abundance upon hospital admission, delayed viral clearance, and increased type I interferon gene 

expression in both the blood and upper airway. We also observed age-dependent up-regulation of 

innate immune signaling pathways and down-regulation of adaptive immune signaling pathways. 

Older adults had lower naïve T and B cell populations and higher monocyte populations. Over 

time, older adults demonstrated a sustained induction of pro-inflammatory genes and serum 

chemokines compared with younger individuals, suggesting an age-dependent impairment in 

inflammation resolution. Transcriptional and protein biomarkers of disease severity differed 

with age, with the oldest adults exhibiting greater expression of pro-inflammatory genes and 
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proteins in severe disease. Together, our study finds that aging is associated with impaired viral 

clearance, dysregulated immune signaling, and persistent and potentially pathologic activation of 

pro-inflammatory genes and proteins.

INTRODUCTION

Age is a major risk factor for severe coronavirus disease 2019 (COVID-19), with older 

adults experiencing markedly greater rates of acute respiratory distress syndrome and death 

compared to younger individuals (1–3). Even with primary series vaccination rates above 

90% (4), adults over 75 years of age are 140 times more likely to die if infected with severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (5). Despite these epidemiological 

associations, the biological mechanisms underlying the impact of aging on COVID-19 

remain incompletely understood.

Observational cohort studies of healthy adults (6, 7) demonstrate that aging leads to baseline 

increases in plasma concentrations of pro-inflammatory cytokines (6, 8), several of which, 

such as interleukin-6 (IL-6), are well-known biomarkers of COVID-19 severity, suggesting 

potential connections between the pathophysiology of human aging and COVID-19 (8). 

Juxtaposed against this state of aging-associated inflammation are functional impairments in 

innate and adaptive immune signaling observed during the vaccination of aged individuals 

(9–12). Furthermore, recent human in vitro data indicate that aging results in impaired 

production of type I interferons (IFNs) in monocytes and dendritic cells after Toll-like 

receptor (TLR) ligation, suggesting disrupted innate immunity (13–17).

Comparative upper respiratory tract transcriptional profiling has demonstrated that mild 

SARS-CoV-2 infection induces a more robust innate and adaptive immune response 

in children compared with adults (18, 19). Paradoxically, among adults hospitalized 

for COVID-19, a more robust immune response underlies the pathogenesis of severe 

disease, suggesting more complicated relationships between aging and host defense for 

older individuals. Adding further complexity, and highlighting the need for additional 

investigation, is the association between increased age, development of anti-IFN 

autoantibodies, and disease severity (2, 20, 21).

The pathophysiology of COVID-19 involves a dynamic relationship between SARS-CoV-2 

and the host immune response (22, 23), yet studies of COVID-19 and aging have assessed 

each independently. Furthermore, heterogeneity in human physiology necessitates a large 

sample size to optimally study aging and host immunity. To address these gaps, we 

leveraged data from 1031 vaccine-naïve adults who were hospitalized for COVID-19 and 

enrolled in the IMPACC (IMmunoPhenotyping Assessment in a COVID-19 Cohort) cohort 

(2, 24) and performed a multiomic, host-microbe systems immunoprofiling study of aging.

From 2523 longitudinally collected blood and nasal swab samples, we investigated the 

impact of aging on SARS-CoV-2 viral relative abundance, anti–SARS-CoV-2 antibody (Ab) 

titers, host gene expression, inflammatory protein expression, immune cell populations, and 

the nasal microbiome. Our study leverages a robust multicenter cohort to gain insights 

into aging and immunity by integrating both host and microbe data. This work builds 
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on landmark clinical studies demonstrating that age is a major risk factor for COVID-19 

severity (1–3), assesses the generalizability of early translational studies that included 

smaller numbers of study participants (8, 13, 25, 26), and generates additional insights into 

the age-dependent aspect of COVID-19 pathophysiology.

RESULTS

Study cohort

We analyzed blood and nasal swab specimens from 1031 vaccine-naïve adults with 

COVID-19 enrolled in the IMPACC cohort from 20 hospitals across the United States (Fig. 

1A and table S1) (2, 24). Participants were grouped into age quintiles (18 to 46, 47 to 54, 

55 to 62, 63 to 70, and 71 to 96 years old), ranging from 187 to 223 participants (median 

206 participants) per age group (Fig. 1B). Samples were collected from each patient in up 

to six visits, of which visit 1 was at the time of hospital admission. We analyzed the age 

distributions across five previously defined COVID-19 disease trajectory groups (TGs) (2), 

ranging from mild disease with brief length of hospital stay (trajectory group 1, TG1) to 

severe disease and death (TG5). We found that advanced age was more common in those 

in the more severe disease TGs compared with the mild-moderate groups (P < 1 × 10−15; 

Fig. 1C) and in those who died compared with survivors (P < 1 × 10−15; Fig. 1D). To 

investigate host immune and microbial features associated with age, we used a wide range 

of assays at visit 1 baseline (within 72 hours of hospital admission) and longitudinally 

after hospital admission (Fig. 1A). These included transcriptional profiling of peripheral 

blood mono-nuclear cells (PBMCs) and nasal swabs, serum inflammatory protein profiling 

(Olink assay), whole blood mass cytometry (CyTOF), nasal metatranscriptomics, and anti–

SARS-CoV-2 Ab assays.

