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I NTROWCf I a-< 

Quantum electrodynmnics (QED), the theory of the interactions of 

electrons and nruons via photons, has now been tested both to high precision 

- at the ppm level - and to short distances of order 10 ·l4 - 10 ·lS em. 

The short distance tests, particularly the colliding beam measurements of 

+ - + - + -e e + ~ ~, yy, and e e. [A.l], are essentially tests of QED in the Bo1n 

approximation. On the other hand, the precision anomalous. magnetic moment 

and-atomic physics measurements check the higher order loop corrections and 

predictions dependent on the renormalization procedure. Despite the 

extraordinary successes, it is still important to investigate the validity 

of QED in the strong field domain. In particular, high-Za atomic physics 

tests, especially the Lamb shift in high-Z hydrogenic atoms, test the QED 

amplitude in the situation where the fermion propagator is far off the mass 

shell and cannot be handled in perturb~tion theory in Za, but where 

the renormalization progrmn for perturbation theory in a must be used. 

High-Z heavy--ion. collisions can be used to probe the Dirac spectrum in 

the non-perturbative domain of high Za, where spontaneous positron production 

can occur, and where two different vacuum states must be considered. 

Another reason to pursue the high-·Za domain is that the spectrum of 

radiation. emitted when two colliding h~avy ions (temporarily) unite can lead 

to a better understanding·of relativistic molecular physics. This physics 

is reviewed .in the accompanying articl~s of this volume. Furthermore, the 

atomic spectra of the low-lying electron states and outgoing positron 

continua reflect the nature of the nuclear. charge distribution, and could 

be a useful. tool in unraveling the nuclear physics and dynamics of a close 
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heavy-ion collision. Somewhat complementary to these tests are the studies 

of Delbri.ick scattering (elastic scattering of photons by a strong Coulomb 

field) reviewed in Ref. A.2. 

One of the intriguing aspects of high field strength quantum electro­

d~Jmnics is the possibility that it .may provide a model for quark dynmnics. 

Present theoretical ideas for the origin of the strong interactions have 

focused on renorrnalizable field theories, such as quantum chromodynmnics 

(QCD), where.the quarks are the analogues of the leptons, and the gluons 

the generalizations of the photon - are themselves charged (non-abelian 

Yang-Mills theory). In contrast to QED where the vacuum polarization 

strengthens the charged particle interaction at short distances, in QCD 

the interactions weaken at short distances, and (presumably) become very 

strong at large separations. 

To see the radical possibilities in strong fields, suppose a is large 

in QED and the first bound state of positroniwn has binding energy e > m. 

The total mass of the atom 71t is then less than the mass of a free electron 

711 = 2m - e < m. Consider then an experiment in which an e + e · pair is 

produced near threshold- e.g. via a weak.current process .. -Since an 

additional virtual pair may be present, the produced pair can spontaneously 

decay to two positronium atoms in .the ground state, each with finite kinetic 

energy. Thus bound states; and not free fermions, are produced! It is 

clearly an interesting question.whether strong field strength in QED can 

provide a mechanism analogous to quark confinement in hadron dynmnics. 

The work 'of K. WILSON [A. 3] and J. MANOOLA [A-4'] is especially relevant 

here .. The studies of spontaneous pair production in heavy-ion collisions 

(see Section A.3) provide a simple phenomenological-framework where some 

of the effects of strong fields can be tested. 

,~ .. ..:: .. 



It should be noted that our review only touches a limited aspect of 

high-Za electrodynamics. We consider only the cases of a fixed or heavy 

source for a high-Za Coulomb potential. An important open question concerns 

the behavior of the Bethe-Salpeter equation for positronium in the large a 

domain, and in particular, whether the binding energy can become comparable 

to the mass of the constituents so that 7TL = 2m- e ~ 0. 

The organization of this artiCle is as follows: . We review in detail 

the recent work on the atomic spectra of high-Z electronic (Section A.l) 

and muonic atoms (Section A.2), including muonic helium, with emphasis on 

the Lamb shift and vacuum polarization corrections wh'ich test strong field 

quantum electrodynamics. The theoretical framework of the QED calculations 

for strongfields is discussed in Section A.l.5. The. constraints on non­

perturbative vacuum polarization modifications and possible scalar particles 

are presented in.Section A.2.8. · A review of recent work on the quantum 

electrodynamics of heavy-ion collisions, particularly the dynamics of 

positron production, is presented in Section A.3. In addition to reviewing 

the phenomenology and calculational methods (Sections A.-3. 2 - A. 3. 4), we also 

discuss the parameters for possible experiments, with a brief review of 

vacancy formation (Section A.3.6) and background. effects (Section A.3.7). 

In our review of heavy-ion collisions we will also touch on several new 
. . 

topics, including the coherent production of photons ,in heavy-ion collisions 

(Section A.3.9) and the self-neutralization of charged matter (Section A.3.10). 

We also point out some questions which ·are not completely resolved, including 

the relative importance of induced versus adiabatic ·pair production (Section 

A. 3. 5) and the nature of radiative corrections in a t9 spontaneous pair 

production (Section A.3.8). 
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A.l THE ELECTRODYNAMICS OF HIGH-Z ELECTRONIC ATOMS 

A.l.l Lamb Shift in Hydrogenlike Ions 

At present the most precise and sensitive way to test quantum electro-

dynamics at high field strength is to compare the theory and measurements 

of the classic Lamb shift interval, the 2SL - 2P .. separation in hydrogen! ike . ~ ~ 

ions. In recent work on the Lamb shift, measurements have been extended to 

hydrogenlike argon (Z = 18) by an experiment at the Berkeley SuperHILAC [A. 5). 

As we shall see, such experiments provide an important test of QED in strong 

fields .. The higher order binding terms in the theory which are small in 

hydrogen become relatively more important at high Z. For example, the terms 

of order a(Za) 6 which contribute 0.016% of the Lamb shift in hydrogen give 

12% of the Lamb shift in hydrogenlike argon. The theoretical contributions 

to the Lamb shift are by now well established [A.6,7]. Our purpose here 

will be to summarize these contributions as an aid to testing the validity 

of the theory. 

The dominant part of the Lamb shift is given by the self-energy and 

vacuum polarization of order a, corresponding to the Feynman diagrams in 

Fig. A.l(a) and (b). In the past, most of the theoretical work on the self­

energy has been concerned with the evaluation of terms of successively 

higher order in Za. However, ERICKSON [A.8] has given an analytic approx-· 

imation which can be used as a.guide for the Lamb shift for any Z. This is 

discussed in detail in Ref. A.9. 

More recently, ~~HR [A.lO] has made a comprehensive numerical evaluation 

of the 2~ and ZP~ self-energy to all orders in,Za. The method of evaluation 

is based on the expansion of the bound electron propagation function in terms 

of the known Coulomb radial Green's functions [A.ll), and is described in 

• 

,-.l~· 
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roore detail ill Section A.l. 5. In order to display the results for the order 

a self-energy contribution 5
5
[(c) to the Lamb shiftS= l1Ei2S~..I- .'>i:(cl', 1, 

'l '2 

it is convenient to isolate the exactly !mown low-order terms by writing 

s (2) 
SE 

.. (·7 )4 [ . 2 1\o(Z,O) 
~ ~~. m. 9.~(Za)· - 9.n KQT2:1T + ~! + } 

+ '31! ( l + '
1
1
2
1
8 

i 9.n2) (Za) - i (Za} 29.n2 (Za):Z 

.. +·( 299 ;·4 £.n7)(~a) 2 9.n(Za)- 2 + (Za).2 G
5
E(Za)] -· 240- .. 

","-.' .. 
We shall always distinguish radiative tenns ill a from terms· in Za which 

(A.l) 

arise from the ~~~1~1a_r..fi~~d :trength. Values of the remainder G5E(Za) in 

Eq. (A.l) c?rt:~s~orid0~.t~···th~ cal~ulated values of SSE(2l for Z in the range 
• ~, ";'f •.. "'\.. :"·, ~-t . ' ; .• ;~ ,. . . . .· ~ 

10- 50, app~ar •. in Fig . ..\.2 .. T?e erro_r bars in that figure represent a conserv- · 

ative estimate (;f the unce~t~inty a_ssociated with the numerical integration 

ill the evaluation 'of 's~lf~~erb- and, at Z = 1, the. uncertainty ·resulting 

from extrapolati:~~ tr~~z;,'lo:. 
'·?';, :~: ..• ' ' . 

Evaluation of.the energy level. shift associated with the vacuum 
: ~- ~/ ... ... . . ' 

polarization' of 'ord~'i': ;_ is facilitated by considering the eipansion of the 
--. 

vacuum polarization potential in powers of the external Coulomb--potential 
., '$I • 

·,'l' (see WICHMANN a!}? KROLL' [A.lZ]). Only odd po;;,ers of the external potential 

contribute as a· cons~uence ·~f Furry: s theOrem. [A.l3]. The first term in· 

the expansion gives rise'to the Uehiing potential [A.l4,15]; the associated 

- ... o level shift is easily evai~ated numerically. The secortd nonvanishing tenn 

~~ in the expansion is third.order in the.external potential. The two lowest 

order contributions to the Lamb shift from this term are given by [A.l2,16]. 
0 

(A. 2) 

-o-

A substantial discrepancy ben.·een theory ~d experiment was eliminated 

when APPELQUIST and BRODS!I.'Y [A.l7] corrected the fourth order Lamb shift 

tenns by a munerical evaluation. Since then, the tenns have been evaluated 

analytically. The total of the fourth order radiative corrections to the 

Lamb shift is given by 

Recent work on the evaluation of this term·is silimlari.zed. ill.Ref. A. 7. 

that only the lowes~ order term in Za has been evaluat .. ect.· ' 
' 

(A.3) 

·Nqte 

The lowest order reduced mass and relativistic reco:l.~ '~o~t.~ibuti.?ns 
: : ·~ 

to the Lamb shift are given by (see Ref. A. 7) 

SRM 
a (Za) 

4 
( ) [ 2 K.o (

2 
• O) 23 ] 

1T -6- m -3 ~ £.n(Za)- - ~n Ko(2,1) + 60 (A.4) 

and 

(Za)
5 (m) [1 · -2 · KoC2.• 0 ~· · ·:~7.-J.·. 

SRR = "6iT m M 4 £.n(Za) - .29.n Ko(2;1) ..,_ 12' .. (A, s) 

where M is the nuclear mass. 

The finite nudear.size correctior1 to. the ·Laffib ·shift is given, 'for Z 

not too large, by the perturbation theory expression . : ~ ·' 

(A,6) 

assuming a nuclear model ill which the ch_arge is distributed unlf6I11Jly inside 

a sphere; where s = Jl-(Za) 2 and R is.the.r.m.s. charge rad-ius of the-. _.... . ' 

nucleus. An estimate of the error due to neglected higher order terms in 

perturbation theory is given in Ref. A.l6. 

., .. 



The sum of contributions listed above gives the total Lamb shift 5. 

Values for the individual contributions are listed in Table I for hydrogen­

like argon. Theoretical and experimental values for z;;. 3 are compared in 

Table II. The theoretical values for Z <; 30 are listed in Ref . ..\.16. 

TABLE I. Contributions to the Lamb shift at Z= 18, R= 3.45(5) fm assUIIlE'd. 

Source .Order \'alue 

Self energy a(Za) 4 [R.n(Za)- 2 ,l,Za,•••) ~il,5-t4(15) GHz 

Vacuum polarization a(Za) • [l,Za, • • • I -2,598(3) 

Fourth order a2 (Za)~ - 11 (14) 

Reduced mass a(Za)' m/M -1 

Relativistic recoil (Zii)5 m/M 12(9) 

Nuclear size (Za}' CR/ll)2 [1, (Za)
2
R.n(R/ll) ,· • • 1 283{12) 

38,250(25) GHz . 

TABLE II. Comparison between theory and measurement of the Lamb shift 
E(2S,) - E(ZP~;.) for z;;. 3. . . . . . 

Theory (lo) Experiment (lo) Ref. 

·'Liz+ 62,737.5(6.6) MHz 62,765(21) MHZ [A.l8) 
62,790(70) MHz [A.l9)a 
63,031(327) MHz [A.20).· 

•zcs+ 781.99(21) GHz 780.1(8.0) GHz [A.21) 

1607+ 2,196.21{92) GHz 2,215.6(7.5) GHz [A.22) 
2, ZOZ. 7 (11. O)GHz (A.23] 

"Fe+ 3,343.1(1.6) GHz 3,339(35) GHz [A.24Ia 

"'Ar''+ 38.2S0(2S)ntz 38.3(2.4) THz . [A.S)a 

~Improved experimental precision is expected. 
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~lost of the experiments listed in Table II were done by the so-called 

static field quenching_ method [A.20). This method is. based on the large 

difference between the 25!; and 2P~ lifetimes and the· small separation of the 

levels. The ratio of the lifetimes is roughly T(25~)/T(2P~) - 108z~ 2 , Atoms 

in the metastable 25~ state are passed through an electric field which causes 

the lifetime of the 2\ state to decrease by mixing the 5 and P states. 

The change in the lifetime as a function of electric field strength"leads 

to a value for the Lamb shift according to the Bethe-Lamb theory. .The 

quenching experiments at higher Z (Z> 6) depend on the electric field in 

the rest frame of a fast beam of ions passing through a magnetic field to 

produce the 2S-2P mixing. 

The experiments of LEVENlliAL [A.l8) and DIETRICH et al [A.i91 with 

lithium are based on the microwave resonance method. The experiment of KUGEL 

et al [A.24) with fluorine measures the frequency of the 2s112 - 2P312 separa­

tion which is in the infrared range. The Lamb shift is deduced with the 

aid of the theoretical '2P
112

- ZP
312 

splitting which is relatively weakly 

dependent on QED. In the experiment, one-electron ions of fluorine in. the 

metastable 2s
112 

state are produced. by passing a 64 MeV beam throUgh carbon 

foils. The metastable·. atoms are excited to the 2P312 state by a laser beam 

which crosses the atomic beam, and the x rays emitted in the transition 

2P
312 

+1S
112 

are observed~ A novel feature of the experiment is that the 

resonance curve· is swept out by varying the angle between the laser beam 

and the ion beam which Doppler-tunes the frequency seen by the atoms. 
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A.l.2 Lamb Shift in Heliumlike Ions 

It would be of considerable interest to extend accurate Lamb shift 

measurements to hydrogenic systems with very high Z in order to test strong 

field QED. However, it appears unlikely that the hydrogenlike Lamb 

can be measured by the quenching methods in ions with Z ::! 30 [A. 25] . 

shift 

A different possibility for accurate checking of QED at very high Z is 

the study of two- and three-~lectron ions with high-Z nuclei. When Z is 

very large, the electron-nucleus interaction dominates over the electron­

elec;ro~ ~t~raction. Therefore~_a theoretical approach which considers 

noninteracting electrons bound to the nucleus according to the single particle 

Dirac-equation, and treats interactions of the electrons and radiative correc­

tions;as perturbations, should be capable of making accurate theoretical 

·pred~ctions [A.26]. 

As an example, consider the energy separation 23P0 - 23s1 in helitunlike 

ions. In the high-Z jj-coupling limit, the energy separation is given by 

(ls 2p )0 - (ls Zs )1 so that if the electron-electron interaction 1/2 1/2 1/2 1/2 ' 
is neglected compared to the electron-nucleus interaction, the absolute 

energy separation is just the hydrogenic Lamb shift E(2s112 l - E(2Pl/2) · 

The electron-electron interaction must still be taken into account. The 

largest term, corresponding to one-photon exchange between the bound electrons, 

is of the form a[a(Za) +b(Za) 3 +c(Za) 5 + .•• ]m, with the leading term coming 

from the nonrelativistic Coulomb interaction of the electrons. The dominant 

energy separation is given by the first two terms which grow more slowly 

with z than the 'Lamb shift- a(Za) 4. Hence, the Lamb shift becomes an 

increasing fraction of the energy separation as Z increases. The ratio of 

the Lamb shift to·the total energy separation is 0.002% for Z=2, 0.8% for 

-Ill-

z = 18, and 9% for Z =54. At high Z, the main QED corrections in helitunlike 

ions correspond to Feynman diagrams such as those pictured in Figs. A.3(a) and 

[b). The energy shift associated with these diagrams is just the hydrogen­

like ion Lamb shift. Diagrams with an exchanged photon such as the one in 

Fig. A.3(c) are less important (of relative order z- 1), but need to be 

calculated for a precise comparison with experiment. 

From the experimental standpoint, the heliumlike L<imb shift has.'the 

. 3' 3. d ed h advantage that both the 2 P0 and 2 s1 ·states are long-live compar to t e 

hydrogenlike 2P states so that the natural width of the ·states is not the 

main limitation to the accuracy which may be achieved. In addition,. in 

contrast to the hydrogenlike case, _there i~-no strongly favored~ecay mode 

(for zero spin nuclei) to the g~ound state ~o depopuiate the ~per level, 

which makes direct observation of the decay photons feasible,in a beam·foil 

experiment. 

Studies of the fine structure in heliurnlike argon (Z = 18) have been 

carried out by DAVIS and MARRUS .[A.27], who measured the energy of photons 

3 3 3 3 . b f '1 . t t emitted in the decays 2 P 2 -+ 2 s1 and 2 P 0 -+ 2 s1 1n a eam- 01 expenmen a 

the Berkeley SuperHILAC. Their results are shown in Table III. In that 

table, the theoretical values for the QED corrections are the hydrogenlike 

corrections for Z = 18, and are seen to be already tested to the .25% level. 

