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Abstract 
 

Essays on Externalities and Uncertainty:  
On the Role of Disaster Insurance in Improving Welfare 

 
by 

 
Thomas Wendell Sproul 

 
Doctor of Philosophy in Agricultural & Resource Economics 

 
University of California, Berkeley 

 
Professor David Zilberman, Chair 

	
  
	
  
This dissertation evaluates risk management for disasters where the losses 
unfold over time, with two key applications: environmental accidents and 
exceptional losses in crop production. Both applications evaluate policy against 
goals of equity and efficiency, but the environmental policy application is a 
normative analysis, while the production risk application is a positive analysis. 

Environmental accidents are stochastic externalities – they impose a social 
cost not accounted for by whichever business constitutes their source. In many 
cases, adequate regulation does not exist. We show that standard pollution 
regulations must be adjusted for accidents, because random triggers and 
unobservable actions lead to a moral hazard problem. We identify three policies 
that lead to the optimal solution when both care and cleanup are considered: 
strict liability, a stochastic subsidy, and a mandatory mutual insurance scheme.  

The subsidy policy may be very costly to taxpayers, especially when 
prevention affects the probability of accident occurrence, and strict liability may 
be excessively draconian; polluters are also victims and liabilities must exist 
regardless of adherence to professional standards of care. Thus, we propose a 
new policy of liability risk-pooling, which demonstrates a role for insurance 
policy among accidentally polluting firms, even when such firms are profit-
maximizers (that is, they are risk neutral). The new policy also generates, in 
expectation, the most equitable distribution of resources among polluting firms 
while preserving efficiency – in this sense it is the stochastic equivalent of a 
system of tradable pollution permits. 

Our second application addresses production risk in US crop production 
and the impact of the SURE disaster support program in the 2008 Farm Act. 
Supplemental disaster insurance is nested insurance, an insurance policy on top 
of another insurance policy, which may actually increase riskiness in the 
distribution of outcomes. Thus, we evaluate whether, and under what 
circumstances, nested insurance actually provides risk management. We develop 
a comprehensive economic theory of nested insurance, and provide new insight 
into the concept of targeted subsidies, which use kinked insurance pricing to 
limit variation in farmers’ coverage purchasing decisions. 
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The theoretical evaluation is supported by an in-depth simulation analysis, 
which simulates the joint price-yield distribution for dramatically different risk 
profiles of Illinois corn and South Dakota wheat. Using a time series of county- 
and national-level yields and expected and realized commodity prices, we 
construct a simulated revenue distribution over which a representative farmer 
can maximize expected utility. We show that disaster policies may distort 
acreage and insurance choices, but that these distortions are likely small. 
Distortions are largest for the primary beneficiaries of the SURE program, the 
most risk-neutral farmers, who are least in need of risk management. 

Both applications take a classical, welfare economic approach to policy. In 
the environmental case, considerations of equity play a larger role as a result of 
uncertainty, whereas in the crop insurance case, nested insurance is shown to 
behave more like a stochastic subsidy than actual risk management. Overall, we 
have shown that managing the risk from disasters across varying economic 
agents can lead to dramatic distributional implications. When more than one 
efficient policy is available, then the distributional characteristics of policies will 
be the deciding factor. However, when equity is the objective, poorly designed 
disaster policies can backfire and be of little use to those who need them most.  
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Chapter 1. Introduction 
 
A disaster is an atypical event characterized by severe loss or damage. While 
many definitions emphasize suddenness, as when ‘disaster strikes’, there are in 
fact a number of occurrences treated as disasters where the losses unfold over 
time, losses which may be influenced by policies and by the actions of parties 
involved. This dissertation evaluates two such examples: environmental 
accidents and exceptional losses in crop production. We examine environmental 
accidents, like the recent BP Horizon oil spill in the Gulf of Mexico, where the 
‘disaster’ itself constitutes an extended period of environmental damage (oil 
leaking into the ocean), followed by an even longer period of cleanup and 
economic recovery. We also examine the case of corn and wheat farming, where 
a disaster could be instantaneous (like a tornado wiping out all crops) or it could 
simply be an unusually dry year where the ‘disastrous’ result is the realization of 
little or no revenue at the time of harvest. The key policy challenge in both cases 
is effectively managing risk. 

The dissertation consists of two body chapters, each an application to 
different aspects of disaster insurance policy. Common to the two applications 
are the evaluation of policy design against goals of equity and efficiency, but 
each application is different. The environmental policy application is more 
normative – in it we propose a new type of disaster insurance policy, and 
demonstrate that this new policy achieves economic efficiency while improving 
the equitable distribution of resources, compared to other efficient policies. On 
the other hand, the production risk application is more of a positive analysis - it 
evaluates the introduction of formalized disaster insurance policy into crop 
insurance markets, and shows where this new policy may fail to provide risk 
management beyond existing, available crop insurance. 

Our first application addresses environmental and environmental health 
risks by considering regulation of environmental accidents. Environmental 
accidents are stochastic externalities – they impose a social cost not accounted for 
by whichever business constitutes their source. In many cases, comprehensive 
regulations do not exist for environmental accidents or the rules of the game are 
imposed on an ad-hoc basis once a disaster occurs. In other cases, like off-shore 
oil drilling, policies like OCSLA and CERCLA are in place to help pay for the 
social costs of cleanup and lost revenues but the policies are unlikely to perfectly 
align incentives for the potential polluters with social objectives, as shown in 
Chapter 2. 

In evaluating environmental accident regulation, we show that standard 
pollution regulations must be tweaked to account for the inherent randomness of 
environmental accidents. The involvement of random triggers and unobservable 
actions on the part of potential polluters leads to a moral hazard problem where 
incentives are more difficult to align with social objectives. As a result of these 
issues, environmental accidents are not adequately addressed by the 
deterministic environmental policy literature - that of Pigouvian taxes, abatement 
subsidies and cap-and-trade. Existing policy proposals to handle environmental 
accidents (as opposed to deterministic pollution) lack sophistication from an 
economic modeling standpoint; they fail to simultaneously consider the essential 
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roles of both up-front preventive care and after-the-fact cleanup.  As a result, 
policy recommendations of previous literature may only produce socially 
desirable outcomes in the sense of economic efficiency.  

Not only do these policies ignore equity considerations, but they fail to 
recognize that the presence of uncertainty leads to larger equilibrium variations 
in the distribution of wealth across individuals. We identify three policies that 
lead to the optimal solution when both care and cleanup are considered: strict 
liability, a stochastic subsidy, and a mandatory mutual insurance scheme. The 
subsidy policy may be very costly to taxpayers, especially when prevention 
affects the probability of accident occurrence, and strict liability may be 
excessively draconian; polluters are also victims and liabilities must exist 
regardless of adherence to professional standards of care.  

Thus, we propose a new policy of liability risk-pooling, which 
demonstrates a role for insurance policy among accidentally polluting firms, 
even when such firms are profit-maximizers (that is, they are risk neutral). The 
new policy also generates, in expectation, the most equitable distribution of 
resources among polluting firms while preserving efficiency – in this sense it is 
the stochastic equivalent of a system of tradable pollution permits. 

Our second application addresses production risk in an application to 
crop production in the United States. Specifically, we evaluate the disaster 
support program (SURE) of the 2008 Farm Act, and compare it to the ad-hoc 
provision of disaster payments it is intended to replace. Supplemental disaster 
insurance is an interesting form of risk management because it is nested 
insurance, an insurance policy on top of another insurance policy, which may 
actually increase riskiness in the distribution of outcomes. Thus, in this 
application, the focus is evaluating enacted disaster insurance policies to show 
whether, and under what circumstances, they meet their stated goals as well as 
other apparent social objectives of providing insurance.   

Critical to this evaluation is the adequacy of other existing insurance 
mechanisms and the risk management they provide. We start by developing a 
comprehensive economic theory of decision-makers faced with nested insurance. 
In doing so, we demonstrate some of the theory behind targeted subsidies, which 
use non-differentiable insurance pricing to limit variation in farmers’ coverage 
purchasing decisions. The main contributions of the theoretical section of this 
chapter are developing an approximation for farmer indifference between 
various disaster support policies, and deriving predictions regarding the role of 
risk aversion in farmer input choices and the potential impact of disaster 
assistance. 

The theoretical evaluation of nested insurance is supported by an in-depth 
simulation analysis. Because of correlations between price and yield for many 
agricultural cash crops, and the potentially high correlation of yields across 
farms (Miranda and Glauber, 1997), revenue insurance requires estimation of a 
joint price-yield distribution. Using a time series of county- and national-level 
yields and expected and realized commodity prices, we construct a simulated 
revenue distribution over which a representative farmer can maximize expected 
utility. The simulation analysis is then used to demonstrate and quantify our 
theoretical predictions and verify that they are robust to varying risk preference 
specifications and to the dramatically different risk profiles of Illinois corn and 
South Dakota wheat. 
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We show that disaster policies may distort acreage and insurance 
coverage choices through farmers’ efforts to capture additional rents, but that 
these distortions may be mitigated by careful policy design and by market 
constraints such as inelastic acreage. It is also shown that the policy does not 
meet likely equity goals of helping those farmers who are most in need of risk 
management – the primary beneficiaries of the SURE program are the most risk-
neutral farmers, those who need it least.  

The remainder of this dissertation is structured as follows. Chapter 2 
consists of a new conceptual model of stochastic externalities and the resulting 
proposal for a new insurance policy for an industry of accidental polluters. 
Chapter 3 contains a presentation and analysis of existing crop insurance policy 
and its interaction with supplementary disaster insurance, and Chapter 4 
concludes. Bibliographic references follow Chapter 4, and are then followed by 
the Appendix, containing all of the tables referenced in Chapter 3. 
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Chapter 2. Accidents Happen:  

The Effect of Uncertainty on Environmental Policy Design 

 

2.1 Introduction: The Accidents Problem 
Accidents happen to all of us. In the course of our everyday lives, or in the course 
of operating a business, we all bear the risk of things going wrong. An externality 
is created when accidents harm others, or impose costs on them, and one does 
not account for the social costs of risky behavior - as when preventive activities 
may reduce the likelihood or severity of harms. The element of randomness 
inherent in stochastic externalities, which include environmental accidents such 
as the BP spill in the Gulf of Mexico, the chemical plant explosion at Bhopal, or 
livestock disease outbreaks of avian or swine flu, has important implications for 
environmental policy design. 
 Classical environmental economic policy was developed around 
externalities created with relative certainty, like the emissions of a coal plant, 
which are necessary to energy production at some level. We focus on the ‘holy 
trinity’ of environmental economic policy: Pigouvian taxes, abatement subsidies, 
and systems of tradable pollution permits (TPPs), as described in Baumol and 
Oates (1988). While all of these policies can achieve optimal levels of pollution, 
the difference lies in the allocation of resources; taxes take money out of the 
polluting industry, subsidies transfer money in, and tradable permits (or ‘cap-
and-trade’) keep all monies within the industry, but shift funds from ‘dirtier’ to 
‘cleaner’ firms in equilibrium. Due to the differing resource allocations among 
optimal policies, political economic considerations may affect which policy is 
actually used, with industry preferring subsidies, then cap and trade, then taxes 
(Buchanan and Tullock, 1975). 
 In this chapter, we introduce a conceptual framework for regulating an 
industry of risk neutral, stochastically polluting firms. We develop a general 
model allowing for information asymmetry, prevention and cleanup actions 
(both ex	
  ante and ex	
  post), and for the exact prevention mechanism to affect the 
probability and/or severity of accidents. The information asymmetry exists 
because polluters have better information; it may be very costly to know the 
costs of prevention and cleanup technologies for every firm in a large industry, 
and pollution being stochastic means the regulator cannot necessarily infer the 
agents’ activities. Thus, we focus on optimizing price-based policies of taxes and 
subsidies  because quantity-based regulations, such as TPPs, standards or 
command-and-control policies, are not always possible (Zivin et al., 2005). In this 
setup, we demonstrate uncertainty-adjusted versions of tax and subsidy policies, 
but show that uncertainty may exacerbate discrepancies between resource 
allocations when compared to the deterministic setting. 
 The key results show that tax policy must take the form of strict liability, 
equivalent to a pricing system where the accidental polluter owes for the social 
cost of all pollution, even though they do not supply the random trigger. In 
essence, agents’ actions are key components of the risk-generation process 
(Lichtenberg and Zilberman, 1988), a concept used to model the development 
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and interaction of risk factors over time. The agents play a key - and exclusive - 
role in influencing if, and how much, damage will occur, even though they are 
also accident victims themselves. Strict liability can be a politically (or some 
argue, morally) unpalatable solution, because accidental polluters need not have 
violated social norms or professional standards of care when they are forced to 
pay.  
	
   While tax policies take money out of the polluting industry (funds which 
might theoretically be used to compensate the people harmed), subsidy policies 
establish incentives by transferring money into the industry; this relationship 
holds true for established, deterministic policies, as well as for their stochastic 
counterparts which we introduce here. We demonstrate that subsidy transfers 
into the industry may increase under uncertainty because subsidies must pay for 
reductions below a threshold in	
   every	
   period, even when no accident occurs. 
Given the possibility of ability-to-pay or political economic constraints for the 
optimal tax and subsidy policies, we introduce a novel policy of mutual 
insurance, which attains optimal outcomes and leads to a resource allocation 
similar to that of tradable permits. 
 This paper is, by no means, the first to examine regulation of stochastic 
externalities. However, we introduce a key consideration that is not present in 
the relevant literature: the tradeoff between care and cleanup. The basic idea here 
is that economic agents (also individuals, firms, or farms, herein) face choices of 
ex ante care (also caution, precaution, prevention) to decrease the probability of 
an accident and/or its severity, and ex	
  post containment (also cleanup, mitigation, 
abatement) to lessen the harm to others once an accident occurs. Accidents 
releasing hazardous materials into the environment follow precisely this pattern; 
precautionary activities may include the imposition of safety controls and 
worker training, while mitigation efforts include notifying the public, or proper 
authorities, and actual cleanup of pollutants released. 
Thus, the primary innovation in this chapter is the new, generalized conceptual 
framework. Prior attempts have focused on only prevention, or only cleanup, but 
none have combined both considerations in a meaningful way. Puelz and Snow 
(1998) make an effort in this direction, but focus on issues of uncertainty with 
respect to legal outcomes and enforcement, like much of the law and economics 
literature (e.g., Shavell (1993), Innes (1999b), Kolstad et al. (1990), Friehe (2010)). 
They show that audit costs of evaluating damages leading to discrete jumps in 
the ‘penalty’ function, and incomplete reporting for small losses. We also add 
generality to the prevention mechanism by considering efforts that affect both 
probability and severity of accidents occurring. While previous work has 
ultimately shown that either myopic mechanism will yield equivalent results in a 
comparative statics analysis,1 none has accounted for the differing effects of these 
mechanisms on the menu of optimal policy choices available. We show that these 
considerations ultimately do matter, because the resulting moral hazard 
considerations limit how subsidy or compensation policies can actually pay 
stochastic polluters. 
 Other relevant literature can be grouped into three basic categories, 
beyond the classical externalities literature derived from deterministic 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Please see the later discussion of ideas advanced by Becker, Quiggin and Shogren. 
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frameworks. First, there is a literature of optimal second-best regulation under 
uncertainty, where the uncertainty arises from measurement error or information 
asymmetry, starting with Weitzman (1974) and including the agency literature of 
Holmstrom (1982) and many more. These articles do not focus on externalities 
per	
   se, but instead deal with regulatory information problems, whereby 
efficiency conditions are difficult to meet. Our framework incorporates some of 
these informational challenges to inject realism into the analysis; we allow agents’ 
actions and their types, or inherent characteristics, to be unobservable to the 
regulator - and we demonstrate conditions under which the policies we propose 
are robust to the resulting problems of moral hazard (actions unobservable) and 
adverse selection (types unobservable). We also show that policies must remain 
adaptive to state-dependent outcomes, where the optimal levels of pollution and 
containment efforts will depend on the state of nature, because price or quantity 
controls fixed ex ante are constrained to be second-best (Weitzman).  
 Beyond issues of uncertain information, there is literature on regulating 
stochastic externalities which is concerned with uncertainty due to randomness 
of outcomes. However, these papers often use simplified models, where 
accidents have fixed severity and where the key results are driven by risk 
preferences. For example, Just and Zilberman (1979) rely on risk preference to 
demonstrate the asymmetry of taxes and subsidies for stochastic externalities, as 
do Zivin et al. (2005) when evaluating Coasean bargaining under a continuum of 
property rights regimes. While it is clear that the Coase Theorem can hold for 
stochastic externalities under risk neutrality, the implications for classical 
environmental policy and the associated political economic considerations have 
not been explored. Risk neutrality is an appropriate starting point for the 
analysis because our framework focuses on large, infrequent environmental 
accidents, of which the perpetrators are generally large corporations (who act as 
profit maximizers). The lack of risk preference is also a staple of welfare 
economics; it implies that ‘pure transfers’ do not change aggregate welfare - 
which, in this context, allows for a straightforward comparison of stochastic 
externality policies vis-a-vis deterministic ones.2 
 Finally, there is the classic accidents literature,3 which has evaluated legal 
liability standards according to economic efficiency measures, like Pareto 
optimality. However, the frameworks have focused only on ex	
  ante	
  care choices 
(Edlin (1994), Shavell (1985) and (1987), Landes and Posner (1983)),4 or ex	
   post 
remediation of damages (Innes (1999b)), which limits the scope of their policy 
prescriptions. For example, the idea of due care, where liability is limited or zero 
when precautions conform to industry or social norms, focuses on cases where 
inputs (risky behaviors) are observable.  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Zivin and Small (2003) have shown that actions can be invariant under risk-aversion 
for both parties, though it requires strong assumptions: all agents have known, identical, 
constant absolute risk aversion utility functions. Outside this special case, it is clear that 
analytical results will be driven by assumptions about utility functions and 
endowments. 
3 e.g., Shavell (1980), Polinksy (1980), Cooter and Porat (2000), among many. 
4 These papers do, however, focus on the role of outside parties (victims) in the 
probability of an accident occurring. Here, we focus on one party’s ability to control the 
extent of damages incurred by others. 
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 Unfortunately, the due care approach can only be optimal when ex	
  post	
  
