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Abstract

Strong Macdonald Theory and the Brylinski Filtration for Affine Lie Algebras

by

William Edward Slofstra

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Constantin Teleman, Chair

The strong Macdonald theorems state that, for L reductive and s an odd variable, the
cohomology algebras H∗(L[z]/zN) and H∗(L[z, s]) are freely generated, and describe the co-
homological, s-, and z-degrees of the generators. The resulting identity for the z-weighted
Euler characteristic is equivalent to Macdonald’s constant term identity for a finite root sys-
tem. The proof of the strong Macdonald theorems, due to Fishel, Grojnowski, and Teleman,
uses a Laplacian calculation for the (continuous) cohomology of L[[z]] with coefficients in
the symmetric algebra of the (continuous) dual of L[[z]].

Our main result is a generalization of this Laplacian calculation to the setting of a general
parahoric p of a (possibly twisted) loop algebra g. As part of this result, we give a detailed
exposition of one of the key ingredients in Fishel, Grojnowski, and Teleman’s proof, a version
of Nakano’s identity for infinite-dimensional Lie algebras.

We apply this Laplacian result to prove new strong Macdonald theorems for H∗(p/zNp)
and H∗(p[s]), where p is a standard parahoric in a twisted loop algebra. We show that
H∗(p/zNp) contains a parabolic subalgebra of the coinvariant algebra of the fixed-point
subgroup of the Weyl group of L, and thus is no longer free. We also prove a strong
Macdonald theorem for H∗(b;S∗n∗) and H∗(b /zNn) when b and n are Iwahori and nilpotent
subalgebras respectively of a twisted loop algebra. For each strong Macdonald theorem
proved, taking z-weighted Euler characteristics gives an identity equivalent to Macdonald’s
constant term identity for the corresponding affine root system. As part of the proof, we
study the regular adjoint orbits for the adjoint action of the twisted arc group associated to
L, proving an analogue of the Kostant slice theorem.

Our Laplacian calculation can also be adapted to the case when g is a symmetrizable
Kac-Moody algebra. In this case, the Laplacian calculation leads to a generalization of
the Brylinski identity for affine Kac-Moody algebras. In the semisimple case, the Brylinski
identity states that, at dominant weights, the q-analog of weight multiplicity is equal to the
Poincare series of the principal nilpotent filtration of the weight space. This filtration is
known as the Brylinski filtration. We show that this identity holds in the affine case, as
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long as the principal nilpotent filtration is replaced by the principal Heisenberg. We also
give an example to show that the Poincare series of the principal nilpotent filtration is not
always equal to the q-analog of weight multiplicity, and give some partial results for indefinite
Kac-Moody algebras.
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Chapter 1

Introduction

The purpose of this dissertation is to study the Lie algebra cohomology of affine Kac-
Moody algebras and loop algebras, with two goals: extending the Brylinski filtration for
semisimple Lie algebras to affine Kac-Moody algebras, and proving new strong Macdonald
theorems for parahoric subalgebras of (possibly twisted) affine Kac-Moody algebras. This
chapter contains an overview of these results, and explains how they fit into the rich theory
of semisimple Lie algebras and Kac-Moody algebras. The reader is assumed to be familiar
with the basic representation theory and structure theory of semisimple Lie algebras. Sec-
tion 1.1 gives a short introduction, with references, to Kac-Moody algebras and Lie algebra
cohomology. Section 1.2 explains the development of the Brylinski filtration, starting with
Kostant’s generalized exponents, and ending with the Brylinski filtration for a Kac-Moody
algebra. Finally, Section 1.3 covers the Macdonald constant term identity, the strong Mac-
donald theorems of Fishel, Grojnowski, and Teleman, and strong Macdonald theorems for
parahoric subalgebras. New material is covered in Subsections 1.2.1 and 1.3.1; most of what
is discussed has previously been presented in [Sl11a] and [Sl11b].

1.1 Background

1.1.1 Kac-Moody algebras

Let L be a complex semisimple Lie algebra. It is well-known that L has a presentation as the
free Lie algebra generated by elements {h1, . . . , hl}, {e1, . . . , el}, and {f1, . . . , fl}, satisfying
the Serre relations

[hi, ej] = Aijej, 1 ≤ i, j ≤ l,

[ei, fj] = δijhi, 1 ≤ i, j ≤ l,

ad(ei)
1−Aij(ej) = 0, 1 ≤ i 6= j ≤ l, and

ad(fi)
1−Aij(fj) = 0, 1 ≤ i 6= j ≤ l,
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where δij is the Kronecker delta, and A is an l × l matrix with integer coefficients. The
matrix A satisfies the following conditions:

• Aii = 2,

• Aij ≤ 0 if i 6= j,

• Aij = 0 if Aji = 0, and

• A is positive definite.

Any matrix satisfying these conditions is called a Cartan matrix, and gives rise to a presen-
tation of a semisimple Lie algebra. A matrix satisfying the first three conditions, but which
is not necessarily positive-definite, is called a generalized Cartan matrix. Just as Cartan
matrices correspond to semisimple Lie algebras, the generalized Cartan matrices correspond
to the larger family of Kac-Moody algebras. Specifically, if A is a generalized Cartan matrix,
let h be a vector space of dimension l+ corankA, such that h contains the free vector space
spanned by symbols {h1, . . . , hl}. Choose α1, . . . , αl in h∗ such that αj(hi) = Aij. The Kac-
Moody algebra associated to a generalized Cartan matrix is the free Lie algebra generated
by h, {e1, . . . , el}, and {f1, . . . , fl}, satisfying the relations

[h, ej] = αj(h)ej, 1j ≤ l,

[ei, fj] = δijhi, 1 ≤ i, j ≤ l,

ad(ei)
1−Aij(ej) = 0, 1 ≤ i 6= j ≤ l, and

ad(fi)
1−Aij(fj) = 0, 1 ≤ i 6= j ≤ l.

Kac-Moody algebras were discovered by Kac [Ka67] and Moody [Mo67], and have proven to
be very important and useful objects in mathematics and physics. For example, they appear
in string theory and conformal field theory. One of the most surprising things about Kac-
Moody algebras is the extent to which they are analogous to finite-dimensional Lie algebras.
Kac-Moody algebras have a Weyl group, a root system, flag varieties, and irreducible highest
weight representations L(λ) parametrized by dominant weights. A general overview of the
structure and representation theory of Kac-Moody algebras can be found in [Ka83]. For flag
varieties and representation theory, more background can be found in [Ku02]. We follow
[Ku02] in our presentation except where noted.

A generalized Cartan matrix is said to be indecomposable if no conjugate of A by a
permutation matrix has a non-trivial block decomposition. The classification theorem for
Kac-Moody algebras divides indecomposable Kac-Moody algebras into three types: if the
generalized Cartan matrix is positive definite, then the Kac-Moody algebra is a simple finite-
dimensional Lie algebra, and is said to be of finite type; if the generalized Cartan matrix
positive semi-definite, then the Kac-Moody algebra is said to be of affine type; otherwise
the generalized Cartan matrix is indefinite, and the Kac-Moody algebra is said to be of
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indefinite type. Affine Kac-Moody algebras are of particular interest, perhaps because they
can be constructed using loop algebras, as we will see in the next section. In contrast, no
nice construction for indefinite Kac-Moody algebras is known.

A Kac-Moody algebra g can be given a Z-grading by assigning every generator ei a non-
negative degree di ≥ 0. In the Kac terminology such a grading is called a grading of type d
[Ka83]. Let gn denote the degree n component of g with respect to some grading of type d.
Then g0 is again a Kac-Moody algebra, and g has a decomposition g = u ⊕ g0 ⊕ u, where
u =

⊕
n>0 gn and u =

⊕
n<0 gn. A subalgebra p is said to be a parahoric of g if it is of the

form p =
⊕

n≥0 gn for some grading of type d. When every di is strictly positive, g0 = h, and
the decomposition g = u⊕h⊕u is an analogue of the triangular decomposition for semisimple
Lie algebras. If g is an affine Kac-Moody algebra constructed from a (possibly twisted) loop
algebra L[z±1]σ̃ (this construction will be explained in the next section), let p0 be a fixed
parabolic subalgebra of Lσ, and let p denote the subalgebra {f ∈ L[z] : f(0) ∈ p0}⊕Cc⊕Cd.
The algebra p is a parahoric, and we call subalgebras of this form standard parahorics.

A Kac-Moody algebra is said to be symmetrizable if there is a diagonal matrix D with
positive integral entries such that D−1A is symmetric. A symmetrizable Kac-Moody algebra
has an invariant bilinear form. All finite and affine Kac-Moody algebras are symmetrizable.

1.1.2 Loop algebras and affine Kac-Moody algebras

Let L be a reductive Lie algebra with diagram automorphism σ of finite order k. By definition
L has a triangular decomposition L = u0⊕ h⊕ u0 where the Cartan algebra h and nilpotent
radicals u0 and u0 are σ-invariant, and such that σ permutes the simple roots corresponding
to the Borel h⊕u0. We say that a Cartan, Borel, or nilpotent radical is compatible with σ if
it appears in such a decomposition. The twisted loop algebra is the Lie algebra g = L[z±1]σ̃,
where σ̃ is the automorphism sending f(z) 7→ σ(f(q−1z)) for q a fixed kth root of unity. g
can be written as

g =
k−1⊕
i=0

La ⊗ zaC[z±k],

where La is the qath eigenspace of σ. If L is simple then each La is an irreducible L0-module.
In particular if L is simple then L0 is also simple; in general L0 will be reductive. A reductive
Lie algebra L has an anti-linear Cartan involution · and a contragradient positive-definite
Hermitian form {, }. These two structures extend to the twisted loop algebra g so that for
any grading of type d, gn = g−n and gm ⊥ gn when m 6= n.

The root system of g can be described as follows. Let h be a Cartan subalgebra of L
compatible with the diagram automorphism. Then h0 := hσ is a Cartan in L0, and L0 has
a set α1, . . . , αl of simple roots which are projections of simple roots of L. The roots of g
can be described as α + nδ ∈ h∗0 × Z where either α is a weight of La with n ≡ a mod k,
or α = 0 and n 6= 0, and δ comes from the rotation action of C∗ on g. Assume that L is
simple, and let ψ be either the highest weight of L1 (an irreducible L0-module) if k > 1, or
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the highest root of L, if k = 1. Then the set α0 = δ−ψ, α1, . . . , αl is a complete set of simple
roots for g. If L is reductive then we can choose a set of simple roots by decomposing L as
a direct sum of σ-invariant simple subalgebras plus centre, and taking the simple root sets
from each corresponding factor of g.

As with Kac-Moody algebras, the twisted loop algebra g can be given a Z-grading by
assigning degree di ≥ 0 to the positive root vector associated to αi. A parahoric subalgebra
of g is a subalgebra of the form p =

⊕
n≥0 gn, for some Z-grading of g of type d. A parahoric

subalgebra contains a nilpotent subalgebra defined by u =
⊕

n>0 gn. We will say that a
parahoric is standard with respect to the choice of simple roots if it comes from a grading of
type d such that di > 0 whenever αi is of the form δ−ψ for ψ ∈ h∗0. Suppose p is a standard
parahoric. Let S = {αi : di = 0}, and p0 be the standard parabolic subalgebra of L0 defined
by

p0 = h0 ⊕
⊕
α∈∆+

(L0)α ⊕
⊕

α∈∆−∩Z[S]

(L0)α,

where ∆± are the positive and negative roots of L0 with respect to the chosen simple roots.
Then p = {f ∈ g : f(0) ∈ p0}, while u = {f ∈ g : f(0) ∈ u0}, where u0 is the nilpotent
radical of p0. Note that in this context the nilpotent radical of an algebra k is defined to
be the largest nilpotent ideal in [k, k] (or equivalently the intersection of the kernels of all
irreducible representations), so that u0 does not intersect the centre of L. If p0 is a Borel,
then p is called a standard Iwahori subalgebra.

If L is simple, define g̃ to be the Lie algebra L[z±1]σ̃ ⊕ Cc ⊕ Cd, where the bracket is
defined, for x, y ∈ L, γ1, γ2, β1, β2 ∈ C, by

[xzm + γ1c+ β1d, yz
n + γ2c+ β2d] =

[x, y]zm+n+β1nyz
n − β2mxz

m + δm,−nm〈x, y〉c,
for 〈, 〉 a symmetric invariant bilinear form on L. Then g̃ is an indecomposable affine Kac-
Moody algebra, and every indecomposable affine Kac-Moody algebra arises in this fashion.
When σ is the identity, the affine Kac-Moody algebra is said to be untwisted; otherwise the
Kac-Moody algebra is said to be twisted. The root system of g̃ as a Kac-Moody algebra
is the same as the root system of the loop algebra g described above. If L is semisimple
then it is still possible to turn g into a (possibly decomposable) Kac-Moody algebra, but
this construction needs to be repeated for every simple component of L.