TABLE III · 
Fine structure in heliurnlike argon, from DAVIS and MARRUS [A.27], in eV. 

Transition Self energy and 
6Eth 6Eexp .vacuum polarization 

23P 235 2 -+ 1 -0.15 22.14(3) 22.13(4) 

23Pu .... 23s l -0.16 18.73(3) 18. 77_(3) 
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GOULD and ~~US [A.28] have measured the transition rate for.the 

radiative decay z3p0 ... z3s1 in heliumlike krypton (Z = 36) by observing the 
3 1 x rays emitted in the subsequent ~U decay 2 s1 ... 1 s0. Interestingly, the 

QED corrections to the 23P0 - 23s1 energy splitting produce an observable 

effect in the decay rate. The observed lifetime of the z3P0 state is 

•=1.66(6) nsec. Assuming that the decay rate is given by the relativistic 

dipole length formula [A.29] 

(A. 7) 

the theoretical value for the lifetime is T = 1.59(3) nsec (T = 1.42(3) nsec) 

with (without) the QED corrections included in the energy .separation w. 

A.l.3 Quantum Electrodynamics in High-Z Neutral Atoms 

Binding energies of inner electrons in heavy atoms are measured to high 

accuracy by means of electron spectroscopy of photoelectrons or internal 

conversion electrons [A.30]. Because of the extraordinary precision of the 

measurements, surprisingly sensitive tests of QED as well as the many-electron 

calculations can be made. 

Precise calculations of the ground state energies have been. given by 

DESIDERIO and JOHNSON [A. 31] and MANN and JOHNSON [A. 32]. DESIDERIO and 

JCtlNSON [A.31] have calculated the self-energy level shift of the IS state 

in a Dirac-Hartree-Fock potential for atoms with Z in the range 70- 90 (see 

Section A.l.S). They estimated the vacuum polarization correction to the 

lS level by employing the Uehling potential contribution for a Coulomb potential 

reduced by 2% to account for electron screening. ~ and JOHNSON [A.32] 

have done a calculation of the binding energy of a K electron for W, Hg, 

-12-

Pb, and Rn which takes into account the Dirac-Hartree-Fock eigenvalue, the 

lowest order transverse electron-electron interaction, and an empirical 

estimate of the correlation energy. The binding energy is taken as the 

difference between the energy of the atom and the energy of the ion with a 

lS vacancy. Their comparison of theory to the experimental values [A.30] 

corrected for the photoelectric work function is shown in Table IV. The 

inclusion of the QED terms dramatically improves the agreement between 

theory and experiment. 

TABLE IV. K-electron energy levels (in Ry) from ~!ANN .and JCtlNSON [A.32]. 

Element Self-energy and 
vacuum.polarizationa Eth Eexpt 

74w 8.65 -suo. so -5110.46 ± .02 

80Hg 11.28 -6108.52 -6108.39 ± .06 

s2Pb 12.27 -6468.79 -6468.67 ±.OS 

86Rn 14.43 -7233.01 -7233.08 ± .90 

aCalculated by DESIDERIO and JOHNSON [A.31]. These numbers include 
an estimated correlation energy of -0.08 Ry. 

A similar comparison of theory and ei<periment has been made for Fm 

(Z=lOO). FREEI'MAN, PORTER, and ~!ANN [A.33] and FRICKE, DESCLAUX, and 

WABER [A.34] have calculated the K-electron binding energy in fermium.· 

The results of FREEI'MAN, PORTER, and MANN are compared to the experimental 

value obtained by PORTER and FREEDMAN [A.35] in Table V. They used extrap­

olations of the results for Z = 70-~0 of ~!ANN and JCtlNSON for the rearrange­

ment energy, and of DESIDERIO and JCtlNSON for the QED corrections. If the 

\.. 
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extrapolated value for the self-energy in thCJt table is replaced by the 

recently calculated value of G!ENG and JO!L\SO\ [.~.3b], the theoretical 

energy level is -141.957 keV. 

TABLE V. Calculated K-electron energy level in 
100Fm (in keV), from FREEINA."', PORTER, 
and MANN [A. 33]. 

Source 

E15 (neutral-atom eigenvalue) 

~1agnetic 

Retardation 

Rearrangement 

Self~energy 

Vacuum polarization 

Electron correlation 

E15 (Z; 100) 

Experimental value 

Amount 

-143.051 

+0.709 

-0.040 

+0.088 

+0.484 

-0.154 

-0.001 

-141.965 ± 0.025 

-141.967 ± 0.013 

Extensive calculations of electron binding energies for all the elements 

in the range 2.;; Z.; io6 have recently been done by HUANG, AOYAGI, Q!EN, 

CRASEMANN, and MARK [A.37]. They used relativistic Hartree-Fock-Slater 

wave functions to calculate the expectation value of the total Hamiltonian. 

They assumed complete relaxation and included the Breit interaction and 

vacu~ polarization corrections,_as well as finite nuclear size effects. 

By comparing their results to experiment, it is possible to see the 

effect o~ the self-energy radiative corrections to the zs112 - ZP112 (L1 - Lrrl 

level splitting in heavy atoms. Figure A.4 shows the relative difference 

between the theoretical splitting without the self-energy and the experimental 

values compiled by BEARpEN and BURR [A.30]. The solid line shows theoretical 

-14-

values for the Coulomb self-energy splitting [.-\.10], and the dashed line 

shows values modified with a screening correction [A. 37] .. 

A.l.4 High-Z Atoms and Limits on Nonlinear ~lodifications of QED 

Various refonnulations of classical electrouynamics have been proposed 

which attempt to eliminate the problem of an infinite self-energy of the 

electron. Among these is the nonlinear theory of BORN and iNFELD [A.38,39]. 

They proposed that the usual Lagrangian L ; ~(H2 - E2) be replaced by 

(A.8) 

This fonnulation reduces to the usual fonn for field strengths much smaller 

than an "absolute field" E
0

. Within the Born-Infeld theory, the electric 

field of a point charge is given by 

(A.9) 

The magnitude of E
0 

is determined by the condition that ·the integral -of the 

energy density of the electric field associated with a point charge at rest 

is just the rest energy of the electron m. This results in a value E
0 

l. 2 x 1018 V/cm and a characteristic radius r 
0

; 3. 5 fm inside of 1;hich the 

electric field deviates substantially from the ordinary fonn e/r2
• ·fue to 

the large magnitude of E
0

, the observable deviations _from linear electro­

dynamics should be most evident in situations involving strong fields. 

There has been recent interest in the experimental consequences of the 

Born-Infeld modification. RAFELSKI, FULO!ER, and GREINER [A.40] have found 

that the critical charge Zcr (see Section A.3.1) is increased from about 174 

• 
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in ordinary electroJ}1l:l!Tlics to 215 within the Born- lnfeld electrodynamic,;. 

FREEJJ.t.l..\; PORTER, and ~l.l..\\ {A.33] and FRICIU:, lli.S(L\ll\, and li..\lll:R 1.-\.341 have 

pointed out that the excellent agreement bet1<een the theoretical and experi­

mental IS binding energies in fermium. (: = 100), discusse_d in Sect ion A.l. 3, 

is evidence against deviations from the linear theory of electrodynamics. 

In Fm, the difference in lS energy eigenvalues between the Born-Infeld theory 

·and ordinary electrodynamics is 3.3 keV, based on a calculation using the 

Thomas-Fermi electron distribution with a Fermi nuclear charge distribution. 

This is two orders of magnitude larger than the combined uncertainty in 

theory and experiment listed in Table V. Although the other corrections 

listed in that table might be modified by the Born-Infeld theory, e.g., the 

self-energy, the linear theory produc~s agreement with experiment in a case . 

where the effects of possible nonlinearities are large. SOFF, RAFELSKI, 

and GREINER [A.41] have found that upless E
0 

is greater than 1. 7 x 1020 V/cm 

which is 140 times. the Born-Infeld value, the modification due to L 
BI 

[Eq. (A.8)] would disrupt agreement between ~easured and calculated values 

for low-n transition energies in muonic lead. 

A.l. 5 Wichmann-Kroll Approach to Strong-Field Electrodynamics 

A common aspect of calculations of strong field QED effects is the 

problem of finding a useful representation of the bound interaction (Furry) 

picture propagator S~(x2 ,x1 ) for a particle in a ;;trong external pote~tial 

All(x). The approaches based on expanding S~(x2 ,x 1 ) in powers of-either· the 

potential A11 (x) or the field strength a~)x)- av'\J(x) suffer from two main 

drawbacks. First, in the case of the self-energy .radiative correction, 

the power series generated in. thi7 way conv;rges slowly numerically. Second, 

for both the self-energy and the vacuum polari:ation, the ex-pressions 

corresponding to successively higher order tenns in the expansion become 

increasingly more complicated and difficult to evaluate. 

In their classic study of the vacuum polarization in a strong Coulomb 

field, WICJN".i'lN and KROLL [A.lZ]. employed an alternative approach to the 

problem of finding a useful expression for the bound particle propagator. 

.Their method and variations of it have been the basis for studies of strong 

field QED effects, so we describe the method in some detail here. We also 

give a brief survey of calculations of strong field_QED effects-based on 

these methods. 

·For a time-independent external potential, which we assume has only a 

nonvanishing fourth component -eA0 (x) = V(x), A(x) = 0, the bound electron 

propagation function is 

(A.lO) 

where the $n(x) are the bound state and continuum solutions of the Dirac 

equation for the external potential. It has an integral representation given 

by [A.l2,4Z] 

(A.Il) 

where G(;2;;1,z) is the Green's function for the Dirac equation 

(A.l2) 

·~· 

~ . 
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and the contour c in (A.ll) extends continuously from -oo to +oo belm; the real 

axis for Re(z) < E
0

, through E
0

, and above the real axis in the region Re(z) > E
0

. 

The crossing point E
0 

depends on the definition of the vacuum (see Section 

A. 3.1). For the Coulomb potential with (Za) < 1, it is convenient to choose 

E = 0. Two possible contours of integration for (Za) > 1 are shown in Fig. 
0 

A.S. In that· figure, the branch points of G(x2,x1 ,z) at z. = ±m and the bound 

state poles.are aiso shown. 

The Green's function- is fonnally given by the spectral representation 

(A.l3) 

where the_sum in (A.l3) is over bound state and continuum solutions as in 

Eq. (A.lO). 

For a spherically symmetric external potential V(r), the Green's function 

may be written as a sum over eigenfunctions (with eigenvalue -K) of the Dirac 

operator K = ll(; • L + 1). Each tenn in the sum can be factorized into a part 

which depend~ ~n a trivial way on the directions of :i(2 and xl and a radial 

Green's .function which contains the nontrivial dependence on r 2 and r 1' the 

magnitude; of_x2 and xl. The radial Green's function GK(r2,rl,z),written 

as a 2x 2_matrix, satisfies the inhomogeneous radial equation 

[

VCr2)+m-z 

1 d K --r +­
r 2 dr2 2 r 2 

(A. 14) 

The utility of this fonnulation is that the radial Green's functions GK can 

be constructed explicitly from solutions of the homogeneous version of (A.l4). 

Let A(r) and B(r) be the two linearly independent two-component solutions of 
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(A.l4J with the right hand side replaced by 0, where A(r) is regular at r=O 

and ll(r) is regular at r = "'· Then for : in the cut plane ll'ig. A. 5) and not 

a bound state eigenvalue, the Green's function GK is given by 

· (A.iS) 

with the Wronskian J(z) given by (J(z) is independent of r) 

J(z) 2 . . 
r [A2 (r)B1 (r) - ~ (r)B2(r)] (A.l6) 

In (A.l6), 1(2) denotes the upper (lower) component of A or. B. No_te that the 

radial Green's function can also be expressed in the fonn.of a spect~al 

representation, in analogy ~<ith Ey.- (A.13), as 

(A.l7) ·. 

where FE(r) is a bound state or continuum solution of_t~~ homogeneous_radial 

equation. 

In the case of a Coulomb potential, the_ solutions A(r) and B(r) can be 

expressed in terms of confluent hypergeometric (or Whittaker) functions 

[A.l2,11]. WICHMANN and KROLL [A.l2] employed integral representations 

for these functions, carried out som~ _of the integrations involved_ in evalu­

ation of the vacuum polarization, and arrived at relatively compact expressions 

for the Laplace transfonn of the vacuum polarization charge density times /. 

Their starting point was the expression for the,unrenormalized vacuum polar-

ization charge density of order e 

(A.l8) 



This expression, which is valid to all orders in Za, may be further ex-panded 

in a power series in Za. Many of the calculations relevant to high-Z muonic 

atoms (see Section A.Z) are based on results obtained by WICHMANN and KROLL 

in their extensive study of Pyp(r). 

ARAFUNE [A.43] and BROWN, CAHN, and ~lcLERRAN [A.44,45] employed an 

approximation based on setting m = 0 in the radial Green's function GK to 

study finite nuclear size effects on the vacuum polarization in muonic atoms. 

This approximation considerably simplifies the calculation and corresponds 

to including only the short-range effect of the vacuum polarization. 

GYULASSY ·[A.46-48] constructed Green's functions for a finite nucleus 

potential in a numerical study of the effect of finite size on the higher 

order vacuum polarization in muonic atoms and in electronic atoms with Z 

near the critical value (see Section A.3.8). In these studies, it was found 

that the main correction due to nuclear size arises from the K = 1 (j = l:i) 
. . 

term in Eq. (A.l8). BRCA'IN, CAHN, and l>tLERRAN [A.49,SO] have constructed 

approximate analytic expressions for the radial Green's functions for a 

CoUlomb potential in order to estimate the effect of the spatial distribution 

of the vacuum polarization charge density in muonic atoms. 

BROWN, LANGER, and SCHAEFER [A.Sl] have developed a method of calculating 

the lS self-energy radiative correction for large Z, in which the solutions 

A(r) and B(r) are generated by numerical integration of a set of coupled 

differential equations. This method has been generalized to non-Coulomb 

potentials by DESIDERIO and JGHNSON [A.31] who evaluated the self-energy in 

a screened Coulomb potential for the lS state with Z in the range 70-90. 

More recently, CHENG and JOHNSON [A.36) have evaluated the self-energy, with 

finite nuclear size and electron screening taken into account for Z in the 

range 70-160, and with a Coulomb potential for Z in the range 50-130. 
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~10HR [A.lO,ll] has evaluated the self-energy radiative correction for 

the IS, 2S, and 2P112 states over the range Z = 10-llO for a Coulomb potential. 

In that calculation, the radial Green's functions are evaluated numerically 

by taking advantage of power series and asymptotic expansions of the explicit 

expressions for the radial Green's functions in_ terms of confluent hyper­

geometric functions. In terms of the radial Green's functions, the (unre­

normalized) self-energy has the form 

/lESE - ~~ fc dz f,dr2r~ lwdr1ri 

2 
X L:L: 

K i,j=l 

(A.l9) 

where i = 3- i, j = 3- j ; f i ( r) , i = 1, Z are the large and small components of 
I 

the Dirac radial wave functions, and the A's are functions associated with the 

-angular momentum expansion of the photon propagator and consist of spherical 

Bessel and Hankel functions. In the numerical evaluation of (A.l9), parti2-

ular care is required in isolating the mass renormal ization term [A.ll]. 
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A. 2 THE ELECfRODYNN>IICS OF HIGH-: ~1\lllf'i I C c\TO\IS 

A.Z.l General Features 

~ons, impinging on a solid target, can become trapped in bound states 

in the target atoms [A.SZ]. Because the Bohr radius of a particle in a 

Coulomb potential scales as the inverse of the mass of the particle, the 

radii of the muon orbits are l/207 times the radii of the corresponding 

electron orbits. Thus the muon and the nucleus form a small high-Z hydrogen-

like system inside the atomic electron cloud. Observation of the transition 

x rays of the muon yields the energy level spacings of the system. The 

lowest levels of the muon, which have radii comparable to the radius of the 

nucleus, are sensitive to properties of the nucleus such as charge distribution 

and polarization effects [A.52]. We are here concerned instead with higher 

circular orbits of the muon, such as the 4f
712 

and Sg
912 

states in lead 

atoms, which have the property 

nuclear radius « muon Bohr radius « electron Bohr rad.i us. 

For these states, the effect of the structure of the nucleus and of the 

bound atomic electrons is small. Hence precise. theoretical predict ions 

for the energy levels can be made and, in comparison with the experimental 

transHion energies, provide a means of testing the effects of QED. In 

particular, the effect of el.ectron vacuum polarization, which is large for 

muon levels, is tested to better than 1% with present-day experimental 

precision. 

Experimental determination of the 3d-+ 2p transition energy in muonic 

phosphorus by KOSLOV, FITCH, and RAINWATER [A.53] showed the effect of the 
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lowest order vacuum polarization. ~bre recently, with the use of lithium 

drifted germanium detectors to measure the x-ray energies, which are typically 

in the range 100-500 keY for the transitions considered here, experiments 

have become sufficiently accurate to be sensitive to higher order vacuum 

polarization effects [A.54-59]. The experiments of DIXIT et al [A.SS] and 

of WALTER et al [A.56] reported in 1971-2 showed a significant discrepancy 

with theory; however, more recent experiments of TAUSCHER et al [A.57], of 

DIXIT et al [A. 58], and of VUlLLEUMIER et al [A.59] reported in 1975-6 are 

in agreement with theory for the muonic transition energies. The accurate 

experiments, and particularly the apparent discrepancy with theory, led to a 

considerable amount of work on the theory of muonic energy levels. In the 

following discussion, we describe the present status of the theory, with 

attention focused on the well-studied transition Sg
912

-.4f
712 

in muonic 208Pb. 