containment efforts are nonexistent, or regulated similarly. Our paper innovates 
by introducing a general, and complex, risk generation function allowing for ex 
ante and ex post damage control activities, and for prevention that acts on 
probability and/or severity of accidents. We focus on liability-based regulation 
to address cases where outcomes are observable, but risky inputs may not be. 
This approach is especially useful for heterogeneous polluting firms - because 
varying risk profiles imply varying standards of due care, with attendant 
information requirements that may be costly to obtain. 
 We start the analysis by developing optimal stochastic externality taxes, to 
show that only a system with the marginal incentives of strict liability can obtain 
socially optimal outcomes when standards or quantity-based policies are 
infeasible. That is, the regulator needs no information about agents’ choices, as 
long as the damages can be measured and traced to their source.5 Unfortunately, 
strict liability can mean imposing a large fine on a party that has already suffered 
a substantial loss. This may be socially distasteful, politically infeasible, or 
practically impossible if there are bankruptcies, which is the so-called judgment-
proof problem (see for example, Shavell (1986), Beard (1990), Polborn (1998), 
Innes (1999a)).  
 When a strict liability regime is infeasible, we derive a subsidy policy 
which can attain the social optimum even when agents must voluntarily opt-in, 
or when they are judgment-proof. To demonstrate this policy in a broad setting, 
we provide a general framework for the accident mechanism and the effects of 
precautionary activity, agnostically allowing for precaution to affect the yes/no 
probability of an accident occurring and/or the severity of an accident if it does 
occur. Our framework supports Quiggin’s (1992, 2002) contribution that 
comparative statics results are unchanged whether care efforts affect severity 
(self-insurance) or accident probability (self-protection), as defined in Ehrlich and 
Becker (1972), but we show that these features do affect the optimal design of 
subsidy policies, and the volume of transfers into the polluting industry that they 
require. Specifically, we show that self-protection forces the subsidy to pay in 
every period, even if no accident occurs, and we show that self-insurance forces 
the subsidy to pay for all reductions below a decoupled threshold, rather than 
paying for actual pollution reductions. In the agnostic case of either prevention 
mechanism being active, both prescriptions hold and the optimal subsidy 
amounts to an ex ante bribe for agents to participate in the strict liability regime. 
 In cases where high costs make subsidies infeasible, we propose a system 
of mandatory insurance which can still reach an optimal solution. This policy 
induces optimal choices of care and cleanup, but it keeps all monies within the 
polluting industry in expectation, so it is budget-neutral. The insurance policy 
thus has parallels to existing policies, like a carbon tax, whereby optimal 
behavior is induced but no payment is made to the parties suffering from global 
warming. In addition, we show that the within-industry distribution of resources 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 For a thorough review of optimal regulation when damages cannot be traced, see 
Segerson (1988), Swierzbinski (2002), and Millock et al (2002) for theory on collective 
punishment, Ribaudo and Caswell (1999) for documentation of actual policy using the 
threat thereof, and Hamilton and Zilberman (2006) for an evaluation of voluntary 
traceability to capture consumer willingness-to-pay. 
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under this policy is similar to that of tradable pollution permits; ‘dirtier’ firms 
end up subsidizing ‘cleaner’ firms according to the disparities between their 
optimal levels of pollution. 
 The next section introduces a general framework of decision-making 
under uncertainty (a principal-agent game), with the innovation that agents’ 
actions before and after the accident can affect economic outcomes. Then, we 
develop optimal tax and subsidy policies, demonstrate the key results, and 
introduce a mutual insurance policy which is revenue-neutral for the regulator in 
expectation. We conclude with a discussion of policy implications and areas for 
future research. 

2.2 Optimal Regulation of a Stochastically Polluting Industry 
We frame the accidents problem in terms of a principal-agent game between one 
regulator and a continuum of accident-prone agents, representing an industry. 
The regulator sets the rules of the game, recognizing the social cost of potential 
and realized accident damages, with the objective of maximizing total welfare, 
and the agents maximize expected profits. Each agent faces a known distribution 
of accident outcomes, F, an a priori choice of care to prevent accidents from 
occurring and/or decrease their severity, and a choice of cleanup efforts if an 
accident does happen. The agents are differentiated by type, which is a 
characteristic representing the inherent riskiness of their operations. For an oil 
company type might constitute onshore vs. offshore drilling, and for industry it 
may reflect production using more hazardous chemicals. As discussed above, the 
regulator cannot observe agents’ actions (or type) or an accident’s innate severity 
if it occurs, but both parties are aware of any damages, which are measurable 
and traceable to their source. 
 Our framework closely follows the notation of Hanley, Shogren and White 
(2007, p.401), herein “HSW”. We start by considering the decisions of an 
individual agent, with riskiness type . Let w denote the benefits of economic 
activity, and let L denote a personal loss to the agent, which is increasing in 
accident severity, if an accident occurs. The ex ante choice of prevention 
expenditure is denoted z, which can be self-protection (lower probability of 
accident occurring), self-insurance (decreased severity if an accident does occur) 
or both. Prevention efforts might include avian flu vaccination by a poultry 
producer, the use of water sprayers and overflow/blow-off tanks at chemical 
plants, or measures to reduce the likelihood and severity of an oil spill. 
 If an accident does happen, the accident severity is parameterized by the 
continuous, non-negative random variable, ! !" = 0,![ ] , which could be 
infection rate or viral count, or explosion or spill severity, depending on the 
application. The severity parameter could also indicate an accident happening in 
a sensitive location, as with a fire in dense apartment units, an oil spill in the 
habitat of an endangered species, an industrial accident in a city center, or a 
disease outbreak in a vulnerable population. We consider this parameter to be an 
increasing hazard, which is to say that a higher means a more harmful accident, 
and a realization of  means no accident occurs. The accident severity 
follows a probability distribution, , which is dependent 
both on an agent’s type, and on his prevention efforts. 

!

!
! = 0

 ! ! F ! ;", z( ) :#$ 0,1[ ]
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 If an accident does occur, there is social damage , from the spread 
of fire, disease or the release of hazardous substances, which is denominated in 
dollars. An agent can reduce the damage by an abatement expenditure, a, where 

, but with decreasing marginal returns, so Daa > 0 . Abatement measures 
can include assistance with fire control and cleanup of hazardous materials, 
slaughter of sick animals and sterilization of facilities and equipment, and 
notifying proper authorities to prevent the spread of harm. Clearly, the issue 
here is that cleanup efforts are costly to the accident victim, but they only benefit 
society. Accounting for social costs, as the agent will do when behaving 
optimally, yields the objective function: 

E ![ ] = w ! z ! L !( )+ D ! ,a !( )( )+ a !( )( )dF ! ;", z( )
0

!

"  

where E denotes the expectation operator and the integral is the Stieltjes integral. 
We assume that z and !  interact with F in the sense of first-order stochastic 
dominance, so that z makes the distribution unambiguously better and !  makes 
it unambiguously worse. Formally,  

F ! ;", z( ) !
FSD
F ! ;", z '( ) :!z < z '  and 

F ! ;", z( ) !
FSD
F ! ;" ', z( ) :!! <! '  

where dominance in this case implies a ‘worse’ distribution because our focus is 
the distribution of the social cost of accidents. Equivalently, we can say Fz ! 0!"!   
and strictly greater for some ! . Similarly, F! ! 0!""  and strictly less for some ! . 
We also assume that prevention experiences decreasing marginal returns, so 
Fzz ! 0 , because damage-control spending uses up the lowest cost measures first.  
 While restrictive for ranking lotteries, the first-order stochastic dominance 
assumption is actually quite general when evaluating accident prevention 
mechanisms. Recall the two common specifications of self-protection and self-
insurance. Self-protection, where care affects only the probability of an accident, 
often models expected damages as p z( ) ! DdF ! ;"( )

"
# . Similarly, self-insurance, 

where care only affects severity when the accident does occur, might show 
damages modeled as . Our agnostic model of generic first 
order stochastic dominance allows either or both of these specifications to hold. 
	
  

D ! ,a( )

Da < 0

D ! , z,a( )dF ! ;"( )#
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Figure 1-1: The Risk Generation Process 

	
  
Figure 1-1 presents the risk-generation process captured by our framework. We 
solve for optimal behavior through a backwards inductive approach; first, we 
develop an optimal abatement response for every outcome if an accident does 
occur, and then we use this information to solve for the ex ante care choice. Since 
no accident occurs when ! = 0 , the agent faces two basic scenarios: 
         with probability ; 
     otherwise, 
where the accident scenario is dependent on the realized severity, . Thus, if an 
accident occurs, the agent solves: 

 
where the optimal abatement expenditure is given by setting the marginal cost 
equal to the marginal benefits of damage reduction in the first order condition 
below: 

. 
 The second order condition, , ensures that the optimal choice 
exists and is unique, as long as the initial benefits are greater than the marginal 
cost - which we assume is the case, so abatement activities are worthwhile at 
some level. Taking comparative statics results in the traditional fashion, we find 
that  responds to changes in  according to the sign of , about which 

u = w ! z F 0( )
u = w ! z ! L "( ) ! D " ,a( ) ! a

!

max
a

! = w " z " L #( ) " D # ,a( ) " a

!Da = 1
!Daa < 0

a* !( ) ! !D" a
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we have made no assumption. For example, a more severe industrial fire might 
burn hotter, causing water sprayed on it to evaporate rapidly - an example of 
decreasing returns to the water expenditure. In essence, the cross-partial effect 
boils down to an empirical question - specific to the problem at hand - as to 
whether abatement experiences increasing or decreasing marginal returns when 
disasters are more severe. 
 Since the optimal containment response is deterministic, given the state of 
nature, we are equipped to evaluate the up front choice of care - with this 
information in mind. The ex ante choice is characterized by the following 
problem:  

max
z
E ![ ] = w ! z ! L + D* + a*( )dF " ;#, z( )

0

"

"  

where , and the other arguments are suppressed for clarity. The 
optimal care investment is given implicitly by the first order condition:  

!E u[ ]
!z

= "1" !
!z

L + D* + a*( )dF ! ;", z( )
0

!

#
$

%
&

'

(
) = 0  

To verify an interior solution is possible, let ! "( ) ! L !( )+ D ! ,a* !( )( )+ a* !( )  
denote the social cost of an accident, which we know to be monotone increasing 
in !  by the envelope theorem. Then, 

!
!z

! "( )dF ! ;", z( )
0

!

" = !
!z

" !( ) #F ! ;", z( ) 0
!
$ F ! ;", z( )d! "( )
0

!

"
%

&
'

(

)
*

= !
!z

" !( )$ F ! ;", z( )!" "( )d!
0

!

"
%

&
'

(

)
*

= $ Fz ! ;", z( )!" "( )d!
0

!

" < 0

 

where the first equality follows from integration by parts. The second equality 
follows from observing that F !( ) =1!!z  and converting the Stieltjes integral to a 
Riemann integral. Therefore, the first order condition amounts to setting: 

Fz ! ;", z( )!" "( )d!
0

!

! =1 , 

and accordingly, the second order condition for the care choice is: 

Fzz ! ;", z( )!" "( )d!
0

!

! < 0 . 

 As with the abatement choice, we assume that the marginal benefits of 
prevention are initially greater than the marginal costs, so care activities are 
worthwhile. Thus, the optimal prevention choice, z, which might be investment 
in avian flu vaccine, or emergency training for workers, is selected such that the 
marginal benefits of preventing harm to the producer and limiting externality 
exposure for others are set equal to the marginal cost of these efforts. The second 

D* ! D " ,a* "( )( )
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order condition is everywhere negative, ensuring concavity, so the optimal 
choice  exists for each agent, and is unique. 
 Finally, there is a continuum of agents, of unit measure, who are 
differentiated by a type parameter, , which is a continuous variable with 
probability distribution . The type parameter can be considered as 
riskiness, or a propensity for more frequent and/or severe accidents. That is, a 
higher  means a more risky agent. Riskiness might be a geographical element, 
like location within a city – as pertains to disease or fire risk, though we assume 
this parameter to be unobservable by the regulator, in general. Type could also 
index outdated equipment or the use of hazardous chemicals, or high interaction 
rates with other farms for the livestock producer. 
 For the care choice, we derive comparative statics results for the effect of 
increasing an agent’s type, obtaining:  

!z*

!!
= " !

2E u[ ]
!z!!

!2E u[ ]
!z2

=
Fz! " ;!, z( )!" "( )d!

0

!

#

" Fzz ! ;", z( )!" "( )d!
0

!

#
. 

So, optimal prevention will adjust to an agent’s type according to the sign of Fz! . 
A traditional assumption is more riskiness will increase the marginal returns to 
care efforts, Fz! > 0 , which is consistent with a Cobb-Douglas specification, with 
multiplicatively separable risk-generating functions from the environmental 
health literature, as in Starr (1985), and with exponential dose-response functions 
used in epidemiology (Wilson and Crouch, 1987; Bogen, 1995; Lichtenberg, 2010). 
However, this assumption can be controversial, as noted in HSW (2007, p.403), 
and is likely a problem-specific empirical question - as was the case in our 
discussion about damage containment efforts and accident severity, above. We 
leave for future research the examination of cases where type means more 
frequency but lower severity (i.e., not an FSD shift), as might occur when a 
meter-maid has a high probability of car accidents in congested spaces, but 
collisions very often occur at low speed. 
 Given the above setup, we are able to characterize the social optimum as 
the maximum, expected aggregate welfare - with optimal choices by all agents, 
ex ante, and optimal response strategies ex post. Since !  denotes individual 
profits, let !  denote the aggregate, so the maximal, expected total welfare is 
defined as:  

E ![ ]* = w " z " L + D* + a*( )dF ! ;", z* "( )( )
0

!

#
$

%
&

'

(
)dG "( )

*
#  

where the loss, damage and abatement terms are zero when no accident occurs, 
but are optimized if it does. This specification also allows for each agent to 
experience his own realization of , whose correlation across agents we have not 
yet addressed. Under our risk neutrality assumption, correlation would not 
affect the expectation operator, but future research may be needed to examine its 
effects when risk preferences are considered. 

z*

! "#
G :!" 0,1[ ]

!

!
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 We now turn to developing policies which attain the social optimum; in 
essence, a new triumvirate of environmental policies under uncertainty. Before 
doing so, we turn briefly to the unregulated case for comparison.	
  

2.3 The Unregulated Case 
Without a liability standard, or other form of regulation, agents will choose sub-
optimally ex ante, and there will be no ex post	
   response to contain accidental 
harm to others.6 This might occur if a livestock producer is not responsible for 
spreading swine flu, or if an oil refinery is not responsible for releasing air 
pollution.  In the context of our framework, the unregulated case is suboptimal 
because the second stage disappears.7 
 Thus, the unregulated agents only solve the problem of making first-
period prevention investments according to their own best interest:  

max
z
E !UR!" #$ = w % z % L "( )dF ! ;", z( )

&
'

! z
UR = %1+ Fz " ;#, z( )L!( )d!

0

!

' = 0
. 

As in the optimal case, the unique solution is defined implicitly by the first order 
condition. The agent does incur some personal loss as a result of the accident, so 
the prevention efforts still exist at a positive level in the absence of regulation, 
but no regulation means agents will under-prevent, relative to the social 
optimum. 
 
Proposition U1:  
Proof: Follows directly by inspection. First, fix the agent’s type, . Then, by 
substitution of the first order conditions, we obtain:  

Fz zUR
*( ) !L!( )d!

0

!

" = Fz z
*( ) !!"( )d!

0

!

"

= Fz z
*( ) ! L! + D!

* + a!
*( )( )d!

0

!

"

> Fz z
*( ) !L!( )d!

0

!

"

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 Neglecting, of course, any utility payoff from ‘doing the right thing.’ 
7 Consider the application of our framework to the poison-gas disaster at the Union 
Carbide pesticide plant in Bhopal, India in 1984, as documented by Eckerman (2005). 
The chemical manufacturer was operating essentially as if unregulated, as evidenced by 
the choices made. Care: safety measures were turned off, others left on were inadequate, 
and the operating crew was both under-trained and undermanned – all in order to save 
on the costs of these measures. Methyl isocyanate was also used instead of less 
hazardous, but more expensive alternatives. Containment: Once the accident occurred (a 
pressure spike, causing poison-gas to be released into the surrounding community), no 
efforts were made to notify authorities of the gas leak (it was denied at the moment of 
the disaster), and no assistance was provided to medical responders about the nature of 
the chemical exposure suffered by accident victims. 

zUR
* < z*

!
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Since, Fzz ! 0!"!  and strictly less than zero for some ! , it follows that z* > zUR* . 
 

 The preceding proposition verifies our earlier claim that some prevention 
will still exist - the polluting firm has its own losses to protect, after all - but that 
it will be lower than the optimal level because of a disregard for social accident 
costs. Unregulated behavior and the associated expected profits will also inform 
the participation decision when agents must be induced to accept the subsidy 
program. 

2.4 Optimal Policy – Strict Liability/Penalty System 
As with the point-source externality problems already assessed in deterministic 
frameworks, tax policy under uncertainty can maximize social welfare similarly 
by forcing polluters to “internalize the externality” – that is, they will account for 
the social cost of their actions as part of their decision-making process. In fact, we 
explicitly demonstrated this point in the derivation of the social optimum, above. 
The key element of stochastic pollution taxes is that the tax amount, or even the 
unit pollution tax, cannot be fixed in advance (as in Weitzman, 1974) because the 
optimal containment response is state-dependent - which would lead to second-
best outcomes. Thus, we propose that a policy regime of strict liability will lead 
to socially optimal behavior by making agents liable to pay D after an accident, 
perfectly aligning their personal incentives with the social objective.  
 Some considerations are worth mentioning here. The liability system 
proposed here relies on perfect detection and traceability of the social damages, 
either by regulators or by the individuals affected, and no transaction costs of 
enforcement. However, it has been shown by Polinksy and Shavell (1992) that 
costs of detection and enforcement are really just a part of the externality, so 
these costs can be included in the damage function, D, without loss of generality. 
Even with the detection and traceability problem solved, other constraints might 
still exist; as van't Veld (1997) suggests, imposing high penalties may not be 
practical because of limited ability to pay - bankruptcies create an effective upper 
bound on financial penalties, preventing proper alignment of incentives for low 
probabilities of detection. This is the judgment-proof problem, which Innes 
(1999a) addresses in a liability setting by applying a stochastic penalty to 
balances the distribution of outcomes by mandating over-payment of fines above 
a certain threshold. This approach, of course, breaks down when optimal 
responses need to be maintained post-accident. 
 Thus, the problem of inability to pay can play a critical role in policy 
formation. While it might be argued that strict liability is the “purest” form of 
optimal regulation, since collected fines could theoretically be distributed to 
those harmed, many environmental taxes exist only to properly align incentives - 
there is often no mechanism for the actual payment of damages to those harmed. 
For example, carbon taxes in OEDC countries are not readily distributed to a 
farmer in Afghanistan who loses his farm due to global warming. Thus, for those 
unable to pay the accidental damages, alternative policies may be sought to 
induce optimal producer behavior. 
 Subsidy programs may appear when there is a historical right to pollute, 
when there is limited ability to pay, or when there is political power that 
interferes with enforcement of strict liability (Bulte et al, 2008). The term, 

 !
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payment for environmental services, reflects exactly this situation where 
individuals must be induced to voluntarily comply with environmental policy. 
We show in the next section that a compensation policy can still attain socially 
optimal outcomes, both ex ante and ex post, but that its design must 
fundamentally differ from its deterministic counterpart. 

