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ABSTRACT OF THE DISSERTATION

Ultraviolet Behavior of Supergravity Amplitudes

by

Alexander Christian Edison

Doctor of Philosophy in Physics

University of California, Los Angeles, 2019

Professor Zvi Bern, Chair

In this manuscript, we detail three recent calculations addressing the ultraviolet behavior

of supersymmetric quantum gravity. First, we revisit the classic calculation of the two-

loop pure gravity divergence. We argue that the 1
ε

divergence is regulator and duality

dependent. In its place, we propose that examining the running of the scaling parameter,

log µ, is a duality and regulator independent approach to assessing gravity divergences in

four dimensions. We explicitly calculate the log µ coefficient at two loops for gravity with

any particle content, explicitly verifying the divergences for pure gravity, and the finiteness

for supersymmetric gravities. Second, we analyze fully-integrated N = 4 supergravity at

one loop using the double copy. We find that there are evanescent effects at one loop that

come directly from evanescent terms in pure-Yang–Mills. Using this observation, we lay the

groundwork for deeper analysis of the U(1) anomaly with respect to the observed evanescent

behavior. Finally, we tackle the long-standing question of the critical dimension of N = 8

supergravity at five loops. We construct an integrand using the generalized double copy,

expand the integrand in large loop momentum, and reduce the resulting integrals using sl(L)

integration-by-parts relations. This procedure yields a critical dimension of dc = 24/5.
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Chapter 1

Two-Loop Renormalization of

Quantum Gravity Simplified

The coefficient of the dimensionally regularized two-loop R3 divergence of (nonsupersymmet-

ric) gravity theories has recently been shown to change when non-dynamical three forms are

added to the theory, or when a pseudo-scalar is replaced by the anti-symmetric two-form field

to which it is dual. This phenomenon involves evanescent operators, whose matrix elements

vanish in four dimensions, including the Gauss-Bonnet operator which is also connected to

the trace anomaly. On the other hand, these effects appear to have no physical consequences

in renormalized scattering processes. In particular, the dependence of the two-loop four-

graviton scattering amplitude on the renormalization scale is simple. In this chapter, we

explain this result for any minimally-coupled massless gravity theory with renormalizable

matter interactions by using unitarity cuts in four dimensions and never invoking evanescent

operators.
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1.1 Introduction

Recent results show that the ultraviolet structure of gravity is much more interesting and

subtle than might be anticipated from standard considerations. One example of a new

ultraviolet surprise is the recent identification of “enhanced ultraviolet cancellations” in

certain supergravity theories [4–6], which are as yet unexplained by standard symmetries [7–

9]. Another recent example is the lack of any simple link between the coefficient of the

dimensionally-regularized two-loop R3 ultraviolet divergence of pure Einstein gravity [10–12]

and the renormalization-scale dependence of the renormalized theory [13]. While the value

of the divergence is altered by a Hodge duality transformation that maps anti-symmetric

tensor fields into scalars, the renormalization-scale dependence is unchanged. In contrast,

for the textbook case of gauge theory at one loop the divergence and the renormalization-

scale dependence—the beta function—are intimately linked. In Ref. [13], a simple formula

for the renormalization-scale dependence of quantum gravity at two loops was found to hold

in a wide variety of gravity theories. In this chapter we explain this formula via unitarity.

As established by the seminal work of ’t Hooft and Veltman [14], pure gravity has no

ultraviolet divergence at one loop. This result follows from simple counterterm considera-

tions: after accounting for field redefinitions, the only independent potential counterterm is

equivalent to the Gauss-Bonnet curvature-squared term. However, in four dimensions this

term is a total derivative and integrates to zero for a topologically trivial background, so no

viable counterterm remains. Hence pure graviton amplitudes are one-loop finite. Amplitudes

with four or more external matter fields are, however, generally divergent.

At two loops pure gravity does diverge, as demonstrated by Goroff and Sagnotti [10,

11] and confirmed by van de Ven [12]. The pure-gravity counterterm, denoted by R3, is

cubic in the Riemann curvature. The two-loop divergence was recently reaffirmed in pure

gravity [13], and was also studied in a variety of other theories, by evaluating the amplitude

for four identical-helicity gravitons. The actual value of the dimensionally-regularized R3

2



divergence changes when three-forms are added to the theory, even though they are not

dynamical in four space-time dimensions. More generally, when matter is incorporated into

the theory, the coefficient of the R3 divergence changes under a Hodge duality transformation.

However, such transformations appear to have no physical consequences for renormalized

amplitudes [13].

The dependence of the two-loop divergence on duality transformations is closely con-

nected to the well-known similar dependence of the one-loop trace anomaly [15]. One-loop

subdivergences in the computation include those dictated by the Gauss-Bonnet term, whose

coefficient is the trace anomaly [13]. Duff and van Nieuwenhuizen showed that the trace

anomaly changes under duality transformations of p-form fields, suggesting that theories re-

lated through such transformations might be quantum-mechanically inequivalent [15]. Oth-

ers have argued that these effects are gauge artifacts [16–20]. For graviton scattering at two

loops in dimensional regularization, quantum equivalence can be restored, but only after

combining the bare amplitude and counterterm contributions [13].

The surprising dependence of the two-loop R3 divergence in gravity on choices of field con-

tent outside of four dimensions emphasizes the importance of focusing on the renormalization-

scale dependence of renormalized amplitudes as the proper robust quantity for understand-

ing the ultraviolet properties. The divergence itself, of course, never directly affects physical

quantities since it can be absorbed into a counterterm. In contrast, the renormalization scale

dependence does affect physical quantities because it controls logarithmic parts of the scaling

behavior of the theory. While this is well known, what is surprising is that, in contrast to

gauge theory, the two-loop divergences of pure gravity are not linked in any straightforward

way to the scaling behavior of the theory. An underlying cause is that evanescent operators,

such as the Gauss-Bonnet term, contribute to the leading two-loop R3 divergence of graviton

amplitudes [13].

Evanescent operators are well-studied in gauge theory (see e.g. Ref. [21–25]), where they

can modify subleading corrections to anomalous dimensions or beta functions. A standard

3



one-loop subdivergence is associated with the one-loop matrix element of a non-evanescent

operator; integrating over the remaining loop momentum generates a double pole 1/ε2 in the

dimensional regulator ε = (4−D)/2. When the operator is evanescent, the matrix element

is suppressed in the four-dimensional limit, typically reducing the double pole to a simple

pole, but still leaving a contribution to the anomalous dimension. A key property that is

special to the two-loop gravity computation is that the divergent evanescent contribution

begins at the same order as the first divergence. However, similar effects could appear in

other contexts. For example, in the effective field theory of flux tubes with a large length

L, there is an evanescent operator which would otherwise contribute to the energy at order

1/L5 [26]; presumably it will have to be taken into account in a dimensionally-regularized

computation of (lnL)/L7 corrections to the energy.

In contrast to the divergence, the renormalization-scale dependence does appear to be

robust and unaltered by duality transformations or other changes in regularization scheme.

Indeed, a simple formula was proposed [13] for the R3 contribution to this dependence at

two loops, which is proportional to the number of four-dimensional bosonic minus fermionic

degrees of freedom. Yet in Ref. [13] this simple formula only arose after combining the

dimensionally-regularized two-loop amplitude with multiple counterterm contributions. In-

termediate steps involved evanescent operators and separate contributions did not respect

Hodge duality; nor would they have respected supersymmetry if we had treated fermionic

contributions in the same way.

The purpose of the present chapter is to explain the simple renormalization-scale de-

pendence in terms of unitarity cuts in four dimensions. This approach turns a two-loop

computation effectively into a one-loop one, it manifestly respects Hodge duality and super-

symmetry, and evanescent operators never appear.

This chapter is organized as follows: In Section 3.2 we summarize the previous approach

of Ref. [13], along with the the surprisingly simple formula found for the renormalization-

scale dependence of the four-graviton amplitude at two loops. Then in Section 1.3 we

4



derive the formula purely from four-dimensional unitarity cuts. Our conclusions are given

in Section 3.8.

1.2 Review of previous approach

Pure gravity is described by the Einstein-Hilbert Lagrangian,

LEH = − 2

κ2

√−gR , (1.1)

where κ2 = 32πGN = 32π/M2
P and the metric signature is (+−−−). While we are primarily

interested in pure gravity, it is insightful to include matter as well, as in Ref. [13], by coupling

gravity to n0 scalars, n2 two-forms and n3 three-forms, as well as fermionic fields, n1/2 of

spin-1/2 and n3/2 of spin-3/2.

At one loop, graviton amplitudes do not diverge in four dimensions, because no viable

counterterms are available after accounting for field redefinitions and the Gauss–Bonnet (GB)

theorem [14]. Divergences do occur if we allow the fields to live outside of four dimensions [10,

11, 15, 27–31]. The Gauss–Bonnet counterterm is given by

LGB =
1

(4π)2

1

ε

(53

90
+

n0

360
+

91n2

360
− n3

2
+

7n1/2

1440
− 233n3/2

1440

)
×√−g(R2 − 4R2

µν +R2
µνρσ) .

(1.2)

At one loop, matter self-interactions cannot affect this graviton counterterm. The divergence

represented by Eq. (1.2) vanishes for any one-loop amplitude with four-dimensional external

gravitons. Amplitudes with four external matter states generically have divergences in four

dimensions, starting at one loop. We neglect such divergences in this chapter because they

do not affect the two-loop four-graviton divergence.

In the context of dimensional regularization, evanescent operators, whose matrix elements

vanish in four dimensions, can contribute to higher-loop divergences. Indeed, the Gauss–

5



Bonnet term generates subdivergences at two loops, because the momenta and polarizations

of internal lines can lie outside of four dimensions [13, 32].

The coefficient in front of Eq. (1.2) has a rather interesting story, because it is propor-

tional to the trace anomaly [10, 11, 15, 27–31]. The connection comes about because the

calculations of the ultraviolet divergence and the trace anomaly are essentially identical,

except that in the latter calculation we replace one of the four graviton polarization tensors

with a trace over indices. As already noted, the trace anomaly has long been known to have

the rather curious feature that it is not invariant under duality transformations [15] that

relate two classical theories in four dimensions. In more detail, under a Hodge duality trans-

formation, in four dimensions the two-form field is equivalent to a scalar and the three-form

field is equivalent to a cosmological-constant contribution:

Hµνρ ↔
i√
2
εµνρα ∂

αφ , Hµνρσ ↔
2√
3
εµνρσ

√
Λ

κ
. (1.3)

Equation (1.2) shows that the trace anomaly, and hence the associated evanescent divergence,

change under duality transformations: The coefficients in front of n2 and n0 differ, and the

one in front of n3 is nonzero. Correspondingly, subdivergences in two-loop amplitudes depend

on the field representation used.

In contrast to one loop, at two loops pure gravity in four dimensions does diverge in

dimensional regularization, as shown by Goroff and Sagnotti [10, 11] and confirmed by van

de Ven [12]. In the MS scheme, with ε = (4−D)/2, the divergence is given by

Ldiv
R3 = − 209

1440

(κ
2

)2 1

(4π)4

1

ε

√−g Rαβ
γδR

γδ
ρσR

ρσ
αβ . (1.4)

In this computation, a mass regulator was introduced, in addition to the dimensional regula-

tor, in order to deal with certain infrared singularities. This procedure introduces regulator

dependence which is removed by subtracting subdivergences, integral by integral. The sub-

6



(a)

GB

(b)

GB GB

(c)

3
R

(d)
Figure 1.1: Representative four-point diagrams for (a) the bare contribution, and the (b) single-
GB-counterterm, (c) double-GB-counterterm, and (d) R3-counterterm insertions needed to remove
all divergences.

divergence subtraction also properly removes the Gauss–Bonnet subdivergences, leaving only

the two-loop divergence.

In Ref. [13], the same R3 divergence (1.4) was extracted from a four-graviton scattering

amplitude with all helicities positive, M2−loop
4 (++++). This helicity amplitude is particu-

larly simple to calculate, making it a useful probe of the two-loop ultraviolet structure. It

is sensitive to the R3 operator because the insertion of R3 into the tree amplitude gives a

nonvanishing result. For a single insertion of the Lagrangian term

LR3 = cR3(µ)
√−g Rαβ

γδR
γδ
ρσR

ρσ
αβ , (1.5)

the identical-helicity matrix element is [33]

M4(++++) = −60 i cR3(µ)
(κ

2

)4

T 2 s12s23s13 , (1.6)

where

T =
[12][34]

〈12〉〈34〉 , (1.7)

and s12 = (k1 + k2)2, s23 = (k2 + k3)2 and s13 = (k1 + k3)2 are the usual Mandelstam

invariants. The factor T is a pure phase constructed from the spinor products 〈ab〉 and [ab],

defined in e.g. Ref. [34].

7



Although no mass regulator was used in Ref. [13], the Gauss–Bonnet operator (1.2)

contributes nonvanishing subdivergences, because internal legs of the two-loop amplitude

propagate in D dimensions. Fig. 1.1 illustrates the complete set of counterterm contributions

required to renormalize the dimensionally-regulated four-graviton amplitude at two loops.

Besides the bare amplitude in Fig. 1.1(a), there is the single insertion of the GB operator

into a one-loop amplitude in Fig. 1.1(b) and the double-GB-counterterm insertion into a tree

amplitude, Fig. 1.1(c). Finally, the two-loop R3 counterterm insertion is shown in Fig. 1.1(d).

All contributions shown are representative ones, out of a much larger number of Feynman

diagrams; for example, the bare contribution also includes nonplanar diagrams.

For pure gravity, assembling the contributions from Fig. 1.1(a)–(c), the divergence in the

two-loop four-graviton amplitude and associated renormalization-scale dependence is [13]

M2-loop
4 (++++)

∣∣∣
(a)–(c)

=
(κ

2

)6 i

(4π)4
s12s23s13T 2

(
209

24 ε
− 1

4
lnµ2

)
+ finite . (1.8)

In a minimal subtraction prescription, the effect of the R3 counterterm in Fig. 1.1(d) is

simply to remove the 209/24× 1/ε term. Including matter fields, the ultraviolet divergence

changes under duality transformations [13]. This change might not be surprising, given

that the coefficient of the one-loop Gauss–Bonnet subdivergence (1.2) is not invariant under

duality transformations [15]. For example, adding n3 three forms, which do not propagate

in four dimensions, changes the coefficient of the infinity in Eq. (1.4) to

209

1440ε
→ 209

1440ε
− 1

8ε
n3 , (1.9)

while the coefficient of lnµ2 is unaltered. Also, the value of the leading infinity depends

nontrivially on the details of the regularization procedure, while the coefficient of the lnµ2

term does not.

The fact that the two numerical coefficients in Eq. (1.8) are rather different, and that one
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(a)

2
F

(b)
Figure 1.2: Renormalization of on-shell Yang–Mills amplitudes at one loop requires (a) the bare
amplitude and (b) an F 2 counterterm, for which representative contributions are shown.

changes under duality transformations but not the other, implies that they are not directly

linked. This is rather curious. From the textbook computation of the one-loop beta function

in Yang–Mills theory, we are used to the idea that they are linked. In that case, the analog

of Fig. 1.1 is Fig. 1.2. To renormalize the on-shell amplitudes in the theory at one loop, we

need the bare one-loop amplitude, with a representative diagram shown in Fig. 1.2(a), and a

single insertion of the F a
µνF

aµν counterterm into a tree-level amplitude, with a representative

diagram shown in Fig. 1.2(b).

Schematically, these two contributions depend on the renormalization scale µ as follows:

C(a)

ε
(µ2)ε +

C(b)

ε
=
(
C(a) + C(b)

)1

ε
+ C(a) lnµ2 + · · · , (1.10)

where the (µ2)ε factor in the bare amplitude compensates for the dimension of the loop in-

tegration measure d4−2ε`, where ` is the loop momentum. In a minimal subtraction scheme,

one chooses C(b) = −C(a) to cancel the 1/ε pole. Because the counterterm insertion has no

factor of (µ2)ε, the leading divergence C(a) is tied directly to the renormalization-scale depen-

dence of the coupling, i.e. the beta function, independent of the details of the regularization

procedure.

What about gravity at two loops? As explained in Ref. [13], the disconnect between

the divergences and the renormalization-scale dependence happens because of an interplay

between the bare terms and the evanescent subdivergences. The analog of Eq. (1.10) for the

9



divergence and lnµ2 dependence of the two-loop gravity amplitude is

C(a)

ε
(µ2)2ε+

C(b)

ε
(µ2)ε+

C(c)

ε
+
C(d)

ε
=
(
C(a)+C(b)+C(c)+C(d)

)1

ε
+(2C(a)+C(b)) lnµ2+· · · .

(1.11)

The differing powers of µ for each contribution follow from dimensional analysis of the

integrals, after accounting for the fact that the counterterm insertions do not carry factors

of (µ2)ε.

The coefficient of theR3 counterterm C(d) cancels the two-loop divergence in Eq. (1.11), as

a consequence of the renormalization conditions, C(d) = −C(a)−C(b)−C(c). In the amplitude

computed in Ref. [13], the value of the coefficient of the two-loop R3 counterterm depends

on duality transformations, while the coefficient in front of the lnµ2, namely 2C(a) + C(b),

does not. The fact that different combinations of coefficients appear in the divergence and in

the lnµ2 term explains why the two-loop divergence and renormalization-scale dependence

do not have to be simply related. As we discuss in the next section, the coefficient of

the logarithm can be computed directly in four dimensions, completely avoiding the issue

of evanescent operators. On the other hand, the divergence is exposed to the subtleties of

evanescent operators and dimensional regularization. More remarkably, as found in a variety

of examples [13], the lnµ2 coefficient satisfies a simple formula, which we explain in the next

section.

The disconnect between the divergence and the renormalization-scale dependence could

lead to situations where an explicit divergence is present, yet there is no associated run-

ning of a coupling or other physical consequences. As an example, we have computed the

divergence in N = 1 supergravity with one matter multiplet using the same techniques. It

is convenient to include a matter multiplet because for this theory we can construct the

two-loop integrand straightforwardly using double-copy techniques [35, 36]. Even though

this theory is supersymmetric, the trace anomaly is nonvanishing [37]. Therefore there are

subdivergences of the form of Fig. 1.1(b), as well as Fig. 1.1(c). We have computed the four

10



contributions corresponding to Fig. 1.1. They are given by

C(a) =
11

16
, C(b) = −11

8
, C(c) =

363

32
, C(d) = −341

32
, (1.12)

where the normalization corresponds to C(a) + C(b) + C(c) = 209/24 for pure gravity; see

Eq. (1.8). So the divergence from terms (a)–(c) in Eq. (1.11) is nonzero, but the lnµ2

coefficient vanishes, 2C(a) + C(b) = 0. In fact, it turns out that all logarithms ln sij in the

amplitude cancel as well. The polynomial terms can be canceled by the same R3 counterterm

but with a finite coefficient (or equivalently, an order ε correction to C(d)).

The upshot is that for this N = 1 supergravity theory, the divergence and associated

trace anomaly has the curious effect of violating the supersymmetry Ward identity [38–40]

that requires the identical-helicity amplitude to vanish. The appearance of a divergence is

due to the breaking of supersymmetry by the trace anomaly, which induces subdivergences

even when supersymmetry implies that no divergences can be present [41, 42]. To restore

the supersymmetry Ward identities requires adding an R3 counterterm to the theory, with

both a 1/ε and a finite coefficient, which fixes the two-loop amplitude uniquely. This pro-

cedure is possible only because the lnµ2 coefficient vanishes. That is, in this case there is

no loss of predictivity, even though there is a 1/ε divergence. If the lnµ2 coefficient is non-

vanishing, as in the case of pure gravity, then there must be an arbitrary finite constant in

the renormalization procedure, associated with fixing the R3 coupling at different choices of

renormalization scale, leading to the usual loss of predictivity of nonrenormalizable theories.

This discussion applies more generally. Suppose there is a hidden symmetry that would

enforces finiteness if it can be preserved. Yet if that symmetry is broken by the trace

anomaly, or more generally by the regularization procedure, we might conclude that the

theory’s divergence implies a loss of predictivity. It is therefore always crucial to inspect the

renormalization-scale dependence.

In contrast, one might even imagine a regularization prescription that eliminates the 1/ε

11



divergence, for example by making the perverse choice n3 = 8 · 209/1440 in Eq. (1.9) for the

case of pure gravity. However, since the lnµ2 coefficient is nonvanishing in this case, there

is still an arbitrariness in the finite R3 counterterm associated with different choices for µ,

and an associated loss of predictivity. The theory is no better than an ultraviolet-divergent

theory, even if the 1/ε divergence is arranged to cancel.

From now on we focus entirely on the renormalization-scale dependence. For the two-loop

graviton identical-helicity scattering amplitude with various matter content, Ref. [13] found

the following simple form:

M2-loop
4 (++++)

∣∣∣
lnµ2

= −
(κ

2

)6 i

(4π)4
s12s23s13T 2 Nb −Nf

8
lnµ2 , (1.13)

where Nb and Nf are the number of physical four-dimensional bosonic and fermionic states

in the theory. Using Eq. (1.6), this result is equivalent to the running of the R3 coefficient

according to

µ
∂ cR3

∂µ
=
(κ

2

)2 1

(4π)4

Nb −Nf
240

. (1.14)

Because the number of physical four-dimensional states does not change under duality trans-

formations, this equation is automatically independent of such transformations and of the

details of the regularization scheme. In fact, the result was only confirmed in Ref. [13] for

minimally-coupled scalars, antisymmetric tensors and (non-propagating) three-form fields.

The generalization to fermionic contributions was based on the previously-mentioned su-

persymmetry Ward identities. It is quite remarkable that such a simple formula for the

renormalization-scale dependence emerges from the computations carried out in Ref. [13].

How did this happen? We answer this in the next section.
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1.3 Renormalization-scale dependence directly from four-

dimensional unitarity cuts

In this section we explain the simple form of the renormalization-scale dependence in Eq. (1.13)

using four-dimensional unitarity cuts. We show that it holds for any massless theory with

minimal couplings to gravity and renormalizable matter interactions. From simple dimen-

sional considerations, contributions to the R3 operator necessarily involve couplings with

the dimension of the gravitational coupling κ, which carries the dimension of inverse mass,

1/MP . Renormalizable matter interactions are either dimensionless or carry the dimension

of mass, so they can contribute only to lower-dimension operators than R3 at two loops,

and therefore they are not relevant at this order. We will also explain why dilatons and

antisymmetric tensors—whose minimal couplings to gravitons have two derivatives, as does

pure gravity—also respect Eq. (1.13), as found in the computations of Refs. [13, 43].

Unitarity cuts are not directly sensitive to the lnµ2 dependence. However, in a massless

theory, simple dimensional analysis relates the coefficient of lnµ2 to the coefficients of log-

arithms of kinematic invariants, ln sij, because the arguments of all logarithms need to be

dimensionless. Because the coefficient of lnµ2 is finite, we can evaluate the unitarity cuts in

four dimensions (after subtracting a universal infrared divergence). Thus we automatically

avoid evanescent operators, such as the Gauss–Bonnet term (1.2). Our approach greatly

clarifies the essential physics, showing that duality transformations cannot change the loga-

rithms in the scattering amplitude, because in four dimensions, unlike D dimensions, duality

does not change the Lorentz properties or number of physical states. The calculation of the

logarithms using unitarity cuts was carried out long ago by Dunbar and Norridge [44]. Re-

cently a similar technique has been applied to two-loop identical-helicity amplitudes in gauge

theory by Dunbar, Jehu and Perkins [45, 46]. Here we repeat the two-loop four-graviton cal-

culation, but in a way that completely avoids dimensional regularization and focuses on the

consequences and interpretation of the renormalization scale.
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Figure 1.3: The s-channel two-particle cuts (a) and (b) from which we can extract the
logarithmic parts of the two-loop four-point identical-helicity four-graviton amplitude. The
exposed lines are placed on shell and are in four dimensions.
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Figure 1.4: Representative contributions to the three-particle cut. This cut generates no
new lnµ2 contributions to the R3 operator for the identical-helicity four-graviton amplitude.

We obtain the kinematical logarithms of the all-plus helicity amplitude from the four-

dimensional unitarity cuts. At two loops, there are cuts where two particles cross the cut,

illustrated in Fig. 1.3, and where three particles cross the cut, shown in Fig. 1.3. In four

dimensions, many contributions to these cuts vanish, because the tree amplitude on one side

of a cut vanishes.

In pure gravity, all contributions to the three-particle cuts shown in Fig. 1.3 vanish, be-

cause they contain a either a tree amplitude with all identical helicities, or one with one leg

of opposite helicity. Such five-graviton tree amplitudes vanish. Adding minimally-coupled

matter does not alter this conclusion. As already noted, adding matter with renormalizable

self couplings cannot affect the coefficient of the R3 operator. Similarly, dilatons and anti-

symmetric tensors, with their minimal couplings to each other and to gravity also cannot

contribute, because their amplitudes have similar vanishings as the pure gravity case, where

a pair of external (pseudo)scalar state should be assigned one plus and one minus helic-
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ity. All of these vanishings can be understood from the fact that all such amplitudes can

be constructed from minimally-coupled gauge theory via the Kawai–Lewellen–Tye (KLT)

relations [47–49], which all have the corresponding vanishings. Alternatively, such tree am-

plitudes can be embedded into N = 8 supergravity, and then the supersymmetry Ward

identities [38–40] imply the required vanishings.

The two-particle cut does have nonvanishing contributions; however, the cut lines have

to be gravitons, with the helicity configurations displayed in Fig. 1.3. If a massless particle

other than a graviton crosses the cut with this helicity configuration, then the tree ampli-

tude entering the cut necessarily vanishes. These vanishings can be understood in various

ways. The KLT decomposition offers one such way. Consider the KLT decomposition of

the gravitational tree amplitude on the right-hand side of Fig. 1.3(a) into a product of two

gauge-theory amplitudes [47–49],

M tree(`1,−`2, 3, 4) = s12A
tree(`1,−`2, 3, 4)Atree(`1,−`2, 4, 3) , (1.15)

where M tree(1, 2, 3, 4) is the gravitational tree amplitude and Atree(1, 2, 3, 4) is a color-ordered

Yang–Mills tree amplitude. (In this expression the couplings are stripped off.) If legs 3 and

4 of the gravitational amplitude are positive-helicity gravitons in an all-outgoing convention,

then the corresponding legs in the gauge-theory amplitudes are positive-helicity gluons, so

that the spins match. For gauge-theory amplitudes where legs 3 and 4 are positive-helicity

gluons, the only nonvanishing configuration is where the remaining two legs are negative-

helicity gluons. The KLT relations then imply that the only nonvanishing gravity tree

amplitude is when the two legs labeled by `1 and −`2 in the unitarity cut are gravitons

with negative helicity. Other configurations, corresponding to particles other than negative-

helicity gravitons, vanish because at least one of the corresponding gauge-theory amplitudes

vanishes.