Numerical values for the various contributions to the energy levels are 

collected in Table VI of Section A.2.6. 

The main contribution to the energy levels is the Dirac energy of a muon 

in a Coulomb potential. A small correction must be added to account for the 

finite charge radius of the nucleus. This can be calculated either by first 

order perturbation theory, or by numerical integration of the Dirac equation 

with a finite nuclear potential. The latter procedure is necessary for low 

n states where the finite size correction is large. For high n circular 

states, the correction is small and insensitive to the details of the nuclear 

charge distribution. For the Sg
912

- 4f
712 

transition in lead, the correction 

is -4 eV compared to the reduced mass Coulomb energy difference of 429,344 e\'. 

The other small non-QED corrections from electron screening, and nuclear 

polarization and motion are discussed in subsequent sections. 

The largest correction to the Dirac Coulomb energy levels is the effect 



of electron vacuum polarization which is discussed in the following section. 

In the remainder of this section, we make some general remarks about the 

magnitude of the radiative corrections in muonic atoms. 

If we restrict our attention to interactions of photons with electrons 

and muons, the QED corrections to the energy levels of a bound muon, to 

lowest order in a, are given by the Feynman diagrams ,in Fig. A.6. In that 

figure, the double lines represent electrons or muons in the static field 

of the nucleus. The diagrams (a), (b), and (c) represent the muon self-energy, 

the muon vacuum polarization, and the electron vacuum polarization, respectively. 

It is of interest to compare the QED corrections to muon levels to the 

corresponding corrections to electron levels. The lowest order diagrams for 

a bound electron are given by the diagrams in Fig. A.6 with the ~·s and e's 

interchanged. For a point nucleus, the electron diagrams corresponding to 

(a) and (b) give exactly the same corrections, relative to the electron 

Dirac energy, as(a) and (b) give, relative to the muon Dirac energy. On 

the other hand, diagram (c) gives the large vacuum polarization correction 

in muonic atoms, while its analog, with ~ and e interchanged, is negligible 

in electron atoms. 

The relatively greater effect of the electron vacuum polarization in 

muonic atoms is due to the short-range nature of the vacuum polarization 

potential. The leading (Uehling) term of the potential falls off exponen­

tially in distance from the nucleus with a characteristic length of ~e/2. 

Hence, the overlap of the vacuum polarization potential with the muon wave­

function, which has a radius of 0. 2'-e for the n = 5 state in lead, is much 

greater than the overlap of the potential with the electron wavefunction, 

which has a radius of about 550 Xe in the n = 2 state of hydrogen. 

The difference in scale between muon and electron atoms has another 
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consequence. The short-ranged muon wavefunction is sensitive to the short­

range behavior of the electron vacuum polarization potential, while the 

long-range electron wavefunction is sensitive only to the zero and first 

radial moments of the potential. Hence 1;hile the hydrogen Lamb shift, 

with presently measured precision [A. 60,61], tests the vacuum polarization 

to 0.1%, it is sensitive to a different aspect of the vacuum polarization 

than the muonic atom tests. 

A further difference between muon and electron atoms is that the high-

Z muonic atom measurements test higher order than Uehling potential contribu­

tions to the vacuum polarization,which are negligible in the hydrogen Lamb 

shift [A.l2]. 

A.2.2 Vacuum Polarization 

The electron vacuum polarization of lowest order in a and all orders in 

Za is represented by the .Feynman diagram. in Fig. A.6(c). For a stationary 

nuclear field corresponding to the charge density pN(;), the effect of the 

vacuum polarization is equivalent to the interaction of the bound muon with 

an induced charge distribution given by (-e is the charge of the electron) 

[A.l2 ,62] 

-> 
Pyp(r) 

e f -. -., I = ~ dzTrG(r,r ,z) _., _. 
1Tl C r -> r 

. (A. 20) 

(see also Eq. (A.l8)), \;here G is the Green's function for the external 

"field Dirac equation discussed in Section A.l.5. (The vacuum jO> is the state 



0 

D 

corresponding to no electrons or positrons in the external potential; 

e -
j

11 
(x) = - Z [lj!(x), y

11
1j!(x)] has a vanishing vacuum expectation value only in 

the limit Za-. 0.) The three expressions for the charge density in (A.20) 

_are fonnal expressions and require regularization and charge renonnalization 

in order to be well defined. A practical method of regularization i_s the 

Pauli-Villars scheme with two auxiliary masses [A.63]. The sum-over-states 

formula for the charge density in Eq. (A.20) is related to the last expression 

in (A.20) by choosing a suitable contour of integration C and evaluating 

the residue of the pole in the spectral representation, Eq. (A.l3), of G [A.!2J. 

In order.to ·facilitate the evaluation of the charge density (A.20), 

it is convenient to expand jt in powers of the external field. The Feynman 

diagrams corresponding to this expansion are shown in Fig. A.7. The x's 

in Fig. ·A.7 represent interaction with the external nuclear field. Only 

odd· powers of the externa~ field contribute due to Furry's theorem [A.l3]. 

'The.~xpansion in powers of the external field in Fig. A.7 corresponds to the 

Neumann ser.ies generated by _iteration of the integral equation for the 

Green's function 

0"'+ f3 .. 0"' .... ++ G (r,r' ,z) - d r" G (r,r",z)V(r")G(r",r' ,z) (A.21) 

In (A.2l), G0 (~.~',z) is the Green's function in the absence of an external 

potential and V(~) is the potential energy of the electron in the nuclear 

·field. The term in the exp~sion of G(~;~',z) linear in V(~), when substi­

tuted for Gin (A.20), gives, after charge renonnalization, the charge density 

associated with the Uehling potential [A.l5] 
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In (A.22), the charge dist"':ibution of the nucleus nonnalized such that 

jdJ;pN(;) = Ze, and the subscripts on V refer to the order of the vacuum 

n )m . .o polarization, i.e., Vnm = O(a (Za ). The effect of vil on a-muon energy 

level is accurately taken into account by adding vir to the external nuclear 

potential V in the Dirac equation 

0 (A. 23) 

and solving for the bound state energy En numerically. This procedure is 

equivalent to summing over the higher order reducible contributions of the 

Uehling potential; Fig. A.8 shows the first'three' tenns in this sun\. 

For the high- .t states under consideration here, the Uehling'contrib~tion 

is well approximated by the point charge value, v11 , obtained by making the 
~ 3 ~ . 

replacement pN(r)-. Ze6 (r) in the right-hand side of (A.22), evaluated in 

first order perturbation theory with Dirac wavefunctions for a:point nucleus. 

Only the short distance behavior of the electron vacuum polarization is 

important (mer"' 0.2 for r"' radius of then= 5 state in lead) [A.64-66]: 

aZa j 1_ [Rn(m r) + y] 
11 l 3r e 

+ .... I (A. 24) 

(y = 0.57721 ... is Euler's constant.) There are two non-negligible correc­

tions to V 
11

. 'The first is the correction due to the finite extent of the 
<II<' 

nucleus. The small r fonn of the correction is [A. 65] 

2 <r > 

(A. 25) 

where the notation < > denotes an average over the nuclear charge density. 



The other correction is the second order perturbation correction of the 

main term corresponding to the diagr<Ull in l'ig. A.H[il) 

The energy shifts for the 5g912 - 4f7 12 transition arising from these 

corrections are listed separately in !able VI [A.65]. 

(A. 26) 

We next consider the vacuum polarization of order a and third and 

higher order in Za, corresponding to diagrams with three or more x's in the 

series in Fig. A.7. The point nucleus approximation is considered first. 

WICHMANN and KROLL [A.l2] obtained an explicit expression for the Laplace 

transform of r 2 times the vacuum polarization charge density of order a(Za)3. 

BLOMQVIST [A.65] has used their result to obta!n the vacuum polarization 

potential V 13 (r) exactly in coordinate space and found the small r series 

expansion which is sufficient to evaluate the muon energy shifts 

v13 (r) a(~) 3 {(-% ~;(3) + t 11 2 - ~)} + (2111;(3) -} 11 3)me 

+ (-61;(3) + 116 11• +.!. 112)m2r + 211 in3r2[~n(m r) + y] 
6 e 9 e e 

(
2 4 

+ - 111:(3) + - 11~n2 3 9 
31 ) 3 2 } 2'f 11 mer + ... (A. 27) 

This term contributes -43 eV to the 5g912 - 4f712 transition energy in muonic 

lead. VOGEL [A.67) has tabulated numerical values of V (r) as a function of r 
.. " 13 

based on BLOMQVIST's exact expression. Calculations by BELL [A.68) and by 

SUNDARESAN and WATSON [A.69], based on interpolation of the asymptotic forms of 

the Laplace transform of the third order vacuum polarization charge density 

given by WICHMANN and KROLL, are in agreement with the values obtained by 

BLOMQVIST. An earlier calculation by FRICKE [A.70) had the wrong sign for 
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this term, which accoW1ted for part of the apparent original discrepancy 

between theory and experiment (see Section A.Z.l). 

The vacuum polarization of order a(Za) 5 ~d higher can be accounted for 

by considering the sniall distance behavior of the induced charge density. 

ror a point nuclear charge density, the. effect of the vacuum polarization 

of third and higher order is to produce a finite change oQ in the magnitude 

of the charge at the origin and a finite distribution of charge with a mean 

radius of approximately 0.86~e [A.l2]. The integral over all space of the 

induced charge density of order (Z~) 3 and higher must, of course, vanish: 

The induced point charge, which gives rise to a leading term proportional 

to r-l in the vacuum polarization potential, has the dominant effect on the 

muon energy. The magnitude of the induced charge was calculated by WICHMANN 

and KROLL [A.l2] to all orders (;;. 3) in Za. Their result has been confirmed 

by an independent method by BROWN, CAHN, and McLERRAN [A. 71,49]. WICHMANN 

and KROLL obtained this result as a special case in a general study of the· 

vacuum polarization, while BROWN, CAHN, and McLERRAN were able to simplify 

the calculation by setting me= 0 from the beginning. That this procedure 

produces 'the leading r-l term in third order is seen by inspection of v13 (r) 

in Eq. (A.27). The lowest order terms in oQ are given by 

aQ 3e11 1(2~;(3) + ~- 11;] (Za)3- [ 21;(5) + 751 1;(3) - 4J;o'] (Za)5 + ... 1 
(A. 28) 

The numerical value of the charge to all orders in Za is displayed by writing 

6Q -e(0.020940(Za) 3 
+ 0.00712l(Za) 5 F (Za)] 

0 
(A.29) 

where F
0

(Za) appears in Fig. A.9. The leading terms of the fifth and seventh 

order vacuum polarization potential are [A.l2 ,65) 



n(Za)
5 

[ ~ 1;(5) 
liT 3 
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Q 1;(4) 
4 

n(Zn) 
7 

[- ~ 1;(7) + 445 1;(6) 
llr 3 24 

286 1;(5) _41 1;(2)1;(4) 
21 

The fifth and seventh order leading tenns contribute - 7 e\' to the Sg912 -

4f712 energy separation in lead. 

We briefly examine the contribution of tenns of higher_ order in m r e 

to the fifth and higher order (in Zn) vacuum polarization. The order a 

potential (excluding the r-l term of the Uehling part) is given by [A.SOJ 

= A(Zn) !_ + B(Za)m + C(Zn)m (m r) 2.\ + D(Zn)m.e2r + ... r e e e (A.3l) 

where.\= (1- (Zn) 2)\ and the tenns omitted from (A.31) are higher order in 
. -1 . 

mer.· The· term A(Zn)r corresponds to the induced point charge discussed 

earlier." B(Zn) has not been calculated in fifth or higher order in Zn, 

. but gives the same .contribution for all states and therefore does not effect 

the transition energies .. The coefficients C(Zn) and D(Zn) have been calcu­

lated numerically to all orders in Zn by BROWN, CAHN, and McLERRAN [A.SO]. 

Their results show that the part of order fifth and higher in (Zn) in these 

terms (the third order parts are included in (A.27)) gives a small (of order 

1 eV) contribution to the transition energy. A similar conclusion was 

reached by BELL [A.68]. 

A·correction to the v~cuum polarization of third and higher order must 

be made to account for the finite size of the nucleus. ARAFUNE ·[A.43] and 

BROWN, CAHN, and McLERRAN [A.44] have independently obtained approximate 

analytic expressions for the potential corresponding to the finite.size 

correction to the vacuum polarization. ARAFUNE's expression [A.43] 
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ov
11

+(r) "' _ n(Zn) ( 1 _ (~ _ 3 _ ~) (Zn)2 _ 865 (Zn)2.!.] (.!.)2.\ 
l511r 3 13860 2016 r r 

(A.32) 
for r > R 

where .\ = (1- (Zn) 2J\ is based on the following approximations: Tenns of 

relative order (mer) 2 are neglected, terms of order R4;r5 are neglected, 

higher order tenns .in (Zn) 2 are neglected except in the exponent, and the 

nucleus is approximated by a uniformly charged sphere of radius R. The 

effect of the potential inside the radius R is negligible for high-f. states. 

In order to isolate the contribution of (A.32) to the third and higher order 

vacuum polarization, it is necessary to subtract from (A.32) .the term 

_ a (Za) (.!.)
2 

l511r r (A. 33) 

which corresponds to the Uehling potential portion and appears. 

as the first term on the right-hand ,side of (A. 25), (R2 = ~ <r2>). 

BROWN, CAHN, and McLERRAN [A.44,45] have done a similar calculation. 

Their expression allows for an arbitrary nuclear charge distribution and is 

valid to all orders in Zn. The results of these.calculations are in excellent 

agreement and yield a correction of 5 eV for the 5g
912

- 4f7/Z transition in 

lead. 

GYULASSY [A.46,48] has made a numerical study of the effect,of finite 

nuclear size on the higher order vacuum p~larizatio?. He was able to 

calculate the finite size effect with or.without th~ approximations of 

ARAFUNE and of BROWN, CAHN, and McLERRAN. The finding was that the approx­

imations introduce a small error of l eV, and the finite size correction is 

6 eV compared to the 5 eV quoted above. GYULAsSY also ~xamined the extent 

to which the finite size corrections to the.third order vacuum pcilarlzation 

are sensitive·to the shape of the nuclear charge distribution. The correc-
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tions were found to be essentially the same for a uniform spherical distri-

bution and a shell of charge, provided the distributions have the same 

r.m.s. radius. 

RINKER and WILETS have evaluated the higher order vacuum polarization 

correction by a direct'humerical evaluation of the sum over eigenfunctions 

in (A. 20). Their early work [A. 72], which showed a 16 ± 2 eV finite size 

correction to the higher order vacuum polarization,compared to 6 eV discussed 

above, is incorrect due to numerical difficulties [A.73]. More recently, 

with improved numerical methods, they have evaluated the higher order vacuum 

polarization correction for many states and various values of Z in· the range 

26-114 [A.73]. The results in lead are consistent with the work described 

above. 

The 'fou~th order vacuum polarization, of order a 2 , corresponding to the 

Feynman.' diagranis in Fig. A.lO, has been calculated and expressed in momentum 

space' iri terms of an integral-representation by KALLEN and SABRY '[A.74]. 

The configuration space potential v21 (r) derived from the Kallen-Sabry 

representation was obtained by'BLOMQVIST [A.65]. The complete expression 

for v21 (t) is somewhat complicated, so it is convenient in calculations to 

employ the first terms in the power series expansion [A.65] 

a
2
Za { 4 2 13 7 -_ 9r [m(mer) + y] - 54r [~n(mer) + y] 

(
I; (3). + 11

2 
+ ~) _!_ + ( 13 2 + 32 ~ 2 766 ) 

27 648 r 9 11 9 11 n - 135 11 me 

+ (A. 34) 

The power series represents v21 (r) sufficiently well for values of r important 

for muonic orbits considered here to give accurate values for the energy shifts. 
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A numerical evaluation v21 (r) has been made by VOGEL [A.67], who produced 

a table of point by point values. FULLERTON and RINKER [A.75] give a numerical 

approximation-scheme to generate the second order potential for a finite sized 

nucleus based on VOGEL's tabulated values. Earlier estimates of this correc-

tion were made by FRICKE [A. 70] and by SUNDARESAN and I~ATSON [A. 69], however, 

these calculations erroneously counted the diagram. in _Fig. A.lO(a) twice. 

A.2.3 Additional Radiative- Corrections 

According to the discussion of BARREIT, BRODSKY, ERICKSON, ·and GOLOOABER 

[A.64], it is expected that the self-energy correction to muon energy levels 

(Fig. A.6(a)] is reasonably well approximated by the' terms of lowest order 

in Za [A.26,76]. 

liE - 4a (Za)4 [~nK (n ~) + l 1 ]m 
SE = 311 n3 o ' 8 K(2~ + 1) . _\l 

(A.35) 

where K
0 

is the Bethe average excitation energy, and the second ·term is due 

to the anomalous magnetic moment of the muon. For high-~ states·, tile point 

nucleus values of KLARSFELD- and MAQUET [A. 77] are used for K
0

• This 

- correction contributes -7 eV for the Sg
912

- 4f7 12 
transition in lead·. 