2.5 Compensation Policy – Abatement Subsidies 
Consider a classical abatement subsidy in a deterministic setting. Depending on 
the amount of information available to the environmental regulator, agents can 
be compensated for actual abatement of damages or for curtailing production to 
limit emissions. In a stochastic environment, the optimal behavior is state 
dependent, so the ex ante care investment is important, but it is not sufficient for 
an optimal outcome. We demonstrate two special issues that arise: first, if care 
affects the probability of an accident then the subsidy must pay each agent in 
every period - even if no accident occurs. This requirement alone may test a 
regulator’s budget constraint if accidents are rare.  
 Second, if care affects severity then the subsidy cannot pay compensation 
for actual abatement of damages - the payment must instead be based on 
abatement below a fixed (decoupled) threshold, e.g., . The decoupling 
requirement exists because compensation tied to actual abatement perverts 
incentives; it encourages risky behavior by rewarding agents when  is 
higher. There may also be practical measurement issues, since actual abatement 
is calculated based on un-contained damages, which may be unobservable, or 
may never come into existence.  
 Combining these two considerations, where care affects both probability 
and severity, or where the exact mechanisms are not known by the regulator, 
necessitates that agents be compensated for abatement below a fixed threshold, 

, in every state of nature. Equivalently, agents may be paid an ex ante	
  bribe to 
submit themselves to participation in a strict liability regime, preserving optimal 
incentives at the margin. 
 Note that there is nothing about this specification that requires the 
subsidy payment to be positive in all states of nature; for example,  
reduces to the optimal tax policy of the previous section. Therefore, the material 
distinction between the subsidy and tax policies is that a subsidy must induce 
voluntary participation from the accident-prone agents. 
 The first step in developing an optimal subsidy policy is recognizing that 
all agents must participate, because non-participation by any non-zero measure 
of agents means they make (suboptimal) unregulated choices. For the moment, 
we will assume universal participation to demonstrate the key results, and then 
evaluate the participation constraint explicitly in the context of the political-
economic and budgetary implications of the subsidy policy under uncertainty. 
 For the following propositions, an agent’s expected profits when 
participating in the subsidy program are given by: 

S = D0 ! D

D ! ,a = 0( )

D0

D0 = 0
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E ! S!" #$ = w % z + S % L % a*( )dF " ;#, z( )
0

"

&

= w % z + D0 % L %D
* % a*( )dF " ;#, z( )

0

"

&
 

	
  
Proposition S1: Suppose  is large enough to satisfy the participation constraint 
for all agents (universal participation), and suppose , so that 
the subsidy only pays in states of nature where an accident occurs. If 

, then the resulting choices will not be socially optimal for any agent. 
Proof: This is a policy that pays for all abatement below a threshold, except when 
there is no accident. The expected profits for a subsidized agent are thus:  

E ! S1!" #$ = w % z + D0 % L %D
* % a*( )dF ! ;", z( )

! &0
'

= w % z + D0 ( 1% F 0;", z( )( )% L + D* + a*( )dF ! ;", z( )
0

!

'
 

where the variable arguments in the integrals are the same because losses, 
damages and abatement are zero when no accident happens ( ). Maximizing 
expected profits of this form yields the first order condition:  

Fz ! ;", zS1
*( )!" "( )d!

0

!

! =1+ D0 "Fz 0;!, zS1
*( )  

where the right-hand side is less than one. Substituting in the first order 
condition for the social optimum, we see that this subsidy produces a suboptimal 
(lower) level of ex ante care because Fzz < 0 : 

Fz ! ;", z
*( )!" "( )d!

0

!

! =1<1+ D0 "Fz 0;", zS1
*( ) = Fz ! ;", zS1

*( )!" "( )d!
0

!

!  

 
	
  
Proposition S2:	
  Suppose  is large enough to satisfy the participation constraint 
for all agents (universal participation), and suppose  in all states of 
nature if . If  for some , then 

 will not achieve the social optimum. That is, the subsidy 
threshold cannot pay for actual damage reductions due to abatement post-
accident. 
Proof:	
  Expected utility is given by: 	
  

E ! S2!" #$ = w % z + D ! , 0( )% L %D ! ,a* !( )( )% a* !( )( )dF ! ;", z( )
0

!

& 	
  

Taking a first order condition yields:  

D0

S = D0 ! D :D " 0

dF 0( ) dz > 0

! = 0

 !

D0

S = D0 ! D
dF 0( ) dz > 0 dF !( ) / dz > dF 0( ) / dz !

D0 = D ! ,a = 0( )
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Fz ! ;", zS2
*( ) !" "( )!D! ! , 0( )( )d!
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# Fz ! ;", zS2
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!
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which implies prevention will be smaller than optimal, exactly as in Proposition 
S1. 

 
 Combining the insights of Propositions S1 and S2 shows that when 
prevention activities affect both the probability and severity of accidents, or 
when the regulator does not know the exact, effective mechanism of prevention 
efforts, a subsidy payment will achieve socially optimal behavior if it pays in 
every period, based on abatement below a decoupled threshold. As discussed 
above, one equivalent method of decoupling payments in this fashion, and 
making sure they pay in every state of nature, is simply paying  to each agent 
ex	
   ante as compensation for participating in a system of strict liability for 
accidental environmental damages. 
 Now it remains to derive the conditions for fulfillment of the participation 
constraint, to ensure that all agents voluntarily participate in the subsidy 
program. Using the decoupled ex ante payment as a guide, Condition 1 says that 
the expected profits with no regulation must not exceed the expected profits 
generated by participation in the subsidy program, for all agents: 
Condition 1:  	
   	
  
By comparing the objective functions, Condition 1 reduces to: 

 

where , and the sign of the sum is known because  minimizes 
the sum of , while  does not.  
 Thus, in expectation, the subsidy threshold must exceed the abatement 
expenditure and the social cost of accidents, a* + D* , which together we will dub 
the total externality cost (TEC = D* + a* ). Put another way, Condition 1 shows 
that (in expectation) the subsidy payment, net of the expected abatement 
expenditure, must exceed the profits lost by an unregulated agent who 
voluntarily switches from the unregulated choice, , to the socially optimal . 
In addition, we demonstrate a critical relationship of  with the TEC in the 
following proposition. Namely, that the threshold will be bounded below by the 
expected, optimal-response TEC of the first-best care choice, , and it will be 
bounded above by the hypothetical TEC corresponding to the unregulated 
prevention choice. 
 
Proposition S3: If the threshold D0  is paid ex ante and the participation constraint 
(Condition 1) is satisfied with equality, then	
   .	
  

 !

D0

E ! S"# $% & E !UR"# $% '(.

D0 ! D* + a*dF " ;#, z*( )$ % z* ! zUR
* + LdF " ;#, z*( )$ ! LdF " ;#, zUR

*( )$
& ! z +! E L[ ] > 0

! z = z* ! zUR
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z + E L | z[ ] z* > zUR
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Proof: Let Condition 1 be satisfied with equality. Payment of  ex ante means it 
does not vary with the state of nature, so: 

 

where the ∆-notation follows that of Condition 1, and TEC*  denotes optimal-
response with respect to abatement. The signs are known because the care 
choices minimize their respective loss-plus-cost functions. 

 
 Thus far we have established conditions for optimality of the subsidy, 
depending on universal adoption thereof, but it is important to note that this 
program has higher information requirements than strict liability. Specifically, 
the subsidy must pay from a threshold high enough such that the participation 
constraint is satisfied for all agents, so the regulator needs some information 
about how profits might change when switching from an unregulated to a 
regulated environment. However, any subsidy at the necessary level or higher 
will be sufficient to attain optimality - it will just do so at increased budgetary 
cost with a higher level of transfers into the polluting industry. Similarly, the 
subsidy program can thus solve the judgment-proof problem (when 
bankruptcies prevent the proper alignment of incentives) by raising  to a level 
where polluting firms are always able to pay their liabilities.  
 To guarantee universal participation, it is clear that the regulator needs to 
know TEC information for the highest cost type, which may or may not be the 
riskiest (highest) type. Consider a threshold, , that satisfies the 
participation constraint with equality, by type. Applying the envelope theorem, 
we obtain:  
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where the first term has the opposite sign of  and the second term is positive 
because type leads to an objectively worse distribution of accident outcomes.   
 There are two effects, an externality effect and a switching effect, which 
arises from the impact of changing type and care on the expected personal loss. 
In general, Fz! ! 0 is sufficient for the signs to agree and for the threshold to be 
increasing in type. However, we noted that the sign of this cross partial is an 
empirical question, and the traditional assumption (based on Cobb-Douglas 
specifications, etc.) is the opposite: Fz! > 0 . Our intuition is that the externality 
effect dominates in many cases we care about, and though we do not 
demonstrate them rigorously, this intuition is supported by ideas like ‘the 
externality and abatement cost are large relative to the personal loss,’ and/or ‘the 
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marginal effect of type on the returns to care is small, relative to the effect of type 
on the externality distribution.’ 
 So, if the participation threshold is everywhere increasing in type, then the 
regulator need only calculate the threshold for the highest one. If not, then he 
must know the ‘worst’ type, in terms of highest total externality cost and lost 
profits from regulation. Unfortunately, paying decoupled subsidies in every 
period when subsidies must hold for all agents - and accordingly, for the most 
costly type - means outliers or skewness in the distribution of agents may make 
the optimal threshold very high relative to the participation constraint of most 
agents.  
 For example, chemical plants using highly toxic inputs may face higher 
externality costs in expectation, but the decoupled subsidy requires plants with 
less-toxic inputs to receive the same transfer, if the regulator cannot observe type. 
Thus, the information problems of the regulator may inflate the volume of 
subsidy payments to the polluting industry, or - to put it another way, the value 
of information about polluters is the direct reduction of information rents paid 
based on type. However, the participation constraint only binds on the expected 
optimum of total externality cost; the optimal	
   total cost may be substantially 
lower than uncontrolled damages, as when prevention or abatement are 
inexpensive. 
 Thus far, we have considered two scenarios where the accidental 
externality problem is optimally regulated; either by a penalty system (or one of 
strict liability) that potentially places a heavy burden on accident victims, which 
might also comprise an industry with strong political influence, or by a 
compensation system where money flows into the polluting industry, and the 
volume of transfers increases for infrequent accidents (payment in every period), 
worse information, or more variation across producers’ risk profiles.  
 In essence, a strict liability system is characterized by agents paying for 
what is known, but under a subsidy the regulator pays for what is not known, 
because the threshold has to cover the threshold for the worst type in order to 
obtain the optimal outcome. As a result, while the penalty policy may face ability 
to pay constraints from the polluters, the subsidy policy may face an ability to 
pay constraint for the government. Thus, we conclude our analysis by discussing 
the possibility of a mutual insurance policy, one that would be budget neutral for 
the regulator by keeping all funds within the polluting industry, in expectation. 

2.6 Revenue Neutral Optimal Policy: Mutual Insurance 
The third major tool of environmental policy is a system of cap and trade, or 
tradable pollution permits. While the state-dependent nature of stochastic 
externalities (when cleanup is possible), and realistic restrictions on government 
information about damage control technologies, prevent quantity-based 
environmental policy per se, we introduce a third policy to accomplish similar 
goals while attaining optimal behavior under uncertainty. The new policy 
involves mutual insurance for the polluters, while functioning like a system of 
bonded liability, and it retains the flavor of a system of tradable permits: revenue 
neutrality for the regulator (in expectation) because no funds move into, or out of, 
the polluting industry, and subsidization of ‘safer’ firms by riskier ones. 
 The insurance policy we propose functions similarly to the subsidy policy 
outlined in the previous section, but it is funded by the firms themselves and 
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relies on the regulator imposing compulsory participation because there is no 
incentive from outside funds.  Because participation cannot be made voluntary 
(which would require outside funding, as with the subsidy), the volume of 
transfers may be lower under the insurance program because abatement costs 
and forgone unregulated profits need not be compensated to achieve optimality. 
 As with the subsidy, the insurance program is structured to pay 
compensation below a specified threshold, , in every period. However, since 
participation is mandatory, the threshold need not be tied to the highest type. 
Instead, our goal is assigning a threshold that leads to a balanced budget in 
expectation, where  and the premium, P, are the same for all agents. An 
agent’s expected profits under the insurance program are thus given by:  

E ! I!" #$ = w % z % P + DI % L + D* + a*( )dF
0

"

& . 

The balanced budget constraint can be expressed as: 

 

which necessarily contains a degree of freedom between the threshold faced by 
the firms and the premiums collected - so either DI  or P can be established, and 
then the other calculated accordingly. 
 The key result of this program is that imposing a balanced budget means 
that all firms’ net expected profits from participation (which may be negative) 
are based on their variation from the average expected level of environmental 
damage. To clarify this point, consider the insurance program where P = 0 , so 
that: 

. 
In this scenario, the expected profit function for each agent looks remarkably 
similar to that of the subsidy program outlined in the previous section. Each 
agent pays no premium up front and receives a decoupled subsidy payment of 
DI  in the ex ante decision-making stage. However, the level of the subsidy is set 
according to the average optimal environmental damage, so that some agents 
will exceed the threshold amount of damages and receive a negative subsidy (net 
loss), in expectation, while others will beat the threshold and experience a net 
gain. To complete the cycle, once accidents are realized ex post, all liability 
payments are paid into a common pool, leading to expected budget neutrality 
because some firms are net payers and others are net receivers of funds from the 
pool. 
 While there are distributional disparities among members of the industry, 
these differences are similar across all of our optimal stochastic externality 
policies, only subject to different baseline levels of wealth: the ‘cleaner’ or safer 
types are always better off, in expectation, than the riskier ones, when we define 
relative riskiness not by the type parameter necessarily, but by the optimal, 
expected TEC discussed in the subsidy section (which may be monotone in type, 
anyway). This process of subsidization from high-cost to low-cost agents mimics 
the results of deterministic cap and trade policies, where agents with higher costs 

DI

DI

DI ! D* dF " ;#, z* #( )( )$$ dG #( ) = P
% DI ! P = D*dF*dG$$

DI = D*dF*dG!!



 

21 
  

of pollution control subsidize those who can carry out abatement more efficiently. 
However, unlike the outcome of tradable permits schemes this redistribution of 
resources is not an essential feature of the insurance policy design - instead, it is 
simply the by-product of the information problems we have assumed 
throughout.  
 If types are observable to the regulator, then each agent could be insured 
individually, leading to revenue neutrality for all, in expectation. Observability 
of types is the only such condition, though, because otherwise agents either 
collect or pay information rents when they participate in a compensation policy.  
To see this, consider the expected profits of an agent, , operating under the 
mutual insurance program, in the special case where  and : 
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 Thus, outside the private costs experienced by each agent, the net cost (or 
profit) from participation in the subsidy program is given by the information 
rents - the departure of expected damages, E D*!" #$ , from the industry average. 
Each agent’s net expected disbursement from the insurance pool is given by his 
information rent, resulting from the regulator’s inability to observe his type, 
which is given by: 
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where the final equality results from integration by parts and simplifying, as 
above. Next, we implicity define the “average” agent in the sense of expected 
optimal environmental damages, so !̂ = ! :R !̂( ) = 0 . Thus, “above-average” 
agents are riskier and will be net payers into the pool, in expectation, while safer 
firms of below average riskiness will experience a net expected profit: 

! ! <( )!̂ " R !( ) ! <( )0 , 
because F! < 0  and the integral runs in the negative direction for ! > !̂ . The 
resulting resource allocation is analogous to that of cap-and-trade policies for 
deterministic externalities - dirtier firms subsidize cleaner ones, defined relative 
to the industry average, because they do more environmental damage - even 
when their behavior optimally accounts for the social costs of production. 

!
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2.7 Discussion 
The value of information about polluters is apparent - hidden types translate 
directly to information rents when policy is constrained to a compensation 
mechanism like subsidies or insurance. As a result, the budgetary cost, or the 
necessary volume of total transfers, of compensation-based policies can be 
lowered when polluters’ inherent riskiness is known. Another benefit of 
exposing types is allowing for adequate handling of entry into the polluting 
industry, which we have not addressed. 
 In fact, similar to the deterministic abatement subsidy, our proposed 
subsidy and insurance programs rely on the industry excluding firms when their 
optimal behavior is non-operation. When types are unobservable and/or when 
we consider the long run, where entry is possible, then these policies fall short 
just like their deterministic counterpart because firms will enter who operate at a 
net social loss. Thus, while robust to moral hazard issues, these policies are not 
robust to adverse selection, because these firms should not be producing at all - 
but they join the industry because the insurance or subsidy program allows for 
positive expected profits. Unfortunately, without being able to identify types, or 
impose barriers to entry, only the harshest policy of strict liability will ensure the 
proper composition of a stochastically polluting industry. 	
  
	
   We foresee other areas where expanding the analysis may be helpful. 
While Just and Zilberman demonstrate the asymmetry of taxes and subsidies due 
to risk aversion, deriving the optimal insurance policy may be of interest in this 
setting, or when considering polluting firms who are loss averse. Risk 
preferences will also play a role in evaluating the accident mechanism itself. 
Correlation across agents - such as might happen over space, when accidents are 
weather-related - doesn’t affect the expectation under risk neutrality, but it might 
affect the agents’ welfare if they are utility maximizers, especially if their 
accidents harm one another. We leave this exploration as an area for future 
research. 	
  