A consequence of these restrictions is that the one-loop amplitude appearing on the other
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side of the two-particle cut must be an all-plus-helicity amplitude with only external gravi-

tons. Such amplitudes are remarkably simple [44]. This simplicity enormously streamlines

the calculation of the cut. There are two contributions to the s12-channel cut, shown in

Fig. 1.3(a) and (b), depending on whether the loop amplitude is located on the left or right

side of the cut. However, they give equal contributions, because Fig. 1.3(b) can be mapped

back to Fig. 1.3(a) by relabeling the momenta by ki → ki+2, where the indices are mod-

ulo 4, and we will see that the cut is invariant under this operation. In addition to the

s12-channel cut displayed in Fig. 1.3, there are also cuts in the s23 and s13 channels, which

can be obtained from the s12 channel by Bose symmetry, permuting k1 ↔ k3 and k1 ↔ k4,

respectively.

The required one-loop amplitude with four identical-helicity gravitons is [44],

M1-loop(1+, 2+, 3+, 4+) = − i

(4π)2

Nb −Nf
240

(
κ

2

)4

T 2 (s2
12 + s2

14 + s2
24) , (1.16)

where the permutation-invariant, pure-phase spinor combination T is defined in Eq. (1.7).

The one-loop external graviton amplitude is unaffected by any interactions of the matter

fields in a minimally-coupled theory: at one loop with all external gravitons there are no

diagrams containing matter self-interactions.

In Yang–Mills theory, Bardeen and Cangemi [50–52] argued that the corresponding

identical-helicity amplitude is nonvanishing because of an anomaly in the infinite-dimensional

symmetry of the self-dual sector of the theory. Presumably, the same holds in gravity. It

is quite interesting that this anomaly-like behavior appears crucial for obtaining a nonvan-

ishing one-loop four-graviton amplitude, which as we will see below leads to a nonvanishing

coefficient of the lnµ2 term.

We also need the four-graviton tree amplitude. It is easily obtained from the KLT
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relation [47–49],

M tree(1−, 2−, 3+, 4+) = −i
(
κ

2

)2

s12A
tree(1, 2, 3, 4)Atree(1, 2, 4, 3)

= i

(
κ

2

)2

s12
〈1 2〉3

〈2 3〉 〈3 4〉 〈4 1〉
〈1 2〉3

〈2 4〉 〈4 3〉 〈3 1〉 . (1.17)

We now calculate the unitarity cut in Fig. 1.3(a). The cut integrand is given by the

relabeled product of Eqs. (1.16) and (1.17),

C12 = N s12 (s2
12 + s2

1`1
+ s2

2`1
)

×
(

[1 2] [`2 (−`1)]

〈1 2〉 〈`2 (−`1)〉

)2 〈`1 (−`2)〉3
〈(−`2) 3〉 〈3 4〉 〈4 `1〉

〈`1 (−`2)〉3
〈(−`2) 4〉 〈4 3〉 〈3 `1〉

, (1.18)

where the labels follow Fig. 1.3(a) and the normalization factor is

N =
1

(4π)2

Nb −Nf
240

(
κ

2

)6

. (1.19)

Rearranging the spinor products and using the identity 1/ 〈a b〉 = [ba]/(ka + kb)
2 gives

C12 = N T 2 s12 (s2
12 + s2

1`1
+ s2

2`1
)

×〈`1 `2〉 [`2 3] 〈3 4〉 [4 `1] 〈`1 `2〉 [`2 4] 〈4 3〉 [3 `1]

(`2 − k3)2(`1 + k4)2(`2 − k4)2(`1 + k3)2
. (1.20)

The net effect of replacing −`1 and −`2 with `1 and `2 is a factor of +1. We can simplify

C12 further by observing that the numerator forms a trace,

〈`1 `2〉 [`2 3] 〈3 4〉 [4 `1] 〈`1 `2〉 [`2 4] 〈4 3〉 [3 `1] =
1

2
tr[(1− γ5)`1`2k3k4`1`2k4k3]

= (`1 + k3)2(`1 + k4)2s2
34 , (1.21)

where we used `2 = `1 +k3 +k4 and the on-shell conditions `2
1 = `2

2 = 0 to simplify the trace.
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Thus, the numerator cancels the (doubled) propagators leaving

C12 = NT 2 s3
12

s2
12 + s2

1`1
+ s2

2`1

(`2 − k3)2(`2 − k4)2

= −NT 2 s2
12 (s2

12 + s2
1`1

+ s2
2`1

)

[
1

(`1 + k4)2
+

1

(`1 + k3)2

]
. (1.22)

This expression for the cut actually has an infrared divergence when integrated over phase

space. However, this divergence is harmless because infrared singularities of gravity theories

are relatively simple [53–56]. The source of the singularity is from exchange of soft virtual

gravitons with momentum `1 + k3 or `1 + k4; the soft limit is when `1 → −k4 or `1 → −k3,

for the first or second term in Eq. (1.22), respectively. To remove the infrared singularity,

we simply subtract the soft limit of the integrand, replacing C12 by

C̃12 = −NT 2 s2
12

s2
1`1

+ s2
2`1
− s2

14 − s2
24

(`1 + k4)2
+ (k3 ↔ k4). (1.23)

The subtraction terms correspond to cut scalar triangle integrals. Since the triangle integrals

that are subtracted converge in the ultraviolet, the subtraction has no effect on the ultraviolet

logarithms with which we are concerned here.

The discontinuity is obtained by integrating over the Lorentz-invariant phase space,

I12 =

∫
dLIPS C̃12 = −NT 2 s3

12Î12 + (k3 ↔ k4) , (1.24)

where

Î12 =

∫
dLIPS

(2k1 · `1)2 + (2k2 · `1)2 − s2
14 − s2

24

s12 (2k4 · `1)
. (1.25)

We perform the phase-space integration in the center-of-mass frame, parametrizing the ex-
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ternal momenta as

k1 =

√
s

2
(−1, sin θ cosφ, sin θ sinφ, cos θ) ,

k2 =

√
s

2
(−1, − sin θ cosφ, − sin θ sinφ, − cos θ) ,

k3 =

√
s

2
(1, 0, 0, 1) ,

k4 =

√
s

2
(1, 0, 0, −1) , (1.26)

and the internal momentum as

`1 =

√
s

2
(−1, sin θ̂ cos φ̂, sin θ̂ sin φ̂, cos θ̂) , (1.27)

while −`0
2 = `0

1 and −~̀2 = −~̀1. The on-shell conditions enforce the constraints |`0
i | = |~̀i| =

√
s/2, i = 1, 2. The standard two-body phase-space measure is

∫
dLIPS =

1

2

1

8π

∫ 1

−1

d cos θ̂

2

∫ 2π

0

dφ

2π
. (1.28)

There is an extra Bose symmetry factor of 1/2 because two identical-helicity gravitons cross

the cut. Substituting the momentum parametrization into Eq. (1.25) gives an expression for

Î12 purely in terms of angular variables, which can be integrated easily,

Î12 =
1

16π

∫ 1

−1

d cos θ̂

2

∫ 2π

0

dφ̂

2π

1

1− cos θ̂

[
cos2 θ sin2 θ̂ − sin2 θ sin2 θ̂ cos2(φ− φ̂)

− 1

2
sin 2θ sin 2θ̂ cos(φ− φ̂)

]
=

1

16π

∫ 1

−1

d cos θ̂

2

1

1− cos θ̂

[
cos2 θ sin2 θ̂ − 1

2
sin2 θ sin2 θ̂

]
=

1

16π

[
cos2 θ − 1

2
sin2 θ

] ∫ 1

−1

d cos θ̂

2
[1 + cos θ̂]

=
2− 3 sin2 θ

32π
. (1.29)
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Using s13s23 = (s2
12/4)× sin2 θ, we can re-express the answer in a Lorentz-invariant form:

Î12 =
1

16π

s2
12 − 6s13 s23

s2
12

. (1.30)

Since this result is invariant under k3 → k4, the exchange contribution in Eq. (1.24) just

gives a factor of 2.

Putting it all together, we have

C̃12 = −NT
2

8π
s12 (s2

12 − 6s13 s23) (1.31)

= 2πi

[
i

(4π)4

Nb −Nf
240

(κ
2

)6

T 2s12(s2
12 − 6s13 s23)

]
. (1.32)

We extracted a factor of 2πi because the analytic continuation of ln(−sij/µ2) from below

the cut (sij → sij − iε) to above the cut (sij → sij + iε) is

ln

(−sij
µ2

)
→ ln

(−sij
µ2

)
− 2πi . (1.33)

Thus, the s12-channel discontinuity we computed is related to the coefficient of lnµ2 by

M2−loop|lnµ2 =
1

2πi
M2−loop|disc × lnµ2 . (1.34)

We also need to multiply by a factor of 2 for the contribution of Fig. 1.3(b), and include the

contributions of the other two channels, using

s12(s2
12− 6s13 s23) + (k1 ↔ k3) + (k1 ↔ k4) = s3

12 + s3
23 + s3

13− 18s12s23s13 = −15s12s23s13 .

(1.35)

We obtain

M2−loop(++++)
∣∣∣
lnµ2

= −
(κ

2

)6 i

(4π)4
s12s23s13T 2 Nb −Nf

8
lnµ2. (1.36)
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Thus, we have derived the simple renormalization-scale dependence of the two-loop four-

graviton amplitude [13], but now in a way that avoids reliance on evanescent operators or

other subtleties of dimensional regularization. Given that only four-dimensional quantities

were used, duality transformations manifestly cannot affect the renormalization-scale depen-

dence.

1.4 Conclusions

In this chapter we explained the simple form of the renormalization-scale dependence of two-

loop gravity amplitudes proposed in Ref. [13]. While the two-loop ultraviolet divergence in

dimensional regularization changes under duality transformations, and is afflicted by evanes-

cent subdivergences, the renormalization-scale dependence is remarkably simple [13]. In

order to explain its simple form, we used four-dimensional unitarity cuts, which effectively

converted the two-loop computation into a one-loop one. As in Ref. [13], we studied the

identical-helicity amplitude, because it is particularly simple to evaluate, yet is sensitive to

the two-loop R3 ultraviolet divergence. While the renormalization scale lnµ2 does not itself

have a unitarity cut, on dimensional grounds its coefficient must balance the coefficients of

the logarithms of kinematic variables, thus allowing us to extract the lnµ2 coefficient directly

from the unitarity cuts. This method avoids the need for ultraviolet regularization, as well

as all subtleties associated with evanescent operators. A trivial integral over the two-body

phase space for intermediate gravitons is all that is required to explain the simple formula

(1.36) of Ref. [13].

A rather interesting property of the gravity divergence is that it appears to be tied

to an anomaly. In Yang–Mills theory, the nonvanishing of the one-loop identical helicity

amplitude has been tied to an anomaly in the conserved currents of self-dual Yang–Mills

theory [50–52]. We expect gravity to be similar. Integrability has been used to construct

classical self-dual solutions to Einstein’s equations [57, 58]. It is natural to conjecture that
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a quantum anomaly in the conservation of the associated currents of self-dual gravity [59]

could be responsible for the non-vanishing one-loop amplitude (1.16) which underlies the two-

loop lnµ2 dependence. In any case, not only the two-loop divergence but the nonvanishing

of the one- and two-loop identical-helicity amplitudes can be traced to an ε/ε effect in

dimensional regularization, similar to the way that chiral and other anomalies arise. It would

be quite enlightening if we could link the pure gravity divergence, or more importantly, the

nonvanishing renormalization-scale dependence, more directly to an anomaly.

In this chapter we considered the identical-helicity amplitude, because it is the sim-

plest helicity configuration that is sensitive to the R3 divergence. It would be interesting

to evaluate the other helicity configurations to corroborate our understanding. The other

helicity configurations are significantly more complicated, because the three-particle cut no

longer vanishes in four dimensions. However, the (−+++) helicity configuration, which

also receives contributions from the R3 operator, should be tractable using four-dimensional

unitarity cuts.

Usually in field theory, the first dimensionally-regulated divergence that is encountered

is directly related to the renormalization-scale dependence of either a coupling (i.e. the beta

function) or the coefficient of an operator (i.e. its anomalous dimension). Pure Einstein grav-

ity at two loops provides an explicit counterexample to this expectation, but it is probably

not the only one. As we discussed in Section 3.2, the key feature is that a candidate operator

for a first divergence is evanescent, vanishing in four dimensions but not in D dimensions.

The different µ dependence associated with the bare and counterterm contributions spoils

the textbook relation between the pole in ε and the renormalization-scale dependence at the

following loop order. Another place this might happen is in the effective field theory of long

flux tubes [26]. The key lessons are that ultraviolet divergences in dimensional regularization

have to be treated with caution in certain circumstances, and that it is safer to focus on the

more physical renormalization-scale dependence of the renormalized theory.
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Chapter 2

Curvature-Squared Multiplets,

Evanescent Effects and the U(1)

Anomaly in N = 4 Supergravity

We evaluate one-loop amplitudes of N = 4 supergravity in D dimensions using the double-

copy procedure that expresses gravity integrands in terms of corresponding ones in Yang–

Mills theory. We organize the calculation in terms of a set of gauge-invariant tensors, allowing

us to identify evanescent contributions. Among the latter, we find the matrix elements of

supersymmetric completions of curvature-squared operators. In addition, we find that such

evanescent terms and the U(1)-anomalous contributions to one-loop N = 4 amplitudes are

tightly intertwined. The appearance of evanescent operators in N = 4 supergravity and their

relation to anomalies raises the question of their effect on the known four-loop divergence in

this theory. We provide bases of gauge-invariant tensors and corresponding projectors useful

for Yang–Mills theories as a by-product of our analysis.
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2.1 Introduction and Review

Recent explicit calculations have shown that gravity theories still have perturbative secrets

waiting to be revealed. We have learned a number of surprising lessons from these calcula-

tions: results in gravity theories can be obtained directly from their Yang–Mills counterparts

via a double-copy procedure [36, 60–66]; of a curious disconnect between the leading two-

loop divergence of graviton amplitudes [10–12] and the corresponding renormalization-scale

dependence [1, 13, 67]; and about the surprisingly tame ultraviolet behavior of certain su-

pergravity theories [4–9]. These lessons augur more surprises to come. In this chapter we

investigate the role of evanescent effects in the one-loop four-point amplitude of N = 4 su-

pergravity, along with its relation to the U(1) anomaly in the duality symmetry of this

theory [68–70].

Evanescent effects arise from operators whose matrix elements vanish when working

strictly in four dimensions, but give rise to nonvanishing contributions in dimensional regular-

ization. Such contributions originate from the cancellation of poles against small deviations

in the four-dimensional limit; that is, they are due to ε/ε effects, where ε = (4 − D)/2 is

the dimensional regulator. Although such effects might at first appear to be a mere techni-

cality, they turn out to play an important role [13] in understanding ultraviolet divergences

of Einstein gravity in the context of dimensional regularization [10–12]. In particular, the

Gauss–Bonnet operator is evanescent and appears as a one-loop counterterm whose insertion

at two loops contaminates the ultraviolet divergence, but results in no physical consequences

in the renormalized amplitude. An important question therefore is whether a supersymmetric

version of the Gauss-Bonnet operator appears in the matrix elements of N = 4 supergrav-

ity. If such an operator exists it would be important to determine its effects on the known

four-loop divergence [71] of the theory.

On the other hand, the N = 4 supergravity theory has an anomaly in its U(1) duality

symmetry [68]. The anomaly manifests itself in the failure of certain helicity amplitudes
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which vanish at tree level to persist in vanishing at loop level. In the context of dimensional

regularization these anomalous amplitudes arise from ε/ε effects, in much the same way as

the usual chiral anomaly arises in the ’t Hooft–Veltman scheme [72]. Refs. [69, 71] have

suggested that the U(1) duality anomaly plays a key role in the four-loop divergence of the

theory [69, 71], although a detailed explanation is still lacking. In contrast to the anomaly

terms, it is unlikely that evanescent effects can alter any physical quantity derived from

scattering amplitudes [1, 13, 67]. Nevertheless, one may wonder if there any connections

between the two phenomena, given that both arise from ε/ε effects.

In order to investigate these questions we compute the one-loop four-point amplitude of

N = 4 supergravity in arbitrary dimensions, using the double-copy procedure based on the

duality between color and kinematics [35, 36]. The corresponding helicity amplitudes were

previously calculated using various methods [44, 73–77]. Here, we use formal polarizations

in order to study evanescent effects, which are hidden when four-dimensional helicity states

are used. The conclusion of our study is two-fold: an evanescent contribution of the Gauss–

Bonnet type does appear in the pure-graviton amplitude of N = 4 supergravity; and its

effects are indeed intertwined with the U(1) duality anomaly.

We argue that the main evanescent contributions to the amplitude correspond to the

supersymmetric generalization of the curvature-squared terms. Off-shell forms of curvature-

squared operators are known forN = 1 andN = 2 supergravity [78–82]; but explicit forms of

a supersymmetric extension of the Gauss-Bonnet curvature-squared operator are not known

off shell in N = 4 supergravity.1 Nonetheless their matrix elements can be computed directly

using standard amplitude methods, even without knowing their off-shell forms. In contrast

to the nonsupersymmetric case, the coefficients of these matrix elements are finite. This

turns out to be a consequence of the same ε/ε cancellation that generates the anomaly.

As we will see, in the context of the double-copy construction there is a single object that

has matrix elements that contribute to both the anomaly and evanescent curvature-squared

1Curvature-squared operators have been studied in the context of conformal supergravity [83–85].
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terms.

The double-copy structure implies that we can write the one-loop four-point amplitude

of N = 4 supergravity in terms of pure-Yang–Mills theory building blocks, up to an overall

factor. We can therefore employ a set of gauge-invariant tensors written in terms of formal

gluon polarization vectors to carry out the calculation. We present the results in terms of

linearized field strengths, which is natural for connecting to operators in a Lagrangian and

making manifest on-shell gauge invariance. In order to explore the evanescent properties

we also construct tensors with definite four-dimensional helicity properties. We provide the

tensors in a form natural for use in color-ordered Yang–Mills theory, as well as in a fully

crossing-symmetric form natural inN = 4 supergravity. Similar gauge-invariant tensors have

recently been discussed by Boels and Medina [86].

In the Appendix we give details of the gauge-invariant tensors and describe the construc-

tion of projectors for determining the coefficient of the tensors in a given amplitude. These

projectors and tensors are useful not only for N = 4 supergravity but can be applied to

four-gluon amplitudes at any loop order in any Yang–Mills theory, including quantum chro-

modynamics (QCD). Because of their more general usefulness we attach a Mathematica file,

availabe at the arXiv hosting of Ref. [2] that includes the two sets of tensors with different

symmetry properties, alongside the corresponding projectors.

This chapter is organized as follows. In Section 2.2 we give the construction of the four-

loop four-point amplitude of N = 4 supergravity and describe the gauge-invariant tensors

in terms of which the amplitudes are constructed. In Section 2.3 we give the results for

the one-loop supergravity amplitudes. Then in Section 2.4 we identify evanescent curvature-

squared terms in the amplitude. We show the connection of these terms to the U(1) anomaly

in Section 2.5. We give our conclusions in Section 2.6. An appendix describing the gauge-

invariant tensors and projectors is included.
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2.2 Construction of the One-Loop Amplitude

In this section we construct the one-loop four-point amplitude ofN = 4 supergravity. Details

of the gauge-invariant tensors used for expressing the results are found in the appendix.

2.2.1 Color-Kinematics Duality and the Double Copy

We apply the double-copy construction of gravity amplitudes based on the duality between

color and kinematics [35, 36]. This has previously been discussed in some detail in Ref. [75–

77] for the one-loop amplitudes ofN = 4 supergravity. In contrast to the earlier construction,

we use D-dimensional external states instead of four-dimensional ones, in order to have access

to evanescent effects.

Amplitudes of half-maximal supergravity in D dimensions can be obtained through a

double copy, where one factor is derived from maximally supersymmetric Yang–Mills theory

(MSYM), and the other from pure Yang–Mills (YM) theory. In four dimensions, this gives us

amplitudes in N = 4 supergravity in terms of a product of N = 4 and pure Yang–Mills the-

ory. Alternatively, one may also construct N = 4 supergravity amplitudes using two copies

of N = 2 super-Yang–Mills (SYM) theory, as shown in Ref. [87]. This latter construction is,

however, more complicated, and furthermore includes unwanted matter multiplets. We use

the simpler construction.

The double-copy construction starts from the integrands of two Yang–Mills gauge-theory

amplitudes, written in terms of purely cubic diagrams. In a Feynman-diagram language,

four-point vertices can always be “blown up” into a product of three-point vertices, possibly

with the exchange of a fictitious tensor field. The representation of one-loop amplitudes is,

A1-loop
m = igm

∫
dDp

(2π)D

∑
j∈ICD

1

Sj

njcj∏
αj
p2
αj

, (2.1)

where the sum runs over the independent cubic diagrams (ICD) labeled by j, while the cj
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Figure 2.1: Box diagrams of the one-loop four-point amplitude of N = 4 supergravity.

and nj are the color factors and kinematic numerators associated with each diagram. The

factor 1/Sj accounts for the usual diagram symmetry factors and the product over αj runs

over the Feynman propagators 1/p2
αj

for diagram j. If the kinematic numerators can be

arranged to satisfy the same algebraic properties as adjoint representation color factors, that

is so that Jacobi relations hold,

ci + cj + ck = 0 ⇒ ni + nj + nk = 0 , (2.2)

along with all anti-symmetry properties, then we can obtain gravity integrands and thence

amplitudes by replacing the color factors cj in Eq. (2.1) by the second Yang–Mills theory’s

kinematic numerators,

ci → ñi . (2.3)

We do this while keeping the original kinematic factors nj of the first Yang–Mills theory. A

similar procedure holds for particles in the fundamental representation [88, 89].

The one-loop four-point amplitude of N = 4 supergravity is easy to construct via the

double-copy construction, because the N = 4 MSYM numerators are especially simple [90].

The numerators of triangle and bubble diagrams vanish, and the box integrals illustrated in

Fig. 2.1 have kinematic numerators proportional to the tree amplitude,

n1234 = n1342 = n1423 = s tAtree
N=4(1, 2, 3, 4) , (2.4)
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where we define the usual Mandelstam invariants,

s = (k1 + k2)2 , t = (k2 + k3)2 , u = (k1 + k3)2 . (2.5)

These numerators trivially satisfy the dual Jacobi identities in Eq. (3.3). Thus, the N = 4

supergravity one-loop amplitude is

M1-loop
N=4,SG(1, 2, 3, 4) = istAtree

N=4(1, 2, 3, 4)
(
I1234[n1234,p] + I1342[n1342,p] + I1423[n1423,p]

)
, (2.6)

where we have stripped the gravitational coupling, and where

I1234[n1234,p] ≡
∫

dDp

(2π)D
n1234,p

p2(p− k1)2(p− k1 − k2)2(p+ k4)2
, (2.7)

is the first box integral in Fig. 2.1 and n1234,p is the pure Yang–Mills kinematic numerator

given in Eq. (3.5) of Ref. [43]. We can restore the coupling to the supergravity amplitude

via,

Mtree
N=4,SG(1, 2, 3, 4) =

(κ
2

)2

M tree
N=4,SG(1, 2, 3, 4) , (2.8)

at tree level, and

M1-loop
N=4,SG(1, 2, 3, 4) =

(κ
2

)4

M1-loop
N=4,SG(1, 2, 3, 4) , (2.9)

at one loop. The coupling is related to Newton’s constant via κ2 = 32πGN . An alternate

form of Eq. (2.6) is,

M1-loop
N=4,SG(1, 2, 3, 4) =istAtree

N=4(1, 2, 3, 4)

×
(
A1-loop(1, 2, 3, 4) + A1-loop(1, 3, 4, 2) + A1-loop(1, 4, 2, 3)

)
, (2.10)

where A1-loop(1, 2, 3, 4) is the color-ordered one-loop amplitude of pure Yang–Mills theory.

The difference between Eqs. (2.6) and (2.10) cancels in the permutation sum. The second
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form makes gauge invariance manifest, as the building blocks are gauge-invariant color-

ordered amplitudes. We use the form in Eq. (2.6) to evaluate the amplitude explicitly.

2.2.2 Gauge-Invariant Building Blocks

The relatively simple double-copy structure of the one-loop four-point N = 4 supergravity

amplitude displayed in Eq. (2.10) makes manifest a factorization into the product of an

MSYM tree amplitude and a sum over the three distinct permutations of the one-loop color-

ordered amplitude of pure Yang–Mills theory. This suggests that we can obtain a convenient

organization of the supergravity amplitude by first decomposing the Yang–Mills amplitudes

into gauge-invariant contributions. We do so using bases of local on-shell ‘gauge-invariant

tensors’. By gauge-invariant tensors here we mean polynomials in (εi · εj), (ki · εj) and

(ki · kj) that vanish upon replacing εi by ki. These tensors are distinct only if they differ

after imposing on-shell conditions. We can build such tensors by starting with tree-level

four-point scattering amplitudes for external gluons, for example, or with four-point matrix

elements of local gluonic operators, and then multiplying by appropriate factors of s, t, or

u to make the quantities local. Boels and Medina [86] have also recently constructed such

tensors.

In the Appendix we present two different bases. In the first, we impose definite cyclic

symmetry; this yields a basis natural for color-ordered Yang–Mills amplitudes. In the sec-

ond, we impose definite symmetry under crossing, making them natural for supergravity.

Associated with each gauge-invariant tensor is a projector built out of momenta and conju-

gate polarization vectors. When applied to an integrand, it yields the coefficient of the given

tensor. Integrating the coefficient then yields the coefficient of the tensor in the amplitude.

This type of projection to a basis of gauge-invariant tensors has been used in Ref. [91]. We

stress that the first of these bases is directly useful in gauge-theory calculations. We refer the

reader to the Appendix for more details about the bases, their properties, their construction
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(a) (b)

Figure 2.2: Representative diagrams for (a) three- and (b) four-point F 3 insertions.

and the projection techniques. We also make these tensors and projectors available in a

ancillary Mathematica file, available from the arXiv hosting of Ref. [2].