A QED correction of order a 2 which has been the subject of recent 

interest is' shown in Fig. A.ll. In that figure, diagrams corresponding to 

the expansion of the electron loop in powers of the external potential are 

also shown. The first term in the expansion is the first vacuum polarization 

correction to the photon propagator. The next three· terms correspond to · 

a vacuum polarization correction of order a 2 (Za) 2 discussed in the following 

paragraph. 

. :··: _,. 
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It was suggested by OiEN [A. 78] that the contribution of this diagram 

was larger,. relative· to similar diagrams, than its nomiml order would 

indicate. He estimated a value of -35 eV for the Sg-4f energy difference 

in lead. At the same'time, WILETS arid RINKER [A. 79, i3] estimated the effect 

and found that the·4f energy is shifted by an amount in the ~ange l-3 eV, 

in conflict with the result of mEN. Subsequently, FUJIMOTO [A.80] estimated 

the a:i (~) 2 correctimi. and found that the energy shift for the Sg
912 

- 4f
712 

transition in lead is approximately 0.8 ev which is consistent with the 

value of WILETS and RINKER. ' FUJimi"O simplified the calculation considerably 

by treating the muon as a static point charge and .setting m = 0 in the virtual 
e 

' eleet.ron loop.' The latter approximation takes advantage of the fact· that 

' ' the distance 'between. the muon and the nucleus is much less than the electron 

·canq}ton w~veiength. The ·result is then a· vacuum polarization modification 

of the. short range 'interaction potential'between two fixed point charges 

cSV(r) -C a•(i:x)2 
, . r 

where C = 0. 028(1). · BORIE [A. 81) has recently reported an approximate 

value of r eit for 'the correction. 

(A. 36) 

Additional corrections to the mi.ll)ilic energy'levels have been examined 

and fourid .to be small. SUNDARESAN and WATSON [A.82) have est.iniated the 

contributions of hadronic intermediate states in the photon propagator, 

using a method due to ADLER [A.83). BORIE has calculated various higher 

order QED contributions to the muonic atom energy levels, besides the a 2 (Za) 2 

term just considered, and found them to be negligible compared to the 

experimental errors [A.84). 
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A.2.4 Nuclear Effects 

Besides the effect of the·finite nuclear charge radius which has already 

been discussed, the effects of nuclear motion artd nuclear polarizability 

must be considered. 

The main effect of nuclear motion is taken into account by replacing 

the muon-·mass by th~ reduced mass of the muon-nucleus system in the Dirac 

expression for the binding energy. This reduced mass correction. is exact 

only in the non-relativistic limit. The leading relativistic correction for 

nuclear motion is given by [A.26,85] 

cSE 
m~(Za) 4 

8Mn4 
(A. 37) 

.,''j 

where. M is the nuclear mass. The reduced mass correction to the binding 

energy and relativistic correction contribute -234 eV and 3 eV respectively 

to the Sg912 - 4£
712 

transition in lead. The main effects of the nuclear 

motion are correctly taken into account by using reduced mass wavefunctions 

in.evaluating the QED corrections, most importantly in the Uehling potential 

correction. 

Up to this point, the nucleus has been treate_d as a charged object 

with no structure. There is a small correction to the mUon energy levels 

due to the fact that the muon can cause virtual excitations of the nucleus. 

This efj'ect has been considered by COLE [A.86) and by ERICSON and HUFNER [A.87) 
;, 

for the case of high-R. muon states; The dominant _long-.range effect is the 

static dipole polarizabili_ty of the nucleus. It can be roughly described 

as a separation of the center of charge from the center of mass of the nucleus 

induced by the electric field of. the muon. The approximation that the 
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displacement follows the motion of the muon is expected to be good, because 

the nuclear frequencies are much higher than the relevant muon atomic frequen­

cies (5-20 MeV compared. to a few hundred kcV). The polarization in this 

approximation corresponds to an effective potential vE1(r) given by [A.87] 

(A. 38) 

where 'i:l is the static El polarizability of the nucleus: The value of "El 

can be obtained from the measured total y-absorption cross section o (w) El 

for,El radiation in the long wavelength limit by means of the sum rule 

(A. 39) 

The energy shifts have been calculated by BL()QVIST [A.65] using the experi­

ment~! photonuclear cross section of HARVEY et al (A.SS] for 208Pb. The 

result is 4 eV for the Sg912 - 4f712 energy difference, in agre~t with 

ffiLE's value [A.86]. 

· A. 2. 5 Electron Screening 

In the preceding discussion, the effect of the atomic electrons has 

been completely ignored. For the levels of the·muonic atom under considera­

tion, it is sufficiently accurate, to'within a few eV, to consider the energy 

shift of a muon in the potential due to the charge distribution of the 

electron density of an atom with nuclear charge Z-1. 

The screening potential is well approximated by a function of the form 

V ( ) . v c K -ar S r = o - r e (A.40) 
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The constant V
0 

is relatively large and is approximately equal to the Thomas­

Fermi expression V5 (0) = 0.049 z413 keV. Only the second term in (A.40) 

contributes to the energy differences. VOGEL has calculated and tabulated 

llartree-Fock-Slater electron potentials and values for C, K, and a for which 

(A. 40) approximates these potentials to better than 5% for the range of r 

relevant to muonic orbits [A.67]. VOGEL finds that screening contributes 

-83 eV to the Sg9/ 2 - 4f712 transition in lead [A.89]. calculations have 

also been done by FRICKE (A.90] and by DIXIT (quoted in [A.ss;91]) and are 

in agreement with VOGEL's·results and earlier Calculations in Re~. [A.64] to 

within a few eV. The approximation, employed in the. pr~eding Falculations, 

of using the Slater approximation to the exchange potential has been checked 

by MANN and RINKER [A.92] and is found to produce a small .. (l-2 eV) error. 
,. . . ' ' 

RAFELSKI, Mi.iLLER, SOFF, and GJlEINER [A.93] discuss the question of how to 

deal with screening and vacuum _polarization 'corr:ections .in. a consistent way. 

A source of uncertai~ty_in the screening c~lculations-is the lack of 

knowledge of the extent to which the muonic atom is ionized. ·During the 

early stages· after the muon is captured,_ it cascades in the atom partly by 

radiative transitions and partly by Auger transitions·. The screening 

corrections depend on how many electrons have been ejected by Aug~r 

transitions of the muon. This problem has been_ considered by VOGEL who 

finds that the effect of ionization is partly compensated by refilling of 

the empty levels, and that .the imcertainty in the muon levels is only l-3 

eV [A.94]. 
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A. 2. 6 Surrmary and Comparison. with Experiment 

Numerical values for the corrections described in the preceding sections 

are listed in detail for muonic lead in Tabfe VI. In Table VII theoretical 

contributions to the transition energies for measured transitions with Z in 

the range 56-82 are listed. The sources of the values are as follows. The 

point nucleus energy differences are the Dirac values for the muon-nucleus 

reduced mass ~M/(~+M). The value in eV'is based on the recent determination 

of the ratio m /m = 206.76927(17) deduced from measurement of the muonium 
,· . ll e 

hY:perfine;int~rval by CASPERS(}l et al [A.95) together with. R .. h = 13.605804(36) 

eV recomme~d(:!d by COOEN and TAYLOR [A. 96). (There is a small change of about 

Z;eV'in the results for the muon energy levels if the value of m/mp 

d~teimined by CROWE et al. [A. 97) is used',) Numerical values for the contri­

butions in Table VII are taken from Table 2 of the review by WAT~.and 

SllNDARESAN [A. 98) with the following exceptions. The finite size corr~ction 

to the higher order vacuum polarization is evaluated by means of ARAFUNE' s 

fornula {with the Uehling term subtracted) in Eq. (A.32) and is included 

in the colllmil labeled a(Za)3
+. The a 2 (Za) 2 term is based on the results 

in References. A.79-81. The self-energy term includes an approximate 

error estimate of 30% to account for higher order terms in Za and finite 

nuclear size effects [A.64]. 

Table VIII lists the most recent measurements of muonic x rays for the 

transitions being considered. The 1971-2 experiments show substantial 

.disagreement with theory whereas the 1975-6 experiments are generally in 

good agreement with theory, as is easily seen in Fig. A.l2. The apparent 

agreement of the latest results with theory provides an impressive confirmation 

of stron11'field vacuum polarization·effects in QED. 
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TABLE n. SU!Iunary of contributions to energy levels in muonic lead 208rb (eV). 

Contribution 

Static external potential 

Dirac Coulomb energy3 
Finite nuclear size 

Vacuum polarization of order a 

Coulomb Uehling potentiala 
Finite nuclear size corr.to Uehling 
Second order perturbation of Uehling 
Third order in Za Coulomb 
Fifth order in Za (leading term) 
Seventh order in Za (leading term) 
Finite size corr. to higher order in Za 

Vacuum polarization of order a2 

Coulomb Kallen-Sabry potential 

Self Energy 

Bethe term 
Magnetic moment 

Other radiative corrections 

Virtual Delbrlick.diagram 

Nuclear motion 

Relativistic reduced mass 

Nuclear Polarization 

Dipole term 

Atomic. electrons 
0 0 b Screen1ng correct1on 

TafAL 

TRANSITION ENERGY ~ 431,332 eV 

Order 

a(Za) 

a(Za)3 
a(Za)5 
a(Za)7 

a 2 [Za) 

a(Za) 4 
a(Za) 4 

a 2 (Za)2 

(Za)4 ll)J/~1 

a(Za) 4aEl. 

aincludes reduced mass correction 

bConstant term v0 is not included. 

m ~ ~1m I (m +~I) . 
\l \l \l 

4f7/2 5&9/2 

-1188314 -758970 
4 0 

-3652 -1562 
-12 -3 
-9 -3 
93 :so 
16 10 
3 .2 

-8 '-3 

, .... 

-25 -il 
... -~ 

.. .< ., 
1 ~::- .: 0 
9 .. 3'· 

~. 
I,. 

-1 ~0 

-4 ~1 

-4 .Q 

-89 -172 

-1191992 -760660 



Transition 

56Ba 

4f
512

-3d
312 

4f7/2-3d5/2 

sg7 ;z-4f S/2 
5&9/2- 4£7 /2 

soH& 
5&7 12-4£5/2 

5g9/2-4f7 /2 

20~1'1 
81 

5g7/2-4f5/2 

Sg9/2- 4f7 /2 

82Pb 

5&7/2- 4f5/2 
5&9/2- 4f7/2· 

56Ba 

4f 5/2- 3d~/2 
4f7/2-3d5/2. 

5g7 /2- 4f5/2 

5g9/2-4f7/2 

soHg 

5g7 /2-4f 5/2 

Sg9/2-4f7/2 

203Tl 
81 

sg712-4f5/2 

Sg9/2-4f7/2 

82Pb 

Sg7/2-4f5/2 

5g9/~-4f7/2 

TABLE VII. Theoretical contributions 'to muonic atom energy separations, in eV. 

Pt.Nucl. Finite VacU\.Vll Polarization Self Rel. Nuc. Elec. Total 
En. 4 Rec. Pol. Scr. Size a(Za) a(Za) :5+ a2 (Za) az (Za) 2 a(Za) 

439,069±1 -146±8 2436 -21±2 17 1 9±3 3 7 -18±1 

431,654±1 -55±_5 2328 -20±2 16 1 -8±2 3 7 -18±1 

200,544±1 0 761 -9±1 5 0 2±1 1 0 -31±2 

199,194±1 0 747 -9±1 5 0 -2±1 1 0 -31±2 

414,182±1 -8±1 2047 -42±2. 14 1 7±2 2 3 -78±4 

408,465±1 -2 1972 -40±2 14 1 -6±2 2 3 -79±4 

424,850±1 -9±1 2117 -44±2" 15 1 7~2 2 4 -79z4 

418,837±1 -3 2039 -43±2 14 1 -7±2 2 4 -81±4 

435,666±1 -10±1 2189 -46±2 15 1 7±2 2 4 -81±4 

429,344±1 -4 21.06 -45±2 . 15. 1 -7±2 2 4 -83±4 

TABLE VII I. Recent measurements of muonic x rays, in eV. 

BACKENSTOSS 
et al. 1970 

437 .~06±40 

431,410±40 

DIXIT 
et al. 1971· 

441,299±21 

433,829±19. 

201,260±16 

199,902±15 

43.7 ,687±20 

431,28SH7 

WALTER 
et a1. 1972 

416,087±23 

410,284±24 

426,828±23 

·420,_717±23 

TAUSOIER 
et al. 1975a 

441 ,366±13 

433,916±12 

437;744±16 

43~;353±14 

DIXIT 
et al. 1975b 

441,371±12 

. 433,910±12 

201,282± 9 

199,915± 9 

43.7. 762±13 

431 ;341:'.11 

441,357±9 

433, 908±6 

201, 273± 3 

199,905±3 

416,128!5 

410,330±5 

426,864±5 

420,763±5 

437,747±5 

431,333± s 

\lUI LLEUf\11 FR 
et al. 1976b 

416,100±28 

410,292±28 

426 ,85l:t29 

420. 74l:t29 

3rhe new 198Au (412 keV) st~ard of DESLATTES. et ._a1 [A:99j, would m'~rease· these. valu~s by about 10 eV. 

bBased on the new Au standard. 

.·, --r ' 
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A.2.7 Muonic Helium 

Recently, the separation of the 2P 
312 

and ::s112 energy levels in nruonic 

helium (ll"He) + ..-as measured b)' BJ:RTIN et al [A.lOO]. In that experiment, 

muons were stopped in helium and· in some cases formed C11"He)+ in the metastable 

(T ; 2 11sec) 25 state. .; Transitions to the 2P312 state were induced by a 

tunable infrared pulsed dye laser, and monitored by observation of the 

ZP-15 8. 2 keY x ray. A fit to the resonance curve yielded a line center 

corresponding to the transition energy 

liE(exp) 1527.4(9) meV (A.41) 

The theory of the muonic helium system provides an instructive contrast 

to the heavy.muonic atoms. The relative importance of the various corrections 

is:quite different in the two cases. For example, in muonic lead, the 

electron vacuum polarization of order a(Za) 3 plays an important role, while 

it is n~gligible in muonic helium. On the other hand, the effect of finite 

nuclear size, which is a small correction to high-£ levels in muonic lead, 

is the major source of uncert~inty in the theoretical value of the energy 

separation 2P312 - 25112 in muonic helium. In the following, we briefly 

summarize the contributions to the theoretical value of the 2P312 - 251; 2 
splitting in (ll"He)+. The mnnerical values are collected in Table IX. 

The fine structure is qualitatively different from the.fine structure 

·a one-electron atom; the vacuum polarization is the dominant effect in 

determining the muonic level spacings. The 25112 level is lowered 1.7 eV by 

vacuum polarization compared to the 5onnnerfeld fine structure splitting of 

0.1 eV. The finite nuclear s'ize correction is the second largest effect and 

raises the 25112 level by 0.3 eV. 

--l2-

The starting point for the theoretical contributions is the point 

nuc.lcus fine structure formula 

1 4 mil 5 2 
32 (Za) 1 + m h! [l + 8 (Za) + · · .] 

\l 
(A. 42) 

where M is the nuclear mass. This nrust be corrected for the finite size 

of the nucleus. The nuclear charge radius is only known approximately from 

electron scattering experiments, so it js convenient to parameterize the size 

contribution to the fine structure in terms of the r.m.s. nuclear radius 

[A.lOl] 

ll~s ; -103,1 <r 2 > me\' - fm- 2 
(A.43) 

The value of the sum of the above corrections is in satisfactory numerical 

agreement with the more recent work of RINKER (A.lOZ]. 

The largest radiative correction is the electron vacuum polarization 

of order a(Za). The value has been calculated by RINKER (A.lOZ] who numerically 

solves the Dirac equation with a finite-nucleus vacuum polarization potential 

included (see Section A.2.2). The. result appears in Table IX. The order 

a 2 (Za) vacuum polarization was calculated by CAMPANI [A.lQ3] ,. by BORIE 

[A.lOl], and by RINKER [A.l02]; all of the results are in accord. 

The point nucleus value for the self-energy and muon vacuum polarization 

is given by [A.7] 

{ 
1 [19 "2 K (2 ,0)] ------.3 30 + w(Za) + £n(l +m /M) - £n _9___(2 l) 

(1 + m /M) ll Ko • 
ll 

i6 (1 + m/~1)-- + 3n~a 
384 

- 2 £n2 + .... l ?' " (427 . 1 ) . :· (A.44) 

TI1e lowest order term maY be partially corrected for finite nuclear size 



effects by replacing the wavefunction at the origin /~(U)/ 2 by the expectation 

value of the nuclear charge density <pN(;)>, as has been done by RINKER 

[A.l02]. An evaluation of the finite-nucleus average excitation energy K
0 

would be necessary for a complete evaluation of the effect of finite nuclear 

size. 

A further small correction arises from the effect of the finite nuclear 

size on the relativistic nuclear .recoil terms .. RINKER [A.l02] estimates a 

value of 0.3 meY for this correction, using the prescription of FRIAR and 

NEGLE [A.l04] for finite nuclei. This correction is nearly cancelled by the 

Salpeter recoil term from the non-instantaneous transverse photon exchange 

of order (Za)
5 m~/M. 