 Under risk neutrality, we have outlined three efficient policy regimes to 
deal with uncertainty, which fulfill the roles of their deterministic counterparts - 
especially in the broader sense of resource transfer into, out of, or within the 
polluting industry. Only the strict liability regime can produce funds to 
compensate outside accident victims, because it takes money from the industry 
as fines collected by the regulator - or even in the form of direct claims by those 
harmed. However, in many cases, no such mechanism readily exists, and this 
policy may be constrained by equity considerations or ability-to-pay constraints 
because the polluter is a victim who also adheres to the optimal standard of care. 
 The compensation policy can circumvent agents’ ability-to-pay constraints, 
but may induce a constraint on the regulator’s ability to pay, due to the volume 
of payments when accidents are infrequent, or when there are known high-risk 
outliers who cannot be identified (because they increase the decoupled threshold, 
which forms the basis of payment to all firms). While strict liability forces agents 
to pay for what is known (the damages), the stochastic abatement subsidy makes 
government pay for what is not known - types, actions, control technologies, etc. 
- resulting in large transfers into the polluting industry, and no mechanism for 
compensation of outside victims. 
 Like the other policies, the mutual insurance policy we propose preserves 
the marginal incentives of strict liability, but it recycles the fines into a pool so 
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that all funds remain in the industry. While this mechanism denies compensation 
to the victims of environmental accidents outside the polluting firms, it is 
budget-neutral in expectation, and it facilitates a transfer from riskier to safer 
firms, as can occur under cap-and-trade in the deterministic setting.   
 Major environmental accidents do not always occur in a well-regulated 
environment, but we have shown that classical, deterministic environmental 
economic policies can be adapted to uncertainty in recognizable forms. Their 
stochastic counterparts have similar distributional implications with respect to 
the polluting industry, though uncertainty exacerbates the disparities between 
resource allocations generated by the various policies. Our proposed risk-pooling 
scheme thus reflects a new policy ideal; namely, goals of efficiency and minimal 
redistribution of resources can be achieved simultaneously, even in the context of 
asymmetric or limited information and stochastic mishap.   
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Chapter 3. The Economics of Nested Insurance:  

The Case of SURE 
	
  
 
Farming is a risky business. One of the realities of modern life is that farmers 
need to deal with multiple tools to address risk. Recently, it has been advanced 
that many of the various risks can be addressed in aggregate by revenue 
insurance, but since the magnitude of the risk can vary drastically, the same 
random variable (farm revenues) may be targeted by two programs. Historically, 
farmers could rely on a standardized crop insurance program to deal with 
moderate to extreme risk, with some ad hoc disaster assistance as well.  The 2008 
Farm Act introduced the Supplemental Revenue Assistance Payments (SURE) 
program, which is a standing disaster assistance program that explicitly and 
structurally linked to traditional multi-peril crop insurance.  While there is an 
established literature on the economics of regular crop insurance,8 a conceptual 
understanding of both adoption and impact of nested insurance is lacking, and 
this paper provides a framework to address this issue.  

Two key questions that are addressed by this framework are: what are the 
effects of nested disaster insurance programs, like SURE, on acreage and 
insurance purchasing, and under what conditions will farmers be indifferent 
between the new SURE program and historically available ad-hoc disaster 
assistance? To answer these questions, we develop a conceptual framework to 
examine the farmer’s choice problem with respect to acreage and the level of 
insurance purchased for a given crop. In doing so, we demonstrate the theory 
behind targeted insurance subsidies, and derive an indifference condition for the 
various forms of disaster assistance.  

The theoretical findings are supported by an extensive numerical 
simulation, which verifies the initial findings, calculates otherwise-intractable 
comparative statics results, and identifies future challenges for policymakers in 
the area of disaster assistance. Our key results show that the level of risk bearing 
by farmers is endogenous to their choice of an insurance product, so that they 
may face substantially less risk than predicted by previous research. Even so, we 
show that varying risk aversion across farmers induces a wide range of 
preferences for adequate disaster assistance, as compared to the relative 
homogeneity of their insurance purchasing decisions. 

3.1 Background 
The USDA operates programs that provide financial support to farmers in the 
form of payments or low interest loans to compensate them for crop losses due to 
weather events or other natural disasters.  In addition, despite significant growth 
in insured acreage under the Federal crop insurance program, Congress has 
continued to pass legislation providing ad-hoc disaster assistance payments to 
producers in response to drought and other adverse events.9 Ad-hoc support 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 See Glauber (2004) for a comprehensive review. 
9 The Administration can also provide ad hoc disaster assistance without congressional 
legislation via the Section 32 permanent appropriation.   
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varies substantially from year to year depending on the weather and 
whether/how much ad-hoc disaster assistance is actually passed into law. For 
instance, crop disaster outlays including noninsured assistance (NAP) were $75 
million in 2008 but $2.5 billion in 2005.  These figures are above and beyond the 
$2.5 billion annual average cost of crop insurance subsidies (GAO, 2007). 

With the 2008 Farm Act, Federal agricultural legislation includes for the 
first time a formal disaster assistance program, known as the Supplemental 
Revenue Assistance Payments (SURE) program, which provides producers 
benefits for 2008 through 2011 crop year farm revenue losses due to natural 
disasters. SURE is a whole farm program that provides supplemental payments 
to farmers with Federal crop insurance and NAP in a “disaster county” (a county 
declared by the Secretary of Agriculture to have suffered weather-related 
production losses of 50 percent or more, and contiguous counties), subject to 
other conditions. Essentially, SURE payments mimic ad-hoc disaster support and, 
though the payment amounts are generally smaller, they have added value to 
risk-averse farmers because they are not subject to the uncertainty of the political 
process inherent in ad-hoc disaster assistance.  

Arguably, a key political motivation for SURE is that it has become 
increasingly difficult over time to pass ad hoc payments into law, or at least, that 
farmers may not receive disaster support when they need it most (Cooper, 2009a). 
In principle, one may assume that the SURE program would eliminate the ad-hoc 
payments, but this assumption appears to be unrealistic. Indeed, in late 2009 and 
early 2010, the head of the Senate Agricultural committee pressed for ad-hoc 
assistance for farm losses in some regions in 2009 due to bad weather, even when 
the SURE program had already been passed into law. Thus, we undertake an 
examination of the conditions where SURE could actually serve to make farmers 
indifferent to the availability of ad-hoc legislation. Clearly, the farmers 
themselves should not be counted on to turn down free money, but we hope that 
our analysis can provide policymakers with the insight to know when ad-hoc 
assistance is no longer needed.  

Being a free supplement to crop insurance, SURE is likely to impact land 
use and crop insurance decisions, and to a different extent than would an ad hoc 
disaster regime, particularly in regions where high yield variability could result 
in frequent disaster declarations.  In a deterministic analysis, Smith and Watts 
(2010) find that SURE has the potential for creating moral hazard conditions on 
top of those already associated with Federal crop insurance. Our simulation 
analysis sheds some light on these findings, and shows that while disaster 
assistance will increase acreage (where available), the impact is minimal 
compared to that of small variations in risk preference and the impact on 
insurance purchasing is minimal as well. Nonetheless, it is critical to examine 
these considerations under appropriate risk modeling because of the literature 
on decoupling. Economic theory shows that decoupling usually involves a 
reduction in the efficiency losses associated with coupled policies (Chambers, 
1995), but subsequent literature showed that wealth effects and risk preferences 
rendered perfect decoupling impossible for crop insurance programs (Serra et al., 
2006).  

The remainder of this paper is laid out as follows. Section 3.2 introduces a 
conceptual model of crop revenue insurance, and the expected utility-
maximizing choices of risk averse farmers with respect to acreage and insurance 
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participation. We go on to identify comparative statics results to be estimated, 
including the impacts of disaster assistance policies. Section 3.3 develops a 
comprehensive simulation exercise to assess this decision making process using 
an empirically estimated revenue distribution. The simulation covers 
representative farmers with differing risk profiles (Illinois corn and South Dakota 
spring wheat), as well as evaluating their decisions under a wide range of 
potential risk preferences. Section 3.4 covers the main discussion points, 
identifies areas for future research and concludes. 

3.2 A Conceptual Model of Crop Revenue Insurance 
We model a risk-averse farmer facing choices about adoption of crop insurance 
and aggregate land use (e.g., when acreage is variable, the conversion of 
marginal lands to crops). If the farmer does not adopt crop insurance, he accepts 
the natural revenue variability associated with his farm size, but for large losses 
he may receive (ad hoc) government assistance with some positive probability. If 
he does adopt crop insurance, disaster assistance is nested in the sense that it 
provides supplemental coverage. Evaluating these farmer decisions will help to 
shed some light on the potential effects of the SURE program, which provides 
supplemental disaster insurance for free – but only to those farmers who 
purchase crop insurance.10  

Consider a farmer with a von Neumann-Morgenstern utility function, u, 
which is everywhere increasing and concave in wealth. The farmer has a number 
of acres, A, with identical revenues per acre,  (revenue equals yield times 
price), so that total revenue is given by AR.11 R is a non-negative random variable 
with continuous, cumulative distribution function, F. The cost of production is a 
function of acreage, , which is increasing and at least weakly convex in A. In 
the US, this model of farm size choice is most applicable in regions where 
marginal lands are available for inclusion in farming operations at some cost. 
Inclusion of additional lands can include a range of diverse activities, including 
rental or acquisition from adjacent property owners, conversion of marginal 
lands, and/or removal or withdrawal of lands from the Conservation Reserve 
Program (CRP). 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 To be eligible for ad hoc payments, the farmer generally needs to have at least some 
minimal level of insurance coverage but the payment levels are not a function of the 
insurance coverage levels. SURE payments on the other hand are a direct function of 
insurance coverage levels – though the SURE guarantee is fixed for all coverage levels 
above 75%. 
11 The AR formulation is useful in our analysis because it provides a sort of ‘maximum 
variance’ approach to farm revenues where . Specifically, this 
specification induces perfect correlation between the revenues of farmed acres, though 
there may be cases where the revenues are identically distributed and only partially 
correlated. Consider that a ‘minimum variance’ approach models each acre as IID, 
resulting in a revenue variance of . Thus, our formulation provides an 
upper bound on the variance induced by acreage decisions, which in turn means that 
risk management behavioral results herein are upper bounds. This is useful because we 
estimate the distortionary effects of disaster policy to be small. In addition, we avoid 
making assumptions about the correlation structure between acres on a single farm. 
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In addition to acreage, the farmer must also select the level of insurance 
coverage, a threshold level of revenue, which we denote, T. Crop revenue 
insurance is unique among insurance markets, in that losses are defined simply 
as realizations of the revenue distribution below a specified threshold. Property-
casualty insurance, on the other hand, generally treats losses as unforeseen costs, 
or liabilities, arising from a single event, for which the insurer reimburses the 
insured according to a share of the loss.  Two standard types of coverage are 
employed, alone or in tandem: coinsurance and deductible insurance. 
Coinsurance requires the insurer to pay a fixed percentage of the loss, agreed 
upon when the policy is purchased, whereas deductible insurance requires the 
insurer to pay the full amount of losses above the deductible. There are certainly 
more detailed considerations, but these are the key points for our analysis. 

We characterize crop insurance for our analysis according to the contract 
mechanisms generally found in crop revenue-insurance programs offered in the 
United States, as administered by USDA. That is, the farmer faces a choice of 
crop insurance that parallels deductible insurance; a stop-loss is specified, below 
which the farmer faces no losses. This stop loss is the threshold, T, so the 
insurance transforms the per-acre revenue, such that: 

 

where the insurance is activated for R < T, which occurs with probability F(T). 
The choice of T is associated with a per-acre premium the farmer must pay, P(T), 
and it may be subject to constraints or distortions – to which we will return 
momentarily. 

The farmer’s objective function, maximizing expected utility over the 
choices of acreage, A, and the insurance threshold, T, is given by: 

 

where t = F(T), the probability of an insurance payout, and the arguments of the 
utility functions show that premium must be paid in every period. Assuming 
P(0) = 0, we can see that choosing T = 0 = t is equivalent to non-adoption of crop 
insurance, and that  means the farmer receives  with certainty. 
The first order condition for maximizing the farmer’s objective with respect to 
acreage is thus given by: 

 

Acreage is only constrained to be non-negative, so since we assume some 
positive level of production to be worthwhile, verifying concavity means the 
optimal solution A* is unique for all insurance threshold choices, T. The second-
order condition is given by: 
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Since the cost of acreage, c(A), is increasing and convex, there exists some level of 
acreage where marginal expected utility is decreasing, so a unique interior 
solution exists.  
 Evaluating the choice of crop insurance threshold is more complex. 
Namely, the choice is affected by policy constraints on which thresholds can 
actually be selected and by the structure of the premium function, P(T). To begin 
the analysis, we consider the unconstrained threshold case, where  
without loss of generality, because wider bounds on the threshold have no effect 
on loss activity. This setup also conveniently allows for T = 0 to be 
conceptualized as electing non-participation in crop insurance, so that that choice 
is endogenized to the threshold choice. We assume that the premium P(T) is a 
smooth function, but it is not necessarily actuarially fair; premiums may be 
unfair (higher than expected payments), fair, or over-fair (subsidized) according 
to policy, and the ‘fairness’ may even vary across different thresholds. 
After some algebra, the first order condition for the insurance threshold is:

 

 

 

However, the second order condition is not signable without further 
assumptions, indicating that expected utility is not necessarily concave in the 
insurance threshold, and that the first order condition of dE[u]/dT = 0 may not 
exist. To examine this more closely, we start by evaluating the choices under the 
constraint of actuarially fair insurance premiums. 

3.2.1 Actuarially Fair Insurance 
When insurance is constrained to be actuarially fair,  

. 

Integrating by parts obtains: 

, so . 

Thus, under conditions of actuarially fair premiums for all insurance threshold 
levels, and with the choice of level unconstrained, we substitute the above into 
the first order condition for the threshold choice to obtain: 

 

Integrating by parts yields: 
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 where the last step follows by reverse application of the chain rule, since 
. Thus, we obtain: 

 
where T = 0 (no insurance coverage) is a minimum with respect to expected 
utility, and  is a maximum. Thus, when the threshold choice is 
unconstrained, agents offered actuarially fair insurance will always choose 
maximal insurance – in line with standard predictions of expected utility models. 
Specifically, after accounting for the premium cost, maximal coverage results in 
agents receiving E[R] with certainty. This result follows the standard intuition for 
risk aversion and insurance adoption, and returning to the acreage choice, we see 
that it degenerates to the deterministic case, so the agent just sets . 

Figures 3-1 and 3-2 below show the expected utility surface over the 
choices of acreage and insurance coverage for the representative corn and wheat 
farmers, respectively, when they face actuarially fair insurance rates.  The 
revenue distributions and costs functions are drawn from the simulation section 
that follows. While the surface is perhaps more ‘dramatic’ for wheat, both 
Figures show that expected utility is concave in acreage, but is monotone 
increasing in insurance coverage, so both farmers will choose the maximal level 
of insurance coverage available. This is plotted as 90% coverage in the Figures, 
corresponding to actual policy. 

 
 

 
 

Figure 3-1 Figure 3-2 
 
 In practice, moral hazard problems or budget constraints may result in 
less-than-full insurance coverage being offered (in which case agents will adopt 
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the maximum coverage available), even in scenarios where premiums are 
subsidized (e.g., Shavell, 1979, among others). Actuarial fairness itself is a 
simplification because it ignores transaction costs associated with administering 
the insurance, which can be large.12 Nonetheless, government may choose to 
subsidize the transaction costs if limiting risk to the agricultural sector is in the 
greater public interest – a concern that seems to drive policy historically in the 
United States (Dismukes and Glauber, 2005). Even so, when the maximal 
coverage threshold is constrained below , there will be lower acreage than 
under full coverage.13 

3.2.2 Non-Fair Insurance 
Clearly, many scenarios exist where insurance rates are not actuarially fair, either 
for specific levels of coverage or for all levels. Actuarial fairness may also vary 
according to the marginal rate increase, since insurance transaction costs and/or 
policy-induced levels of subsidization may vary over different levels of 
coverage.14 It is also possible to further generalize, by considering possible upper 
and lower bounds on the thresholds available ( , respectively) and 
consider that non-adoption, T = 0, may be a separate, discrete choice from the 
choice of coverage level. However, in this subsection we focus on interior 
solutions; we show that if an interior solution exists then it depends on the rate at 
which the marginal premium increases with the coverage level, beyond the role 
of the absolute premium level on the yes-no choice of insurance participation. 
 Consider the insurance premium defined as , where 

 is the actuarially fair premium derived in the previous section, and  is 
a disturbance which may be positive or negative, and may vary with T. 
Accordingly, the non-fair first order condition for the threshold choice is now 
given by: 

 

Proposition: If there exists a unique interior solution for the insurance choice, 
characterized by a threshold level, T, such that , then . That 
is, the insurance premium must be increasing faster than the actuarially fair 
premium. 
Proof: See the first order condition characterizing  above. After some algebra, 
we obtain:  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12 Administrative costs are as high as 35% of premiums in property-casualty insurance, 
plus an average 5% profit margin. Administrative costs are only about 20% for crop 
insurance, but the underwriting profits for participating insurers have historically been 
nearly as large (GAO, 2007). 
13 This can be easily shown following Sandmo (1971). 
14 As documented on the website of USDA’s Risk Management Agency (RMA). 
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Applying integration by parts to the denominator yields: 

 

☐ 
Thus, it is necessary for an interior solution that , which implies 

, so the marginal premium increase must be greater than the marginal 
increase of the actuarially fair premium for an interior solution to occur. As a 
result, any constant subsidy or surcharge on the premium will not lead to an 
interior solution, but only to a yes-no decision between maximal coverage and 
non-participation in crop insurance.  

Therefore, our conceptual framework rounds out the economic theory for 
an empirical phenomenon observed by Babcock and Hart (2005). They find that 
fixed (equivalently, decoupled) subsidies do not affect the decision on the level 
of insurance threshold, and that subsidies only increase insured coverage levels 
by increasing the total amount of the subsidy as purchased coverage increases. 
Our work is complementary to theirs in that they address raising optimal 
coverage purchases through subsidies, while we address limiting those 
purchases from reaching their upper bound. That is, once the increasing total 
subsidy has raised the purchased coverage above the minimum level, then we 
have shown that the marginal decrease in subsidy must be sufficiently great to 
avoid a corner solution of maximal coverage. We leave as an area for future 
research the exact policy constraints or social objectives which call for an 
insurance design that always leads to an interior coverage choice. 