Aging is associated with higher SARS-CoV-2 viral abundance, impaired viral clearance, 
and lower SARS-CoV-2 antibody titers

In our study, we measured the SARS-CoV-2 viral relative abundance using the SARS-CoV-2 

reads per million (rpM) obtained from nasal swab metatranscriptomics. We verified that the 

metatranscriptomic viral abundance was highly correlated with the quantitative polymerase 

chain reaction viral load as measured by the cycle threshold (P < 1 × 10−15; fig. S1). 

Therefore, we solely used SARS-CoV-2 rpM in all of our analyses that involved viral 

abundance.

Older adults (63 to 96 years old) had a significantly higher SARS-CoV-2 viral abundance 

at visit 1 compared with the younger adults (18 to 62 years old) (P = 0.0092; Fig. 1E). 

This age-related increase in viral abundance was not explained by differences in time from 

symptom onset (fig. S2). Longitudinal analysis also revealed significant differences in viral 

abundance dynamics, with the oldest adults demonstrating delayed viral clearance compared 

with the youngest adults (P = 0.0030; Fig. 1F). We also assessed anti–SARS-CoV-2 receptor 

binding domain (RBD) immunoglobulin G (IgG) Ab titers across the five age groups and 

found that no difference in IgG titers was observed at visit 1 (fig. S3A), but the longitudinal 

dynamics of Ab titers varied with age (fig. S3B).
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Age-dependent differences were observed in immune cell populations

We quantified differences in proportions of immune cell populations in the peripheral blood 

by CyTOF to assess whether aging altered cell type frequencies (24). At visit 1, we found 

21 immune cell types significantly associated with age (adjusted P < 0.05; Fig. 2, A and B). 

Increased age correlated with higher proportions of classical monocytes (CD14+ CD16−), 

nonclassical monocytes (CD14− CD16+), and intermediate monocytes (CD14+ CD16+). 

Terminally differentiated/exhausted natural killer (NK) cell (CD56lo CD16hi CD57hi) 

proportions also increased with age, as did activated CD4+ T cells and central memory 

(CM) CD8+ T cells (Fig. 2, B and C). In contrast, older adults had lower proportions of 

naïve CD8+ T cells, naïve B cells, gamma-delta (γδ) T cells, and plasmablasts (Fig. 2, B and 

C). Last, we found that the age-related differences in cell type frequencies were not affected 

by SARS-CoV-2 viral abundance (fig. S4).

Age-dependent changes in PBMC gene expression are apparent at the time of 
hospitalization

Next, we performed PBMC transcriptional profiling and identified 3763 genes significantly 

associated with age at hospital admission (visit 1), controlling for sex and disease severity 

(adjusted P < 0.05; Fig. 3A). Gene set enrichment analysis (GSEA) revealed the up-

regulation of several innate immune-related pathways in older participants, including IFN-

α/β, IFN-γ, and TLR signaling (Fig. 3B and data file S1). In contrast, several adaptive 

immunity-related pathways were down-regulated in older individuals, such as B cell receptor 

(BCR) signaling, T cell receptor (TCR) signaling, and programmed cell death protein 1 

(PD1) signaling.

Prior studies have demonstrated a direct relationship between SARS-CoV-2 viral abundance 

and IFN-stimulated gene (ISG) expression (18, 27). We, therefore, hypothesized that the 

strong positive correlation between age and viral abundance (Fig. 1E) might contribute to 

the up-regulation of innate immunity genes and pathways that we observed in older adults. 

To test this hypothesis, we repeated the differential expression and GSEA analyses while 

additionally controlling for SARS-CoV-2 viral abundance. Age-related increases in IFN-γ, 

TLR signaling, and neutrophil degranulation remained significant (adjusted P < 0.05; Fig. 

3B). IFN-α/β, IL-2, and caspase activation signaling, however, lost statistical significance, 

suggesting that the enrichment of these pathways in older patients was due to the age-related 

increase in viral abundance (data file S2). Given that several comorbidities were associated 

with age, we also asked whether they might influence our findings. After controlling for 

the presence of the three most prevalent comorbidities (hypertension, diabetes, and chronic 

cardiac disease; table S1), we found that GSEA results remained largely unchanged (fig. 

S5).

To assess whether our observations were specific to COVID-19 or reflected the general 

effects of aging, we compared our GSEA results against a meta-analysis of public data from 

14,983 healthy adults (6). First, we compared the directionality of age-related transcriptional 

changes on an individual gene level between patients with COVID-19 and healthy controls 

(fig. S6A). We identified 120 age-associated genes with opposing expression patterns 

based on COVID-19 status (data file S3). For instance, TREML1, which protects against 
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acute lung injury and moderate inflammation in a murine model of sepsis (28), was 

down-regulated with age in COVID-19 but up-regulated in healthy controls. Conversely, 

the expression of CD93, which supports plasma cell longevity leading to elevated Ab titers 

(29) and may function in the clearance of apoptotic cells (30), increased with age in patients 

with COVID-19 but decreased with age in healthy controls.

Next, we compared our data to the healthy control data on a pathway level. Some pathways 

were up-regulated with age in both data sets (e.g., IFN-γ and TLR signaling), whereas 

others were uniquely up-regulated in the context of COVID-19, including caspase activation 

and tumor necrosis factor (TNF) receptor–associated factor 6–mediated interferon regulatory 

factor 7 activation (fig. S6B and data file S4). Similarly, age-related down-regulation of TCR 

and BCR signaling, as well as several other pathways, was unique to COVID-19 (fig. S6C).