An ~rtant effect is ~uclear polarization,' which has been the subject 

of some controversy. The simple approximation used for high·t states (see 

Section A. 2. 4) is not accurate for low-R. states in muonic helium.' BERNABEIJ 

and JARLSKOG.[A.lOS) calculated a value of 3.1 meV for the nuclear polariz-

ability contribution using photoabsorption cross section measurements as 

input data. On the other hand, HENLEY, KREJS and WI LETS [A.l06] obtained 

a value of 7.0 meV based on a harmonic oscillator model for the nucleus. 

This value agrees with an earlier result of JOACIY\IN [A.l07]. However, in a 

subsequent analysis of the discrepancy, BERNABEu and JARLSKOG [A.l08] point 

out that the harmonic oscillator model predicts a value for the electric 

polarizability of the nucleus ~l which is in substantial disagreement with 

the value deduced from existing measurements of the photoabsorption cross 

section (see Eq. (A.39)). A subsequent calculation by RINKER [A.l02] confirms 

the conclusions of BERNABEU and .JARLSKOG and also yields a value of 3.1 meV 

for the nu~lear polarizability contribution. 

The total theoretical value for the 2P
312

- 2s112 energy separation is 
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given by (see Table IX) 

t.E(th) 18-15.8 ± 1.2 meV - 103.1 <r 2
> fm- 2 - meV (A.45) 

Using a weighted average of the results of electron scattering data for the 

4He charge radius (<r 2 >~ = 1.650±0.025 fm) [A.lOO) the theoretical energy 

separation is 

t.E(th) 1535(9) meV (A. 46) 

in agreement with the experimental result. On the other hand, assuming that 

the theory is· correct, one can equate (A. 45)· and (AAI) to obtain· a measured 

value for the charge radius 

1.673(4) fm (A. 47) 

TABLE IX. TI1eoret ical contributions to the fine structure 
in muonic helium (in meV). 

Source 

Fine structure· 

Finite nuclear size 

Electron vacuum polarization 
Uehling potential 

Electron vacuum polarization 
Kallen-Sabry term 

Self energy and muon 
vacuum polarization 

Nuclear polarization 

TOTAL 

Lowest order 

(Za) 4 

(Za) 4 m2<r 2 > 
ll 

. a(Za) 

a'(Za) 

Value 

145.7 

-103.1 q· 2 >fm- 2 

1666.1 

11.6 

-10 0 7±1. 0 

3.1±0.6 

1815.8±1.2 
-103.1 <r'>fm- 2 
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A.2.8 Nonperturbative VacUum Polarization l·bdification 

and Possible Scalar Particles 

A possible deviation of QED from the ordinary. perturbation theory 

predictions might be through a nonperturbative modification of the vacuum 

polarization. The corresponding change in the vacuum polarization potential 

would be of the form 

oV(r) (A. 48) 

where op(t) is a nonperturbative change in the vacuum-polarization spectral 

ftm.ction. The change op(t) excludes .the ordinary electron and muon vacuum 

polarization contributions of order a and a 2 , but might be substantially 

larger than would normally be expected from perturbation theory terms of 

order a 3 and higher. 

Phenomenological analyses of such a deviation have been given by ADLER 

[A.83], ADLER, DASHEN, and TREIMAN [A.l09], and BARBIERI [A.llO] with particular 

emphasis on constraints on. such a deviation imposed by various comparisons 

of theory and experiment. ADLER finds, with the technical assumption that 

llp(t) increases monotonically with t, that if the vacuum polarization 

deviation is large enough to produce a change in the muonic atom transition 

energies of the magnitude of the difference between ordinary QED predictions 

for high-Z muonic atoms and the disagreeing 1971-2 experimental values, then 

(a) the theoretical value of the muon magnetic moment ano~ly a11 = ~(g11 - 2) 
• -9 

would be reduced by at least 96 x 10 , and (b) there would be a reduction 

of order 27 meV in the theoretical value of the 2P312 - 2s112 transition 

energy in muonic helium. Prediction (a) would introduce a 2cr difference 

between theory and experiment in the recent results for a
11 

[A.lll,ll2]: 
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1165895(27) X 10- 9 

1165918 (10) X lO- 9 

Prediction (b) appears to be incOmpatible with the results for muonic helium 

discussed in Section A.2.7. However, such modifications of vacuum polariza­

tion at a level - 3 times smaller have not been ruled out. 

A second proposed explanation for the 1971-2 discrepancy between muonic 

atom measurements and theory is the existence of a light weakly-coupled 

scalar boson $. Such particles are predicted by unified gauge theories of 

weak and electromagnetic interactions, but the mass is not determined. It 

was pointed out by JACKIW and WEINBERG [A.ll3] and by SUNDARESA'II and WATSON 

[A.69] that if the mass of the$ meson.were small enough, then'its effect 

on muonic atom energy levels could account for the 'discrepancy. The coupling 

produced by a $-exchange between a muon and a nucleus of mass number A is 

of the Yukawa form 

(A.49) 

where g - and g NN- are the $-muon and $-nucleon couplings respectively 
$1111 $ 

and M$ 'is the mass of the $. In gauge models, the $-electron coupling is 

expected to be of order (me/~)g$11~ so the effect of such a potential could 

be observable in muon experiments without affecting the electron ge- 2 or 

Lamb shift experiments [A. 83). 

WATSON and SUNDARESAN [A.98] found that the values g$ll~$NN/(411) = 

-8 x 10- 7 and M = 12 MeV would explain the early muonic atom discrepancy 
$ 

(the sign of the coupling is changed here according to ADLER [A.83)). 

ADLER [A.83) found a range of values for the coupling strength and $mass 

which explain the discrepancy. However, ADLER [A.83] and BARBJERI [A.llO] 
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have shown that such a particle with ~l<i> > l ~leV which could explain the 

discrepancy would also reduce the theoretical value for the muonic-helium 

fine structure liE (2P312 - 2Sl/ 2) by approximately 27 meV. RESNICK, SUNDARESAN, 

and WATSON [A.ll4] pointed out that the effect of a cp-meson could be observed 

in a 0+-0+ nuclear decay ;n wh1"ch the~ · "t d d b ~· ~ 15 em1 te an su sequently decays 

into an e+e- pair. A search for e+e· pairs in the decays of the 16o (6.05 
4• 

MeV) and He (20. 2 ~leV) 0+ levels to corresponding 0+ ground states was 

carried out by KOHLER, BECKER, and WATSON [A.llS] who concluded from the 

negative results that the mass of the cp could not be in the range 1. 030 - 18.2 

MeV. ADLER, DASHEN, and TREIMAN [A.l09] argue that. neutron-electron and 

electron-deuteron scattering data rules out the cp meson explanation for ~I 
<P 

in the range between 0 and 0.6 MeV. 

The most serious constraint, however, was derived by BARBIERI and ERICSON 

[A.ll6] who show that low energy neutron-nucleus scattering data yields a 

1· .t 2 -M- 4 /(4) < 3 4 .. ·ll -4 · 111\1 &cpNN <P 11 - . x 10 MeV . The Wemberg·Salam theory predicts 

g;illl/(411) = GFm~/(viz 211) = 1.3 x 10·8; hence for ~I<P = l MeV, for example, 

lg<PiliJ&pNN/(411) I ~ 7 x lO·lO which is orders of magnitude smaller than the 

value 1.4 x 10- 7 [A.83] required to expiain the muonic atom discrepancy. 

-48-

A. 3 QUAN11JN ELECTROD~IICS IN HFAVY- ION COLLISIONS AND 

SUPERCRITICAL FIELDS 

A. 3.1 Electrodynamics for Za > l 

One of the most fascinating topics in atomic physics and quantum electro· 

dynamics is the question of what happens physically to a bound electron when 

the strength of the Coulomb potential increases beyond Za = 1. This question 

involves properties of quantum electrodynamics which are presumably beyond 

the limits of validity of perturbation theory, so it is an area of funda­

mental interest. Although·a completely rigorous field-theoretic formulation 

of this strong field problem has not been given, it is easy to understand in 

a qualitative way what happens physically: As Za increases beyond a critical 

value, the discrete bound electron state becomes degenerate in energy with 

a three-particle continuum state (consisting of two bound electrons plus 

an outgoing positron wave) and a novel type of pair creation can occur 

[A.ll7,118]. Remarkably,as first suggested by GERSifi'EIN and ZELOOVICH 

[A.ll9], it may be possible that· such "autoionizing" positron production 

processes of strong field quantum electrodynamics can be studied experimentally 

in heavy-ion collisions. 

In addition to the spontanteous pair production phenomena, a number of 

other questions of fundamental interest also become relevant at high Za: 

a) What is the nature of vacuum polarization if a pair can be 

created without the requirement of additional energy? 

b) no·higher order radiative effects in a from vacuum polarization 

and self-energy corrections significantly modify the predicted 

high-Za phenomena? 
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c) Ho~>· should the vacuum be defined if the gap in energy between 

the lo\oiest bound state and the negative continutun states 

approaches zero? 

d) Can we test the non-linear aspects of QED, e.g. as contained 

in the Euler-Heisenberg Lagrangian [A.l20] and the \iichmaJUl­

Kroll calculation [A.l2]? (The conventional tests of high­

Z electrodynamics are discussed in Sections A.l and A.Z.) 

The high-Za domain is a.lso fascinating in that it provides a theoretical 

laboratory for studying the interplay of single-particle Dirac theory and 

quanttun field theory. A speculative possibility is that it may be of 

considerable interest as a model for strong binding and confinement of 

elementary particles in gauge theories. In the non-Abelian theories, such 

as "quantum chromodynamics" [A.l21]; the effective coupling a between ' 
' s 

quarks could well be beyond the critical value. In addition, theoretical 

work on the "psion" family .of particles (J/!J!, !J!', etc.) has focused on a 

fermion-antifermion potential and various gauge theory models in the strong 

coupling regime [A.l22]. 

Perhaps the most practical way to create the strong fields necessary 

to test the exotic predictions of high-Za electrodynamics is 'in the slow 

collision of two ions of high nuclear charge [A.ll9]. In addition to the 

spontaneous and induced pair phenomena, a ntunber of interesting atomic physics 

questions arise concerning, among other things, the atomic spectra and radiation 

of the effective high-Z 4uasi-mo1ecule momentarily present in the collisions. 

~ These topics are reviewed by 1·10KLER and FOLJ<1.1ANN [A.l23] in this voltune.· 

c:) The high magnetic field aspects are also of interest (see Section A.3.11). 

Studies of the high-Z exotic phenomena ideally require highly-stripped ions; 

the physics of vacancy formation (see Section A.3.6) and recent experimental 

-so-

progress is discussed by ~IT:YERHOF [A.l:.J I and references therein. 

Historically., the first discussions of the strong field problem were 

conccmed .:ith the solutions of the Dirac equation for an electron in a 

Coulomb field, 

[~·p+pm+V(r)]IJ! 
(A. 50) 

V(r) Z.a 
r 

This is, of course, a mathematical idealization for r ~ 0 .since the nucleus 

has finite mass and size. (In the case of p0sitroniwn, V is effectively 

modified at small r by vertex corrections and relativistic finite mass 

corrections implicit in the Bethe-Salpeter formalism. lve should emphasize 

that the analysis of positronitun for a> l remains an unsolved problem.) 

The spectrum of the Dirac-Coulomb equation is given by the Dirac-Sommerfeld 

fine-structure formula; the energy of the electron in the IS state is 

(A. 51) 

E = 0 appears to be the lower limit of the discrete spectrum as Za ~ 1, and 

E is imaginary for Za > 1. The Dirac Hamiltonian then is appare!ltly not 

self-adjoint. Actually, this result is just a mathematical problem associated 

with a pure Coulomb potential [A.lZS-127]. The solutions are well-defined · 

when nuclear finite size is introduced [A.ll7,128-l33]. 

Thus, we should consider the "realistic" potentials 

Za r>R 
r 

\'(r) (A.52) 

z: f(r/R) r<R 

where, for example, f(p) !;(3- p2) for the case of a uniform charge density. 
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The energy eigenvalue is .then founJ by matching the solutions for the lli rae 

wavefunction.at r = R. Early discussions of the bound state problem for 

Za > 1 appear in Refs. [A.l28-l30]; accurate extensive calculations were 

given after 1968 by PIEPER and GREINER [A.ll7], by REIN [.-\.131], and by 

POPOV [A.133]. The energy spectrum for t)1Jical nuclear radii, from Kef. 

[A.ll7], is shown in Fig. A.l3 .. In Fig. A.l4, POPOV's [A_.l32,133] result for 

the dependence of (Za)cr (the value of Za for which E -m) on the nuclear 

radius R is sho\oo'll. · It is clear that the "limit point" E = 0 of the point 

nucleus case is artificial: at sufficiently large Za, E .reaches -m, the 

upper limit of the negative energy continuum. The critical Z for an 

extended supetheavy nucleus with R = 1.2 A1/ 3 fm is z~ 170, 185, and 245 

for the 1s112 , 2P112 , and 2s112 levels, respectively [A-134] .. The possibility 

of simulating such a nuclear state with heavy-ion collisions is discussed 

in the next Section-

It should be noted that the physical situation is already quite 

unusual if E < 0, let alone when E reaches the negative continuum. 

If Z 2: 150 and E ~ 0, then the combined energy of the nucleus and one or 

two electrons bound in the 15 state is lower than the energy of the nucleus 

alone! Of.course, since charge is conserved, an isolated nucleus of charge 

Z ~ 150 cannot "spontaneously decay" to this lower energy state. 

However, the situation becomes more intriguing if Z can be increased 

beyond the critical value Zcr -170 where E "dives" below -m (see Fig. A.l3). 

In this case, the total energy of a state with a bound electron and an 

unbound slow positron (with Epositron - m) 

(A. 53) 

is less than that of the nucleus alone, and an isolated nucleus mar dccav 

-s:-

to th<>t state. In fact, for:.': 170, the nucle!JS will emit two positrons 

and fill both 15 levels. Clearly the physics is that of a multiparticle 

state and we must leave the confines of the single particle Dirac equation. 

However, in these first two sections we will ignore the higher order QED 

effects from electron self-energy corrections and vacuum polarization. 

(This can always be done mathematically - if we envision taking a small 

with Za fixed [A-135].) We return to the question of radiative corrections 

in Section A.3.8. In the remainder of this section we discuss a qualitative 

interpretation in terms of a new vacuUm state. Quantitative results are 

discussed in the following sections. 

The vacuum state, as originally interpreted by Dirac, is the. state 

with all negative energy eigenstates of the wave equation occupied .. Thus 

for fermions 

(A; 54) 

where a(+) (a(,)) are the anticommuting annihilation operators for the 

positive (negative) energy sl.ngle-particle states. The operators bt(+) =a(_) 

can be interpreted as the positron creation (= negative energy electron 

annihilation) operators. Normally, the En< 0 states are continuum eigen­

states. Then, up to a constant, the total energy is 

H (A. 55) 

(This is just normal ordering the Hamiltonian - i.e. placing the annihilation 

ope~ators to the right.} 

However, in the case of nuclear Coulomb potentials with Z > z0 - 150, 

at least one bound state solution of the Dirac equation has negative energy 



-53-

(see Fig. A.l3). Thus it is evident that as soon as the field is strong 

enough to yield boWld eigenstates of negative energY, one gains energy by 

filling these states. For example, imagine that there are tl<o separated 

nuclei with charge Z and -Z, the latter made of antinucleons! If the charge 

of both nuclei were increased adiabatically beyond Z = : 0 then there would be 

spontaneous decay of the nuclear system, to the state where two electrons in 

the lS state are bound to the nucleus and two positrons are. bound to the 

antinuc.leus. 

Notice, incidentally, that charge conjugation symmetry is always 

preserved and one does not have "spontaneous symmetry breaking" in the 

vacuum decay. This is contrary to the claim of Ref. [A.l34). 

It is thus clear that when Z>Z0 , the state where the negative energy­

bound states are filled represents the natural choice as reference state 

for excitations [A.l36,137). Accordingly for Z > z0 , we define the "new" 

Dirac vacuum [A.l36) 

(A. 56) 

i.e. 

(A.57) 

where we suppose the spin up and down IS states are the only bound states 

with negative energy. The charge of the new vacuum is Qnew = Qold- 2. 

t' . 
Notice that the operator b15(t): a1sPl creates a. hole w1th respect to the 

new vacuum, and thus effectively creates a boWld positron state with positive 

energy Epos = IE1sl· The old vacuum appears as an excited state of the system; 

namely, two positrons are bound with positive total energy if Z<Zcr-170. 

-S-1-

Howewr, if: is raised above Zcr' the positrons become WlbOWld. Thus 

from the standpoint of the new picture, the phc'nomc'non pf the instability 

of the (old) vacuum at Z = Zcr is reinterpreted by the statement that the 

positron ~<avefWlction becomes WlbOWld for this value of the charge (see 

Fig. A.lS). 

