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INTRODUCTION

Quantum electrodynamics (QED}, the théory of the interactions of
electrons and muons via photons, has now been tested both to high precision
—~ at the ppm level — and to short distances of order 1071430715 cn.

The short distance tests, particularly the colliding beam measurements of
e+, vy, and e*a” [A.1], are essentially tests of QED in the Born
approximation. -On the other hand, the precision anomalous‘magnetic moment
and.atomic physics measurements check the higher order loop corrections.and
predictions dependent on the renormalization procedure. Despite the
extraordinéry-suqcesses, it is still important to investigate the validity
of QED in the strong field domain. In particular, high-Zo afomic physics
tests, especiaily the Lamb shift in high-Z hydrogenic atoms, test the QED
amplitude in the situation where the fermion propagator is far off the mass
shell and cannet be handled in perturbation theory in Za, but where

the renormaliﬁation program for perturbation theory in a must be used.
High-2 heavy?ion.collisions cén be used to probe the Dirac spectrum in
the non-pertgrbative domain -of high Za, where spontaneous positron production
can ogcur, apd where twe different vacuum states must be considered.

Another reason to pursue the high-ia domain is that the spectrum of
radiation_emitted when two colliding héavy ions (temporarily) unite can lead
to a bettervunderstanding'of relativistic molecular physics. This physics ‘
is reviewed in the accompanying articlés of this volume. Furthermore, the
atomic spectra of the low-lying electron states and outgoing positron
continua reflect the‘nature of the nuclear. charge distribution, and could

be a useful tool in unraveling the nuclear physics and dynamics of a close
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heavy-ion collision. Somewhat_complementary to these tésts are the studies
of Delbrick scattering (elastic scattering of photons by a strong Coulomb
field) reviewed in Ref. A.2. '

One of the in;riguing aspects of high field strength quantum electro-
dynamics is the possibility that it may provide a model for quark dynamics.
Present theoretical ideas for the origin of the strong interactions have
focused on renormalizable field theories, such as quantum chromodynamics
(QCD), where the quarks are the analogues of the leptons, and the gluons —
the generalizations of the photon -are.themselves charged (non-abelian
Yang-Mills theory). In contrast to QED where the vacuum polarization
strengthens the charged particle interaction at short distances, in QCD
the interactions weaken at short distances, and (presumably) become very
strong at large separations.

To see the radical possibilities in strong fields, suppose a is large
in QED and the first boﬁnd state of positronium has binding energy e.>m.
The total mass of the atom 7 is then less than the mass-of a free electron
M =2m-e <m. Consider then an experiment in which an e'e’ paif is
produced near threshold — e.g. via a weak .current process..«Sinée an -~
additional virtual pair may be present, the produced pair can spontaneously
decay to two positronium atoms in the ground state, each with finite kinetic
energy. Thus bound states, and not free fermions, are produced! It is
clearly an interesting question-whether strong field strength in QED can
provide a mechanism analogous to quark confinement in hadron dynamics.

The work of K. WILSON [A.3j and J. MANDULA [A.4] is especially relevant
here. The studies of spontaneous pair production in heavf-ion collisions
(see Section A.3) provide a simble phenomenological -framework where some

of the effects of strong fields can be tested. : B
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It should be noted that our review only touches a limited aspect of
high-Za electrodynamics. We consider only the cases of a fixed or heavy
source for a high-Za Coulomb potential. An important open question concerns
the behavior of the Bethe-Salpeter equation for positronium in the large o
domain, and in particular, whether the binding energy can become comparable
to the mass of the constituents so that L= 2m-e -+ 0.

The organization of this article is as follows: We review in detail
the recént work on the atomic spectra of high-2 electfonic (Section A.1)
and muonic atoms (Section A.2), including muonic helium, with emphasis on
the Lamb shift and vacuum polérization corrections which test strong field
quantum electrodynamics. The theoretical framework of the QED calculations
for strong fields is discussed in Section A.1.5. The:constraints on non-

- perturbative vacuum polarization modifications and poésible scalar particles
are preseﬂted in.Section A.2.8. A review of recent work on the quantum
electrodynamics of heavy-ion collisions, particularly the dynamics of
positron production, is presentéd in Section A.3. In addition to reviewing
the phenomenology and calculational methods (Sections A.3.2 - A.3.4), we also
discuss the parameters for possible experiments, with a brief review of
vacancy formation (Section A.3.6) and background'effects (Section A.3.7}.
In our review of heavy-ion collisions we will also toych on several new

topics, including the coherent pfoductioh of photons in heavy-ion collisions

(Section A.3.9) and the self-neutralization of charged matter fSection A.3.10).

We also point out some questions which are not completeiy resolved, including
the relative importance of induced versus adiabatic pair production (Section
A.3.5) and the nature of radiative corrections in a to spontaneous pair

production (Section A.3.8).

A.1  THE ELECTRODYNAMICS OF HIGH-Z ELECTRONIC ATOMS

A.1.1 Lamb Shift in Hydrogenlike Ions

At present the most precise and sensitive way to test quantum electro-
dynamics at high field strength is to compare ;he theory and measurements
of the clas§ic Lamb shift interval, the ZS!j -ZP% separation in hyarogenlike
ions. In recent work on the Lamb shift, mcasuremehts have been extended to
hydrogenlike argon (Z=18) by an experiment at the Berkeley SuperHILAC [A.5}.
As we shall see, such experiments provide an important test of QED in strong
fields. . The higher order gindiﬁg terms in the theory which are small in
hydrogen become relatively more important at high Z. For example, the terﬁs
of order a(Zu)6 which contribute 0.016% of the Lamb shift in hydrégeh give
123 of the Lamb shift in hydrogenlike argon. The theoretical contributions
to the Lamb shift are by now well estabiished iA.G,?]. Our‘purpose he}e
will be to summarize these contributions as an aid to testing the‘validify'
of the theory. 7 ’

The dominant part of thé Lamb shift is gngn B}.the.seif‘energy and
vacuum polarization of -order a, éorrespondiﬁg to the Feynman diagraﬁs in’
Fig. A.1(a) and (b). In the past, most of the theoretiéal work on fhe sélf-
energy has been»concerneq with thé evaluation of*terms of sucéessively
higher order in Za. However, EﬁICKSON [ALB] has given an gpalytic approx-?
imation which can be used as a_guide for thé Lamb éhift for any Z. This is
discussed in detail in Ref. A.9.

More recently, MOHR [A.10] has méde a comprehensive numerical evaluation

%

of the ZS% and 2P, self-energy to all orders in Za. The method of evaluation
is based on the expansion of the bound electron.propagation function in terms

of the known Coulomb radial Green's functions [A.11], and is described in

v,
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more detail in Section A.1.5. In order to display the results for the order A substantial discrepancy between theory and experiment was eliminated

I, - 3 A (2) oo i F 1= AL N - M : :
a self-energy contribution SSE to the Lamb shift 5 = ‘/‘H:b!i') A“'I!Z‘ ’ : when APPELQUIST and BRODSKY [A.17] corrected the fourth order Lamb shift
it is convenient to isolate the exactly knowh low-order terms by writing terms by a numerical evaluation. Since t.hen, the terms have been evaluated
: analytically. The total of the fourth order radiative corrections to the -
RN R l\ (2,0) ) o .
T DR R ) R En(Za)-Z - %N o, r " . - :
SE T 6 ) K (Z,1 28 7 7 . Lamb shift is given by
+ T3n (1 LA 1 2n2> lZu) - é(ﬁx)«lm“(’m)“'Z FT (4) oV 2o 2 sm? 37673 T
] 128 2 4 U g S : s - (5) B n|rwme - Y - 1 gz @A
+ w ], 4 m2) )P tn 22 + (2% Gy (2a) Can . ST el
240- o) ke \ca g4 k Recent work on the evaluation of this tem'is simm,ari_zed_» in Ref. AJ;;,‘NQ‘?’;
: > : O that 'only the 1owest order tem in Za has been eveluatied ' : i v

We shall always dlstmgmsh,radlatlve terms in a from temms” in Za which : ‘ >

arise from the nuclear field strength Values of the remainder GSE(Za) in
2 to the Lamb shift are given by (see Ref A. 7)

"Eq. p to the calculated values of Sqp @) for 7 in the range - R S
10 - 50, appear m'Flg Al Z ’I‘he error bars 1n that figure represent a conserv- ' s _ o« (zé;)f‘ 3 n(z K (2,0 + 23
) M = o e "3y n( a) __KO(Z %) 50 . (A.4)
ative estimate of the uncertamty assoc1ated w1th the numerlcal 1ntegrat1on )
in the evaluatmn of s': f energy and at Z 1 ‘the uncertamty resultmg and. R
i v . ‘ 3 ' K (2 0) -
from extrapolatlon from Z lO . - . . . (Za) my |1 N2 *
. . _ . SRR = m (M) ry in(Za) ZQnW
Evaluatlon of th : energy level shift assoc1ated with the vacuum } T
polanzatlon of order a is fac111tated by cons1der1ng the expansmn of the R ’ where M is the nuclear mass.
vacuum polauzatmn potent1al in’ powers of the extemal Coulomb’ potentlal ’ ’ The finite nuclear size correctlon to. the >Lamb shift is glven for 7
(see WICHMANN and KROLL [A 12]) Only odd powers of thé external potential = : not too large, by the perturbation theory expresswn
contribute as a consequence “of Furry s theorem {A. 13] The first term in‘ : ' ’ - (Zo.) ZaR
: o Sys. = [1 * 1.70(2a) ] {2a)” ( ) (A.6)
the expansion gwes rise to the Uehllng potential '[A.14,15]; the associated
level shift is easily evalneted nuiner'ically. The second nonvénishing term i assuming a nuclear-model in which the.c_h_arge is distributed unifc'mﬁly inside
in the expansion is third 'orgier in the external potential. The two lowest . a sphere; where s = \/1-(Zoz)2 and R is the,x:.n':s. charge radius of the-
order contributions to the Lamb shift from this term are given by {A.12,16]. nucleus. An estimate of the error due to neglected higher order temms in

perturbation theory is given in Ref. A.16. . - . -

6 L ' :
a (Za) 19  n? 3 3w’
T 6 " [ 60 % " (ﬁ 38ag ) "¢ *.2)




- The sum of contributions listed above gives the total Lamb shift S.
Values for the individual contributions are listed in Table 1 for hydrogen-
like argon. Theoretical and experimental values for >3 are compared in

Table 1I. The theoret1cal values for Z<30 are listed in Ref 16.

TABLE 1. Coniributions to the Lamb shift at Z=18, R=3.45(5) fm assumed.

Source ) ’ Order Value -
Self energy a(Za)*[2n(2a) "2,1,Za, ) 40,544(15) GHz
Vacuum polarization - a(Za)“[1,Za,***] ©-2,598(3)
Fourth order al(Za)* . . : 11(14)
Reduced mass a{Za)* m/M o -1
Relativistic recoil . (Z&)° m/M ' 12(9)
Nuclear size (Za)® (RZX [, (z«) WR/X), 00]  © 283(12)

© 38,250(25) -GHz .

TABLE 1I. Comparison betweern theory and measurérent of the Lamb shift
’ E(ZS&) E(ZP,}) for Z>3. .

Theory (10) - Experiment (1o) Ref.

632t 62,737.5(6.6) MHz 62,765(21) MHz ' [A.18]
62,790(70) MHz [A.19)2

_ o 63,031(327) MHz » [A.20]
“_c" 781.99(21) GHz' 780.1(8.0) GHz a.21}
te7t - 2,196.21(92) GHz 2,215.6(7.5) GHz [A.22]
. : 2,202.7(11.0)GHz T [A.23)
19g0¢ ©3,343.1(1.6) GHz 3,339¢35) GHz . . - [A.24]3
Soart?t 38.250(25)THz 38.3(2.4y THz. . - [A.5)?

f’Improved experimental precision is expected.

-8-

Most of the experiments listed in Table-II were done by the so-called

“static field guenching method [A.20]. This method is based on the large

difference between the ZSL, and ZP,/ lifetimes and the small separation of the

levels. The ratio of the lifetimes is roughly r(ZS )/T(ZP ) ~ 1082 2

Atorns
in the metastable ZS state are passed through an electric field wh1ch causes
the lifetime of the 25;, state to decrease by mixing the S and P states.

The change in the lifetime as a function of electric field strength leads

to a value for the Lamb shift according t6 the Bethe-lamb theory. The
quenching experiments, at higher Z (Z>6) depend on the electric field 'in‘

the rest frame of a fast beam of ions passing through a magﬁétic field to
produce the 2S-2P mixing. ' ) Lo
The experiments of LEVENTHAL' [A. 18] and DIETRICH et al {A. 19) with

lithium are based on the microwave resonance method. The experiment of KUGEL

et al [A.24] with fluorine measures the frequeﬁcy of the ZS1 /2" ZP3 /2 sei)ara- :

tion which is in the infrared range. The Lamb shift is deduced with the

aid of the theoretic.al /ZPI/2 - ZP3/2 splitting wHich is rela'tivel).' weakly
dependent on QED. In the experiment one-electron ions of fluorine in _the
metastable ZS1 /2 state are produced. by passing a 64 MeV beam through carbon .
foils. The metastable atoms are excxted to the 2P3 /2 state by a laser beam
which crossés the atomic beam, and the x rays emitted in the transition

are observed. A novel feature of the experiment is that the

2P, ,, 18

3/2 1/2
résonance curve is swept out by varying the angle between the laser ‘beam

and the ion beam which Doppler-tunes the frequency seen by the atoms. ..



93 7

£
1:,;9

$

-9,

A.1.2 Lamb Shift in Heliumlike Ions

It would be of considerable interest to extend accurate Lamb shift

measurements to hydrogenic systems with very high Z in order to test strong

field QED. However, it appears unlikely that the uydrogenlike Lamb shift

can be measured by the quenchlng methods in 1on$ with 2230 [A. 25]

A different p0551b111ty for -accurate checklng of QED at very high Z is
the study of two- and three-electron ions with high-Z nuclei. When Z»1s
very large, the electron-nucleus interaction dominates over the eiectron-
electron 1nteract10n Therefore, .a theoretical approach which considers

nonlnteractlng electrons bound to the nucleus according to the s1ng1e particle

i D1rac equatlon, and treats interactions of the electrons and radiative correc-

t1ons;as,perturbat10n$, should be capable of making accurate theoretical

-predictions [A.26].

As an example, consider the energy separation ZSPO- 23S1 in heliumlike
ions. In the high-Z jj-coupling iimit, the energy separation is given by
(151/22p1/2)0 - (}51/2251/2)1, so that if the electron-electron interaction
is neglected compared to the electron-nucleus interaction, the absolute
energy separation is just the hydrogenic Lamb shift E(ZSI/Z) -E(2P1/2).

The electron-electron interaction must still be taken into account. The
largest term, corresponding to one-photon exchange between the bound electrons,
is of the form ala(Za) +b(Zo)3+c(Za)5+ ...]m, with the leading term coming
from the nonrelativistic Coulomb interaction of the electrons. The dominant
energy separation is given by the first two temms which grow more slowly

with Z than the Lamb shift ~ a(Zo)4. Hence, the Lamb shift becomes an
increasing fraction of the energy separation as Z increases. The ratio of

the Lamb shift to the total energy separation is 0.002% for Z=2, 0.8% for

-10-

2=18, and 9% for Z=54. At high Z, the main QED corrections in heliumlike
ions correspond to Feynman diagrams such as those pictured in Figs. A.3(a) and
(b).  The energy shift associated with these diagrams is just the hydrogen-
like ion Lamb shift. Diagrams with an exchanged photon such as the one in
Fig. A.3(c) are less important (of relative order Z-l), buf need_éo be
calculated for a precise comparison with experiment.

From the experimental standpoint, the he11um11ke Lamb shift has” the
advantage that both the 2 P and 2 S1 ‘states are long- lived compared to the '
hydrogenlike 2P states so that the natural width of the‘states is not the
main limitation to the accuracy which may be achieved In addition,. in
contrast to the hydrogenllke case, there is no strongly favored decay mode
(for zero spin nuclei} to the ground state to depopulate the upper level,
which makes direct observation of the decay photons feasible in-a beam-foil
experiment. . .

Studies of the flne structure in hellumllke argon (Z=18) have been
carried out by DAVIS and MARRUS [A 27}, who measured the energy of photons
emitted in the decays 23P2->2351 and 2 POP'ZSS1 in a beam-foil experiment at
the Berkeley SuperHILAC. Their results arenshown in Table III. In that
table, the theoretical values for the QED corrections are the hydfogenlike

corrections for Z=18, and are seen to be alread} tested to the 25% level.