However, such an objective may well be at work in the design of the 
existing crop insurance program. Construction of a subsidy with these properties 
could be extrapolated from the menu of subsidy rates from the RMA website, 
using a linear spline, as shown below in Figure 3-4. Please note that Figure 3-4 is 
“zoomed in” to coverage levels actually allowed by policy – that is, 0.0-1.0 on the 
x-axis refers to a percentage of mean revenue. 
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Figure 3-3 Figure 3-4 

 
Figure 3-3 shows the actuarially fair premium for revenue insurance, for 

each guarantee level in the revenue distribution for a representative corn farmer 
in DeKalb County, Illinois, as estimated in the empirical section. The premiums 
are calculated by integrating over the empirical cumulative distribution function, 
as demonstrated above. Figure 3-4 highlights the limited menu of subsidized 
premium choices available under the Farm Bill, along with a. linear-spline 
function interpolated from the subsidy menu to provide a continuous threshold 
choice, both of which are overlaid on the actuarially fair premium schedule. In 
Figure 3-4, the section where the subsidized premium increases most rapidly, 
relative to the actuarially fair premium, is that which induces the interior choice 
of insurance coverage even though more insurance is available at a better-than 
actuarially fair price. 

3.2.3 Comparative Statics Under Crop Insurance Alone 
In the simulation section below, we will evaluate the sensitivity of acreage and 
insurance choices to parameter changes when farmers do not receive disaster 
support – that is, for choices under stand-alone crop insurance. Specifically, we 
are interested in the effect of risk aversion on the optimal acreage and insurance 
threshold. The conceptual model takes the utility function agnostically, so there 
is no ready parameter for comparative statics analysis. Furthermore, the crop 
insurance premium, and hence the insurance coverage choice, may not be 
differentiable at the optimal threshold level. 

Later, in the simulation analysis, we assume a CARA-exponential utility 
function and derive the premium non-parametrically. For a theoretical 
approximation of the actual comparative statics, assume that the premium 
function is everywhere differentiable and the utility function is defined as 

, where w is wealth and  is the coefficient of constant 
absolute risk aversion. Then, 
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but we still cannot sign the results without further assumptions on the Hessian. 
However, we can leverage the CARA-utility assumption to show that 

 and , which implies that more risk-averse 
agents will choose less acreage and more insurance, if the off-diagonal terms of 
the Hessian ( ) are sufficiently small.  
For example: 

 

where the first, simplifying step follows from CARA-utility, and the last line is 
zero by the first order condition for . The result for  follows 
similarly. We verify these results for the actual crop-revenue insurance policy in 
the simulation section, for both corn and wheat farmers. For the simulated 
revenue distribution under actual policy, we observe that the comparative statics 
are monotone for all but the lowest levels of risk aversion, as demonstrated in 
Tables 2 and 3. 

3.2.4 Ad-Hoc Assistance and SURE 
In practical applications, crop insurance does not exist in a vacuum. There are 
questions of localized actuarial unfairness to some farmers (as in Just, Calvin and 
Quiggin, 1999, and Makki and Somwaru, 2001), which may cause them not to 
participate in crop insurance at all. There are no doubt other causes to be 
examined as well, but they are beyond the scope of this paper. However, ad-hoc 
disaster assistance has historically been made available to a wide spectrum of 
farmers, even extending to include those not participating in government crop 
insurance programs, but legislation has made participation mandatory to receive 
disaster assistance as early as 1988 (Glauber, 2004).  

In this section, we examine the claim that the SURE (supplemental 
revenue assistance) program is an attempt to codify ad hoc disaster assistance 
into law, or that it can serve as a suitable substitute for the repeated passage of 
ad hoc disaster support legislation. Specifically, we check for existence of a SURE 
program which leaves insured farmers indifferent to the presence of ad-hoc 
assistance as an available alternative. Both disaster assistance policies are 
triggered by occurrence of a disaster, which is defined as realized revenues 
below a pre-set level. This level may be tied to a percentage of mean revenues in 
practice, though we will express it equivalently as a known percentile of the per-
acre revenue distribution in keeping with our prior notation.  

Disasters for the purpose of ad-hoc assistance are generally determined on 
the basis of yield losses due to natural causes.  For simplicity, the theoretical 
model assumes that the disasters declarations are triggered by revenue losses, 
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consistent with the crop revenue insurance that the farmer may purchase. In this 
manner, we address the interaction of price-risk and yield-risk as a composite 
source of randomness, in order to facilitate comparison between ad-hoc 
assistance and the SURE program. 

The two policies operate in similar ways. Both disregard the presence of 
crop insurance, in the sense that the payments are not affected by crop insurance 
indemnities received, and both operate on the concept of reimbursement 
according to losses below a threshold level. However, the critical distinction 
between the two policies is that SURE only pays a percentage reimbursement of 
the difference between realized ‘disaster’ revenues and the threshold (as opposed 
to 100% of the difference as paid by ad-hoc support programs), so there is an 
element of coinsurance in the way SURE is administered. 

In addition, the policies are different in that SURE is only made available 
conditional on adoption of crop insurance whereas ad hoc assistance is available 
to both insured and uninsured farmers. However, risk-averse farmers refusing 
insurance at a better-than-actuarially-fair price is an area of research beyond the 
scope of this paper so we only evaluate the preferences of farmers who already 
buy crop insurance. Thus, SURE amounts to a stochastic subsidy that is triggered 
by especially low revenues; it pays through a combination deductible-
coinsurance scheme (guarantee threshold with percentage reimbursement) even 
though the farmer never really experiences a disaster because the losses are 
covered by crop insurance, and the minimum available crop insurance covers the 
loss threshold which defines a disaster.  

On the other hand, ad-hoc assistance generally makes larger payments 
because it pays the full difference between a compensation threshold and the 
realized revenue (no coinsurance scheme), and the compensation threshold is 
generally higher than the SURE threshold (mean revenue vs. a typical SURE 
guarantee of 90% of mean revenue), though the ad-hoc support is subject to 
legislative uncertainty and may not occur at all.  

To extend our basic model of crop insurance we add a disaster threshold, 
shared by both policies, where ∆ is the threshold and , which is the 
probability of a disaster occurring. The ad hoc assistance restores farmers to a 
level of revenue , so it pays  when a disaster occurs, and it pays 
regardless of participation in crop insurance or the indemnities paid thereby. In 
practice, ad-hoc payments often set  in an effort to restore farmers to 
their expected revenues, which is the standard we use in the simulation section 
that follows. The SURE policy is structured similarly to ad-hoc assistance, but 
with its own guarantee of  and with a percentage reimbursement similar to 
coinsurance, so it pays , where . Other than the level and 
manner of reimbursement, both policies are similar in that they are provided free 
by the government. 

Again, we compare SURE and ad-hoc only for farmers participating in 
crop insurance. We do not address non-adoption of crop insurance directly, 
instead focusing on cases where the coverage level is a corner solution, possibly 
constrained, or an interior solution as developed in the discussion above on 
targeted subsidies. For brevity, the arguments inside the utility function are 
omitted where possible. Note that  and the premium is the 
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actuarially fair premium  plus a distortion function D, both of which can vary 
with the choice of insurance threshold, T. Thus, the expected utilities under 
SURE  and under ad-hoc  are given by: 

 

 

where  represents the probability that ad-hoc assistance can be passed into law 
if a disaster occurs, since its passage is not certain. The critical component of both 
expected utilities is the integral over low levels of realized revenues, which is 
where the disaster assistance actually occurs. The first two terms are non-insured 
revenue realizations and insured (but not disastrous) revenue realizations, 
respectively. 
 Given arguments that the SURE program is meant to replace ad-hoc 
disaster assistance, it is natural to compare expected utilities under the two 
policies. The indifference condition is given by setting : 

.
 

Despite the simplified notation, it is important to remember that the non-disaster 
terms do not cancel because they are based on the optimal acreage and insurance 
choices for each policy. With a little algebra we obtain:  

 

where the DA*,T*  term represents the total differential resulting from adjustment 
of optimal inputs for the different policies, and it is generally small. In the 
simulation section, we demonstrate that estimating  without the differential 
term leads to errors on the order of 0.1% or less when comparing the resulting 
expected utilities and input choices. Thus, this approximation (without the 
differential term) will be useful in future policy analyses to verify farmer 
indifference between various forms of disaster support. 
 In obtaining this result, we have made a simplifying assumption with 
respect to the SURE guarantee, namely, that it is fixed instead of dependent on 
the level of insurance coverage purchased. However, this is accurate for all 
coverage levels over 0.70, which would not be a binding constraint for any level 
of risk preference according to our simulation model. Furthermore, we tie the 
disaster event to a threshold in the farm-level revenue distribution. In fact, the 
event is tied to a combination of available triggers, including county level losses 
and losses in adjacent counties, but these triggers are the same for both SURE 
and ad-hoc, so we simplify the analysis by dropping an extra probabilistic 
parameter that would indicate these triggers (a coefficient on the integrals from 0 
to ∆ in the above equation). The larger is the rounded-off differential term, the 
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more significant a role the joint probabilistic trigger would play in the calculation 
of indifferent policies. 

3.2.5 Comparative Statics for Nested Disaster Insurance Policies 
In order to identify the marginal effects of changing disaster policies, we derive 
the familiar comparative statics results via the implicit function theorem. For the 
SURE policy, we are interested in the marginal effects of changing the SURE 
guarantee, S, as well as the reimbursement rate, . For ad-hoc disaster support, 
we are interested in the effects of the guarantee level, H, as well as the effects of 
changing the probability, , that ad-hoc legislation is actually passed into law 
when a disaster occurs. The comparative statics for the parameters of interest in 
the SURE policy are given by: 

 

whereas the comparative statics for the ad-hoc parameters are given by: 

. 

Without further assumptions, none of these terms can be signed ex ante, in part 
because of the unspecified probability distribution for revenues and its 
interaction with changing marginal utility over wealth. As we will examine 
further in the simulation that follows, the farmer’s choice problem may not be 
globally concave, or even everywhere differentiable.  
 

3.3 Simulating the Farm-Level Choice Problem 
While our conceptual analysis could identify some of the directional effects of 
policy choices on adoption and land-use, a simulation, accounting for the fine 
points of the policy, is required to get a more detailed understanding of the 
impacts of a program like SURE. The empirical simulations evaluate 
representative farmers, each planting one crop and each with a range of possible 
risk preferences. The farmers plant corn in DeKalb County, IL and spring wheat 
in Hyde County, SD, respectively. We chose these two crops because they 
represent dramatically different risk profiles: the corn farmer faces a revenue 
distribution that is relatively stable with a high value per acre, whereas the 
wheat farmer plants in a region with a high coefficient of variation of yields (and 
of revenues) relative to the Corn Belt.  

The farms are representatives of the counties in that their mean yields are 
the same as those at the county level, but their farm level yield variances are 
inflated above the county level using the approach discussed below. Each 
representative farmer maximizes the expected utility of wealth using acreage and 
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the crop insurance coverage levels as choice variables. While a variety of 
simplifying assumptions are necessary to make the theoretical model tractable, 
our empirical implementation has a richer, “real life” model. Furthermore, the 
simulation uses bootstrap procedures to solve problems that do not have closed 
form solutions to integrals, so we are able to calculate empirical comparative 
statics results that proved intractable in the theory section. Finally, we verify the 
theoretical conditions for farmer ambivalence between SURE and ad-hoc disaster 
assistance.  

Our simulation analysis uses an econometrically estimated revenue 
distribution coupled with estimated costs of fertilizer and acreage, evaluated 
under realistic options of insurance coverage and insurance subsidization. In this 
simple framework, we explore the nature of targeted insurance subsidies and the 
possibilities made available by policy options of subsidy menus, splines, and 
smooth subsidy functions. While contrasting the two risk profiles across a range 
of preferences, it becomes clear in both cases that the net subsidy being collected 
(in expectation) is a key driver of insurance adoption, as opposed to risk 
preferences per se. Coincident to this analysis we revisit some known results 
with respect to the risk premium. 

3.3.1 Data 
The simulation exercise draws data from a number of sources. County-level and 
national-level yield data are drawn from the National Agricultural Statistical 
Service (NASS) for the period 1975-2008. For each crop in our simulation (recall 
that we construct representative mono-crop farmers for each of Illinois corn and 
South Dakota spring wheat), we follow Risk Management Agency (RMA) 
definitions of the expected and realized prices.  For the realized price of corn, we 
use the average of the daily October prices of the December Chicago Board of 
Trade corn future in period t.  For the expected price we use the average of the 
daily February prices of the December CBOT corn future. For hard red spring 
wheat, the expected and realized prices are obtained by averaging the closing 
prices March and August, respectively, for the Minneapolis Grain Exchange 
(MGE) September contract. We leverage expected and realized prices together to 
econometrically estimate the price-yield relationship, in order to construct a 
revenue distribution which preserves price-yield correlations. Crop insurance 
premiums and the revenue insurance subsidy schedule are drawn from the RMA 
website to calibrate the model. 

3.3.2 Modeling the Distribution of Yields and Prices 
While the theoretical model assumed an abstract distribution of revenue per acre, 
the empirical analysis must build revenue per acre from the joint distribution of 
yield and price, taking account of correlations between the two, since actuarial 
fairness must be described non-parametrically. The remainder of this subsection 
is dedicated to estimating the joint distribution of per-acre yield and price faced 
by farmers. We model the joint distribution of yields and prices using a method 
based on generating correlated within-season price and yield deviates, as in 
Cooper (2010, 2009b), and then forecast an empirical distribution for 2009, just 
following the final year of the dataset. 
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 Under this approach, national average yields are expressed as within-
season yield deviations: , where , expected 
national average yields per acre, are estimated by regressing average yields on a 
linear trend using data for t = 1975-2008, to allow for growth of average yields 
over time. Then, in order to set expectations to the current time, the linear trend 
is used to adjust deviates “as if” our empirical revenue distribution takes place in 
2009. County yields are de-trended and transformed to deviation form (denoted 
as ) using the same methods. 
 Realized harvest prices, , are also transformed into deviation form, 
where  and where is the pre-season expected price, 
which is taken from the futures markets as discussed above. Next, the 
relationship between  and  is econometrically estimated. We assume that

 can only be partially explained by , and that the uncertainty in this 
relationship can be incorporated into the empirical distribution as 

 
where is a vector of other relevant variables that may contribute to the price 
deviation, including energy demand and crop diversion into biofuels.15 This 
equation represents a linear regression in which g is an affine function and  is 
the error term. Naturally, we expect the OLS coefficient on  to be negative, 
because demand curves slope down. That is, the harvest-time price is more likely 
to exceed the expected price if national average yields do not meet expectations.  
We jointly estimate the distributions of price and yield deviations by repeated 
estimation of the equation above using a bootstrap procedure.  Specifically, we 
use a joint16 re-sampling methodology (a pairs bootstrap) that involves drawing 
i.i.d. observations with replacement from the original data set (as in Yatchew, 
1998). This bootstrap procedure is used to generate coefficient vectors 
representing uncertainty in the yield-price relationship.  Variation in estimates 
results from the fact that the regression equation is estimated for an 
independently-drawn bootstrapped sample at each iteration. That is, for each 
draw of a yield deviation, this process induces a distribution of estimated price 
deviations, with M = 1,000 draws. The average yield-deviate coefficient on the 
price-deviate was -0.938 for corn, and -0.955 for wheat, with yields sampled at 
the national level.  

After estimating the distribution of price deviates, simulated county yield 
deviate vectors, , were generated for each crop using a version of the block-
bootstrap approach in which the pair-wise relationship between county- and 
national-level yield values is maintained across each crop and yield aggregation 
(Lahiri, 1999). We draw N = 1,000 times, with replacement, from the actual yield 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15  As explained below, the regression estimation is repeated 1,000 times for each 
bootstrapped draw of price and yield deviates. It is verified that the demand coefficient 
is negative and significant at a level ≥95% in each regression. Please see Cooper (2010) 
for further model description. 
16 That is, if the original data consist of column vectors of prices and yields, ‘joint’ re-
sampling refers to row-by-row sampling from the vectors, with replacement. 
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data to generate the simulated yield data. The simulated yield data maintains the 
underlying historical Pearson and rank correlation – as well as any other 
relationship in the relevant explanatory variables – between county- and 
national-level yields. Finally, for each simulated yield deviate, , we generate 
M simulated price deviations, , based on the M coefficient vectors from the 
regression bootstrap above. This process results in  simulated 
values of  with pair-wise relationships maintained between the simulated 
prices and the yield draws. 

The estimated price distributions, not conditioned on yields, are shown 
below for corn and wheat. The overall price-yield correlations (for the values, not 
the deviates) were -0.884 for corn and -0.464 for wheat, so the wheat farmer faces 
a considerably larger share of price uncertainty that is not explained/hedged by 
yield uncertainty, relative to the corn farmer. 

  
Figure 3-5 Figure 3-6 

 
 To represent farm-level conditions, we inflate the standard deviation of 
county-level yields. Based on the results of Carriazo, Claassen, and Cooper 
(CCC) (2009), using a variation on an approach by Coble and Dismukes (2008), 
we “blow-up” the county level yield distribution until it matches actuarially fair 
premiums as calculated by RMA.17 In essence, CCC show that reasonable farm-
level yield distributions can be generated by adding scaled Gaussian white noise 
to county-level yields, where the correct scale factor, , is identified through an 
iterative process which ends when the RMA actuarially fair premium (at a 
baseline coverage level of ) corresponds to the augmented distribution.  

We found a scale factor of 2.85 for DeKalb corn, as compared to 1.03 for 
Hyde Wheat, indicating more within-county variation among corn farmers. Just 
as the wheat farmer faces more outside price risk, he also faces more yield risk. 
For example, the correlation of farm-level yield and price for wheat was -0.164, 
while it was -0.223 for corn.18 The resulting empirical, per-acre, gross revenue 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
17 The RMA premium calculator is available at: 
http://www3.rma.usda.gov/apps/premcalc/index.cfm 
18 However, these factors combine in interesting ways. The correlation of county level 
yields per-acre with national yields per-acre was 0.357 for Hyde County wheat, vs. 0.773 
for DeKalb corn. Corn farm-to-county yield correlation was 0.322 and farm-to-national 
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distributions for our representative corn and wheat farms are shown below. The 
spike at zero represents a total loss of the farmer’s crop. It is apparent from the 
Figures that wheat production in South Dakota is relatively risky compared to 
the Corn Belt, and as such, the former is a region where disaster assistance is 
likely to be particularly relevant. 