The boWld negative energy one·electron state may be ~<ritten 

t 
1°old> 

t t t 
lOne\/ alS ( t) - alS ( t) blS ( t) blS ( +) 

t 
blS p) blS ( t) 

t 
b15 P) 1°new> 

-his C t) I one,./ (A. 58) 

i.e. it is equivalent (with respect to the new vacuum) to a bound positron 

for Z < Zcr and a continuum. positron for Z > Zcr· The ·effective potential 

Ueff(r) irt the relativistic Coulomb problem (see Section A.3.4) behaves like 

-EZa/r as r-+ "'• i.e. : is attractiv~ for E > 0 and ·repulsive fo'r E < 0 (at 

sufficiently large distances from the nucleus)[A.l33,138]. Thus, as shown· 

by Zf:LOOVICH and POPOV [A.l38), the boWld positro~ mo~es. i~ a ~on~monotoni~ . 

effective potential which becomes shallower as Z increases (see Fig. A.'l6), 

until at z = Z it becomes unbound. A plot of the average radius for the . cr 
boWld states as a function of E as computed by POPOV [A:l33) is ~hewn in 

Fig. A.l7. The process involved in spontaneous positron production for 

Z > Zcr is then simply 

bisCt) 1°new> ~ bks(t) 1°new> (A. 59) 

Formally, from Eqs. (A.56·58), this is equivalent, .in terms· of the conventional 

vacuum, to 

(A.60) 
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corresponding to the degenera-:y of the discrete bound electron state "·ith 

a three-particle continuum. The old vacuum is, however, inaprropriate for 

the description of the system for Z > Zcr simply because it is unstable. 

The description of high-Z electrodynamics in terms of the new vacuum thus 

has the advantage of displaying the continuity of the physics at Z = Zcr· 

As we discuss in Section A.3.8, the vacuum polarization problem is also 

clarified. The formal aspects of positron autoionization are discussed in 

more detail in Ref. [A.l39]. 

A.3.2 Spontaneous Pair Production in Heavy-Ion Collisions 

It would be very interesting if the physical realization of an electron 

bound to a strong field with Z greater than Zcr-170.could be attained 

experimentally. It is not excluded that nuclei with z.-zcr will eventually 

be synthesized, but at present this possibility seems remote. Suggestions 

of positron production in overcritical nuclei were discussed in 1969 by 

PIEPER and GREINER [A.ll7] and byGERSIITEIN and. ZELOOVIOI[A.llS]. In the 

same year, GERSiffEIN and ZELOOVJCH [A.ll9] proposed that the critical .field 

condition could be attained in the·close approach of two heavy ions with 

z1 + z2 > Zcr· If the velocity of collision is assumed to be sufficient to 

approach the Coulomb barrier, then, at least in the adiabatic approximation 

(vion/velectron S 1/10), a ground state electron sees an effectively coalesced 

nuclear potential. This pioneering paper by C:LRSffl'l'lN ancl ZLUXW!Cfl and the 

early papers of POPOV [.-\.132,133,140] and GREINER et al [A.40,141-145] 

contain many of the fundamental phys~cal ideas which have been subsequently 

discussed in more quantitative fashion over the past seven years [A.U4, 

~39,141,144-154]. 

-Sh-

In collisions of heavy ions with se\·cral- me\/ nucleon kinct ic energv, 

the t}llical coli is ion time of the ions inside the K shell of an electron is 

19 -20 \- 10- . sec whereas the "orbiting" time of the electron is Te- 10 sec. 

Thus, roughly speaking, the molecular electronic states have time to adjust 

to the varying distance "R = R2 - R1 between the nuclei. ane can then consider 

an approximate adiabatic treatment of the two·center Dirac equation 

Eljl (A. 61) 

(assuming one electron is present). An extensive discussion of this problem. 

and numerical solutions for the molecular spectra of "inte~ediite super­

heavy molecules" are given in Refs. [A.123] and [A.l34]. 

Let us suppose that only one ground state ·electron is present. For 

z
1 

+ z2 > Zcr, there will be a critical. distance Rcr between the two nuclei 

for which the electron is bound with an energy -m. Then as the ions collide 

with R< Rcr' the lowest one-electron state becomes mixed with the je- e- e+> 

continuum level (spontaneous pair production); see Fig. A.l8. As the ions 

recede, we are left with two electrons in the lS level plus an outgoing 

positron. Note that double pair production with two outgoing positrons 

can occur if no ground state electron is initially present. Pair production, 

however, is suppressed by the Pauli principle if the lS levels are full, so 

preionization or stripping is necessary. The energy for the spontaneous 

pair production is compensated by a decrease·in the kinetic energy of the 

outgoing nuclei. Acjditional pairs can in principle be produced when the 

ZP levels in turn reach their critical energy E2p = -m. However, according 

to the calculations of RAFELSKI, MiiLLER, and GREINER [A.l39] for 92U- 92U 

molecular orbitals, the 2Pl/Z level reaches the negative energy continuum 

at a distance R which may be too close to the Coulomb barrier for experiments 
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to be feasible (see Fig. A.lS). 

In a series of comprehensive papers, POPOV, GREI:-.'ER and others have 

presented detailed analytic and numerical calculations of the spontaneous 

positron production process in heavy-ion collisions. We shall review the 

main points of this work which are particularly relevant to practical 

experiments and refer the reader to the original papers for more details. 

For simplicity, we consider a beam of completely stripped nuclei z1 

incident on an ordinary target with nuclear charge z2. (The non-stripped 

case will be discussed in Section A. 3. 6.) If z1 > z2 then the K shell of 

the combined atom will generally be vacant as a result of the behavior of 

the molecular terms in the adiabatic approach of the nuclei [A.l55]. In 

fact, the cross section for positron production turns out to be only slightly 

smaller than in the idealized case of the collision of two bare nuclei (see 

Ref. [A.l56]). For definiteness we will usually consider U-U collisions, 

for which the combined Coulomb fieid Z = z
1 

+ z
2 

= 184 is beyond the critical 

charge Zcr =-170 necessary for spontaneous positron production. 

As shown by MULLER, ~LSKI, and GREINER [A.l57) (see Section A.3.3), 

the critical distance for positron production in U-U collisions (where the 

energy of the two-center atom reaches the negative continuum) is Rcr:. 34 fm 

= 0.088 ~e· The calculation of Rcr can be carried out precisely and 

requires an analysis of the two-center Dirac problem; we return to this 

in Section A.3.3. Thus the lab kinetic energy of the beam at the positron 

production threshold is 

717 MeV (A. 62) 

or - 3 MeV/nucleon for U-U collisions. The lab velocity is vL = 0. 08 which 

is clearly in the adiabatic non-relativistic domain, and small compared to 

-SH-

the velocity of a K-shell electron. 

The classical orbits and Rutherford cross section of non-relativistic 

charged particles are, of course, well understood. Detailed discussions 

and kinematics are given in Refs. [A.l45,158,159]. It is convenient to 

define n = ELAB/Er which is also related to the distance of closest approach 

R0 for backward scattering of the nuclei: n = Rc/R0. Spontaneous positron 

production is possible only if n > 1. If e is the C~t angle of the scattering 

then the requirement that the nuclei are sufficiently close, Rmin < Rcr' 

where Rmin is the distance of closest approach, is 

ELAB e ""£T" > !z (1 + cosec 2 (A.63) 

The variation of the positron production cross section as a function of n 

and e gives a simple tool for testing the positron production calculations. 

For nuclei approaching each other, the two-center Dirac equation can 

be solved in the.adiabatic approximation with nuclear separation R = R(t), 

assuming v «c. .Each value R < Rcr then gives a corresponding (complex) 

energy level near the lower continuum: E = E0 + i r;z [A.l53). (The unusual 

sign of the imaginary part is discussed in Section A.3.4.) The real part of 

the energy level is identified as the produced positron's kinetic energy 

T = I E0 I - m, the positron production rate is dw/dt = r. Integration of 

dw/dt over the ion's Coulomb orbit then gives the probability of positron 

production in the collision. Note that here we consider only spontaneous 

production in the adiabatic approximation; induced production will be 

discussed in Section A.3.5. 

Clearly the maximum cross section for e+ production is the geometric 

limit [A.lSl), o = nR2 (1- n- 1
) = 36b(l- n- 1

) for U-U collisions, which geom cr 



-59-

would be attained if the Coulomb field of the nuclei succeeded in proJucing 

a positron in each collision for which Rmin < Rcr· (The corresponding impact 

parameter at R . = R is p = R (1 - n- 1
) lj and o , = TTp 2 .) In fact, the mll1 cr cr geom 

actual cross section calculated by MARINOV and POPOV [A.l59] is exponentially'· 

damped at threshold (n .. l) rising to a fraction of 0.1% of ogeom for n ~ 2, 

increasing slowly thereafter. The ratio Wav. = o/crgeom averaged over the 

positron spectrum is shown in Fig. A.l9. The maximum energy such that there 

is no nuclear interaction in the collision is determined by (rN is the 

nuclear radius) [A.159] 

R 
n - cr - 2.8 

max 2rN+ t;r 
· (A. 64) 

allowing t;r- 5 fm. for the diffuseness of the nuclear boundary. The background 

process of e+e- production due to Coulomb excitation of the nucleus is 

discussed in Section A.3.7. 

Hence 'for U-U collisions, with n-2, ELAB-1.4 GeV, vL -0.1, we have 

crgeom -181> and d- 2 mb, i.e.: spontaneous positron production occurs roughly 

in one out of nine thousand nuclear collisions in which the distance R < R cr 

is reached and the lS level is unoccupied. A recent semiclassical calculation 

by JAKUBASSA and KLEBER [A.l60] based on a one-center analysis yields a 

spontaneous production cross section of similar value. 

The ratio of the differential cross section with positron production 

to the Rutherford cross section (do/dn)R = R~/(4n) 2 sin4 ~ at 9 = TT (backward 

scattering) is given by an integral over the Coulomb path [A.l59] 

do/dO I 
(dcr/dO)R 

9
=TT 

cf 
1 

dx (-x-)lj r(x) 
nx- 1 

-1 . 
Tl 

(A. 65) 

(' 
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where the positron width is written as a function of x = R/Rcr· Since 

rN « (R,Rcr) « RK (\ is the electronic K-shell radius for Za -1) the 

energy E
0 

and width r are insensitive to the detailed two-center situation; 

as shown by POPOV [A.l53], these quantities are dependent only on the ratio 

R/Rcr· Thus the only critical parameter in the two-center problem is the 

actual value of Rcr· The constant C in Eq. (A.65) is proportional to R~~2 

and [(Z
1 

+ Z2Jarlj and is equal to 2.3 for U-U coliisions. The result of a 

numerical calculation for WTT is also shown in Fig. A.l9. The corresponding 

positron spectrum w(T), proportional to the integrand of Eq._ (A.65), 

normalized to JTmaxdT w(T) = 1, is shown in Fig. A.20 for 9ari=TT. 
0 

The maximum positron kinetic energy is 

(A.66) 

The distribution in T peaks sharply at Tmax since the ion spends the most 

time at the point of closest approach,and f(R/Rcr) is largest there. Near 

the maximum energy, w(T) - (Tmax - T) -l:i. For n- 2, approximately 60% of the 

positrons have an energy above 0.9 Tmax· The sqliare-root singularity is 

due to the fact that the radial velocity vanishes at R=Rmin" The strong 

peaking and maximal effect at e = TT is clearly favorable for experiments. 

For 9 = TT/2, w is smaller by an order of magnitude. If the angle of the 

scattered ion is not measured, the peak in w(T) is considerably washed out. 

The small value for the probability of single positron production w(1) = 

Wav ~ 10- 3 means that the double spontaneous positron production probability 
2 -6 

w(2) (filling both lS levels with electrons) is only of order W(l) ~ 10 , 

and is probably not a useful signal for spontaneous production. 
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.'1- 3. 3 Calculation of the Critical Internuclear Dist3nce 

An important numerical parameter for phenomena involving a supercriticaf 

Coulomb field in heavy-ion collisions is the value of the internuclear 

distance R; Rcr at which the energy of the ground state of the quasi -molecule 

(Zt,z2,e) crosses the boundary of the lower continuum. For low-velocity 

collisions with z1 ; z2 ; Z it is sufficient to calculate the energy of the 

two-center Dirac equation with the potential V(;) ; ·Za/r1 - Za!r
2

, where 

r i ; I;- Ri I (adiabatic. approximation). Since Ret is substantially greater 

than the nucleon size, the nucleon finite size eff.ects can be estimated 

from perturbation theory [A.lS6]. · MARINOV .and POPOV [A.l56] and MARINOV, 

POPOV, and STOLIN [A.l61] calculate Rcr using a variational method in which 

each component .of the trial wavefunction of the two-center Dirac equation 

is written as a sum of terms with the correct singularity behavior at large 

and smail distances; e.g. near the nuclei the Dirac wavefunction has the 

singularity 

(A.67) 

11 ; Cr1 - r 2)/R are elliptical coordinates. This· 

method converges quickly with just a few terms. As shown by MARINOV et al 

[A.l56,161], the variational method gives a lower limit on R . cr 

A similar variational calculation was also performed for U-U collisions 

by MULLER, RAFELSKI, and GREINER [A.l57] and by MULLER, S~HTH, and GREINER 

[A.l62] giving the result Rcr- 36 fm compared to the lower limit, Rcr ~ 38 fm 

obtained by MARINOV et al [A.l63]. (It should be noted that the published 

numerical results beyond the (l ,0) approximation given in Refs. [A.l56] and 

[A.l61] need to be revised because of a recently di'scovered calculational 

error [A.l63].) The small difference between the ~ULLER et al and ~1ARINOV 

et al results could be accounted for by the absence: of the relativbtic .. 

-b2-

Coulomb sinb'lllaritr of Eq. (.~.67) in the 100-tenn ~1i.iLLER et al trial 

~.·avefunction jA.l56]. 

.~. 3. 4 Calculation of the Spontaneous Positron Production Rate 

An exact calculation of spontaneous positron production by two colliding 

nuclei would be extremely difficult. The calculations which have be.en done 

for the two-center problem have empl~yed a variety of app~oximatio~s, which 
. . 

should be carefully considered. In general terms, the analytic m1alysis 

of POPOV and co-workers is based on two separated point nuclei'where the 

combined-Z is above the threshold Zcr- 170 for positron production. An 

essential feature of the analysis of GREINER and co-workers is.the assumPt~on 

that the functional dependence of the decay width r on the positron energy 

E in the two-center problem is the same as the dependence in t~e. one-center 

problem for a finite-size nucleus. A recent semi-classical calculation by 

JAKUBASSA and KLEBER [A.l60] assumes that the width r for the two-body 

problem may be simulated by the width for a one-center atom with an· 

effective nuclear charge Z(R) which depends on the nuclear separation. 

The GREINER et al and JAKUBASSA et al analyses both depend on the nuclear 

size in the single-center problem which of course cannot accurately represent 

the effective size of the two-nucleus system. 

In the work of POPOV and co-workers, as discussed in Section A.3.2, 

the positron production cross section is dependent on the imaginary part r 

of the energy of the level E; E
0 

+ i f/2 which for nuclear separation R < Rcr 

is in the lower continuum. In principle the full complexity of the adiabatic 

t\\O·center problem is required to determine E for the quasi-molecule. 

However, as shown by POPOV jA.l33,146,149,151,153] E0 and r depend, to a 



good approximation, only on R/Rcr' and their values can be fow1d by matching 

the "inner" solution 1.-ith the singularity given in Eq. (A.67} to the "outer" 

solutiqn for the one-center problem: V(;) = - (Z1 + z2)a/r. The result is 

the relation (valid for Rcr small compared to ~e) 

R 
~n cr 

R lji(- ~) + ~n _rnA + m + E 
~ m+E+A 

(A.68) 

where A = - i (E2 - m2) ~ for R < R and iJi (z) is the derivative of the logarithm cr 

of the gamma fwlction. Equation (A.68) can then be solved numerically for 

the real and imaginary parts of E. These results are used for the calculation 

of the positron production cross section and spectrum given in Section A.3.2. 

It is interesting to note that the solution to Eq. (A.68) gives a 

positive imaginary part to E, rather than the familiar position of the pole 

on the second sheet for a decaying state. This is due to the fact that we 

are dealing with .the solutions of the Dirac equation in non-second-quantized 

form. The quasi-discrete level E = E0+ ir/2 corresponds physically to a 

resonance for positron-scattering on a supercritical nucleus at the energy 

E = -E = \E
0

\ - ir/2.. This has the correct sign for the imaginary part pos 

[A.l53]. 

An important feature of the solution of Eq. (A.68),is the dependence 

of the imaginary part of E near threshold: 

r(v) - y
0 

exp[-2n(Z1 + z2) a/v) (A.69) 

where v is the positron velocity and y
0 

"' (6/S)nm. This can also be 

written in terms of the internuclear distance [A.lSl] 

(A. 70) 

-t>-1-

\>'here b ~ 5. 7 (Z 1 + Z2)a. Thus, the positron probability is exponentially 

small at threshold and increases rapidly ''ith increasing ~ = E/Er. 

The threshold dependence of r is characteristic of problems involving 

the penetration of a Coulomb barrier. ll'e can see the origin of the barrier 

by ~>Titing the equation, for the large component G(r) = rg(r) of the Dirac­

Coulomb equation in the Schrodinger fonn [A.l38, 151] 

0 (A. 71). 

where X = [m + E- V(r) ( 1 G(r), f: _ 1 ((.2 2 d eff - 'l : - m J, an Ueff (for a finite 

nuclear size) is shown in Fig. A.l6 for Z- Z and' E - -m. A striking 
cr 

{ 

feature of Ueff is its large distance behavior: Ueff(r) = E/m V(r), i.e. 

it becomes a repulsive potential for E < 0. In the case of a Coulomb potential 

V(r) = -Za/r, 

(A. 72) 

for the lS state.at E- -m. At short distances, the relativistic attractive 

-2 d 0 0 u 
r term ommates m eff. Note that Ueff has a maximum at r = rm = ,;e x 

[(Za)
2

- 1]/Za, where Ueff(rm) = ~(~J 2m/((Za) 2 - 1) - 1.4 m for Z= 170. 