We apply this projection technique to the integrand in Eq. (2.6). This reduces the nu-

merators to sums of products of inverse propagators and external kinematics. The integrand

is then expressed as a sum over tensors, with each coefficient expressed in terms of the

scalar box and simpler triangle and bubble integrals that are easy to evaluate (via Feynman

parameterization, for example). The scalar box integral is taken from Ref. [92]. As a cross-

check we also evaluated the tensor integrals prior to applying the projectors, following the

methods of Refs. [93] that express every tensor integral in terms of Schwinger parameters.

These integrals are in turn expressed in terms of scalar integrals with shifted dimensions and

higher powers of propagators. We use FIRE5 [94, 95] to reduce these integrals to elements of

the standard basis of scalar integrals. The integrals are then shifted back to four dimensions

using dimension-shifting formulas [93, 96]. Both methods yield identical results.

We introduce linearized field strengths corresponding to each external particle,

Fi µν ≡ ki µεi ν − ki νεi µ , (2.11)

in order to organize the results obtained from the projection technique. We express our

results using Lorentz-invariant combinations of these linearized field strengths. For four-

point scattering in a parity-even theory, the only combinations at the lowest mass dimension

31



are [5, 97],

(FiFjFkFl) ≡ F µν
i Fj νρF

ρσ
k Fl σµ , (2.12)

(FiFj)(FkFl) ≡ F µν
i Fj µνF

ρσ
k Fl ρσ . (2.13)

These quantities are not symmetrized over the indices i, j, k, and l.

We need only one additional tensor for four-point scattering. This tensor can be expressed

as a linear combination of terms of the form D2F 4. It is, however, more convenient to express

this tensor as a matrix element with an insertion of an F 3 operator,

F 3 ≡ 1

3
TrF µ

νF
ν
ρF

ρ
µ , (2.14)

where the trace is over color. The gauge-invariant tensor is given by

TF 3 ≡ −istAtree
F 3 (1, 2, 3, 4) , (2.15)

using the four-point tree-level color-ordered amplitude with a single insertion of the operator

(2.14), as depicted in Fig. 2.2. As we see below, after applying the double-copy procedure,

this element of our basis is the one giving rise to the curvature-squared matrix elements, as

well as some of the anomalous ones.
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2.3 Result and Mapping to Supergravity

Using the tensors in Eqs. (2.12), (2.13) and (2.15), we can write the supergravity amplitude

as follows2,

M1-loop
N=4,SG(1, 2, 3, 4) = cΓstA

tree
N=4(1, 2, 3, 4)

×
[
t8F

4

stu

(
− 2

ε2

3∑
i<j

sij

(−sij
µ2

)−ε
+L1(s, t, u)

)
+
TF 3

stu
+

(
4

3
(F1F2F3F4)

(
1

st
+ L2(s, t, u)

)
+ (F1F2)(F3F4)

(
1

s2
+ L3(s, t, u)

)
+ cyclic(2,3,4)

)]
,

(2.16)

where µ is the usual scale parameter, s12 = s, s23 = t, s13 = u; where

cΓ =
Γ(1 + ε)Γ2(1− ε)
(4π)2−εΓ(1− 2ε)

, (2.17)

is the usual one-loop prefactor,

L1(s, t, u) = −s ln
(−s
µ2

)
− (2s2 + st+ 2t2)

2u

(
ln2
(−s
−t
)

+ π2

)
+ cyclic(s, t, u) , (2.18)

L2(s, t, u) =

[
− 2s

t2u
ln
(−s
−u
)

+
1

4u2

(
ln2
(−s
−t
)

+ π2

)
+

(s− 2t)

t3

(
ln2
(−s
−u
)

+ π2

)]
+ (s↔ t) , (2.19)

L3(s, t, u) =
1

stu

(
−s ln

(−s
µ2

)
− t ln

(−t
µ2

)
− u ln

(−u
µ2

))
+

(t− u)

s3
ln
(−t
−u
)

+
(2s2 − tu)

s4

(
ln2
(−t
−u
)

+ π2

)
, (2.20)

2We write our results in the unphysical region where s, t, u < 0; one can analytically continue to the
physical region where s > 0 and t, u < 0 using ln(−s)→ ln(s)− iπ.
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and where we have used the combination

t8F
4 = 2(F1F2F3F4)− 1

2
(F1F2)(F3F4) + cyclic(2, 3, 4) , (2.21)

familiar from the four-point one-loop type-I superstring amplitude. The rank-8 tensor t8

arises from the trace over the fermionic zero-modes (see for instance3 Ref. [98]). The combi-

nation in Eq. (2.21) is crossing symmetric and is related to the Yang–Mills tree amplitude

via

t8F
4 = −istAtree(1, 2, 3, 4) = −isuAtree(1, 2, 4, 3) = −ituAtree(1, 3, 2, 4) . (2.22)

The amplitude in Eq. (2.16) is ultraviolet-finite; the poles in ε in Eq. (2.16) are infrared ones.

We have carried out a number of checks of the amplitude. A simple check is that the

infrared singularity in Eq. (2.16) matches the known form [53, 54, 56],

M1-loop
N=4,SG

∣∣∣
IR

= −M tree
N=4,SG

2cΓ

ε2

3∑
i<j

sij

(−sij
µ2

)−ε
. (2.23)

To see this we express the factors in front of the 1/ε2 in Eq. (2.16) in terms of the supergravity

tree amplitude,

stAtree
N=4(1, 2, 3, 4)

t8F
4

stu
= − isAtree

N=4(1, 2, 3, 4)Atree(1, 2, 4, 3) = M tree
N=4,SG(1, 2, 3, 4) , (2.24)

where the last step uses the Kawai–Lewellen–Tye (KLT) relation [47] between tree-level grav-

ity and Yang–Mills amplitudes. We have also compared the finite parts of all the amplitudes

with external scalars and gravitons to the results in Ref. [44, 69, 75–77] and found agreement.

The remaining fermionic amplitudes are related by supersymmetry Ward identities. We have

checked that, prior to specializing to D = 4, the ultraviolet divergence cancels for D < 8,

3The t8 tensor used here differs from the one in Ref. [98] by an overall factor of 4.
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as expected [5]. In D = 8, we match the prediction from the heterotic string (see section

3.A.1 of Ref. [99]) as well as the calculation in Ref. [5]. It may also be possible to compare

our D-dimensional expression to the recent D = 10 prediction in Ref. [100] obtained from

M -theory. However, performing this comparison would be nontrivial as the divergences are

quadratic in this dimension and hence depend on the regulator. It would be interesting to

study this connection further.

The form in which we presented the amplitude in Eq. (2.16) makes the supersymmetry

completely manifest, because it acts only on the MSYM side of the double copy. In addition,

this form makes the translation to gravity transparent.

We now show in some detail how this works for the case of external gravitons. In the

double-copy construction, amplitudes with four external gravitons can be built from inte-

grands with purely gluonic external states on both sides of the double copy. As discussed in

the previous section, it is convenient to use linearized field strengths in Eqs. (2.12) and (2.13)

to write the answer. In order to translate to gravity we do this on both sides of the double

copy. From this form, we can easily convert the linearized field strengths F in our formulas

to a linearized Riemann tensor R using the relation,

2

κ
Ri µνρσ = Fi µνFi ρσ = (ki µεi ν − ki νεi µ) (ki ρεi σ − ki σεi ρ) , (2.25)

where the index i refers to the particle label, just as in Eq. (2.11). In this equation the

product of Yang–Mills polarization vectors is identified as a graviton polarization tensor via

the replacement εi µεi ν → εi µν . The graviton is related to the metric via gµν = ηµν + κhµν ,

as in Ref. [5, 97]. The factor of 2/κ is included in Eq. (2.25) so that Ri µνρσ is given by the

linearized Riemann tensor with the field hµν replaced by a polarization tensor εi µν .

The contribution from the pure-gluon factor from MSYM is always a factor of stAtree =

it8F
4. Once we multiply the tensors from both sides of the double-copy we then obtain the
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following combinations,

t8F
4t8F

4 → t8t8R
4 , (2.26)

t8F
4(FiFjFkFl)→ t8(RiRjRkRl) , (2.27)

t8F
4(FiFj)(FkFl)→ t8(RiRj)(RkRl) , (2.28)

where

(RiRj)
µ1µ2µ3µ4(RkRl)

µ5µ6µ7µ8 ≡ Ri
µ1µ2νλRj

µ3µ4
νλRk

µ5µ6ρσRl
µ7µ8

ρσ , (2.29)

(RiRjRkRl)
µ1µ2µ3µ4µ4µ5µ6µ7µ8 ≡ Ri

µ1µ2νλRj
µ3µ4

λρRk
µ5µ6ρσRl

µ7µ8
σν . (2.30)

In ten dimensions Eq. (2.26) is a component of the only N = 2 superinvariant, whereas

Eqs. (2.27) and (2.28) are components of the two N = 1 superinvariants [100, 101].

The mapping of the final TF 3 tensor to gravity may appear more complicated than for

the F 4-class tensors, because the former is generated from a scattering amplitude with an F 3

insertion, as previously illustrated in Fig. 2.2. A relatively simple way to obtain this tensor is

to use KLT relations for amplitudes extended to include insertions of this higher-dimensional

operator [102, 103]. This extension is in line with expectations from string-theory KLT

relations [47, 104, 105], where the operator appears in the low-energy effective action. In

Refs. [102, 103] it was established that the KLT relations apply to F 3 operators as,

sAtree(1, 2, 3, 4)× Atree
F 3 (1, 2, 4, 3) = iM tree

R2 (1, 2, 3, 4) , (2.31)

where all particles are gluons on left-hand side of the equation, and all are gravitons on the

right-hand side when the helicities of each pair of gluons align. Direct checks using Feynman

diagrams, starting from the Einstein action, confirm that the Gauss–Bonnet insertion into

a four-point gravity tree amplitude indeed satisfies Eq. (2.31) [106]. Hence we see that the
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tensor TF 3 maps into the curvature-squared matrix elements in gravity as follows,

stAtree(1, 2, 3, 4)TF 3 = −isuAtree(1, 2, 4, 3)stAtree
F 3 (1, 2, 3, 4) = stuM tree

R2 (1, 2, 3, 4) , (2.32)

where we used the crossing symmetry of stAtree(1, 2, 3, 4) and the KLT relation in Eq. (2.31).

After the complete map to linearized Riemann tensors, the graviton amplitude takes the

form,

M1-loop
N=4,SG = cΓ

[
M tree
N=4,SG

(
− 2

ε2

3∑
i<j

sij

(−sij
µ2

)−ε
+L1(s, t, u)

)
+M tree

R2 +

(
4

3
t8(R1R2R3R4)

(
1

st
+ L2(s, t, u)

)
+ t8(R1R2)(R3R4)

(
1

s2
+ L3(s, t, u)

)
+ cyclic(2, 3, 4)

)]
.

(2.33)

The same construction works for any supergravity state. For all states in the supergrav-

ity multiplet, the same pure Yang–Mills tensors feed into the corresponding supergravity

expressions; the differences are solely on the MSYM side of the double copy.

It is remarkable that the coefficient of the curvature-squared matrix elementM tree
R2 appear-

ing in Eq. (2.33) is just a simple number. If the theory had a nonvanishing trace anomaly [15,

27, 37, 107], the coefficient of M tree
R2 would have contained a 1/ε divergence [10, 11, 13, 30].

In our calculation the divergences are suppressed by an explicit factor of D−4 = 2ε, (see, for

example, Eq. (2.11) of Ref. [108]) leaving a finite rational contribution. From the perspective

of the double copy, this ε/ε effect also generates the nonvanishing all-plus and single-minus

one-loop amplitudes associated with the U(1) duality anomaly [69]. We comment on this

below.
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2.4 Curvature-Squared Multiplets and Divergences in

Supergravity

In the previous section we found curvature-squared contributions to the effective action. In

this section we describe these contribution in more detail.

2.4.1 Curvature-Squared Multiplets with Half-Maximal Supersym-

metry

In the full superamplitude, we find a term proportional to,

sAtree
N=4(1, 2, 4, 3)Atree

F 3 (1, 2, 3, 4) , (2.34)

which, as described in the previous section, contains the evanescent matrix element of curva-

ture operators. In general dimensions there exist several off-shell curvature-squared operators

in gravity theories. The two most important ones are the Gauss–Bonnet density and the

square of the Weyl tensor4, which respectively are given by,

E4 = RµνρσR
µνρσ − 4RµνR

µν +R2 , (2.35)

W 2 = WµνρσW
µνρσ = RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2 . (2.36)

The difference between the two is,

W 2 − E4 = 2(RµνR
µν − 1

3
R2) , (2.37)

which vanishes on shell. The single on-shell independent operator is usually chosen to be the

Gauss–Bonnet combination (2.35). It is however a total derivative in four dimensions, which

4There is another interesting curvature-squared operator, the Pontryagin density ∗RµνρσR
µνρσ; but it is

parity odd and hence it cannot appear in the amplitudes of parity-conserving theories.
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implies that all curvature-squared matrix elements are evanescent in this dimension [14]. A

consequence of this is the finiteness of pure-graviton amplitudes at one loop [14] in Einstein

gravity, as these operators are the only available counterterms. (When matter is added to

the theory—even supersymmetric matter multiplets—generic divergences do appear at one

loop starting with amplitudes for four matter particles [109, 110].)

Off-shell R2 supermultiplets were constructed long ago for N = 1 supergravity in four

dimensions [78, 79], and more recently for N = 2 supergravity [80–82] using a version of

N = 2 superspace. Very recently an N = 4 supersymmetric completion of the Weyl-squared

operator has been discussed in Ref. [111] in terms of linearized superfields in four dimensions.

However, at the nonlinear level no fully off-shell versions have been constructed to date for

any of the curvature-squared multiplets. This is unsurprising in light of the more general

unsolved problem of constructing an off-shell N = 4 superspace.

Equation (2.34) also contains matrix elements related by supersymmetry to the one corre-

sponding to curvature-squared operators. These must arise from the N = 4 supersymmetric

completion of the curvature operators in Eqs. (2.35) and (2.36). Therefore the existence

of such matrix element implies the existence of the corresponding N = 4 curvature-squared

multiplets. In particular, these matrix elements should correspond to the single insertion of

the operator discussed in Ref. [111] in four dimensions as all curvature-squared operators

are equivalent on shell. However, we cannot analyze such matrix elements strictly in four

dimensions, because they will vanish identically.

The double-copy construction provides additional information, because it implies that

completions of curvature-squared operators with half-maximal supersymmetry should exist

in any integer dimension D ≤ 10 and that their on-shell matrix elements are given by the

KLT product of the F 3 operator insertion and ordinary MSYM amplitudes. The restriction

to D ≤ 10 arises because that is the maximum dimension for a super-Yang–Mills theory.

The double-copy perspective also shows that an N ≥ 5 supersymmetric completion of

curvature-squared operators [112] cannot exist. We have an overall factor of stAtree
N=4 from
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Figure 2.3: Representative diagram for the insertion of the evanescent R2 counterterm,
affecting the two-loop divergence in pure-graviton amplitudes [13].

the MSYM amplitude on the one side of the double copy. On the other side we would have

an N ≥ 1 super-Yang–Mills amplitude. From the double-copy perspective, in any dimension

the R2 terms correspond to an F 3 operator on this latter side. We would then need a super-

symmetric completion of the F 3 operator, to make it compatible withN = 1 supersymmetry.

We know, however, that no such completion exists in four dimensions because F 3 matrix

element contributes only to all-plus and single-minus helicity configurations; and these are

forbidden by a supersymmetric Ward identity [38–40]. This also rules out supersymmetric

completions for these theories in any dimension D > 4 because on shell there is only a sin-

gle independent curvature-squared invariant and one can choose the external momenta and

states to live in a four-dimensional subspace, and hence the same argument applies.

2.4.2 Possible Effects at Higher Loops

In the context of dimensional regularization, evanescent R2 contributions such as the ones

described here play a crucial role in the two-loop divergences of pure gravity [10–12]. This

happens because the evanescent R2 terms appear at one loop with a divergent coefficient

proportional to the trace anomaly. While such terms do not contribute in four dimensions,

they do appear at two loops as subdivergences in the dimensionally regulated amplitude,

directly affecting the value of the two-loop divergence [13]. One must then subtract a one-loop

R2 counterterm insertion, as illustrated in Fig. 2.3. This evanescent contribution becomes

nonvanishing in dimensional regularization where it modifies the two-loop divergence. The

net result is a curious disconnect between the coefficient of the dimensionally-regulated two-
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(a) (b)

Figure 2.4: Representative diagrams for insertions of the supersymmetric R2 operator at
three loops that could affect the four-loop divergence.

loop R3 ultraviolet divergence of these theories and the corresponding renormalization-scale

dependence. The coefficient of the divergence depends on details of the regularization, while

the renormalization scale dependence is simple and robust [1, 13, 67].

As shown in Eq. (2.33), in N = 4 supergravity the R2 contribution appears with a finite

coefficient, so it cannot contribute to possible two-loop divergences. One may nonetheless

expect it to modify divergences at yet-higher loops. Explicit calculations reveal no diver-

gences in N = 4 supergravity through three loops [4], but unveil them at four loops [71].

The addition of supersymmetrization of a curvature-squared operator as a local counterterm

to the action is not expected to have any physical consequences in the scattering ampli-

tudes, because it is evanescent. The analysis in Ref. [13] shows that it can however affect

divergences. It would be interesting to study the effect of such local counterterms on the

known four-loop divergence calculated in Ref. [71]. One may wonder whether such a finite

counterterm can be used to modify or even remove the four-loop divergence. The answer

to this question would require a three-loop computation with insertions of this operator, as

illustrated in Fig. 2.4.

2.5 Evanescent Effects and the U(1) Anomaly

We now show that from the vantage point of the double copy that the U(1) anomalous

contributions cannot be separated from the evanescent R2 matrix elements, described in

the previous section. We first review the anomaly and its manifestation in one-loop matrix
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Pure YM N = 4 MSYM N = 4 Supergravity
〈g−g−g+g+〉 ⊗ 〈g−g−g+g+〉 〈h−−h−−h++h++〉
〈g−g+g+g+〉 ⊗ 〈g−g−g+g+〉 〈h−−φ−+h++h++〉
〈g+g+g+g+〉 ⊗ 〈g−g−g+g+〉 〈φ−+φ−+h++h++〉

Table 2.1: Top components of three of the five independent superamplitudes. The other two
are obtained from CPT conjugation.

elements [69], before explaining how these effects are intertwined.

In order to describe the anomaly we recall some basic facts about the spectrum of four-

dimensional N = 4 supergravity and the associated superamplitudes. We focus here on

pure N = 4 supergravity with no matter multiplets. The states of pure N = 4 supergravity

fall into two supermultiplets. One contains the positive-helicity graviton and its superpart-

ners [113, 114]:

(h++, ψ+
a , A

+
ab, χ

+
abc, φ

−+) , (2.38)

where h++ is the positive-helicity graviton, ψ+
a are the four positive-helicity gravitinos, and

so forth until the complex scalar φ−+. The indices a, b, c are SU(4) R symmetry indices.

The other supermultiplet is the CPT conjugate to the one above, containing the negative-

helicity graviton h−− and the conjugate scalar φ+−. Seen through the lens of the double-copy,

each multiplet corresponds to the supermultiplet of MSYM multiplied by either a positive-

or negative-helicity gluon on the pure Yang–Mills side. For instance the positive-helicity

graviton arises from a positive-helicity gluon on both sides of the double copy, and the

complex scalars come from negative-helicity gluons on one side and positive-helicity gluons

on the other side.

Because not all the states of this theory are in a single supermultiplet, the amplitudes

are organized into different sectors not directly related by supersymmetry. For each one

of these sectors there is an associated superamplitude. A simple way to understand this

organization is via the double-copy construction. The supersymmetry Ward identities im-

ply that the only nonvanishing helicity amplitudes in MSYM are those in the maximally-
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helicity-violating (MHV) sector corresponding to amplitudes with two negative-helicity and

two positive-helicity gluons (g−g−g+g+) and their superpartners, which all sit in a single

superamplitude. On the pure Yang–Mills side of the double copy, however, there are three

distinct types of amplitudes: all-plus (g+g+g+g+), single-minus (g−g+g+g+), and two-minus

or MHV (g−g−g+g+), together with their parity conjugates. Hence there are three distinct

sectors of supergravity super-amplitudes, inherited from each of the pure-Yang–Mills helic-

ity configurations. In the all-plus and single-minus pure Yang–Mills sectors the gluons do

not have the same number of negative or positive helicities as the gluons in the MSYM

amplitude. Because of this the corresponding N = 4 supergravity superamplitudes do not

contain four-graviton amplitudes, but have mixed graviton–scalar amplitudes as their top

components, as illustrated in Table 2.1.

Ref. [68] showed that there exists an anomaly in an abelian U(1) subgroup of the SU(1, 1)

duality group of N = 4 supergravity. This anomaly is manifested in the nonvanishing of the

amplitudes,

MN=4,SG(1h−− , 2φ−+ , 3h++ , 4h++) =
i

(4π)2

〈1 2〉2 〈1 3〉2 [2 3]2 [3 4]4

stu
,

MN=4,SG(1φ−+ , 2φ−+ , 3h++ , 4h++) =
i

(4π)2
[3 4]4 , (2.39)

as well as those related by supersymmetry [69]. The spinor inner products 〈a b〉 and [a b]

follow the standard conventions in Ref. [34]. The scalars carry a charge under the U(1) sub-

group whereas the gravitons are uncharged and hence these amplitudes violate conservation

of this charge. At tree level the charges are conserved because the amplitudes all vanish, but

at loop level they do not. This anomaly can be traced back to O(ε) terms which interfere

with a would-be 1/ε divergence, leaving behind a rational term. This is similar to the way

the chiral anomaly arises in dimensional regularization [72].

As explained above, our calculation reveals evanescent contributions in Eq. (2.34), which

are related to the supersymmetric completion of the R2 operator. Mixed graviton–scalar
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N = 4 Supergravity −isAtree
N=4(1, 2, 4, 3)Atree

F 3 (1, 2, 3, 4)
〈h−−h−−h++h++〉 0

〈h−−φ−+h++h++〉 −i 〈1 2〉2〈1 3〉2[2 3]2

stu
δ(8)(Q)

〈φ−+φ−+h++h++〉 2i δ(8)(Q)

Table 2.2: Top components of the three independent sectors in four dimensions and corre-
sponding superamplitudes.

amplitudes also receive non-evanescent contributions from the same terms. A simple way to

see this is by expressing the F 3 matrix element in a basis of gauge-invariant tensors that has

definite four-dimensional helicity properties. We give two such bases in the Appendix. In

the basis with tensors that have definite crossing-symmetry properties, we find that the F 3

matrix element is given by,

TF 3 =
2stu

(s2 + t2 + u2)
H(++++)−H(−+++)+

2(s− t)(s− u)(t− u)

3(s2 + t2 + u2)2
Hev1− 6stu

(s2 + t2 + u2)2
Hev2 ,

(2.40)

where the nonlocal denominators all cancel to give a local expression for TF 3 . This de-

composition explicitly shows that TF 3 has nonvanishing contributions to the all-plus and

single-minus helicity configurations, with the rest of the tensor being evanescent in four di-

mensions. This gives some additional insight into the evanescent nature of the R2 matrix

element in gravity. The only nonvanishing amplitudes on the MSYM side of the double copy

have an MHV helicity configuration (− − + + ), whereas Eq. (2.40) shows that the F 3

matrix element does not contribute to MHV amplitudes on the pure Yang–Mills side. This

implies that the pure-graviton matrix elements vanish in four dimensions. More importantly,

we see that this matrix element contributes to the all-plus and single-minus helicities, thus

generating anomalous mixed graviton-scalar matrix elements after applying the double-copy

construction.

An alternative way to understand the different contributions of this matrix element is to

recall that in general dimension, a pair of gluons is mapped via the double copy to a graviton,

a dilaton and an antisymmetric tensor. In four dimensions the antisymmetric tensor is dual
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to a pseudoscalar that together with the dilaton combines into the complex scalar discussed

above. The intertwining of the anomalous and evanescent contributions in Eq. (2.31) there-

fore follows from the entanglement of the graviton, dilaton and an antisymmetric tensor in

the double-copy construction.

From the discussion above, we conclude that the F 3 KLT product in Eq. (2.31) not

only gives the evanescent curvature-squared matrix elements, but it necessarily results in an

anomalous contribution to the amplitude. It is striking that contributions to both can be

traced back to precisely the same term in the double copy. The anomalous contributions

arising from TF 3 are summarized in Table 2.2. In this table the supermomentum delta

function can be expanded as [115]

δ(8)(Q) = δ(8)
( 4∑
j=1

λ̃α̇j η̃ja

)
=

4∏
a=1

4∑
i<j

[i j] η̃iaη̃ja, (2.41)

where we take the top component to be the one containing the factor [3 4]4. Comparing

these to the anomalous amplitudes in Eq. (2.39) we see that, while the amplitudes in the

single-scalar sector are fully contained in this term, those in the two-scalar sector are off by

an overall factor and receive additional contributions that change the overall coefficient.

Finally, it is interesting to note that such anomalous and evanescent effects will not

appear in the one-loop amplitudes of N ≥ 5 supergravity. The lack of anomalous one-loop

amplitudes in N ≥ 5 supergravity has been recently explained from the vantage point of

super-invariants [111]. This, together with the absence of evanescent effects, is understood

in the double-copy procedure as a consequence of the vanishing of the one-loop all-plus and

single-minus amplitudes in super-Yang–Mills theories.
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2.6 Conclusion

In this chapter we identified terms in the dimensionally regulated one-loop four-point am-

plitude of pure N = 4 supergravity that can be written as insertions of curvature-squared

operators into matrix elements. Such terms are evanescent and vanish for four-dimensional

external states. We also showed that these evanescent terms are intertwined with contri-

butions generated by the U(1) duality anomaly [68, 69]. These two effects both arise from

rational pieces that result from an ε/ε cancellation, where ε = (4−D)/2 is the dimensional

regularization parameter.

Both the anomaly and the evanescent curvature-squared terms may play a central role in

the ultraviolet properties of gravity theories. As explained in Ref. [69] the anomaly in N = 4

supergravity gives contributions with a poor ultraviolet behavior. We also know that beyond

one loop, evanescent effects contribute to dimensionally regulated ultraviolet divergences in

gravity theories [13].