1.1.3 Lie algebra cohomology

Suppose that g is a Lie algebra, k is a subalgebra of g, and V is an L-module. The Koszul
homology complex (also called the Chevalley, Chevalley-Eilenberg, or Koszul-Chevalley com-
plex) C∗ for the pair (g, k) with coefficients in V is defined as the space of coinvariants

Cp =

(
p∧
g/k⊗ V

)/
k ·

(
p∧
g/k⊗ V

)
,
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with differential d sending

x1 ∧ · · ·xk ⊗ v 7→
∑
i<j

(−1)i+j[xi, xj] ∧ x1 ∧ · · · x̂i · · · x̂j · · · ∧ xk

+
∑
i

(−1)ix1 ∧ · · · x̂i · · · ∧ xk ⊗ xiv,

where x̂i denotes that the symbol is omitted. The Lie algebra homology H∗(g, k;V ) is the
homology of the complex (C∗, d). Cohomology spaces are defined similarly: the Koszul
complex C∗ is defined to be the space of invariants,

Cp =

((
p∧
g/k

)∗
⊗ V

)k

∼= Homk

(
p∧
g/k, V

)

with differential ∂̄ defined, for f ∈ Homk(
∧k g/k, V ), by

(∂̄f)(x1, . . . , xk+1) =
∑
i<j

(−1)i+jf([xi, xj], x1, · · · , x̂i, · · · , x̂j, · · · , xk+1)

+
∑
i

(−1)i+1xif(x1, . . . , x̂i, . . . , xk+1).

The cohomology spaces H∗(g, k;V ) are then defined to be the homology spaces of the complex
(C∗, ∂̄). Lie algebra cohomology was first defined by Chevalley and Eilenberg [CE48]; the
treatment here is based on [Ku02].

Cohomology and homology groups are dual, in the sense that H∗(g, k;V ∗) ∼= H∗(g, k;V )∗.
If g is infinite-dimensional, then H∗(g, k;V ) can be infinite-dimensional, and hence the co-
homology spaces can be very large: the full dual of an infinite-dimensional vector space. If
g is a topological Lie algebra, and V is a continuous representation, then we can take, in
the Koszul complex, Homk(

∧∗ g/k, V ) to be the space of continuous k-invariant maps. The
cohomology of the resulting complex is called the continuous cohomology of (g, k) with co-
efficients in V , and the resulting cohomology spaces will be denoted by H∗cts(g, k;V ). For
more background on continuous cohomology, see [Fu86]. Continuous cohomology is a very
valuable tool for working with infinite-dimensional algebras, and we use it without excep-
tion. Furthermore, the dual (g/k)∗ will always denote the continuous dual. However, for our
purposes it is enough to consider only one special case of this construction. Suppose p is a
Z≥0-graded Lie algebra with finite-dimensional homogeneous components, so p =

⊕
n≥0 pn

with [pn, pm] ⊂ pm+n and dim pn < +∞. Take k = p0. The algebra p has a completion

p̂ = lim←−
k

p

/⊕
n≥k

pn,
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where lim denotes the inverse limit. The completion p̂ can given the inverse limit topology,
and (

∧∗ p̂/p0)
∗

=
∧∗(p̂/p0)∗, where the continuous dual (p̂/p0)∗ is linearly isomorphic to⊕

n>0 p
∗
n, a direct sum of duals of finite-dimensional spaces. Assuming that V has a com-

patible Z≥0-grading with finite-dimensional components, we can define the completion V̂ in

a similar manner. The homology spaces H∗(p, p0;V ) and cohomology spaces H∗cts(p̂, p0; V̂ )
then inherit Z>0-gradings, and the homogeneous components are finite-dimensional and dual
to each other.

Lie algebra cohomology has been an important object of study throughout the devel-
opment of the theory of semisimple Lie algebras and groups. We highlight two historically
significant results. The first is the calculation of the cohomology of a reductive Lie algebra.
Recall that if G is a Lie group, a well-known theorem of Hopf states that the cohomol-
ogy H∗(G) is a free super-commutative algebra generated in odd degrees. Accordingly, the
Poincare polynomial of G can be written as∑

qi dimH i(G) =
∏
j

(
1 + q2mi+1

)
for some non-negative collection of integers m1, . . . ,ml. This theorem has a long history,
a contemporaneous summary of which can be found in [Sa52]. In particular, the theorem
was first proved for the classical Lie groups by Pontryagin [Po39], and also by Cartan and
Brauer [Car36] [Bra35]. If G is a connected reductive complex Lie group then the cohomology
algebra of G is isomorphic to the cohomology algebra of the associated Lie algebra L [CE48].
So if L is reductive, H∗(L) is a free super-commutative algebra, with generators occurring in
homogeneous degrees 2m1 + 1, . . . , 2ml + 1. In this case, l is equal to the rank of L and the
numbers m1, . . . ,ml have become known as the exponents of L. As will become apparent in
the following sections, the exponents, along with subsequent extensions, have an important
place in Lie theory, with deep connections to geometry, combinatorics, and representation
theory.

Second, we point out Kostant’s theorem, which describes the cohomology H∗(n;Cλ) of
a nilpotent radical n of a semisimple Lie algebra L, with coefficients in a weight module Cλ

[Ko59]. Kostant originally proved this theorem by calculating the kernel of the Laplacian
� = ∂̄∂̄∗ + ∂̄∗∂̄ of the Lie algebra cohomology differential ∂̄, where ∂̄∗ is the adjoint of
∂̄ in the metric on the Koszul complex C∗ induced from the invariant bilinear form on
L. Computing the kernel of the Laplacian has become a standard tool for Lie algebra
cohomology calculations. Kostant’s theorem can be regarded as a Lie algebra cohomology
analogue of the Borel-Weil-Bott theorem, which describes the cohomology of equivariant line
bundles on the full flag variety. In fact, Kostant used this theorem to give a proof of the
Borel-Weil-Bott theorem. The Lie algebra perspective turns out to be very useful for working
with Kac-Moody algebras. The full flag variety of a Kac-Moody algebra can be infinite-
dimensional, so it is difficult to work with the cohomology. In contrast, Kostant’s theorem on
Lie algebra cohomology generalizes to the case of Kac-Moody algebras in relatively straight-
forward fashion. This generalisation is due to Garland-Lepowsky [GL76], while Kostant’s
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Laplacian calculation has been extended to the case of Kac-Moody algebras by Kumar
[Ku84]. Kumar has also proven a Borel-Weil-Bott theorem for the flag variety of a Kac-
Moody algebra [Ku87].

1.2 Generalized exponents and the Brylinski filtration

As mentioned in the previous section, the exponents of a reductive Lie algebra L arise as
the degrees of the generators of the cohomology algebra H∗(L). If m1, . . . ,ml is the list
of exponents, then the generators occur in degrees 2m1 + 1, . . . , 2ml + 1. One of the first
questions asked about the exponents was how to compute them from the root system of
L. A simple procedure was given by Shapiro: if bk is the number of positive roots of
order k, where the order of a root is the sum of the coefficients with respect to a simple
basis, then the multiplicity of m as an exponent is bm − bm+1 (to handle reductive Lie
algebras, set b0 to the rank of L) [Ko59]. Another procedure was given by Coxeter: the
exponents of L can be calculated from the eigenvalues of a certain element of the Weyl
group, known as the Coxeter-Killing transformation [Cox51]. In the case of sln, the Weyl
group is the permutation group Sn, and a Coxeter-Killing transformation is a long cycle, for
example (12 · · ·n) in disjoint cycle notation. Since the exponents were known for the simple
Lie algebras, it was clear from the empirical evidence that the procedures of Shapiro and
Coxeter gave the exponents. A proof of the correctness of Coxeter’s procedure relying on a
small amount of empirical evidence was given by Coleman [Col58]. Kostant, in a seminal
paper, used the concept of a principal nilpotent of L to prove the equivalence of the different
procedures and definitions without reference to any empirical data [Ko59]. An element e of
L is nilpotent if e belongs to [L,L] and ad(e) is nilpotent on L, and regular if the centralizer
Le has dimension equal to the rank of L. An element which is both nilpotent and regular is
called a principal nilpotent. Every principal nilpotent belongs to an sl2-triple {x, e, f}, i.e.
a 3-tuple satisfying the determining relations [x, e] = 2e, [x, f ] = −2f , and [e, f ] = x for sl2.
Kostant showed that the exponents of L are the highest weights of L as a module for the
subalgebra determined by a principal sl2-triple, or in other words the eigenvalues of ad(x)
on the centralizer Le. In the case of sln, the principal nilpotents are those matrices having a
single Jordan block, or in other words the matrices which are conjugate to the matrix with
ones down the first off-diagonal, and zeroes elsewhere. The exponents for sln and gln are
1, . . . , n− 1 and 0, . . . , n− 1 respectively.

Kostant followed his study of the exponents of L with another seminal paper, this time
describing the L-module structure of the ring S∗L∗ of polynomials on the Lie algebra [Ko63b].
Central to this paper is the geometry of the adjoint orbits in L, and the multiplicity of the
highest-weight L-module L(λ) in S∗L∗ can be determined from this geometry. Specifically,
Kostant observed that S∗L∗ is free as a J = (S∗L∗)L-module, and furthermore that there is
a homogeneous L-submodule H of S∗L∗ such that the multiplication map J ⊗ H → S∗L∗

is an L-module isomorphism. J is constant on any G-orbit O in L, so there is an L-module
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homomorphism H → C[O]. Kostant showed that this morphism is an isomorphism if O is
the orbit of a regular element x. Thus H is isomorphic to the L-module C[G]G

x
, and the

multiplicity of L(λ) in H can be determined from the Peter-Weyl theorem. Determining
the multiplicity of L(λ) in the submodule SkL∗ of polynomials of some fixed degree is more
difficult, and leads to a notion of generalized exponents. Specifically, the generalized expo-
nents for a highest weight representation L(λ) are defined by stating that the multiplicity
m as a generalized exponent is equal to the multiplicity of L(λ) in the degree m component
of H, where H has a grading inherited from S∗L∗. The generalized exponents can also be
computed using a principal sl2-triple {x, e, f}: they are equal to the eigenvalues of x on the
subspace L(λ)G

e
. To prove this last fact, Kostant turns again to the orbit geometry of L,

showing that the GIT quotient map L → L//G = Spec J restricts to a submersion over
the open subset Lreg of regular elements in L, and that there is an affine subset ν ⊂ Lreg,
called the Kostant slice, such that ν ↪→ L → L//G is an isomorphism. Incidentally, the
Kostant slice can be used to show that J is a free commutative algebra, with homogeneous
generators in degrees m1 + 1, . . . ,ml + 1. There is one further perspective on the L-module
H. The ideal of S∗L∗ generated by the positive-degree elements of J corresponds to an
algebraic variety N ⊂ L. This variety consists of the nilpotent elements, and is known as
the nilpotent cone. Hesselink showed that N has only rational singularities, and in fact has
a resolution T ∗X → N where X is the full flag variety X = G/B of G [He76]. It follows
from Hesselink’s work that C[T ∗X] and C[N ] are isomorphic to H as L-modules.

Computing the generalized exponents using Kostant’s definition requires working with
representations of L. The generalized exponents can also be computed directly from the
root system and Weyl group using a formula independently discovered by Hesselink and
Peterson. Let mλ

0(q) =
∑
diq

i where dm is the multiplicity of m as an exponent. The
Hesselink-Peterson formula states that

mλ
0(q) =

∑
w∈W

ε(w)K(w(λ+ ρ)− ρ; q),

where W is the Weyl group of L, ε is the usual sign representation, ρ is the half-sum of
positive roots, and K(β) is the Kostant partition function giving the coefficient of [eβ] in∏

α∈∆+(1− qeα)−1. The formula was discovered by Hesselink using cohomological methods,
using ideas similar to those appearing in [He76]. Both Hesselink and Peterson later gave
non-cohomological proofs [He80] [Pe78]. Hesselink and Peterson’s formula connects the gen-
eralized exponents to other areas of representation theory and algebraic combinatorics. The
polynomials mλ

0(q) are a special case of Lusztig’s q-analog of weight multiplicity, defined for
a weight µ of L(λ) by

mλ
µ(q) =

∑
w∈W

ε(w)K(w(λ+ ρ)− µ− ρ; q)

These polynomials are analogs of weight multiplicity because mλ
µ(1) = dimL(λ)µ, the mul-

tiplicity of the µth weight-space of L(λ). In combinatorics, these polynomials are equal to
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Kostka-Foulkes polynomials, which express the characters of the highest-weight representa-
tions in terms of Hall-Littlewood polynomials [Kat82] (see [St05] for an expository reference).
Lusztig observed that the mλ

µ(q) are Kazhdan-Lusztig polynomials for the affine Weyl group
[Lus83].