It is clear that for E just above -m where Eeff < o, the effective 

potential yields a localized discrete state with a radius of order rm. 

The Schriidinger wavefwlction attenuates at infinity in the form [A.l38) 

x(r) - r~ exp[-v'8Zar/~ ] 
e (A. 73) 

The radius of the localized ground state is shown in Fig. A.l7, For Eeff > 0, 

i.e. when E dives into the lower continuum, the wavefunction extends beyond 

the barrier, and the l>'idth of the quasi-static level is given by the barrier 

penetrability [A.l5l,l64] 



0 

0 

where 

r 

3(Za) 2(1 - e-Zrrv) 

[2(Za) 2 
+ 3]v 
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-

(A. 74) 

6rr/5 Za ; 1 

(A. 75) 

Za » L 

and v; J1- m2 /E 2 is the velocity of the outgoing positron; and in Eq. (A. 75) 

v ; 2 J (Za) 2 - 1. The simplest interpretation is that given in Section A. 3.1: 

If E < -m, then the one electron state becomes degenerate with the two 

electron plus one positron state. The electron-positron pair is created 

near the nucleus where V(r) >2m; the form of Eq. (A.74) reflects the 

p~obability that the positron can penetrate the barrier. Because r is small 

compared to m, the single particle analysis of the Dirac equation used to 

describe· the supercritical atom can be justified [A.l64]. 

'One can now-proceed to the calculation of the positron production 

probability by int-egrating over the classical ion trajectory, which is 

familiar from treatments by BATES and MASSEY [A.l65] for autoionization in 

a slow collision and the level crossing formula of LANDAU and ZENER for the 

probability of near adiabatic transitions between discrete levels [A.l66]. 

POPOV's result for the positron production cross section is [A.l51] 

Rcr 

o ; .i!_f dR R3/ 2(R- R )!:; f(R) 
VL 0 

Ro 

(A. 76) 

where !zMv~ is the lab kinetic energy of the incident nucleus and R0 is the 

distance of closest approach at zero impact parameter. (If the probability 

P ; o/o geom is not small, P should be replaced by (1 - e- p).) The cross 

section for producing a_ positron with kinetic energy T is [A.lSl] 
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; ~ f(R)R3/2 (R- R )1/2 (dEo)-1 
VL 0 dR 

do 
d'f (A. 77) 

where T; IE0(R/Rcr) I- m. Since r is small compared to lEI, the positron 

energy can be identified with a given internuclear distance R, and 0 is 

correctly obtained by integrating over the complete ion orbit. 

1ne calculation of GREINER and co-workers differs substantially in 

approach from that of POPOV et al. The first step is the computation of 

the width for positron production in a supercritical atom using the Fano 

autoionization method. The second step is to .use these-results to calculate 

the spontaneous and induced positron production rate, assuming that the 

relation between r and the bound state energy is the same in the one- and 

two-center problems. 

The method used by GREINER and co-workers [A.l45,158] to evaluate the 

positron width in the one-center problem is based on the_ analogy of the 

supercritical nucleus to that of autoionization in nuGlear and atomic 

physics, where a bound state is imbedded in a continuum, and FANO's formalism 

[A.l67] should be applicable. One begins by assuming that- the nuclear 

potential is at criticality so that l~cr>' the single particle bound-state 

solution of the Dirac equation, has E ; -m. L t I•" d h e ~E> enote t e s-wave 

negative-energy continuum solutions to the same equation with E < -m. If 

Vis increased above criticality, 6V; V- Vcr < 0, then to first order in 6V 

(A. 78) 

and 

r (A. 79) 

Calculations [A.l43] show that flEer- -30 cz1 +Zz- Zcr) keY; see Fig. A.21. 



Thus the bound state l~cr> dives into the negative continuum with an 

energy shift roughly linear in AZ = z1 + z2 - Zcr and a monotonically 

increasing width. If one defines the negative energy solutions I~E> for 

the Dirac equation with Vcr + 6V, then 

1 r 
Zrr [E - (E + 6E ) ] 2 + f 2 /4 cr cr 

(A.Sa) 

is the probability that the bound electron is promoted to I~E> when !1V is 

added adiabatically. (This Breit-Wigner form for the admixture probability 

neglects an extra energy shift from.the.energy variation of r.) This 

treatment thus far is, in principle, complementary to that given earlier 

in this section. 

There may, however, be difficulties with using the autoionization 

method and a perturbation expansion near Zcr for calculating the spontaneous 

decay width. In the papers of MULLER et al [A.l34,145), the estimate 

r (A.Sl) 

is reported to be a good approximation to the exact one-center Dirac equation 

width, at least for !1Z z1 + z2 - Zcr :Z 3. (For example, in the more recent 

work of K. s.II1H et al (A.l34,168] a curve is given showing numerical results 

based on a one-center Dirac equation calculation f~r the function y(T) = mr(T)/T2 

where T is the positron kinetic energy. For 180 < Z < 210, R> 15 fm, and 

0.4 MeV<T<l.2 Me\', y(T) is roughly constant at 0.015, giving 4.7<r(T)<42 

keV which agrees within a factor of two.with Eq. (A.Sl).) However, as noted 

by MULLER et al [A.l45] and POPOV [A.l53), the threshold behavior character­

istic of the Coulomb barrier leads to strong exponential damping at zero 

positron momentum; for AZ->0, POPOV [A.l53] obtains r"' exp[-b(Zc/AZ)~]. 
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Thus, (A. 81) should nqt be considered a reliable approximation for small 

112. The equation r = Zrrl<~cri11VI~E>I 2 is evidently invalid near threshold 

since it requires an expansion in 112 about the critical value. Furthermore, 

the continuum solution I~E> which is defined to obey the Dirac equation for 

V = V does not see the Coulomb barrier in the effective potential Ueff cr 

appropriate to V = Vcr + AV and the level energy Ea. (In the paper by POPOV 

and HUR [A.l64], it is argued that f/m ~ e-ZrrZa « 1 even for lEal »min a 

one-center problem because the barrier in Ueff increases in height as E0 ~ ®. 

In fact, the width of the level can increase with IE01·despite the increasing 

barrier height because the tunneling distance becomes smaller [A.l60]. This 

is also consistent with the barrier penetration formula (A.74) which gives 

r ~ y e-rr/ (Za) in the limit Z .. "", v -d.) 
0 . 

The results of a recent one-center calculation of r by JAKUBASSA arid 

KLEBER [A.l60] (based on a semi-classical method) are shown in Fig. A.22. 

We have also indicated the values calculated from Eq. (A.Sl). The width 

computed by JAKUBASSA and KLEBER is about three times' as large as that given 

by Eq. (A. 81) at Z- 200. 

It should be noted that the corresponding calculations of r/E0 as a 

function of R/Rcr by POPOV [A.l53] for the two-center problem yield much 

smaller widths, with r/E0 < 0.012, i.e. an order of magnitude below those 

of the one-center problem results of JAKUBASSA and KLEBER. This may indicate 

that the one-center values, which are based on the nuclear size -and not on 

the actual nuclear separation -give an over-estimate of the decay width. 
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A.3.S Induced Versus Adiabatic Pair Production 

One of the controversial questions concerning positron production in 

heavy-ion collisions is the relative importance of pair production induced 

by the changing Coulomb field. In the review of ZF.LOOV JO! and POPOV [A.l38] 

and the later papers of POPOV [A.lSl,lS3], arguments are given that this 

mechanism can be neglected since (i) the frequency of collision we (equal 

to the inverse of the collision time rc) is a small fraction of 2m, and 

(ii) the characteristic electron time is much shorter than the collision 

time, so that the electron state can adiabatically adjust to the changing 

Coulomb potential. However, as emphasized in the papers by SMITH et al 

(A;lS4,168], the energy. required for pair production during the collision 

is just the (narrow) gap between the lS level and the negative continuum. 

Thus the changing .Coulomb field can induce a transition (pair production) 

even•at very low velocities. In typical inelastic atom-atom collisions, 

an appreciable cross section for transitions occurs when (A.l69] 

AE !: 211~ 
a (A. 82) 

where v is the relative velocity and a is a length characteristic of the 

inducing potential. Taking a- SO fm, v- 0. OS, gives AE- 1 MeV. Thus, 

induced pair production with a continuum positron could well be an important 

process even for collisions in which diving does not occur. In fact, SMITH 

et al [A.l68] find that in typical U-U collisions, induced positron production 

is two orders of magnitude larger than the spontaneous cross section alone! 

Obviously, the induced contribution also will spread ·the kinetic energy 

spectrum of the positron, with substantial contributions occurring at 

kinetic energies - 1 MeV beyond the kinematic limit for spontaneous production. 
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The results of SMITH et al [A.l68,170] cqmpared with the spontaneous 

positron production spectrum calculated by PEITZ et al [A.lS8] are shown 

in Fig. A.23. The cross section calculated by SMITH et al for positron 

production in central U-U collisions at 812.S MeV center-of-mass energy is 

shown in Fig. A.24. The curve denoted A is the contribution "during diving," 

i.e., integrated over the times when the lS level joins the negative 

continuum. Curve B denotes the contribution before and after diving. 

The coherent sum is also shown. The Rutherford cross section for u-u 

scattering and the ionization probability L0 have been divided out .. By 

integrating over energy, one sees that roughly S% of all the collisions 

with a lS vacancy will produce a positron by the induced·process. The 

positron production cross section for different CM kinetic energies is 

shown in Fig. A.ZS. 

The during-diving positron production amplitude computed by SMITH et al 

[A.lS4,168] takes the form 

I
ter 

i dt VE(t) (A.83) 

-t cr 

where E is the positron energy lev¥1, r(t') gives the positron resonance 

width at timet'. The perturbing potential is taken to be 

(A.84) 

as in Section A.3.4. 

As we have remarked in Section A.3.4, this expression for VE(t) and 

the definition r = 21TIVE(tll 2 are in apparent conflict with the analytic 

results of POPOV [A.lS3] for the resonance width near threshold. Hence, 

it is in~Jortant that calculations of the induced process which avoid 
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expansions in. 6V = V(R) - V(Rcr) about the diving point be done. 

Recently, JAk1rnASSA and KLEBER [A.l60) have also presented a method of 

evaluation of induced positron production in heavy-ion collisions within 

the WKB semi-classical approximation. Their results for both spontaneous 

and induced production are about ten times larger than those calculated by 

SMITH et al [A.l68]. In particular, JAKUBASSA and KLEBER find a total cross 

section o=4b for vL = 0.15 and o= lb for vL = 0.1 in U-U collisions with 

Rcr = 34 fm. 

It should be noted that so far all the calculations of the induced 

production rate are based on the single-center results for the widths and 

transition matrix elements. 

We also note_ that. the induced process may make positron production 

experimentally practical even for medium-Z heavy ion collisions. Diving 

is not critical. Further, induced pair production where both the positron 

and electron are in the continuum may be feasible in U-U collisions even 

without ionization. In fact, pair production requires not much more energy 

transfer than induced IS hole production when the energy is near critical. 

From a general point of view, induced and spontaneous positron production 

in heavy-ion collisions can be identified with the Feynman diagram shown in 

·Fig. A-26. The physical process, however, goes beyond perturbation theory 

in that the production occurs a~ a result of the coherent energy of the 

Coulomb interaction in the strong field relativistic domain. 
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A.3.6 Vacancy Formation in Heavy-Ion Collisions 

The physics of inner-shell vacancy formation is currently a subject of 

active experimental [A.l24] and theoretical interest [A.l71,172] and our 

discussion here can only be very briet'. According to the extrapolation of 

BLASGiE, FRANKE and CH.' SCilMELZER [A.l73], completely ionized U atoms are 

possible at beam energies of order 300 MeV/nucleon (which should be achievable 

withln the next five years at the LBL Bevalac). However, as we' have seen, the 

optimum kinetic energy of the ion for the positron production experiments 

is in the few MeV/nucleon range. Ions with this kinetic energy could be· 

achieved either by ion deceleration, or more ingeniously (as suggested by 

GREINER and CH. SCHI-1ELZER [A.l71]) by arranging low relative velocity ccrllisions 

between colliding beams in. storage rings, as in Fig. A. 27-.- A similar config~ 

uration could be attained using the configuration of the CERN-ISR, with both 

ion beams circulating in the s_ame direction. 

At lower and more practical energies one must rely on the formation of 

the IS vacancy of the combined quasi -molecule which occurs in the same · 

atomic collision which produces the pair. (The lifetime of the vacancy 'is 

too short at high Z for collisions --involving more than one target atom to 

be important [A.l24].) For U-U collisions, estimates of the vacancy formation 

probability ~O range from 0.2 for ELAB = 1600 MeV [A.l74] (using an "atomic" 

model in which the time variation of the Coulomb field causes energy to be 
- -4 -6 transferred to the electron, which is ejected) to values between 10 to 10 

depending on projectile energy [A.l75,176] (using a "molecular" model in 

which the collision is assumed slow enough to allow the electrons to adjust 

themselves to the diatomic molecular levels; transitions caused by the 

varying Coulomb fields then produce vacancies). 



0 

However, very recently, BET:, SOf-F, )liiu.J:R, and GREit\ER [A.l77] have 

perfonned an approximate calculation of the ground state vacancy production 

probability in U-U collisions. The vacancies are produced by the Coulomb 

field variation in the two-center Dirac equation. They find the vacancy 

production probability at 1600 MeV and zero impact parameter to be larger 

than 0.08 -much larger than was anticipated and very encouraging for the 

experiments discussed here. 

Since IS state vacancy production followed by positron production in a 

single collisirin will be accompanied by direct pair production associated 

with the time variation of the fields in the collison, and the latter process 

may have an amplitude of comparable magnitude, the cross section for 

atooi + atom + atom+ atom+ e- + e + should be calculated from the coherent sum 

of both processes. ln fact, all processes which produce a pair must, of 

course, be considered together. This includes StmU!I8tion over pair production 

processes which fill higher n vacancies. Although pair production which 

fills higher n vacancies may be less likely, there could be a partial 

compensation due to a larger probability of vacancy formation in higher n 

states. The relative importance of thes~ processes has not yet been 

estimated for the case of collisions between neutral atoms. 

A.3.7 Nuclear Excitation and Other Background Effects 

There are general background effects which can complicate the experimental 

observation of positron production associated with the overcritical Coulomb 

field. We will closely fOllow the discussion of POPOV [A.l51], OKUN [A.l78], 

and OBERACKER ~t al [A.l79,180] here. 

When heavy particles collide, e•e pairs can he produced by hard photon 
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bremsstrahlung and r~ir conversion. The cross section is small [A.l51,178) 

because the motion of the nuclei is non-relativistic. A typical cross 
-16 section for z = 92, R0 = 40 fm is a< 10 b. For identical nuclei U-U, this 

is suppressed by a few more orders of magnitude since the cross section for 

dipole radiation, proportional to (Z1A2 - ZzA1l 2, vanishes [A.lSl). 

The most important background is the production of e•e· pairs by pair 

conversion in transitions resulting from Coulomb excitation of nuclei: 
. e•e- 4 An estimate given by POPOV [A.153] for U-U collisions g1ves oc - 10· b 

which is somewhat smaller than the estimates for the cross section for 

spontaneous positron production. 

Extensive calculations of the nuclear and Coulomb excitation cross 

sections have been recently performed by OBERACKER et al [A.l79,180). 

The calculated differential cross section (dashed lines) for 238u- 238u 

collisions at the Coulomb barrier Ekin = 800 ~EV, as a function of the ion em 

scattering angle eion' is shown in Fig. A.28. The two dashed lines correspond 

to two different models for the nuclear states. The associated cross section, 

calculated by PEITZ (quoted in Refs. [A.l79) and [A.l80)), via spontaneous 

and induced decay (assuming Rcr = 35 fm, and the K-vacancy probability 

L0 = 10- 2) is given by the solid line. Representative total nuclear and 

Coulomb excitation production cross sections calculated by OBERACKER et al 
e•e· -4 

0
e•e· _ 

(A.l79,180) for u-u collisions range from oc - l. 25 x 10 b to C 

2.28 x 10·4b depending on the model for the nuclear states. This is in good 

agreement with the estimate of POPOV. As noted by OBERACKER et al, the 

nuclear background is suppressed in the backward and forward directions for 

syntnetric systems 238u- 238u In addition, the nuclear positron spectrum 

terminates at l'p- 800 keV while the induced positron spectrum extends to 

much higher energies. Both of these characteristics should aid in separating 



out the background positrons. ~bre complicated, but negligible backgrounds, 

involving conversion of ganvna rays from nuclear tnUI:<itions ~<here thc 

electron occupies the vacant ground state are also estin~ted by OBERACKER 

et al. 

A.3.8 Radiative Corrections in Critical Fields 

There is considerable theoretical interest in the question of whether 

radiative corrections could modify or even eliminate the predictions 

discussed here for pair production at Z > Zcr· As we have noted in Section 

A.3.1, the radiative corrections are controlled by a rather than Za so they 

are, in principle, independently controllable in their physical effects, and 

thus one would not expect dramatic changes in the previous description. 