Age-dependent differences were observed in PBMC gene expression dynamics

We next performed a longitudinal analysis of PBMC transcriptomics data over 

approximately 28 days after hospital admission to identify genes that exhibited age-

dependent differences in longitudinal dynamics while controlling for sex and severity 

TG. Using linear mixed-effects modeling, we identified 2737 genes that had different 

longitudinal dynamics across age quintiles (Fig. 3C and data file S5). For example, the 

expression of major histocompatibility complex (MHC) class II genes (e.g., HLA-DRA) 

increased over time after hospitalization in all age groups, but the rate of increase was 

greater in younger participants (Fig. 3, D and E, and fig. S7). In contrast, the expression of 

MHC class I genes (e.g., HLA-A) decreased over time across all five age groups, but the rate 

of decrease was greater in older participants.

The longitudinal dynamics of several inflammatory genes also differed between age groups 

(fig. S7). For instance, the expression of the gene C-X-C motif chemokine ligand 6 

(CXCL6) increased over the course of hospitalization in the oldest age group, whereas 

in younger participants, its expression decreased markedly. In contrast, expression of the 

anti-inflammatory gene IL10RA increased over time in the youngest participants while 

remaining stable in the oldest participants. TCR signaling genes (e.g., CD3E and LAT) were 

globally up-regulated over time; however, their induction was attenuated in the oldest age 

quintile compared with the youngest. Together, our results suggested both greater activation 

and impaired attenuation of immune signaling with advanced age.

Age-dependent differences were observed in cytokine and chemokine expression upon 
hospitalization and over time

The impact of aging on immune signaling in COVID-19 was also evident at the protein 

level. We identified 43 serum proteins that were significantly correlated with age at the time 

of hospital admission (adjusted P < 0.05; Fig. 4, A and B, and fig. S8A). Of these, 31 

increased with age, and the protein with the greatest change was C-X-C motif chemokine 

ligand 9 (CXCL9), a T cell chemoattractant induced by IFN-γ and produced by neutrophils 

and macrophages (7). Twelve proteins significantly decreased with age (adjusted P < 0.05), 

including TNF superfamily member 11 (TNFSF11), which is involved in the regulation of 

T cell–dependent immune responses and group 2 innate lymphoid cell–mediated type 2 
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immunity (31), and sirtuin 2 (SIRT2), which may attenuate aging-associated inflammation 

through de-acetylation of the nucleotide-binding domain and leucine-rich repeat-containing 

(NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome (32).

On the basis of our prior work (18), we hypothesized that aging might affect the relationship 

between protein expression and viral abundance. Consistent with this idea, we identified 

eight cytokines and chemokines whose expression correlated with SARS-CoV-2 viral 

abundance (Fig. 4C) and observed differences in this relationship between the oldest 

and youngest age groups. For instance, the expression of IL-10, a key anti-inflammatory 

cytokine, increased more strongly in response to viral abundance in younger patients. 

C-X3-C motif chemokine ligand 1 (CX3CL1), a chemoattractant of T cells and monocytes, 

exhibited a similar relationship (Fig. 4C).

We next evaluated the longitudinal dynamics of protein expression in the serum after 

hospitalization (Fig. 4D). The expression of several cytokines, such as TNFSF11, increased 

over time in younger adults but lagged in the oldest adults (Fig. 4E and fig. S8B). 

Conversely, the expression of several pro-inflammatory cytokines and chemokines, such 

as CXCL8, CXCL9, and IL-6, decreased rapidly over time in younger adults, whereas, in the 

oldest adults, their expression increased over time (CXCL8 and CXCL9) or declined more 

slowly (IL-6) (Fig. 4E).

Age-dependent changes occurred in the upper airway gene expression and microbiome 
during COVID-19

We next asked whether aging was associated with changes in host gene expression and the 

upper airway microbiome (including the virome), which has been found to correlate with 

outcomes in patients with COVID-19 (33–35), using nasal swab metatranscriptomics. We 

identified 913 host genes that were significantly associated with age (adjusted P < 0.05; 

Fig. 5A), representing several key immune signaling pathways (Fig. 5B). TLR signaling, 

which plays an important role in microbial recognition, was up-regulated with age, as 

were genes related to IFN-α/β, IL-1, IL-4, IL-13, IL-10, and IL-17 signaling. In contrast, 

T cell–related pathways (TCR signaling, co-stimulation by the CD28 family, and PD1 

signaling) were down-regulated with age, similar to our observations in the peripheral blood. 

In silico prediction of upstream cytokine activation demonstrated age-related activation of 

the cytokines TNF, IL-6, IFN-γ, IL-1α/β, IL-22, and CSF1 (Fig. 5C).

Our study design enabled the assessment of the extent to which gene expression in the 

blood and the upper respiratory tract was coordinated. To this end, we calculated Pearson’s 

correlation coefficients of gene expression between matched PBMC and nasal samples in 

the youngest and oldest age groups separately. We found 52 genes that had relatively high 

correlation coefficients in both groups (Pearson’s correlation coefficient, >0.5), in particular 

those related to type I IFN signaling (e.g., IFI6, IFI44, and IFIT3) and antigen presentation 

[human leukocyte antigen (HLA) genes] (Fig. 5D).