We carried out our analysis using the double-copy construction [35, 36] of N = 4 super-

gravity [75–77] in terms of the corresponding pure Yang–Mills andN = 4 MSYM amplitudes.

The double-copy construction makes the on-shell supersymmetry manifest, because N = 4

supergravity inherits the well-understood on-shell superspace of MSYM theory. By using

formal polarization vectors on the pure-Yang–Mills side of the double copy, we were able

to evaluate all one-loop four-point amplitudes of N = 4 supergravity simultaneously. In the

graviton sector we gave explicit conversion formulas from gauge theory to gravity, using rela-

tions between linearized Riemann tensors and Yang–Mills field strengths. The double-copy

construction implies that completions of curvature-squared operators with half-maximal su-

persymmetry should exist in any dimension with D ≤ 10 and that their on-shell matrix

elements are given by the KLT product of the F 3 operator insertion and ordinary MSYM

amplitudes.

There are a number of interesting avenues for future research. Although it is is not known
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how to write the super-Gauss–Bonnet in an off-shell superspace, this chapter provides all

components of four-point matrix elements of single insertions of these operators. For the

pure-graviton amplitude the Gauss–Bonnet operator is the correct one for generating these

matrix elements. For amplitudes with other external states, one would first need to system-

atically write down a set of evanescent operators of the same dimension, feed them through

a tree-level matrix-element computation and then match them to our evanescent matrix el-

ements. Once the combination of operators leading to our evanescent matrix elements are

found, one can try to appropriately package the components into superfields.

We organized the one-loop amplitude in terms of gauge-invariant tensors. These and

their associated projectors are described in the appendix and given in the Mathematica at-

tachement at the arXiv hosting of Ref. [2]. They are useful, not only for N = 4 supergravity,

but for any gauge-theory four-gluon amplitude at any loop order.

In pure gravity the evanescent one-loop curvature-squared terms enter with a coefficient

proportional to 1/ε. Because of this, when inserted as counterterms in a two-loop calculation

they affect the leading ultraviolet divergence [13]. In N = 4 supergravity these evanescent

terms appear with a finite coefficient. This means that they cannot affect divergences until

three loops or higher. Direct calculations show that the three-loop divergences cancel [4]

and the first divergence occurs at four loops [71]. It is important to understand the effect of

evanescent and anomalous contribution on higher-loop amplitudes, especially to see whether

their contributions can account for the four-loop divergence of N = 4 supergravity. A direct

study requires a three-loop computation. An important step in this direction would be

to analyze the anomalous sector at two loops in N = 4 supergravity and its relation to

evanescent effects. In the longer term, understanding the role of anomalies and evanescent

effects more generally at higher loops appears to be crucial in order to unravel the ultraviolet

properties of supergravity theories.
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2.A Gauge-Invariant Tensors for Yang–Mills Four-Point

Amplitudes

In this appendix, we describe two independent sets of Yang–Mills kinematic tensors built

out of physical polarization vectors εi and on-shell momenta ki. In both sets, the tensors are

constrained to be on-shell gauge invariant, that is vanishing under the substitution εi → ki

for each external leg independently. The tensors are polynomials in the dot products ki · εj,

εi·εj, and the Mandelstam invariants s and t. They are thus free of poles by construction. We

also organize the tensors to have definite symmetry properties under a relevant symmetry,

and to be diagonal in a four-dimensional helicity basis. The tensors are dimension-agnostic,

and so the sets are not in general diagonal in a basis of external states outside of four

dimensions. Both sets have seven tensors.

In the first set, each tensor represents kinematic parts of a color-ordered amplitude, up

to a function of s and t. Such amplitudes are invariant under a cyclic permutation of the

external indices, i → (i + 1) mod 4, so we choose the tensors to have definite symmetry

properties under the cyclic shift. An arbitrary function can be split up into symmetric and

antisymmetric combinations, f±(s, t) = 1
2
[f(s, t) ± f(t, s)], so we choose the tensors to be

symmetric or antisymmetric. It might seem simpler to choose them to be symmetric; but

for some of them, an antisymmetric form is simpler. In an amplitude, such antisymmetric

tensors would then appear multiplied by an antisymmetric function of s and t. We present

this set in the first subsection.

For the second set, each tensor represents one Yang–Mills copy in a double-copy con-

struction of an N = 4 supergravity amplitude, where the other copy is given by the tree-level

tensor. These tensors then suffice to construct the N = 4 supergravity four-point amplitude

at one and two loops. These tensors are required to have definite symmetry properties under

the full permutation group acting on the external indices. We are interested only in the

one-dimensional representations of this group, so again each tensor will either be completely
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invariant, or will change sign according to the signature of a permutation. We present this

set in the second subsection.

In the third subsection, we describe set of projection operators that can be applied to

an expression given in terms of polarization vectors and momenta to obtain the (scalar)

coefficients of the different basis tensors.

The referenced Mathematica files can be found at the arXiv hosting of Ref. [2].

2.A.1 Tensors with Definite Cyclic Symmetry

We take the first element of the set of tensors with definite cyclic properties to be the tensor

of engineering dimension 4 that appears in the tree amplitude,

T tree = t8F
4 = s (s+ t) ε1 ·ε4 ε2 ·ε3 − s t ε1 ·ε3 ε2 ·ε4 + t (s+ t) ε1 ·ε2 ε3 ·ε4

− 2 (s+ t) ε1 ·ε4 k1 ·ε2 k1 ·ε3 − 2 (s+ t) ε1 ·ε4 k1 ·ε2 k2 ·ε3

− 2 s ε1 ·ε3 k1 ·ε2 k2 ·ε4 − 2 t ε1 ·ε2 k1 ·ε3 k2 ·ε4 − 2 (s+ t) ε1 ·ε2 k2 ·ε3 k2 ·ε4

− 2 t ε2 ·ε4 k1 ·ε3 k3 ·ε1 − 2 t ε2 ·ε4 k2 ·ε3 k3 ·ε1 − 2 s ε2 ·ε3 k2 ·ε4 k3 ·ε1

− 2 (s+ t) ε1 ·ε3 k1 ·ε2 k3 ·ε4 − 2 (s+ t) ε1 ·ε2 k2 ·ε3 k3 ·ε4

− 2 (s+ t) ε2 ·ε3 k3 ·ε1 k3 ·ε4 − 2 (s+ t) ε3 ·ε4 k1 ·ε2 k4 ·ε1

− 2 t ε2 ·ε4 k1 ·ε3 k4 ·ε1 − 2 (s+ t) ε2 ·ε4 k2 ·ε3 k4 ·ε1

− 2 (s+ t) ε2 ·ε3 k3 ·ε4 k4 ·ε1 − 2 s ε1 ·ε4 k1 ·ε3 k4 ·ε2 − 2 s ε1 ·ε3 k2 ·ε4 k4 ·ε2

− 2 t ε3 ·ε4 k3 ·ε1 k4 ·ε2 − 2 s ε1 ·ε3 k3 ·ε4 k4 ·ε2 − 2 (s+ t) ε3 ·ε4 k4 ·ε1 k4 ·ε2 .

(2.42)

It vanishes, of course, for the ( + + + + ) and (− + + + ) classes of helicities, and is

nonvanishing for MHV helicities ( − − + + ). It is invariant under cyclic shifts of the

external legs. We choose the remaining tensors to have definite helicity properties as well.

We can give compact expressions for the tensors in terms of the following combinations of
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the linearized field-strength tensors defined in Eq. (2.11),

F 4
st ≡ (F1F2F3F4) , F 4

tu ≡ (F1F4F2F3) , F 4
us ≡ (F1F3F4F2) ,

(F 2
s )2 ≡ (F1F2)(F3F4) , (F 2

t )2 ≡ (F1F4)(F2F3) , (F 2
u )2 ≡ (F1F3)(F4F2) ,

(2.43)

along with the TF 3 tensor defined in Eq. (2.15). In terms of these quantities, the basis tensors

have the following expressions,

T tree = −1

2
((F 2

s )2 + (F 2
t )2 + (F 2

u )2) + 2 (F 4
st + F 4

tu + F 4
us) = t8F

4 ,

T (++++) = −2F 4
st +

1

2
((F 2

s )2 + (F 2
t )2 + (F 2

u )2) ,

T (−+++) = −TF 3 − (F 4
tu − F 4

us) (s− t) + (F 4
st −

1

4
((F 2

s )2 + (F 2
t )2 + (F 2

u )2)) (s+ t) ,

T (−−++) = (F 2
s )2 − (F 2

t )2 + 2 (F 4
tu − F 4

us) ,

T (−+−+) = 2F 4
st −

1

2
((F 2

s )2 + (F 2
t )2 − (F 2

u )2) ,

T ev1 = −(2F 4
st +

3

2
((F 2

s )2 + (F 2
t )2 + (F 2

u )2)) (s+ t) + 2 (F 4
us (3 s+ t) + F 4

tu (s+ 3 t))

= −4 (F 4
tu s+ F 4

us t)− (s+ t) (8F 4
st − 3T tree) ,

T ev2 = −(2F 4
st −

1

2
((F 2

s )2 + (F 2
t )2 + (F 2

u )2)) (s− t) + 2 (F 4
tu − F 4

us) (s+ t)

= 4 (F 4
tu s− F 4

us t)− (s− t)T tree .

(2.44)

The first tensor is the tree-level tensor given above in Eq. (2.42). The subsequent four

tensors each are labeled by the class of four-dimensional helicity configuration on which

they are nonvanishing. The final two tensors are nontrivial formal objects, but vanish for

all four-dimensional helicities. Outside of four dimensions, they do not vanish, however, as

demonstrated, for example, by the nonvanishing value of the sum over states of each tensor

multiplied by its conjugate. They represent the kinematic part of evanescent operators in

Yang–Mills theory. In a slight abuse of language, we will therefore call them evanescent

tensors. Three other gauge-invariant tensors can be constructed, but these do not have the
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Tensor Dimension Symmetry Nonvanishing D = 4 Helicity D = 4 Value

T tree 4 +
(− − + + ) 〈1 2〉2 [3 4]2

(− + − + ) 〈1 3〉2 [2 4]2

T (++++) 4 + ( + + + + ) [1 3]2 [2 4]2

T (−+++) 6 + (− + + + ) 〈1 2〉2 [2 3]2 [2 4]2

T (−−++) 4 − (− − + + ) 〈1 2〉2 [3 4]2

T (−+−+) 4 + (− + − + ) 〈1 3〉2 [2 4]2

T ev1 6 + — 0
T ev2 6 − — 0

Table 2.3: Nonvanishing helicities and values for the color-ordered tensor basis. Each tensor
is also nonvanishing on the cyclic permutations and parity conjugates of the indicated helicity
states. The evanescent tensors vanish for all four-dimensional helicities but are included in
the table.

correct symmetry properties to appear in color-ordered physical amplitudes. The properties

of all the tensors, as well as their values in four-dimensional helicity are summarized in

Table 2.3. The expressions for the tensors are also given in a companion Mathematica file,

tensors-ym.m. The notation there is,

ee[i,j] = εi · εj , ke[i,j] = ki · εj , dot[i,j] = ki · kj . (2.45)

The seven tensors in Eq. (2.44) sequentially correspond to T[[i]] in the file for i = 1, . . . , 7.

The spinor-valued expressions for the tensors in four dimensions are also given that file, with

the seven values for each four-dimensional helicity configuration recorded in value[helicity-

string ], for example value[“++++”]. These expressions employ the notation,

spa[i,j] = 〈i j〉 , spb[i,j] = [i j] . (2.46)

Conversely, we can express the linearized combinations (2.43) in terms of the color-ordered
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tensors,

F 4
st = − T ev1

8 (s+ t)
− (s− t)T ev2

8 (s+ t)2
+

1

4
T tree − s t T (++++)

2 (s+ t)2
,

F 4
tu =

T ev2

4 (s+ t)
+

1

4
T tree +

t T (++++)

2 (s+ t)
,

F 4
us = − T ev2

4 (s+ t)
+

1

4
T tree +

s T (++++)

2 (s+ t)
,

(F 2
s )2 = − T ev1

4 (s+ t)
− (3 s+ t)T ev2

4 (s+ t)2
+

1

2
T tree +

1

2
T (−−++) − 1

2
T (−+−+) +

s2 T (++++)

(s+ t)2
,

(F 2
t )2 = − T ev1

4 (s+ t)
+

(s+ 3 t)T ev2

4 (s+ t)2
+

1

2
T tree − 1

2
T (−−++) − 1

2
T (−+−+) +

t2 T (++++)

(s+ t)2
,

(F 2
u )2 = T (−+−+) + T (++++) ,

TF 3 = −(s− t)T ev2

2 (s+ t)
− T (−+++) − 2 s t T (++++)

s+ t
.

(2.47)

2.A.2 Tensors with Definite Permutation Symmetry

In this subsection, we present four-gluon kinematic tensors with definite properties under

the full permutation group. These are ultimately useful for decomposing N = 4 supergravity

amplitudes at one and two loops in a double-copy approach. The tree tensor (2.42) is already

fully crossing invariant, so we take it to be the first tensor in this set as well, here calling it

Htree. The remaining tensors are either invariant under all permutations of external labels,

or are multiplied by the signature of the permutation (±1). We will call the latter signature-

odd.

A signature-odd tensor will be multiplied by a signature-odd polynomial in s and t in

any physical amplitude. Any invariant polynomial can also appear as a tensor prefactor in

an amplitude, of course. All invariant polynomials can be built out of products of two basic
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polynomials,

σ2(s, t, u) = s2 + t2 + u2 = 2(s2 + st+ t2) = −2(st+ tu+ us) ,

σ3(s, t, u) = s3 + t3 + u3 = 3stu ,

(2.48)

with a constant prefactor. Any signature-odd polynomial is a product of an invariant poly-

nomial and the basic signature-odd polynomial,

α(s, t, u) = −(s− t)(t− u)(u− s) = (s− t)(2s+ t)(s+ 2t) . (2.49)

This polynomial satisfies the identity

2α2 = σ3
2 − 6σ2

3 , (2.50)

so that we need not consider powers of α.

We can again express the tensors in terms of the linearized-field strength quantities

defined in Eq. (2.43),

Htree = −1

2
((F 2

s )2 + (F 2
t )2 + (F 2

u )2) + 2 (F 4
st + F 4

tu + F 4
us) = t8F

4 ,

H(++++) =
3

2
((F 2

s )2 + (F 2
t )2 + (F 2

u )2)− 2 (F 4
st + F 4

tu + F 4
us) ,

H(−+++) = −TF 3 − 4

3
(F 4

tu s+ F 4
us t− F 4

st (s+ t)) ,

Hmhv1 = −((F 2
s )2 + 2F 4

tu) s− ((F 2
t )2 + 2F 4

us) t+ (2F 4
st + (F 2

u )2) (s+ t) ,

Hmhv2 = (F 2
u )2 (s− t) (s+ t) + (F 2

t )2 t (2 s+ t)− (F 2
s )2 s (s+ 2 t) ,

Hev1 = 4 (F 4
st (s− t) (s+ t) + F 4

us t (2 s+ t)− F 4
tu s (s+ 2 t)) ,

Hev2 = ((F 2
s )2 + (F 2

t )2 + (F 2
u )2) (s2 + s t+ t2)− 4 (F 4

tu t (s+ t)− s (F 4
st t− F 4

us (s+ t))) .

(2.51)

The second and third tensors are again labeled by the four-dimensional helicity class

for which they are nonvanishing; the fourth and fifth are both nonvanishing for all MHV
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helicities. The last two are again “evanescent”, in the sense that they are nonvanishing

outside of four dimensions but vanish for all four-dimensional helicity configurations. (As in

Section 2.A.1, they do not include factors of 1/ε that would be needed to yield a nonvanishing

result in four dimensions.)

Tensor Dimension Signature Nonvanishing D = 4 Helicity D = 4 Value

Htree 4 even (− − + + ) 〈1 2〉2 [3 4]2

H(++++) 4 even ( + + + + ) [1 4]2 [2 3]2 + [1 3]2 [2 4]2 + [1 2]2 [3 4]2

H(−+++) 6 even (− + + + ) 〈1 2〉2 [2 3]2 [2 4]2

Hmhv1 6 even (− − + + ) 〈1 2〉3 [1 2] [3 4]2

Hmhv2 8 odd (− − + + ) (s+ 2 t) 〈1 2〉3 [1 2] [3 4]2

Hev1 8 odd — 0
Hev2 8 even — 0

Table 2.4: Nonvanishing helicities and values for the pregravity tensor basis. Each tensor is
also nonvanishing on the permutations and parity conjugates of the indicated helicity states.
The evanescent tensors vanish for all four-dimensional helicities but are included in the table.

The expressions for the tensors are also given in a companion Mathematica file, tensors-

neq4gr.m, with H[[i]], i = 1, . . . , 7 corresponding in order to the tensors in Eq. (2.51). The

spinor-valued expressions for the tensors in four dimensions are also given in that file; as

in Section 2.A.1, the seven values for each four-dimensional helicity configuration given by

value[helicity-string ]. The notation follows Eqs. (2.45) and (2.46). The properties of the

tensors are summarized in Table 2.4.

Because these tensor have definite properties under permutations, we can connect them

straightforwardly to matrix elements of corresponding operators after the double copy. A

few examples would be,

σ2t8F
4t8F

4 ↔ t8t8D
4R4 ,

t8F
4(uF 4

st + sF 4
tu + tF 4

us)↔ t8tr(D2R4) ,

σ2t8F
4((F 2

s )2 + (F 2
u )2 + (F 2

t )2)↔ t8(tr(DR)2)2 .

(2.52)
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2.A.3 Projectors for Basis Tensors

In this subsection, we present a set of projectors that can be used to obtain the scalar co-

efficients of the basis tensors for an expression given in terms of polarization vectors and

momenta. When applied to an integrated expression for an amplitude, the resulting decom-

position will reproduce the original expression; when applied to an integrand, there may be

a total-derivative discrepancy that will integrate to zero.

We define an inner product � of a polarization vector and its conjugate to be given by

the sum over states,

ε∗µi � ενi =
∑

statesh

ε
∗(h),µ
i ε

(h),ν
i = −gµν +

kµi q
ν + qµkνi
q · ki

, (2.53)

where q is a null reference vector not collinear to any external momentum. (It is similar to

a lightcone-gauge vector.) In four dimensions, the state sum becomes,

∑
statesh

ε
∗(h),µ
i ε

(h),ν
i =

∑
h=±

ε
∗(h),µ
i ε

(h),ν
i =

∑
h=±

ε
(−h),µ
i ε

(h),ν
i , (2.54)

where the sum is over vector helicities.

In all dimensions, the projector onto the jth tensor is then given by,

Pj = cjiT
∗
i , (2.55)

where the matrix c is the inverse of the (symmetric) inner product matrix m, whose elements

are given by,

mij = T ∗i � Tj . (2.56)

The coefficient of Tj in an expression X is given by Pj �X.

Each basis has a corresponding set of projectors; the projectors for the cyclicly-organized

basis described in Section 2.A.1 are given alongside the tensors and helicity values in tensors-

55



ym.m, where the projector Pj onto Tj is given by P[[j]]. The expressions make use of the

following notation in addition to that in Eq. (2.45),

cc[i,j] = ε∗i · ε∗j , kc[i,j] = ki · ε∗j , chi = t/s , d = D . (2.57)

In four dimensions, m has rank 5, as expected from the nature of T5 and T6. In six dimensions,

it has rank 7, showing indirectly that there are some helicities with non-vanishing values for

these two tensors. The corresponding projectors for the basis of Section 2.A.2 organized

under the full crossing symmetry are given in tensors-neq4gr.m. The projector matrix again

has rank 5 in four dimensions, and rank 7 in six dimensions.
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Chapter 3

Ultraviolet Properties of N = 8

Supergravity at Five Loops

We use the recently developed generalized double-copy construction to obtain an improved

representation of the five-loop four-point integrand of N = 8 supergravity whose leading

ultraviolet behavior we analyze using state-of-the-art loop-integral expansion and reduction

methods. We find that the five-loop critical dimension where ultraviolet divergences first

occur is Dc = 24/5, corresponding to a D8R4 counterterm. This ultraviolet behavior stands

in contrast to the cases of four-dimensional N = 4 supergravity at three loops and N = 5

supergravity at four loops whose improved ultraviolet behavior demonstrates enhanced can-

cellations beyond implications from standard-symmetry considerations. We express this

Dc = 24/5 divergence in terms of two relatively simple positive-definite integrals reminiscent

of vacuum integrals, excluding any additional ultraviolet cancellations at this loop-order.

We note nontrivial relations between the integrals describing this leading ultraviolet be-

havior and integrals describing lower-loop behavior. This observation suggests not only a

path towards greatly simplifying future calculations at higher loops, but may even allow

us to directly investigate ultraviolet behavior in terms of simplified integrals, avoiding the

construction of complete integrands.
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3.1 Introduction

Since the discovery of supergravity theories [116, 117], a complete understanding of their ul-

traviolet properties has remained elusive. Despite tremendous progress over the years, many

properties of gravitational perturbation theory remain unknown. Power counting arguments,

driven by the dimensionality of Newton’s constant, suggest that all point-like theories of grav-

ity should develop an ultraviolet divergence at a sufficiently high loop order. However, if

a point-like theory were ultraviolet finite, it would imply the existence of an undiscovered

symmetry or structure that should likely have a fundamental impact on our understanding

of quantum gravity. Explicit calculations in recent years have revealed the existence of hid-

den properties, not readily apparent in Lagrangian formulations. One might wonder whether

these tame the ultraviolet behavior of point-like gravity theories. For example, all-loop-order

unitarity cuts exhibit remarkable infrared and ultraviolet cancellations [118–120] whose con-

sequences remain to be fully explored. Indeed, we know of examples in N = 4 [113, 121,

122] and N = 5 [123] supergravity theories that display “enhanced cancellations” [4–9, 108],

where quantum corrections exclude counterterms thought to be consistent with all known

symmetries. In addition, there are indications that anomalies in known symmetries of su-

pergravity theories play a role in the appearance of ultraviolet divergences [2, 68–71, 111,

124]. Restoration of these symmetries in S-matrix elements by finite local counterterms may

lead to the cancellation of known divergences. In this chapter, we take a step forward by

presenting a detailed analysis of the ultraviolet behavior of the five-loop four-point scatter-

ing amplitude in the maximally supersymmetric theory, N = 8 supergravity1 [125–127], and

observe properties that should help us determine its four-dimensional ultraviolet behavior

at even higher loops.

Its many symmetries suggest that, among the point-like theories of gravity, the maximally

1Strictly speaking the maximally supersymmetric theory is only recognized as N = 8 supergravity in four
dimensions. While we concern ourselves with mainly higher dimensions, in this chapter we take the liberty
to apply the four-dimensional nomenclature.
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supersymmetric theory has the softest ultraviolet behavior. These symmetry properties also

make it technically easier to explore and understand its structure. Over the years there have

been many studies and predictions for the ultraviolet behavior of N = 8 supergravity [90,

128–138]. The current consensus, based on standard symmetry considerations, is that N = 8

supergravity in four dimensions is ultraviolet finite up to at least seven loops [139–144].

Through four loops, direct computation using modern scattering amplitude methods prove

that the critical dimension of N = 8 supergravity where divergences first occur is [61, 145–

148]

Dc =
6

L
+ 4 , (2 ≤ L ≤ 4) (3.1)

where L is the number of loops. This matches the formula [145, 149] for N = 4 super-Yang–

Mills theory [150, 151] which is known to be an ultraviolet finite theory in D = 4 [152–

155]. At one loop the critical dimension, for both N = 4 super-Yang–Mills theory and

N = 8 supergravity [90], is Dc = 8. We define the theories in dimensions D > 4 via

dimensional reduction of N = 1 supergravity in D = 11 and N = 1 super-Yang–Mills theory

in D = 10 [90].

In this chapter we address the longstanding question of whether Eq. (3.1) holds for

N = 8 supergravity at five loops. Symmetry arguments [142, 143] suggest D8R4 as a valid

counterterm and that the critical dimension for the five-loop divergence should be Dc = 24/5

instead of that suggested by Eq. (3.1), Dc = 26/5. (See also Refs. [139–141, 144].) Such

arguments, however, cannot ascertain whether quantum corrections actually generate an

allowed divergence. Indeed, explicit three-loop calculations in N = 4 supergravity and four-

loop calculations in N = 5 supergravity reveal that while counterterms are allowed by all

known symmetry considerations, none actually exist [4, 6]. These enhanced cancellations

are nontrivial and only manifest upon applying Lorentz invariance and a reparametrization

invariance to the loop integrals [108]. This implies that the only definitive way to settle the

five-loop question is to directly calculate the coefficient of the potential D8R4 counterterm
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in D = 24/5, as we do here. This counterterm is of interest because it is the one that would

contribute at seven loops if N = 8 supergravity were to diverge in D = 4.

Our direct evaluation of the critical dimension of the N = 8 supergravity theory at five

loops proves unequivocally that it first diverges in Dc = 24/5 and no enhanced cancellations

are observed. The fate of N = 8 supergravity in four-dimensions remains to be determined.

Even with the powerful advances exploited in this current calculation, direct analysis at

seven loops would seem out of reach. Fortunately the results of our current analysis, when

combined with earlier work at lower loops [4, 6, 9, 61, 71, 146–148], reveal highly nontrivial

constraints on the subloops of integrals describing the leading ultraviolet behavior through

five loops. These patterns suggest not only new efficient techniques to directly determine the

ultraviolet behavior at ever higher loops, but potentially undiscovered principles governing

the ultraviolet consistency. In this work we will describe these observed constraints, leaving

their detailed study for the future.

The results of this chapter are the culmination of many advances in understanding and

computing gauge and gravity scattering amplitudes at high-loop orders. The unitarity

method [156–160] has been central to this progress because of the way that it allows on-

shell simplifications to be exploited in the construction of new higher-loop amplitudes. We

use its incarnation in the maximal-cut organization [160] to systematically build complete

integrands [60, 161].

The unitarity method combines naturally with double-copy ideas, including the field-

theoretic version of the string-theory Kawai, Lewellen and Tye (KLT) relations between

gauge and gravity tree amplitudes [47] and the related Bern, Carrasco and Johansson (BCJ)

color-kinematics duality and double-copy construction [35, 36]. The double-copy relationship

reduces the problem of constructing gravity integrands to that of calculating much simpler

gauge-theory ones. For our calculation, a generalization [60] of the double-copy procedure

has proven invaluable [161].