TABLE 111 s oy
Fine structure in heliumlike argon, from DAVIS and MARRUS [A.27], in eV.
s Self energy and
Trapsition vacuum polarization AEth AEexp
3 3 :
2 P, > 275, . -0.15 22.14(3) 22.13(4)
2%, - 2%, -0.16 18.73(3) 18.77(3)
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GOULD and MARRUS {A.28] have measured the transition rate for the
radiative decay 23P0 -+ 2351 in heliumlike krypton (Z = 36) by observing the
X rays emitted in the subsequent Ml decay 235l hd llSO. Interestingly, the
QED corrections to the 23P0 - 2351 energy splitting produce an observable
effect in the decay rate. The observed lifetime of the 23P0 state is

T=1.66(6) nsec. Assuming that the decay rate is given by the relativistic

dipole length formula [A.29]
3 3. 4 3 > 302
APy > 25)) = gawagdkz S;M [T+ T, 279,00 (A.7)

the theoretical value for the lifetime is 1=1.59(3) nsec (t=1.42(3) nsec)

with (without) the QED corrections included in the energy separation w.

A.1.3  Quantum Electrodynamics in High-Z Neutral Atoms

Binding energies of inner electrons in heavy atoms are measured to high
acéuracy by means of electron spectroscopy of photoelectrons or internal
conversion electrons [A.30]. Because of the extraordinary precision of the
measurements, surprisingly sensitive tests of QED as well as the many-electron
calculations can be made.

Precise calculations of the ground state energies have been. given by
DESIDERIO and JOHNSON [A.31] and MANN and JOHNSON [A.32]. DESIDERIO and
JOHNSON {A.31] have calculated‘ the self-energy level shift of the 1S state
in a Dirac-Hartree-Fock potential for atoms with Z in the range 70 - 90 (see
Secfion A.1.5). They estimated the vacuum polarization correction to the
1S level by employing the Uehling potential contribution for a Coulomb potential
reduced by 2%‘ to account for electron -screening. MANN and JOPNSON [A.32]

have done a calculation of the binding energy of a K electron for W, Hg,

-12-

Pb, and Rn whivch takes into account the Dirac-Hartree-Fock eigenvalue, the
lowest order transverse electron-electron interaction, and an empirical
estimate of the correlation energy. The binding energy is taken as the
difference between the energy of the atom and the energy of 'the ion with a

1S vacancy. Their comparison of theory to the experimental values [A.30]

" corrected for the photoelectric work function is shown in Table IV. The

inclusion of the QED terms dramatically improves the agreement between -

theory and experiment.

TABLE IV. K-electron energy levels (in Ry) from MANN and JOHNSON [A.32].

Self-energy and :

Element vacuum’ polarizationa Eth Eexpt
74W 8.65 -5110.50 -5110.46 + .02
gofie 11.28 -6108.52 -6108.39 +.06
g2Pb 12.27 -6468.79 -6468.67 .05
gRn 14.43 ©-7233.01 -7233.08 £.90

3Calculated by DESIDERIO and JOHNSON [A.31] . These numbers include
an estimated correlation energy of -0.08 Ry.

A similar comparison of theory and experiment has been made for Fm
(Z=100). FREEDMAN, PORTER, and MANN [A.33] and FRICKE, DESCLAUX, and
WABER [A.34} ha.ve calculated the K-electron binding energy in fermium..

The results of FREEDMAN, PORTER, and MANN are compared to the experimental
value obtained by PORTER and FREEDMAN {A.35] in Table V. They used extrap.-
olations of the results for Z=70-90 of MANN and JOHNSON for the rearrange-

ment energy, and of DESIDERIO and JOHNSON for the QED corrections. If the

L
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extrapolated value for the self-energy in that table is replaced by the
recently calculated value of CHENG and JOHNSON [A.36], the theoretical

energy level is -141.957 keV.

TABLE V. Calculated K-electron energy level in
. Loofm (in keV), from FREEDMAN, PORTER,
and MANN [A.33].

Source Amount
EIS (neutral-atom eigenvalue) -143.051
" Magnetic : +0.709
Retardation . -0.040
Rearrangement +0.088
Self-energy . +0.484
Vacuum polarization - -0.154
Electron correlation -0.001
E1s (2 =100} ) -141.965+0.025

Experimental value -141.967 £ 0.013

Extensive calculations of electron binding energies for all the elements
in the range 2<2<106 have receﬁtly been done b).' HUANG, AOYAGI, CHEN,
CRASEMANN, and MAR¥ [A.SZ]. They used relativistic Hartree-Fock-Slater
wave func;ion§ to calculate the expectation value of the total Hamiltonian.
They assumed éomplete relaxation and included the Breit interaction and
vacuum polarization corrections, as well aé finite nuclear size effects.

By comparing their results to experiment, it is possible to see the
effect of the self-energy radiative corrections to Fhe 251/2 -2P1/2 (LI -LII)
level splittipg in heavy atoms. Figure A.4 shows the relative difference
between the theoretical splitting wiihout the self-energy and the experimental

values compiled by BEARDEN and BURR [A.30]. ;I‘}le solid line shows theoretical

_14_

values for the Coulomb solf—énergy splitting IA.IOI, and the dashed line

shows values modified with a screening correction [A.37].:

A.1.4  High-Z7 Atoms and Limits on Nonlinear Modifications of QED

Various reformulations of classical electrodynamics have been proposed
which attempt to eliminate the problem of an infinite self-energy of the
electron. Among these is the nonlinear theory of BORN and INFELD [A.38;39].

They proposed that the usual Lagrangian L = ‘1(H2 -EZ) be repléced by .

Ly = E{mie -l /E2) -} o *.8)

This formulation reduces to the usual form for field strengths much smaller
than an "absolute field" Eo. Within the Born-Infeld theory, the electric’ »

field of a point charge is given by

2 -l
e e 2
E_ = —[1+(—) /E] CA9)
T rz . rz [e]
The magnitude of E0 is determined by the condition fhat-thé’integral-of the
energy density of the electric field associated with a point charge at rest
is just the rest energy of the electron m. This results in a value E0 =

1.2x 1018

V/cm and a characteristic radius r,= 3.5 fm inside of whichlfhé
electric field deviates substantially from the ordinary form e/r%. ‘Due to
the large magnitude of Eo’ the obsérvab;e deviations froh-linear electro-
dynamics should be most evident in situations involving strong fields.
There has been recent interest in the exﬁerimental consequences of the

Born-Infeld modification. RAFELSKI, FULCHER, and GREINFR [A.40] have found

that the critical charge ZCr (see Section A.3.1) is increased from about 174
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in ordinary electrodynamics to 215 within the Born-Infeld electrodyvnamics. for both the self-energy and the vacuum polarization, the expressions

FREEDMAN; PORTER, and MANN [A.33] and FRICKE, DESCLAUN, and WABLR [A.34] have corresponding to successively higher order tems in the expansion become
lent ; i ingly N i and difficult to evaluate.

pointed out that the excellent agreement between the theoretical and experi- increasingly more complicated and di

mental 1S binding energies in fermium‘(2= 100}, discussed in Section A.1.3, In their classic study of the vacuum polarization in a strong Coulomb

h £ ] .12) ‘emploved an alternative approach to the
is evidence against deviations from the linear theory of electrodynamics. field, WICHMANN and KROLL [A.12] employ pp

: indi ion for the bound:particle propagator.
In Fm, the difference in 1S energy eigenvalues between the Born-Infeld theory problem of finding a useful expression I

‘and ordinary electrodynamics is 3.3 keV, based on a calculation using the Their method and variations of it have been the basis for studlgs of strong
iel 5 i hod in some detail here. We also
Thomas -Fermi electron distribution with a Fermi nuclear charge distribution. field QED effects, so we describe the method in
This is two orders of.magnitude larger than the combined uncertainty in give a brief survey of calculations of strong field QED effects based on
theory and expériment 1isted in Table V. Although the other corrections these methods. v : :
listed in that table might be modified by the Born-Infeld theory, e.g., the * For a time-independent external potentiall which we assume has only a
. > .
: : ishi - = =0, the bound electron
self-energy, the linear theory produces agreement with experiment in a case - nonvanishing fourth cormponent eAO(x) ‘ V{x), Agx) s t d

where the effects of possible nonlinearities are large. SOFF, RAFELSKI, _ propagation function is

and GREINER [A.41] have found that unless EO is greater than 1.7 XIOZ0 V/cm

which is 140 times. the Born-fnfeld value, the modification due to LBI ' }E: ¢n(;2)$ﬁ(;1) exp[-iEn(t2 -tl)] Tty
[Eq. (A.8)] would disTupt agreement between measured and calculated values : ‘ o) - En>Eo (A.10)
for low-n transition energ1e.s“1n .muon;c lead. _ . FY2071 _; ; ¢’n(§2)¢n(;1) exp[-iEn(tz = tl)] t,<ty

n %o

A.1.5 Wichmann-Kroll Approach to Strong-Field Electrodynamics
' ' ' where the ¢n(;) are the bound state and continuum solutions of the Dirac

A common aspect of calculations of strong field QED effects is the equation for the external potential. It has an integral representation givep

problem of finding a useful representation of the bound interaction (Furry) by [A.12,42]

picture propagator Sg(xz,xly.for a particle in a strong external poteﬁtial , e .1 J- dz G(%,, % ,2)¥° e-iz(tZ 'tl) (A.11)
Ay(x}. The approaches based oﬁ expanding Sg(xz,xl) in powers of -either’ the SF(xzfxl) i ey

potential A,(x) or the field strength 3uAv(x) -avAu(X) suffer from two main } . where G(:%;;i,z) is the Green'; function for the Dirac equation

drawbacks. First, in the case of the self-energy radiative cdrrect}on, ' _

the power series generated in this way converges slowly numerically. Second, [-ia '§é *V(;z) +8m-z] G(;Z’;l’z) - 63(;2 -;1) (A.12).



and the contour C in (A.11) extends continuously from -= to +« below the real

axis for Re(z) <Eo, through E _, and above the real axis in the region Re(z) » Eo.

The crossing peint Ec"' depends on the definition of the vacuum (see Section

A.3.1). For the Coulomb potential with (Za) <1, it is convenient to choose

EO= 0. Two possible contours of integration for (Za) >1 are shown in Fig.

A.5. In that flgure the branch points of G(x2 1,z) at z = +m and the bound
state poles are also shown. ’
The Green's function is formally given by the spectral representation
op (X)L (K)) ‘
_EY2TETLY (A.13)

> >
G(XZ’xl’Z) = L s

where the sum in (A.13) is over bound state and continuum solutions as in

Eq. (A.10).
For a spherically symmetric external potential V(r), the Creen's function
may be written as a sum over eigenfunctions (with eigenvalue -k) of the Dirac

operator K = B(; . f.+ 1). Each term in the sum can be factorized into a part

wh1ch depends in a tr1v1a1 way on the d1rect10ns of x2 and 52 and a radial

Green s functmn Wthh contains the nonterlal dependence on T, and T, the

magnltudes of x and x The radial Green's function G (r2 1,z) written

as a 2x 2 matnx satlshes the inhomogeneous - radial equation

1 d e
V(r2)+m-z ) ‘gdrzr2+r2
L4 . . Gelrgemye?) = v )
}—Ea?z—rz*rF; V(rz)-m-z
(A.14)

_The utility of this formulation is that the radial Green's functions G, can

be constructed explicitly from solutions of the hon\ogeneous version of (A.14).

Let A(r) and B(r) be the two linearly independent two-component solutions of
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(A.14} with the right hand side replaced by 0, where A(r} is regular at r=0
and B(r} is regular at r=«. Then for = in the cut plane (Fig. A.5) and not

a bound state eigenvalue, the Green's function GK,is given by

G lrpprys2) = J—(15 (6(r,- 1)B(rz)\ (r)) + 8(r;- ZJA(rZ)B (r)] - (Alls) -

with the Wronskian J(z) given by (J(z) is independent of 1)
I@ = WM < AMBM] (A1)

In (A.16), 1(2) denotes the upper(lower) component of A or B. Note that the ..
radial Green's function can also be expressed. in the form of a spectral - ..
representation, in analogy with Fq. (A.13), as

'FE(rZ)‘FF]lEH(Tl) I

G (ry,Tys2) = I 5 - (A.l?)‘v.

where F.(r) is a bound state or continuum solution of_: the ‘hon;oéeneen;‘ragial
equation. » N _ -
In the case of a Coulomb potential, the s}olptions_.A(r)t and BA(r) cen bbeb
expressed in terms ‘of confluent hynergeometric (or Wnitéeken) funct'ions
[A.12,11]. WICHMANN and KROLL [A.12] ‘employed. integral representations ' j

t'or these functions, carried out some of the integrations involved in evalu-
ation of the vacuum polarizetl:on, and arrived at relatively compact expressions
for the Laplace transform of the vacuum polarization cn_a;'ge density tirnes.r .
Their starting point was the expression for the‘unrvenomw‘lize_d vacuum polar-

ization charge density of order e

Ovp(r) = -i en’ Z fdz[TrG (r,r,2) + oG ([ z)] (A.18)
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This expression, which is valid to all orders in Za, may be further expanded

in a power series in Za. Many of the calculations relevant to high-Z muonic
atoms (see Section A.2) are based on results obtained by WICHMANN and KROLL
in their extensive study of pvp(r).

ARAFUNE ([A.43] and BROWN, CAHN, and McLERRAN [A.44,45] employed an
approximation based on setting m=0 in the radial Green's function G? to
study finite nuclear size effects on the vacuum polarization in muonic atoms.
This approximation considerably simplifies the calculation and corresponds
to including only the short-range effect of the Jacuum poiarization.

GYULASSY '[A.46-48] constructed Green's functions for a finite nucleus
potential in a numerical study of the effect of finite size on the higher
order vacuum polarization in muonic atoms and in electronic atoms with Z
ﬁear'the critical value (see Secfion A.3.8). In these studies, it was found
that the main correction due to nuclear size arises from the k=1 (j=%)

term in Eq..tA.IB).- BROWN, CAHN, and McLERRAN [A.49,50] have constructed
approximate analytic expressions for the radial Green's functions for a
Coulomb potential in order to estimate the effect of thé spatial distribution
of the vacuum polériiation charge density in muonic atoms.

BROWN, LANGER, and SCHAEFER [A.51] have developéd a method of calculating
the 1S self-energy radiative.correction for large Z, in which the solutions
A(r) and B(r) ére genefated by numerical integrafion of a set of coupled
differential equations. This method has been generalized to non-Coulomb
potentials by DESIDERIO and JGHNSON [A.31] who evaluated the self-energy in
a screened Coulomb potential for the 1S state with Z in the range 70-90.

More récently, CHENG and JOHNSON [A.36] have evaluated the self-energy, with
finite nuclear size and electron screening'taken into account for Z in the

" range 70-160, and. with a Coulemb potential for Z in the range 50-130.
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MOHR |A.10,11] has evaluated the self-energy radiative correction for
the 1S, 2S, and Zpl/Z states over the range Z = 10-110 for a Coulomb potential;
In that calculation, the radial Green's functions are evaluated numerically
by taking advantage of power series and asymptotic expansions of the explicit
express%pns for the radial Green's functions in terms of confluen£ hyber-
geometric functions. In temms of the radial Green's functions, the (unre-

normalized) self-energy has the form

AESE = - —;-:—f dzf drzrgf drlrf
C 0 0
2

x EZ [fi(rz)Gij(rz,rl,z)fj(rl)AK(rz,rl)' B

< 1,351

] f;(rz)_c}(j(rz,rl,z)fi(rl)Ain(rz,rl)] | - a9y

where i= 3-i, 5 =3-3; fi(r), i=1,2 are the large and small components of

i
the Dirac radial wave functions, and the A's are functions associated with the

-angular momentum expansion of the photon propagator and consist of spherical

Bessel and Hankel functions. In the numerical evaluation of (A.iQ), partic-

ular care is required in isolating the mass renormalization term [A.11].

o
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A.2  THE ELECTRODYNAMICS OF HIGH-I MUONIC ATOMS.

A.2.1 General Features

Muons, impinging on a solid target, can become trapped in bound states
in the target atoms [A.52]. Because the Bohr radius of a particle in a
Coulomb potential scales as the inverse of the mass of the particle, the
radii of the muon orbits are 1/207 times the radii of the corresponging
electron orbits. Thus the muon and the nucleus form a small high-i hydrogen-
like s§stem inside the atomic electron cloud. Observation of the transition
x rays of the muon yields the energy level spacings of the system. The
lowest levels of the muon, which have radii comparable to the radius of the
nucleus, are sensifive to properties of the nucleus such as charge distribution
and polarization effects [A.52]. We are here concernéd instead with higher
circular orbits of the muon, such as the 4f7/2 and 589/2 states in lead

atoms, which have the property

nuclear radius << muon Bohr radius << electron Bohr radius.

For these states, the effect of the structure of the nucleus and of the
bound atomic electrons is small. Hence precise_tﬁeoretical predictions
for the energy levels can be made and, in comparison with the experimental
transition energies, provide a means of testing the effects of QED. In
particular, the effect of electron vacuum polarization, which is large for
muon levels, is tested to bétter than 1% with present-day experimental
precision.