Because TLR pathways in the upper airway were strongly up-regulated with age, we asked 

whether this could be due to differences in SARS-CoV-2 viral abundance or the nasal 

microbiome. We found that at visit 1, the bacterial relative abundance correlated with both 
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ISG and TLR gene expression, whereas SARS-CoV-2 viral abundance only correlated with 

ISG expression (Fig. 5E). We thus considered whether variations in bacterial abundance 

across the age groups could explain the observed age-related TLR signaling differences; 

however, no variation was found (fig. S9).

We also considered whether age-related differences in specific taxa within the upper 

airway microbiome might contribute to the aforementioned differences in TLR signaling. 

Metatranscriptomic analysis identified only one significantly different genus, Lawsonella, 

whose relative abundance decreased with higher age (P = 8.7 × 10−8; Fig. 5F). Lawsonella 
relative abundance positively correlated with TLR gene expression across all age groups, 

however, demonstrating that it did not account for the age-related up-regulation in TLR 

signaling (Fig. 5G). Last, we evaluated the upper respiratory tract virome and observed 

reactivation of herpes simplex virus (HSV) and cytomegalovirus (CMV) over the course of 

hospitalization in the oldest age quintile, but not in younger participants (Fig. 5H and table 

S2).

Relationships were observed between aging, immune response, and COVID-19 severity

Previous studies have established that severe COVID-19 involves a dysregulated host 

response characterized by inappropriate activation of inflammatory and immunoregulatory 

pathways (36–38). We, therefore, sought to examine the intersection of aging, COVID-19 

severity, and host immune responses by assessing PBMC gene expression differences at 

visit 1 between participants with mild/moderate COVID-19 [baseline National Institute 

of Allergy and Infectious Diseases Ordinal Scale (NIAID-OS) (2) of COVID-19 severity 

between 3 and 4] and severe COVID-19 (baseline NIAID-OS between 5 and 6) within the 

youngest and oldest age groups. Several immune signaling pathways were associated with 

disease severity in an age-dependent manner. For example, only in the oldest age quintile 

was severe COVID-19 associated with up-regulation of the IL-3, IL-5, and granulocyte-

macrophage colony-stimulating factor signaling pathway; the IL-4 and IL-13 signaling 

pathway; TLR signaling pathways; and the NRLP3 inflammasome signaling pathway in the 

upper airway (Fig. 6A). In the blood, the IL-1 signaling pathway was only up-regulated 

in severe COVID-19 in the oldest adults. We also identified several pathways that were 

associated with COVID-19 severity independent of age. For example, in the blood of 

both the youngest and oldest patients, severe disease was associated with up-regulation of 

neutrophil degranulation genes and down-regulation of pathways related to TCR, IFN-α/β, 

IFN-γ, IL-2, and PD1 signaling.

Assessment at the protein level provided further insights regarding the immunological 

intersection of aging and COVID-19 severity (Fig. 6B). We found that the higher abundance 

of several pro-inflammatory cytokines and chemokines, such as IL-6, oncostatin M (OSM), 

CXCL8, and CXCL9, was uniquely associated with more severe disease in the oldest adults. 

Increased expression of the anti-inflammatory cytokines TGF-β1 and IL-10 in individuals 

with severe disease was also specific to the oldest age quintile. Serum concentrations of 

several other proteins increased in severe disease independent of age, including CCL7, a 

leukocyte chemoattractant (39); S100A12, a neutrophil-derived cytosolic pro-inflammatory 

protein (40); and CD274 (also known as PDL1), a ligand for the immune inhibitory receptor 
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PD1. Similarly, we found that severity was associated with reduced expression of several 

cytokines regardless of age, including IL-12B and LTA (also known as TNF-β). Differences 

in SARS-CoV-2 viral abundance did not influence the results (fig. S10).

Integrated analyses of aging in COVID-19 revealed multilayered immune cross-talk in the 
blood and airway

Last, we sought to integrate findings across genes and proteins, as well as between the blood 

and upper airway compartments. Integrated network analysis of statistically significant 

age-associated genes and age-associated proteins from the blood (adjusted P < 0.05; Figs. 

3A and 4A) identified three prominent nodes related to chemokine ligand (CCL) signaling, 

T cell signaling, and the cell cycle (Fig. 7A). In addition, analysis of the 10 proteins 

most significantly associated with age (by largest magnitude of age-associated slope) and 

their immediate downstream genes illuminated the complex cross-talk between several key 

immune mediators. For example, CXCL9, which interacts with the receptors CXCR3 and 

CXCR5 in an activating manner (fig. S11), was positively associated with age. Conversely, 

the genes encoding the receptors, CXCR3 and CXCR5, were negatively correlated with age.

To investigate how aging could potentially affect ligand-receptor interactions in both the 

blood and upper airway, we focused on serum ligands that were significantly associated 

with age at visit 1 (adjusted P < 0.05) and examined the expression of the genes that 

encoded their cognate receptors. This analysis further highlighted transcriptomic/proteomic 

concordance and discordance (Fig. 7B). For example, aging was associated with increased 

expression of serum CXCL9 and CCL11 but decreased expression of CXCR3, which 

encodes a receptor for these ligands. In contrast, the expression of TNF and many of its 

receptors (e.g., TNFRSF1A, TNFRSF1B, and LTBR) were positively associated with age.