The analysis in Ref. [161] finds the first representation of an integrand for the five-loop
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four-point amplitude of N = 8 supergravity. The high power counting of that representation

obstructs the necessary integral reductions needed to extract its ultraviolet behavior. Here

we use similar generalized double-copy methods [60] to construct an improved integrand that

enormously simplifies the integration. The key is starting with an improved gauge-theory

integrand, which we build by constraining a manifest-power-counting ansatz via the method

of maximal cuts. The needed unitarity cuts are easily obtained from the gauge-theory

integrand of Ref. [162].

The earlier representation of the supergravity integrand, given in Ref. [161], is super-

ficially (though not actually) quartically divergent in the dimension of interest. The new

representation shifts these apparent quartic divergences to contributions that only mildly

complicate the extraction of the underlying logarithmic divergences. Our construction pro-

ceeds as before except for small differences related to avoiding certain spurious singularities.

The complete gauge and supergravity integrands can be found in plain-text ancillary files at

the arXiv hosting of Ref. [3].

Recent advances in loop integration methods proved essential for solving the challenges

posed by the calculation of ultraviolet divergences at five loops. Related issues appeared in

the five-loop QCD beta function calculation, which was completed recently [163–165]. For

supergravity, higher-rank-tensors related to the nature of the graviton greatly increase the

number of terms while the absence of subdivergences dramatically simplifies the calculation.

At high-loop orders the primary method for reducing loop integrals to a basis relies on

integration-by-parts (IBP) identities [95, 166–174]. The complexity of such IBP systems

tends to increase prohibitively with the loop order and the number of different integral types.

Ideas from algebraic geometry provide a path to mitigating this problem by organizing them

in a way compatible with unitarity methods [175–189]. We also simplify the problem by

organizing the IBP identities in terms of an SL(5) symmetry of the five-loop integrals [108].

The final expression for the leading ultraviolet behavior is incredibly compact, and ex-

poses, in conjunction with previous results [4, 6, 9, 61, 71, 146–148], simple and striking
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patterns. Indeed, analysis of this leading ultraviolet behavior indicates the existence of

potentially more powerful methods for making progress at higher loops.

This chapter is organized as follows. In Section 3.2, we review the generalized double-

copy construction, as well as the underlying ideas including BCJ duality and the method

of maximal cuts. We also summarize properties of the previously constructed five-loop

four-point integrand of Ref. [161]. In Section 3.3, we construct new N = 4 super-Yang–

Mills and N = 8 supergravity integrands with improved power-counting properties. Then,

in Section 3.4 describe our procedure for expanding the integrands for large loop momenta,

resulting in integrals with no external momenta, which we refer to as vacuum integrals. In

Section 3.5, as a warm up to the complete integral reduction described in Section 3.6, we

simplify the integration-by-parts system of integrals by assuming that the only contributing

integrals after expanding in large loop momenta are those with maximal cuts. The results for

the five-loop ultraviolet properties are given in these sections. In Section 3.7, by collecting

known results for the leading ultraviolet behavior in terms of vacuum integrals we observe

and comment on the intriguing and nontrivial consistency for such integrals between higher

and lower loops. We present our conclusions in Section 3.8.

3.2 Review

The only known practical means for constructing higher-loop gravity integrands is the double-

copy procedure that recycles gauge-theory results into gravity ones. Whenever gauge-theory

integrands are available in forms that manifest the BCJ duality between color and kine-

matics [35, 36], the corresponding (super)gravity integrands are obtained by replacing color

factors with the kinematic numerators of the same or of another gauge theory. Experience

shows that it is sometimes difficult to find such representations of gauge-theory integrands.

In some cases this can be overcome by increasing the power count of individual terms [190],

or by introducing nonlocalities in integral coefficients [191]. Another possibility is to find
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an integrand where BCJ duality holds on every cut, but does not hold with cut conditions

removed [192]. Unfortunately, these ideas have not, as yet, led to a BCJ representation of

the five-loop four-point integrand of N = 4 super-Yang–Mills theory.

To avoid this difficulty, a generalized version of the BCJ double-copy construction has

been developed. Although relying on the existence of BCJ duality at tree level, the general-

ized double-copy construction does not use any explicit representation of tree- or loop-level

amplitudes that satisfies BCJ duality. It instead gives an algorithmic procedure which con-

verts generic gauge-theory integrands into gravity ones [60]. This is used in Ref. [161] to

construct an integrand for the five-loop four-point amplitude of N = 8 supergravity.

In this section we give an overview of the ingredients and methods used in the con-

struction of the five-loop integrand. We begin with a brief review of BCJ duality and the

maximal-cut method which underlies and organizes the construction, and then proceed to

reviewing the generalized double copy and associated formulae. We then summarize features

of the previously constructed integrand [161] for the five-loop four-point amplitude of N = 8

supergravity. In Section 3.3 we use the generalized double copy to find a greatly improved

integrand for extracting ultraviolet properties, which we do in subsequent sections.

3.2.1 BCJ duality and the double copy

The BCJ duality [35, 36] between color and kinematics is a property of on-shell scattering

amplitudes which has so far been difficult to discern in a Lagrangian formulation of Yang-

Mills field theories [193, 194]. Nevertheless various tree-level proofs exist [195–200].

The first step to construct a duality-satisfying representation of amplitudes is to organize

them in terms of graphs with only cubic (trivalent) vertices. This process works for any tree-

level amplitude in any D-dimensional gauge theory coupled to matter fields. For the adjoint
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Figure 3.1: The three four-point diagrams participating in either color or numerator Jacobi
identities.

representation case, an m-point tree-level amplitude may be written as

Atree
m = gm−2

∑
j

cjnj∏
αj
p2
αj

, (3.2)

where the sum is over the (2m−5)!! distinct tree-level graphs with only cubic vertices. Such

graphs are the only ones needed because the contribution of any diagram with quartic or

higher-point vertices can be assigned to a graph with only cubic vertices by multiplying and

dividing by appropriate propagators. The nontrivial kinematic information is contained in

the kinematic numerators nj; they generically depend on momenta, polarization, and spinors.

The color factors cj are obtained by dressing every vertex in graph j with the group theory

structure constant, f̃abc = i
√

2fabc = Tr([T a, T b]T c), where the Hermitian generators of the

gauge group are normalized via Tr(T aT b) = δab. The denominator is given by the product

of the Feynman propagators of each graph j.

The kinematic numerators of an amplitude in a BCJ representation obey the same alge-

braic relations as the color factors [35, 36, 61, 201–204]. The key property is the requirement

that all Jacobi identities obeyed by color factors are also obeyed by the kinematic numerators,

ci + cj + ck = 0 ⇒ ni + nj + nk = 0 , (3.3)

where i, j, and k refer to three graphs which are identical except for one internal edge.

Fig. 3.1 shows three basic diagrams participating in the Jacobi identity for color or numerator

64



factors. They can be embedded in a higher-point diagram. Furthermore, the kinematic

numerators should obey the same antisymmetry under graph vertex flips as the color factors.

A duality-satisfying representation of an amplitude can be obtained from a generic one

through generalized gauge transformations—shifts of the kinematic numerators,

ni → ni + ∆i , (3.4)

which are constrained not to change the amplitude. When the duality is manifest, the

kinematic Jacobi relations (3.3) express all kinematic numerators in terms of a small set

of “master” numerators. While there is a fairly large freedom in choosing them, only the

numerators of certain graphs can form such a basis.

Once gauge-theory tree amplitudes have been arranged into a form where the duality is

manifest [35, 36], we obtain corresponding gravity amplitudes simply by replacing the color

factors of one gauge-theory amplitude with the kinematic numerators of another gauge-

theory amplitude,

ci → ñi , (3.5)

as well as readjusting the coupling constants. This replacement gives the double-copy form

of a gravity tree amplitude,

Mtree
m = i

(κ
2

)m−2∑
j

ñjnj∏
αj
p2
αj

, (3.6)

where κ is the gravitational coupling and ñj and nj are the kinematic numerator factors of

the two gauge theories. The gravity amplitudes obtained in this way depend on the specific

input gauge theories. As discussed in Refs. [36, 193], Eq. (3.6) holds provided that at least

one of the two amplitudes satisfies the duality (3.3) manifestly. The other may be in an

arbitrary representation.

An earlier related version of the double-copy relation valid at tree level is the KLT
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relations between gauge and gravity amplitudes [47]. Their general form in terms of a basis

of gauge-theory amplitudes is,

Mtree
m =i

(κ
2

)m−2 ∑
τ,ρ∈Sm−3

K(τ |ρ)Ãtree
m (1, ρ2, . . . , ρm−2,m, (m− 1))

× Atree
m (1, τ2, . . . , τm−2, (m− 1),m) . (3.7)

Here the Atree
m are color-ordered tree amplitudes with the indicated ordering of legs and the

sum runs over (m − 3)! permutations of external legs. The KLT kernel K is a matrix with

indices corresponding to the elements of the two orderings of the relevant partial amplitudes.

It is also sometimes referred to as the momentum kernel. Compact representations of the

KLT kernel are found in Refs. [49, 195–200, 205].

At loop-level, the duality between color and kinematics (3.3) remains a conjecture [36],

although evidence continues to accumulate [43, 61, 120, 190–192, 206–211]. As at tree level,

loop-level amplitudes in a gauge theory coupled to matter fields in the adjoint representation

can be expressed as a sum over diagrams with only cubic (trivalent) vertices:

AL-loop
m = iLgm−2+2L

∑
Sm

∑
j

∫ L∏
l=1

dDpl
(2π)D

1

Sj

cjnj∏
αj
p2
αj

. (3.8)

The first sum runs over the set Sm of m! permutations of the external legs. The second sum

runs over the distinct L-loop m-point graphs with only cubic vertices; as at tree level, by

multiplying and dividing by propagators it is trivial to absorb numerators of contact diagrams

that contain higher-than-three-point vertices into numerators of diagrams with only cubic

vertices. The symmetry factor Sj counts the number of automorphisms of the labeled graph

j from both the permutation sum and from any internal automorphism symmetries. This

symmetry factor is not included in the kinematic numerator.

The generalization of BCJ duality to loop-level amplitudes amounts to demanding that

all diagram numerators obey the same algebraic relations as the color factors [36]. The Jacobi
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identities are implemented by embedding the three diagrams in Fig. 3.1 into loop diagrams

in all possible ways and demanding that identities of the type in Eq. (3.3) hold for the loop-

level numerators as well. In principle, given any representation of an amplitude, one may

attempt to construct a duality-satisfying one by modifying the kinematic numerators through

generalized gauge transformations (3.4); however, a more systematic approach is to start with

an ansatz exhibiting certain desired properties and impose the kinematic Jacobi relations.

As at tree level, when the duality is manifest all kinematic numerators are expressed in terms

of those of a small number of “master diagrams” [61, 191].

Just like with tree numerators, once gauge-theory numerator factors which satisfy the

duality are available, replacing the color factors by the corresponding numerator factors (3.5)

yields the double-copy form of gravity loop integrands,

ML-loop
m = iL+1

(κ
2

)m−2+2L∑
Sm

∑
j

∫ L∏
l=1

dDpl
(2π)D

1

Sj

ñjnj∏
αj
p2
αj

, (3.9)

where ñj and nj are gauge-theory numerator factors. The theories to which the gravity

amplitudes belong are dictated by the choice of input gauge theories.

Thus, the double-copy construction reduces the problem of constructing loop integrands

in gravitational theories to the problem of finding BCJ representations of gauge-theory am-

plitudes.2 Apart from offering a simple means for obtaining loop-level scattering amplitudes

in a multitude of (super)gravity theories, the double-copy construction has also been applied

to the construction of black-hole and other classical solutions [62, 63, 212–215] including

those potentially relevant to gravitational-wave observations [64–66, 216–218], corrections to

gravitational potentials [219–221], and the relation between symmetries of supergravity and

gauge theory [87, 222–231]. The duality underlying the double copy has also been identified

in a wider class of quantum field and string theories [205, 232–247], including those with

2Through four loops, there exist BCJ representations of N = 4 super-Yang–Mills amplitudes that exhibit
the same graph-by-graph power counting as the complete amplitude, i.e. all ultraviolet cancellations are
manifest. It is an interesting open problem whether this feature will continue at higher loops.
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Figure 3.2: Sample maximal and next-to-maximal cuts. The exposed lines connecting the
blobs are taken to be on shell delta-functions.

fundamental representation matter [88, 89]. For recent reviews, see Ref. [201–204].

When it turns out to be difficult to find a duality-satisfying representation of a gauge-

theory amplitude, as in the case for the five-loop four-point amplitude of N = 8 supergravity,

an alternative method is available. We use the generalized double-copy procedure [60] that

relies only on the existence of duality-consistent properties at tree-level. This type of ap-

proach may also potentially aid applications of BCJ duality to problems in classical gravity.

3.2.2 Method of maximal cuts

The generalized double-copy construction of Refs. [60, 161] relies on the interplay between

the method of maximal cuts [160] and tree-level BCJ duality. The maximal-cut method is a

refinement of the generalized-unitarity method [156–159], designed to construct the integrand

from the simplest set of generalized unitarity cuts. In the generalized double-copy approach

we apply the maximal-cut method in a constructive way, assigning missing contributions to

new higher-vertex contact diagrams as necessary.

In both gauge and gravity theories, the method of maximal cuts [160] constructs multiloop

integrands from generalized-unitarity cuts that decompose loop integrands into products of

tree amplitudes,

CNkMC =
∑
states

Atree
m(1) · · · Atree

m(p) , k ≡
p∑
i=1

m(i)− 3p , (3.10)

68



N2MC867 N3MC4469 N4MC6610 N5MC9936 N6MC6746

N2MC212

N2MC628

N3MC123

N3MC275

N4MC28

N4MC41

N5MC168

N5MC155 N6MC165

N6MC256

Figure 3.3: Sample NkMCs used in the construction of five-loop four-point amplitudes. The
exposed lines connecting the blobs are taken to be on-shell delta-functions.

where the Atree
m(i) are tree-level m(i)-multiplicity amplitudes corresponding to the blobs illus-

trated for various five-loop examples in Figs. 3.2 and 3.3. We organize these cuts according

to levels that correspond to the number k of internal propagators that remain off shell.

When constructing gauge-theory amplitudes, we use tree amplitudes directly as in Eq. (3.10).

For N = 4 super-Yang–Mills it is very helpful to use a four-dimensional on-shell super-

space [248] to organize the state sums [249, 250]. Some care is needed to ensure that the

obtained expressions are valid in D dimensions, either by exploiting cuts whose supersums

are valid in D ≤ 10 dimensions [149, 162] or using six-dimensional helicity [251–253]. Once

we have one version of a gauge-theory integrand, we can avoid re-evaluating the state sums

to find new representations, simply by using the cuts of the previously constructed integrand

instead of Eq. (3.10) to construct target expressions. In the same spirit, for N = 8 super-

gravity we can always bypass Eq. (3.10) by making use of the KLT tree relations (3.7). The

state sums also factorize allowing us to express the N = 8 supergravity cuts directly in terms

69



of color-order N = 4 super-Yang–Mills cuts. (See Section 2 of Ref. [161] for further details).

Figs. 3.2 and 3.3 give examples of cuts used in the construction of the integrands of

five-loop four-point amplitudes. At the maximal-cut (MC) level, e.g. the first two diagrams

of Fig. 3.2, the maximum number of internal lines are placed on shell and all tree amplitudes

appearing in Eq. (3.10) are three-point amplitudes. At the next-to-maximal-cut (NMC)

level, e.g. the third and fourth diagrams of Fig. 3.2, all except one internal line are placed

on shell shell; all tree amplitudes are three-point amplitudes except one which is a four-

point amplitude. Similarly, for an N2, two internal lines are kept off shell and so forth, as

illustrated in Fig. 3.3.

In the method of maximal cuts, integrands for loop amplitudes are obtained by first

finding an integrand whose maximal cuts reproduce the direct calculation of maximal cuts

in terms of sums of products of three-point tree-level amplitudes. This candidate integrand is

then corrected by adding to it contact terms such that all NMCs are correctly reproduced and

systematically proceeding through the nextk-maximal cuts (Nks), until no further corrections

are necessary. The level where this happens is determined by the power counting of the

theory and by choices made at earlier levels. For example, for five-loop amplitudes in N = 4

super-Yang–Mills theory, cuts through the N3 level are needed, though as we describe in

the next section, it is useful to skip certain ill-defined cuts at the N2 and N3 level and then

recover the missing information by including instead certain N4 level cuts. For the four-

point N = 8 supergravity amplitude at the same loop order, cuts through the N6 level are

necessary. In general, it is important to evaluate more cuts than the spanning set (necessary

for constructing the amplitude) to gain nontrivial crosschecks of the results. For example,

in Ref. [161] all N7 cuts and many N8 cuts were checked, confirming the construction.

To make contact with color/kinematics-satisfying representations of gauge-theory ampli-

tudes it is convenient to absorb all contact terms into diagrams with only cubic vertices [4,

6, 9, 61, 71, 146–148, 190, 192]. For problems of the complexity of the five-loop super-

gravity integrand, however, it can be more efficient to assign each new contribution of an
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⇒
N2MC867

⇒
(4 : 41)N4MC41(2 : 867)

Figure 3.4: New contribution found via the method of maximal cuts can be assigned to
contact terms. The labels (X: Y) correspond to the labeling of Ref. [161] and refer to the
level and contact diagram number.

Nk to a contact diagram instead of to parent diagrams, consisting of ones with only cubic

vertices. These new contributions are, by construction, contact terms—they contain only

the propagators of the graph with higher-point vertices—because any contribution that can

resolve these vertices into propagator terms is already accounted for at earlier levels. In this

organization each new contact diagram can be determined independently of other contact

diagrams at the same level and depends only on choices made at previous levels. More

explicitly, as illustrated in Fig. 3.4, a new contribution arising from an Nk is assigned to a

contact diagram obtained from that cut by replacing the blobs representing tree-level am-

plitudes by vertices with the same multiplicity. The contact terms should be taken off shell

by removing the cut conditions in a manner that reflects the diagram symmetry. Off-shell

continuation necessarily introduces an ambiguity since it is always possible to include terms

proportional to the inverse propagators that vanish by the cut condition; such ambiguities

can be absorbed into contact terms at the next cut level.

3.2.3 Generalized double-copy construction

Whenever gauge-theory amplitudes are available in a form that obeys the duality between

color and kinematics, the BCJ double-copy construction provides a straightforward method

of obtaining the corresponding (super)gravity amplitudes. If a duality-satisfying repre-

sentation is expected to exist but is nonetheless unavailable, the generalized double-copy

construction supplies the additional information necessary for finding the corresponding

71



(super)gravity amplitude. Below we briefly summarize this procedure. A more thorough

discussion can be found in Ref. [161].

The starting point of the construction is a “naive double copy”of two (possibly dis-

tinct) gauge-theory amplitudes written in terms of cubic diagrams obtained by applying the

double-copy substitution (3.5) to these amplitudes despite none of them manifesting the BCJ

duality between color and kinematics. While the resulting expression is not a (super)gravity

amplitude, it nonetheless reproduces the maximal and next-to-maximal cuts of the desired

(super)gravity amplitude as the three- and four-point tree-level amplitudes entering these

cuts obey the duality between color and kinematics. Contact term corrections are necessary

to satisfy the Nk with k ≥ 2; the method of maximal cuts can be used to determine them.

For N2 and N3 at five loops, whose associated contact terms are the most complicated [156–

159, 162], it is advantageous to obtain these corrections using formulas that express the cuts

in terms of violations of the BCJ relations (3.3).

The existence of BCJ representations at tree level implies that representations should

exist for all cuts of gauge-theory amplitudes that decompose the loop integrand into products

of tree amplitudes to any loop order. This further suggests that the corresponding cuts of

the gravity amplitude can be expressed in double-copy form,

CGR =
∑
i1,...,iq

nBCJ
i1,i2,...iq

ñBCJ
i1,i2,...iq

D
(1)
i1
. . . D

(q)
iq

, (3.11)

where the nBCJ and ñBCJ are the BCJ numerators associated with each of the two copies. In

this expression the cut conditions are understood as being imposed on the numerators. Each

sum runs over the diagrams of each blob and D
(m)
im

are the product of the uncut propagators

associated to each diagram of blob m. This notation is illustrated in Fig. 3.5 for an N2. In

this figure, each of the two four-point blobs is expanded into three diagrams, giving a total

of nine diagrams. For example, the indices i1 = 1 and i2 = 1 refers to the five-loop diagram

produced by taking the first diagram from each blob and connecting it to the remaining parts
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(0 : 342) → n1,2(0 : 366) → n1,1

(0 : 346) → n3,1

(0 : 298) → n2,1 (0 : 346) → n2,2 (0 : 366) → n2,3

(0 : 342) → n3,3(0 : 286) → n3,2

(0 : 307) → n1,3

⇒

N2MC867

Figure 3.5: An example illustrating the notation in Eq. (3.11). Expanding each of the two
four-point blob gives a total of nine diagrams. The label N2 867 refer to 867th diagram of
the 2nd level cuts, and the ni,j correspond to labels used in the cut. The shaded thick (blue
and red) lines are the propagators around which BCJ discrepancy functions are defined.
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of the five-loop diagram. The denominators in Eq. (3.11) correspond to the thick (colored)

lines in the diagrams.

The BCJ numerators in Eq. (3.11) are related [36, 193] to those of an arbitrary repre-

sentation by a generalized gauge transformation (3.4); the shift parameters follow the same

labeling scheme as the numerators themselves,

ni1,i2,...iq = nBCJ
i1,i2,...iq

+ ∆i1,i2,...iq . (3.12)

The shifts ∆i1,i2,...iq are constrained to leave the corresponding cuts of the gauge-theory

amplitude unchanged. Using such transformations we can reorganize a gravity cut in terms

of cuts of a naive double copy and an additional contribution,

CGR =
∑
i1,...,iq

ni1,i2,...iq ñi1,i2,...iq

D
(1)
i1
. . . D

(q)
iq

+ EGR (∆) , (3.13)

where the cut conditions are imposed on the numerators. Rather than expressing the cor-

rection EGR in terms of the generalized-gauge-shift parameters, it is useful to re-express the

correction terms as bilinears in the violations of the kinematic Jacobi relations (3.3) by the

generic gauge-theory amplitude numerators. These violations are known as BCJ discrepancy

functions.

As an example, the cut in Fig. 3.5 is composed of two four-point tree amplitudes and the

rest are three-point amplitudes. For any cut of this structure, two four-point trees connected

to any number of three-point trees, the correction has a simple expression,

E4×4
GR = − 1

d
(1,1)
1 d

(2,1)
1

(
J•,1J̃1,• + J1,•J̃•,1

)
, (3.14)
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where d
(b,p)
i is the pth propagator of the ith diagram inside the bth blob and

J•,i2 ≡
3∑

i1=1

ni1i2 , Ji1,• ≡
3∑

i2=1

ni1i2 , J̃•,i2 ≡
3∑

i1=1

ñi1i2 , J̃i1,• ≡
3∑

i2=1

ñi1i2 . (3.15)

are BCJ discrepancy functions. Notably, these discrepancy functions vanish whenever the

numerators involved satisfy the BCJ relations, even if the representation as a whole does not

satisfy them. Such expressions are not unique and can be rearranged using various relations

between Js [60, 161, 254, 255]. For example, an alternative version, equivalent to Eq. (3.14),

is

E4×4
GR = −1

9

3∑
i1,i2=1

1

d
(1,1)
i1

d
(2,1)
i2

(
J•,i2 J̃i1,• + Ji1,•J̃•,i2

)
. (3.16)

Similarly, a cut with a single five-point tree amplitude and the rest three-point tree

amplitudes is given by

C5
GR =

15∑
i=1

niñi

d
(1)
i d

(2)
i

+ E5
GR with E5

GR = −1

6

15∑
i=1

J{i,1}J̃{i,2} + J{i,2}J̃{i,1}

d
(1,1)
i d

(1,2)
i

, (3.17)

where J{i,1} and J{i,2} are BCJ discrepancy functions associated with the first and second

propagator of the ith diagram. (See Ref. [161] for further details.)

As the cut level k increases the formulas relating the amplitudes’ cuts with the cuts

of the naive double copy become more intricate, but the basic building blocks remain the

BCJ discrepancy functions. The formulas often enormously simplify the computation of the

contact term corrections and are especially helpful at five loops at the N2 and N3 level,

where calculating the contact terms via the maximal-cut method can be rather involved.

Beyond this level the contact terms become much simpler due to a restricted dependence

on loop momenta and are better dealt with using the method of maximal cuts and KLT

relations [47], as described in Ref. [161].
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Figure 3.6: Sample graphs for the five-loop four-point N = 4 super-Yang–Mills amplitude.
The graph labels correspond to the ones in Ref. [161] and here.

3.2.4 Previously Constructed Five-Loop Four-Point Integrands

Five-loop four-point integrands have previously been constructed for N = 4 super-Yang–

Mills [162] and N = 8 supergravity [161]. Here we review some of their properties which

serve as motivation for the construction in Section 3.3 of new N = 4 super-Yang–Mills and

N = 8 supergravity integrands with better manifest ultraviolet properties.

The five-loop four-point integrand of N = 8 supergravity constructed in Ref. [161] is

obtained through the generalized double-copy procedure, starting from a slightly modified

form of the corresponding N = 4 super-Yang–Mills integrand of Ref. [162]. This modified

super-Yang–Mills representation is given explicitly in an ancillary file of Ref. [161].

All representations of the five-loop four-point N = 4 super-Yang–Mills amplitude that

we use contain solely diagrams with only cubic (trivalent) vertices, so can be written using

Eq. (3.8) as

A(5)
4 = ig12stAtree

4

∑
S4

ND∑
i=1

∫ 9∏
j=5

dD`j
(2π)D

1

Si

ciNi∏20
mi=5 `

2
mi

, (3.18)

where we have explicitly extracted an overall crossing symmetric prefactor of stAtree
4 from

the kinematic numerators when compared to Eq. (3.8). The gauge coupling is g, the color-

ordered D-dimensional tree amplitude is Atree
4 ≡ Atree

4 (1, 2, 3, 4), and s = (k1 + k2)2 and
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t = (k2 + k3)2 are the standard Mandelstam invariants. We denote external momenta by

ki with i = 1, . . . , 4 and the five independent loop momenta by `j with j = 5, . . . , 9. The

remaining momenta `j with 10 ≤ j ≤ 20 of internal lines are linear combinations of the

five independent loop momenta and external momenta. As always, the color factors ci of all

graphs are obtained by dressing every three-vertex in the graph with a factor of f̃abc.