  
Figure 3-7 Figure 3-8 

	
   	
  

3.3.3 Policy Details: Federal Crop Insurance 
The U.S. Dept. of Agriculture’s (USDA) Risk Management Agency (RMA) 
implements and oversees the Federal crop insurance program, which is 
administered via partnership with private insurers. By law, USDA must try to 
devise actuarially fair premium rates, independently of the rates actually paid by 
farmers.19 Premium subsidies (in expectation, according to claims paid) resulted 
in net transfers of $1.63 Billion to farmers in 2006, so a key source of producers’ 
return to crop insurance purchase is the premium subsidy. For example, at 70 
percent coverage, 59 percent of the full premium is paid by the Federal 
government, so if premiums are actuarially fair the net return to producers 
would equal 59 percent of expected indemnities.20 While a variety of Federal crop 
insurance products are available, we focus on Revenue Assurance (RA) applied 
on a single-crop basis; though “whole farm” coverages are available, current 
trends indicate that single crop revenue insurance is adopted at a much higher 
level (Saak et al., 2003). 
 Revenue assurance acts much like a deductible in traditional property and 
casualty insurance, as mentioned in the theory section above. Specifically, 
revenue assurance guarantees a certain threshold level of revenue, below which 
the farmer incurs no losses. This threshold is specified according to the revenue 
distribution and, in practice, guarantees a percentage of mean revenues 
according to the farmer’s historical performance. In technical terms, an RA 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
correlation was 0.252. For wheat, farm-to-county yield correlation was 0.968 and farm-
to-national was 0.353. An interesting example of the non-transitivity of correlation 
between random variables, as documented in Langford et al. (2001). 
19 At best, as the insurance products are not calculated using individual-specific yield 
risk measure, they can only be actuarially fair on average.  
20 Please see Table 20 for the complete RMA premium subsidy table. 
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indemnity is paid when realized revenue falls below the guarantee, which equals 
the RA base price multiplied by the producer’s APH (average production 
history) yield and the coverage level. The per-acre indemnity is:  

It =max 0,!! ! pt
by" t " ptyt( )  

where  is the coverage level, t indexes the planting year,  is the RA base 
price or “expected price” (defined by futures markets),  is the RA realized price 
(according to spot markets after harvest),  is the expected yield (based on 
previous years’ production) and  is the actual, realized yield. In essence, the 
insurance pays for the difference between realized revenue and the guarantee, a 
threshold determined as a percentage of expected revenue. To clarify notation 
and unite the concepts of our theoretical model with the actual policy parameters, 
note that we use R in the theoretical model to denote revenue, which is equal to 

 in the above specification, and T to denote the insurance threshold, which 
amounts to selecting ! . 
 Figures 3-9 and 3-10 below show the simulated, optimized profit density 
functions (at the farm level) for our representative farmers when their coefficient 
of absolute risk aversion is 5E-05. This level of risk aversion is chosen in part 
because both farmers choose an optimal coverage level of 0.85. The optimal acres 
are 60.18 for wheat and 142.50 for corn. The Figures omit an atomistic point 
(induced by the nature of revenue insurance) because of scaling – the wheat 
farmer experiences profits of $722.83 with a 32.95% probability, and the corn 
farmer obtains profits of $11,936.14 with a 33.04% probability.  

  
Figure 3-9 Figure 3-10 

  

3.3.4 Simulating the Farmer Choice: CARA Expected Utility 
We start with a simulation exercise that examines only the effects of the targeted 
insurance subsidy on the choices of coverage level and acreage. This basic setup 
allows for empirical generation of comparative statics results for risk preferences, 
as well as a discrete comparison across risk profiles by contrasting the decisions 
of our representative corn (safer) and wheat (riskier) farmers with one another. 
Each representative farmer is assumed to be expected utility-maximizing, with 
constant absolute risk aversion (CARA) exponential utility. Thus, they solve: 
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where λ is the coefficient of absolute risk aversion and  is the wealth outcome 
for each draw from the revenue-per-acre distribution. The wealth outcome for 
each draw is defined as: 

 
where  is acreage,  is the choice of insurance coverage,  is the revenue 
realization for draw j,  is the realization of the insurance indemnity,  is 
the post-subsidy insurance premium, and  is the cost of acreage. 
 To simplify the results, we ignore baseline farmer wealth (i.e., ), as 
well as ignoring credit and budget constraints since the functional forms provide 
interior solutions with respect to acreage. With respect to insurance coverage, the 
available levels of coverage depend on the exact specification of the policy 
regime, which we will detail below. We do not, however, abstract away from the 
production cost of crops or from including an explicit, increasing cost of 
expanding acreage. Production costs per-acre of fertilizer, etc. are given in Table 
1, and are then adjusted according to the guaranteed Direct Payments for each 
representative farmer’s county, while acreage costs follow a simple quadratic as 
in Howitt (1995): .  

We also evaluate the choice scenarios with acreage fixed to represent cases 
where farmland is inelastic, as might be more likely to occur in the middle of the 
Illinois Corn Belt than for our representative wheat farmer in Hyde County, 
South Dakota. This consideration is most important to the evaluation of disaster 
support programs, and we cover it in Section 3.4 below. It turns out that 
constraining acreage has a minimal effect on the results – it just leads to a smaller 
effect on the insurance choice when disaster support is introduced. 

Table 1 presents summary statistics for inputs to the simulation analysis. 
The first few rows present the mean and standard deviation of the yield density 
function that was simulated for each representative farmer, which are followed 
by the 2009 crop year planting time output prices, around which the estimated 
price density functions are centered.  The final rows indicate net costs of acreage 
and the cost function used. The farm-level yield data was generated by scaling 
up the variance of estimated county level yield densities based on analysis of 
NASS/USDA and RMA/USDA data for Hyde County, South Dakota and 
DeKalb County, Illinois, as detailed previously. Operating costs per acre are for 
the regions including South Dakota and Illinois, respectively (USDA, 2008). 

3.3.5 Simulation Results: Crop Insurance Only 
We start with a basic simulation of the crop insurance and acreage choice, before 
expanding it to explore the impact of providing disaster assistance. Expected 
utility is maximized over a vector of one million sample revenue draws, using 
Matlab’s non-linear, unconstrained optimization function, fminsearch, which 
uses a simplex method (see Miranda and Fackler, 2002) to identify a global 
optimum in R2-space (acreage, coverage). The simulation was repeated for both 
representative farmers over many orders of magnitude of the CARA risk 
aversion coefficient, . A condensed version of the results is shown in Tables 2 
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and 3. The results were found to be robust to a high level of mis-specification of 
the starting guess for the simplex, though we did find that the optimal insurance 
choices were highly clustered around the 0.85 value, for risk-neutral producers 
all the way to highly risk-averse ones. 

Table 2 shows the basic simulation results for the spring wheat farmer in 
Hyde County, SD. In Table 2, Acres* and Covg* denote the optimized values for 
these variables. Because of the linear-spline subsidy function (based on the actual 
RMA schedule in Figure 3-4), acreage choices are clustered for all levels of risk 
aversion in a very small range. It appears that the motivation for this is more one 
of profit-maximization than risk management, as acreage fluctuates much more 
dramatically across risk preferences. Nonetheless, we have unambiguous 
comparative statics results that acreage decreases with risk aversion, and 
insurance increases, subject to the non-differentiability of the insurance premium 
function around 0.85. The table also shows how expected profits, the standard 
deviation of profits, and the coefficient of variation all change with risk 
preferences. 21  
 Table 3 shows the initial simulation results for our representative corn 
farmer in DeKalb County, IL. The immediately apparent difference between corn 
and wheat is the corn profits are almost ten times larger in expectation. In 
addition, while the same comparative statics results for acres and coverage held 
true, the coefficient of variation decreased much more rapidly (at lower levels of 
risk aversion) and then leveled out. The corn farmer also entered, and departed, 
the 85% coverage ‘sticking point’ at levels of risk aversion ten times lower than 
the wheat farmer. 
 Figures 3-11 and 3-12 below summarize the acreage and insurance 
coverage elections found in Tables 2 and 3. The flat area in both optimal coverage 
graphs identifies the sticking point resulting from the kink in the insurance 
premium schedule at the 85% coverage level. The Figures provide a summary of 
the complex interactions between acreage, insurance, and risk aversion for the 
two crops, demonstrating the substantial differences in the risk profiles of the 
various representative farmers. These Figures also identify conditions under 
which the approximated comparative statics results in the theory section hold. 
Specifically, wherever the objective function (profits, and hence, expected utility) 
is differentiable, acreage is decreasing in risk aversion and insurance is 
increasing, with one exception. The simulated distribution for wheat is such that 
some low levels of risk aversion experience non-monotonicity of the optimal 
acreage choice. 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
21 Resulting expected utilities are omitted from Tables 2 and 3 because of a quirk of the 
CARA utility function, which is somewhat misleading when included in a table – for a 
fixed level of wealth, utility is increasing in risk aversion ( ), and this 
effect dominates the utility-decreasing effect of increased curvature. 
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Figure 3-11 Figure 3-12 

 

3.3.6 Measuring Risk Premiums 
Our initial approach to parameterizing the risk aversion included a moderate 
risk aversion premium of 20 percent (e.g., Hurley, Mitchell, and Rice, 2004; 
Mitchell, Gray, Steffey, 2004). The risk premium is calculated according to the 
approach in Babcock, Choi, and Feinerman (1993): 

 
where RP is the risk premium and denotes a percentage of the expected profits 
from a gamble that are forfeited to reduce the risk faced, and h denotes the size of 
the gamble, which they claim can be approximated as the standard deviation 
over the set of outcomes, when gambles depart from the coin-flip variety. 
However, in evaluating the farmer choices over different levels of risk aversion, 
it became apparent that the Babcock et al. (BCF) formula was an increasingly 
poor approximation of the share of expected profits forfeited relative to the risk-
neutral producer, as the level of constant absolute risk aversion increased. Table 
4 summarizes the BCF risk premium and actual risk premium for the levels of 
risk aversion included in Tables 2 and 3. 

There are two factors contributing to the divergence of the BCF risk 
premium approximation from actual. First is the revenue distribution for each 
crop, which departs substantially from a coin-flip gamble, and second is the 
optimization of the gamble itself, where the farmers’ ability to manage risk 
through both insurance coverage and farm size can minimize the lost profits 
associated with risk aversion. The sharply-sloped acreage cost function we 
imposed, , also plays a role. As can be clearly seen in Table 4, the 
standard of 20% risk premium from Hurley et al. (2004) may need to be revisited 
in the context of the measurement method used. While our evaluation over many 
orders of magnitude of the risk aversion coefficient covered the full range of 
reasonable BCF-risk premiums (as discussed in their paper), the actual risk 
premium did not quite reach 20% for even the most risk-averse farmers we 
considered. This finding will prove critical to future research on risk – it will be 
necessary to identify the appropriate setting for ‘standardized’ risk premiums, 
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and when approximations such as BCF remain appropriate to evaluating the 
gambles in question. 

3.3.7 Incorporating Disaster Assistance into the Simulation 
This section presents the details of calculating SURE payments that are essential 
to a realistic computation of the tradeoffs faced by farmers, and interpretation of 
the policy parameters. Supplemental Revenue Assistance (SURE) is a whole farm 
program that provides supplemental payments to farmers who purchase crop 
insurance either through the Federal crop insurance program or through the 
Noninsured Crop Disaster Assistance Program (NAP). As most crop acreage in 
the regions we examine is insurable through the former, we focus on SURE as it 
applies to crops eligible for Federal crop insurance. SURE is analytically 
described in CCC (2009) and Smith and Watts (2010), but the description here is 
updated to account for the SURE regulations released in December 2009.  

SURE payments can be made only to producers who are located in 
counties where a disaster has been declared: this occurs when the Secretary of 
Agriculture determines that there has been a weather-related production loss of 
30 percent or more in at least one crop, in counties contiguous to disaster 
counties, or when any producer has experienced production 50 percent or more 
below normal levels.  In addition, producers must suffer a 10 percent production 
loss to at least one crop of economic significance on their farm in order to be 
eligible for SURE. The level of the SURE payment is:  

SUREt =1t !max 0,!0.60 ! S" t " ptyt( )( ) , 
where is the SURE guarantee, is total farm revenue, and where  is an 
indicator variable for the disaster trigger; it is equal to 1 if either a disaster is 
declared in the farmer’s county or in a contiguous county, or if actual production 
on the farm is 50 percent or less than expected production (recall from above: 

), as measured by overall revenue, and 0 otherwise. Our representative 
farmers plant only one crop so that the question of economic significance is ruled 
out, and we consider only the 50% revenue-loss component of the trigger for the 
SURE vs. ad-hoc indifference calculations because the two disaster support 
programs share the same triggers, in general. 

The SURE guarantee depends on the level of crop insurance coverage 
selected by the producer, expected prices, and the producer’s APH yield, but is 
limited to no more than 90 percent of typical or expected revenue: 22 

. 
We also abstract away from other sources of total farm revenue (outside of crop 
sales), which include marketing loan benefits, direct payments, and counter-
cyclical payments or ACRE (the Average Crop Revenue Election program) which 
are mutually exclusive,23 and simplify the modeling approach by assuming away 
“farm-gate” prices that are different than the national average market price, . 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
22 This specification abstracts away from planted acreage shares between crops and from 
counter-cyclical payments, as included in the actual SURE program, in part because of 
our assumption of a mono-crop farmer. 
23  If the eligible farmer chooses to be in enrolled in the Average Crop Revenue Election 
program (ACRE) rather than in the traditional commodity program, then the CCP 
payment in t is replaced by an ACRE revenue payment, DP’s are reduced by 20% and 
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 The ad-hoc payment is modeled similarly to the SURE payment where, 
contingent on the disaster trigger, payments are made according to the difference 
between realized revenues and a given threshold. As is common in practice, we 
assume the threshold . However, while an ad-hoc payment 
which does occur is larger than the corresponding SURE payment (all else equal), 
the ad-hoc support is subject to political uncertainty, which we denote with 
another indicator variable, . Thus, the level of the ad-hoc payment is given by: 

AdHoct,! =1t !1! !max 0,!pt
by" t " ptyt( ) . 

The political uncertainty associated with ad-hoc is incorporated into the 
simulation by a vector of uniform random variables , such that for 
every revenue realization below 50% of the mean (the disaster trigger),  
implies that ad-hoc was successfully passed into law.  

While we do not explicitly consider the simultaneous presence of ad-hoc 
support and the SURE program, we use the simulation/optimization procedure 
to estimate the probability of ad-hoc support which would make farmers 
indifferent to SURE. In the next sub-section we show that the indifferent ad-hoc 
probability is increasing in the risk aversion coefficient, and that the 
representative wheat farmer is indifferent to lower probabilities than the corn 
farmer across most levels of risk aversion. We also show that implementing a 
disaster support program like SURE, in its entirety, leads to increased acreage 
across nearly all levels of risk aversion, but only small changes in insurance 
coverage. As shown in Section 3.4, and in Tables 18 and 19, the distortions are 
even smaller when acreage is bounded above, as may more likely be the case for 
our DeKalb County, IL representative corn farmer. 

3.3.8 Simulation Results: The Impact of Disaster Assistance 
Tables 5 and 6 present the optimal input choices, along with expected profits and 
descriptive statistics as in Tables 2 and 3, for the wheat and corn farmers over a 
range of risk aversion coefficients, . For the wheat farmer, expected SURE 
payments are $66.33 per acre given that they occur. However, since they only 
occur with the frequency of revenues below 50% of expected (7.31% for wheat), 
they have a small impact on farmer decision-making at $4.85 an acre in 
expectation. Indeed, by comparing expected profits in Table 5 with Table 2, it can 
be shown that the insurance and acreage decisions are nudged slightly in order 
to capture the SURE transfers, so that some of the expected transfer amount is 
used up due to the sub-optimality of these choices. Overall, the SURE program 
results in small adjustments to the level of insurance coverage selected by both 
corn and wheat farmers, on the order of less than 0.5%, and to acreage increases 
of several percentage points for the more risk-neutral among them.24 

Table 6 shows similar results for the representative corn farmer. For corn 
the expected SURE payment is $211.91 per-acre when it occurs, but the corn 
farmer experiences fewer disasters than the wheat farmer (only 6.72%), so the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
the loan rate in the MLB by 30%. We do not incorporate these details into the simulation 
analysis. 
24 Tables 16 and 17 in the Appendix explicitly show the impacts of disaster assistance on 
input choices. They compare Table 2 vs. 5 and Table 3 vs. 6 explicitly. 

 

Ht = E pt yt[ ] = pt
b y ! t

 

1!

 

X ~U 0,1[ ]

 

X < !

 

!



 

47 
  

program only nets him an expected $14.24 per acre overall. As with wheat, the 
corn farmer experiences negligible changes in the amount of optimal insurance 
coverage purchased, but increases acreage for most levels of risk aversion (when 
compared to no disaster assistance), with stronger effects for more risk-neutral 
farmers. While Tables 5 and 6 show that the program serves to lower the 
coefficient of variation faced by the farmers, this effect does not constitute much 
risk management per se, since the standard deviation of profits remains virtually 
unchanged after optimization (as compared to Tables 2 and 3) so it comes almost 
entirely from the increase in expected profits.25 

Table 7 confirms the earlier results in Table 4, showing that the BCF risk 
premium approximation may not be appropriate for this setting. In fact, the BCF 
risk premium is nearly unchanged, since it is an approximation based on the 
standard deviation of total profits and behavior is largely unaffected by 
introduction of the SURE program. The actual risk premium has only changed 
slightly, representing the increase in profits across the board. 
 Overall, several lessons are clear from the simulation introducing SURE 
into the optimization problem. First, SURE does not change the relative risk 
profiles of the farmers, but induces small changes in their input selections 
intended to capture extra rents. Indeed, there is very little effect on expected 
utilities for the more risk-averse farmers. In addition, the lessons regarding the 
riskiness of each crop remain from the initial simulation. The wheat crop has a 
riskier revenue profile, a slightly higher probability of disaster and more 
frequent insurance activation at many coverage levels. Yet, once the farmers 
optimize over acreage and insurance, the coefficient of variation faced by the 
farmers are about equal and the wheat farmers pay consistently less risk 
premium, except at the highest levels of risk aversion. The addition of the SURE 
program does not affect this comparison between the two crops. 