Several recent studies have highlighted the role of different monocyte subsets in aging-

related chronic inflammatory diseases (13, 41, 42); thus, we further examined the role of 

monocytes in the context of COVID-19 and aging. From the PBMC transcriptomics data, 

we found that many genes and pathways were significantly correlated with proportions 

of classical (CD14+CD16−), nonclassical (CD14−CD16+), and intermediate (CD14+CD16+) 

monocyte subsets (adjusted P < 0.05; fig. S12). For instance, in the youngest age quintile, 

an increasing classical monocyte population correlated with the up-regulation of the IL-10 

signaling pathway, an anti-inflammatory signaling pathway. In contrast, an increasing 

nonclassical monocyte population in the oldest quintile was associated with the down-

regulation of several innate and adaptive immune signaling pathways, suggesting that 

nonclassical monocytes were associated with an anti-inflammatory response in the oldest 

patients.

We then asked whether our multiomic dataset could reveal latent molecular subgroups in 

the oldest age quintile. To this end, we integrated PBMC RNA sequencing (RNA-seq) 

data, nasal RNA-seq data, and serum protein data using principal components analysis, 

controlling for the patient’s sex and disease severity. We found that the first and second 

principal components (PC1 and PC2) explained 19.83 and 18.19% of the variance in the 

data, respectively (fig. S13, A and B). On the basis of whether the PC1 value was negative 

or positive, we divided the patients into two subgroups: PC1+ and PC1− (fig. S13A). The 
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two subgroups had similar distributions of age, sex, and TG, but the PC1− subgroup was 

enriched for patients with severe disease, based on the NIAID-OS (fig. S13, C to F).

These subgroups exhibited substantial differences in the nasal compartment but not in the 

blood (fig. S14, A to C). The upper respiratory tract of PC1− patients demonstrated up-

regulation of many innate immune signaling pathways, including type I IFN signaling, TLR 

signaling, and interleukin signaling (adjusted P < 0.05; fig. S14D), as well as significantly 

higher bacterial abundance (P = 3.9 × 10−10; fig. S14, E to G). The difference in bacterial 

abundance was strongly driven by the Pseudomonadota phylum (fig. S14H). Although there 

were no differentially expressed PBMC genes (fig. S14B), GSEA suggested that TCR 

signaling, BCR signaling, and the complement cascade pathways were up-regulated in 

the blood compartment of PC1+ patients (fig. S14D). Together, these findings suggest the 

existence of two molecular subgroups within the oldest patients, which are characterized by 

differences in many innate immune pathways and the microbiome in the upper respiratory 

tract.

DISCUSSION

Effective host response to viral infection depends on potent early innate immune activation, 

engagement of adaptive immune effectors, and then, upon effective viral clearance, 

attenuation of this inflammatory signaling to prevent excessive tissue damage and pathologic 

consequences (43). We observed age-dependent dysregulation of this program at the 

transcriptional, protein, and cellular levels, manifesting in an imbalance of inflammatory 

responses over the course of hospitalization. Our results identify discrete innate and adaptive 

immune signaling pathways that are altered with age, suggesting potential targets for age-

dependent therapeutic intervention.

The role of type I IFN signaling in age-related immune dysregulation during COVID-19 has 

remained unclear, with some reports suggesting impaired induction of ISGs in older adults 

(8, 16, 25) and others demonstrating the contrary (13, 26). We found that older age was 

associated with increased type I IFN signaling in both the blood and respiratory tract but that 

the relationship was principally driven by aging-related differences in SARS-CoV-2 viral 

relative abundance. In contrast, IFN-γ signaling, which is associated with poor prognosis 

in COVID-19 participants (44), was up-regulated with age independent of viral abundance. 

Several factors likely contribute to higher SARS-CoV-2 viral abundance in older adults, 

including impaired T and B cell immunity and impaired MHC antigen presentation, each of 

which was observed at the transcriptional, protein, and cellular levels in our dataset. Delayed 

viral clearance due to these age-related factors could facilitate the evolution of SARS-CoV-2 

variants (45, 46).

Older adults had lower proportions of naïve CD8+ T cells and γδ T cells, which contribute 

to the effective clearance of viral pathogens (25, 47, 48). Terminally differentiated/exhausted 

NK cells, which are associated with severe COVID-19 (49), were more prevalent in older 

adults, as previously observed (13), as were central memory CD8+ T cells. Impaired 

T cell signaling in older adults was also observed at the transcriptional level in both 

the blood and the upper respiratory tract upon hospitalization. Longitudinal analyses 
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demonstrated attenuated expression dynamics of several TCR signaling-related genes in the 

older participants’ blood samples. We also observed differences in the relationship between 

SARS-CoV-2 viral abundance and cytokines important for T cell recruitment in the oldest 

versus youngest adults, such as the chemokine CX3CL1.

Younger adults exhibited a much more robust induction of MHC class II gene expression 

over the course of hospitalization. This is consistent with a previous study that reported 

HLA-DR expression increases over time after symptom onset in younger patients with 

COVID-19 but not in older patients (13). We also found that expression of MHC class I 

genes decreased more rapidly after hospitalization in the oldest versus the youngest adults. 

Because SARS-CoV-2 can subvert immune responses by reducing MHC class I surface 

expression in infected cells (50), our observations suggest that older participants may be 

even more vulnerable to this viral immune evasion mechanism.

Evidence of impaired B cell immunity was also observed in the older participants, consistent 

with prior studies (13, 25). Age was associated with reduced expression of BCR signaling–

related genes at the time of hospitalization. Furthermore, we observed lower proportions 

of naïve B cells and plasmablasts in the oldest adults. This could partly explain the lower 

anti–SARS-CoV-2 RBD Ab titers in the oldest patients upon hospitalization.