EXperimental determination of the 3d-2p transition energy in muonic

phosphorus by KOSLOV, FITCH, and RATNWATER [A.53] showed the effect of the

lowest order vacuum polarization. More recently, with the use of lithium
drifted germanium detectors to measure the x-ray energies, which are typically
in the range 100-500 keV for the transitions considered here, experiments
have become sufficiently accurate to be sensitive to higher order vacuum
polarization effects {A.54-59). The experiments of DIXIT et al [A.55] and

of WALTER et al [A.56} reborted in 1971-2 showed a significant discrepancy
with theory; however, more recent experiments of TAUSCHER et al [A.57], of
DIXIT et al [A.58}, and of VUILLEUMiER et al [A.59] reported in 1975-6 are

in agreement with theory for the muonic transition energies. The accurate
experiments, and particularly the apparent discrepancy with theory, led to a
considerable amount of work on the theory of muonic energy levels. In the
following discussion, we describe the present status of the theory, with
attention focused on the we11~sFudied transition 5g9/2-04f7/2 in muonic 208Pb.
Numerical values for the various contributions to the energy levels are
collected in Table VI of Section A.2.6.

The main contribution to the energy levels is the Dirac energy of a muon
in a Coulomb potential. A small correction must be added to account for the
finite charge radius of the nucleus. This can be calcuiated either by first
order perturbation theory, or by numerical integration of the Dirac equation
with a finite nuclear potential. The latter procedure is necessary for low
n states where the finite size correction is large. For high n circular
states, the correction is small and insensifive to the details of the nuclear
charge distribution. For the Sgg/2 -4f7/2 transition in lead, the correction
is -4 eV compared to the reduced mass Coulomb energy difference of 429,344 eV.
The other small non-QED corrections from electron screening, and nuclear
polarization and motion are discussed in subséquent seétions.

The largest correction to the Dirac Coulomb energy levels is the effect



of electron vacuum polarization which is discussed in the following section.
In the remainder of this section, we make some general remarks about the
magnitude of the radiative corrections in muonic atoms.

If we restrict our attention to interactions of photons with electrons
and muons, the QED corrections to the energy levels of a bound muon, to
lowest order in o, are given by the Feynman diagrams in Fig. A.6. In that
figure, the double lines represent electrons or muon§ in the static field

of the nucleus. The diagrams (a), (b), and (c) represent the muon self-energy,

the muon vacuum polarization, and the electron vacuum polarization, respectively.

It is of interest to compare the QED correctioné to muon levels to the
éorresponding corrections Eo electron levels. The lowest order diagrams for
a bound electron are given by the diagrams in Fig. A.6 with the u's and e's
interchanged. For a point nucleus, the electron diagrams corresponding to
(a) and (b) give exactly the same corrections, relative to the electron
Dirac energy, as (a) and (b) give, relative to the muon Dirac energy. On
the other hand, diagram (c) gives the large vacuum polarization correction
in muonic atoms, while its analog, with y and e interchanged, is negligible
in electron atoms.

' The relativeiy greater effect of the electron vacuum polarization in
muonic atoms is due to the short-range nature of the vacuum polarization
potential. The leading (Uehling) term of the potential falls off exponen-
tially in distance from the nucleus with a characteriétic length of Ae/Z.
Hencé, the overlap of the vacuum polarization potgntial with the muon wave-
function, which has a radius of 0.2’»(e for the n=5 state in lead, is much
greater than the overlap of the potential with the electron wavefuﬁction,
which has a radius of about 550 Xe in the n=2 state of hydrogen.

The difference in scale between muon and electron atoms has another
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consequence. The short-ranged muon wavefunction is sensitive to the short-
range behavior of the electron vacuum polarization potential, while the
long-range electron wavefunction is sensitive only to the zero and first
radial moments of the potential. Hence while the hydrogen Lamb shift,
with presently measured precision [A.60,61], tests the vacuum polarization
to 0.1%, it is sensitive to a different aspect of the vacuum polarization
than the muonic atom tests.

A further difference between muon and electron atoms is that the high-
Z muonic atom measurements test higher order than Uehling poteﬁ;ial contribu-
tions to the vacuum polarization,which-are negligible in the hydrogen Lamb

shift [A.12].

A.2.2 Vacuum Polarization

The electron vacuum polarization of lowest order in a and all orders in
Za is represented by the Feynman diagram.in Fig. A.6(c). For a stationary
nuclear field corresponding to the charge density pN(;), the effect of the
vacuum polarization is equivalent to the interaction of.the bound muon with
an induced charge distribution given by (-e is the chargé of the electron)
[A.12,62]

pp@ = Ol E0l0 = ST e I? - T lo )
E>0 E<0

" (A.20)
T T

= & .7
= Zni]; dzTrG(r,r ,2)

(see‘also Eq. (A.18)), where G ié the Green's function for the external

“field Dirac equation discussed in Section A.1.5. (The vacuum |0> is the state



corresponding to no electrons or positrons in the external potential;
ju(x) = - %[@(x),yuw(x)] has a vanishing vacuum expectation value only in

the limit Za-+0.) The three expressions for the charge density in (A.20)

.are formal expressions and require regularization and charge renormalization

in order to be well defined. A practical method of regularization is the
Pauli-Villars scheme with two auxiliary masses [A.63]. The sum-over-states
‘formula for the charge density in Eq. (A.20) is related to the last expression
in (A.20) by choosing a suitable contour of integration C and evaluating

the residue of the pole in the spectral reﬁresentation, Eq. (A.]3); of G [A.12].

In order to facilitate the evaluation of the charge density (A.20),

- it is convenient to expand it in powers of the external field. The Feynman

diagrams corresponding to this expansion are shown in Fig. A.7. The x's

in Fig. A.7 repreéent intergctiqn with the external nuclear field. Only

odd: powers of the external fiéld.contribute due to Furry's theorem {A.13].
'The,gxpansion in powers of the external field in Fig. A.7 corresponds to the
Neumann senie; generated by_iteration of the integral equation for the

Green's function
6EF, 3,2 = F,#,2 —fd3?" R E,F,VENCE, T, 2) (A.21)

In (A.21), Go(?,;',z) is the Green's function in the absence of an external
potential and V(T) is the potential eneréy of the electron in the nuclear
‘field. The term in the expaﬁsion of G(;;;',z) linear in V(;), when substi-
tuted for G in (A.20), gives; after charge renormalization, the charge density

associated with the Uehling potential [A.1S5]

T |33 [t oy G)
w.@ - _j (2 1) [ el
1 . 3t 3t !r_rvl

(A.22)

In (A.22), the charge distribution of the nucleus normalized such that
fd3;pN(;) = Ze, and the subscripts on V refer to the order of the vacuum
polarization, i.e., v&m = O(a"(Zu)m). The effeét of vfl on a muon energy
level is accurately taken into account by adding Vgl to the external nuclear

potential V in the Dirac equation
Gep+V@ + V] () + B - EJo (1) = 0 (A.23)

and solving for the bound state energy En numerically.‘iThis procedure is
equivalent to summing over the higher order reducible contributions of the
Uehling potential; Fig. A.8 shows the first three terms in this sum.

For the high;l states under consideration here, the Uehling\contribdtion
is well approximated by the point charge value, Vll’ obtained by héking the
replacement pN(;) - Zeds(;) in the right-hand side of (A.22), evaluated in
first order perturbation theory with Dirac wavefunctions for a'point nucleus.
Only the short distance behavior of the electron vacuum polarization is

important (mer = 0.2 for r ~ radius of the n=5 state in 1ead)[A.64-66]:_

L ooZaf 2 g ' s M™e 2 2 32
Vu(r) = = ‘ 3 [ﬂ.n(mer) +y] + %7 +mr 5 Me¥
143 7 43
+ gmgro [n(mr)+y] + g mer” + ...f (A.24)
(y = 0.57721 ... is Euler's constant.) There are two non-negligible correc-

tions to Vll' The first is the correction due to the finite extent of the
-
nucleus. The small r form of the correction is [A.6SL

= VP () - = OZaf 1 2 .1 Te 2
V(M = V(D) Vll(r) o [ o3 ats sz o= ah Ty o+ L.,

30r
(A.25)

where the notation < > denotes an average over the nuclear charge density.



The other correction is the second order perturbation correction of the

main term corresponding to the diagram in Fig. A.8(b)
- 1
AE = :E: <0V, In> —=¢ <nlvy; 0> (A.26)
n#0 o mn

The energy shifts for the 5g9/2 - 4f7/2 transition arising_from these
corrections are listed separately in Table VI [A.65]).

We next consider the vacuum polarization of order a and third and
higher order in Za, corresponding to diagramé'with three or more x's in the
series in Fig. A.7: The point nucleus approximation is considered first.
WICHMANN and KROLL [A.12] obtained an explicit expression for the Laplace
transform of r? times the vacuum polarization charge density of order u(Za)s.
BLOMQVIST [A.65] has used fheir result to obtain the vacuum polarization
potential Vls(r) exactly in coordinate space and found the small r series

expansion which is sufficient to evaluate the muon energy shifts

X .
Vi3 = ﬂz—,;‘i)—{(-%ww%nz - )Es (w3 - fo)m,

1 1 2 2n .3 2
(-66(3) + Ig~ﬂ“ vz w2 mr + ?; in_r (2 (m,r) +7¥]

+

+

2 4 31 32
(3 m5(3) + 3 wen2 - 57 n) mr™+ ... } (A.27)

This term contributes -43 eV to the 5g9/2- 4f7/2 transition energy in muonic
lead. VOGEL [A.67] has tabulated numerical Yflues of Vls(r) as a function of r
based on BLLWQVIéf's exact expression. Calculations by BELL [A.68] and by'
SUNDARESAN and WATSON [A.69], based on interpolation of the asymptotic forms of
the Laplace transform of the third order vacuum polarization charge density
given by WICHMANN and KROLL, are in agreement with the values obtained by
BLOMQVIST. An earlier calculatién by FRICKE [A.70] had the wrong sign for

this term, which accounted for part of the apparent original discrepancy
between theory and experiment (see Section A.Z.l).

The vacuum polarization of order a(Za)S and higher can be accounted for
by considering the small distance behavior of the induced charge density.
For a point nuclear charge density, the effect of the vacuum polarization
of third and higher order is to produce a finite éhange 8Q in the magnitude
of the charge at the origin and a finite distribution of charge with a mean
radius of approximately 0.86Xe [A.12]. The intégral over all space of the
induced charge density of order (Zz})3 and higher must, of course, vanish.
The induced point charge, which gives rise to a leading term proportional
to r-1 in the vacuum polarization potential, has the dominant effect on the
muon energy. The magnitude of the induced charge was calculated by WICHMANN
and KROLL [A.12] to all orders (#3) in Za. Their result has been confirmed.
by an independent method by BROWN, CAHN, and McLERRAN [A.71,49]. WICHMANN

and KROLL obtained this result as a special case in a general study of the

" vacuum polarization, while BROWN, CAHN, and McLERRAN were able to simplify

the calculation by setting m, = 0 from the beginning. That this proceduré
produces 'the leading'r'1 term in third order is seen by inspection of VIS(T)

in Eq. (A.27). The lowest order terms in 6Q are given by

e 7 3 71 477" 5
8Q c % 3[2;(3) +x- ——2](Za) - [zc(S) + T3 - ——240] () + ...
(A.28)

The numerical value of the charge to all orders in Za is displayed by writing

§ = -e[0.020940(Za)> + 0.007121(Za)’ F,(Z0)] (A.29)

where Fo(Za) appears in Fig. A.9. The leading terms of the fifth and seventh

order vacuum polarization potential are [A.12,65]



I
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a(za)® [ 2 2 ., 7 1,2 .
Viglr) = == 13 e8) - F e g t® -7 0@+ O(mer)]
S
v, = 2 [-%cm e g6 - B e - L
- % 42(3) + O(mer)] : . (A.30)

The fifth and seventh order leading terms contribute -7 eV to the 539/2‘
4f7/2 energy separation in lead. ‘

We briefly examine the contribution of terms of higher.order in LRy
to the fifth and higher order (in Za) vacuum polarization. The order a

potential (excluding the r'1 term of the Uehling part) is given by [A.50]

V.0 = Aa) %" B(za)mew(Za)he(mer?“ + DZnlr + ... (A3D)

where A= (1 - (Zu)z)%, and the terms omitted from (A.31) are higher order in
mer." The'teFﬁ A(Za:)r-1 corresponds'to the induced point charge discussed

earlier. B(Z&) has not been calculated in fifth or higher order in Za,

.but gives the same contribution for all states and therefore does not effect

the transition energies. .The coefficients C(Za) and D(Za) have been calcu-
lated numerically to all orders in Za By BROWN, CAHN, and McLERRAN [A.50].
Their results show that the part of order fifth and higher in (Za) in theSe

terms (the third order parts are included in (A.27)) gives a small (of order

. 1 V) contribution to the transition energy. A similar conclusion was

reached by BELL [A.68].

A'correétion to the Qacuum bolarizatipn of third and higher order must
be made to account for the.}inite size of the nucleus. ARAFUNE [A.43] and
BROWN; CAHN, and MéLERﬁAN [A.44] have independently obtained approximate
analytic expressions for the potential corresponding to the finite size

correction to the vacuum polarization. ARAFUNE's expression [A.43]
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- alza) [, (v . 349 2. 865 ., .2R](R\?
V1.0 [l ( 73 13860) ()" - 7016 ™ ?] (_r')
(A.32)

for r>R
where A= (1 - (Za)z)%, is based on the following approximations: Terms of
relative order (mer)2 are neglected, terms of order R4/r§ are neglected,
higher order terms in (Za)2 are neglected except in the exponent, and the
nucleus is approximated by a uniformly chafged sphere of radius R. The
effect of the potential inside the radius R is negligible for high-£ states.
In order fo isolate the contribution éf (A.32) to the-third and higher order

vacuum polarization, it is necessary to subtract from (A.32) the tem

. ul(s% (%)2 o "‘ 5 (A3

which corresponds to the Uehling potential portion and éppears: T

as the first term on the right-hand side of (A.25), (R%-= %<_r2>). _
BROWN, CAHN, and McLERRAN [A.44,45] have done-a similar calcdla;ion.

Their expression allows for an arbitrary nuclear charge distribution and is

valid to all orders in Zo. The results of these calculations are in excellent

. agreement and yield a correction of 5 eV for the Sgg/2 —4f7/i transition in

lead.

GYULASSY [A.46,48] has made a numerical study of the effect.of finite
nuclear size on fhe higher order vacuum pblarization. He was able to
calculate the finite size effect with or without the approximations of
ARAFUNE and of BROWN, CAHN, and McLERRAN. The finding was that the approx-
imations introduce a small error of 1 eV, and the finite size correction is
6 eV compared to the S eV quoted above. GYULASSY also examined the extent
to which the finite size corrections to the third order vacuum polarization

are sensitive to the shapé of the nuclear charge distribution. The correc-
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tions were found to be essentially the same for a uniform spherical distri-
bution and a shell of charge, provided the distributions have the same
Tr.m.S. ‘radius.

RINKER and WILETS have evaluated the higher order vacuum polarization
correction by a direct numerical evaluation of the sum over eigenfunctions
in (A.20). Their_early work (A.72], which showed a 16+ 2 eV fiﬁite.size
correction to the higher order vacuum polarization,compared to 6 eV discussed
above, is incorrect due to numerical difficulties [A.73].° More recently,
with improved numerical methods, they have evaluated the higher order vacuum
. polarization correction for many states and various values of Z in the range
26-114 [A.73]. The results in lead are consistent with the work described
above. "

The fourth drder vicuum polarization, of order az,‘corfesponding to the
Feymﬁ:iﬁ -'aiz;grarils in Fig. A.10, has been calculated and expressed in momentum
space’ ini termis of an integral representation by KALLEN and SABRY 'tA.74].

The configuration space potential V21 (r) derived from the Kdllén-Sabry
representation was obtained by’ BLOMQVIST [A.65]. The complete expreﬁsion
for VZl(r) is somewhat compl_icated, so it is conven_ient in calculations to

ewﬁploy the first terms in the power series expansion [A.65]

) 2
V= 22 { o [a@n) +11? - g g +y)

Coom? o, oes\1, {13 ., . 32 766 -
<c(3)+ﬁ+m);+<3—w *Tmtnz-ﬁgn m,

” .
+ = m;r [tn(m 1) +Yy] - £)-émzr + } (A.34)

The power series represents VZl(r) sufficiently well for values of r important

. for muonic orbits considered here to give accurate values for the energy shifts.

A numerical evaluation VZl(r) has been made by VOGEL [A.67], who produced

a table of point by point values. FULLERTON and RINKER [A.75] give a nmrneriéal

approximation -scheme to generate the second order potential for a finite sized -

nucleus based on VOGEL's tabulated values. Earlier estimates of this correc-
tion were made by FRICKE [A.70] and by SUNDARESAN and WATSON [A.69], however,

these calculations erroneously counted the diagram in Fig. A.10(a) twice.

A.2.3 Additional Radiative Corrections

- - ”

According to the discussion of BARRETT, BRODSKY, ERICKSON, -and GOLDHABER

' [A.64]), it is expected that the self-energy correction to muon energy levels

[Fig. A.6(a)] is reasonably well approximated by the terms of lowest order

in Za [A.26,76].