3.3.9 Simulation Results: Ad-Hoc Indifference 
So as not to overwhelm the reader, the equivalents of Tables 5-7 can be found in 
the Appendix as Tables 10-15, for both ad-hoc disaster support passed into law 
with a 70% probability ( ) and certain ad-hoc support ( ). Given 
these results, we use the approximation derived in the theoretical section to 
identify the indifferent ad-hoc probability (that is, indifferent to the SURE 
program as written) for each level of risk aversion. In doing so, we show that the 
indifferent probability is increasing in the risk aversion and that, for the range of 
RA coefficients examined, there may be a wide range of probabilities that are 
acceptable to some subsets of farm producers. 
 Tables 8 and 9 show the ad-hoc support probability leading to indifference 
between ad-hoc disaster assistance and SURE, for both Hyde spring wheat and 
DeKalb corn. As discussed previously, the wheat farmer who faces a riskier 
revenue distribution ends up taking on ‘less risk-averse’ behavior than the 
equivalently risk-averse corn farmer, once we have accounted for optimizing 
behavior. This means that, given an ad-hoc probability, wheat farmers are more 
likely to accept the SURE program in its stead, as long as risk aversion is 
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similarly distributed among corn- and wheat-farming populations. This is 
demonstrated in Column 2 of each Table.  

In Table 8, the last column shows the precision of our approximation, 
where all changes in expected utility from the ‘indifferent’ switch are less than 
0.15%. Thus, it is clear that disregarding the total differential term from the 
approximation (as outlined in the theoretical section) does not have much of an 
effect on the accuracy of these results. The changes in purchased insurance 
coverage and in acreage are also small, though clearly the insurance ‘sticking 
point’ of 85% coverage leads to some larger fluctuations in acreage for certain 
levels of risk aversion by the representative farmer. Table 9 shows a similar 
presentation of the relevant results for our DeKalb County, IL, representative 
corn farmer, where the approximation appears to be slightly less precise (as 
measured by the percentage change in expected utility after switching, which 
should ideally equal zero). 

Table 9 shows that the corn farmer will be indifferent only for much 
higher levels of ad-hoc support probability, given the level of risk aversion. It 
also shows that the precision of our indifference approximation is about the same, 
and that the coverage election is much less elastic for the representative corn 
farmer than for the wheat farmer.  

Overall, the wheat farmer requiring higher levels of risk aversion to 
approximate the corn farmer’s indifference means that wheat farmers across the 
board will be happier with lower levels of ad-hoc support probability than their 
corn-farming cousins, ceteris paribus. In other words, the corn farmers have a 
more favorable disposition to SURE based on their specific distribution of 
optimally risky production, whereas wheat farmers will almost always prefer the 
larger, but less certain, payments of ad-hoc disaster support. As identified in the 
crop insurance section of our simulation exercise, this fact likely results from the 
wheat farmers’ riskier per-acre distribution being completely dominated (in 
terms of riskiness) by the larger scale of operations and the post-optimization 
behavior of the simulated corn farmers.  

 

3.4 Discussion. 
We have shown here that assumptions about farmer risk aversion, or empirical 
findings on the distribution thereof, may be critical drivers of policy. If acreage is 
variable, even if at substantial marginal cost when farmers optimize, then 
introduction of disaster support policies means farm acreage will necessarily 
expand as farmers pursue additional expected profits. The highest level of 
acreage expansion in our simulation was over 7%, observed for many wheat 
farmers and some of the more risk-neutral corn farmers, when receiving ad-hoc 
support with 100% probability. However, the most risk-averse farmers 
experienced essentially no changes in their input choices under all of the various 
disaster assistance policies considered. The indifference of the highly risk-averse 
farmers to any form of disaster support is no doubt a result of the fact that all the 
disaster policies increase the mean revenue per acre, but do so in a way that adds 
considerable variability to the revenue distribution, for which they have a strong 
distaste (as in Saha, 1997). Thus, Tables 16 and 17 show the percentage changes 
in acreage and insurance coverage induced by each disaster policy, as compared 
to a baseline of crop insurance participation only. 
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The current schedule of insurance subsidies, with the sharp kink at 85% 
coverage, forces farmers’ insurance purchase decisions to be held relatively 
constant in our simulation so a majority of risk management is handled by 
varying the planted/insured acreage in any given season. Thus, policymakers 
must not only focus on the role of acreage in affecting environmental policy goals, 
but also focus on tradeoffs with respect to the social costs of expanding acreage, 
vis-à-vis the distortionary burden of government financing of aggregate 
insurance subsidies. 

Aggregate costs, in turn, will be determined by the percentage of total 
adoptions, which we do not address directly as non-adoption of actuarially over-
fair insurance is not consistent with an expected utility framework. Further 
research remains to identify local unfairness of RMA insurance premiums within 
the farm sector, or to evaluate alternate expected utility models under prospect 
theory to accurately account for this behavior. This research will be critical since, 
even under the current regime of heavily subsidized insurance supplemented 
with disaster assistance, there remain farmers who do not participate in the 
Federal crop insurance program. As of 2004, 75-80 percent of corn, soybean, 
wheat, and cotton acres were insured, primarily through larger, commercial 
farms (Dismukes and Glauber, 2005), so explanations revolving around 
transaction costs of purchasing insurance or alternate expected utility models 
seem more likely than those focused on localized actuarial unfairness. This point 
is bolstered by the fact that it would take a very strong deviation in the revenue 
distribution to make the premiums actuarially unfair to the point of non-
adoption, both due to the high level of subsidies and considering the high level 
of risk premium involved in property-casualty insurance products outside the 
farm sector.  
 Nonetheless, the analysis sheds some light on these issues when given a 
starting point of the level of insurance adoption (yes/no participation) in a 
particular crop industry. While exact calculations and theory are an area for 
future research, one could imagine a social optimization problem in which 
tradeoffs were faced between potential environmental damages from acreage 
expansion and social welfare costs of (necessarily) inefficient taxation. In this 
context, there would exist a tradeoff for the social planner in increasing acreage 
(through disaster assistance) while attempting to advance a social goal of farm-
sector risk management, causing social costs at both the intensive and extensive 
margin. These social costs would be counterbalanced by the decreased level of 
insurance purchased by already-participating farmers at the intensive margin, 
though our simulation shows this effect to be quite small, and the relative size of 
these two effects will ultimately depend on the starting level of Federal crop 
insurance participation. Using a standard S-curve adoption model, we expect 
that pre-existing high levels of crop insurance participation would lower the 
negative welfare effects of expanding disaster support programs. 

3.4.1 Acreage Considerations 
The present analysis adds richness by incorporating both the insurance coverage 
and acreage choice simultaneously into the farmers’ decision problems, but it 
might be argued that this generalization does not always coincide with reality. 
Specifically, while it might be expected that our representative spring wheat 
farmer in Hyde County, SD, has relative flexibility with respect to acreage 
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planted, the representative corn farmer in the middle of the Corn Belt in Illinois 
is likely to face considerable constraints in expanding acreage because of the high 
level of existing agricultural production (and productivity) in the region. While 
the preceding tables showed variation in the optimal acreage choice across risk 
preferences, this was not a thought experiment about changing a given farmer’s 
preferences and observing the resulting change in acreage. Rather, the tables 
presented variation across different individual farmers according to their 
inherent risk preferences, so this variation is emblematic of varying farm sizes 
within the industry. As a result, one might consider that farmers optimize 
according to their risk preferences when the farm is purchased and therefore, the 
acreage constraints are not relevant here. 
 Nonetheless, when disaster support is introduced we are clearly 
observing a change in acreage as a result of policy. To explore this point, we 
conducted a duplicative, full simulation analysis with acreage bounded above at 
the optimal level without disaster support. The results coincide perfectly with 
the earlier analysis, but are somewhat surprising in that bounded acreage 
effectively limits farmers’ ability to seek extra rents by altering their input 
choices. Specifically, just as the introduction of disaster programs led to little 
change in the level of insurance coverage purchased, so too does the introduction 
of the same programs when acreage is constrained not to exceed the crop-
insurance-only acreage choice.  

The results of the constrained optimization are shown in Tables 18 and 
19.26 Note that we only constrain acreage from above, since it is relatively costless 
for farmers to reduce planted acreage, and since the disaster policies only act to 
increase acreage – ignoring changes smaller than 0.1%, since the most risk-averse 
farmers are essentially indifferent to the disaster support programs. When 
acreage is bounded above, the constrained optimization results show that 
changes in the insurance choice are still small across all levels of risk aversion, 
though wheat farmers closest to the sticking point of 0.85 experienced increases 
as large as 2%. 

3.4.2 Conclusions 
We have implemented and tested a theory of nested insurance to evaluate the 
impact of disaster support and risk preference acreage decisions and crop 
insurance purchases. The results suggest that parameters of a government 
program like SURE may enhance the value of crop insurance to the farm sector, 
but counter-intuitively, disaster support programs are most valuable to the least 
risk-averse farmers. This result follows from the fact that disaster programs 
currently available are simply stochastic subsidies that add expected value to 
planted acreage, but do so in a manner that also increases variability of revenue 
outcomes. In addition, we show that disaster support, whether through ad-hoc 
legislation or via the new SURE program, essentially leads to a moral hazard 
problem, whereby insurance purchases are discouraged at the intensive margin 
(albeit marginally) and planted/insured acreage is encouraged to increase. 
However, acreage being constrained not to exceed pre-disaster policy levels will 
eliminate the acreage component of the moral hazard problem and will also 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
26 Though they each omit a single value of risk aversion where disaster assistance 
actually caused optimal acreage to decrease, and so the acreage constraint did not bind. 
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mitigate the insurance component. Thus, for farmers in the Illinois Corn Belt, 
existing constraints on acreage will mitigate the adverse effects of disaster 
support policies, in contrast to our representative wheat farmer in Hyde County, 
SD. 
 Overall, we have shown that existing crop insurance policies provide a 
substantial risk management tool to farmers. In contrast, disaster support 
policies provide little risk management but do encourage more risky behavior in 
favor of additional expected profits. However, the impacts of disaster support 
policies on insurance purchases are relatively small. Across a wide range of risk 
preferences, and for two substantially different risk profiles (those of DeKalb 
Corn and Hyde Wheat), the transition from no disaster support to full disaster 
support engenders less than a 2% change in insurance coverage elected, and far 
less than that in the majority of cases considered. On the other hand, the same 
policies may lead the more risk-neutral farmers to pursue acreage increases of 3-
7%, and these same farmers will be less likely to accept SURE as a substitute for 
existing ad-hoc assistance, because of the impact on their rent-seeking behavior.  

Nonetheless, acreage distortions can be controlled by limiting acreage to 
pre-disaster support levels, and the resulting insurance distortions remain 
smaller and less costly than the acreage distortions they replace. Thus, while 
existing disaster support policies may fail to provide effective risk management, 
at least the distortions caused by these policies can be kept small. 
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Chapter 4. Conclusion 
 
 
This dissertation has included two distinct analyses of risk management for 
disasters: a normative analysis proposing a new type of insurance policy for 
stochastic externalities, and a positive analysis evaluating supplemental disaster 
insurance legislation in the United States crop insurance market. Both 
applications take a classical, welfare economic approach to policy. In the 
environmental case, we showed that welfare considerations of equity play a 
larger role as a result of uncertainty, and suggested a new policy addressing this 
issue by mirroring the equilibrium allocation of a system of tradable pollution 
permits. In the crop insurance case, we showed that the nested insurance acts 
more like a stochastic subsidy than like risk management per se, and that as a 
result the primary beneficiaries were the most risk-neutral farmers. 

In evaluating environmental accident regulation, we showed that 
standard pollution regulations must be updated to properly address 
environmental accidents, and that one of the key challenges is the exacerbation of 
distributional disparities resulting from uncertainty. The new policy proposed 
demonstrates a role for insurance in achieving social objectives, even when all 
parties are risk-neutral. It does so by leveraging the re-distributional aspect of 
insurance, which ultimately allows for a stochastic policy to replicate the cap-
and-trade outcome of dirtier (riskier) firms subsidizing cleaner (safer) ones. 

In the second half of the dissertation, we developed a comprehensive 
economic theory of nested insurance. In doing so, we were able to demonstrate 
some of the quirks and challenges of existing US farm policy. We showed that 
disaster support programs, like SURE, may distort input choices, but these 
distortions are limited by non-differentiability of the insurance price-coverage 
menu and by existing constraints on the availability of acreage. The results 
suggest that parameters of a government program like SURE may enhance the 
value of crop insurance to the farm sector, but counter-intuitively, disaster 
support programs are of almost no value to highly risk-averse farmers because 
the added expected value of disaster payments is offset by the increased 
variability of farm revenues. 
 Overall, we have shown that managing the risk from disasters across 
varying economic agents can lead to dramatic distributional implications. When 
more than one efficient policy is available, then the distributional characteristics 
of policies will be the deciding factor. This observation drives the proposal of 
mutual insurance for stochastic externalities - minimal redistribution of resources 
can still be achieved under asymmetric information. On the other hand, when 
equitable distribution is ostensibly the goal of government-provided risk 
management, poorly designed policies can backfire and lead to cases where 
insurance only helps those who don’t need it. Fortunately, other frictions in 
agricultural markets limit how much advantage they can gain, controlling the 
deadweight loss associated with these policies and the distributional disparities 
they may cause. 
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Appendix. 
	
   	
  
	
  

Table 1. Summary Statistics for Simulation Inputs 

 
Hyde County, SD 

Spring Wheat 
DeKalb County, IL  

Corn 
Yield Data (bushels/acre) 
Mean 37.65 169.03 
Standard Deviation 20.00 39.85 
Price Data ($/bushel) 
Expected price, 2009 $6.20  $4.04  
Cost Data ($/acre) 
Fertilizer $44.21  $146.62  
All other $65.54  $147.12  
Direct Payments27 ($6.86) ($20.97) 
Total $102.89  $272.77  

Resulting Cost Function:  

	
  
	
   	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
27 Wealth wj under each scenario includes direct payments for corn, soybeans, and 
wheat, with the share of payments for each crop based on the number of base acres in 
each crop in the county, valued at the base yield rates for that county, with the total 
value of these payments being DP = $6.86 and $20.97 per acre for Hyde and de Kalb, 
respectively. Note that these are annual fixed payments not requiring production of the 
crops, and hence, we include the soybean direct payments regardless of whether or not 
the representative farmer grows soybeans. 

 

C A( ) = Total ! A + A2
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Table 2. Optimization Results, Wheat, Crop Insurance Only28 

Aversion,  Acres* Covg* E[Profit] Std[Profit] CV 
0.00 64.36 82.78% $4,138.07 $3,623.97 0.88 

1.00E-07 64.29 82.87% $4,138.07 $3,616.54 0.87 
5.00E-07 64.31 82.75% $4,138.07 $3,622.78 0.88 
1.00E-06 64.25 82.97% $4,138.05 $3,609.76 0.87 
5.00E-06 63.84 83.41% $4,137.60 $3,568.32 0.86 
1.00E-05 63.38 84.04% $4,136.24 $3,516.23 0.85 
5.00E-05 60.18 85.00% $4,118.06 $3,300.41 0.80 
1.00E-04 57.11 85.00% $4,083.25 $3,131.69 0.77 
5.00E-04 46.27 85.00% $3,809.72 $2,537.21 0.67 
1.00E-03 42.36 85.00% $3,653.58 $2,323.08 0.64 
5.00E-03 40.00 88.16% $3,402.11 $2,106.84 0.62 
1.00E-02 39.92 88.65% $3,372.72 $2,089.09 0.62 

	
  
	
   	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
28 The optimization for aversion = 0 was conducted as profit maximizing, rather than 
utility maximizing. 

 

!