Effective modulation of inflammatory responses is critical for the restoration of immune 

homeostasis and mitigation of excessive tissue damage. We found consistent evidence 

of prolonged, potentially pathologic inflammatory responses in the oldest adults from 

transcriptomics and protein analyses. For instance, upon hospitalization, pro-inflammatory 

cytokines and chemokines such as TNF, IL-6, CXCL8, and CXCL9 were higher in the 

blood of older participants and continued to increase over time. In contrast, these cytokines 

decreased over time in the blood of younger participants. Our results suggest that age-related 

changes may exacerbate inflammatory signaling in severe COVID-19, supporting an early 

hypothesis (13, 25).

The oldest adults in our study had evidence of HSV and CMV reactivation in the upper 

airway over the first 28 days after hospitalization. This may reflect impaired antiviral 

immune defenses in older adults exacerbated in the context of SARS-CoV-2 infection. 

Furthermore, reactivation of latent Herpesviridae may contribute to excessive inflammatory 

responses observed in older adults, as has been described in studies of participants with HIV 

infection (51).

Advanced age was also associated with up-regulation of TLR signaling genes in both the 

upper airway and the blood, independent of SARS-CoV-2 viral abundance. We found that 

upper airway relative bacterial abundance correlated with TLR expression independent of 

age, and compositional differences in the microbiome across age groups did not explain this 

association, suggesting that age-related increases in TLR gene expression were caused by 

microbe-independent factors. Consistent with this hypothesis, studies have demonstrated that 

the up-regulation of innate immune receptors, including TLRs, could be an intrinsic feature 

of inflammaging (25, 52).
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Severe COVID-19 is characterized by dysregulated, pathologic inflammatory responses 

(36, 53, 54). We found that aging was associated with higher expression of several 

signaling pathways previously implicated in this pathologic immune dysregulation. For 

instance, in the oldest adults, severe COVID-19 was disproportionately associated with the 

hyperactivation of canonical pro-inflammatory cytokines, such as IL-6, OSM, CXCL8, and 

CXCL9. In the upper airway, severe COVID-19 in the oldest age group led to greater 

evidence of NLRP3 inflammasome and TLR activation compared with the youngest group. 

These differences raise the possibility that older adults with severe COVID-19 may respond 

differently, and perhaps more favorably, to immunomodulatory therapies directed at certain 

inflammatory cytokines.

Limitations of our study include the lack of a concurrently enrolled SARS-CoV-2-negative 

control group, the lack of a non-hospitalized COVID-19 group, and the lack of lower 

respiratory tract samples. To partially address the first limitation, we analyzed publicly 

available gene expression datasets to incorporate findings from unrelated, healthy cohorts. 

Although we found that adjusting for the three most prevalent age-associated comorbidities 

in our PBMC transcriptional analysis did not strongly influence the results, our study was 

not designed to specifically evaluate the impact of comorbidities on host immune responses 

in COVID-19, which can be explored in future dedicated studies. Moreover, participants 

in our current study were enrolled before the introduction of SARS-CoV-2 vaccines, and 

patient enrollment ended during the emergence of the B.1.1.7 alpha variant. As a result, 

age-related differences in host immune responses may differ from a contemporary cohort 

because of variations in both vaccination status and the circulating SARS-CoV-2 variants. 

Although this aspect limits the extrapolation of our findings to currently immunized older 

adults, the naïve state of our study population was also a strength, because our results 

were not confounded by prior vaccination or infection, providing a window into age-related 

differences in immune response to an emerging viral respiratory pathogen.

In summary, we found that aging has marked impacts on host immune and viral dynamics 

in patients hospitalized for COVID-19. Older adults exhibited impaired viral clearance, 

dysregulated immune signaling, and persistent and potentially pathologic activation of pro-

inflammatory genes and cytokines. Together, these findings will help to inform therapeutic 

strategies for this at-risk population.

MATERIALS AND METHODS

Study design

This study leveraged data from 1031 participants in the IMPACC observational cohort study 

(2, 24), which enrolled from 20 hospitals across 15 medical centers in the United States 

between 5 May 2020 and 19 March 2021. The end of this enrollment period represented 

the beginning of the emergence of the B.1.1.7 alpha variant; hence, SARS-CoV-2 variants 

of concern were not widely represented in the cohort. Eligible participants were those 

hospitalized with SARS-CoV-2 infection confirmed by reverse transcription polymerase 

chain reaction and symptoms or signs consistent with COVID-19. The detailed study design 

and schedule for clinical data and biologic sample collection and shared core platform 

assessments were previously described (24, 37). Detailed clinical assessments and sampling 
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of blood and upper respiratory tract were performed within approximately 72 hours of 

hospitalization (visit 1) and on approximately days 4, 7, 14, 21, and 28 after hospital 

admission (which corresponded to visits 2 to 6). As previously described (24), biological 

sample collection and processing followed a standard protocol used by every participating 

academic institution.

Ethics

NIAID staff conferred with the Department of Health and Human Services Office for 

Human Research Protections (OHRP) regarding the potential applicability of the public 

health surveillance exception [45CFR46.102(l)(2)] to the IMPACC study protocol. OHRP 

concurred that the study satisfied the criteria for the public health surveillance exception, 

and the IMPACC study team sent the study protocol, and participant information sheet for 

review, and assessment to institutional review boards (IRBs) at participating institutions. 