. 4 .
. G @)t 51 o, ;
AESE W n3 [Enl(o(n,l) *3 RFTESY) ]mu H ﬁfO (A.35)

where Ko is the Bethe average excitation energy, and the second term is due
to the anomalous magnetic moment of the muon. For high-f states, the point

nucleus values of KLARSFELD-and MAQUET [A.77]} are used for Ko' This

" correction contributes -7 eV for the 5g9/2 - 4f7/2 transition in lead.

A QED correction of order a? which has been the subject of recent
interest is'shown in Fig. A.11. .In that figure, diagrams corresponding to
the expansion of the electron loop in powers of the external potential are
also shown. The first term in the expénsion is the first vacuum polarization
correction to the photon propagator. The next three terms correspond to
a vacuum polarization correction of order uz(Za)2 discussed in the following

paragraph.

s
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It was suggested by QHEN {A.78]_that the contribution of this diagram
was larger,_relative'to similar diagrams, than its nominal order would
indicate. He estimated a value of -35 eV for the 5g-4f energy difference
in lead. At the same tiie, WILETS anid RINKER [A.79,73] estimated the effect
ane found that the 4f energy is shifted by an amount in the range 1-3 eV,
in conflict'with the result of CHEN. Subsequently, FUJIMOTO [A.80] estlnuted
‘the a (Zu) correction and found that the’ energy shift for the Sg9/2 -4f 7/2
transition in lead is approx1mately 0.8 eV which is consistent with the

value of WILETS and RINKER. * FUJIMOTO simplified the calculation considerably

by treating the muon as a static point charge and setting m, = 0 in the virtual

" electron loop.” The latter approxlmatlon takes advantage of the fact that

the d1stance ‘between . the ‘muon ‘and the nucleus is much less than the electron

'Compton'wavelength. The ‘result is then a vacuum pblarizatibn modification

of the short range ‘interaction potential between two fixed point charges .

[

v = el er) L e

where € = 0.028(1). - BORIE [A.81] has recently reported an approximate
value of 1 eV for ‘the correction. '
Additional corrections to the mionic energy”levels have been examined

and found to be small.” SUNDARESAN and WATSON [A.82] have estimated the

' contributions of hadronic intermediate states in the photon propagator,

using a method due to ADLER [A.83]. BORIE has calculated various higher
order QED contributions to the muonic atom energy levels, besides the az(Zu)2
term just considered, and found them to be negligible compared to the

experimental errors ([A.84].
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A.2.4 Nuclear Effects

Besides the effect of the-finite nuclear charge radius which has already
been discussed, the effects of nuclear motion aid nuclear polarizability .
must be considered.

The main effect of nuclear motion is taken into account by replacing
the muon"mass by the reduced mass of the muon-nuc]eus system in the Dirac
expression for the b1nd1ng energy. Thls reduced mass correctlon 15 exact

only in the non-relativistic 11m1t The leadlng relat1v1st1c correctlon for

‘nuclear motion is glven by [A.26 85]

mZ(Za)4 .
6B = -2 — » (A.37)
- gunt

where M is the nuclear mass. The reduced mass correct1on to the b1nd1ng

. energy and relat1v1st1c correction contribute 234 eV and 3 eV respect1ve1y

to the Sgg/2 4f7/2 transition in lead The main effects of the-nuclear
motion are correctly taken into account by using reduced mass wavefunctlons
in evaluating the QED corrections, most importantly in the Uehling potential
correction. - 4

Up to th1s p01nt the nucleus has been treated as a charged object
with no structure There is a small correctlon to the muon energy levels

due to the fact that the muon can cause v1rtua1 exc1tat10ns of the nucleus

Thls effect has been cons1dered by COLE [A. 86] and by ERICSON and HUFNER [A.87]

for the case of h1gh 2 muon states The domlnant long range effect is the

static dlpole polarlzablllty of the nucleus. It can be roughly descrlbed

as a separation of the center of charge from the center of mass of the nucleus

induced by the electrlc field of .the muon. The approximation that the



-35-

displacement follows the motion of the muon is expected to be good, because
the nuclear frequencies are much higher than the relevant muon atomic frequen-
cies (5-20 MeV compared. to a few hundred keV). The polarization in this
approximation corresponds to an effective potential VE1 (r) given by {A.87]

ol

VEI(T) = -aElF (A.38)

where ap, is the static El polarizability of the nucleus. The value of o,
can be obtained from the measured total y-absorption cross section 9k (w)
for:.El radiation in the long wavelength limit by means of the sum rule

® o W) ‘
L | E1® (A.39)

w
©y

The energy shifts have been calculated by BLOMQVIST [A.65] using the experi-

2081, The

mental photonuclear cross section of HARVEY et al [A.88] for
re;ult is 4 §V for the Sg9 /2" 4f7 /2 Energy difference, in agreemerif with

COLE's value [A.86].

-A.2.5 Electron Screening

: _In the preceding disqussion, the effect of fhe atomic electrons has
been completely ignored. For the levéls of the muonic atom undef considera-
tion, it is sufficiently accurate, to within a few eV, to consider the energy
shift of a muon in the i)otential due to the charge distribution of the
electron density of an atom with nuclear charge 2-1.

- The screening potential is well approximated by a function of the form

K

Ve = v, - et BT S (A4D)

- Fermi expression VS(O) = 0.049 2
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The constant Vo is relatively large and is approximately equal to the Thomas-
4/3 keV. Only the second term in (A.40)
contributes to the energy differences. VOGEL has calculated and tabulated
Hartree-Fock-Slater electron potentials and values for C, K, and B for which
(A.40) approximates these potentials to better than 5% for the range of r
relevant to muonic orbits [A.67]. VOGEL finds that screening contributes
-83 eV to the 589/2 - 4f7/2 transition in lead [A.89]. Calculations have
also been done by FRICKE {A.90] and by DIXIT (qudted in [A.55;91]) and are

in agreement with VOGEL's results and earlier éalculatjons in Ref. [A.64] to «

within a few eV. The approximation, employed in the.pi-eceding%,calculations,

. of using the Slater approximation to the exchange poteﬁtial.has been checked

by MANN and RINKER [A.92] and is found to produce a small '. (-2 ev) error.
RAFELSKI, MILLER, SOFF, and GREINER [A.93] discuss the question.of how to
deal with screening and vacuum polarization corrections ,in_é.consistent way.
A source of uncertaiﬁ‘ty‘ in the §creéhing‘ éélé_ul_a‘_tions "i's_"tl;xe_' lack of
knowledge of the extent to which the muonic atom is ionized. During the -
early stages after the muon is»c:;ptured,“ it cascades in the atom partly by ‘
radiative transitions and pai'tly by Auger transitions. The screening
corrections depend on how many electrons have been ejected by Augér
transitions of the muon. This px;oblem has been considered By VOGEL who
finds that the effect of ionization is partly cbnpensated by refilling of
the empty levels, and that the uncertainty in the muon levels is only 1-3

eV [A.94].
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A.2.6 Summary and Comparison. with Experiment

Numerical values for the corrections described in the preceding sections

are iisted in detail for muonic lead in Table VI. In Table VII theoretical

contributions to the transition energies for measured transitions with Z

the range 56-82 are listed. The sources of the values are as follpws: The
pc;int nucleus energy differences are the Diracv values for the muon-nucleus
reduced mass m.uM/ (mu+M). The value in eV 'is based on the recent determination
of the rat1o m /m = 206. 76927(17) deduced from measurement of the muonium
hyperfme mterval by CASPERSON et al [A.95] together with:R h = 13.605804(36)
eV‘ recommended by COHEN -and TAYLOR [A 96]. (There is a small change of about

2: eV in the results for the mion energy levels if the value of m /m

de_termmed by CROWE et al,[A.97_] is used.) Numerical values for the contri-

- butions in Table VII are taken from Table 2 of the review by WATSON. and

'SUNDARESAN [A. 98] with the followmg exceptions. The finite size correctlon

to the higher order vacuum polarization is evaluated by means of ARAFUNE'
formula (with the Uehling temm subtracted) in Eq. (A.32) and-is included

in the coli’}rm labeled a(Za)s’ The az(Zd)Z term ie based on the results

‘in References, A.79-81. The self~energy term includes an approximate

error estimate of 30% to account for higher order temms in Za and finite

nuclear size effects [A.64].
Table VIII lists the most recent measurements of muonic x rays for the

transitions being considered. The 1971-2 experiments show substantial

~di's»agreement with theory whereas the 1975-6 experiments are generally in

good a’greement with theory, as is easily seen in 'Fig. A.12. The apparent

) agreement of the latest results with ‘theory provides an 1mpre551ve confirmation

of strong field vacuum polanzatxon effects in QED.

.
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TRANSITION ENERGY = 431,332 eV

TABLE V1. Summary of contributions to energy levels in muonic lead 208Pb (ev).
Contribution Order 4f7/2 539/2
Static external potential . :
Dirac Coulomb energy?® -1188314 -758970
Finite nuclear size 4 0
Vacuum polarization of order a
Coulomb Uehling potentlal al(Za) - -3652 -1562
Finite nuclear size corr.to Uehlmg -12 -3
Second order perturbation of Uehling -9 -3
Third order in Za Coulamb a(Za)3 93 50
Fifth order in Za (leading term) ct(Zon)5 16 "~ -~ 10
Seventh order in Za (leading term) a(Za) -3 2.
Finite size corr. to higher order in Za : . -8 y -3
Vacuum polaruatlon of order o’ . ) » V z
Coulomb Killén-Sabry potential a?(Za) -25 ¢ ]
Self Energy i o :
‘Bethe term a.(Za)Z B HOH
Magnetic moment a(Za) 9 :
Other radiative corrections I PR
Virtual Delbriick diagram a?(Za)? -1 o
Nuclear motlon . B o B i
Relat1v1st1c reduced mass (Za)qmu/M -4 -1
Nuclear Polarization L .
Dipole term G(Zn)4aEi‘ -4 -0
Atomic electrons 3 :
Screening c«.‘n‘rectionb -89 T-172
TOTAL -1191992 -760660

2Includes reduced mass correction

bConstant term V0 is not included.

m

by Mmu /(mu +M).




TABLE VII. Theoretical contributions to muonic atom energy separations, -in eV.
Transition Pt.Nucl.  Finite Vacuum _ Polarization Self  Rel. Nuc. Elec. Total
: e T %« .. . ,_ . [En., Rec. Pol.. Scr.
. - Ca(Za) a(Za)’ o (Z2a) o (Za)® a(Za)
- 5653 o T S
4f5,,-3dy,, . 439,069:1 1468 2436 -2122. 17 1 9:3 3 7 -18:1  441,357:9
4f7/2-3d5/2 431,654¢1 -55+5 2328 -20t2 16 1 ~8+2 3 7 -18%1  433,908:6
5g7/2-4f5/2 200,544+1 0 .,761 -921 0 2+1 1 0 -31%2  201,273:3
. - - - _31%
Sg9/2 4f7/2 199,194:1 0 .-747 9+1 0 21 1 0 31#2  199,905:3
8o’ _
58727455, | 414,182:1 -8:1 2047 -42:2. - 14 1 742 2 3 -78:4  416,128:5
- - . - -794
Sgg/2 4f7/2 408,465:1 2 1972 . -40:22 14 1 6ﬁ2._ 2 3 7944 410,330:5
20
C am _
$g7/274f5/2 . 424,850+1. -941 2117 -44:2 ISA 1 7+2 2 4 -79z4  426,864+5
Sg9/2-4f7/2 418,837+1 -3 2039  -4322 14 -1 -7£2 2 4 -81:4  420,763+5
Pb
82 : .
Sg7/2~4f5/2 435,666%1 -10+1 2189 ~ -4622° _ 15. 1 7+2 2 4 -8124 437,747:5
'5g9/2-4f7/2‘ 429,344:1 . _41f - 2106 '.f45§2 ~ 15, 1 -7x2 2 4 -83:4  431,333:5
TABLEAVIII. Recent measurements of muonic x rays, in eV.
BACKENSTOSS DIXIT WALTER. TAUSCHER DIXIT b VUILLEUMIER
et al. 1970 et al, 1971° et al. 1972 et al. 19752 et al. 1975 et al, 1976b
56Ba ' ) '
4f5/2-3d'3-/2 441,299:21 441366213 441,371%12
4f7/2-3d5/2 . " 433,829:19 . 433,916+12 T 433,910:12
587/2-4%5,; 201,260416 201,282 9
5g9/2-4f7/2‘ ‘199,902§15 199,915¢ 9
-SOHg . R
S87/27%%s,, 416,987;23 - 416,103:28
S89/27%%7/2 410,284224 410,297228
203
Tl
81
587/27%5/; 426,828:23 b L 426,851429
S8g/274%7 420,717¢23 Lo 420,741:29
82PP . :
Sgy,p74fg,, - 437,806:40  437,687:20 437,788516 437,762¢13
58972747/ 431,410240 431,285:17 - - 431,353+14 "= 431,341:11

3The new 198an (412 keV) standard of DESLATTES. et:
bBased on the new Au standard.

al [A;99i«would:in£réase\these_valués by about 10 eV.

-6¢ -

-0b-
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A.2.7 Muonic Helium

Recently, the separation of the ZPS/Z and 251/2 energy levels in muonic
helium (p“He)$ was measured by BERTIN et al [A.100].  In that experiment,
muons were stopped in helium and in some cases formed (p"Hé)+ in the metastable
(t = 2 usec) 2S state. : Transitions to the ZPS/Z state were induced by a
tunable infrared pulsed dye laser, and monitored by observation of the

2P-15 8.2 keV x ray. A f1t to the resonance curve yielded a line center

corresﬁonding to the transition energy
AE(exp) = 1527.4(9) meV (A.41)

The theory of the muonic helium system provides an instructive contrast

to the heavy muonic atoms. The relative 1mportance of the various correctlons.,

1s:qu;te different in the two cases. For’ example in muonic lead the
electron vacuum polafization of order a(Za) plays an important role, while
it is’n:egligible in muonic helium. On tﬁe other hand, the effect of finite
nuclear size, which is a small correction to high§2 levels in muonic lead,
is the major source of uncertainty iﬁ the theoretical value of the energy
sepafation ZPS/Z' Zsl/z-in muonic helium.. In the following, we briefly
summarize the contributions to the theqretical'value'of the 2P3/2 -251/2
splitting in (u“He)+. The numerical values arelcolleéted in Table IX.
The fine structure is qualitatively different from the fine structure

‘a one-electron atom; the vacuum polarization is the dominant effect in
determining the muonic level spacings. The 251/2 level is lowered 1.7 eV by
vacuum polarization compared to the Sommerfeld fine structure splitting of
0.1 ev. The finite nuclear size correction is the éecohd iargest effect and

raises the 251/2 level by 0.3 eV.

The starting point for the theoretical contributions is the point

nucleus fine structure formula

! 4 M S 2.
AEpg 37 (20) I:jﬁ;7ﬁ {1+ 3 (Za)™ + ...} _ (A.42)

where M is the nuclear mass. This must be corrected for the finite size

of the nucleué. The nuclear charge radius iétqnly known.approximately from
electron scattering experiments, so it ‘is convehient;ts pérameterize the size
contribution to the fine structure in terms of the T.m.s. nuclear radius

[A.101] _ ‘
BBys = -103.1 <r’> meV - fm'z o (A.43)

The value of the sum of the above corrections is in satlsfactory numerlcal

agreement w1th the more recent work of RINKER [A 102].

The largest radiative correction is the electron vacuum polarization

of order a{Za). The value has been calculated by RINKER [A.102] who numerically -

solves the Dirac equation with a finite-nucleus vacuum polarization potential
included (see Section A.2,2). The result appears in Table IX. The order
a?(Za) vacuum polarizatiqn was calculated by CAMPANI [AfIOS],.by BbRiE
[A.101], and_by RINKER [A.102]); all of the rgsul;s are in accord.

The point nucleus value for the self-energy and muon vacuum polarization

is given by [A.7]

4
a(Za) 'm . K (2,0)
AR+ AL = . B 1 19 R,n(Za) +En 1+m /M) - -2 "
‘s * Alyp = {(“m/m [ (A m/M) - gD
1 2, .. (427 1 -
16 (1 +mu/M) + 3“'“(384 5 1n2> + ....} (A.44)

The lowest order term may be partially corrected for finite nuclear size
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effects by replacing the wavefunction at the origin IW(U)jZ by the expectation
value of the nuclear charge density <pN(;)>, as has been done by RINKER
[A.102). An evaluation of the finite-nucleus average excitation energy»Kob
would be necesséry for a complete evaluation of the effect of finite nuclear
size.