An interesting feature of Lusztig’s q-analogs is that the coefficients of mλ
µ(q) are non-

negative when µ is a dominant weight of L(λ). There is an explanation for this phenomenon,
first conjectured by Lusztig [Lus83]: the weight space L(λ)µ has an increasing filtration eF ∗

such that mλ
µ(q) is equal to the Poincare polynomial

eP λ
µ (q) =

∑
i≥0

qi dim eF iL(λ)µ /
eF i−1L(λ)µ (1.1)

of the associated graded space. This identity was first proved by Brylinski for µ regular or g
of classical type; the filtration eF ∗ is known as the Brylinski or Brylinski-Kostant filtration,
and is defined by

eF i(L(λ)µ) = {v ∈ L(λ)µ : ei+1v = 0},
where e is a principal nilpotent. Brylinski’s proof states that the coefficient of qm in mλ

µ(q)
is the multiplicity of L(λ) in the mth component of the graded space of Γ(O, F−µ), where
O is the orbit of a regular semisimple element in L, F−µ is a line bundle defined over X by
the character µ and pulled back to µ, and Γ(O, F−µ) is the space of sections of F−µ, filtered
by polynomial degree of S∗L∗. Hence the polynomials mλ

µ(q) can be regarded as µ-twisted
generalized exponents of L(λ). Brylinski’s proof was extended to all dominant weights by
Broer [Bro93]. More recently Joseph, Letzter, and Zelikson gave a purely algebraic proof of
the identity mλ

µ = eP λ
µ , and determined eP λ

µ for µ non-dominant [JLZ00].
The q-analogs of weight multiplicity are also connected to one of the best-known theorems

of geometric representation theory, the geometric Satake isomorphism. This theorem states
that there is an equivalence between the representation category of G, and the category
of equivariant perverse sheaves on the loop Grassmannian Gr = G∨((z))/G∨[[z]] of the
Langlands dual group G∨. The loop Grassmannian is an ind-variety, realized as an increasing
disjoint union of Schubert varieties Grλ parametrized by weights of G. Under the equivalence,
a highest-weight representation L(λ) is sent to the intersection cohomology complex ICλ of

Grλ. In addition to conjecturing the equality mλ
µ(q) = eP λ

µ , Lusztig showed in [Lus83] that

mλ
µ(q) is equal (after a degree shift) to the generating function ICλ

µ(q) for the dimensions

of the stalk of the complex ICλ
µ at a point in Grµ ⊂ Grλ. A direct isomorphism between

the stalks ICλ
µ and the graded spaces grL(λ)µ appears in the geometric Satake isomorphism

[Gi95] [MV07], leading to another proof that mλ
µ = eP λ

µ (see [Gi95] in particular).

1.2.1 The Brylinski filtration for affine Kac-Moody algebras

The q-analogs of weight multiplicity mλ
µ(q) can also be defined for an arbitrary symmetrizable

Kac-Moody algebra.In contrast to the case of semisimple Lie algebras, the root spaces of a
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Kac-Moody algebra are not necessarily one-dimensional; the dimension of a root space is
called the multiplicity of the root. The multiplicities have to be inserted into the Kostant
partition function, so that K(β; q) is defined as the coefficient of [eβ] in

∏
α∈∆+(1−qeα)−multα.

Viswanath has shown that the q-analogs of weight multiplicity of an arbitrary symmetrizable
Kac-Moody are Kostka-Foulkes polynomials for generalized Hall-Littlewood polynomials,
and determined mλ

µ(q) at some simple µ for an untwisted affine Kac-Moody [Vi08]. A
principal nilpotent of a Kac-Moody algebra is defined to be a linear combination e =

∑
ciei

of the positive generators, where all the coefficients ci are non-zero. With this definition, the
principal nilpotent filtration eF ∗ of the weight space of a highest-weight representation can be
defined as in the finite case. Braverman and Finkelberg have proposed a conjectural analog
of the geometric Satake isomorphism for affine Kac-Moody groups [BF10]. Their conjecture
relates representations of g to perverse sheaves on an analog of the loop Grassmannian g∨,
where g∨ is an untwisted affine Kac-Moody algebra and g is the Langlands dual to g. Their
model leads them to conjecture that mλ

µ(q) = eP λ
µ in the affine case, with both related to

the intersection cohomology stalks as in the finite case.
Brylinski’s original proof of the identity mλ

µ = eP λ
µ uses at a crucial point the fact that

the cohomology groups Hq(X,F−µ ⊗ S∗TX) are zero if q > 0 and µ is a dominant and
regular weight. Cohomology vanishing theorems are a standard tool in complex algebraic
geometry, and Brylinski deduces this cohomology vanishing theorem from a standard result
on positive vector bundles. In general, it is difficult to adapt these standard tools to the
infinite-dimensional setting. Teleman observes in [Te95] that one standard tool, Nakano’s
identity, can be adapted for the relative Lie algebra cohomology of the pair (L[z], L) (this Lie
algebra pair corresponds to the homogeneous space Gr of the loop group). Nakano’s identity
is used in [FGT08] to calculate the Laplacian for the cohomology of the pair (L[z], L) with
coefficients in S∗L[[z]]∗ with respect to the unique Kahler metric for the loop Grassmannian.
The Laplacian calculation implies that the cohomology groups Hq(L[z], L;L ⊗ S∗L[[z]]∗)
vanish for q > 0 when L is a positive-level representation of the loop group L[z±1]. From
this, Fishel, Grojnowski, and Teleman deduce a Brylinski-like theorem: there is a filtration
of the G-invariant subspace LG of L such that the graded space gr∗ LG is isomorphic to the
space (L ⊗ S∗L[[z]]∗)L[z].

One of the main results of this dissertation is an extension of Brylinski’s result to affine
(i.e. indecomposable of affine type) Kac-Moody algebras. This extension follows from the
vanishing of the cohomology groups Hq(b, h;S∗û∗ ⊗ L(λ) ⊗ C−µ) for q > 0, where b is the
analog of the Borel in a Kac-Moody algebra g, h is the Cartan subalgebra of g, u is the
analog of the nilpotent subalgebra of b, L(λ) is a highest-weight integrable representation of
g, and µ is a dominant weight of L(λ). To prove this vanishing theorem, we use Nakano’s
identity as in [FGT08]. Teleman’s version of Nakano’s identity is given only for L[z], but
the proof applies in a very general setting; this is explained in Chapter 2. While the loop
Grassmannian has a unique Kahler metric, the corresponding homogeneous space for (b, h)
has many Kahler metrics. We show that there is a particular Kahler metric that allows us
to imitate the Laplacian calculation of [FGT08]. Again, this can be done in a very general
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setting; this is explained in Chapter 3.
From the cohomology vanishing theorem we conclude that, as in the finite-dimensional

case, there is a filtration on L(λ)µ such that when µ is dominant, mλ
µ(q) is equal to the

Poincare series of the associated graded space. Unlike the finite-dimensional case, the prin-
cipal nilpotent is not sufficient to define the filtration in the affine case; instead we use the
positive part of the principal Heisenberg (this form of Brylinski’s identity was first conjec-
tured by Teleman). We give examples to show that mλ

µ(q) is not necessarily equal to eP λ
µ ,

so our result gives a correction of Braverman and Finkelberg’s conjecture. There are two
difficulties in extending this result to indefinite symmetrizable Kac-Moody algebras: there
does not seem to be a simple analogue of the Brylinski filtration, and the cohomology van-
ishing result does not extend for all dominant weights µ. We can overcome these difficulties
by replacing the Brylinski filtration with an intermediate filtration, and by requiring that
the root λ − µ has affine support. Thus we get some partial non-negativity results for the
coefficients of mλ

µ(q) even when g is of indefinite type. The extension of Brylinski’s filtration
to Kac-Moody algebras is explained in Chapter 6.

1.3 Strong Macdonald theory

One of the first significant achievements in the theory of Kac-Moody algebras was the proof,
by Kac [Ka74], of a generalization of the Weyl character formula for highest weight represen-
tations to symmetrizable Kac-Moody algebras. This character formula synthesized a number
of previously discovered identities in algebraic combinatorics; in particular, the Weyl denom-
inator identity for affine Kac-Moody algebras is equivalent to certain Dedekind’s η-function
identities discovered by Macdonald [Ma72a].

The strong Macdonald theorems give a connection between the Lie algebra cohomology
of loop algebras, and Macdonald’s constant term identity. The constant term identity states
that if ∆ is a reduced root system then

[e0]
∏
α∈∆+

N∏
i=1

(1− qi−1e−α)(1− qieα) =
l∏

i=1

(
N(mi + 1)

N

)
q

, (1.2)

where m1, . . . ,ml is the list of exponents of L and
(
a
b

)
q

is the q-binomial coefficient, defined

by (
a

b

)
q

=
(1− qa)(1− qa−1) · · · (1− qa−b+1)

(1− qb)(1− qb−1) · · · (1− q)
.

Equation (1.2) makes sense when N = +∞, in which case the identity is just the Weyl
denominator formula. Thus the constant term identity can be regarded as a truncation of
the denominator formula. Macdonald presented the identity as a conjecture in [Ma82], and
observed that it constitutes the untwisted case of a constant term identity for affine root
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systems. Further extensions (including a (q, t)-version) and proofs for individual affine root
systems followed (see for instance [BZ85] [Hab86] [Ze87] [St88] [Ze88] [Ma88] [Gu90] [GG91]
[Kad94]) until Cherednik gave a uniform proof of the most general version using double affine
Hecke algebras [Ch95].

Suppose ∆ is the root system of a semisimple Lie algebra L with exponents m1, . . . ,ml.
Prior to Cherednik’s proof, Hanlon observed in [Ha86] that the constant term identity would
follow from a stronger conjecture:

The cohomology H∗
(
L[z]/zN

)
is a free super-commutative algebra with N gen-

erators of cohomological degree 2mi + 1 for each i = 1, . . . , l, of which, for fixed
i, one has z-degree 0 and the others have z-degree Nmi + j for j = 1, . . . , N − 1.

(1.3)

Hanlon termed this the strong Macdonald conjecture, and gave a proof for L = sln. Feigin
observed in [Fe91] that the identity of (1.2) and the theorem of (1.3) follow from:

The (continuous) cohomology H∗(L[z, s]) for s an odd variable is a free super-
commutative algebra with generators of tensor degree 2mi + 1 and 2mi + 2,
z-degree n, for i = 1, . . . , l and n ≥ 0, where tensor degree refers to combined
cohomological and s-degree.

(1.4)

This version of the strong Macdonald conjecture corresponds to the (q, t) version of the
Macdonald constant term conjecture. However, an error was discovered in Feigin’s proof of
(1.4). A complete proof of (1.3) and (1.4) was given by Fishel, Grojnowski, and Teleman
[FGT08], using an explicit description of the relative cocycles combined with Feigin’s idea (a
spectral sequence argument) to prove (1.3) from (1.4). The free algebra H∗(L[s]) (which can
easily be calculated from the Hochschild-Serre spectral sequence) appears as a subalgebra
of H∗(L[z, s]), and Fishel, Grojnowski, and Teleman also prove that if b is the Iwahori
subalgebra {f ∈ L[z] : f(0) ∈ b0} then H∗(b[s]) is the free algebra H∗(b0[s]) ⊗H∗(L[s])

H∗(L[z, s]). In this case their proof does not yield explicit generating cocycles.
The strong Macdonald theorem is connected with the version of the Brylinski filtra-

tion given by Fishel, Grojnowski, and Teleman. Recall that the proof of the Brylinski
filtration for Kac-Moody algebras was based on the vanishing of the cohomology groups
H∗cts(b, h;S∗ u∗⊗L(λ) ⊗ C−µ), where b is an Iwahori in a Kac-Moody algebra, and λ is a
dominant weight. This vanishing theorem holds even when L(λ) is the trivial representa-
tion. Fishel, Grojnowski, and Teleman’s version of the Brylinski identity depended on the
vanishing of H∗cts(L[z], L;L⊗S∗L[[z]]∗), where L is a positive-level representation of the loop
algebra. In contrast to the Kac-Moody case, this vanishing theorem does not hold when L
is trivial; instead H∗cts(L[z], L;S∗L[[z]]∗) is isomorphic to H∗cts(L[z, s], L), which in turn is a
free subalgebra of H∗cts(L[z, s]) with countably many generators. So the strong Macdonald
theorem can be thought of as the failure of this cohomology vanishing theorem at level zero.
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1.3.1 Strong Macdonald conjectures for the parahoric

The second main result of this thesis is a strong Macdonald theorem for H∗(p[s]) when
p is a standard parahoric in the twisted loop algebra L[z±1]σ̃, for σ a (possibly trivial)
diagram automorphism of L. Our proof is along the same lines as [FGT08]; in particular,
we are able to give an explicit description of cocycles for the relative cohomology, and hence
apply Feigin’s spectral sequence to determine the cohomology of the truncations p/zNp
when N is a multiple of the order of σ. Combined, our results for L[z]σ̃ give an extension
of the strong Macdonald theorems to match the affine version of Macdonald’s constant
term identity. For a general parahoric, our calculation reveals that H∗(p[s]) is isomorphic
to H(p0[s]) ⊗H∗(L0[s]) H(L[z, s]σ̃), and hence can be viewed as providing an interpolation
between the two extremal results of Fishel, Grojnowski, and Teleman.

The algebras H∗(p/zNp) also have an interesting description. As in (1.3), the algebras
H∗(L[z]σ̃/zN) are free, but this is no longer the case with a non-trivial parabolic component.
The algebra H∗(p/zNp) is isomorphic to H∗(g0)⊗Coinv(Lσ, g0)⊗H∗(Lσ)H

∗(L[z]σ̃/zN), where
g0 = p0∩p0 is the reductive component of the parabolic p0, and Coinv(Lσ, g0) is the (parabolic
subalgebra of the) coinvariant algebra of the Weyl group of Lσ. A classic theorem of Borel
states that Coinv(Lσ, g0) is isomorphic to the cohomology algebra of the generalized flag
variety X corresponding to the Lie algebra pair (Lσ, p0) [Bo53] [BGG73]. The cohomology
of X is in turn isomorphic to the Lie algebra cohomology algebra H∗(Lσ, g0). If p is a
parahoric in an untwisted loop algebra, then it is not hard to show that H∗(p/zp, g0) is
isomorphic to H∗(Lσ, g0), and hence in the simplest case our result gives a Lie algebraic
proof of Borel’s theorem.