The number ND of diagrams that we include depends on the particular representation

we choose. The form given in Ref. [162] has 416 diagrams, while the one used in Ref. [161]

has 410 diagrams. Some sample graphs from this list of 410 diagrams are shown in Fig. 3.6.

It is useful to inspect some of the numerators associated with the sample diagrams.

Choosing as examples diagrams 14, 16, 31 and 280 from the 410 diagram representation of

Ref. [161], we have the N = 4 super-Yang–Mills numerators

N14 = s
(
s2s3,5 −

5

2
`2

5`
2
13`

2
15

)
,

N16 = −s
(
s3 + s2τ3,15 −

3

2
s`2

7`
2
10 +

3

2
`2

7`
2
10(τ1,15 + τ2,15 + τ4,15 + `2

9 − `2
14 − `2

17 + `2
20)
)
,

N31 = s
(
s
(
−s2 − `2

13`
2
20 + s(τ6,19 + `2

13 +
1

2
`2

20) + `2
6(`2

20 − `2
19)
)
− 1

2
`2

6`
2
7`

2
19

)
,

N280 = s4 + s3(τ10,13 + τ18,20) +
1

2
s2(τ 2

10,13 + τ 2
18,20) + 2t(`2

5 + `2
6)(`2

13`
2
18 + `2

10`
2
20) , (3.19)

where s and t are the usual Mandelstam invariants and

si,j = (`i + `j)
2 , τi,j = 2`i · `j . (3.20)

The corresponding naive double-copy numerators are obtained by simply squaring these

expressions.

The N = 8 integrand found in Ref. [161] suffers from poor graph-by-graph power count-

ing, which obstructs the extraction of its leading ultraviolet behavior. Many of its diagrams

in the naive double-copy part contain spurious quartic power divergences in D = 24/5,

which are equivalent to logarithmic divergences in D = 4. As discussed in [139–144], such
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divergences are spurious and should cancel out. The difficulties raised by the spurious power

counting are two fold. First, we will see in Section 3.4 that their presence causes a rapid

growth in the number of terms in the series expansion of the integrand necessary to isolate

the potential logarithmic divergence in D = 24/5. Second, this expansion yields graphs with

propagators raised to a high power, which leads to an IBP system with billions of integrals.

There are two distinct ways to overcome these difficulties. The first is to construct a

new super-Yang–Mills integrand which improves the power counting of the naive double

copy. This in turn minimizes the number of integrals and equations in the full IBP system.

We will give the construction of this new representation of the N = 4 super-Yang–Mills

integrand as well as of the N = 8 supergravity integrand that follows from it in the next

section. This represents a complete solution. Still it is useful to have a separate check.

Our second resolution is to make simplifying assumptions on the type of integrals that can

contribute to the final result after applying IBP integral identities. This approach will be

discussed in Section 3.5 and will allow us to integrate the more complicated integrand of

Ref. [161]. The agreement between the results of these two approaches represents a highly

non-trivial confirmation of both the integrands and the integration procedure.

3.3 Improved integrands

In this section we describe the construction of a new form of the five-loop four-point inte-

grand for N = 4 super-Yang–Mills theory and then use it to construct an improved N = 8

supergravity integrand. The N = 8 integrand we obtain still exhibits power divergences in

D = 24/5 but, as we shall see, their structure is such that they do not lead to a dramatic

increase in the number of integrals needed for the extraction of the leading logarithmic ultra-

violet behavior of the amplitude. In Section 3.6 we extract the ultraviolet properties using

this improved N = 8 five-loop integrand without making any assumptions on the final form

of the large-loop momentum integrals.
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Figure 3.7: Some of the additional graphs for the improved representation of the integrand of
the five-loop four-point N = 4 super-Yang–Mills amplitude. These graphs were not needed
in earlier constructions [161, 162]. The labeling scheme is to the contact level and then the
diagram number corresponding to the labels of the ancillary files of Ref. [3].

3.3.1 Construction of improved N = 4 super-Yang–Mills integrand

The key power-counting requirement we demand of every term of the improved Yang–Mills

representation is that its naive double copy, as described in Section 3.2, has no worse than a

logarithmic divergence in D = 24/5. This translates to a representation with no more than

four powers of loop momenta in the kinematic numerator of any one-particle-irreducible

diagram. These conditions require us to introduce new diagrams of the type illustrated in

Fig. 3.7. These graphs are characterized by the vanishing of their maximal cuts. For these

diagrams, this implies that the poles due to the propagators independent of loop momenta

(to which we will refer to as “dangling trees”) are spurious. It also turns out that their

numerators have fewer than four powers of loop momenta. Such dangling tree diagrams

are crucial for obtaining ultraviolet-improved supergravity expressions via the generalized

double-copy procedure. The general pattern is that, to improve the double-copy expression,

the terms with the highest power counting in the super-Yang–Mills integrand should come

from diagrams with dangling trees. Due to the reduced number of possible loop-momentum
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factors in their kinematic numerators, the squaring of the numerator (naive double copy) of

such diagrams keeps the superficial power counting under control.

To construct such a representation of the five-loop four-point N = 4 super-Yang–Mills

integrand we apply the maximal-cut method to an ansatz that has the desired power counting

properties. Inspired by the structure of the lower-loop amplitudes [36, 61, 145, 256] we further

simplify the ansatz and improve the power-counting properties of the naive double copy by

imposing the following constraints:

• Each numerator is a polynomial of degree eight in momenta, of which no more than

four can be loop momenta.

• Every term in every numerator contains at least one factor of an external kinematic

invariant, s or t.

• No diagram contains a one-loop tadpole, bubble or triangle subdiagram. Also, two-

point two- and three-loop subdiagrams, and three-point two-loop subdiagrams, are

excluded.

• For each one-loop n-gon the maximum power of the corresponding loop momentum is

n− 4. In particular, this means that numerators do not depend on the loop momenta

of any box subdiagrams.

• Diagram numerators respect the diagram symmetries.

• The external state dependence is included via an overall factor of the tree amplitude.

Such simplifying conditions can always be imposed as long as the system of equations result-

ing from matching the cuts of the ansatz with those of the amplitude still has solutions. The

conditions above turn out to be incompatible with a representation where BCJ duality holds

globally on the fully off-shell integrand. They are nevertheless compatible with all two-term

kinematic Jacobi relations (meaning where one of the three numerators of the Jacobi relation

(3.3) vanishes by the above constraints), which we impose a posteriori:
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• The solution to cut conditions is such that the ansatz obeys all two-term kinematic

Jacobi relations.

Similarly with the earlier representation of the five-loop four-point N = 4 super-Yang–

Mills amplitude, we organize the integrand in terms of diagrams with only cubic vertices;

the numerators have the structure shown in Eq. (3.18). In the present case we have 752

diagrams. The first 410 diagrams are the same as for the previous integrand [161], some of

which are displayed in Fig. 3.6. There are an additional 342 diagrams, a few of which are

displayed in Fig. 3.7. In addition to the dangling tree graphs discussed above, this includes

other diagrams such the ones on the first line of Fig. 3.7.

For each diagram we write down an ansatz for the Ni which is a polynomial of fourth

degree in the independent kinematic invariants, subject to the constraints above. Each

independent term is assigned an arbitrary parameter. This ansatz is valid for all external

states, as encoded in the overall tree-level amplitude factor in Eq. (3.18). This simple

dependence on external states is expected only for the four-point amplitudes.3 The most

general ansatz that obeys the first four constraints above has 535, 146 terms; requiring that

each numerator respects the graph’s symmetries and also imposing the maximal cuts of the

amplitude reduces this to a more managable size.

The parameters of the ansatz are determined via the method of maximal cuts. Rather

than constructing unitarity cuts directly from their definition as products of tree-level am-

plitudes, it is far more convenient to use the previously constructed versions [161, 162] of the

amplitude integrand as input. This approach circumvents the need for supersymmetric state

sums [249, 250] (which become nontrivial at high-loop orders and in arbitrary dimensions)

and recycles the simplifications which have already been carried out for the construction of

that integrand. Moreover, it makes full use of the D-dimensional validity of that integrand,

which is confirmed in Ref. [162].

3For higher-point amplitudes the necessary ansatz is more involved [191] and it will not exhibit a clean
separation between external state data and loop kinematics.
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Figure 3.8: This cut is not considered as it contains a singular diagram; instead we recover the
missing information from higher level cuts. The shaded (red) “×” mark complete propagators
(not replaced by delta functions), the other exposed propagators are all placed on shell
(replaced by delta functions).

The maximal cuts impose simple constraints on the free parameters; it is convenient to

replace them in the ansatz. Next, NMC conditions are solved; as their solution is quite

involved, it is impractical to plug it back directly into the ansatz. To proceed, we introduce

the notion of a presolution of a given Nk as the solution of all constraints imposed by all

lower-level cuts which overlap with the given cut. The advantage of using presolutions

is that they account for a large part of the lower-level cut constraints on the parameters

entering the given cut without the complications ensuing from simultaneously solving all

the lower-level cut conditions and replacing the solution in the ansatz. Thus, instead of

simultaneously solving all the NMC cut constraints and evaluating the ansatz on the solution

before proceeding to the N2 cuts, we construct all the N2 presolutions and then solve each of

them simultaneously with the N2 cut condition. We proceed recursively in this way through

all relevant cut levels. The integrand of the amplitude is then found by simultaneously re-

solving all the new constraints on the parameters of the ansatz derived at each level. While

this is equivalent to adding contact terms, the ansatz approach effectively distributes them

in the diagrams of the ansatz and prevents the appearance of any terms with artificially high

power count.

In carrying out this application of the method of maximal cuts we encounter a technical

complication with diagrams with four-loop bubble subdiagrams, three of which are illustrated

in Fig. 3.7: (0: 430), (0: 547) and (0: 708). The main difficulty stems from the fact that both
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Figure 3.9: The list of additional N4MCs that are needed to fix the diagrams with doubled
propagators.

propagators connecting the bubble to the rest of the diagram carry the same momentum

so the diagram effectively exhibits a doubled propagator. While such double propagators

are spurious and can in principle be algebraically eliminated since the representations of

Refs. [161, 162] does not have them, they nevertheless make difficult the evaluation of the

cuts. It moreover turns out that, with our strict power counting requirements, there is no

solution that explicitly eliminates the double poles from all diagrams, even though they

cancel in all cuts. Such graphs cause certain cuts to be ill-defined without an additional

prescription. Indeed, if only one of the two equal-momentum propagators is cut the tree

amplitude containing the second one becomes singular unless a specific order of limits is

taken. This phenomenon is illustrated in Fig. 3.8; by replacing the propagator on one side

of the bubble subdiagram with an on-shell delta-function, the propagator on the other side,

marked by a shaded (red) “×”, becomes singular.

One can devise a prescription that realizes the expected cancellation of such 1/0 terms

among themselves. It is, however, more convenient to simply skip the singular cuts altogether

and recover the missing information from higher-level cuts that overlap with the skipped

ones (i.e. cuts in which the doubled propagator is not cut). In the absence of doubled

propagators, cuts through N3 level contain all the information necessary for the construction

of the amplitude, as seen in [161], because the power counting of the theory implies that

numerators can have at most three inverse propagators and thus there can be at most N3

contact terms. In our case, to recover cut constraints absent due to the unevaluated singular
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cuts we must include certain N4 cuts; the complete list is shown in Fig. 3.9. All other N4 as

well as some N5 cuts serve as consistency checks of our construction.

Our new representation for the five-loop four-point integrand is given in an ancillary file

at the arXiv hosting of Ref. [3]. Generalized gauge invariance implies that there is no unique

form of the integrand; indeed, the global solution of the cut conditions and of the two-term

Jacobi relations leaves 10607 free parameters. They “move” terms between diagrams without

affecting any of the unitarity cuts. These parameters should not affect any observable; in

particular, they should drop out of the gravity amplitude (after nontrivial algebra) resulting

from the generalized double-copy construction based on this amplitude. To simplify the

expressions we set them to zero.

It is instructive to see how the power counting of the new representation differs from

that of the previous one [161]. Setting the free parameters to zero, the counterparts of the

numerators N14, N16, N31 and N280 shown for the previous representation in Eq. (3.19) are

N14 =
1

2
s3
(
τ3,5 − τ4,5 − s

)
,

N16 = N14 ,

N31 =
1

2
s3
(
τ1,5 + τ1,6 + τ2,5 + τ2,6 + 2τ3,6 + 2τ5,6 − s

)
,

N280 = s4 + 2s3u− uτ2,5τ3,5`
2
6 + sτ 2

3,5`
2
6 + · · ·+ 8u2`2

5`
2
6 , (3.21)

where in N280 we have kept only a few terms, since it is somewhat lengthy. The complete

list of kinematic numerators is contained in the ancillary file at the arXiv hosting of Ref. [3].

Compared to the super-Yang–Mills numerators in Eq. (3.19), the maximum number of

powers of loop momenta dropped from six to one in the first three numerators and to four

powers in N280. Consequently, the naive double-copy numerators have only up to eight

powers of loop momenta. The naive double-copy numerators also inherit the property that

every term carries at least two powers of s or t, a property that all contact term corrections
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share by construction.

Similarly, the additional diagrams in Fig. 3.7 are also very well-behaved at large loop

momenta. An illustrative sample of the additional numerators is

N547 =
3

2
s`2

5(tτ1,5 − uτ2,5 − 3sτ3,5 − 6uτ3,5) ,

N624 = −61

10
s3(u− t+ τ1,5 − τ2,5) ,

N708 = 6s2(t− u)`2
5 , (3.22)

where the labels correspond to those in Fig. 3.7.

The naive double copy of all 752 diagrams gives diagrams that are completely ultraviolet

finite in D = 22/5. In D = 24/5 it exhibits no power divergences, in contrast to the double

copy of the earlier representation of the super-Yang–Mills amplitude. As we will see below,

the contact term corrections needed to obtain the N = 8 supergravity amplitude will lead to

contributions that individually have power divergences but, as we will discuss in Section 3.4,

it is such that it that does not increase the number of integrals that must be evaluated.

Furthermore, as we note in Section 3.6, in D = 22/5 the contact term contributions all

cancel after IBP reduction, leaving a completely ultraviolet finite result.

To confirm our construction, we have performed the standard checks of verifying cuts

beyond those needed for the construction, such as all non-singular cuts at the N4 and N5

levels. We have confirmed that our improved N = 4 super-Yang–Mills integrand generates

exactly the same ultraviolet divergence in the critical dimension Dc = 26/5 as obtained

in Ref. [161] using the earlier representation of the amplitude. To carry out this check we

followed the same procedure explained in that paper for extracting the ultraviolet divergence,

using the same integral identities.
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Figure 3.10: The diagrams whose numerators were set to zero, to simplify the supergravity
construction by avoiding doubled propagators.

3.3.2 Improved N = 8 supergravity integrand

Armed with the new five-loop four-point integrand of N = 4 super-Yang–Mills theory we

now proceed to the construction of the corresponding improved integrand of N = 8 super-

gravity, following the generalized double-copy construction [60] outlined in Section 3.2. Our

construction essentially follows the same steps as in Ref. [161], so we will not repeat the

details. We obtain a set of contact terms, organized according to levels, which correct the

naive double copy to an integrand for the N = 8 supergravity amplitude. As a consequence

of the improved term-by-term ultraviolet behavior of the gauge-theory amplitude, the indi-

vidual terms of the resulting supergravity integrand are also better behaved at large loop

momenta.

The difference with the construction in Ref. [161] is related to the existence of the dia-

grams with doubled propagators in the super-Yang–Mills amplitude, such as (0: 430), (0: 547)

and (0: 708) of Fig. 3.7. Unlike the gauge-theory construction, here we can avoid needing to

identify and skip cuts with ill-defined values. To this end we notice that, since the maximal

cuts of these diagrams vanish, they contribute only contact terms even in the naive double

copy. We may therefore simply set to zero these diagrams in the naive double copy and re-
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Level No. diagrams No. nonvanishing diagrams
0 752 649
1 2,781 0
2 9,007 1,306
3 17,479 2,457
4 22,931 2,470
5 20,657 1,335
6 13,071 256

total 86,678 8,473

Table 3.1: The number of diagrams at each contact-diagram level as well as the number of
diagrams at each level with nonvanishing numerators.

cover their contributions directly as contact terms at the relevant level. For the same reason

we can also set to zero in the naive double copy other diagrams with vanishing maximal cuts.

The consistency of this reasoning is checked throughout the calculation by the absence of

ill-defined cuts as well as by the locality of all contact term numerators. Had the latter not

be the case it would imply the violation of some lower-level cuts. This in turn would have

meant that some term we set to zero contributed more than merely contact terms to the

amplitude. The net effect is that we can build the complete integrand by using cuts through

the N6 level, just as in the previous construction [161], and there is no need to go beyond

this, except to verify the completeness of the result.

As discussed in Section 3.2, the cuts of the supergravity amplitude can be computed

in terms of the BCJ discrepancy functions of the full gauge-theory amplitude rather than

from the discrepancy functions of the amplitude with the doubled-propagator diagrams set

to zero. It turns out that the cuts touching the doubled-propagator diagrams are sufficiently

simple to be efficiently evaluated using KLT relations on the cuts. The completeness of the

construction is guaranteed by verifying all (generalized) unitarity cuts.

The complete amplitude is given by a sum over the 752 diagrams of the naive double
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copy and the 85,926 contact term diagrams,

M5-loop
4 = i

(κ
2

)12

stuM tree
4

6∑
k=0

∑
S4

Tk∑
i=1

∫ 9∏
j=5

dD`j
(2π)D

1

Si

N (k)
i∏20−k

mi=5 `
2
mi

, (3.23)

where M tree
4 is the four-point N = 8 supergravity tree amplitude and u = −s− t. Here Tk is

the total number of diagrams at level k; they are given in Table 3.1. The diagram count at

each level differs somewhat from the earlier construction [161] because here we include all the

daughter diagrams that arise collapsing propagators of any of the 752 parent diagrams of the

naive double copy instead of those obtained only from the first 410 diagrams. The parent-

level diagrams are obtained from the improved representation of the N = 4 super-Yang–

Mills four-point amplitude through the double-copy substitution (3.5) and setting to zero

the numerators of the diagrams shown in Fig. 3.10. The contact terms are generated using

the procedures summarized above. We collect the results for all diagrams, numerators N (k)
i

and symmetry factors, Si, at each level in the plain-text Mathematica-readable ancillary

files, found at the arXiv hosting of Ref.[3].

A striking property of the supergravity contact terms, which is obvious from Table 3.1,

is that most of them vanish. The precise number of vanishing diagrams depends on the

particular starting point used in the naive double copy and on details of the off-shell con-

tinuation of the contact terms at each level. As for the previously-constructed integrand in

Ref. [161], this is a consequence of the many kinematic Jacobi identities that hold for the

super-Yang–Mills amplitude used in our construction. This effect is even more clear here,

where the N = 4 super-Yang–Mills integrand obeys all the two-term kinematic Jacobi rela-

tions. While this integrand does not support a solution for all three-term Jacobi relations,

it may be possible to further reduce the number of supergravity contact terms by imposing

a judiciously-chosen subset of these relations.
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Figure 3.11: Sample contact term diagrams corresponding to the cuts in Fig. 3.3. The labels
(X: Y) refer to the level and contact diagram number. The final four diagrams have vanishing
numerator; the first eleven are nonvanishing.

3.4 Ultraviolet vacuum integral expansion

In previous sections we reviewed the integrand of the five-loop four-point amplitude of N = 8

supergravity found in Ref. [161] and constructed a new one, with certain improved power-

counting properties. In this section we expand these integrands in the ultraviolet, i.e. for

external momenta small compared to the loop momenta, and point out key features of the

new integrand. This expansion generates integrals reminiscent of vacuum integrals with no

external momenta; we call such integrals “vacuum integrals” as well. While we are interested

in the logarithmic divergence in D = 24/5, both integrands also exhibit spurious quadratic

and quartic divergences in this dimension. Finiteness of the five-loop amplitude in D < 24/5

guarantees that they should cancel out. However, the graph-by-graph presence of spurious

singularities both in the naive double-copy part and in the contact terms of the integrand of
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Ref. [161] leads to a rapid increase in the number of terms when extracting the logarithmic

divergence. By construction, the new integrand can have power divergences only through

its contact terms. Moreover, their structure is such that the number of different integrals

which appear in the ultraviolet expansion is substantially decreased compared to the earlier

integrand.

3.4.1 Vacuum expansion of integrands

The basic challenge is to extract logarithmic divergences underneath spurious power di-

vergences. To do so we follow the standard method of series expanding the integrand in

the ultraviolet region [257–259], where the external momenta are much smaller than loop

momenta, which are commensurate. This strategy was applied to various supergravity cal-

culations in Refs. [4, 6, 9, 71]. The different orders in this expansion are expressed as vacuum

integrals with different degrees of ultraviolet divergence. In dimensional regularization, only

logarithmically divergent vacuum integrals can result in a pole. Logarithmically-divergent

terms in lower dimensions are power divergent in higher dimensions. Thus, by integrating all

logarithmically-divergent terms in D < 24/5, we are checking that power divergences cancel

in D = 24/5. Indeed, as we explain in Section 3.6, we explicitly verify that in D = 22/5

all the divergences cancel. This also proves that any power divergences in D = 24/5 are

artifacts of our representations. While we do not have representation of the integrand that

exhibits only logarithmic divergences in this dimension, the naive double-copy contributions

in our new representation were constructed to have this property.

Dimensional analysis shows that the local term4 in the effective action that corresponds

to a logarithmic divergence in D = 24/5 at five loops has the generic structure D8R4.

Its momentum space form has 16 momentum factors; of them, eight correspond to the

(stAtree)2 = stuM tree
4 prefactor of the amplitude. Thus, the logarithmically-divergent part of

4This is the same term that may appear at seven loops in D = 4, though the appearance of the former
of course does not immediately imply the presence of the latter.
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each integral has eight factors of external momenta. Because every term in every supergravity

numerator N has at least two powers of s or t, we need to expand the integrand to at most

fourth order in small external momenta.

The dependence of the numerator polynomial on external momenta determines the order

to which each term must be expanded. It is therefore useful to decompose each numerator

into expressions N (m) with fixed number m of external momenta (and 16−m powers of loop

momentum)

N = N (4) +N (5) +N (6) + · · ·+N (16) . (3.24)

There is freedom in this decomposition, including that induced by the choice of independent

loop momenta. Terms with more than eight powers of external momenta in the numerator

are ultraviolet finite in D = 24/5 and can therefore be ignored. For terms N (8) with exactly

eight powers of external momentum in the numerator we need only the leading terms in the

expansion of the propagators as higher-order terms are finite. It suffices therefore to set to

zero all external momenta in propagators, e.g. for the N (8) terms in the diagram shown

in Fig. 3.12(a)

N (8)

(`2
5)3 (`2

6)3 `2
7 `

2
8 `

2
9(`5 + `7)2(`5 − `9)2(`5 + `6 + `7)2(−`5 − `6 + `9)2

× 1

(`5 + `6 + `8 − `9)2(`5 + `6 + `8)2(`5 + `6 + `7 + `8)2
. (3.25)

The leading divergence of terms with 4 ≤ m ≤ 7 is power-like. The extraction of the

logarithmic divergence underneath requires that propagators be expanded to (8 − m)-th

order in the momenta ki:

N (m)∏I
i=1 di

→ N (m)

(8−m)!

3∑
i1,...,i8−m=1

kµ1i1 . . . k
µ8−m

i8−m

(
∂

∂kµ1i1
. . .

∂

∂k
µ8−m

i8−m

1∏I
i=1 di

∣∣∣∣
kj=0

)
, (3.26)

where I is the number of internal lines of the diagram and di the corresponding inverse

91



propagators. The action of derivatives leads to propagators raised to higher powers—i.e. to

repeated propagators—which we denote by dots, one for each additional power. Up to four

further dots appear when derivatives act four times and external momenta are set to zero.

Examples, with numerators suppressed, are included in diagrams (b) and (c) of Fig. 3.12.

The increase in the number of classes of vacuum integrals (as specified by the number of

dots) leads in turn to an increase in the complexity of the IBP system necessary to reduce

them to master integrals. The expansion also leads to higher-rank tensor vacuum integrals,

which appear as integrals with numerators containing scalar products of loop and external

momenta. We discuss dealing with such integrals below.

It is instructive to contrast, from the standpoint of the vacuum expansion, the old and

new four-point five-loop N = 8 supergravity integrands; we will choose the level-0 diagrams

14, 16, 31, 280 shown in Fig. 3.6 as illustrative examples. The numerators of these diagrams

are, respectively, the naive double copies (i.e. squares) of the numerator factors of the

old representation of the N = 4 super-Yang–Mills amplitude, given in Eq. (3.19), and the

new representation, given in Eq. (3.21). In the old representation, N (4)
0: 14, N (4)

0: 16, N (4)
0: 31,

N (4)
0: 280 are all nonvanishing and, for these terms, the logarithmic divergence is given by

Eq. (3.26) with m = 4. The resulting vacuum diagrams exhibit up to eight dots. 5 In

the improved representation constructed in Section 3.3, the first nonvanishing terms in the

decomposition of supergravity numerators areN (8)
0: 14,N (8)

0: 16,N (8)
0: 31,N (8)

0: 280. Thus, no expansion

of propagators is needed and the leading term obtained by setting to zero external momenta

in the propagators gives the logarithmic divergence in D = 24/5. The corresponding vacuum

integrals have four dots.

Because of the complexity of the expressions, essentially all combinations of repeated

propagators—up to the maximally-allowed number of dots—and numerators can appear

either in the expansion itself or as part of the IBP system. Thus, a clear requirement to

5The leading term in the small momentum expansion is quartically divergent and corresponds to a loga-
rithmic divergence in D = 4 which should cancel on general grounds when all contributions are collected.
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Figure 3.12: After series expanding one encounters vacuum diagrams with up to 8 additional
propagators, as well as numerators which are suppressed here. Each (blue) dot corresponds to a
repeated propagator. Diagram (a), (b) and (c) are examples with four, six and eight higher-power
propagators.

simplify the integration is to reduce the maximal number of dots. As discussed above, we

would naively expect up to eight dots from the expansion of the naive double copy (level-0)

diagrams in the representation of Ref. [161]. It turns out however that, upon reduction of

tensor integrals, all seven- and eight-dot vacuum integrals drop out diagram by diagram.