One also would not expect that calculations based on a Feynman diagram 

treatment indicated by Fig. A.26, could be much affected by effects of 

order a. However, since virtual pairs may be produced with an arbitrarily 

small expenditure of energy as Z + Zcr' the smallness of a is not necessarily 

decisive. In the following, the tractable mode~ of a single nucleus of 

charge Z is examined. The results for a heavy-ion collision are expected 

to be qualitatively similar. 

The situation is well understood in the case of the order a vacUlDil 

polarization corrections; the modifications turn out to be small. For r at 

the maxinun of the near-critical IS probability distribution, r
0

- 0.1 xe, 

the Coulomb Uehling potential has the value 

(A.85) 

Calculation of the lS Uehling energy shift at Z"' Z by SOFF ~IULLER and 
cr • ' 
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RArELSKI [A.l8l] gives t.E = -ll.8 keV for Z = 171, in good agreement with 

an cxtrilpoliltion of the results, for z.;Jf>O, of I'IEPER and GREINER (A.ll7] 

and with the order-of-magnitude estimate in Eq. (A.85). The corresponding 

shift t.Zcr in Zcr is found, with the aid of [A.47,144,145] 

dElS I dZ Z = -27 keV 
cr 

(A.86) 

to be t.Zcr = -0.4, i.e., the critical charge is reduced by less than one 
-3 unit. The result of POPOV [A.l33], t.Zcr = 0(10 ) , appears to be an under-

estimate. 

The higher order correction to the Uehling potential of the Wichmann-

Kroll type (from the Coulomb interactions of the electron-positron pair) is 

an order of magnitude smaller. Argi.Ullents of POPOV [A.l33] and of ~liiu.ER, 

RAFELSKI, and GREINER [A.l44,145] suggest that the higher order corrections 

are small. A calculation has been done by GYULASSY [A.47 ,48) who found 

t>.E15 = 1. 2 keV whid1 is negligible compared to the Uehling tenn. GYULASSY 

[A.47) has also shown numerically that the vacuum polarization charge density 

associated with the charged vacuum, discussed by FULCHER and KlEIN [A.l36], 

varies smoothly as Z passes through Zcr" The vacuum polarization associated 

with the charged vacuum is fonnally related to the ordinary vacuum polariza­

tion by a shift in the contour of integration in the bound electron 

propagator as discussed in Section A.l.S [A.47). 

In the case of the self-energy corrections to the electron level, a 

simple heuristic argument is that a fraction a of the lepton charge is spread 

out over a Compton radius of the electron Xe (modulo a logarithmic tail out 

to the Bohr radius (Zam)-l associated with the Bethe sum). Such a distribu-
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tion convoluted with the nuclear size distribution could orily change Zcr 

by a small amollilt. Also, since the detennination of the nuclear radius R 

derives from electron scattering experiments, the influence of radiative 

corrections is already partially included. The situation for the self-energy 

is mre obscure at very high Z where higher order terms in Za are important; 

quantitative calculation is necessary. 

Results of calculations of the self-energy of the lS state for large 

are shown in Fig. A.29. The self-energy for a Coulomb potential appears 

to become infinite as Za-> 1. This is clearly an anomaly due to the point 

charge singularity. CHENG and JOHNSON [A.36] have extended calculations to 

Z = 160 for a finite nucleus. By extrapolation, they find that the lS self­

energy is at least 1% of the binding energy at Z = Zcr' Although it seems 

unlikely, we note that if the self-energy were to increase sufficiently 

rapidly as Z-> Zcr' there might be no diving phenomenon, and further analysis 

would be necessary. In any case, induced positron production would still 

be possible (see Section A.3.5). 

Calculation of radiative corrections to the positron emission rate would 

be very complicated, because the self-energy graph will include the long 

range radiative correction associated with the outgoing charged particle. 

The effect of photon emission would have to be separated from the energy shift. 

A.3.9 Coherent Production of Photons in Heavy-Ion Collisions 

Another intriguing, possibly feasible test of strong field electrodynamics 

utilizing high-Z ion collisions is single or multiple hard photon production. 

The quantum electrodynamic process is a variation of Delbriick, or light-by­

light scattering (see Fig. A.30). The photons are created by the coherent 
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energy of the ions' Coulomb field. Unlike bremsstrahlllilg processes, the 

spectrum of the photon peaks in the electron mass (~leV) range. The production 

cross section for n photons should be of order an times the Rutherford cross 

section for collisions in which the potential energy at the distances of 

closest approach significantly exceeds the total photon energy. Such photons 

should be distinguishable from nuclear excitation photons and combined-atom 

x-rays by their (calculable) spectrum and angular distribution, and by 

coincidence (correlation) measurements. 

Note that this photon production process occurs at ion energies and 

charges well below those required for spontaneous pair production. 

Conversely, if the photons have energies beyond 1 ~leV, they provide a 

background for positron production from internal pair conversion, or by 

conversion in a nearby atom. 

A.3.10 Self-Neutralization of Matter 

The possibility of spontaneous pair production at high Coulomb field 

strength leads to a rather novel self-neutralization mechanism of ionized 

matter. Suppose that one could arrange a contained plasma of completely 

stripped uranium ions (no electrons present). For any finite temperature 

there will occasionally be ion-ion collisions at sufficient velocity such 

that the distance of closest approach is less than Rcr- 35 fm, where diving 

of the lowest electronic level of the two-center Dirac system begins. 

Eventually, all the bound electron atomic levels which dive will be filled 

by the pair production process and - assuming the continuum positrons are 

allowed to escape - the ionic system will be partially 'neutralized. Although 

the process can occur in principle at any finite temperature via the Maxwell 
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velocity distribution, the positron production probability hccomcs large 

only at high temperatures, kT- 0[1 Cc\'), i.e., T- 0[10 13 !\). At still 

higher temperatures, other pair production mechanisms become important; 

howev~r, the spontaneous pair production is the lowest energy mechanism. 

A.3.11 Very Strong ~~gnetic Field Effects 

RAFELSKI and MULLER [A.l82) have suggested looking at heavy-ion collisions 

as a means of testing the behavior of matter in strong magnetic fields. Such 

tests would be sensitive to possible anomalous higher order effects of strong 

fields. In a heavy-ion collision, the magnetic fields are produced by the 

motion of the charged nuclei, with the corresponding vector potential given by 

- Zcx -Zcx (A.87) 

where vi are the nuclear velocities and Ri are the position vectors of the 

nuclei. In a sub-Coulomb barrier heavy-ion collision, the magnetic. field 

created in the vicinity of the·colliding nuclei is of the order of 1014 gauss 

over a small volume [A.l82]. The magnetic fields give rise to a splitting 

of the lowest quasi-molecular states through interaction with the electron 

spin. RAFELSKI and ~IDLLER have calculated the magnetic splitting which can 

be expected in various heavy-ion collisions. Figure A.31 shows the energy 

separation of the spin-up and spin-down states relative to the binding energy 

for various systems. For example, the separation of the lso state in a U-U 

collision with T = 9 MeV/nucleon and impact parameter b = 20 fm is calculated 

to be approximately 0.1 m = SO keY. This splitting corresponds to an average 

magnetic field B- 4 x 1012 gauss. The magnetic splitting results in a 

difference of 3.3 fm in Rcr for the two states. 
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We note that any model for strong magnetic field anomalies 1-1hich could 

be evident in heavy-ion collisions would be constrained by existing fine 

structure measurements in exotic atoms. The determination of the magnetic 

moment of the anti-proton to 1% ac;:uracy by the fine-structure measurement 

in pPb by H\1 et al [A.l83] has yielded a value which is in excellent agree­

ment with the proton ma2netic moment (in accord with the TCP theorem). 

The fine structure in the lower level (n = 10, .£ = 9) in that experiment 

arises from interaction of the anti-proton moment with an average magnetic 

field of order 1014 gauss. A similar test in somewhat stronger magnetic 

fields is made by muonic atoms. The measured fine structure splitting in · 

the ZP state of muonic lead [A.l84] agrees with theory, and the average 

magnetic field seen by the muon is of order 1016 gauss. 

t· 
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All of the tests of high-Za quanttml electrodynamics which 1,-e have 

discussed in this review probe in various ways the Furry bound state inter-

action picture description of the bound leptons. In the strong field domain 

where Za is not s~ll, a natural question is whether this generalization of 

weak field perturbation theory continues to be applicable if the binding 

strength is not small compared to the mass of the bound particle. 

Thus far the tests of high field strength QED involving the spectra 

of bound electrons and muons aie in extraordinary agreement with predictions, 

ruling out anomalo~s non'-liriear interactions, low-mass scalar particles with 

certain couplings: and anomalous modifications of yacutml polarization at 

momentum transfer;.- ZCX~l).,. The high-Za spectra also test electromagnetic 

interactions in the strong' magnetic field regime, where the effective fields 

reach 10
16 

gauss. Tests of relativistic bremsstrahlung in high magnetic 

fields are reviewed in Ref. [A.l85f. Further tests of the Furry picture of 

bound leptons and their radiative ·correctio~s are possible by measurements 

of the bound state gyromagnetic ratio via Zeeman interactions and by photon 

~ scattering from high-Z atoms. The Lamb shift measurements in heavy atoms 

0 

confirm the calculations of radiat.ive corrections for highly off-shell 

electrons. The measurements in high-Z few-electron ions. provide a means of 

testing QED in strong fields with multiparticle systems for which the theory 

is still tractable. Precision measurements in muonic atoms are now beginning 

to confirm higher order vacul.Dn polarization corrections of order a(za) 3, 

ruling out broad classes of anomalous muon:nuclear interactions [A.l86]. 

Although the basic predictions for positron production in heavy-ion 

collisions appear to be understood from a fundamental point of view, there 

arc many quantitati,·e tjuestions l>hich have not been completely settled. 

.\s ;;e have noted, it is difficult to compare details of results based on 

different calculations because of the "'ide range of. models employed. This 

is particularly critical in the questions concerning the absolute magnitude 

of both the spontaneous and induced positron production rates. 

The d)~amical tests of high-Za QED, especially positron production 

(and possibly anomalous photon production) in heavy- ion collisions, are 

particularly interesting because they require an extension of the theory to 

a domain which is otherwise unexplored. For example, when the binding 

becomes critical, the ordinary vacul.Dn is effectively unstable, and a new 

vacuum reference state is required. 

There are mm1y issues of fundamental interest which still need to be 

resolved. These include a complete field theoretic treatment of the positron 

production problem which considers the effects of radiative corrections; the 

problem of the· Klein-Gordon equation for Za > l, where Bose condensation can 

occur [.-'1.138,187]; and the nature of positronium when a> 1, and in particular, 

"'hether there is a mechanism (possibly recoil corrections) which can moderate 

the singular Coulomb problem. 
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FIGURE CAPTIONS 

Fig. A.l. Feynman diagrams for the lowest order self-energy (a) and vacuum 

polarization (b). The double line represents an electron in the external 

Coulomb field. 

Fig. A. 2. calculated values of G5E(Za) for Z = 10 to 50 and the extrapolated 

value at Z = 1. From MOHR [A.lO]. 

Fig. A.3. Feynrnan diagrams which contribute to the Lamb shift .in helium-like 

ions. 

Fig. A.4. Comparison of theory and experiment for the L
1

- LIT level split-

ting in heavy atoms. The error bars give the probable error in the 

experimental values. Estimated experimental errors smaller than the 

data points are not shown. See text for explanation. 

Fig. A. 5. Possible contours of integration in Eq. (A.ll) for Za > 1. The 

contour labelled ~e. corresponds to a vacuum state with both lS levels 

filled. 

Fig. 

Fig. 

Fig. 

Fig. 

A.6. 

A. 7. 

A.B. 

Lowest order QED corrections to the energy levels of a hound muon. 

Expansion of the vacuum polarization in powers of the external field. 

Sum over all orders in perturbation theory for_v
11

(r). 

A.9. The function F0 (Za) which describes the charge induced at the 

nucleus by the higher order vacuum polarization in a Coulomb field. 

From BROWN et al [A.49). 

Fig. A.lO. Fourth order vacuum polarization diagr~ns. 

Fig. A.ll. Higher order radiative correction to IIU.lOn levels.· 

Fig. A.l2. Difference between theory and experiment for muonic atom x rays 

plotted as a function of x-ray energy. Experimental values from Refs. A. 54-59. 

Fig. A.l3. Energy levels for the Dirac-Coulomb equation as a function of z. 

A uniform charge density with R = 1.2 A113 fm is assumed. From PIEPER 

and GREINER (A.ll7]. 

Fig. A.l4. Critical value of Za. in the Dirac-Coulomb equation for ElS = -m 

as a function of nuclear radius (in units of Xe = 386 fm). hom POPOV 

[A.l33]. 

Fig. A.lS. Spontaneous positron production from the viewpoint of the old 

and new vacuum. The_old vacuum is unstable due to the adiabatic 

introduction of flV a Z - Z cr 

Fig. A.l6. The effective potential Ueff(r) of the effective SchrOdinger 

equation (A. 71 "! for Z ... Zcr' E ... -m. The potential V(r) ·is the potential 

in the Dirac equation. From ZI'.I.IXJVICH anJ l~ll'lW IA.l3lll.· 

Fig. A.l7. The mean radius r of the ground state as a function of its energy 

E. The radius contracts to r = 0.13 ,;e at E = -m. From POPOV [A.l33]; 

Fig. A-18 .. The combined atom relativistic molecular states for 92u- 92u 

collisions as a function of the internuclear distance R; from MULLER 

et al [A.l34]. The lowest state reaches the negative continuum at 

R - 34 fm. cr 
Fig. A-19. The probability of spontaneous positron production for scattering 

of uranium nuclei at 180° (Wlf) and the probability averaged over all 

angles (Wav = a/ageom). From MARl NOV and POPOV [A.l59]. These curves 

should be 111Ultiplied by the factor 0.54 for Rcr = 34 fm (see Section 

A.3. 3). 

Fig. A.20. The energy spectrum of spontaneously-produced positrons for 

backward ion scattering (6 = 180°). The curves labeled 1,2,3 refer to 

n = 2, 2.8, and 4 respectively. From MARit-OV and POPOV (A.l59]. 

Fig. A.21. Dependence of the atomic levels on nuclear charge. The positron 

escape width, which gives the rate for spontaneous decay, increases 

monotonically with 6Z = Z- Zcr Adapted from ~IULLER et al [A.l43]. 
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Fig. A. 22. Energ:· and width of the supercriti~al lS state calculated bv 

J.-\J\1JBASSA and KLEBER [A.l60]. The solid lines labeled IE1 1 and r 1 give 

the energy and width in the II'KB approximation; the dashed lines give 

the corresponding results when the effective potential is modified by 

adding a centrifugal tenn. The results of ~IULLER et al [A.l34 ,145], 

labeled f
0

, for the width of the IS state (Eq. (A.81)) have been added 

to the figure for comparison. Adapted from JAKUBASSA and KLEBER [A.l60]. 

Fig. A.23. Probability W(E) for production of a positron '"ith energy E per 

~; 1 keV. Comparison of the spontaneous and spontaneous-plus-induced 

spectrum as calculated by SMITH et al. From the review of RAFELSKI and 

KLEIN [A.l70]. 

Fig. A.24. Cross section for positron production as a function of positron 

energy, divided by the ionization probability L
0 

and Rutherford cross 

section for U-U central collisions at 812.5 ~~V. From SMJTI! et al 

[A.l68,170]. 

Fig. A.25. (a) The positron cross sections calculated for U-U central 
-2 collisions, with L

0 
set equal to 10 . The ion center-of-mass kinetic 

energies are: [1] 815.5 MeV (distance of closest approach, 15 frn); 

121 609.4 ~lev c2o fml; [3) 478.5 ~v (25 fm); [41 706.3 ~v (30 fml; 

}'... [5] 398.2 MeV (35 fm). The vertical scale here is corrected according 

to the relevant footnote in Ref. [A.l34]. (b) The total positron 

cross section dependence on the ion 01 energy. From SMITH et al [A.l68]. 

Fig. A.26. Feynman diagram for positron production in ion-ion collisions, 

The produced electron becomes bound to the nucleus with charge z1 iel. 

Fig·. A. 27. Schematic diagram of a heavy ion storage ring configuration, 

suggested in Ref. [A.l71), arranged to obtain low relative velocity 

collisions. By changing e, the relative velocity' can be adjusted. 

From GREJ:-iER [A.l7l]. 
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Fig . . -\.28. Differential pair production cross sections (01) as a function 

of ion angle for 238u- 238u collisions. Spontaneous and induced 

Jmsitron production cross section (solid line) and pair production 

from Coulomb and nuclear excitation cross sections (dashed lines 

·corresponding to two nuclear models) are shown. From OBERACKER.et al 

[A.l79). 

Fig. A.29. Results of various calculations of the lS self-energy at high Z. 

The energy shift is given by ~E; (a/n)(Za) 4 F(Za)m. The results are 

from Refs. [A.8,ll,36]. Error estimates smaller than 2% are not shown. 

From CHENG and JOHNSON [A.36]. 

Fig. A. 30. Feynman diagrams for production of photons. by vacuum polarization 

in high-Z collision. 

Fig. A.31. Relative magnetic splitting (Et - Et)/E8 (E8 is the binding energy) 

for selected quasi-molecular states. Collision parameters are ELAB ; 9 

~~V/nucleon and impact parameter b; 13 fm. From RAFELSKI and ~fULLER 

[A.l82]. 
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