One intriguing consequence of Hanlon’s conjecture is that H∗(L[z]/zN) is isomorphic as
a vector space to H∗(L)⊗N . Since L[z]/(zN − t) ∼= L⊕N for t 6= 0, this means that while the
structure of L[z]/(zN − t) changes dramatically as t degenerates to zero, the cohomology is
unchanged. Hanlon termed this “property M”, and conjectured that it holds not only for
semisimple Lie algebras, but also for the nilpotent radical of a parabolic in a semisimple Lie
algebra and the Heisenberg Lie algebras [Ha90]. Kumar gave counterexamples to property
M for the nilpotent radical of a parabolic [Ku99]. The conjecture for Heisenberg Lie algebras
remains open, along with a number of other questions [Ha94] [HW03]. In the case of a
parahoric in a twisted loop algebra L[z±1]σ̃, if t 6= 0 then the truncation p/(zN − t)p is
isomorphic to L

⊕
N/k, irregardless of the parahoric component. Our calculation shows that

the cohomology is unchanged for L[z]σ̃/(zN − t) as t degenerates to zero, but degenerates
from H∗(L)⊗N/k to H∗(g0)⊗H∗(Lσ, g0)⊗H∗(Lσ)H

∗(L)⊗N/k for a general parahoric truncation
p/(zN − t)p.

The proof of the strong Macdonald theorem in [FGT08] is based on a Laplacian cal-
culation for H∗(L[z, s]) using the unique Kahler metric on the loop Grassmannian. The
Laplacian calculation shows that the ring of harmonic forms is isomorphic to a ring of basic
and invariant forms on the arc space L[[z]]. The well-known facts about adjoint orbits in
a reductive Lie algebra extend immediately from L to L[[z]], and can be used to determine
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the ring of basic and invariant forms on L[[z]]. As occurs with the cohomology vanishing
theorem used in the proof of the Brylinski identity, the homogeneous space corresponding
to a parahoric can have many Kahler metrics; we show that there is one particular choice of
Kahler metric that makes an analogous Laplacian calculation work. The ring of harmonic
forms is isomorphic to (a ring similar to) the ring of basic and invariant forms on p̂. To cal-
culate this ring, we study the adjoint orbits on the twisted arc space L[[z]]σ̃ (the significant
facts about adjoint orbits no longer extend immediately). As part of our calculation of the
basic and invariant forms, we show that the GIT quotient of L[[z]]σ̃ by G[[z]]σ̃ is Q[[z]]σ̃,
where Q = L//G. We also prove a slice theorem for twisted arcs in the regular semisimple
locus, and an analogue of the Kostant slice theorem. This is done in Chapter 4.

Removing the super-notation, the cohomology ring of p[s] is isomorphic to the cohomology
ring of p with coefficients in the symmetric algebra S∗p∗ of the restricted dual of p. Frenkel
and Teleman have shown that H∗(b;S∗n̂∗) is a free algebra (and determined the degrees of the
generators) when b and n are Iwahori and nilpotent subalgebras respectively of an untwisted
loop algebra [FT06]. We prove Frenkel and Teleman’s result in the twisted case and calculate
the cohomology of the corresponding truncation b /zNn. More generally, strong Macdonald
theorems for different choices of coefficients might allow us to determine the cohomology
of other truncations, such as L[z]σ̃/zN when N is not divisible by k. At the moment, this
question appears to be open.

1.4 Organization

Chapters 2-4 establish the necessary ingredients for proving strong Macdonald theorems and
developing the Brylinski filtration. Chapter 2 gives a proof of the Lie algebraic version of
Nakano’s identity using semi-infinite cohomology. Chapter 3 uses Nakano’s identity to make
the essential Laplacian calculations. Finally, Chapter 4 is concerned with proving analogues
of the Kostant slice theorems for twisted arc and jet spaces.

Chapter 5 concerns strong Macdonald theorems for parahoric subalgebras, and the cor-
responding truncations. This chapter uses the material from Chapters 2-4.

Chapter 6 concerns the Brylinski filtration for affine Kac-Moody algebras. This chapter
uses material from Chapters 2, and gives a new Laplacian calculation, analogous to one of the
Laplacian calculations from Chapter 3, but more applicable to symmetrizable Kac-Moody
algebras.
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Chapter 2

Semi-infinite cohomology and
Nakano’s identity

In this section we will construct the semi-infinite chain complex and use it to prove a Lie
algebraic version of Nakano’s identity. This version of Nakano’s identity applies to any Z-
graded Lie algebra with finite-dimensional homogeneous components and the additional data
of a grading-reversing anti-linear automorphism. As such, it generalizes the Lie algebraic
version of Nakano’s identity first given by Teleman for the loop algebra [Te95]. However,
the material in this chapter should not be regarded as new, as it follows straight-forwardly
from placing Teleman’s proof in the standard framework for semi-infinite cohomology. The
treatment of semi-infinite cohomology is based on [FGZ86] and [Vo93]. One novel detail is
the explicit formula given for the semi-infinite cocycle, which makes it easy to compute the
cocycle for specific examples.

We use the following terminology through this section:

• g =
⊕

gn will be a Z-graded Lie algebra such that dim gn < +∞ for all n.

• The grading of g induces a triangular decomposition g = u−⊕g0 ⊕ u+, where u+ =⊕
k>0 gk, and u− =

⊕
k<0 gk. The direct sum g0 ⊕ u+ will be denoted by p.

• If V =
⊕

n Vn is a Z-graded vector space, the restricted dual is defined to be
⊕

n V
∗
n ,

and will be denoted by V t. In the case of u+, the restricted dual (u+)t is the same as

the continuous dual û+
∗

of the completion of u+ defined in the introduction. However,
we use the restricted dual in this section so that we can also take a “small dual” of
Z-graded spaces such as g.

• The Clifford algebra C of the vector space g ⊕ gt with respect to the dual pairing 〈, 〉
is the universal associative algebra containing g⊕ gt such that xy + yx = 2〈x, y〉1 for
all x, y ∈ g⊕ gt.
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2.1 Semi-infinite forms

Pick a homogeneous basis {zi}i∈Z of g by running through bases of the graded components

. . . , gk−1, gk, gk+1, . . .

in order, with indexing chosen so that zi ∈ u− if and only if i < 0. Let {zi} denote the
corresponding dual basis of gt. The space of semi-infinite forms Λ∗∞ is defined to be the span
of forms

zi1 ∧ zi2 ∧ . . . ∧ zik ∧ . . .

where the sequence i1, i2, . . . satisfies a stability condition: there is some N such that ik+1 =
ik−1 for any k > N . Otherwise the forms behave as in the finite-dimensional case. Suppose
that T is a graded operator on g of degree zero. Then T will act on Λ∗∞ via the diagonal
action as long as T satisfies the following stability condition: there is some N such that for
k < N , T |gk is an element of SL(gk). Thus our construction of semi-infinite forms really
depends on a choice of “semi-infinite volume” for g, rather than a choice of basis.

Note that if T had non-zero degree then any reasonable extension of T by the diagonal
action will be zero. On the other hand T can be extended to Λ∗∞ as a derivation. For
example, if n 6= 0 then gn acts on

∧∗
∞ by the adjoint action. Denote this action by ρ. On

the other hand, degree zero maps can’t necessarily be extended by derivations. The rest of
this section is about how to define a coadjoint action of g0 on Λ∗∞.

Semi-infinite forms are by definition constructed from the restricted dual, and conse-
quently interior and exterior multiplication are still well-defined. If x ∈ g then ι(x) will
denote interior multiplication by x. Similarly if f ∈ gt then ε(f) will denote exterior mul-
tiplication by f . As in the finite-dimensional case, the anti-commutator [ε(f), ι(x)] acts as
scalar multiplication by f(x), so Λ∗∞ is a C-module. It is not hard to see that it is irreducible.
Let 〈, 〉 denote the dual pairing between g and gt. The algebra g acts on itself by the adjoint
action, and the coadjoint action on gt is defined so that 〈x · y, f〉 = −〈y, x · f〉. It follows
that g acts on the Clifford algebra C. Note that if x ∈ gn, n 6= 0, then

ρ(x)cω = (x · c)ω + cρ(x)ω.

Another way to think of this is that [ρ(x), ι(z)] = ι([x, z]) and [ρ(x), ε(f)] = ε(adt(x)f). This
idea is the starting point for defining the action of g0. Let ω0 denote the homogeneous form

ω0 = z−1 ∧ z−2 ∧ z−3 ∧ . . . ,

and define ρ(x)ω0 = β(x)ω0 for all x ∈ g0, where β is chosen from gt0. The annihilator of ω0

in C is generated by the elements of p and (u−)t, and is thus preserved by g0. Thus ρ(x) can
be extended to all semi-infinite forms by the formula ρ(x)cω0 = (x · c)ω0 +β(x)cω0. Because
g acts by algebra derivations on C, it follows immediately that ρ(x)cω = (x · c)ω + cρ(x)ω
for all x ∈ g and forms ω. In particular, ρ(x) is completely determined by ρ(x)ω0. For
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instance, [ρ(x), ρ(y)]cω0 = ([x, y] · c)ω0 + c[ρ(x), ρ(y)]ω0, so ρ is a Lie algebra action if and
only if [ρ(x), ρ(x)]ω0 = ρ([x, y])ω0. Since [ρ(x), ρ(y)] = 0 for x, y ∈ g0, ρ is only projective
in general. This can be fixed for g0 by choosing β vanishing on [g0, g0], but cannot be fixed
over g.

Proposition 2.1.1. Let ρ denote the action of g on Λ∗∞ defined above. Then ρ can be
expressed in terms of the C action as

ρ(x) =
∑
i≥0

ε(x · zi)ι(zi)−
∑
i<0

ι(zi)ε(x · zi) + β(x),

where the formal sums are finite on any element of Λ∗∞.

From an intuitive perspective, given ω and x ∈ g it is possible to find c ∈ C such that
ρ(x)ω = cω, and the formal sum allows us to find c in a nice way. More formally, the formal
sum represents the action of an element of a completed Clifford algebra Ĉ constructed as
follows: take the obvious linear isomorphism

C ∼=
∗∧(

u−⊕pt
)
⊗
∗∧((

u−
)t ⊕ p

)
,

and grade the second exterior factor by giving (u−)t the natural Z>0-grading which reverses
the grading on u−. Define Ĉ to be the completion of C with respect to this grading, i.e.
elements of Ĉ are sums

∑
n≥0 anbn where an ∈

∧∗ (u−⊕pt) and bn is an element of total

degree n in
∧∗ ((u−)

t ⊕ p
)
. The action of C on

∧∗
∞ extends to an action of Ĉ.

Proof of Proposition 2.1.1. Suppose x ∈ gn, n 6= 0, and ω ∈ Λ∗∞. Then there is some N such
that

ρ(x)ω =
N∑

i=−N

ε(x · zi)ι(zi)ω.

Since x · zi is zero on zi, ε(x · zi) anti-commutes with ι(zi) in C, so the formal sum is valid
in this case. If x ∈ g0 then all the terms except β(x) vanish on ω0, and only finitely many
terms are non-zero on any element of Λ∗∞.

Since only finitely many terms are relevant at any given time, the commutator calculations

[ε(x · zi)ι(zi), ι(zk)] = zi([x, zk])ι(zi) = −[ι(zi)ε(x · zi), ι(zk)]

and
[ε(x · zi)ι(zi), ε(zk)] = δikε(x · zk) = −[ι(zi)ε(x · zi), ε(zk)]

prove that the commutator of the formal sum with c ∈ C gives x · c. Thus ρ(x) is given by
the formal sum for x ∈ g0 as well.
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One of the keys to working with the formal sum is the following lemma:∑
zi∈gn

x · zi ⊗ zi +
∑

zj∈gn−k

zj ⊗ [x, zj] = 0

for fixed n ∈ Z and x ∈ gk.

Proposition 2.1.2. Let ρ be the action of g constructed above from β ∈ gt0. Then:

• ρ is a projective action, in the sense that

[ρ(x), ρ(y)] = ρ([x, y]) + γ(x, y),

where γ : g × g → C is a 2-cocycle. In addition γ|gm×gn = 0 unless m + n = 0, and
γ|g0×g0 = dβ, where d is the Lie algebra cohomology operator.

• Denote the dependence of γ on β by γ ≡ γβ. Then

γβ0 − γβ1 = d(β0 − β1),

where d is the Lie algebra boundary map for g.

• If [γ] is a trivial cohomology class in H2(g,C) then there is a choice of β ∈ gt0 such
that γ = 0.

Proof. Suppose x ∈ gk, y ∈ gl. Using the action of g on C combined with Proposition 2.1.1,
we get that

[ρ(x), ρ(y)] =
∑
i≥0

ε(x · y · zi)ι(zi) + ε(y · zi)ι(x · zi)−
∑
i<0

ι(x · zi)ε(y · zi) + ι(zi)ε(x · y · zi).