This is a consequence of the structure of the representation of the gauge-theory amplitude.

As will be seen in Section 3.6, the IBP system does not close unless it includes integrals with

an extra dot compared to the desired ones. Thus, for the old representation we need vacuum

integrals with up to seven dots. There are 1,292,541,186 different such vacuum integrals of

which 16,871,430 are distinct integrals. It is nontrivial to construct and solve the relevant

complete IBP system.

For the improved representation of Section 3.3, every term in the numerators of level-0

diagrams has at least eight external momenta; thus, the leading term corresponds already

to logarithmic divergences in D = 24/5. No further expansions of propagators is necessary,

implying that the integration of level-0 diagrams in the vacuum expansion requires vacuum

integrals with at most four dots and an IBP system relating integrals with up to five dots.

This is an enormous simplification over the earlier integrand.

Although simpler, the contact diagrams of the new representation of the four-point five-

loop N = 8 integrand contain nonvanishing N (4) numerator components and thus up to

quartic power divergences. Extraction of their logarithmic divergences requires therefore an

expansion to fourth order. One might therefore expect vacuum graphs with up to eight dots,
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which would ruin the simplification of the naive double-copy terms. It turns out however

that N (m) with m ≤ 7 are nonzero only in contact terms in which at least (8−m) external

lines are attached with four- or higher-point vertex. In the absence of any expansion, the

vacuum limit of these graphs has only at most (m− 4) dots; expanding to (8−m)-th order

(3.26) to extract the logarithmic divergence yields therefore at most four dots. To illustrate

this phenomenon, consider the toy example

2`5 · k1

`2
5(`5 + k1)2

=
1

`2
5

− 1

(`5 + k1)2
, (3.27)

which we embed in a term that is logarithmically divergent, i.e. the numerator on the left-

hand side is part of the numerator component N (8) of some graph. As discussed before, such

terms require no expansion and yield vacuum graphs with four dots. The terms on the right-

hand side mimic the way contact terms are constructed by canceling propagators. Because

each numerator on the right-hand side is missing a power of external momentum compared

to the left-hand side, it is now of N (7) type and we need to series expand the denominator to

first order in external momenta (which may be either k1 or the other external momenta of

the graph). This series expansion produces exactly one doubled propagator. This however

it does not increase the number of repeated propagators compared to the left-hand side

because in going from the left- to right-hand side we lost a repeated propagator when setting

the external momentum k1 to zero. The net effect is that the total number of dots in any

vacuum graphs arising from the expansion of the contact diagrams does not increase beyond

the four that arise from naive double-copy diagrams.

Closing the IBP system by including the diagrams with an additional repeated propaga-

tor, we obtain 845,323 independent integrals. We will discuss the construction of this system

and its solution in section 3.6.

A further important simplification is that since we are working near a fractional dimen-

sion, D = 24/5−2ε, which in any case is below the critical dimensions at lower-loop orders, no
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Figure 3.13: Sample factorized vacuum integrals that do not contribute because of the absence of
subdivergences.

subdivergences are possible. Only genuine five-loop vacuum integrals, which do not factorize

into lower-loop integrals, can contribute to the logarithmic ultraviolet divergence. Factorized

integrals, such as those shown in Fig. 3.13, are finite in this dimension and can be ignored.

The result of the expansion in external momenta is a collection of vacuum tensor inte-

grals, in which the numerator factors are polynomials in Mandelstam invariants of external

momenta, inverse propagators and scalar products of loop and external momenta. For each

integral the numerator is separately homogeneous in the loop and external momentum de-

pendence. These integrals can be further reduced by making use of Lorentz invariance—

specifically, that any vacuum tensor integral is a linear combination of products of metric

tensors—to separate the dependence on external momenta from that on loop momenta.

More precisely, under integration we can replace a two-tensor which is dotted into external

momentum by

`µi `
ν
j →

1

D
ηµν `i · `j , (3.28)

and a four-tensor by

`µi `
ν
j `
ρ
k`
σ
l 7→

1

D(D − 1)(D + 2)
(Aηµν ηρσ +B ηµρ ηνσ + C ηµσ ηνρ) , (3.29)

where

A = (D + 1)`i · `j `k · `l − `i · `k `j · `l − `i · `l `j · `k ,

B = −`i · `j `k · `l + (D + 1)`i · `k `j · `l − `i · `l `j · `k ,

C = −`i · `j `k · `l − `i · `k `j · `l + (D + 1)`i · `l `j · `k . (3.30)
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Since in both cases the highest divergence is quartic, the expansion in small external momenta

is to at most fourth order. Thus, there can be at most four scalar products of loop and

external momenta and consequently reduction formulas of tensor integrals of rank six or

higher are not necessary.

3.4.2 Labeling the vacuum diagrams

After applying Lorentz invariance to reduce the expanded integrals to a collection of scalar

vacuum integrals, with possible numerators and repeated propagators, we need to organize

them into a standard form and eliminate further redundancies. The relevant graph topologies

are shown in Fig. 3.14. A particularly good labeling scheme has been devised by Luthe [260].

Straightforward counting shows that every vacuum integrand in Fig. 3.14 has 15 independent

Lorentz dot products between loop momenta. Depending on the integral, these dot products

are either inverse propagators or irreducible numerators i.e. quadratic combinations of loop

momenta that are linearly independent of the propagators. Remarkably, a global labeling

scheme for momenta can be found for vacuum integrals at five loops. We define, following

Ref. [260],

q1 = `1, q2 = `2, q3 = `3, q4 = `4, q5 = `5, q6 = `1 − `3, q7 = `1 − `4,

q8 = `1 − `5, q9 = `2 − `3, q10 = `2 − `4, q11 = `2 − `5, q12 = `3 − `5,

q13 = `4 − `5, q14 = `1 + `2 − `4, q15 = `3 − `4 . (3.31)

For example, the labeling of the four parent vacuum integrals—vacuum integrals with only

cubic vertices—in this scheme is shown in Fig. 3.15, where the propagator labeled with i

corresponds to q2
i . The irreducible numerators are q2

i for the three i labels missing from

that diagram. For daughter diagrams, i.e. the 44 diagrams in Fig. 3.14 with fewer than

12 distinct propagators, the number of irreducible numerators is larger, so that the total
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Figure 3.14: All 48 independent vacuum propagator structures, that do not factorize into
products of lower-loop diagrams. The first number in the diagram label is the number of
propagators and the second is the diagram number at that level.
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Figure 3.15: The parent vacuum integrals—vacuum integrals with only cubic vertices—with
12 distinct propagators and their labels.

number of independent Lorentz dot products between loop momenta remains the same. For

each daughter diagram there are several possible labelings, inherited from its parents. We

pick a standard one and map to it all other occurrences of the diagram.

After applying momentum conservation we can rewrite any term in the integrand of a

vacuum integral using the 15 invariants. With this labeling scheme we can specify each

integral by a list of the indices representing the exponent of each of the 15 q2
i ,

1

(q2
1)a1(q2

2)a2(q2
3)a3 · · · (q2

14)a14(q2
15)a15

⇔ F (a1, a2, a3, . . . , a14, a15) , (3.32)

where a negative power indicates an irreducible numerator rather than a propagator denom-

inator. This description is agnostic to whether the integral is planar or nonplanar, or which

diagram the integral is a daughter of. Along with the symmetry relations presented next, it

elegantly control the large redundancies introduced by the vacuum expansion.

In terms of these F s, the four diagrams in Fig. 3.15 with no irreducible numerators and

no repeated propagators are

F (1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0) , F (1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) ,

F (1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1) , F (1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1) . (3.33)
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= → =

Figure 3.16: Moving dots via symmetry in diagram (12, 4) corresponding to the cube.

3.4.3 Symmetry relations among vacuum integrals

In order to efficiently express all integrals in terms of a basis it is useful to first eliminate

redundant integrals that are identical under relabelings. Fig. 3.16 shows an example of using

graph symmetries to rearrange into a canonical format dots that might appear in diagram

(12, 4), the cube. In terms of the F s, this symmetry maps

F (1, 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0)→ F (1, 1, 2, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 0, 0) . (3.34)

When irreducible numerators are present, the situation is a bit more complex because we

also need to map the numerators according to the symmetry transformation. This can

generate many contributions when we re-express the numerators back in terms of the basis

q2
i monomials. A simple example we encounter is

F (1, 1, 1,−1, 0, 3, 2, 0, 0, 0, 0, 2, 2, 1, 0)→ F (3, 1, 1, 0, 0, 0, 0, 2, 1, 1, 0, 2, 0, 1, 0)

− F (3, 1, 2,−1, 0, 0, 0, 2, 1, 1, 0, 2, 0, 1, 0) + F (3, 1, 2, 0, 0, 0, 0, 2, 1, 1, 0, 2, 0, 1,−1) . (3.35)

The vast majority of these numerator relabeling relations often involve iterating the process

many times, generating relations between hundreds of different integrals.

Graph isomorphism is not sufficient to remove all the trivial redundancy, since certain

non-isomorphic graphs can represent the same Feynman integral. Such relations typically

involve “sliding” a bubble subdiagram along the propagators that connect it to the rest

of the graph. In addition to a different graph structure, these transformations can change
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Figure 3.17: Example of non-isomorphic graphs that all correspond to the same Feynman
integral.

(`1 · `2) → − (`1 · `3)

Figure 3.18: Numerator relations from residual automorphisms that keep the dot positions
invariant.

the number of dots, as illustrated in the example in Fig. 3.17. We implement these non-

isomorphism graph relations via a graph transformation that swaps bubble subdiagrams and

propagators, corresponding to the swaps which map the diagrams in e.g. Fig. 3.17 into each

other. We will refer to this as “enhanced graph isomorphisms”. This method efficiently

identifies equivalent five-loop vacuum integrals not related by graph isomorphisms.

A less efficient alternative, which we use in parts of the calculation as a consistency

check, is to compute the Symanzik polynomials and bring them to a canonical form [261,

262]. This uses analytic properties of Feynman integrals without resorting to their graph

representation.

Implementing the isomorphism and non-isomorphism relations, we map all integrals

to a set of canonical ones. There are 3,079,716 scalar vacuum integrals with up to five

dots and unit numerator, which map onto 94,670 canonical configurations, as demonstrated

in Fig. 3.16.

In the presence of momentum-dependent numerator factors there also exist symmetry

relations due to automorphisms that preserve both the graph structure and the position of

the dots but change the numerator. This is distinct from relations of the type in Eq. (3.35)
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which do not relate canonical integrals, but are used to move dots to canonical positions.

An example of one particularly simple such relation is given in Fig. 3.18. Transformations

of this type generate linear relations between canonical integrals, which are similar to IBP

relations. Because of this, it is convenient to include and analyze them together with the

IBP relations in Section 3.6.

3.5 Simplified ultraviolet integration

In this section we discuss the large-loop-momentum integration of the original form [161]

of the five-loop four-point N = 8 supergravity integrand. Although, an assumption will be

required, this will not only provide a strong cross check of the complete result obtained in the

next section, but will also point to more powerful ways of extracting the ultraviolet properties

of supergravity theories, especially when combined with the observations of Section 3.7. As

explained in the previous section, after series expanding and simplifying the original form of

the integrand we encounter vacuum integrals with up to six dots, or repeated propagators,

and irreducible numerators. Together with the additional dot needed to close the system, this

causes a rather unwieldy IBP system. We will see here that the problem can be enormously

simplified by targeting parent vacuum integrals—vacuum integrals with only cubic vertices

or, equivalently, vacuum integrals that have maximal cuts, or also as vacuum integrals with

the maximum number of distinct propagators. The relevant parent vacuum integrals are

shown in Fig. 3.15. We solve the integration-by-parts system on the maximal cuts of the

vacuum integrals, using modern algebraic geometry methods that combine unitarity cuts

with IBP reduction for Feynman integrals [175–188, 263–266].

Besides enormously simplifying reduction to a set of master integrals by focusing on the

vacuum integrals with maximal cuts, targeting parent vacuum integrals also has the added

benefit of allowing us to immediately drop large classes of contact terms from the integrand,

including all contact terms obtained from the N5 and N6 levels, even before expanding into
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vacuum diagrams. Any term where a propagator is completely canceled in the vacuum graph

can be dropped.

In manipulating the vacuum integrals, there are two important issues that must be ad-

dressed. The first one is the separation of the infrared and ultraviolet divergences. This is

an important ingredient in various studies of ultraviolet properties, such as the analysis of

N = 4, N = 5 and N = 8 supergravity at three and four loops [4, 6, 71, 146–148], and the

computation the five-loop beta function in QCD [163–165]. Although there are no physical

infrared singularities in D > 4, our procedure of series expanding around small external

momenta introduces spurious ones. We will show in detail in the next section that in an

infrared-regularized setup for integrals with no ultraviolet subdivergences, terms in the IBP

system that are proportional to the infrared regulator involve only ultraviolet-finite inte-

grals. Thus, since we are interested only in the ultraviolet poles, we can effectively reduce

the vacuum integrals without explicitly introducing an infrared regulator. For the rest of

this section, when we discuss linear relations between integrals, it should be understood that

we actually mean linear relations between the ultraviolet poles of the integrals.

A second issue is that the vacuum expansion of our integrand contains propagators with

raised powers, which is in contradiction with the naive unitarity cut procedure of replacing

propagators by on-shell delta functions. Fortunately, two solutions to this problem are

available in the literature. One option [181, 267, 268] is to define the cut as the contour

integral around propagator poles; this effectively identifies the cut as the residue of the

propagator pole even for higher-order poles. Another, proposed in Ref. [189], is to use

dimension shifting [93, 96] such that all propagators appear only once at the cost of shifting

the integration dimension and raising the power of numerators, before imposing the maximal-

cut conditions to discard integrals with canceled propagators. Here we will use the second

strategy.

Starting with the integrand of Ref. [161], the end result of dimension shifting procedure

is a set of vacuum integrals in D = −36/5 − 2ε with a total 30 powers of the irreducible
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numerators. For example, for the crossed-cube vacuum diagram shown in the second diagram

of Fig. 3.15, we have integrals of the form

∫ 5∏
k=1

dD`k
(2π)D

(q2
4)A4 (q2

5)A5 (q2
15)A15

q2
1 q

2
2 q

2
3 q̂

2
4 q̂

2
5 q

2
6 q

8
7 q

2
8 q

2
9 q

2
10 q

2
11 q

2
12 q

2
13 q

2
14 q̂

2
15

, (3.36)

where D = −36/5− 2ε and the “hats” in the denominator mean to skip those propagators.

The qi are the uniform momenta defined in Eq. (3.31). Here the three irreducible numerators

are q2
4, q2

5 and q2
15; these cannot be written as the linear combinations of the 12 propagator

denominators, as explained in the previous section. To obtain a logarithmic divergence in

the shifted dimension −36/5, we need 30 powers of numerator factors

A4 + A5 + A15 = 30 , with A4 ≥ 0 , A5 ≥ 0 , A15 ≥ 0 . (3.37)

In total there are 496 different combinations of Aj that satisfy Eq. (3.37). With the new

integrand of Section 3.3 the power counting is greatly improved so we need only shift to

D = −16/5− 2ε with 20 powers of numerators. This gives 231 integrals to evaluate.

Consider the cross-cube diagram shown in the second diagram in Fig. 3.15. The IBP

identities relating the 496 integrals are of the form

∫ ∏
k

dD`k
(2π)D

∂

∂`µi

vµi∏
j dj

= 0 , (3.38)

where vµi has polynomial dependence on external and internal momenta and the dj are the

various propagators. We refer to

vµi
∂

∂`µi
, (3.39)

as the IBP-generating vector, while the rest of Eq. (3.38),

∫ ∏
k

dD`k
(2π)D

1∏
j dj

, (3.40)
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is referred to as the seed integral. Integration by parts as above re-introduces auxiliary

integrals with propagators raised to higher powers, since the derivatives can act on the

propagator denominators. Lowering again the propagator powers through dimension shifting

leads still to new integrals because, while of the same topology at the starting ones, they are

now in a different dimension.

To eliminate these auxiliary integrals Gluza, Kadja and Kosower [175] formulated IBP

relations without doubled propagators, using special IBP-generating vectors that satisfy

vµi
∂

∂`µi
dj = fj dj , (3.41)

for all values of j with fj restricted to be polynomials (in external and loop momenta). This

cancels any squared propagator generated by derivatives, and does not introduce spurious

new denominators since fj are polynomials. Since the original publication, strategies for

solving Eq. (3.41) have been explored in Refs. [175, 183–188, 265, 266]. We use the strategy in

Ref. [265, 266] to obtain a complete set of vectors vµi using computational algebraic geometry

algorithms implemented in SINGULAR [269]. They in turn give the complete set of IBP

relations among the 496 cross cube integrals discussed above (3.36), (3.37) and implies that

all of them are expressed in terms of a single integral—the second diagram in Fig. 3.15.

A similar analysis solves the analogous problem for the 496 integrals of cube topology and

expresses them in terms of the integral corresponding to the first graph in Fig. 3.15. The

IBP systems restricted to integrals with maximal cuts for the parent topologies with internal

triangles, corresponding to the third and fourth graph in Fig. 3.15, sets all integrals to zero,

implying that they are all reducible to integrals that do not have maximal cuts.

As a cross-check for the crossed-cube topology, we have also analytically solved for the in-

tegrals in closed form by contour integration [263, 264] using the Baikov representations [270–

273], without making use of integral relations of the type (3.38). We refer the reader to

Ref. [161] for the details of the analogous computation in D = 22/5. In that case, all parent
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vacuum diagrams cancel, as expected.

By inverting the dimension shifting relations we can re-express the final result in terms

of parent master integral in the original dimension D = 24/5 − 2ε. The final result for the

leading ultraviolet behavior is remarkably simple:

M(5)
4

∣∣∣parent-level

leading
= −629

25

(κ
2

)12

(s2 + t2 + u2)2stuM tree
4

(
1

3
+

)
. (3.42)

We obtain identical result, whether we start from the integrand of Ref. [161] or the improved

one in Section 3.3. This provides a highly nontrivial check on the cut construction and the

integral reduction procedure. Most importantly, as we show in the next section, the result

in Eq. (3.42) is complete, even though we kept only the parent master integrals, which have

no canceled propagators. As we shall see in Section 3.7, this seems unlikely to be accidental.

3.6 Full ultraviolet integration

In this section, we extract the ultraviolet divergence of the five-loop four-point N = 8 su-

pergravity amplitude without making any assumptions on the class of vacuum integrals that

contribute. To keep the IBP system under control, we use the improved representation of

the integrand found in Section 3.3, expanded at large loop momentum, as described in Sec-

tion 3.4. We organize the IBP relations using and SL(L) reparametrization symmetry of L

loop momenta [108]. We also incorporate the integral relations resulting from graph auto-

morphisms that change kinematic numerator factors, a simple example of which is shown in

Fig. 3.18.

3.6.1 IBP for ultraviolet poles modulo finite integrals

Since standard IBP reduction is usually performed for full integrals in dimensional regular-

ization, there is a large amount of unnecessary computation for our purpose of extracting
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Figure 3.19: Two-loop example illustrating SL(L) symmetry.

only the ultraviolet poles.6 We now review setting up a simplified IBP system that only gives

linear relations between the leading ultraviolet poles of different vacuum integrals [108].

As a warm up, consider the toy example of two-loop vacuum integrals in D = 5 − 2ε

shown in Fig. 3.19. This example will mimic the supergravity situation because there are

no (one-loop) subdivergences due to the properties of dimensional regularization. We define

such two-loop integrals as

VA,B,C =

∫
dD`1

(2π)D
dD`2

(2π)D
1

[(`1)2 −m2]A [(`2)2 −m2]B [(`1 − `2)2 −m2]C
, (3.43)

where we require A+B+C = 5 since we are interested in logarithmically divergent integrals.

In this case, there are no irreducible numerators.

Consider GL(2) transformations of the loop momenta ∆`i ≡ Ωij`j, which generate IBP

relations of the form,

0 =

∫
dD`1

(2π)D
dD`2

(2π)D
∂

∂`µi

Ωij`
µ
j

[(`1)2 −m2]A [(`2)2 −m2]B [(`1 − `2)2 −m2]C
, (3.44)

where D = 5 − 2ε. We first look at the SL(2) subalgebra which excludes the trace part of

the GL(2) generators. For example, the SL(2) generator

Ωij =

 1 0

0 −1

 , (3.45)

6We have already performed expansion in the ultraviolet region to produce vacuum integrals, but even
the (infrared-regulated) vacuum integrals contain finite parts that are not of interest to us here.
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produces the IBP relation

0 =

∫
dD`1

(2π)D
dD`2

(2π)D

(
`µ1

∂

∂`µ1
− `µ2

∂

∂`µ2

)
1

(`2
1 −m2)A(`2

2 −m2)B [(`1 − `2)2 −m2]C

= (−2A+ 2B)VA,B,C − 2C VA−1,B,C+1 + 2CVA,B−1,C+1

+m2 (−2AVA+1,B,C + 2B VA,B+1,C) , (3.46)

where we used A + B + C = 5. The second-to-last line of the above equation contains

integrals that are logarithmically divergent in the ultraviolet, while the last line contains

integrals that are ultraviolet finite by power counting—as indicated by simple considerations

of dimensional analysis, since the last line is proportional to m2. Absence of subdivergences

implies that overall power counting is sufficient for showing whether an integral is ultraviolet

finite. Therefore, for the purpose of extracting ultraviolet divergences, we can disregard the

last line of the above equations, and instead work with an IBP system modulo finite integrals.

Since the generators of the SL(2) subalgebra are traceless, the IBP relations we generate have

no explicit dependence on the dimension D.

Inspecting Eq. (3.46) we see that, setting m = 0 from the beginning removes the last line

of that equation while preserving the relation between integrals exhibiting ultraviolet poles.

Thus, even though setting m = 0 turns these vacuum integrals into scaleless integrals that

vanish in dimensional regularization, the SL(2) subalgebra nonetheless generates the correct

IBP relations between between ultraviolet poles. In contrast, including the trace generator,

Ωij =

 1 0

0 1

 , (3.47)

which extends SL(2) to GL(2), requires nonvanishing m. Indeed, this generator produces
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the IBP relations

0 =

∫
dD`1

(2π)D
dD`2

(2π)D
∂

∂`µi

`µi
[(`1)2 −m2]A [(`2)2 −m2]B [(`1 − `2)2 −m2]C

= −4εVA,B,C − 10m2(VA+1,B,C + VA,B+1,C + VA,B,C+1) . (3.48)

If we set m = 0, the above relations imply that VA,B,C = 0. The factor (−4ε) is expected

because the diagonal transformation probes the scaling weight of the integral, which would

be exactly zero in D = 5. As long as the IBP relations corresponding to the trace part of

GL(2) are omitted, the IBP system no longer sets to zero massless vacuum integrals and

correctly reflects the ultraviolet poles of these integrals without contamination from IR poles.

The above argument straightforwardly carries over to the five-loop vacuum integrals in

D = 24/5−2ε, since no subdivergences exist in this dimension. The resulting IBP system only

involves logarithmically divergent vacuum integrals, and does not include any finite integrals

or power-divergent integrals (which do not produce poles in dimensional regularization).

This enormously reduces the size of the linear system to be solved.

A useful property of the SL(L)-generated IBP system is that, even though each vacuum

integral depends on the dimension D implicitly, the relations between them do not contain

any explicit dependence on D [108]. This fact appears to help explain the observations in

Section 3.7.

3.6.2 The IBP system at five loops

The complete set of integral topologies—suppressing dots or numerators—that we need to

consider for the reduction of the vacuum integrals of the five-loop four-point N = 8 su-

pergravity amplitude is shown in Fig. 3.14. This list does not include any diagram that

factorizes, such as those illustrated in Fig. 3.13. It also removes integrals related to kept

ones by identities between integrals not isomorphic to each other, such as those illustrated
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in Fig. 3.17.

By acting with the SL(5) generators on all logarithmically divergent canonical integrals

with up to four dots, we find IBP relations between vacuum integrals with up to five dots, the

additional dot following from acting with derivatives on propagators. While such integrals

do not appear in the expansion of the integrand in D = 24/5, they are necessary for finding

the relations between integrals with four dots. We also include relations between integrals

generated by graph automorphisms which transform nontrivially the numerator factors, as

illustrated in Fig. 3.18. In these relations, all the integrals are mapped to canonical integrals

using enhanced graph isomorphisms as described in Section 3.4.3. Because of their similarity

with the IBP relations it is convenient to solve them simultaneously. The solution to this

system of equations expresses all needed vacuum integrals in terms of master integrals.

As a warm up to setting up and solving the IBP system for the supergravity problem in

D = 24/5, we solved the much simpler cases of N = 8 supergravity in D = 22/5 and N = 4

super-Yang–Mills theory in D = 26/5. The integrals which appear in both these simpler

cases have at most two dots and thus, the IBP system contains integrals with up to three dots.

In the case of N = 8 supergravity in D = 22/5, the three-dot system has 44,428 different

integrals, and about 1.7 × 105 linear relations generated. The simpler numerator factors

of N = 4 super-Yang–Mills make this case much simpler, containing only 5,975 distinct

integrals and about 9,900 linear relations between them. The solution of the latter system

expresses all the two-dot vacuum integrals, divergent in D = 26/5, in terms of the 16 master

vacuum integrals displayed in Fig. 3.6.2.

For the main problem of N = 8 supergravity in D = 24/5 with the improved inte-

grand obtained in Section 3.3, we have to reduce integrals with up to four dots. There are

141,592 distinct integrals of this type. The relevant five-dot system has 3,687,534 integrals

of which 845,323 are distinct. The SL(5) transformations generate about 2.8 × 106 IBP

relations, while numerator-changing isomorphisms generate about 9× 105 further relations.

This system is straightforward to solve using sparse Gaussian elimination and finite-field
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Figure 3.20: The sixteen master integrals to which any five-loop vacuum integrals in N = 4
super-Yang–Mills with up to two dots can be reduced. The dots represent repeated propa-
gators. The labels of the diagrams match those of Fig. 3.15.