 

60 
  

	
  
Table 3. Optimization Results, Corn, Crop Insurance Only 

Aversion,  Acres* Covg* E[Profit] Std[Profit] CV 
0.00 195.33 82.86% $38,169.19 $32,775.34 0.86 

1.00E-07 195.13 83.05% $38,169.10 $32,672.94 0.86 
5.00E-07 194.03 83.50% $38,165.52 $32,328.63 0.85 
1.00E-06 192.69 84.02% $38,155.57 $31,919.95 0.84 
5.00E-06 184.05 85.00% $38,019.17 $30,151.40 0.79 
1.00E-05 175.54 85.00% $37,754.93 $28,755.62 0.76 
5.00E-05 142.50 85.00% $36,023.01 $23,343.23 0.65 
1.00E-04 131.25 85.00% $34,655.65 $21,500.34 0.62 
5.00E-04 125.63 87.79% $32,176.84 $19,904.07 0.62 
1.00E-03 125.19 88.33% $31,870.85 $19,702.87 0.62 
5.00E-03 125.08 88.77% $31,639.01 $19,575.00 0.62 
1.00E-02 125.08 88.83% $31,609.43 $19,559.97 0.62 
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Table 4. Post-Optimization Risk Premiums, Wheat and Corn29 

 Spring Wheat Farmer Corn Farmer 
Aversion E-Profit RP-BCF RP-Actual E-Profit RP-BCF RP-Actual 

0.00 $4,138.07 0.000 0.000 $38,169.19 0.000 0.000 
1.00E-07 $4,138.07 0.000 0.000 $38,169.10 0.002 0.000 
5.00E-07 $4,138.07 0.001 0.000 $38,165.52 0.008 0.000 
1.00E-06 $4,138.05 0.002 0.000 $38,155.57 0.016 0.000 
5.00E-06 $4,137.60 0.009 0.000 $38,019.17 0.075 0.004 
1.00E-05 $4,136.24 0.018 0.000 $37,754.93 0.142 0.011 
5.00E-05 $4,118.06 0.082 0.005 $36,023.01 0.485 0.056 
1.00E-04 $4,083.25 0.154 0.013 $34,655.65 0.684 0.092 
5.00E-04 $3,809.72 0.514 0.079 $32,176.84 0.930 0.157 
1.00E-03 $3,653.58 0.706 0.117 $31,870.85 0.965 0.165 
5.00E-03 $3,402.11 0.934 0.178 $31,639.01 0.993 0.171 
1.00E-02 $3,372.72 0.967 0.185 $31,609.43 0.996 0.172 
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Table 5. Optimization Results, Wheat, Crop Insurance Plus SURE 

Aversion Acres* Covg* E[Profit] Std[Profit] CV 
0.00 66.74 82.84% $4,455.90 $3,626.80 0.81 

1.00E-07 66.74 82.84% $4,455.90 $3,626.80 0.81 
5.00E-07 66.74 82.84% $4,455.90 $3,626.66 0.81 
1.00E-06 66.64 82.88% $4,455.89 $3,619.99 0.81 
5.00E-06 66.28 83.32% $4,455.51 $3,584.63 0.80 
1.00E-05 65.82 83.77% $4,454.44 $3,543.55 0.80 
5.00E-05 62.67 85.00% $4,436.27 $3,331.59 0.75 
1.00E-04 59.56 85.00% $4,401.38 $3,166.32 0.72 
5.00E-04 47.90 85.00% $4,098.07 $2,546.18 0.62 
1.00E-03 43.20 85.00% $3,899.20 $2,296.62 0.59 
5.00E-03 40.02 87.98% $3,606.66 $2,059.91 0.57 
1.00E-02 39.91 88.50% $3,573.53 $2,042.05 0.57 
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Table 6. Optimization Results, Corn, Crop Insurance Only Plus SURE 

Aversion Acres* Covg* E[Profit] Std[Profit] CV 
0.00 202.49 82.88% $41,000.60 $33,125.94 0.81 

1.00E-07 202.23 82.97% $41,000.52 $33,054.88 0.81 
5.00E-07 201.11 83.34% $40,997.69 $32,760.40 0.80 
1.00E-06 199.82 83.83% $40,988.93 $32,402.43 0.79 
5.00E-06 191.13 85.00% $40,848.82 $30,652.39 0.75 
1.00E-05 182.42 85.00% $40,576.04 $29,254.74 0.72 
5.00E-05 149.26 85.00% $38,149.32 $23,936.45 0.63 
1.00E-04 135.00 85.00% $37,061.08 $21,650.10 0.58 
5.00E-04 125.59 87.53% $34,079.62 $19,639.22 0.58 
1.00E-03 125.21 88.20% $33,715.15 $19,443.03 0.58 
5.00E-03 125.08 88.76% $33,423.80 $19,307.96 0.58 
1.00E-02 125.11 88.82% $33,399.22 $19,300.89 0.58 
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Table 7. Post-Optimization Risk Premiums, Wheat and Corn, under 

SURE 
 Spring Wheat Farmer Corn Farmer 

Aversion E-Profit 
RP-
BCF 

RP-
Actual E-Profit 

RP-
BCF 

RP-
Actual 

0.00 $4,455.90 0.000 0.000 $41,000.60 0.000 0.000 
1.00E-07 $4,455.90 0.000 0.000 $41,000.52 0.002 0.000 
5.00E-07 $4,455.90 0.001 0.000 $40,997.69 0.008 0.000 
1.00E-06 $4,455.89 0.002 0.000 $40,988.93 0.016 0.000 
5.00E-06 $4,455.51 0.009 0.000 $40,848.82 0.076 0.004 
1.00E-05 $4,454.44 0.018 0.000 $40,576.04 0.144 0.010 
5.00E-05 $4,436.27 0.083 0.004 $38,149.32 0.494 0.070 
1.00E-04 $4,401.38 0.156 0.012 $37,061.08 0.686 0.096 
5.00E-04 $4,098.07 0.515 0.080 $34,079.62 0.929 0.169 
1.00E-03 $3,899.20 0.703 0.125 $33,715.15 0.964 0.178 
5.00E-03 $3,606.66 0.933 0.191 $33,423.80 0.993 0.185 
1.00E-02 $3,573.53 0.966 0.198 $33,399.22 0.996 0.185 
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Table 8. SURE vs. Ad-Hoc Indifference and Changes, Spring Wheat 
Aversion Est. Prob. ∆Acres* (%) ∆Covg* (%) ∆EU* (%) 
0.00E+00 0.489 0.00% -0.12% -0.10% 
1.00E-07 0.489 -0.09% -0.01% -0.13% 
5.00E-07 0.490 -0.12% -0.02% -0.12% 
1.00E-06 0.490 0.00% 0.00% -0.13% 
5.00E-06 0.495 0.00% 0.00% -0.12% 
1.00E-05 0.500 -0.13% 0.11% -0.12% 
5.00E-05 0.543 -0.41% 0.00% -0.09% 
1.00E-04 0.590 -0.67% 0.00% -0.06% 
5.00E-04 0.825 -1.22% 0.00% 0.00% 
1.00E-03 0.942 -0.69% 0.00% 0.00% 
5.00E-03 1.000 0.00% 0.00% 0.00% 
1.00E-02 1.000 0.06% 0.02% 0.00% 
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Table 9. SURE vs. Ad-Hoc Indifference and Changes, Corn 

Aversion Est. Prob ∆Acres* (%) ∆Covg* (%) ∆EU* (%) 
0.00E+00 0.499 0.00% 0.00% -0.11% 
1.00E-07 0.500 -0.06% 0.07% -0.11% 
5.00E-07 0.504 -0.06% 0.00% -0.11% 
1.00E-06 0.510 0.00% 0.00% -0.10% 
5.00E-06 0.550 0.00% 0.00% -0.07% 
1.00E-05 0.596 -0.59% 0.00% -0.05% 
5.00E-05 0.752 -1.21% 0.00% -0.28% 
1.00E-04 0.938 1.47% 0.00% 0.01% 
5.00E-04 1.000 0.00% 0.00% 0.00% 
1.00E-03 1.000 0.00% 0.00% 0.00% 
5.00E-03 1.000 0.00% 0.00% 0.00% 
1.00E-02 1.000 0.00% 0.00% 0.00% 
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Table 10. Optimization Results, Wheat 70% Ad-hoc Probability 

Aversion Acres* Covg* E[Profit] Std[Profit] CV 
0 67.75 82.81% $4,588.70 $3,899.39 0.85 

1.00E-07 67.73 82.72% $4,588.70 $3,901.00 0.85 
5.00E-07 67.69 82.82% $4,588.70 $3,896.04 0.85 
1.00E-06 67.62 82.88% $4,588.68 $3,890.18 0.85 
5.00E-06 67.21 83.30% $4,588.26 $3,853.60 0.84 
1.00E-05 66.65 83.75% $4,586.95 $3,807.97 0.83 
5.00E-05 63.07 85.00% $4,563.88 $3,566.28 0.78 
1.00E-04 59.55 85.00% $4,518.85 $3,367.55 0.75 
5.00E-04 47.14 85.00% $4,162.20 $2,665.77 0.64 
1.00E-03 42.75 85.00% $3,962.16 $2,417.38 0.61 
5.00E-03 40.02 88.02% $3,683.48 $2,205.07 0.60 
1.00E-02 39.93 88.56% $3,650.15 $2,189.53 0.60 

	
  
	
   	
  



 

68 
  

	
  
Table 11. Optimization Results, Corn, 70% Ad-hoc Probability 

Aversion Acres* Covg* E[Profit] Std[Profit] CV 
0 205.33 82.83% $42,114.19 $35,734.98 0.85 

1.00E-07 204.88 82.96% $42,114.10 $35,621.59 0.85 
5.00E-07 203.76 83.38% $42,110.85 $35,319.73 0.84 
1.00E-06 202.23 83.71% $42,101.84 $34,970.76 0.83 
5.00E-06 192.21 85.00% $41,921.91 $32,915.38 0.79 
1.00E-05 182.39 85.00% $41,571.07 $31,233.58 0.75 
5.00E-05 147.26 85.00% $38,737.64 $25,218.49 0.65 
1.00E-04 135.00 85.00% $37,798.58 $23,118.74 0.61 
5.00E-04 125.58 87.64% $34,713.91 $21,060.22 0.61 
1.00E-03 125.20 88.27% $34,366.08 $20,888.92 0.61 
5.00E-03 125.08 88.75% $34,113.99 $20,784.93 0.61 
1.00E-02 125.08 88.83% $34,072.95 $20,770.16 0.61 
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Table 12. Optimized Risk Premiums, Wheat and Corn, 70% Ad-hoc 

Probability 
  Spring Wheat Farmer Corn Farmer 

Aversion E-Profit 
RP-
BCF 

RP-
Actual E-Profit 

RP-
BCF 

RP-
Actual 

0 $4,588.70 0.000 0.000 $42,114.19 0.000 0.000 
1.00E-07 $4,588.70 0.000 0.000 $42,114.10 0.002 0.000 
5.00E-07 $4,588.70 0.001 0.000 $42,110.85 0.009 0.000 
1.00E-06 $4,588.68 0.002 0.000 $42,101.84 0.017 0.000 
5.00E-06 $4,588.26 0.010 0.000 $41,921.91 0.082 0.005 
1.00E-05 $4,586.95 0.019 0.000 $41,571.07 0.154 0.013 
5.00E-05 $4,563.88 0.089 0.005 $38,737.64 0.512 0.080 
1.00E-04 $4,518.85 0.165 0.015 $37,798.58 0.704 0.102 
5.00E-04 $4,162.20 0.530 0.093 $34,713.91 0.934 0.176 
1.00E-03 $3,962.16 0.717 0.137 $34,366.08 0.967 0.184 
5.00E-03 $3,683.48 0.937 0.197 $34,113.99 0.993 0.190 
1.00E-02 $3,650.15 0.968 0.205 $34,072.95 0.997 0.191 
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Table 13. Optimization Results, Wheat 100% Ad-hoc Probability 

Aversion Acres* Covg* E[Profit] Std[Profit] CV 
0 69.16 82.81% $4,787.64 $4,000.97 0.84 

1.00E-07 69.16 82.79% $4,787.64 $4,000.96 0.84 
5.00E-07 69.16 82.86% $4,787.64 $3,999.18 0.84 
1.00E-06 69.06 82.85% $4,787.63 $3,994.07 0.83 
5.00E-06 68.62 83.18% $4,787.22 $3,959.90 0.83 
1.00E-05 68.04 83.66% $4,785.85 $3,914.33 0.82 
5.00E-05 64.35 85.00% $4,761.13 $3,668.60 0.77 
1.00E-04 60.64 85.00% $4,711.61 $3,457.14 0.73 
5.00E-04 47.56 85.00% $4,317.34 $2,711.37 0.63 
1.00E-03 42.94 85.00% $4,096.53 $2,448.23 0.60 
5.00E-03 40.02 87.98% $3,801.96 $2,234.20 0.59 
1.00E-02 39.91 88.50% $3,768.29 $2,219.44 0.59 
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Table 14. Optimization Results, Corn, 100% Ad-hoc Probability 

Aversion Acres* Covg* E[Profit] Std[Profit] CV 
0 209.40 82.86% $43,847.94 $36,834.34 0.84 

1.00E-07 208.99 82.98% $43,847.71 $36,738.48 0.84 
5.00E-07 207.87 83.24% $43,844.90 $36,484.01 0.83 
1.00E-06 206.16 83.63% $43,834.45 $36,099.58 0.82 
5.00E-06 195.73 85.00% $43,637.59 $33,986.53 0.78 
1.00E-05 185.38 85.00% $43,248.53 $32,188.56 0.74 
5.00E-05 148.39 85.00% $40,108.02 $25,766.43 0.64 
1.00E-04 135.00 85.00% $38,927.53 $23,441.35 0.60 
5.00E-04 125.59 87.53% $35,815.87 $21,453.05 0.60 
1.00E-03 125.21 88.20% $35,446.23 $21,291.20 0.60 
5.00E-03 125.08 88.76% $35,153.09 $21,187.51 0.60 
1.00E-02 125.11 88.82% $35,128.95 $21,184.38 0.60 
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Table 15. Optimized Risk Premiums, Wheat and Corn, 100% Ad-hoc 

Probability 
  Spring Wheat Farmer Corn Farmer 

Aversion E-Profit 
RP-
BCF 

RP-
Actual E-Profit 

RP-
BCF 

RP-
Actual 

0 $4,787.64 0.000 0.000 $43,847.94 0.000 0.000 
1.00E-07 $4,787.64 0.000 0.000 $43,847.71 0.002 0.000 
5.00E-07 $4,787.64 0.001 0.000 $43,844.90 0.009 0.000 
1.00E-06 $4,787.63 0.002 0.000 $43,834.45 0.018 0.000 
5.00E-06 $4,787.22 0.010 0.000 $43,637.59 0.085 0.005 
1.00E-05 $4,785.85 0.020 0.000 $43,248.53 0.158 0.014 
5.00E-05 $4,761.13 0.091 0.006 $40,108.02 0.519 0.085 
1.00E-04 $4,711.61 0.170 0.016 $38,927.53 0.708 0.112 
5.00E-04 $4,317.34 0.536 0.098 $35,815.87 0.935 0.183 
1.00E-03 $4,096.53 0.720 0.144 $35,446.23 0.967 0.192 
5.00E-03 $3,801.96 0.938 0.206 $35,153.09 0.993 0.198 
1.00E-02 $3,768.29 0.969 0.213 $35,128.95 0.997 0.199 
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Table 16. Input % Change, Corn, Relative to Crop Ins Only 
  SURE Adhoc70 Adhoc100 

Aversion ∆Acres ∆Covg ∆Acres ∆Covg ∆Acres ∆Covg 
0.00E+00 3.67% 0.02% 5.12% -0.03% 7.20% 0.01% 
1.00E-07 3.64% -0.09% 4.99% -0.10% 7.10% -0.09% 
5.00E-07 3.65% -0.19% 5.01% -0.14% 7.13% -0.31% 
1.00E-06 3.70% -0.22% 4.95% -0.37% 6.99% -0.46% 
5.00E-06 3.85% 0.00% 4.43% 0.00% 6.34% 0.00% 
1.00E-05 3.92% 0.00% 3.90% 0.00% 5.60% 0.00% 
5.00E-05 4.74% 0.00% 3.34% 0.00% 4.13% 0.00% 
1.00E-04 2.86% 0.00% 2.86% 0.00% 2.86% 0.00% 
5.00E-04 -0.04% -0.31% -0.05% -0.18% -0.04% -0.31% 
1.00E-03 0.01% -0.14% 0.01% -0.07% 0.01% -0.14% 
5.00E-03 0.00% -0.01% 0.00% -0.03% 0.00% -0.01% 
1.00E-02 0.03% -0.01% 0.00% 0.00% 0.03% -0.01% 
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Table 17. Input % Change, Wheat, Relative to Crop Ins Only 
  SURE Adhoc70 Adhoc100 

Aversion ∆Acres ∆Covg ∆Acres ∆Covg ∆Acres ∆Covg 
0.00E+00 3.70% 0.07% 5.27% 0.04% 7.47% 0.03% 
1.00E-07 3.81% -0.03% 5.34% -0.18% 7.57% -0.09% 
5.00E-07 3.72% 0.06% 5.26% 0.09% 7.54% 0.14% 
1.00E-06 3.66% -0.09% 5.25% -0.11% 7.49% -0.15% 
5.00E-06 3.82% -0.12% 5.28% -0.13% 7.49% -0.28% 
1.00E-05 3.85% -0.31% 5.17% -0.35% 7.36% -0.45% 
5.00E-05 4.13% 0.00% 4.79% 0.00% 6.92% 0.00% 
1.00E-04 4.30% 0.00% 4.28% 0.00% 6.18% 0.00% 
5.00E-04 3.52% 0.00% 1.89% 0.00% 2.79% 0.00% 
1.00E-03 1.98% 0.00% 0.91% 0.00% 1.37% 0.00% 
5.00E-03 0.05% -0.21% 0.04% -0.16% 0.05% -0.21% 
1.00E-02 -0.03% -0.16% 0.02% -0.10% -0.03% -0.16% 
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Table 18. Wheat: Optimal Coverage, Acres Constrained 

Aversion Acres Covg-CI Covg-SURE Covg-Hoc70 Covg-Hoc100 
0.00E+00 64.4 82.80% 82.86% 82.86% 82.86% 
1.00E-07 64.3 82.90% 82.92% 82.92% 82.92% 
5.00E-07 64.3 82.70% 83.02% 83.02% 83.02% 
1.00E-06 64.2 83.00% 83.19% 83.19% 83.19% 
5.00E-06 63.8 83.40% 84.34% 84.18% 84.04% 
1.00E-05 63.4 84.00% 84.98% 84.98% 84.97% 
5.00E-05 60.2 85.00% 85.00% 85.00% 85.00% 
1.00E-04 57.1 85.00% 85.00% 85.00% 85.00% 
5.00E-04 46.3 85.00% 85.00% 85.00% 85.00% 
1.00E-03 42.4 85.00% 86.91% 87.05% 86.91% 
5.00E-03 40.0 88.20% 88.41% 88.46% 88.41% 
1.00E-02 NA NA NA NA NA 
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Table 19. Corn Optimal Coverage, Acres Constrained 

Aversion Acres Covg-CI Covg-SURE Covg-Hoc70 Covg-Hoc100 
0.00E+00 195.3 82.90% 82.87% 82.87% 82.87% 
1.00E-07 195.1 83.00% 82.95% 82.95% 82.95% 
5.00E-07 194.0 83.50% 83.36% 83.36% 83.21% 
1.00E-06 192.7 84.00% 83.75% 83.72% 83.52% 
5.00E-06 184.1 85.00% 85.00% 85.00% 85.00% 
1.00E-05 175.5 85.00% 85.00% 85.00% 85.00% 
5.00E-05 142.5 85.00% 85.00% 85.00% 85.00% 
1.00E-04 131.3 85.00% 85.00% 85.00% 85.00% 
5.00E-04 NA NA NA NA NA 
1.00E-03 125.2 88.30% 88.20% 88.25% 88.20% 
5.00E-03 125.1 88.80% 88.71% 88.74% 88.71% 
1.00E-02 125.1 88.80% 88.85% 88.85% 88.85% 
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Table 20. RMA Schedule of Crop Insurance Premium Subsidies 
 

 
	
  
	
  
	
  