Now for n ≥ 0, the term ∑
zi∈gn

ε(y · zi)ι(x · zi)

can be replaced with

−
∑

zi∈gn+k

ε(y · x · zi)ι(zi),

and similarly if n < 0. Thus it immediately follows that

[ρ(x), ρ(y)] = ρ([x, y])− β([x, y]) + cxy,

where

cxy = −
∑
k≤n<0

∑
zi∈gn

[ε(y · x · zi), ι(zi)] +
∑

0≤n<k

∑
zi∈gn

[ι(zi), ε(y · x · zi)]

= −
∑
k≤n<0

∑
zi∈gn

zi([x, [y, zi]]) +
∑

0≤n<k

∑
zi∈gn

zi([x, [y, zi]]).
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If k + l 6= 0 then [x, [y, zi]] 6∈ gn+k in each summand, so cxy will be zero. Let γ(x, y) =
cxy +dβ(x, y). That γ is a cocycle follows from the Jacobi identities for g and End(Λ∗∞), and
the fact that [ρ(x), ρ(y)] is skew-symmetric in x and y.

Finally, suppose γ = dα for some α ∈ gt. Since γ|gm×gn = 0, m + n 6= 0, we can assume
that α ∈ gt0. By replacing β with β − α, we get the cocycle γ − dα = 0.

If x ∈ gk, y ∈ g−k, and k > 0 then the operator ad(x) ad(y) acts on each gn. The quantity
cxy appearing in the proof is easily seen to be

∑
0≤n<k trgn(ad(x) ad(y)), and consequently

γ(x, y) =
∑

0≤n<k

trgn(ad(x) ad(y)) + dβ(x, y).

This formula can easily be verified by calculating ([ρ(x), ρ(y)]− ρ([x, y]))ω0, and observing
that ∑

0≤n<k

trgn(ad(x) ad(y)) =
∑
−k≤n<0

trgn(ad(y) ad(x)).

We will make heavy use of this formula for γ.
So far we have only assumed that g is Z-graded with finite-dimensional components.

However, our construction of semi-infinite forms that g is infinite-dimensional, and indeed the
existence of semi-infinite forms stems from the fact that infinite-dimensional Clifford algebras
have more irreducible representations than their finite-dimensional analogues. Nonetheless,
as long as our arguments can be phrased in terms of the Clifford action, they hold for finite-
dimensional Lie algebras just as well; hence the results of this and the following sections
do hold for finite-dimensional Lie algebras where Λ∞ is replaced with the ordinary exterior
algebra

∧∗ gt. If we place g in degree zero, then the semi-infinite cohomology is the same as
the ordinary cohomology, but if we choose a different grading we can get something new.

2.2 The semi-infinite Chevalley complex

The degree of a semi-infinite monomial ω = zi1 ∧ zi2 ∧ . . . is defined to be

|{i1, i2, . . .} ∩ Z≥0| − |Z<0 \ {i1, i2, . . .}|.

Another way to define the degree is to declare that ω0 has degree 0, that gt ⊂ C acts by
degree +1, and that g ⊂ C acts by degree −1. Let Λk

∞ be the span of the monomials of
degree k, and define a boundary operator d : Λk

∞ → Λk+1
∞ by

d =
1

2

∑
i≥0

ε(zi)ρ(zi) +
1

2

∑
i<0

ρ(zi)ε(z
i) +

1

2
ε(β),

where ρ and β are as in the previous section. Note that changing β to β + β′ changes d to
d+ ε(β′). Also d is an operator of degree 1.
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The Clifford algebra C contains the exterior algebra
∧∗ gt, which acts on Λ∗∞ by exterior

multiplication. Similarly the completed Clifford algebra Ĉ contains a completed exterior

algebra
∧̂∗

gt which extends the action of
∧∗ gt. Specifically,

∧̂∗
gt is the completion of∧∗ pt ⊗∧∗(u−)t with respect to the grading on the second factor, or equivalently the tensor

product
∧∗ pt ⊗ (

∧∗ u−)
∗
, where we take the full dual in the second factor. Intuitively,

elements of
∧̂∗

gt are elements α of the full dual of
∧∗ g such that for any k the restriction of α

to
⊕

n>k gn is contained in the restricted dual
∧∗ gt. The semi-infinite cocycle is a particular

example of
∧̂∗

gt. The completed exterior algebra
∧̂∗

gt is closed under the ordinary Lie
algebra cohomology differential.

Proposition 2.2.1. Let d be the boundary operator defined above. Then:

• The anticommutator [d, ι(x)] = ρ(x) for all x ∈ g.

• The commutator [ρ(x), d] = [ι(x), ε(γ)] for all x ∈ g.

• d2 = ε(γ), where γ is the projective cocycle corresponding to the projective action ρ.

• Suppose α ∈
∧̂∗

gt. Then [d, ε(α)] = ε(dα), where dα refers to the ordinary boundary
map in Lie algebra cohomology.

Proof. It is useful to set d̃ = d− ε(β)/2. Using the graded commutator, we get[
d̃, ι(x)

]
=

1

2

∑
i

zi(x)ρ(zi) +
1

2

∑
i≥0

ε(zi)ι([zi, x])− 1

2

∑
i<0

ι([zi, x])ε(zi)

=
ρ(x)

2
+

1

2

∑
n≥0

∑
zi∈gn+k

ε(x · zi)ι(zi)−
1

2

∑
n<0

∑
zi∈gn+k

ι(zi)ε(x · zi),

where x ∈ gk. If k 6= 0 then ε(x · zi) anticommutes with ι(zi), so the last two summands
are equal to (ρ(x) − β(x))/2. But if x ∈ g0 there is no need to take anticommutators to
show that these summands equal to (ρ(x)−β(x))/2, and hence the whole expression is equal
to ρ(x) − β(x)/2. On the other hand [ε(β), ι(x)] = β(x), so it follows immediately that
[d, ι(x)] = ρ(x).

Next,
[
ρ(x), d̃

]
= A+B, where

A =
1

2

∑
i≥0

ε(zi)[ρ(x), ρ(zi)] +
1

2

∑
i<0

[ρ(x), ρ(zi)]ε(z
i),

B =
1

2

∑
i≥0

ε(x · zi)ρ(zi) +
1

2

∑
i<0

ρ(zi)ε(x · zi)

= −1

2

∑
i≥0

ε(zi)ρ([x, zi])−
1

2

∑
i<0

ρ([x, zi])ε(z
i)− cx

2
,
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for x ∈ gk and

cx =
∑
−k≤n<0

∑
zi∈gn

[ε(zi), ρ([x, zi])] +
∑

0≤n<−k

∑
zi∈gn

[ρ([x, zi]), ε(z
i)]

= −
∑
−k≤n<0

∑
zi∈gn

ε([x, zi] · zi) +
∑

0≤n<−k

∑
zi∈gn

ε([x, zi] · zi).

So [
ρ(x), d̃

]
=

1

2

∑
i

γ(x, zi)ε(z
i)− cx

2

is multiplication by a 1-form. Applying this 1-form to y ∈ gl we get

γ(x, y)

2
+

1

2

∑
−k≤n<0

∑
zi∈gn

zi([y, [x, zi]])−
1

2

∑
0≤n<−k

∑
zi∈gn

zi([y, [x, zi]]).

Now this is zero unless k + l = 0, in which case using the expression for γ(x, y) from the
previous section this is equal to

γ(x, y)

2
− γ(y, x) + β([y, x])

2
= γ(x, y) +

β([x, y])

2
.

Multiplication by the 1-form sending y to γ(x, y) agrees with the operator [ι(x), ε(γ)], so

[ρ(x), d] =
[
ρ(x), d̃

]
+
ε(x · β)

2
= [ι(x), ε(γ)].

To get d2, let ω be any form zN−1∧zN−2∧zN−3∧· · · , where there is some n > 0 such that
zN−1, zN−2, . . . runs through bases for gk, k < n, in descending order. All pure semi-infinite
forms can be constructed by successively applying the operators ι(x) to forms ω of this type.
Now dω = 0, so d2ω = 0 = ε(γ)ω. Also

[ι(x), d2 − ε(γ)] = [ι(x), d]d− d[ι(x), d]− [ι(x), ε(γ)]

= ρ(x)d− dρ(x)− [ι(x), ε(γ)] = 0.

So ker(d2 − ε(γ)) is closed under successive interior multiplications. Thus d2 = ε(γ) on Λ∗∞.
To prove the last part of the Proposition for α ∈

∧∗ gt, we only need to show that
[d, ε(α)] = ε(dα) for α a 1-form, since then we will have dα ∧ ω = (dα) ∧ ω + α ∧ dω. If α is
a 1-form, then

[d, ε(α)] =
1

2

∑
i≥0

[ε(α), ρ(zi)]ε(z
i) +

1

2

∑
i<0

ε(zi)[ρ(zi), ε(α)]

=
1

2

∑
i

ε(zi)ε(zi · α) = ε(dα).
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If α is a completed k-form, let αN be the restriction of α to
⊕

n≥N gn. Then (dα)N depends
only on α2N , and in fact (dα)N = (dα2N)N . If ω is any semi-infinite form then there is N

such that α∧ω = αK ∧ω for all K < N and forms α ∈
∧̂∗

gt. Choosing N < 0 small enough
so that this property holds simultaneously for ω and dω simultaneously, we get that

[d, ε(α)]ω = [d, ε(α2N ]ω = ε(dα2N)ω

= (dα2N)Nω = ε(dα)ω.

One consequence of this proposition is that if ω is a completed k-form on g, then
[d, ε(ω)] = 0 if and only if ω is a cocycle.

Definition 2.2.2. Let V be a Z-graded vector space. A g-action on V is simply a graded
linear map π : g → End(V ) (the idea is to allow projective representations and other such
things). We say that the action is negative-energy if there is N ∈ Z such that Vn = 0 for
n ≥ N0.

The space of semi-infinite forms with coefficients in V is the graded space Λ∗∞ ⊗ V , and
is denoted by Λ∗∞(V ). If V has a p-finite action, then the boundary map dV is defined to be

dV = d⊗ 1V +
∑
i

ε(zi)π(zi).

The action ρ+ π of g on Λ∗∞(V ) will be denoted by θ.

We use negative energy actions for simplicity, but it is likely that the class of actions
we consider can be considerably loosened; for example, locally negative energy (i.e. for all
v ∈ V there is N such that π(gn)v = 0 for n ≥ N) is fine.

Corollary 2.2.3. Let V be a graded vector space with an negative-energy action. Let Θ be
the End(V )-valued 2-form

∑
i<j z

i ∧ zj ([π(zi), π(zj)]− π([zi, zj])). Then:

• d2
V = ε(γ + Θ).

• [ι(x), dV ] = θ(x).

• [θ(x), dV ] = [ι(x), ε(γ + Θ)].

Θ should be thought of as a curvature term.
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Proof. Recall that the anticommutator [ε(f), d] = ε(df) = 1
2

∑
i ε(z

i)ε(zif). So

d2
V = d2 ⊗ 1 +

∑
i

[ε(zi), d]π(zi) +
∑
i,j

ε(zi)ε(zj)π(zi)π(zj)

= ε(γ) +
1

2

∑
i,j

ε(zi)ε(ziz
j)π(zj) +

∑
i,j

ε(zi)ε(zj)π(zi)π(zj)

= ε(γ)− 1

2

∑
i,j

ε(zi)ε(zj)π([zi, zj]) +
∑
i<j

ε(zi)ε(zj)[π(zi), π(zj)]

= ε(γ) +
∑
i<j

ε(zi)ε(zj) ([π(zi), π(zj)]− π([zi, zj])) .

Next
[ι(x), dV ] = [ι(x), d] +

∑
i

[ι(x), ε(zi)]π(zi) = ρ(x) + π(x) = θ(x).

Finally

[ρ(x), dV ] = [ι(x), ε(γ)] +
∑
i

ε(x · zi)π(zi) = [ι(x), ε(γ)]−
∑
i

ε(zi)π([x, zi]).

while
[π(x), dV ] =

∑
i

ε(zi)[π(x), π(zi)]

So far we have defined Λ∗∞(V ) ≡ Λ∗∞(g;V ). Now we define the relative Chevalley complex.

Corollary 2.2.4. Let h be a subgroup of g. The space of relative forms Λ∗∞(g, h;V ) is defined
to be the intersection of the kernels of the operators θ(x), x ∈ h and ι(x), x ∈ h.

• dV restricts to an operator on Λ∗∞(g, h;V ) if and only if ε(γ+Θ) restricts to an operator
on Λ∗∞(g, h;V ).

• [ι(x), ε(γ+Θ)] = 0 for all x ∈ h is a sufficient condition for dV to restrict to Λ∗∞(g, h;V ).

• [ι(x), ε(γ)] = 0 for all x ∈ h if and only if γ|h×g = 0, while [ι(x), ε(Θ)] = 0 if and only
if π([x, y]) = [π(x), π(y)] for all x ∈ h and y ∈ g.

Proof. If dV restricts, then so does d2
V = ε(γ + Θ). Going in the other direction, if ε(γ +

Θ) restricts to an operator on Λ∗∞(g, h;V ) and ω is in this latter space then ι(x)dV ω =
−dV ι(x)ω + θ(x)ω = 0, while θ(x)dV ω = dV θ(x)ω + [ι(x), ε(γ + Θ)]ω = 0. This also gives
the second part of the proposition.