A further small correction arises from the effect of the finite huclear
size on the relativistic nUClear.recoil terms;< RINKER [Ai102] estimates a
value of 0.3 meV for this correction, using the prescription of FRIAR and
NEGLE [A.104] for finite nuclei. This correction is nearly cancelled by the
Salpeter recoil term ffém ;he non-instantaneous transverse photon exchange
" of order (Zu)§ mﬁ/M. »

An imﬁoréant effect is huclear polarizétion,fwhich has been the subject
of some controversy.. Tﬁe simple approximation used for h;gh-l’states (see
Sectién A.Z.A)'ié ﬂbt ;ccurate for low-g states in muonic helium.” BERNABEU
énd JARLSKOGA[A.105] calculated a value of 3.1 meV for the nuclear polariz-
ability contribution using photoabsorptioﬁ Cross sectian measurements . as
input data. On the other hand, HENLEY, KREJS and WILETS [A.106] obtained
a value of 7.0 meV based on a harmonic oscillator model for ihe nucleus.
This value agrees with an earlier result of.JOACHAIN [A.107}. However, in a
‘ subseqﬁent analysis of the discrepancy; BERNABEU and JARLSKOG [A.108] point
“out that the harmonic oscillator model predicts a value for the electric
polarizability of the nucleus op1 which is in substantial disagreement with
. the value deducea from existing measurements of the photoabsorption cross
section (see Eq. (A.39)). A subsequent calculation by RINKER [A.102] confirms
the conclusions of BERNABEU and .JARLSKOG and also yields a value of 3.1 meV
for the nuclear polarizability contribution.

The total theoretical value for the 2P3/2- 281/2 energy separation is

-44-
given by (see Table IX)
AE(th) = 1msx:1zlmv-1oi;<r6 fm 2 - mev (A.45)
Using a weighted a&erage of the results of electron scattering data for the

4He charge radius (<r2>5 = 1.650+0.025 fm) [A.lOOj thé theoretical energy
separation is

AE{th) = 1535(9) meV . - . . . (5.46)
iﬁ agreement with the experimental result. 6n the other hand, assuming that
the theory is correct, one can equate (A.AS)’and'fAi4i) to_obtaih=a measured
value for the chargé radius »

% = 1.673(4) fm (A.47)

TABLE IX. Theoretical contributions to the fine structure
v in muonic helium {in meV). .

Sourcé ‘ Lowest order . Value

i 4 s

Fine structure- (Za) _ .
: Cae 2

Finite nuclear size ) (za)é mﬁ<r’> -103.1.<r’>fm
Electron vacuum polarization. L alZa) : 1666.1

Uehling potential
Electron vacuum polarization a?(Za) ) 11.6

Kd11én-Sabry term

‘ 4 -2

Self energy and muon a(Za) &n(Za) _ -10.7+1.0

vacuum polarization
Nuclear polarization _ o 3.120.6

1815.8#1.2

AL )
ot 103.1 <r?>fm°

+
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A.2.8 Nonperturbative Vacuum Polarization Modification
and Possible Scalar Particles

A possible deviation of QED from the ordinary perturbation theory
predictions might be through a nonperturbative modification of the vacuum
polarization. The corresponding change in the vacuum polarization potential

would be 6f the form

o0

&V(r). = %f a ¢! Sp(t) e VT (A.48)
) 4m§

~ where 8p(t) is a nonperturbative change in the vacuum-polarization spectral

function. The change 8p(t) excludes the ordinary electron and muon vacuum

polarization contributions of order a and a?, but might be substantially
- larger than would normally be expected from perturbation theory terms of

order o and higher.

Phenomenological analyses of such a deviation have beer given by ADLER

[A.83], ADLER, DASHEN, and TREIMAN [A.109], and BARBIERI [A.110] with particular

.emphasis on constraints on such a deviation imposed by various comparisons

of theory and experiment. ADLER finds, with the technical assuﬁption that
8p(t) increases monotonically with t, that if‘the vacuum polarization
'deviation is large enough to produce a change in the muonic atom transition
gnergies of the’magnitude of the difference between ordinary QED predictions
for high-Z muonic atoms and the disagreeing 1971-2 experimental values, then
(a) the theoretical value of the muon magnetic moment anomély a, = %(gu -2)
would be reduced by at least 96 x10-9, and (b) there would be a reduction
of order 27 meV in the theoretical value of the 2P3/2 -251/2 transition
energy in muonic helium. Prediction (a) would introduce a 20 difference

between theory and experiment in the recent results for au [A.111,112]:

-46-

1165895(27) x 10”2
9

a, (exp)

a (th) = 1165918(10) = 10°

Prediction (b} appearsbto be incompatible with the results for muonic helium

discussed in Section A.2.7. However, such modifications of Vacuum polariza-
tion at a lével ~ 3 times smaller have not been ruled out.

A second proposed explahation for the 1971-2 discrepancy between muénic

atom measurements and théory is the existence of a lighf weakly-coupled

scalar boson ¢. Such particlés are predicted by‘umified gauge theories of

weak and electromagnetic interactions, but the mass is not determined. It
was pointed out by JACKIW énd WEINBERG {A.113] and by SUNDARESAN and WATSON
[A.69] fhat if the mass of the ¢ meson were small enough, then’its effect

on muonic atom energy levels could‘accoﬁnt for thé'diécrepahéy. The coupling
produced by a ¢-exchénge befween a muon and a nuéleué of maés number A is
of the Yukawa form

u BN, e v (A.49)
47 T E

g
= .
Vq,(r) :

where g¢ui and g¢ﬁ§ are the ¢-muon and §-nuc1eon couplings respectively
and M, 'is the mass of the ¢. In gauge models, the ¢-electron coupling is
expected to be of order (me/mu)g¢ui 'so the effect of such a potential could
be.observable in muon experiments without affecting the electron 8e -2or
Lamb shift experiments [A.83].

WATSON and SUNDARESAN [A.98] found that the values g¢uﬁg¢Nﬂ/(4ﬂ) =
-8 ><10'7 and N% =12 MeV would explain the early muonic atom discrepancy
(the sign of the coupling is changed here according to ADLER [A.83]).

ADLER [A.83] found a range of values for the coupling strength and ¢ mass

which explain the discrepancy. However, ADLER [A.83] and BARBIERI {A.110}
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have shown that such a particle with 35 >1 MeV which could explain the
discrepancy would also reduce the theoretical.value for the muonic-helium
fine structure AE (‘ZP:!,/2 -251/2) by appraximately 27 meV. RESNICK, SUNDARESAN,
and WATSON [A.114] pointed out that the effect of a ¢-meson could be observed
in a 0™-0" nuclear decay in which the ¢ is emitted and subsequently decays
into an e'e” pair. A search for e'e pairs in the decays of the 16O (6.05
MeV).and 4He (20.2 Mev) 0" levels to corresponding 0" ground states was
carried out by KOHLER, BECKER, and WATSON [A.115] who concluded from the
negative results that the mass of the ¢ could not be in the range 1.030 - 18.2
MeV. ADLER, DASHEN, and TREIMAN [A.109] argue thatuneutron-electron and
electron-deuteron scattering data rules out the ¢ mesoﬁ‘explanation for h%
in the range between 0 and 0.6 MeV.

The most serious constraiht, however, was derived by BARBIERI and ERICSON
[A.116] who show that low energy neutron-nucleus scattering data yields a

4

limit giNﬁMjo“ /(am) € 3.4x10°H Mev™®. The Weinberg-Salam theory predicts

giﬂi/(4ﬂ) = GFmi/(\ff 2m) = 1.3 X10-8§ hence for M, =1 MeV, for example,

¢
|g¢uﬁg¢Nﬁ/(4")|-s 7x10710 which is orders of magnitude smaller than the
7

value 1.4 x 10" [A.83] required to explain the muonic atom discrepancy.
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A3 QUANTlhIELECTRODYNAMfCS IN HEAVY-ION COLLISIONS AND
SUPERCRITICAL FIELDS

A.3.1 Electrodynamics for Za>1

One of the most fascinating topics in atomic physics and quantum electro-
dynamics is the question of what happens physically to a bound electron when

the strength of the Coulomb potential increases beyond Za=1. This question

" involves properties of quantum electrodynamics which are presumably beyond

the limits of validity of perturbation theory, so it is an area of funda-

mental interest. ' Although a completely rigorous field-theoretic formulation

. of this strong field problem has not been given, it is easy to understand in

a qualitative way what happens physically: As Za increases beyond a critical
value, the discrete bouna electron state becomes aegenerate in energy with
a threé-particle continuum state (consisting of two bound electrons plus
an outgoing positron wave) and a novel type of pair creation can occur
{A.117,118]. Remarkably, as first suggested by GERSHIEIN and ZELDOVICH
[A.119], it may'be possible that such "autoionizing' positron production.
processes of s%rong field quantum electrodynamics can be studied experimentally
in heavy-ion collisions.
In addition to the spontanteous pair production phenomena, a number of
othef questions of fundamental interest also become relevant at high Za:
a) What is the nature of vacuum polarization if a pair can be
created-without the requirement of additional enmergy?
b) Do higher order radiative effects in a from vacuum polarization
and self-energy corrections significantly modify the predicted

high-Za phenomena?
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c) How should the vacuum be defined if the gap in energy between
the lowest bound state and the negative continuum states
approaches zero? i

d) Can we test the non-linear aspects of QED, e.g. as contained
in the éuler-Heisenberg.Lagrangian [A.120] and the Wichmann-
Kroll calcﬁlation [A.12]? (The conventional tests of high-

Z electrodynamics are discussed in Sections A.1 and A.2.)

The high-Za domain is-also fascinating in that it provides a theoretical
laboratory for studying the ihtérblay of single-particle Dirac theory and
quantum field theory. - A speculative possibility is that it may be of
considerablé interest as a model for strong binding and confinement of
elementary particles in gauge theories. In the non-Abelian theories, such
as "'quantum chromodynamics'' [5.121]; the effective coupling g between
qﬁarks could well be beyond tﬁe’critical value. 'In addition, -theoretical
work on the "psion'' family of particles (J/%, ', etc.) has focused on a
fermion-antifermion potential and various gauge theory models in the strong
coupling regime [A.122]. .

Perhaps the most practical Qay to create the strong fields necessary
to test the exotic predictioné of high-Za electrodynamics is 'in the slow
collision of two ions of high nuclear charge [A.119]. In aédition to the
spontaneous and induced pair pheﬁomeha, a number of interesting atomic physics
questions arise concerning, among other things, the atomic spectra and radiation
of the effective high-Z quasi-molecule momentarily present in the collisions.
These topics are reviewed by MOKLER and FOLKMANN [A.123] in this volume.

The high magnetic field aspects are also of interest (seé Sectiﬁn.A.S.ll).
Studies of the high-Z exotic phenomena ideally require highly-stripped ionsﬁ

the physics of vacancy formation (see Section A.3.6) and recent experimental

50

progress is discussed by MEYERHOF [A.124] and references therein.
Historically, the first discussions of the strong field problem were
concerned with the solutions of the Dirac equation for an electron in a

Coulomb field,

[Gep+om+V(r)ly = Ey
{A.50)

V) = - @

This is, of course, a mathematical idealization for r - 0.since the nucleus
has finite mass and size. (In the case of positronium, V is effect?vely
modified at small r by vertex corrections and relativistic finite mass
corrections implicit in the Bethe—Salpeter formalism. We should ehphasize
that the analysis of positronium for a>1 remains an unsolved problem )
The spectrum of the Dirac-Coulomb equatlon is given by the Dirac- Sommerfeld
fine-structure formula; the energy of the electronvln the 1S state is

E- Vi-@ala . (ASD
k=0 appears to be the lower limit of the discrete spectrum as Za~>1, and
E is imaginary for Za>1l. The Dirac Hamiltonian then .is appérently not
self-adjoint. Actually, this result is just a mathematical broblem.associated
with a pure Coulomb potential [A.125-127]. The solutions are well-defined -

when nuclear finite size is introduced [A.117,128-133].

Thus, we should consider the “realistic'' potentials

- -ZE T>R
T
V(r) = ' . (A.52)
] - :1% £(r/R) r<R

where, for example, f(p) = %(3-p ) for the case of a umxform charge dens1ty
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The energy eigenvalue is then found by matching the solutions for the Dirac
wavefunction at r=R. Early discussions of the bound state problem for
Za > 1 appear in Refs. [A.128-130]; accurate extensive calculations were
given after 1968 by PIEPER and GREINER {A.117], by REIN [A.131], and by
POPOV {A.133}. The energy spectrum for t)ﬁical nuclear radii, {rom Ref.
[A.117], is shown in Fig. A.13.. In Fig. A.14, POPOV's [A.132,133] result for
;he dependence of (Za)cr (the value of Z& for which E = -m) on the nuclear
radius R is shown.’ If is clear that the "limit point" E=0 of the point
nucleus case is artificial: at sufficiently large Za, E.reaches -m, the
upper limit of thé negative energy continuum. " The critical Z for an
extended supetheavy nucleus with R = 1.2 A3 fm is >170, 185, and 245
for the 1S, /2> PPyjgs and 28, levels, respectively [A.134). _The possibility
of simulating such a nuclear state with heavy-ion collisions is discusged
in the next Section. o

It should be noted that the physical situation is already quite
unusual if E< 0, let alone when E reaches the negativehcontinuum.
If Z 2 150 and E<0, then the combined energy of the nucleus and one or
two electrons bound in the 1S state is lower than the energy of the nucleus
alone! Of course, since charge is conserved, an isolated nucleus of charge
Z 2 150 cannot 'spontaneously decay' to this lower energy state. ‘

However, the situation becomes more intriguing if Z can be increased
beyond the critical value Zcr‘~170 where E ''dives" below 1m (see Fig. A.13).
In this case, the tofal energy of a state with a bound eleétron and an

unbound slow positron (with E ~ m)

positron

E E {A.53)

nucl * F1s +-Epositron < Enucl

is less than that of the nucleus aione, and an isolated nucleus may decay

10 thgr state. In fact, for I 2 170, the nucleus will emit two positrons
and fill both 1S levels. Clearly the physics ié that of a.multipartiéle
state and we must leave the confines of the single particle Dirac equation.
However, in these first two sections we will ignore the higher order QED
effects from electron self-energy corrections and vacuum polérization.
(This can always be done mathematically — if we envision‘taking a small
with Zo fixed [A.135].) We réturn to the question of radiatiﬁe correﬁtions
in Section A.3.8. In the remainder of this section we discuss a qﬁaiitative‘
interpretation in terms of a new vacuum state. Quantitative results are
discussed in the following sections. : ' i R

The vacuum state, aé originally interpreted by Dirac, is the.szate
with all negative energy eigenstates of the wave equation occupied. - Thus

for fermions

L K . o R
%ﬂnm>'0’ a&mm>f Wﬂnm>_ 0 MJQ
where a(;) (a(f)) aré the antjcommuting annihilation operators for the ..
positive (negative) energy single-particle states. The operators b}¥)= 3,
can be interpreted as the positron creation (= negative energy electron
annihilation) operators. Normally, the En< 0 states are continuum eigen-
states. Then, up to a constant, the total energy is '

H=ZaT a EQZ ooy B (A.55)
(+)n"(+)n"n . (+*In"(+In '"n :
E >0 E <0
n.
(This is just normal ordering the Hamiltonian — i.e. placing the annihilation
operators to the right.)}
However, in the case of nuclear Coulomb potentials with Z >14~150,

at least one bound state solution of the Dirac equation has negative energy
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(see Fig. A.13). Thus it is evident that as soon as the field is strong
enough to yield bound eigenstates of negative energy, one gains enerygy by
filling these states. For example, imagine that there are two separated
nuclei with charge Z and -Z, the latter made of antinbucleons} If the charge
of both nuclei were incteased adiabatically beyond Z= ZO then there would be
spontaneéus decay of the nuclear system, to the state where two electrons in
the 1S state are bound to the nucleus and two 1positrons are bound t.o the '
antinucleus.

Notice, incidéntai.ly, that charge conjugation symmetry is always
preservedb and one does not have "spoﬁtaneous symmetry bréaking" in the
vacuum decay. This is contrary to the claim of Ref. [A.134].