Figure 3.21: The eight master integrals to which any five-loop vacuum integrals in N = 8
supergravity with up to four dots can be reduced. The dots represent repeated propagators.
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methods [274, 275]; we used the linear system solver LinBox [276], and confirmed the solu-

tion with FinRed7 [277]. The result is that all vacuum integrals for the expansion of N = 8

supergravity amplitude in D = 24/5 are expressed as linear combinations of the eight master

integrals shown in Fig. 3.21.

3.6.3 Result for ultraviolet divergences

As a first test for the full calculation, we used the reduction of the vacuum integrals to verify

that our integrand exhibits the known ultraviolet properties in D = 22/5. We find that, as

expected, all vacuum integrals cancel after IBP reduction, the five-loop four-point N = 8

amplitude is ultraviolet finite,

M(5)
4

∣∣∣D=22/5

leading
= 0 . (3.49)

With our new integrand there are few potential contributions because the naive double-copy

terms are manifestly ultraviolet finite in D = 22/5 and only the contact terms give potential

contributions. A similar check is performed for the earlier form of the integrand in Ref. [161],

but that case only confirms the cancellation of the vacuum diagrams with the maximum cuts

imposed.

As another test of our approach, we also recovered the leading divergence of N = 4 super-

Yang–Mills theory in its five-loop critical dimension, D = 26/5, originally found in [162].

Starting from our improved N = 4 super-Yang–Mills integrand of Section 3.3, extracting

the leading divergence in terms vacuum integrals and then substituting their expressions in

terms of master integrals, we obtain

A(5)
4

∣∣∣
leading

=
144

5
g12stAtreeN3

c

(
N2
c + 48

(
1

4
+

1

2
+

1

4

))

×
(
t f̃a1a2bf̃ ba3a4 + s f̃a2a3bf̃ ba4a1

)
. (3.50)

7We thank Andreas von Manteuffel and Robert Schabinger for providing us with this program.
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The f̃abc are the group structure constants, as normalized below Eq. (3.2), and the s and

t are the usual Mandelstam invariants. Here Atree ≡ Atree(1, 2, 3, 4) is the color-ordered

tree amplitude with the indicated ordering of external legs. This reproduces the result of

Ref. [162], providing a nontrivial check of both our gauge-theory integrand construction and

IBP reductions methods.

Interestingly, the thirteen master integrals in Fig. 3.6.2 that have vanishing coefficients in

Eq. (3.50) violate a “no-one-loop-triangle” rule.8 Indeed, diagrams (e)-(p) contain one-loop

triangle subdiagrams while diagram (d) contains a loop momentum-dependent numerator in

one-loop box subdiagrams, which upon expanding and reducing of that one-loop subintegral

also leads to triangle subintegrals. Another interesting feature of these results is that the

relative factors of the subleading-color term are given by the symmetry factors of the corre-

sponding integrals. In the next section, we will show that these observations are part of a

more general pattern.

Extracting the leading ultraviolet terms for N = 8 supergravity in D = 24/5 follows the

same strategy. After reducing the vacuum integrals obtained from our improved integrand

to the basis of master integrals we find

M(5)
4

∣∣∣
leading

= −16× 629

25

(κ
2

)12

(s2 + t2 + u2)2stuM tree
4

(
1

48
+

1

16

)
. (3.51)

This is the same result as obtained in the previous section by assuming that only vacuum

diagrams with maximal-cuts contribute, and proves that Eq. (3.42) is complete. As in

the case of the reduction of the expansion of the four-point five-loop N = 4 super-Yang–

Mills amplitude, all master integrals containing triangle subdiagrams, or with numerators

which upon further one-loop reduction lead to triangle subdiagrams, enter with vanishing

coefficients. Moreover, similarly to the subleading color in the gauge-theory case, the relative

coefficients between the integrals are the symmetry factors of the vacuum diagrams. As we

8When counting the number of propagators around a loop, each dot should be counted as well.
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discuss in the next section, these observations do not appear to be accidental.

The two Wick-rotated vacuum integrals in Eq. (3.51) are both positive definite, prov-

ing that no further hidden cancellations are present. We evaluated numerically, using FI-

ESTA [278–280], the two master integrals entering Eq. (3.51), given by diagrams (a) and

(b) in Fig. 3.21, and find

V
(a)

5 =
1

(4π)12

0.563

ε
, V

(b)
5 =

1

(4π)12

0.523

ε
. (3.52)

The dimensional-regularization parameter is ε = (24/5 − D)/2. Using Eq. (3.51), the nu-

merical value of the divergence is

M(5)
4

∣∣∣
leading

= −17.9
(κ

2

)12 1

(4π)12
(s2 + t2 + u2)2stuM tree

4

1

ε
. (3.53)

We leave as a problem for the future the question of obtaining an exact analytic expression

instead of the numerical one found here.

3.7 Observations on ultraviolet consistency

Given the wealth of results from previous papers [61, 90, 145–149, 162, 281], as well as those

from Section 3.6, we are in the position to search for useful structures that can lead to a

more economic identification of the leading ultraviolet behavior of N = 4 super-Yang-Mills

theory and N = 8 supergravity. In this section we analyze the available results in both these

theories, observing remarkable consistency and recursive properties, whereby leading L-loop

ultraviolet divergences in the L-loop critical dimension appear to be tightly constrained

by the lower-loop vacuum diagrams describing leading behavior in the lower-loop critical

dimension.

First we collect the known results for the leading ultraviolet behavior of both N = 4

super-Yang–Mills theory and N = 8 supergravity. We then demonstrate that appropriately-
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defined subdiagrams of the vacuum diagrams are simply related to the vacuum diagrams

describing lower-loop leading ultraviolet behavior.

Within the generalized-unitarity method, higher-loop scattering amplitudes are con-

structed in terms of lower-loop ones. The one-particle cut, setting on shell a single propaga-

tor, provides a direct link between L-loop n-point amplitudes and (L− 1)-loop (n+ 2)-point

amplitudes. One may therefore suspect that there may exist a relation between the lead-

ing ultraviolet properties of these amplitudes in their respective critical dimensions, which

echoes the relation between the complete amplitudes. We will find, however, more surpris-

ing consistency relations between the leading ultraviolet behavior of L- and (L − 1)-loop

amplitudes with the same number of external legs for L ≤ 6 for N = 4 super-Yang-Mills

theory and for L ≤ 5 for N = 8 supergravity. The nontrivial manipulations necessary for ex-

tracting the leading ultraviolet divergence adds to the surprising features of these relations.

Indeed, without appropriate choices of integral bases, they would be obfuscated. They point

to the possibility of a principle governing perturbative consistency in the ultraviolet. We

close by noting the possibility that one may exploit these patterns to directly make detailed

predictions of ultraviolet properties at higher loop orders.

3.7.1 Review of results

After IBP reduction, we obtain a simple description of the leading ultraviolet behavior in

terms of a set of master vacuum integrals defined as

V = −iL+
∑

j Aj

∫ L∏
i=1

dD`i
(2π)D

∏
j

1

(p2
j −m2)Aj

, (3.54)

where the pi are linear combinations of the independent loop momenta and the Ai are the

propagators’ exponents. The number of dots on propagator j is Aj − 1 for Aj ≥ 2 The

indices can be negative, in which case they represent irreducible numerators, as discussed in

Section 3.6. While there is no need to explicitly introduce a mass regulator for carrying out
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Loops Dc for N = 4 sYM Dc for N = 8 sugra
1 8 8
2 7 7
3 6 6
4 11/2 11/2
5 26/5 24/5
6 5 —

Table 3.2: The critical dimensions where ultraviolet divergences first occur in N = 4 super
Yang–Mills theory and N = 8 supergravity, as determined by explicit calculations.

the IBP reductions, we do so here to make the integrals well defined in the infrared.

Collecting the results from Refs. [61, 90, 145–148] and from Eq. (3.51), the leading

ultraviolet behavior of N = 8 supergravity at each loop order through five loops is described

by vacuum diagrams as

M(1)
4

∣∣∣
leading

= −3KG

(κ
2

)4

,

M(2)
4

∣∣∣
leading

= −8KG

(κ
2

)6

(s2 + t2 + u2)

(
1

4
+

1

4

)
,

M(3)
4

∣∣∣
leading

= −60KG

(κ
2

)8

stu

(
1

6
+

1

2

)
,

M(4)
4

∣∣∣
leading

= −23

2
KG

(κ
2

)10

(s2 + t2 + u2)2

(
1

4
+

1

2
+

1

4

)
,

M(5)
4

∣∣∣
leading

= −16× 629

25
KG

(κ
2

)12

(s2 + t2 + u2)2

(
1

48
+

1

16

)
, (3.55)

where the universal factor is KG ≡ stuM tree
4 (1, 2, 3, 4). For each loop order, the critical

dimension is different and is summarized in Table 3.2.

We also collect all known vacuum graph expressions of the leading ultraviolet behavior
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in the maximally supersymmetric SU(Nc) Yang-Mills theory [61, 90, 145, 149, 162, 281],

A(1)
4

∣∣∣
leading

= g4KYM

(
Nc(f̃

a1a2bf̃ ba3a4 + f̃a2a3bf̃ ba4a1)− 3Ba1a2a3a4
)

,

A(2)
4

∣∣∣
leading

= − g6KYM

[
F a1a2a3a4

(
N2
c + 48

(
1

4
+

1

4

))

+ 48NcG
a1a2a3a4

(
1

4
+

1

4

)]
,

A(3)
4

∣∣∣
leading

= 2 g8KYM NcF
a1a2a3a4

(
N2
c + 72

(
1

6
+

1

2

))
, (3.56)

A(4)
4

∣∣∣
leading

= −6 g10KYM N2
c F

a1a2a3a4

(
N2
c + 48

(
1

4
+

1

2
+

1

4

))
,

A(5)
4

∣∣∣
leading

=
144

5
g12KYMN

3
c F

a1a2a3a4

(
N2
c + 48

(
1

4
+

1

2
+

1

4

))
,

A
(6)
4

∣∣∣
leading

= −120g14KYMF
a1a2a3a4N6

c

(
1

2
+

1

4
(`1 + `2)2 − 1

20

)

+O(N4
c ) ,

where the universal factor is KYM ≡ stAtree
4 (1, 2, 3, 4), and

F a1a2a3a4 ≡ t f̃a1a2bf̃ ba3a4 + s f̃a2a3bf̃ ba4a1 ,

Ga1a2a3a4 ≡ s δa1a2δa3a4 + t δa4a1δa2a3 + u δa1a3δa2a4 ,

Ba1a2a3a4 ≡ f̃a1b1b2 f̃a2b2b3 f̃a3b3b4 f̃a4b4b1 . (3.57)

As before, f̃abc are the group structure constants, with normalization given below Eq. (3.2).

As in the gravity case, the critical dimension at each loop order is different, and is included

in Table 3.2.

Inspecting Eqs. (3.55) and (3.56) we already note a remarkable property in both the

supergravity and subleading color gauge-theory expressions: the relative coefficients between
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vacuum integrals in these representations, ignoring signs, are given by the symmetry factors

of the corresponding vacuum graphs. For example, at five loops in Eq. (3.55), the first vacuum

graph has 48 automorphisms and the second has 16 automorphisms, matching the relative

factors. While the amplitude has such coefficients for each integral (see e.g. Eq. (3.23)), their

appearance in the leading ultraviolet divergence is unexpected due to both the nontrivial

manipulations and the choices of master integrals that are required to arrive at the final

result.

Further inspection of Eqs. (3.55) and (3.56) reveals further interesting structures, showing

that the relative coefficients of vacuum integrals are consistently related between the different

loop orders.

3.7.2 Observed ultraviolet consistency

An L-loop (vacuum) integral has many L′ < L subintegrals. A way to isolate one and expose

its associated ultraviolet properties is to take its loop momenta to be much larger than the

other (L−L′) ones. We define an L′-loop subdiagram of an L-loop diagram as the sum over

all of its L′-loop subintegrals. Since each subintegral may have a different critical dimension,

the critical dimension of an L′-loop subdiagram is the minimum of the critical dimensions

of all the L′-loop subintegrals.

With this definition, to compare the higher- and lower-loop leading ultraviolet properties

of four-point amplitudes we carry out the following steps:

1. For each L-loop vacuum diagram construct its L′-loop subdiagram.

2. Keep only those contributions with leading ultraviolet behavior, i.e. those that are

divergent in the lowest critical dimension

3. Apply IBP identities, as needed, to map the lower-loop vacuum integrals into the same

vacuum integral basis as the one used in the ultraviolet expansion of the lower-loop

amplitude.
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As we now show by example, every result in Eqs. (3.55) and (3.56) supports the observation

that the leading ultraviolet behavior at L and L′ loops in their respective critical dimensions

are consistent.

To see the power of this observation, consider the all-order constraints from one-loop

subdiagrams. From Eqs. (3.55) and (3.56), we see that the one-loop leading ultraviolet diver-

gence is given by a vacuum integral with four propagators. For the higher-loop vacuums this

amounts to the statement that there exists an integral basis such that all one-loop subloops

of any higher loop vacuum must contain at least four propagators.9 This is equivalent to

the no-triangle property of one-loop amplitudes in both N = 8 and N = 4 super-Yang–Mills

amplitudes [282–285], except that here it applies to the reduction to an integral basis of

the vacuum integrals describing the leading ultraviolet behavior. One-loop subgraphs with

more than four propagators give a subleading behavior which we discard according to our

procedure which focus on the leading ultraviolet properties. Because there is only a single

type of leading one-loop subdiagram, this property of one-loop sub-graphs places no con-

straint on the relative coefficients of the higher loop vacuums. Nevertheless, the constraint

that each one-loop subgraph has at least four propagators is extremely powerful. In partic-

ular, as discussed in Section 3.6, the only integrals in our basis of five-loop vacuum integrals

without triangle subdiagrams are the two five-loop integrals contributing to Eq. (3.55). A

similar property holds for N = 4 super-Yang–Mills theory, where the only five-loop vacuum

integral basis elements without any triangle or bubble subintegrals are the ones appearing in

Eq. (3.56). This is quite a remarkable property because, in an appropriately-chosen integral

basis that maximizes the number of one-loop triangle and bubble sub-integrals, it severely

limits the vacuum integrals that can appear in the final expressions.

While the one-loop properties discussed above should hold for each one-loop subintegral

at any loop order, understanding the consequences of higher-loop ultraviolet divergences

9In an arbitrary integral basis this property is not manifest and emerges only after the summation over
all one-loop subintegrals of all diagrams and reduction to a one-loop integral basis.
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in (3.55) and (3.56) can be best appreciated via a case by case analysis. We choose three

illustrative examples. We begin by showing the consistency of subleading-color N = 4 super-

Yang–Mills between five and four loops. We focus on the subleading-color part, because it

has a more complex structure than the leading-color part and it is similar to the supergravity

case. We then examine the consistency of the four-loop ultraviolet divergences with those at

lower loops, which are the same for the N = 4 super-Yang–Mills theory at subleading color

and the N = 8 supergravity. Last, we discuss the five-to-four loop consistency of our results

for the five-loop N = 8 supergravity.

As mentioned earlier, not all terms in the sum that defines a lower-loop subdiagram

have the same critical dimension. For example, when relating L and (L− 1)-loop diagrams,

excluding a dotted propagator leads to a term with a lower critical dimension than one

obtained by excluding an undotted one. Thus, when focusing on the ultraviolet critical

dimension of lower-loop diagrams it suffices to keep only terms obtained by disconnecting

the propagators with the largest number of dots. Once the subdiagrams are identified, we can

compare them to the lower-loop result by treating the subdiagram as a new vacuum diagram

where we have kept the leading order in small-momentum expansion for the excluded leg.

This results in lower-loop vacuum diagrams with dots on the propagators where the excluded

leg is connected to the subgraph.

For the N = 4 super-Yang–Mills five-loop vacuum diagrams, the leading four-loop sub-

diagrams are all those that exclude the leg that carries the dot. Diagrammatically, we write

=
1

4
+

1

2
+

1

4
. (3.58)

Excluding the propagator outside the dashed box and taking its momentum small compared
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to the remaining ones leads to

→ 1

4
+

1

2
+

1

4
. (3.59)

This exactly matches the subleading-color four-loop vacuum diagrams describing their rela-

tive coefficients in Eq. (3.56).

Showing the consistency of the four loop expression with lower loops follows similar steps.

Now there are two dotted legs that can be excluded. Summing over the two expansions of

each subdiagram, we find

→ 2 , → 2 , → 2 . (3.60)

Using this we see that the subdiagrams match the relative factors and three-loop vacuum

diagrams in Eq. (3.56),

→ 3

(
1

6
+

1

2

)
. (3.61)

Additionally, we can extract the two-loop subdiagrams in the four-loop divergence by

expanding around both dotted propagators. This gives,

→ , → , → . (3.62)

Using this we find that with the relative coefficients from the four-loop expression, these

subdiagrams are also consistent with the leading lower-loop behavior

→ 1

4
+

1

4
. (3.63)
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It is straightforward to confirm that the same relative coefficients arise by starting from the

three-loop expression in Eq. (3.61) and extracting the leading two-loop subdiagrams.

Since master integrals giving the ultraviolet divergence of the five-loop supergravity am-

plitude in D = 24/5 do not have doubled propagators, all ways of excluding one propagator

lead to integrals of the same critical dimension and must therefore be kept. The planar dia-

gram is a cube, so all of its edges are equivalent. Summing over all the four-loop subintegrals

leads to

→ 12 . (3.64)

The nonplanar diagram has two inequivalent types of legs to exclude. There are eight legs

that, when expanded around, lead to a planar four-loop subdiagram. The other four legs

lead to a nonplanar subdiagram. Thus, after isomorphisms, the subintegrals of the nonplanar

five-loop diagram contribute

→ 8 + 4 . (3.65)

After accounting for the relative symmetry factors of 1/48 and 1/16 between the two five-loop

diagrams in Eq. (3.55), we get

→ 1

4
+

1

2
+

1

4
, (3.66)

matching the relative factors between the four-loop vacuum diagrams also given in Eq. (3.55).

Through four loops super-Yang–Mills subleading-color and supergravity divergences fol-

low the same pattern, being related between different loop orders by removing a dotted

propagator. While in both theories the consistency relations hold at five loops as well, they

now involve removing a dotted and an undotted propagator, respectively. The additional

propagator in the gauge-theory expression raises its critical dimension to D = 26/5. It is re-
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markable that, even though the various integrals and symmetry factors at five loops differ in

the two theories, consistency requires that the relative coefficients for four-loop subdiagrams

are the same.

Let us elaborate briefly on the structure of the planar N = 4 super-Yang–Mills vacuum

integrals at six loops. Unlike the previous examples, the lower-loop integrals given by our

construction are not among the five-loop master integrals in Fig. 3.6.2 and a comparison

with the five-loop expression (3.56) requires use of IBP identities. As in the five-to-four loop

relation, the integrals with lowest critical dimension arise from subdiagrams that exclude the

doubled propagator in the six-loop vacuum diagrams. Thus, the leading five-loop subdiagram

result is

→ 1

2
+

1

4
(`1 + `2)2 + subleading color . (3.67)

Using an integration-by-parts relation (see Eq. (4) of Ref. [162])

1

2
+

1

4
(`1 + `2)2 =

6

5
, (3.68)

to map (3.67) to the five-loop integral basis, we find that it is proportional to the five-loop

leading color term in Eq. (3.56). It is gratifying that the subdiagram consistency holds even

if not initially obvious.

3.7.3 Applications

The consistency observations discussed above give us additional confidence that we have

correctly computed the leading ultraviolet behavior of N = 8 supergravity at five loops by

showing that in the sense discussed above, it fits the pattern of ultraviolet properties at

all lower loops. The simple structures at the vacuum diagram level uncovered here also
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offers the exciting possibility of probing seemingly out of reach ultraviolet properties at even

higher loops. Apart from the possibility of imposing them on an ansatz for the leading

ultraviolet terms of gauge and gravity amplitudes, we can use them to simplify the IBP

system by focusing only on the vacuum integrals that are expected to appear. For example,

in Section 3.5 we vastly simplified the five-loop N = 8 IBP system by assuming that only the

vacuum integrals with maximal cuts survive in the final result. As emphasized above, this

condition follows from demanding consistency of the five-loop vacuum master diagrams with

one-loop subdiagrams, which rules out one-loop triangle subgraphs and all but two five-loop

master vacuum diagrams in the basis of Fig. 3.21. More importantly this condition eliminates

nearly all integrals from the IBP system as well as a substantial part of the expansion of

the integrand. The same strategy should continue to be fruitful at even higher loop orders.

Alternatively, it may be possible to completely bypass the construction of the integrand, its

ultraviolet expansion and integration, and instead extrapolate the final result in terms of

vacuum diagrams to higher loop orders. We leave this task for future study.

We emphasize that the observed ultraviolet consistency is a property of the leading behav-

ior after simplifying the integrals via Lorentz invariance and integration-by-parts relations.

It relies on nontrivial simplifications that occur in the integral reduction and is manifest

because we judiciously chose the vacuum integral bases. A key property of our IBP systems

is that the space-time dimension enters only implicitly through the critical dimension where

the integrals are logarithmically divergent. Had there been explicit dependence on the di-

mension, one would naturally expect a nontrivial dependence on dimension in the relative

coefficients of master integrals and thus, given the differing critical dimensions at different

loop orders, it would disrupt any systematic cross-loop-order relations. Simplifications based

on Lorentz invariance in Eqs. (3.28) and (3.29) were used, and introduce explicit dependence

on dimension. It is rather striking that this dependence drops out once the IBP relations

are used and consequently it does not complicate relations between vacuum diagrams and

their subdiagrams. These properties are worth investigating.
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3.8 Conclusions and outlook

In this chapter we determined the ultraviolet behavior of the five-loop four-point amplitude of

N = 8 supergravity, finding the critical dimension where it first diverges to be Dc = 24/5. In

analyzing the results we made the rather striking observation that the vacuum diagrams that

describe the leading ultraviolet behavior satisfy certain nontrivial relations to the analogous

lower-loop vacuum diagrams.

Previous work found examples of enhanced ultraviolet cancellations that render ultravi-

olet finite [4, 6] certain amplitudes in N = 4 and N = 5 supergravity in D = 4, despite the

possibility of counterterms allowed by all known symmetry considerations [7–9, 144]. Related

arguments suggest that N = 8 supergravity should diverge at five loops in D = 24/5 [142,

143]. While one might have suspected that there could be corresponding enhanced cancel-

lations in N = 8 supergravity at five loops, our results conclusively demonstrate that, at

this loop order, there are no further cancellations of ultraviolet divergences beyond those

identified by symmetry arguments.

The divergence we find in D = 24/5 at five loops corresponds to a D8R4 counterterm.

This counterterm is especially interesting because it corresponds to a potential D = 4 diver-

gence believed to be consistent with the E7(7) duality symmetry of maximal supergravity. It

is, however, not clear that our result in D = 24/5 points towards a seven-loop divergence in

D = 4, because the existence of counterterms does not transfer trivially between dimensions

and loop orders. For example, one might be tempted to argue for a three-loop divergence in

N = 4 or N = 5 supergravity in D = 4 based on the existence [5] of a nonvanishing one-loop

R4 counterterm in D = 8 in both theories; we know however that both theories are finite at

three loops [4, 6]. Another result that indicates that further investigation of the ultraviolet

structure of supergravities in four dimensions is warranted is the suspected link between

anomalies and divergences in supergravity theories on the one hand, and the anticipated

lack of anomalies in theories with N ≥ 5 supersymmetry on the other [2, 68–71, 111, 124].
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Of course, not every divergence necessarily has an anomaly behind it. Nevertheless, it is

surprising that N = 5 supergravity at four loops in D = 4 appear to have additional can-

cellations beyond those predicted by symmetry considerations [6], while N = 8 supergravity

at five loops in D = 24/5 does not.

The ultraviolet properties of the amplitude were extracted, following standard meth-

ods [257–259], by expanding the integrand at large loop momenta or equivalently small

external momenta, to identify the logarithmic divergences in various dimensions. The result

was then reduced to a combination of master integrals; to this end we made use of mod-

ern ideas of organizing the system of IBP identities in terms of an SL(L) symmetry [108]

(where L is the number of loops) and restricting to integrals with leading ultraviolet behav-

ior. In addition to integrating the complete expansion of a new integrand in both D = 22/5

and D = 24/5, we also integrated the expansion of the previously-obtained integrand [161]

in these dimensions, under the assumption that the only master integrals that appear in

the final result have maximal cuts. These results, obtained by using unitarity-compatible

integration-by-parts techniques [175, 183–188], agree with those of the full integration of the

simpler integrand, thus providing a highly nontrivial check of our calculations.

The agreement of the two approaches highlights an important trend: the only integrals

that contribute to the divergence of the four-point 1 ≤ L ≤ 5 amplitudes in their critical

dimensions are those with maximal cuts at the vacuum level. At higher loops we expect a

systematic application of similar considerations to lead to a drastic reduction in the computa-

tional complexity. An approach based on exploiting these observations may make it possible

to directly determine the critical dimension of the six- and seven-loop N = 8 supergravity

amplitudes.

An even greater efficiency gain may lie in the observed ultraviolet consistency relations

described in Section 3.7. That is, L′-loop subdiagrams of the leading ultraviolet divergence

in the L-loop critical dimension reproduce, upon reduction to master integrals, the combi-

nation of vacuum diagrams describing the leading ultraviolet behavior in the L′-loop critical
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dimension. Moreover, in an appropriate basis, the relative coefficients of the vacuum master

integrals are given by the order of the automorphism groups of the diagrams. We also ob-

served similar patterns in the vacuum diagrams of N = 4 super-Yang–Mills theory through

six loops, suggesting that they will continue to hold to higher loop orders in both theories.

While these observations are likely connected to standard consistency relations between

multi-loop amplitudes and their subamplitudes, in our case they remain a conjecture due to

the nontrivial steps needed to relate an amplitude to a basis of master vacuum graphs in the

critical dimension. These vacuum diagram patterns should be very helpful to identify those

terms in higher-loop amplitudes that are important for determining the leading ultraviolet

behavior, and for enormously simplifying the integration-by-parts system. By enforcing the

patterns described here, it may even be possible to obtain detailed higher-loop information

including a determination of the critical dimensions, bypassing the construction of complete

loop integrands.

In summary, the success of the newly-developed generalized double-copy construction [60,

161], and integration tools [108, 175–188, 274–277] used in our five-loop calculations, as well

as our observed vacuum subdiagram consistency constraints, indicates that problems as

challenging as seven-loop N = 8 supergravity in four dimensions may now be within reach

of direct investigations.
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