The last part of the proposition is obvious, since [ι(x), ε(γ)] = ε(α), where α is the 1-chain
sending y 7→ γ(x, y), and a similar argument works for Θ.
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Example 2.2.5. If h = g0 then γ|g0×g = 0 if and only if β|[g0,g0] = 0.

Example 2.2.6. The hypotheses of this corollary hold very naturally if h = g0, β = 0, and
π is a representation such that π|p and π|p− both preserve the Lie bracket, where p− is the
algebra u−og0. For example this happens when V is one of the truncated spaces u+ = g/p−

or p = g/ u−.

2.3 A bigrading on semi-infinite forms

The basic idea of this section is to give Λ∗∞ a bigrading as follows: a form zi1 ∧ zi2 ∧ zi3 ∧ · · ·
has bidegree (a, b), where

a = |{i1, i2, . . .} ∩ Z≥0| and b = −|{i1, i2, . . .} ∩ Z<0|.

This grading could also be constructed by giving ω0 bidegree (0, 0), declaring ε(f) to have
bidegree (0, 1) when f ∈ pt, and declaring ι(x) to have bidegree (−1, 0) when x ∈ u−. The
total degree of ω is a+ b as before.

Another way to define the bigrading is to look at the space

Ca,b ≡ C
(a,b)
β =

b∧
pt ⊗

−a∧
u−⊗Cβ.

There is an obvious bidegree-preserving bijection between C∗,∗ and Λ∗∞— namely, that which
sends α⊗b to ε(α)ι(b1) . . . ι(bk)ω0. The term Cβ is not relevant to the vector space structure,
but does affect the g0-module structure on Ca,b. There is actually an action of p⊕u− (direct
sum of Lie algebras, so [p, u−] is defined to be zero) on Ca,b, given by considering u− as the
p-module g/p and pt as the dual of the u−-module g/ u−. Denote the action of p ⊕ u− on

itself by ãd, and the dual action by ãd
t
. The map Ca,b ∼= Λa,b

∞ is g0-linear, but neither u+ nor
u−-linear. The map Ca,b ∼= Λa,b

∞ is also C-linear, where p and pt act as usual on
∧b pt, and u−

and (u−)t act on
∧−a u− by exterior and interior multiplication respectively. Note that the

action of u− and (u−)t is defined with a sign, so that for example x(α⊗ b) = (−1)|α|α⊗x∧ b
for any x ∈ u−.

Proposition 2.3.1. The boundary operator d = D + ∂̄, where D has bidegree (1, 0) and ∂̄
has bidegree (0, 1). On Ca,b, ∂̄ is the Lie algebra cohomology boundary operator

∂̄ =
∑
i≥0

ε(zi)

(
1

2
adtp(zi) + ãd(zi) + β(zi)

)
for p with coefficients in

∧∗ u−⊗Cβ, while D is the Lie algebra homology boundary operator

D =
∑
i<0

(
1

2
adu−(zi) + ãd

t
(zi)

)
ι(zi).

for u− with coefficients in
∧∗ pt.
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Proof. Let x ∈ gk, k 6= 0. If k ≥ 0 then

ρ(x) =
∑
n≥k

∑
zi∈gn

ε(x · zi)ι(zi)−
∑
i<0

ι(zi)ε(x · zi) +
∑

0≤n<k

∑
zi∈gn

ε(x · zi)ι(zi) + β(x),

where the first two summands have degree (0, 0) and the last summand has degree (1,−1).
If k < 0 then

ρ(x) =
∑
i≥0

ε(x · zi)ι(zi)−
∑
n<k

∑
zi∈gn

ι(zi)ε(x · zi)−
∑
k≤n<0

∑
zi∈gn

ι(zi)ε(x · zi),

where again the last summand has degree (−1, 1) and the first two have degree (0, 0).
From this it is clear that d = D + ∂̄ where

2∂̄ =
∑
n≥k≥0

∑
zi∈gk
zj∈gn

ε(zi)ε(zi · zj)ι(zj)−
∑
i≥0
j<0

ε(zi)ι(zj)ε(zi · zj)

−
∑
k≤n<0

∑
zi∈gk
zj∈gn

ι(zj)ε(zi · zj)ε(zi) + 2ε(β),

and

2D =
∑
j≥0
i<0

ε(zi · zj)ι(zj)ε(zi)−
∑
n<k<0

∑
zi∈gk
zj∈gn

ι(zj)ε(zi · zj)ε(zi)

+
∑

0≤n<k

∑
zi∈gk
zj∈gn

ε(zi)ε(zi · zj)ι(zj).

Start with 2∂̄. The first sum is equal to∑
i,j≥0

ε(zi)ε(adtp(zi)z
j)ι(zj) =

∑
i≥0

ε(zi) adtp(zi),

which translates straightforwardly on Ca,b to the cohomology boundary operator for p. The
last two sums

−
∑
i≥0
j<0

ε(zi)ι(zj)ε(zi · zj) =
∑

n<−k≤0

∑
zi∈gk
zj∈gn

ε(zi)ι([zi, zj])ε(z
j)

and

−
∑
k≤n<0

∑
zi∈gk
zj∈gn

ι(zj)ε(zi · zj)ε(zi) =
∑

k<−n≤0

∑
zi∈gk
zj∈gn

ι([zi, zj])ε(z
j)ε(zi)
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are equal, since in the second sum ι([zi, zj]) and ε(zj) anti-commute. Added together, these
two sums translate to

2
∑

i≥0,j<0

ε(zi)ε(ãd(zi)zj)ι(z
j) = 2

∑
i≥0

ε(zi)ãd(zi)

on Ca,b.
Next, we look at 2D. We have∑

j≥0>i

ε(zi · zj)ι(zj)ε(zi) =
∑
i<0

ãd
t
(zi)ε(z

i),

which translates to the Lie algebra differential for u−, while∑
0≤n<k

∑
zi∈gk
zj∈gn

ε(zi)ε(zi · zj)ι(zj) = −
∑

k≥−l>0

∑
zi∈gk
zj∈gl

ε(zi)ε(zj)ι([zi, zj])

= −
∑
s≥0
l<0

∑
zi∈gs
zj∈gl

ε(zj · zi)ε(zj)ι(zi)

=
∑
i≥0>j

ε(zj · zi)ι(zi)ε(zj)

is equal to the above equation. When written on Ca,b, the sum of the two becomes

2
∑
i<0

ãd
t
(zi)ι(z

i).

Finally

−
∑
n<k<0

∑
zi∈gk
zj∈gn

ι(zj)ε(zi · zj)ε(zi) =
∑
i,j<0

ι([zi, zj])ε(z
j)ε(zi),

which on Ca,b becomes ∑
i,j<0

ε([zi, zj])ι(z
j)ι(zi) =

∑
i<0

adu−(zi)ι(z
i).

If V has a negative energy action, define Ca,b(V ) = Ca,b⊗V . Then dV = ∂̄V +DV , where

∂̄V = ∂̄ ⊗ 1 +
∑
i≥0

ε(zi)π(zi)

and
DV = D ⊗ 1 +

∑
i<0

ι(zi)π(zi)

on Ca,b(V ).
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2.4 Hodge star and fundamental form

Let g be a graded Lie algebra as before, but with the additional structure of an anti-
isomorphism x 7→ x̄ such that gn = g−n. In addition, suppose that a (positive-definite)
Hermitian metric is given on u+. As usual in Hodge theory, this metric can be used
to define a Hodge star operator and an action of sl(2,C) on the subspace Ĉa,b(V ) :=∧b(u+)t ⊗

∧−a u−⊗Cβ ⊗ V of Ca,b
β (V ). In this section we define this action, and prove

a rudimentary Kahler identity.
Extend the metric on u+ to u+⊕ u− by making u+ ⊥ u− and setting (x̄, ȳ) = (x, y) =

(y, x) if x, y ∈ u−. Let φ : u− → (u+)t be the isomorphism induced by the metric, i.e.
φ(a)(b) = (b, ā). The dual metric on (u+)t is the metric which makes φ an isometry. Give
Ĉa,b(V ) a metric by multilinear extension. Explicitly the metric on an exterior power is

(a1 ∧ · · · ∧ an, b1 ∧ · · · ∧ bn) =
1

n!

∑
σ,ρ∈Sn

sgn(σ) sgn(ρ)
n∏
i=1

(aσ(i), bρ(i))

=
∑
ρ∈Sn

sgn(ρ)
n∏
i=1

(ai, bρ(i)) alternatively

=
∑
σ∈Sn

sgn(σ)
n∏
i=1

(aσ(i), bi) alternatively.

For the purposes of the next two sections, pick a basis {zi}i 6=0 for u+⊕ u− as before but
omitting g0, and obeying the convention that zi = z−i and zi ∈ u+ if and only. if i > 0. In
some situations it will be helpful to assume that {zi} is orthonormal.

Definition 2.4.1. The Hodge star ∗ is the operator

Ĉ−p,q → Ĉ−q,p : α⊗ a 7→ (−1)pqφ(a)⊗ φ−1(α).

Clearly ∗2 = 1.

Lemma 2.4.2. If α, β ∈
∧∗(u+)t, a, b ∈

∧∗ u−, then (α⊗ a, ∗β ⊗ b) = (−1)|β||b|α(b̄) · β(ā).

One way to think about this lemma is that if f ∈ Ĉ−p,q is regarded as a map
∧q u+ →∧p u− then (f, ∗β ⊗ b) = β

(
f(b̄)

)
. A consequence of this lemma is that ∗ is self-adjoint.

If S is an endomorphism of u+, let St denote the operator on
∧∗ u+ induced by dualizing

and then extending the dual as a derivation. Let S̄ denote the extension of the conjugate on
u− to

∧∗ u−.

Lemma 2.4.3. Let {zi} be an orthonormal basis following the above convention.

• If i > 0 then ι(zi)
∗ = ε(zi). If i < 0 then ι(zi)∗ = ε(zi).
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• If f ∈ (u+)t and z ∈ u+ then ∗ε(f)∗ = ε(φ−1(f)), and ∗ι(z)∗ = ι
(
φ(z̄)

)
.

• If S, T ∈ End(u+) then (St ⊗ T̄ )∗ = ∗(T t ⊗ S̄)∗.

Proof. The adjoints are obvious after taking an ordered orthonormal basis. If α ⊗ β ∈ Ĉp,q

then

∗ε(f) ∗ α⊗ b = (−1)|α||b| ∗ f ∧ φ(b)⊗ φ−1(α) = (−1)|α|α⊗ φ−1(f) ∧ b = ε(φ−1(f))α⊗ b.

while

∗ι(z)∗α⊗b = ∗(−1)|α||b|
∑
i

(−1)iφ(bi)(z)φ(b0)∧· · ·∧ ˇφ(bi)∧· · ·⊗φ−1(α) = (−1)|α|α⊗ι
(
φ(z̄)

)
b,

since φ(bi)(z) = φ(z)
(
bi
)
, and this latter expression is ι(φ(z))α⊗ b.

Finally,(
(St ⊗ T̄ )(α⊗ a), ∗β ⊗ b

)
= α(Sb̄)β (T (ā)) = α

(
S̄(b)

)
T t(β)(ā) =

(
α⊗ a, ∗(T t ⊗ S̄)(β ⊗ b)

)
.

Thus
(
(St ⊗ T̄ )A,B

)
=
(
(St ⊗ T̄ )A, ∗ ∗B

)
=
(
A, ∗(T t ⊗ S̄) ∗B

)
.

The first part of the proposition can be expressed in coordinate free fashion using the
fact that φ(z−i) = zi.

By definition, the fundamental form of the metric is ω = −i
∑

i,j≥1(zi, zj)z
i ∧ z−j. The

operator ε(ω) can be written on Ĉa,b(V ) as L = −i
∑

(zi, zj)ε(z
i)ι(z−j). For convenience,

assume that {zi} is an orthonormal basis so that L = −i
∑

i≥1 ε(z
i)ι(z−i). Then L is an

operator of bidegree (1, 1), and

Λ = L∗ = i
∑
i≥1

ε(z−i)ι(zi)

is an operator of type (−1,−1). Now

H := [Λ, L] =
∑
i,j≥1

[ε(z−i)ι(zi), ε(z
j)ι(z−j)] =

∑
i≥1

ε(z−i)ι(z
−i)− ε(zj)ι(zj)

acts on Ĉp,q by −p− q. Thus [H,L] = −2L and [H,Λ] = 2Λ. This proves that the operators
{H,Λ, L} give an action of sl(2,C) on Ĉ∗,∗(V ).

The proof of the following proposition (for g a loop algebra) can be found in [Te95].

Proposition 2.4.4. Let V be a Z-graded vector space with a negative-energy g-action such
that Vn is finite-dimensional for all n. Then the action of sl(2,C) on Ĉ∗,∗(V ) lifts to an
action of SL(2,C). Consequently

exp
(π

2
(Λ− L)

)
= i−p+q ∗ .