Twelve institutions elected to conduct the study as public health surveillance, and three sites 

with prior IRB-approved biobanking protocols elected to integrate and conduct IMPACC 

under their institutional protocols (University of Texas at Austin, IRB 2020-04-0117; 

University of California San Francisco, IRB 20-30497; Case Western Reserve University, 

IRB STUDY20200573) with informed consent requirements. Participants enrolled under 

the public health surveillance exclusion were provided information sheets describing the 

study, samples to be collected, and plans for data de-identification and use. Those who 

requested not to participate after reviewing the information sheet were not enrolled. In 

addition, participants did not receive compensation for study participation while inpatient 

and subsequently were offered compensation during outpatient follow-ups. The International 

Committee of Medical Journal Editors recommendations were followed for this study.

Statistical analysis

All clinical and immunophenotyping data were obtained from the IMPACC study (clinical 

data version 2021-11-11-frozen) and are publicly available under restricted access (2, 24). 

Quality control and assessments and raw data processing to generate computable matrices 

were previously performed by the IMPACC study (2, 37, 55). All data analyses were done 

in R (v4.0.2). For each data type, we investigated the behavior of features both at visit 1 

(within 72 hours of hospital admission for most of the participants) and longitudinally for 

scheduled visits (visits 1 to 6, up to 30 days after hospital admission, both inpatient and 

outpatient samples). No formal sample size calculations were carried out for this study. 

Severity was assessed using a previously described seven-point severity OS based on the 

degree of respiratory illness at the time of sampling (2). For comparisons between two or 

more groups that did not require controlling for covariates, we used the Kruskal-Wallis test 

or analysis of variance (ANOVA) test as indicated in the figure captions. For visit 1 analysis 

of RNA-seq data, protein data, and mass cytometry data, we used linear modeling with age 

as a continuous variable and controlled for sex and baseline respiratory severity. P values 

were adjusted with Benjamini-Hochberg correction.

In the longitudinal analyses, we used age quintiles (18 to 46, 47 to 54, 55 to 62, 63 to 70, 

and 71 to 96) and controlled for sex and disease severity clinical TG, a previously defined 

metric of COVID-19 severity over time (2). For longitudinal analysis of SARS-CoV-2 
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nasal viral abundance and serum anti–SARS-CoV-2 RBD IgG, we used generalized additive 

models with mixed effects from the package gamm4 (v0.2.6) to evaluate the effects of 

age while controlling for sex and TG. Generalized additive modeling was preferred for 

these features because of their nonlinear trajectories. For all other data types, we used 

linear mixed-effects models from the package lme4 (v1.1.25). P values in all analyses 

were adjusted with Benjamini-Hochberg correction. An adjusted P < 0.05 was considered 

statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Older patients have more severe COVID-19 and greater SARS-CoV-2 viral abundance.
(A) Graphical study overview. This study evaluated 1031 patients with COVID-19 between 

the ages of 18 and 96 enrolled in the IMPACC cohort at 20 hospitals across the United 

States. (B) Age distribution of the participant cohort. (C and D) The box plot shows the 

relationship between patients’ age and TG severity (C) or mortality (D). In (C), n = 217, 

270, 251, 191, and 102 patients in TG1 to TG5, respectively. In (D), n = 102 and 929 

patients for the dead and surviving groups, respectively. (E) Nasal swab SARS-CoV-2 viral 

abundance at visit 1 (reads per million, or rpM, as measured by metatranscriptomics) in each 

age group (n = 191, 175, 205, 190, 212 patients in youngest to oldest age groups). in (C) 

to (E), the boxes indicate the first and third quartiles of the distributions, the boxes’ center 

lines indicate median values, and the whiskers indicate 1.5× the interquartile range below 

the first quartile and above the third quartile. (C to E) P values were calculated using the 

Kruskal-Wallis test to test whether the medians of all groups were the same. (F) Nasal swab 

SARS-CoV-2 viral abundance over time in each age group (n = 448, 451, 544, 507, 573 
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samples in youngest to oldest age groups). Each gray line connects longitudinal samples 

from the same patient. The black line indicates the generalized additive mixed-effects model 

fit in each age group. The P value was calculated for the interaction between days from 

admission and age groups with generalized additive mixed-effects modeling.
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Fig. 2. Aging alters immune cell populations during COVID-19.
(A) Uniform Manifold Approximation and Projection (UMAP) plot shows blood cell types 

analyzed by CyTOF (n = 643 patients). (B) Bar plot shows blood cell types that are 

increased (red) or decreased (blue) with age at visit 1. (C) Scatter plots depict centered 

log ratio (CLR)–transformed proportions of four example cell types against age. The red 

and blue lines indicate the linear fit, and the shaded regions indicate the 95% confidence 

intervals of the fits. P values were calculated using linear modeling with Benjamini-

Hochberg correction.
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Fig. 3. Aging leads to changes in PBMC gene expression during COVID-19.
(A) Volcano plot highlights genes associated with age at visit 1 in PBMC RNA-seq data (n 
= 833 patients). (B) The dot plot demonstrates select Reactome pathways associated with 

age at visit 1, with (right) and without (left) controlling for SARS-CoV-2 viral abundance, 

in PBMC samples (data files S1 and S2). P values in (A) and (B) were calculated with 

the limma linear model and Benjamini-Hochberg correction. NF-κB, nuclear factor κB; 

RUNX3, run-related transcription factor 3. (C) Heatmap shows the longitudinal slopes 