It is thus clear that when Z> ZO, fhe state where the negative eneréy-
bound states are fi_lled represents the natural choice as reference state
for excitatbions [A.136,137]. _Accordingly for 'Z > ZO’ we define the '"new"

Dirac vacuum [A.136]

ot t
10hew” = 31501 33514 10,4

bis() big) 10, (as6)

" t
10519> = byg(t) byg() 10, > . (A.57)

" where we suppose the spin up and down 1S states are the only bound states

with negative energy. The Fharge of the new vacuum is Qnew = Qold -2
Notice that the operator b;s(f) Eals(ir) creates a hole with respect to the

new vacuum, and thus effectively creates a bound positron state with positive

pos = ‘EISI

namely, two positrons are bound with positive total energy if Z< Zcr~170‘

energy E The o0ld vacuum appears as an excited state of the system;
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However, if I is raised aboxfe Zcr’ the positréns become unbound. Thus
from the standpoint of the new picture, the phenomcnon of the instability
of the (old) vacuum at Z= zcr is reintefpreted by.the statement that the
positron wavefunction becomes unbound for this value of the charge (see
Fig. A.15). ' '

The bound negative energy one-electron state may be written '
t _ ot t \
2151 105097 = 215(#) byg(#) byg(¥) 10,,,>

) t oy -
= byl byt bygl) 10ew”

_ b '
- -blS“) |onew>_ _ . (A.58) .

i.é. it is equivalen; (with respect to the new vacuum) to.a bound pé'sitron.
for Z< Zoy and a continuum..pésitron for Z> Zcr' The ‘effective potential

f(r) in .the felativistic Cbulohb problem (see Section A..3.4) behaVes like
-EZa/r as T+, i.e.: is attractlve for E> 0 and repulswe for E< 0 (at
sufficiently 1arge distances from the nucleus) [A.133 138] ] Thus as shown' '
by ZELDOVICH and POPOV [A. 138], the bound p051tron moves in a non- monotomcv
effective potential which becomes shallower as Z 1ncreases (see F1g A. 16),
until at zfzcr it b‘ecomes unbound. A plot of the average F‘ad}us for.the E
bound states as a functipn of E as computed by. POPOV ’[All&S]’ is shown in »
Fig. A.17. The process involved in spontaneous pdsitroh pr'bductrioh for -
Z>Zcr is then simply » ‘ - . 1

bl (1) o> B ‘ a9

1
byg(t) [0 new

>
new

Formally, from Eqs. (A.56-58), this is equivalent, in terms of the conventional

f

vacuum, to

¥ TR C
s 10018> = Ps(®) 2yt agslt) 105147 (A-60)



corresponding to the degéneracy of the discrete bound electron state with
a three-particle continuum. The old vacuum is, however, inappropriate for
the descriptioﬁ of the system for Z> ZCr simply because it is unstable,

The description of high-Z electrodynamics in terms of the new vacuum thu§
has the advantage of displaying the continuity df the physics at Z= zcr'
As we discuss in Section A.3.8, the vacuum polarization problem is also

clarified. The formal aspects of positron autoionization are discussed in

more detail in Ref. [A.139].

A.3.2 . Spontaneous Pair Production in Heavy-Ton Collisions

It wﬁuld be véry interesting if the physical realization of an electron
bound to a strong field with Z greater than Zcr~'l70-cou1d be attained
expérimentally. li is not excluded that nuclei with 2_-—Zcr will eventually
be synthesized, but at present this possibility séem§ remote. Suggestions
gf positpoﬁ production in overcritical nuclei were discussed in 1969 by ‘
PIEPER ané CREINER [A.117] and by GFRSHTEIN and ZELDOVICH [A.118]. In the
same year, GERSHTEIN and ZELDOVICH [A.119] proposed that the critical field
condition could be attained in the close apéroéch of two heavy ions with.
ZlA+Z2 >Zcr' If the velocity of collision is assumea to be sufficiént to

approach the Coulomb barrier, then, at least in the adiabatic approximation

/v

<
v electron ~

ion 1/10), a ground state electron sees an effectively coalescgd
nuclear potential. .This pioneering paper by GERSHTEIN and ZELDOVICH und - the
e;riy papers of POPOV {A.132,133,140) and GREINER et al [A.40,141-145]

contain many of the fundamental physical ideas which have been subsequéntly

discussed in more quantitative fashion over the past seven years {A.134,

139,141,144-154].
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In collisions of heavy ions with several-me\’/nucleon kinetic energv,
the typical collision time of the ions inside the K shell of an‘electron is
Tc-10'19 sec whereas the "orbiting” time of the electron is Te"~10-20 sec.
Thus, roughly speaking, the molecular electronic states have time to adjust

] R R ] )
to the varying distance R = ﬁz- R1 between the nuclei. One can then consider

an approximate adiabatic treatment of the two-center Dirac equation
e d > > —.>~>
[a+p+Bm+V(r-R) + V(r-R)lw = Ep (A.61)

(assuming one electron is present}. An extensive discués}on'of_this probleﬁ.
and numerical solutions for the molécular spectra of ”intefméhié;é super- . )
heavy molecules" are given in Refs. [A.123] and [A.f}4}.

Let us suppose that only one ground state'électron‘is pfeseﬁt. For )
Zl +ZZ >Zcr’ there will be a critical distance RCr betweeﬁ tﬁe tw; nuclei
for which the electron is bound with an energy -m. Then as the ions collide
with R< R.ps the lowest one-electron state becomes mixed with the le'e_e+>‘_
continuum level (spontaneous pair broduc(ion); see Fig. A.18. As the ions
recede, we are left wifh two electronsrin the 1S level plus an outgéing
positron, Note that double pair production with two outgoihg positrons
can occur if no ground state electron is initially preseht; Fair production,
however, is suppresséd by the Pauli principle if the 1S levels are full, so
preionization or stripping is necessary. The energy for the spontaneous
pair production is compensated by a decfeasefin the kinetic energy of the
outgoing nuclei. Additional pairs can in princiéle_ﬁe produced when the 7
2P levels in turn reach their critical energy EZP = -m.  However, according
to the calculations of RAFELSKI, MILLER, and GREINER [A.139] for gyU- g,U
molecular orbitals, the 2P1/2 level reaches the negative énergy continuum

at a distance R which may be too close to the Coulomb barrier for experiments
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to be feasible (see Fig. A.18).
In a series of comprehensive papers, POPOV, GREINER and others have

presented detailed analytic and numerical calculations of the spontaneous
positron production process in heavy-ion collisions. We shall review the
main points of this work which are particularly relevant to practical

experiments and refer the reader to the original papers for more details.

For simplicity, we consider a beam of completely stripped nuclei Zl
incident on an ordinary target with nuclear charge ZZ’ (The non-stripped
case will be discussed in Section A.3.6.) If Zl> Z2 then the K shell of
the combined atom will generally be vacant as a result of the behavior of
the molecular terms in the adiabatic approach of the nuclei [A.155]. In
fact, the cross section for positron productibn turns out to be only slightly
smalier than in the idealized case of the collision of two bare nuclei (see
Ref. [A.156]). For aefiniteness we will usually consider U-U collisions,
for which the combined Coulomb field Z = 21+Z2 = 184 is beyond the critical
charge Zc1'g 170 necessary for spontaneous positron production.

As shown by MﬁLLER, RAFELSKI, and GREINER [A.157] (see Section A.3.3),
the critical distance for positron production in U-U collisions (where the
energy of the two-center atom reaches the negative continuum) is Rcr =34 fm
= 0.088 Ao The calculation of Rcr can be carried out precisely and
requires an analysis of the two-center Dirac problem; we return to this
in Section A.3.3. Thus the lab kinetic energy of the beam at the positron
production.threshold is

' 22.2Z.0
Bp = amvi = —15 - 717 wev: (A.62)
z L RCI’

or ~ 3 MeV/nucleon for U-U collisions. The lab velocity is v, = 0.08 which

is clearly in the adiabatic non-relativistic domain, and small compared to
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the velocity of a K-shell electron.
The classical orbits and Rutherford cross section of non-relativistic

charged particles are, of course, Qell understood. Detailed discussions

and kinematics are given in Refs. [A.145,158,159]. It is convenient to
define n = ELAB/ET which is also related to the distance of closest approach
Ry for backward scattering of the nuclei: n = Rcr/RO’ Spontaneous positron
production is possible only if n>1. If 8 is the CM angle of the scattering
then the requirement that the nuclei are sufficiently close, Rmin< Rcr’

where Rmin is the distance of closest approach, is

E
LAB -, 15(1 + cosec 2)

n = Fr 3 (e) . (A.63)

min
The variation of the positron production cross section as a function of n
and 6 gives a simple tooi for testing the positron production calculations.
For nuclei approaching each other, the two-center Dirac equation can
be solved in the adiabatic approximation with nuclear separation R = R(t},
assuming v <<c. .Each value R< Rcr then gives a corresponding (complex)
energ& level near the lower ‘continuum: E = E0+ i /2 [A.153]. (The unusual
sign of the imaginary part is discussed in Section A.3.4.) The real ﬁart of
the energy level is identified as the produced positron's kinetic energy
T= |E0|- m, the positron production rate is dw/dt = I'. Integration of
dw/dt over the ion's Coulomb orbit then gives the probability of positron
production in the collision. Note that here we consider only spontaneous
production in the adiabatic approximation; induced production will be
discussed in Section A.3.5.
Clearly the maximum cross section for e production is the geometric
n®2 (1-n"') = 36b(1- ") for U-U collisions, which

limit [A.151], cgeom =
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would be attained if the Coulomb field of the nuclei succeeded in producing

a positron in each collision for which Rmin< Rcr’ (The corresponding impact
=R is p= S hy% = mp?
parameter at R ; =R . is p R .(1-n )" and Ogeom = P .} In fact, the

actual cross section calculated by MARINOV and POPOV [A.159] is exponentially™

damped at threshold (n~1) rising to a fraction of 0.1% of 9geom for n22,
increasing slowly thereafter. The ratio wav, = o/cgeom averaged over the
positron spectrum is shown in Fig. A.19. The maximum energy such that there
is no nuclear interaction in the collision is determined by (rN is the
nuclear radius) [A.159]
n ~ LT.— ~ 2.8 - (A.64)
max 2ry+ ar
allowing Ar~5 fm for the diffuseness of the nuclear boundary. The background
‘process of é'e” production due to Coulomb excitation of the nucleus is
discussed in Section A.3.7.
Hence for U-U collisions, with n~2, ELAB~1.4 Gev, vL~0.1, we have
) ogeom~18b and o~2 mb, i.e.: spontaneous positron production‘ occurs roughly
in one out of nine thousand nuclear collisions in which the distance R< Rcr .
is reached and the 1S level is unoccupied. A recent semiclassical calculation
by JAKUBASSA and KLEBER [A.160] based on a one-center analysis yields a
spontaneous production cross section of similar value.
The ratio of the differential cross section with ;;ositron production

46

to the Rutherford cross section (do/dQ)R = Rgl_/(4n)2 sin = at 8=m (backward

scattering) is given by an integral over the Coulomb path [A.159]

1
_ _do/da - x \?
W (n) Tdo/dn)~ ' CI dx (m - 1) r(x) (A.65)
R e=ﬂ n- l . - .
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where the positron width is written as a function of x= R/Rcr' Since

Ty << (R,Rcr) << RK (RK is the electronic K-shell radius for Za~1) the
energy EO and width T are insensitive to the detailed two-center situation;
as shown by POPOV [A.153}, these quantities are dependent only on the ratio
R/Rcr' Thus the only critical parameter in the two-center problem is the
actual value of R, The constant C in Eq. (A.65) is proportional to REZZ
and {(Zl+22)u]_% and is equal to 2.3 for U-U collisions. The result of a ¢ H
numerical calculation for W_is also shown in Fig. A.19. The corresponding

positron spectrum w(T), proporti.qnal to the integrand of Eq. (A.65), M
normalized to j(‘)TmaxdT w(T) = 1, is shown in Fig. A.20 for em=n_.

The maximum positron kinetic energy is

TmaX-(n,e) = |BgR; /R - m y {A.66)

The distribution in T peaks sharply at Tmax since fﬁe ion séends the most

time at the point of closest approach,and P(R/Rﬂ) is largest there. Near

the maximm energy, w(T) ~ (T . - T)'!i. For n~2, approximately 60% of the

positrons héve an energy ébove 0.9 Tmax' The square-root singularity is

due to the fact that the radial velocity vanishes at R= Roine The strong

peaking and maximal effect at 8 =1 is clearly favorable for experiments.

For 8 = n/2, w is smaller by an order of magnitude. If the angle of the

scattered ion is not measured, the peak in w(T) is considerably washed out.

The small value for the probability of single positron pfoduction W(l) = . i
-3

W <10

v means that the double spontaneous positron production probability

W(Z) (filling both 1S levels with electrons) is only of order W(f) < 1046,

and is probably not a useful signal for spontaneous production.
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A.3.3 Calculation of the Critical Internuclear Distance

An important numerical paramefer for phenomena involving absupercritical
Coulomb field in heavy-ion collisions is the value of the internuclear
distance R= Rcr at which tne’energy of the ground state of the quasi-molecule
(ZI’ZZ’e) crosses the boundary of the lower continuum. For low-velocity
collisions with Z, =Z,=Z it is sufficient to calculate the energy of the
two-cenfer Dirac equation yith the pqtential V(r) = -Za/rl - Za/rz, where
r; = |F- ﬁil (adiabatic.apprexi:mtion). Since Rcr is substantially greater -
than the nucleon size, the nucleon finite size effects can be estimated
from perturbation theory [A.lSé]r'-MARINOV and POPOV [A.156] and MARINOV,
POPOV, and STOLIN [A.161] .calculate Rcr‘using a variational method in which
each eomponent.of the trial wavefunction of the two-center Dirac equation
is written as a sum of terms with the correct sinéularitf behavior at large
and small distances; e.g. near the nuclei the Dirac wavefunction has the
singularity .. '

v@ ~ (€2-nh

_ where ¢ = (rl-krz)/ﬁ, ns= (rl- rz)/R are elliptical coordinates. This"

method converges quickly with just a few terms. ' As shown by MARINOV et al
[A.156,161], the variational method gives a lower 1imit on Rcr 7

A similar variational calculation was also performed for U-U collisions
by MULLER, RAFELSKI, and GREINER [A.157] and by Mi}rLER, SMITH, and GREINER
[A.162]) giving the result Rcr-36 fm compared to the lower limit, Rcrz 38 fm
obtained by MARINOV et al {A.163}. (It should be noted that the published
numerical results beyond tne (1,0) approximation givenlin Refs. [A.156] and
[A.161] need to be revised beeause of a recently diécovered calculational
error [A.163}.) The small difference Between the MULLER et al and MARINOV

et al results could be accounted for by the absence of the relativistic
.

il g
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Coulomb singularity of Eq. (A.67) in the 100-term MILLER et al trial

wavefunction [A.156].

A.3.4 . Calculation of the Spontaneons Positron Production Rate

An exact calculation of spontaneous positron production by two colliding
nuclei would Be extremely diff;cult. The calculations which have been done
for the two-center pronlem have empleyed a variety of approkimations, wnich
should be carefully considered. In general terms, the analytic:anaiysi§
of POPOV and co-workers is based on two separated péint nuciei'where'the
combined-Z is above the threshold Z ~ 170 for p051tron productlon An o
essential feature of the analysis of GREINER and co- workers is the assumptlon
that the functional dependence of the decay width T on the p051tron energy
E in the two-center problem is the same as the dependence in the one- center
problem for a finite-size nucleus. A recent semi- cla551cal calculatlon by
JAKUBASSA and KLEBER [A.160] assumes that the w1dth r for the two-body
problem may be simulated by the width for_a one-center'atom with an’ .
effeetive nuclear charge Z(R) which.depends on the nuclear separation.

The GREINER et al and JAKUBASSA et al analyses both depend on the nuclear
size in the single-center problem which of course cannot accurately represent
the effective size of the two-nucleus system. A

In the work of POPOV and .co-workers, as discussed‘in Section A.3.2,
the positron production cross section is dependent.on the imaginary part T
of the energy of the level E= E0+ i-T/2 which fer nuclear separation R< Rcr

is in the lower continuum. In principle the full complexity of the adiabatic
twe-center problem is required to determine E for. the quasi-molecule.

However, as shown by POPOV [A.133,146,149,151,153] EO and T depend, to a
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good approximation, only on R/Rcr, and their values can be found by matching
the "inner'" solution with the singularity given in Eq. (A.67) to the "outer"
solution for the one-center problem: V(r) = -(z *Zz)a/r.‘ The result is

the relation (valid for RCr small compared to ie)

R _
cr  _ (. E Ay MrE ‘
R T

where A = -i(E2 -mz)!i for R« Rcr and &(z) is the derivative of the logarithm

of the gamma function. Equation (A.68) can then be solyed numerically for
the real and imaginary parts of E. These results are used for the calculation
of the positron production cross section and spectrum given in Section A:3;2.
It is interesting t§ note tﬁat the solution to Eq. (A.68) gives a
positive imaginary part to E, rather'than the familiar ﬁosition of the pole
on the second sheet for a decéying state. This is due to the fact that we
are dealing w1th .the solutions of the Dirac equatlon ‘in non-second- quant1zed
form. The quasi-discrete level E= E04'1F/2 corresponds phys1ca11y to a
resonance for positron-scattering on a supercritical nucleus at the energy
Epos = -E = lEol- ir/Zt This has the correct sign for the imaginary part
[A.153]. : v
An important feafure of the solution of Eq. (A.68), is the dependence

of the imaginary part of E near threshold:

W)~ oyg el ) ol (A-69)

where v is the positrén velocity and_yo = (6/5)ymm. This can also be

written in terms of the internuclear distance [A.151}

MRAL) expl-b(1 - R/R_) ™) (A.70)

~0d-

where b = 5.7 Z1 +22)a. Thus, the positron probability is éxpénentially
small at threshold apd'increases rapidly with increasing n = E/ET.