CHAPTER 2. SEMI-INFINITE COHOMOLOGY AND NAKANO’S IDENTITY 29

on Ĉp,q(V ).
Finally, if T is a bigraded operator on Ĉ∗,∗(V ) of total degree one and [L, T ] = 0, then

∗T∗ =

{
i[Λ, T ] T has degree (1, 0)

−i[Λ, T ] T has degree (0, 1).

The last part of this proposition is a version of what are called Kahler identities.

Proof. Note that Λ annihilates Ĉ−1,0 = u− and sends Ĉ0,1 to Ĉ−1,0, while L annihilates Ĉ0,1

and sends Ĉ−1,0 to Ĉ0,1. Thus M = Ĉ−1,0 ⊕ Ĉ0,1 = (u+)t ⊕ u− is an sl(2,C)-submodule of
Ĉ∗,∗. Because of the grading assumption, M is a direct sum of irreducible representations of
highest weight 1, so M is integrable. It is helpful to write the action of Λ, L, and H on M
in block matrix form with respect to the direct sum decomposition M = u−⊕(u+)t:

Λ =

(
0 i∗
0 0

)
, L =

(
0 0
−i∗ 0

)
, and H =

(
1 0
0 −1

)
.

On M the operator Λ− L is equal to i∗, so

exp (θ(Λ− L)) = cos(θ)1 + sin(θ)i ∗ .

Now Ĉ∗,∗ is the exterior algebra of M , albeit with a modified grading. Extending the
sl(2,C)-action on M by derivations gives an sl(2,C)-action on Ĉ∗,∗. But H,Λ, and L act by
derivations on Ĉ∗,∗, so this new action agrees with the one we started with. Thus the action
of sl(2,C) on Ĉ∗,∗ can be integrated by taking the diagonal action of SL(2,C) on

∧∗M .
Thanks to the term (−1)pq in the definition of the Hodge star, the Hodge star on Ĉ∗,∗ agrees
with its diagonal extension to

∧∗M . Consequently

exp
(π

2
(Λ− L)

)
= i−p+q ∗ .

on Ĉp,q.
Finally, SL(2) acts on End(Ĉ∗,∗) by conjugation. If T is a graded operator of degree (1, 0)

or (0, 1) on Ĉ∗,∗ then [H,T ] = −T . If [L, T ] = 0 then T is a lowest weight vector of weight
−1, so {T,ΛT} is an irreducible subrepresentation of highest weight 1. If v is a lowest weight
vector in this irreducible representation then LΛv = v, so

exp (θ(Λ− L)) = cos θv + sin θΛ(v).

The conjugate of T by i−p+q∗ is −i ∗ T∗ if T has degree (1, 0), and i ∗ T∗ if T has degree
(0, 1). Comparing these two expressions for exp(π(Λ− L)/2)T finishes the proposition.
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2.5 The Kahler identities

In this section we continue the conventions of the previous section, including the choice of
basis for u+⊕ u−. Additionally, suppose that dV preserves the space Λ∗∞(g, g0;V ). The map
Ca,b
β (V ) ∼= Λ∗∞(V ) is g0-linear, and preserves the action of ι(x) for all x ∈ g0. The space of

ι(x)-invariants, x ∈ g0, can thus be identified with the space Ĉa,b(V ) defined in the previous
section. The space Λ∗∞(g, g0;V ) can be identified with the space Ĉa,b(V )g0 of g0-invariants in
Ĉa,b(V ). While the operator dV , and consequently the operators ∂̄ and D, act on the latter
space of g0-invariants, it is not clear that ∂̄ preserves the space Ĉa,b(V ). However, on the
space of g0-invariants ∂̄ agrees with the Lie algebra cohomology differential

∂̄res :=
∑
i≥1

ε(zi)

(
1

2
adtu+(zi) + ãd(zi) + π(zi)

)
.

for u+ with coefficients in
∧∗ u−⊗V . Thus we can use this as the definition of ∂̄V on Ĉa,b(V ).

Proposition 2.5.1. Let V be a vector space with a negative-energy g-action π, and a metric
(, ) such that π(x)∗ = −π(x̄). If ∂̄V ≡ ∂̄res and DV are the relative boundary operators on
Ĉa,b(V ) then ∂̄∗V = − ∗DV ∗, and D∗V = − ∗ ∂̄V ∗.

Proof. Suppose {zi} is an orthonormal basis. If z ∈ u+, then adtu+(z) is the dual of − adu+(z),

while adu+(z) = adu−(z̄). So adtu+(z)∗ = − ∗ adu−(z̄)∗. Similarly if z ∈ u− then ãd
t
(z) on

(u+)t is the dual of −ãd(z) on u+, while ãd(z) = ãd(z̄), so if z ∈ u+ then ãd(z)∗ = −∗ãd
t
(z̄)∗.

Finally π commutes with ∗, so π(z)∗ = − ∗ π(z̄)∗. Thus

∂̄∗ =
∑
i≥1

(
1

2
adtu+(zi)

∗ + ãd(zi)
∗ + π(zi)

∗
)
ι(zi)

= −
∑
i≥1

∗
(

1

2
adu−(z−i) + ãd

t
(z−i) + π(z−i)

)
∗ (∗ι(z−i)∗)

= − ∗D ∗ .

Since ∗ is self-adjoint, this also proves that D∗ = − ∗ ∂̄∗.

Definition 2.5.2. Say that a metric on g is graded if gn ⊥ gm for m 6= n. A Kahler metric
for (g, g0) is a graded g0-contragradient positive-definite Hermitian metric (, ) on u+ such
that the corresponding fundamental form ω = −i

∑
i,j≥1(zi, zj)z

i ∧ z−j is a cocycle.

A metric is g0-contragradient if ad(x)∗ = − ad(x) for all x ∈ g0. A Kahler metric can
be regarded as a metric on g by extending by conjugation on u− (as done in the previous
section), and by zero on g0. The point of g0-contragradience is that the adjoint of a g0-linear
map with respect to a g0-contragradient metric will be g0-linear. The fundamental form ω



CHAPTER 2. SEMI-INFINITE COHOMOLOGY AND NAKANO’S IDENTITY 31

of a metric on u+ can be written explicitly as the 2-form on g sending x ∈ u+, y ∈ u− to
−iω(x, y). The scalar multiple of −i is chosen so that ω is conjugation equivariant. The
cocycle condition states that

ω([x, y], z)− ω([x, z], y) + ω([y, z], x) = 0

for all x, y, z ∈ g. Since ω is zero on g0 by convention, the requirement that (, ) be g0-
contragradient is implied by the cocycle condition when one of x, y, z ∈ g0. Since ω is
conjugation invariant and of type (1, 1), if g0-contragradience is assumed then the cocycle
condition only needs to be checked for x, y ∈ u+, z ∈ u−. Hence the cocycle condition can
be written in terms of the metric as

([x, y], z) + (y, [x, z])− (x, [y, z]) = 0

for all x ∈ gn, y ∈ gm, z ∈ g−m−n, m,n > 0.

Example 2.5.3. Consider the loop algebra g = L[z±1] graded by z-degree, where L is a simple
finite-dimensional Lie algebra. Then (g, g0) has a unique (up to positive scalar multiple)
Kahler metric given by (xzn, yzm) = δmnm(x, y)inv, where (, )inv is a contragradient metric
on L.

To show that this is unique, observe that g0 = L, and that gn is isomorphic to the
adjoint representation of L as a g0-module. The graded and g0-contragradience assumptions
imply that the restriction of a Kahler metric (, ) to gn is a scalar multiple of the unique
contragradient metric on L, i.e. (xzn, yzm) = δmncm(x, y)inv. For the cocycle condition, we
then have to check that cm+n − cm − cn = 0, so cn = nc1.

If ω is the fundamental form of a Kahler metric then [ε(ω), dV ] = 0. Comparing gradings
it follows that [ε(ω), ∂̄V ] = [ε(ω), DV ] = 0. Now L = ε(ω) preserves Ĉ∗,∗(V ), annihilates gt0,
and acts as an algebra derivation. So L also preserves the obvious complementary subspace
to Ĉ∗,∗(V ) in C∗,∗(V ), namely the ideal of the exterior algebra generated by gt0 (for contrast,
D does not preserve this complementary subspace). If α ∈ Ĉa,b(V ), then ∂̄V α = ∂̄resα+ (∗),
where (∗) is in this complementary subspace. So [∂̄res, L] = 0 = [D,L] on Ĉa,b(V ). If V has
a metric such that π(x)∗ = −π(x̄) then Propositions 2.4.4 and 2.5.1 combine to give

D∗ = i[Λ, ∂̄] and ∂̄∗ = −i[Λ, D]

on Ĉa,b(V ). These are the canonical Kahler identities.
Since the operators D, D∗, ∂̄, and ∂̄∗ are odd, the graded commutators � = [DV , D

∗
V ]

and � = [∂̄V , ∂̄
∗
V ] can be interpreted as Laplacians. That leads to the following proposition,

whose proof once again is taken from [Te95].

Proposition 2.5.4 (Nakano’s identity). Suppose V is a Z-graded vector space with dimVn <
+∞ and a negative-energy g-action. Let γ be the semi-infinite cocycle and let Θ be the
curvature of V . If V has a metric such that π(x)∗ = −π(x̄) then

� = � + i[ε(γ + Θ),Λ]
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on Ĉa,b(V )g0.

Proof. Start by applying the Kahler identity [D,D∗] = i[D, [Λ, ∂̄]]. This latter expression
is equal to i[[D,Λ], ∂̄] + i[Λ, [D, ∂̄]]. But [D,Λ] = −i∂̄∗, so the first part of this sum is
[∂̄, ∂̄∗] = �. In the second part, D2 = ∂̄2 = 0, so [D, ∂̄] = d2 = ε(γ + Θ).

In the examples we are interested in, V has g-action π such that π|p and π|p are both Lie
algebra actions. In this case

ε(Θ) =
∑
i,j≥1

ε(zi)ι(z−j) ([π(zi), π(z−j)]− π([zi, z−j])) .

on Ĉa,b)(V ), while

Λ = i
∑
i≥1

ε(z−i)ι(zi)

with respect to an orthonormal basis in the Kahler metric. Now

[ε(zi)ι(z−j), ε(z−k)ι(zk)] = [ε(zi), ε(z−k)ι(zk)]ι(z
−j) + ε(zi)[ι(z−j), ε(z−k)ι(zk)]

= −δikε(z−k)ι(z−j) + δjkε(z
i)ι(zk).

Thus

i[ε(Θ),Λ] = −
∑
i,j,k

[ε(zi)ι(z−j), ε(z−k)ι(zk)] ([π(zi), π(z−j)]− π([zi, z−j])) (2.1)

=
∑
i,j

(
ε(z−i)ι(z

−j)− ε(zi)ι(zj)
)

([π(zi), π(z−j)]− π([zi, z−j])) (2.2)

Since the semi-infinite cocycle γ has type (1, 1), (x, y) = −γ(x, y) is a Hermitian form on u+

with fundamental form ω = iγ. Since γ is a cocycle, if (, ) is positive definite then it is a
Kahler metric for (g, g0). So i[ε(γ),Λ] = [L,Λ] = −H, so we can simplify Nakano’s identity
to:

Corollary 2.5.5. Suppose in addition to the hypotheses of Proposition 2.5.4 that V is a p
and p Lie algebra module, and that (·, ·) = −γ(·, ·) is positive definite. Then

� = � + deg +
∑
i,j≥1

(
ε(z−i)ι(z

−j)− ε(zi)ι(zj)
)

([π(zi), π(z−j)]− π([zi, z−j])) ,

where deg acts on Ĉa,b as multiplication by a+ b, and {zi} is a basis for u+ orthonormal in
the Kahler metric.
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Chapter 3

Laplacian calculations

In this section, we make a Laplacian calculation for the cohomology rings H∗cts(p̂, g0;S∗û∗)
and H∗cts(p̂, g0;S∗p̂∗), where p and u are subalgebra of a Z-graded Lie algebra g, as in the last
chapter. Specifically, we assume that g has finite-dimensional homogeneous components, an
anti-linear conjugation automorphism sending gn to g−n, and a positive-definite contragra-
dient Hermitian form (satisfying gn ⊥ gm if m 6= n and (x, y) = (x, y)). The subalgebras
p and u are equal to

⊕
n≥0 gn and

⊕
n>0 gn, respectively. While we used restricted duals gt

and ut for greater flexibility in the previous chapter, in this chapter we are only concerned
with the algebras p and u, and hence we return to using the continuous duals p̂∗ and û∗ of
the completions of p and u, as in the introduction. Also, since the conjugation operation
will be available throughout this chapter, we prefer the notation u and u to u±1. Finally, we
make a non-degeneracy assumption: we will assume that up = 0, where u is regarded as the
p-module g/p.

To be specific, choose a homogeneous basis {zk} for u, and let {zk} be the dual basis of
û∗. Let (V, π) be a p̂-module. The Koszul complex for H∗cts(p̂, g0;V ) is the chain complex
(Cq, ∂̄) defined by

Cq(p̂, g0;V ) =

(
q∧
û∗ ⊗ V

)g0

and

∂̄ =
∑
k≥1

ε(zk)

(
1

2
adtu(zk) + π(zk)

)
.

If Cq is given a positive-definite Hermitian form then the cohomology H∗ can be identified
with the set ker� of harmonic forms, where � = ∂̄∂̄∗+ ∂̄∗∂̄. The goal of this chapter is then
to calculate ker� for V = S∗p̂∗ and V = S∗û, in a Kahler metric that we will introduce.