(change in gene expression per day) of 2737 genes that significantly differ longitudinally 

between the five age groups (adjusted P < 0.05). n = 379, 384, 469, 449, and 485 

samples in youngest to oldest groups. (D) Heatmaps show the longitudinal slopes of 

select MHC, inflammatory, and TCR signaling genes from (C). (E) Plots display the 

longitudinal dynamics of six example genes from (D). P values in (C) to (E) were calculated 

for the interaction term between days from admission and age groups using linear mixed-
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effects modeling and Benjamini-Hochberg correction. (Full longitudinal dynamics plots with 

confidence intervals are provided in fig. S7.)
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Fig. 4. Aging is associated with differences in serum inflammatory proteins during COVID-19.
(A) The bar plot highlights proteins that are significantly up-regulated (red) or down-

regulated (blue) with age at visit 1 (adjusted P < 0.05). n = 895 patients. (B) Scatter plots 

show the normalized protein expression (NPX) of two representative proteins, CXCL9 and 

SIRT2, as a function of age. The red and blue lines indicate the linear fit, and the shaded 

regions indicate the 95% confidence intervals of the fits. (C) The dot plot represents the 

slope of cytokine expression versus viral abundance in the youngest and oldest age quintiles, 

18 to 46 (n = 179 patients) and 71 to 96 (n = 198 patients), respectively. In (A) to (C), 

P values were calculated using linear regression and Benjamini-Hochberg correction. (D) 

Heatmap displays longitudinal slopes (change in protein expression per day) of all cytokines 

that display significant age-dependent longitudinal dynamics (adjusted P < 0.05). n = 412, 

414, 456, 466, and 525 samples in the youngest to oldest age groups. (E) Plots show the 

longitudinal dynamics of four example cytokines from (D). P values in (D) and (E) were 

calculated for the interaction between days from admission and age groups using linear 

mixed-effects modeling and Benjamini-Hochberg correction.

Van Phan et al. Page 27

Sci Transl Med. Author manuscript; available in PMC 2025 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. Aging is associated with upper airway gene expression and changes to the nasal 
microbiome in COVID-19.
(A) Volcano plot shows genes associated with age at visit 1 in nasal samples (n = 915 

patients). (B) Dot plots show select Reactome pathways associated with age at visit 1, with 

(right) and without (left) controlling for SARS-CoV-2 viral abundance. MYD88, myeloid 

differentiation primary response protein 88. (C) Bar plot displays cytokines predicted from 

nasal gene expression to be up-regulated with age by Ingenuity Pathway Analysis. (D) 

The scatter plot displays the Pearson’s correlation coefficient between PBMC expression 

and nasal expression of a gene in the youngest (x axis) and oldest (y axis) age quintiles. 

n = 155 and 170 patients in the youngest and oldest age groups, respectively. Fifty-two 

genes (black dots) have a strong correlation in both age groups (correlation coefficient, 

>0.5). (E) The dot plot shows correlations between SARS-CoV-2 and total bacterial relative 

abundance, ISG expression score, and TLR gene expression score. (F) The box plot shows 

Lawsonella relative abundance across the age quintiles. n = 198, 185, 215, 203, and 221 
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patients in the youngest to oldest age group. P values were calculated with a one-way 

analysis of variance (ANOVA) test and Benjamini-Hochberg correction. (G) Correlation 

between Lawsonella relative abundance and TLR gene expression across the age quintiles. 

P values were calculated using the test of association with Pearson’s correlation coefficient 

and Benjamini-Hochberg correction. (H) Percentages of cases with detected HSV or CMV 

transcripts in the youngest and oldest age quintiles. The number above each bar indicates 

the number of positive cases over the number of total samples. P values were calculated by 

Fisher’s exact test to compare the distribution of positive cases across six visits between the 

young and old age groups for HSV and separately for CMV.
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Fig. 6. Aging is associated with COVID-19 severity.
(A and B) The dot plots highlight select Reactome pathways in PBMC or nasal swab 

RNA-seq data (A) and serum proteins (Olink) (B) that were up-regulated in participants 

with severe COVID-19 (baseline respiratory severity ordinal scale 5 to 6) compared with 

mild/moderate COVID-19 (ordinal scale 3 to 4) at visit 1, stratified by age group (youngest 

or oldest). In (A), n = 165 and 182 patients with PBMC samples in the 18 to 46 and 71 to 96 

age groups, respectively; n = 181 and 199 patients with nasal swab samples in the 18 to 46 

and 71 to 96 age groups, respectively. In (B), n = 179 and 198 patients in the 18 to 46 and 71 

to 96 age groups, respectively. P values in (A) and (B) were calculated with linear modeling 

and Benjamini-Hochberg correction.
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Fig. 7. Integrated analyses of aging in COVID-19 revealed multilayered immune cross-talk in the 
blood and airway.
(A) Network analysis was performed on serum cytokines and chemokines and PBMC genes 

significantly associated with age at visit 1 using protein-protein interactions reported in 

OmniPath. (B) Analysis of ligand-receptor interactions from cytokine protein data, PBMC 

RNA-seq data, and nasal RNA-seq data. The innermost ring shows the significant cytokines 

and chemokines from visit 1 analysis (adjusted P < 0.05) and the magnitude of their average 

change per 1 year of age. The two outer rings illustrated genes that encode known receptors 

for each cytokine and their associated change per one year of age. P values for the cytokines 

were calculated using linear models and Benjamini-Hochberg correction. *P < 0.05, **P < 

0.01, and ***P < 0.001.
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