The threshold dependence of T is characteristic of problems involving
the penetration of a Coulomb barrier. Wé can see the origin of the barrier
by writing the gquatioq for the large component G(r) = rg(r) of the Dirac--

Coulomb equation'in_the Schrodinger form [A.138,151]‘

2 X" * (Egge = Upgg (X = 0 ) (A.71)

~ -y 22 :
wh?re X = [m+E ‘y(r)] 6(r), Fopg = %2(E7-m"), and Uggg (for a finite
nuclear size) is shown in Fig. A.16 for Z~—Zcr and E ~ -m. A sfriking

. . . ¢ . ’
feature of Ueff is its large distance behavior: Ueff(r) = E/m V(r), i.e.
it becomes a repulsive potential for E<0. In the case of a Coulomb potential
V(r) = -Za/r, ’

L @l
T

Upgs(® = 5 A7)

2mr

for the 1S state.at E~ -m. At short distances, the relativistic attractive e
-2 . -
r ° term dominates in U g, Note that Ueff has a maximum at r= q“=X x
[(Za) -1]/Za, where U ff(r ) = %(2a) m/((Za) -1) ~ 1.4 m for Z=170.
"It is clear that for E just above -m where Eeff <0, the effective

potential yields a localized discrete state with a radius of order T

The Schrddinger wavefunction attenuates at infinity in the form {A.138]

1 . .o )
x(r) ~ r* exp[-\/BZur/Xe ] : - (A.73)
The radius of the localized ground state is shown in Fig. A.17, For Eeff >0,

i.e. - when E dives into the lower continuum, the wavefunction extends beyond
the barrier, and the width of the quasi-static level is given by the barrler

penetrablllty {A.151,164]
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ro= v, exp[—Zn(Za/v -V (Za)z - 1)] (A.74)

where

6n/5 , Za . =1
D2 -2
Yo | 3@wma-e™ (A.75)
m [2(2a)° + 3]
3/4(z0) L, Za>> 1

andvv =J1-m?/E? is the velocity of the outgoing positron; and in Eq. (A.75)
v =2V (Za)z - 1. The simplest interpretation is that given in Section A.3.1:
If E < -m, then the one electron state becomes degenerate with the two
electron plus one positron state. The electron-positron pair is created

near the nuéleus where V(r) >2m; the form ofvK. (A.74) reflects the
probability that the posi;ron can penetrate the barrier. Because I' is small
csméared to m, the single particle analysis of the Dirac equation used to
describe’ the supercritical atom can be justified {A.164}.

_ ‘One can now. proceed to the calculation of the positron production
probability by integrating over the classical ion trajectory, which is
familiar from treatments by BAfES and MASSEY {A.165] for autoionization in

a slow collision and the.level crossing formula of LANDAU and ZENER for the
probability of near adiabatic transitions between discrete levels [A.166].

POPOV's result for the positron production cross section is [A.151}
. cr
1
3—"[ ar B/2R- R T(R) (A.76)
L Ro .

where %NNE is the lab kinetic energy of the incident nucleus and R, is the
distance.of closest approach at zero impact parameter. (If the probability
pP= g/cgeom is not small, P should be replaced by (1 -e'P).) The cross
section for producing a positron with kinetic energy T is [A.151] ‘
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-1
: dE
do _ 4n 3/2 o o /2 %0
rolii T(RIRC (R-Ry) (dR) A

where T = |E0(R/Rcr)l -m. Since I' is small compared to |E|, the positron
energy can be identified with a given internuclear distance R, and o is
correctly obtained by integrating over the complete ion orbit.

The calculation of GﬁEINER and co-workers differs substantially in
approach from that of POPOV et al. The first step is the éomputation of
the width for positron production in a supercritical atom using the Fano
autoionization method. The second step is to use these results to calculate
the spontaneous and induced positron production rate, assuming that the
relation between T and the bound state energy is the same in the one- and
two-center problems.

The method used b} GREINER and co-workers [A.145,158] to evaluate the
positron width in the one-center problem is based on the analogy of the
supercritical nucleus to that of autoionization ip nucleaf'éﬁd atomic
physics, where a bound state is imbedded in a éontinuum, and FANO's formalism
[A.167] should be applicable. One begins by aséuming that the nuclear
potential is at criticality so that l¢cr>, the single particle bound-state
solution of the Dirac equation, has E = -m. Let |wE> denote the s-wave
negative-energy continuum solutions to the same.eqqation with E < -m, " If

V is increased above criticality, AV = V-Vcr< 0, then to first order in aVv

AEcr = <¢crlAV|¢cr> ' (A'7§)
and .
Pl = 2u<ylaV]e s (A.79)
pos E cr '

Calculations [A.143] show that AE_. ~ -30'(21 +2,-I..) keV; see Fig. A.21.
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Thus the bound state [¢Cr> dives into the negative continuum with an

energy shift roughly linear in AZ = Z1 +ZZ - I and a monotonically

cr
increasing width. - If one defines the negative energy solutions ]WE> for

the Dirac equation with Vcr*-Av, then

z 1 T

l<¥ploo 2™ = o= R I (A.80)
is the probability that the bound elecgron is promoted to IWE> when AV is
added adiabatically. (Tﬁis Breit—wignér form for the admixture probability
neglects an extra energy shift from~thé,energy variation of T.) This
treatment thus far is, in principle, cosplementary to that given earlier
in this section.

There may, however, be difficulties with using the autoionization

method and a perturbation expansion near Zcr for calculating the spontaneous

decay width. In the papers of MULLER et al [A.134,145]), the estimate
I = 2nj<¢_|aVjes|® ~ (a2)% 50 ev (A.81)
cr E .

is reported to be a good approximation to the exact one~éenter Dirac equation
Qidth, at least for AZ = Zl*rZ2 - Zcr 2 3, (For example, in the more recent

work of K. SMITH et al [A.134,168)] a curve is given showing numerical results
based on a one-center Dirac equation calculation fpr the function Y(T) = mr‘(T)/T2
where T is the positron kinetic energy. For 180<Z< 2}0, R>15 fm, and

0.4 MeV<T<1.2 MeV, y(T) is roughly constant at 0.015, giving 4.7<T(T) <42

keV which agrees within a factor'of two. with Eq. (A.81).) However, as noted

by MULLER et al [A.145] and POPOV [A.153], the threshold behavior character-
istic of the Coulomb barrier leads to strong exponenfial damping at zero

positron momentum; for AZ -0, POPOV [A.153] obtains I' « exp[-b(Zcr/AZ)%].
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Thus, (A.81) should not be considered a reliable approximation for small

aZ. The equation T = Zn|<¢cr|AV|wE>|2 is evidently invalid near threshold
since it requires an expansion in AZ about the critical value. Furthermore,
the continuum solution {wE> which is defined to obey the Dirac equation for
V= VCr does not see the Coulomb barrier in the effective potential Ueff
appropriate to V = vcr +AV and the level'énergy EO. (In the paper by POPOV

e 2" ¢ 1 even for |Egl>>m in a

and MUR [A.164], it is argued that T'/m <
one-center problem because the barrier in Ueff increases in height as EO-* ©,
In fact, the width of the level can increase with |E0|'despite the increasing
barrier height because the tunneling distance becomes smaller [A.160]. This
is also consistent with the barrier penetration formula (A.74) which gives
roy, e ™) i the limit Zew, vo1.)

The results of a Tecent one-center calculation of TI' by JAKUBASSA and
KLEBER [A.160] (based on a semi-classical method) are shown in Fig. A.22.

We have also indicated the values calculated from Eq. (A.81). The width
computed by JAKUBASSA‘and KLEBER is about three times as large as that given
by Eq. (A.81) at Z~200. .

"It should be notéd that the corresponding calculations of I‘/E0 as a
function of R/RCr by POPOV [A.153] for the two-center problem yield much
smaller widths, with I‘/E0 < 0.012, i.e. an order of magnitude below those
of the one-center prqblem results of JAKUBASSA and KLEBER. This may indicate
that the one-center values, which are based on the nuclear size — and not on

the actual nuclear separation — give an over-estimate of the decay width.
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A.3.5 Induced Versus Adiabatic Pair Production

One of the controversial questions concerning positron production in
heavy-ion collisions is the relative importance of pair production induced
by the changing Coulomb field. In the review of ZELDOVICH and POPOV |A.138]
and the later papers of POPOV [A.151,153], arguments are given that this
mechanism can be neglected since (i) the'frequency of collision W (eﬁual
to the inverse of the collision time rc) is a small fraction of 2m, and
(i1) the characteristic electron time is much shortgr than the qollision
time, so that the electron state can adiabatically adjust to the changing
Coulomb potential. Howe&er, as emphasized in the papers by SMITH et al
[A.154,168], the .energy. required for pair production during the collision
is just the (narrow) gap between the 1S level and the negative continuum.

Thus the changing Coulomb field can induce a transition (pair production)

it even-at very low velocities. In typical inelastic atom-atom collisions,

an appreciable cross section for transitions occurs when {A.169]
BE-S (A.82)

where. v is the relative velocity and a is a length characteristic of the
iﬁducing potential. Taking a~50 fm, v~0.05, gives AE~1 MeV. Thus,
induced pair production with a continuum positron could weil be an important
process even for collisions in which diQing does not occur. In fact, SMITH
et al [A.168] find that in typical U-U collisions, induced positron production
is two orders of magnitude larger than the spontaneous cross section alone!
Obviously, the induced contribution also will spread the kinetic energy
spectrum of the positron, with substantial contributions occurring at

kinetic energies ~ 1 MeV beyond the kinematic limit for spontaneous production.
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‘The results of SMITH et al [A.168,170) ccmpared with the spontaneous

positron production spectrum calculated by PEITZ et al [A.158] are shown
in Fig. A.23. The cross section calculated by SMITH et al for positron
production in central U-U collisions at 812.5 MeV center-of-mass energy is
shown in Fig. A.24. The curve denoted A is the contribution "during diving,"”
i.e., integrated over the times when the 1S level joins the negative
continuum. Curve B denotes the contributioﬁ before and after diving.
The coherent sum is also shown. The Rutherford cross section for U-U
scattering and the ionization probability L0 havé been divided out. By
integrating over energy, one sees that roughly 5% of all the collisions
with a 1S vacancy will produce a positron by the induéed’pfocess. The
positron production cross section for different CM kinetic energies is
shown in Fig. A.25.

The during-diving positron production amplitude computed by SMITH et al

[A.154,168] takes the form

ot t )
or . .
. CD = ij dt VE(t) exp{f dt'[iE-'ilvils(t") -‘%F(It')]} ) (A.83)

-0

“ter

where E is the positron energy level, T(t') gives the positron resonance

Qidth at time t'. The perturbing potential is taken to be .
VE(t) = <wEIAV(R(t))[¢Cr> (A.84)

as in Section A.3.4. )

As we have remarked in Section A.3.4, this expression for VE(t) and
the definition T = ZWIVE(t)I? are in apparent.cénflict with the analytic
results of POPOV [A.153] for the resonance width near threshold. Hence,

it is important that calculations of the induced process which avoid
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expansions in AV = V(R) -V(Rcr) about the diving point bé done.

Recently, JAKUBASSA and KLEBER [A.160] have also presented a method of
evaluation of induced positron production in heavy-ion collisions within
the WKB semi-classical approximation. Their results for both spontaneous
and induced production are about ten times larger than those calculated by
SMITH et al [A7168]. In particular, JAKUBASSA and KLEBER find a total cross
section ¢ =4b for v, =0.15 and 0=1b for v = 0.1 in U-U collisions with
Rcr =34 fm. . ‘

It should be noted that so far all the calculations of the induced
production rate are based on the single-centér results for the widths and

_transition matrix elements. ‘

We also ho;e,that.thg induced process may make positron production
experimentally practical even for medium-Z heavy ion collisions. Diving
is not crjtical. Further, induced pair production where both the positron
. and electron are in the continuum may be feasible in U-U collisions even
without ionization. In fact, pair production requires not much more enérgy
transfer than 1nduced IS hole productlon when the energy is near critical.

From a general polnt of view, induced and spontaneous positron production
in heavy-ion collisions can be identified with the Feynman diagram shown in

‘Fig. A.26. The physical process, however, goes beyond perturbation theory
in that the production occurs as, a result of the coherent energonf the

Coulomb interaction in the strong field relativistic domain.

A.3.6  Vacancy Formation in Heavy-Ion Collisions

The physics of inner-shell vacancy formation is currently a subject of
active experimental [A.124] and theoretical interest (A.171,172] and our
discussion here can only be very brief. According to the extrapolation of
BLASCHE, FRANKE and CH.  SCHMELZER [A.173], completely  ionized U atoms are
possible at beam energies of or&er 300 MeV/nucleon (which should be achievable
within the next five years at the LBL Bevalac). However, as we have seen, the
optimum kinetic energy of the ion for the.positron‘production experimerits
is in the few MeV/nucleon range. Ions with this kinetic energy could be
achieved either by ion deceleration, or more ingeniously (as suggested by
GREINER and CH. SCHMELZER {A.171]) by arranging low relativg‘velocity collisions
between colliding beams in.storage rings, as in Fig. A.27.- A similar config-
uration could be attained using the configuration of the CERN-ISR, with both
ion beams circulating in the same direction.

At lower and more practical energies one must rely on the formation of

- the 1S vacancy of the combined quasi-molecule which occurs in the same

atomic collision which produces the pair. (The lifetime of the vacancy is
too short at high Z for collisions .involving more than one target atom to

be important [A.124].) For U-U collisions, estimates-of the vacancy formation

" probability L0 range from 0.2 for ELAB-1600 MeV [A.174] (u51ng an "'atomic"

model in which the time variation of the Coulomb field causes energy to be
transferred to the electron, which is ejected) to values between ‘10 -4 to 10 -6
depending on projectile energy [A.175,176] (using a "molecular” model in
which the collision is assumed slow enough to allow the electrons to adjust

themselves to the diatomic molecular levels; transitions caused by the

varying Coulomb fields then produce vacancies).



=713

However, very recently, BETZ, SOFF, MULLER, and GREINER [A.177] have
performed an approximate calculation of the ground state vacancy production
probability in U-U collisions. The vacancies are produced by the Coulomb
field variation in the two-center Dirac equation. They find the vacancy
production probability at 1600 MeV and zero impact parameter to be larger
than 0.08 — much larger than was anticipated and very encouraging for the
experiments discussed here.

Since 1S state vacancy production followed by positron production in a
sinéle collisi;in will be accompanied by direct pair production associated
with the time variation of the fields in the collison, and the latter process
may have an am#litude of comparable magnitude, the cross section for
atomi+ atom + atom+ atom+e +e  should be calculated from the coherent sum
of both processes. In fact, all processes which produce a pair must, of
course, be considered together. This includes summation over pair production
processes which fill higher n vacancies. Al;hough pair production which
fills higher n vacancies may be less likely, there could be a partial
compensation due to a larger probability of vacancy formation in higher n
states. The rélative importance of thesg processes has not yet been

estimated for the case of collisions between neutral atoms.

A.3.7 Nuclear Excitation and Other Background Effects

There are general background effects which can complicate the experimental
observation of positron production associated with the overcritical Coulomb
field. We will closely follow the discussion of POPOV {A.151], OKUN [A.178],

and OBERACKER et al [A.179,180} here.

When heavy particles collide, e'e” pairs can be produced by hard photon
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bremsstrahlung and pair conversion. The cross section is small {A.151,178]

because the motion of the nuclei is non-relativistic. A typical cross

section for Z=92, R0=40 fn is o <10716

is suppressed by a few more orders of magnitude since the cross section for

b. For identical nuclei U-U, this

dipole radiation, proportional to (ZIAZ - ZZAI)Z’ vanishes [A.151].
The most important background is the production of e'e” pairs by pair
conversion in transitions resulting from Coulomb excitation of nuclei.’

An estimate given by POPOV [A.153] for U-U collisions gives og‘e. ~ lO’ab

which is somewhat smaller than the estimates for the cross section for
spontaneous positron production.
Extensive calculations of the nuclear and Coulomb excitation cross

sections have been recently performed by OBERACKER et al {A.179,180].

The calculated differential cross section (dashed lines)} for 238U . 238

U
kin
cm
, is shown in Fig. A.28. The two dashed lines correspond

collisions at the Coulomb barrier E = 800 MeV, as a function of the ion

scattering angle eion
to two different models for the nuclear states. The associated cross section,
calculated by PEITZ (quoted in Refs. [A.179] and [A.180]), via spontaneous
and induced decay (assuming Rcra 35 fm, and the K-vacancy probability

L0= 10'2) is given by the solid line. Representative total nuclear and
Coulomb excitation production cross sections calculated by OBERACKER et al
[A.179,180] for U-U collisions range from cg‘e- ~1.25x10% to a(e;e' ~
2.28x 10-4b depending on the model for the nuclear states. This is in good
agreement with the estimate of POPOV. As noted by OBERACKER et al, the
nuclear background is suppressed in the backward and forward directions for

238 k P i
- 2WU. In addition, the nuclear positron spectrum

symnetric systems
terminates at F.p*HDO keV while the induced positron spectrum extends to

much higher enerpies. Both of these characteristics should aid in separating



out the background positrons. More complicated, but negligible backgrounds,
involving conversion of gamma rays from nuclear transitions where the
electron occupies the vacant ground state are also estimated by OBERACKER

et al,

A.3.8 Radiative Corrections in Critical Fields

There is considerable theoretical interest in the question of whether
radiative corrections could modify or even eliminate the predictions
discussed here for pair production at Z >Zcr‘ As we have noted in Section
A.3.1, the radiative corrections are controlled by a rather than Za so they
are, in principle, independently controllable in their physical effects,vand
thus one would not expect dramatic changes in the previous description.

One also would not expect that calculations based on a Feynman diagram
treatment indicated by Fig. A.26, could be much affected by effects of
order a. However, since virtual pairs may be produced with an arbitrarily
small expenditure of energy as Z*Zcr, the smallness of a is not necessarily
decisive. In the following, the tractable mde} of a single nucleus of
charge Z is examined. The results for a heavy-ion collision are expected
to be qualitatively similar.

The situation is well understood in the case of the order a vacuum
polarization corrections; the modifications turn out to be small. For r at
the maximum of the near-critical 1S probability distribution, r0~0.1 xe,
the Coulomb Uehling potential has the value

: S
- .20 Za e 5
Vu(ro) ? -I:(Qn—r: Y - g’ ...) = -9 keV (A.85)

Calculation of the 1S Uehling energy shift at Z~Z__ by SOFF, MULLER, and
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RAFELSKI [A.181] gives AE = -11.8 keV for Z=171, in good agreement with
an extrupolation of the results, for Z<160, of PIEPER and GREINER [A.117]
and with the order-of-magnitude estimate in Eq. (A.85). The corresponding
is found, with the aid of [A.47,144,145]

shift Azcr in ZCr

dE
15 = -27 keV . (A.86)
dz 7

cr

to be Azcr = -0.4, i.e., the critical charge is reduced by less than one
unit. The result of POPOV [A.133], AZ__ = 0(10'3), appears to be an under-
estimate.

The higher order correction to the Uehling potential of the Wichmann-
Kroll type (from the Coulomb interactions of the electron-positron pair) is
an order of magnitude smaller. Arguments of POPOV [A.133) and of MULLER,
RAFELSKI, and GREINER {A.144,145] suggest that the higher order corrections
are small. A calculation has been done by GYULASSY [A.47,48] who found
AEIS= 1.2 keV which is negligible compared to the Uehling term. GYULASSY
[A.47]) has also shown numerically that the vacuum polarization charge density
associated with the charged vacuum, discussed by FULCHER and KLEIN [A.136],
varies smoothly as Z passes through Zcr' The vacuum polarization associated
with the charged vacuum is formally related to the ordinary vacuum polariza-
tion by a shift in the cor;tour of integration in the bound electron
propagator as discussed in Section A.1.5 [A.47].

In the case of the self-energy corrections to the electron level, a
simple heuristic argument is that a fraction a of the lepton charge is spread
out over a Compton radius of the electron Xe (modulo a logarithmic tail out

to the Bohr radius (Zo;m)’l associated with the Bethe sum). Such a distribu-
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tion convoluted with the nuclear size distribution could only change zcr
by a small amount. Also, since the determination of the nuclear radius R
derives from electron scattering experiments, the influence of radiative
corrections is already partially included. The situation for the seif-energy
is more obscure at very high Z where higher order terms in Za are important;
quantitative calculation is necessary.

Results of calculations of the self-energy of the 1S state for large 2
are shown in Fig. A.29. The self-energy for a Coulomb potential appears
to become infinite as Za~1. This is clearly an anomaly due to the point
charge sihgularity. CHENG and JOHNSON [A.36] have extended calculations to
Z=160 for a finite nucleus. By extrapolation, they find that the 1S self-
energy is at least 1% of the binding energy at Z= Zcr' Although it seems
unlikely, we note that if the self-energy were to increase sufficiently
rapidly as Z-»Zcr, there might be no diving phenomenon, and further analysis
would be necessary. In any case, induced positron production would still
be possible (seg Section A.3.5).

Calculatioé of radiative corrections to the positron emission rate would
be very complicated, because the self-energy graph will include the long

range radiative correction associated with the outgoing charged particle.

The effect of photon emission would have to be separated from the energy shift.

A.3.9  Coherent Production of Photons in Heavy-Ion Collisions

Another intriguing, possibly feasible test of strong field electrodynamics

utilizing high-Z ion collisions is single or multiple.hard photon production.
The quantum electrodynamic process is a variation of Delbriick, or light-by-

light scattering (see Fig. A.30). The photons are created by the coherent
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energy of the ions' Coulomb field. Unlike bremsstrahlung processes, the
spectrun of the photon peaks in the electron mass (MeV) range. The production
cross section for n photons should be of order o times the Rutherford cross
section for collisions in which the potential energy at the distances of
closest approach significantly exceeds the total photon energy. Such photons
should be distinguishable from nuclear excitation photons and combined-atom
x-rays by their (calculable) spectrum and angular distribution, and by
coincidence (correlation) measurements.

Note that this photon production process occurs at ion energies and
charges well below those required for spontanéous ﬁair production.
Conversely, if the photons have energies beyond 1 MeV, they provide a
background for positron production from interﬂal péir conversion, or by

conversion in a nearby atom.

A.3.10 Self-Neutralization of Matter

The possibility of spontaneous pair broduction at high Coulomb field
strength leads to a rather novel self—neutralization mechanism of ionized
matter. Suppose that one could arrange a contained plasma of completely
stripped uranium ions (no electrons present). For any finite temperaturev
‘there will occasionally be ion-ion collisions at sufficient velocity such
that the distance of closest approach is less than Rcr-35 fm, where diving
of the lowest electronic level of the two-center Dirac system begins.
Eventually, all the bound electron atomic levels which dive will be filled
by the pair production process and — assuming the continuum positrons are
allowed to escape — the ionic system will be partially neutralized. Although

the process can occur in principle at any finite temperature via the Maxwell



_7o.

velocity distribution, the positron production probability becomes large
only at high temperatures, kT ~ 0(l GeV), t.e., T ~ 0(101J K). At still
higher temperatures, other pair production mechanisms become important;

however, the spontaneous pair production is the lowest energy mechanism.

A.3.11 Very Strong Magnetic Field Effects

RAFELSKI and MULLER [A.182] have suggested looking at heavy-ion collisions
as a means of testing the behavior of matter in strong magnetic fields. Such
tests would be sensitive to possible anomalous higher order effects of strong
fields. In a heavy-ion collision, the magnetic fields are produced by the

motion of the charged nuclei, with the corresponding vector potential given by

-> >
v v
eK(;) s aZa —l -2 Z

— — (A.87)
[F- &1 It-R,)

where Gi are the nuclear velocities and Ei are the position vectors of the
nuclei. In a sub-Coulomb barrier heavy-ion collision, the magnetic.field
created in the vicinity of the~colliding nuclei is of the order of 1014 gauss
over a‘small volume {A.182]. The magnetic fields giVe rise to a splitting
of the lowest quasi-molecular states through interaction with the electron
spin. RAFELSKI and MULLER have calculated the magnetic splitting which can
be expected in various heavy-ion collisions. Figure A.31 shows the energy
separation of the spin-up and spin-down states relative to the binding energy
for various systems. For example, the separation of the 1so state in a U-U
collision with T=9 MeV/nucleon and impact parameter b=20 fm is calculated
to be approximately 0.1 m = 50 keV. This splitting corresponds to an average
magnetic field B ~ 4x 1012 gauss. The magnetic splitting results in a

difference of 3.3 fm in Rcr for the two states.
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We note that any model for strong magnetic field anomalies which could
be evident in heavy-ion collisions would be constrained by existing fine
structure measurements in exotic atoms. The determination of the magnetic
moment of the anti-proton to 1% accuracy by the fine‘strucpure measurement
in pPb by HU et al [A.183] has yielded a value which is in excellent'agree—
ment with the proton magnetic moment (in accerd with the TCP theorem).

‘The fine structure in the lower level (n=10, 2=9) in that experiment
arises from interaction of the anti-proton moment with an average magnetic
field of order 1014 gauss. A similar test in somewhat stronger magnetic
fields is made by muonic atoms. The measured fine structure splitting in
the 2P state of muonic lead [A.184] agrees with theory, and the average

magnetic field seen by the muon is of order 1016 gauss.
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CONCLUSION

All of the tests of high-Za quantum electrodynamics which we have
discussed in this review probe in various ways the Furry bound state inter-
action picture description of thé bound leptoné. In the strong field domain
Qhere Za is not sn%ll, a natural question is whether this generalization of
weak field perturbation theory continues to be apﬁlicable if the binding
strength is not sm%ll compared to the mass of the bound particle.

Thus far the tests of high field strength QED involving the spectra

of bound electrons and muons aré_in extraordinary agreement with predictions,

. - P . . : o
ruling out anomalous non-linear interactions, low-mass scalar particles with

certain couplings; and anomalous modifications of yacuum polafization at
momentum transferg f_Zumui The high-Za speétra also test electromagnetic
interactions in the sfrong'magnetic field regime, where the effective fields
reach 10%° gauss.’ Tests of relativistic bremsstrahlung .in high magnetic
fields are review;d in Ref. [A.185]. Furthér tests of the Furry pictﬁre of
bound leptons and their radiative'correctioﬁs are possible by measurements
of the bound state gyromagnetic ratio via Zeeman.intéractions and by photon
scattering from high-Z atoms. The Lamb shift measurements in heavy atoms
confirm the calculations of radiative corrections for highly off-shell
electrons. The ;easurements in high-Z few:electron ions provide a means of
testing QED in strong fields with multiparticle systems for which the theory

is still tractable. Precision meéasurements in muonic atoms are now beginning

to confirm higher order vacuum polarization corrections of order u(Zd)S,

- Tuling out broad classes of anomalous muon-nuclear interactions [A.186].

Although the basic predictions for posifron production in heavy-ion

collisions appear to be understood from a fundamental point of view, there

-%2-

are ‘many quantitative yuestions which have not been completely settled.
As we have noted, it is difficult to compare details of results based on
different calculations because of the wide range of models employed. This
is particularly critical iﬁ the questions concerning the absolute magnitudé
of both the spontaneous and induced positron production rates.

The dynamical teéts of high-Za QED, especially positron production

(and possibly anomalous photon production) in heavy-ion collisions, are

particularly interesting because they require an extension of the theory to

a domain which is otherwise unexplored. For examp]é, when the binding
becomes critical, the ordinary vacuum is effectively unstable,vand a new
vacuum reference state is required.

There are many issueé of fundamental interest which still need to be
resolved. These include a complete field theoretic treatment of the positron\
production problem which considers the effects of radiétive corrections; the
problem of the-Klein-Gordon equation for Za>1, where Bose condensation can
occur [A.138;187]; and the nature of positronium when a>1, and in particular,
whether there is a mechanism (possibly recoil corrections) which can'moderate'

the singular Coulomb problem.

RS
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FIGURE CAPTIONS

A.1. Feynman diagrams for the lowest order self-energy (a) and vacuum
polarization (b). The double line represents an electron in the external
Coulomb field.

A.2. Calculated values of GSE(ZQ) for 2=10 to 50 and the extrapolated
value at Z=1. From MOHR {A.10].

A.3. Feynman diagrams which contribute to the Lamb shift .in helium-1ike
ions. ‘

A.4. Comparison of theory and experiment for the LI - LII level split-
ting in heavy atoms. The error bars give the probable error in the
experimental values. Estimated experimental errors smaller than the
data points are not shown. See text for explanation.

A.5. Possible contours of integration in Eq. (A.11) for Za>1. The
contour labelied CHe_corresponds to a vacuum state with both 1S levels

filled.

A.6. Lowest order QED corrections to the energy levels of a bound muon.

A.7. Expansion of the vacuum polarizéiion in powers of the external field.

A.8. Sum over all orders in perturbation theory fdr_V“(r).

A.9. The function FO(Za) which describes the charge induced at the
nucleus by the higher order vacuum polarizatioh in a Coulomb field.
From BROWN et al {A.49].

A.10. Fourth order vacuum polérizétion diagrams.

A.11. Higher order radiative correction to muon levels.

A.12. Difference between theory and experiment for muonic atom x rays

plotted as a function of x-ray energy. Experimental values from Refs.A.54-59.

A.13. Energy levels for the Dirac-Coulomb equation as a function of 7.
A uniform charge density with R = 1.2 Al/3 fm is assumed. From PIEPLR
and GREINER [A.117]. '

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
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A.14. Critical value of Za in the Dirac-Coulomb equation for ElS = -m
as a function of nuclear radius (in units of Xe = 386 fm). From POPOV
fA.133].

A.15. Spontaneous positron production from the viewpoint of the old

and new vacuum. The old vacuum is unstable due to the adiabatic

introduction of AV « Z - Zcr'

A.16. The eff;ctive potential Ueff(r) of the effective Schrodinger
equation (A.71) for i~*ZC;, E + -m. The potential V(r) is the ﬁotential
in the Dirac equation. From ZELDOVICH and POPOV [A.138),

A.17. Thé mean radius T of the ground state as a function of its eﬁergy
E. The radius contracts to T = 0.13 Xe at E = -m. From POPOV [A.133].
A-18. .The combined atom relativistic molecular states for 92U _92”
collisions as a function of the internuclear distance R; from MILLER
et al [A.134]. The lowest state reaches the negative continuum a?
Rcr~34 fm. . o
A-19. The probability of spontaneous positron production for scattering
of uranium nuclei at 180° (wn) and the probability averaged over all

angles (wav = g/ ). From MARINOV and POPOV [A.159]. These curves

“geom ,
should be multiplied by the factor 0.54 for Rcr= 34 fm (see Sectiori

A.3.3).

. A.20. The energy spectrum of spontaneous.ly-px‘oduced positi‘ons for

backward ion scattering (6=180°). The curves labeled 1,2,3 refer tc;
n :.2"2'8’ and 4 respectively. FrovaARINOV and POPOV [A.159].

A.21. Dependence of the atomic levels on nuclear charge. The positron
escape width, which gives the rate for spontaneous decay, increases

Adapted from MULLER et al {A.143].

\

monotonically with AZ = 7 - Zcr
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A.22. Energr and width of the supercritical 1S state calculated by . Fig;
JAKUBRASSA and KLEBER [A.160]. The solid lines labeled |E1| and T give

the energy and width in the WKB approximation; the dashed lines give

the corresponding results when the effective potential is modified by

adding a centrifugal term. The results of MULLER et al [A.134,145],

labeled T',, for the width of the 1S state (Eq. (A.81)) have been added

to the figure for comparison. Adapted from JAKUBASSA and KLEBER [A.IGO]. ' Fig.

A.23. Probability W(E) for production of a positron with energy E per
AE=1 keV. Comparison of the spontanecus and spontaneous-plus-induced

spectrum as calculated by SMITH et al. From the review of RAFELSKI and

KLEIN [A.170]. ' Fig.
‘A.24. Cross section for positron production as a function of positron

energy, divided by the ionization probébility L, and Rutherford cross : Fig.

section fof U-U central collisions at 812.5 MeV. From SMITH et al
[A.168,170].

A.25. (a) The positron cross sections calculated for U-U central
collisions, with L0 set equal to 10'2. The ion center-of-mass kinetic
energies are: [1] 815.5 MeV (distance of closest approach, 15 fm);

2] 609.4 MeV (20 fm); [3] 478.5 MeV (gS fm); [4] 706.3 MeV (30 fm);

[5] 398.2 MeV (35 fm). The vertical scale here is corrected according

.to the reievant footnote in-Ref. [A.134]. (b) The total positron

cross section dependence on the ion CM energy. From SMITH et al [A.168].

ig. A.26. Feynman diagram for positron preduction in ion-ion collisions:

" The produced electron becomes bound to the nucleus with charge lee[.

A.27. Schematic diagram of a heavy ion storage ring configuration,
suggested in Ref. [A.171], arranged to obtain low relative velocity
collisions. By changing 6, the relative velocity can be adjusted.

From GREINER {A.171]).

-98-

A.28. Differential pair production cross sections (CM) as a function

: 2
of ion angle for 238y -238U collisions. Spontaneous and induced
positron production cross section (solid line) and pair production

from Coulomb and nuclear excitation cross sections (dashed lines

"corresponding to two nuclear models) are shown. From OBERACKER et al

{A.179}.
A.29. Results of various calculations of the 1S self-energy at high Z.
The energy shift is given by AE = (a/n)(Za)4 F(Za)m. The results are

from Refs. [A.8,11,36]. Error estimates smaller than 2% are not shown.

From CHENG and JOHNSON [A.36].

A.30. Feynman diagrams for production of photons by vacuum polarization
in high-Z collision.

A.31. Relative magnetic splitting (E, -E,)/Ey (E, is the binding energy)

" for selected quasi-molecular states. Collision parameters are ELAB =9

MeV/nucleon and impact parameter b=13 fm. From RAFELSKI and MULLER

[A.182].
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Figure A.19
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