In the prototypical example, g is a twisted loop algebra of a semisimple Lie algebra, p
is some parahoric, and u is the nilpotent subalgebra. When g = L[z±1] is an untwisted
loop algebra and p is the current algebra p = L[z], then S∗p̂∗ and S∗û∗ are isomorphic as
p̂-modules, and the relevant Laplacian calculation has been made in [FGT08]. The same
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Laplacian calculation works in our more general setting, but two considerations have to
be made. The first is that, for an arbitrary parahoric, the modules S∗p̂∗ and S∗û∗ are no
longer isomorphic, and hence we make two Laplacian calculations to cover both cases. The
second consideration is that, while L[z] has a unique Kahler metric, the same is not true of
an arbitrary parahoric. However, we show that the Laplacian can be calculated using the
Kahler metric coming from a semi-infinite cocycle. The non-degeneracy condition (u)p = 0
is needed to make sure that the Kahler metric constructed in this fashion is non-degenerate.
Note that this condition does not hold if g has a non-trivial centre. In particular, it does not
hold if g = L[z±1] where L has a non-trivial centre. However, in the latter case the centre
splits off as a direct sum, and as long as this happens, the theorems in this section still hold.

3.1 The ring of harmonic forms

Lemma 3.1.1. Let V be an p̂-module, and J a derivation of p which annihilates g0. If
φ ∈

∧k û∗ ⊗ V is p̂-invariant then

x1 ∧ · · · ∧ xk 7→ φ(Jx1, . . . , Jxk) (3.1)

is a cocycle in Ck(p̂, g0;V ).

Proof. Let f be the cochain constructed as in equation (3.1). Then

(∂̄f)(x0, . . . , xk) =
∑
i<j

(−1)i+jf([xi, xj], . . . , x̌j, . . .) +
∑
i

(−1)ixif(. . . , x̌i, . . .)

=
∑
i<j

(−1)i+jφ(J [xi, xj], Jx0, . . .) +
∑
i

(−1)ixiφ(Jx0, . . .)

=
∑
i

(−1)i
(
adt(xi)φ

)
(Jx0, . . . , x̌i, . . .) +

∑
i

(−1)ixiφ(Jx0, . . . , x̌i, . . .),

where the last equality follows from the fact that J is a derivation (adt denotes the adjoint
action of p̂ on û∗, extended as a derivation to the exterior product). If φ is p̂-invariant then
the last line is zero, so f is a cocycle. That f is g0-invariant is clear from the p̂-invariance
and the fact that J annihilates g0.

Definition 3.1.2. A cochain ω ∈
∧∗ û∗⊗S∗p̂∗ is û-basic if ι(f)ω = 0 for all linear functions

f : p̂→ û of the form y 7→ [x, y], x ∈ û.

The main theorem of this section allows us to identify H∗cts(p̂, g0;S∗p̂∗) with the ring of
û-basic p̂-invariant cochains.

Theorem 3.1.3. There is a positive-definite Hermitian form on C∗ = C∗(p̂, g0;S∗p̂∗) and
a derivation J of p such that the harmonic forms in C∗ are closed under multiplication,
and furthermore the map in Lemma 3.1.1 gives an isomorphism between the ring of û-basic
p̂-invariant elements of

∧∗ û∗ ⊗ S∗p̂∗ and the ring of harmonic forms.
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Before proceeding to the proof, we note that Theorem 3.1.3 can be rephrased in a geo-
metric manner. Let P and N be pro-Lie groups with Lie algebras p̂ and û respectively. The
space p/

⊕
n>k gn has the structure of an affine variety, so the pro-algebra p̂ can be regarded

as a pro-variety, with coordinate ring S∗p̂∗.

Definition 3.1.4. The tangent space T p̂ is isomorphic to p̂ × p̂. Let T>0p̂ denote the sub-
bundle of T p̂ isomorphic to p̂ × û, and T ∗>0p̂ the continuous dual bundle of T>0. Let Ω∗>0p̂
denote the ring of global sections of

∧∗ T ∗>0p̂.
The bundle T>0p̂ contains all tangents to N -orbits. We will say that an element of Ω∗>0p̂

is N -basic if it vanishes on all tangents to N -orbits.

With this terminology, we can identify the ring of û-basic p̂-invariant cochains with the
ring of P-invariant N -basic elements of Ω∗>0p̂.

Although Theorem 3.1.3 covers the main case of interest, a more natural result occurs
if S∗p̂∗ is replaced with S∗û∗. An element ω of

∧∗ û∗ ⊗ S∗û∗ is p̂-basic if ι(f)ω = 0 for all
linear endomorphisms f of û of the form y 7→ [x, y], x ∈ p̂.

Theorem 3.1.5. There is a positive-definite Hermitian form on C∗(p̂, g0;S∗û∗) and a deriva-
tion J (the same as in Theorem 3.1.3) such that the harmonic forms are closed under mul-
tiplication, and furthermore the map of Lemma 3.1.1 gives an isomorphism between the ring
of p̂-basic and invariant elements of

∧∗ û∗ ⊗ S∗û∗ and the ring of harmonic forms.

In geometric language, the ring of p̂-basic and invariant cochains is the same as the ring
of P-basic and invariant algebraic forms on û.

As mentioned at the beginning of this chapter, the assumptions of Theorems 3.1.3 and
3.1.5 rule out the case that p is a parahoric of L[z±1] if L is a reductive algebra with a
non-trivial centre z. However, in this case L = [L,L]⊕ z, and it is easy to deduce Theorems
3.1.3 and 3.1.5 by splitting off z[z] (for instance, take J to be the identity on z[z]).

3.2 Construction of the Kahler metric

Proposition 3.2.1. Let {, } be the contragradient positive definite Hermitian form on g.
There is a derivation of p, annihilating g0 and positive-definite on u, such that (·, ·) =
{J ·, ·} = {·, J ·} is a Kahler metric for (p, g0) with fundamental form iγ, where γ is the
semi-infinite cocycle.

Proof. Let ãdp denote the truncated action of p⊕ p on p = g/u, and define

J =
∑
k≥1

ãdp(xk)ãdp(xk)
∗,

where {xk}k≥1 is a homogeneous basis for u, orthonormal in the contragradient metric. Define
(·, ·) = {J ·, ·}. Then J is positive semi-definite by definition, so (, ) is a positive semi-definite
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Hermitian form. Suppose a ∈ gn, b ∈ g−n′ , n, n
′ ≥ 0, and assume without loss of generality

that x1, . . . , xm is a basis of g1 ⊕ . . .⊕ gn. Since ãdp(xk)
∗ = −ãdp(xk) we have

(a, b) = {Ja, b} =
m∑
k=1

{[xk, a], [xk, b]}

= −
m∑
k=1

{[b, [a, xk]], xk} = −
n∑
l=1

trg−l(ad(b) ad(a)).

Now trg−l(ad(b) ad(a)) = trgn−l(ad(a) ad(b)), so −i(a, b)′ = iγ(a, b). Since γ is a cocycle and
{, } is contragradient, it follows that J is a derivation.

To give an example, suppose p is a parahoric in a twisted loop algebra g = L[z±1]σ̃ of
a semisimple Lie algebra L. The parahoric p comes from a grading of type d, where di is
a non-negative integer giving the degree of the simple root vector ei. In particular, p is
generated by g0 and the simple root vectors ei with di > 0. Now J annihilates g0, and if
di > 0 then

Jei =
[ei, [fi, ei]]

{ei, ei}
= 2〈ρ, αi〉ei,

where fi = −ei. Since J is a derivation, this determines J on all of p. There is a Kac-
Moody algebra g̃ associated to g, and this Kac-Moody algebra has a standard non-degenerate
invariant symmetric bilinear form 〈, 〉. The contragradient Hermitian form {, } on g defines a
symmetric invariant bilinear form {·, ·}, and this symmetric form extends to a scalar multiple
of the standard invariant form on g̃. The twisted loop algebra g is also graded by the root
lattice of the Kac-Moody algebra associated to g. Let ρ be a weight of the Kac-Moody
defined on simple coroots by ρ(α∨i ) = 0 if di = 0 and ρ(α∨i ) = 1 if di > 0 (note that the α∨i ’s
are coroots of the associated Kac-Moody, not of the twisted loop algebra g). Then J is the
derivation of p acting on root spaces gα as multiplication by 2〈ρ, α〉.

3.3 Calculation of the curvature term

If S is a linear operator û∗ → p̂∗, define an operator dR(S) on
∧∗ û∗ ⊗ S∗p̂∗ by

dR(S)(α1 ∧ . . . ∧ αk ⊗ b) =
∑
i

(−1)i−1α1 ∧ . . . α̂i . . . ∧ αk ⊗ S(αi) ◦ b.

If T is an operator p̂∗ → û∗, define a similar operator dL(T ) by

dL(T )(α⊗ b1 ◦ · · · ◦ · · · bl) =
∑
i

T (bi) ∧ α⊗ b1 ◦ · · · b̂i · · · ◦ bl

Recall that truncated actions are denoted by ãd, with subscripts denoting the appropriate
truncated space. By abuse of notation, let J−1 denote the inverse of the restriction of the
derivation of Proposition 3.2.1 to u. We will also use J−1 to denote the dual operator on û∗.
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Proposition 3.3.1. Let p be a parahoric subalgebra of a twisted loop algebra g. Let V = S∗p̂∗

with the contragradient metric. The Laplacian on C∗(V ) with respect to the dual Kahler
metric from Proposition 3.2.1 has curvature term

i[ε(γ + Θ),Λ] =
∑
i>0

dR

(
ãd

t

p(xi)J
−1
)∗
dR

(
ãd

t

p(xi)J
−1
)
,

where {xi} is a basis for u orthonormal in the contragradient metric, and û∗ is considered

as the subset of p̂∗ that is zero on g0 (so that ãd
t

p sends û∗ to p̂∗).

Proof. Applying Corollary 2.5.5, we just need to determine R = i[ε(Θ)], where R is given

by Equation (2.1). The action ãd
t

acts as a derivation on the symmetric algebra S∗p̂∗,
so by Equation (2.1), R is a second-order operator. This means that if α0, . . . , αk ∈ û∗,
b0, . . . , bl ∈ p̂∗ then

R(α0 ∧ · · · ∧ αk ⊗ b0 ◦ · · · ◦ bl) =
∑
i,j

(−1)iR(αi ⊗ bj)α0 · · · α̂i · · · b̂j · · · bl.

In particular, R is determined by its action on û∗ ⊗ p̂∗.
The truncated action on V is isomorphic to the truncated action on V ′ = S∗p via the

contragradient metric. Let R′ = i[ε(ΘV ′),Λ]. If f ∈ û∗ and w ∈ p then we claim that

R′(f ⊗ w) =
∑
i>0

ãd
t

u(w)zi ⊗ ãdp(zi)φ
−1(f),

where {zi} is any homogeneous basis of u, φ is the isomorphism u → û∗ induced by the

Kahler metric, and u is considered as a subset of p, so that ãdp maps from u to p. To prove
this, let {zi} be orthonormal with respect to the Kahler metric, and think about f = zk, w
arbitrary. Observe that

ãdp(z)w =
∑
s≥1

y−s([z, w])y−s,

where {ys}s≥1 is a homogeneous basis of p and y−s = ys. So if z−j ∈ g−m, then

ãdp(zi)ãdp(z−j)w =
∑
s≥1

y−s([zi, [z−j, w]])y−s,

ãdp(z−j)ãdp(zi)w =
∑
s≥1

y−s([zi, w])[z−j, y−s]

=
∑
n≤0

∑
y−s∈gn−m

y−s([z−j, [zi, w]])y−s, and



CHAPTER 3. LAPLACIAN CALCULATIONS 38

ãdp([zi, z−j])w =
∑
s≥1

y−s([[zi, z−j], w])y−s.

Consequently([
ãdp(zi), ãdp(z−j)

]
− ãdp([zi, z−j])

)
w =

∑
−m<n≤0

∑
y−s∈gn

y−s([z−j, [zi, w]])y−s.

After removing the reference to m here, we get([
ãdp(zi), ãdp(z−j)

]
− ãdp([zi, z−j])

)
w =

∑
s≥1

∑
l≥1

y−s([z−j, zl])z
l([zi, w])y−s.

Now from Equation (2.1),

R′(zk ⊗ w) = −
∑
i>0

zi ⊗
([

ãdp(zi), ãdp(z−k)
]
− ãdp([zi, z−k])

)
w

= −
∑
i,l,s>0

zi ⊗ y−s([z−k, zl])zl([zi, w])y−s.

Moving the w action from zi to zi, the last expression becomes

−
∑
i,s>0

ãd
t

u(w)zi ⊗ y−s([z−k, zi])y−s =
∑
i>0

ãd
t

u(w)zi ⊗ ãdp(zi)z−k.

The proof of the claim is finished by noting that this last expression is independent of the
choice of basis {zi} for u and that that z−k = φ−1(zk).

Now we can translate from V ′ to V using the isomorphism ψ : p → p̂∗ induced by the
contragradient form. The operator J on u has a basis {xi} of eigenvectors orthonormal in
the contragradient metric. If Jxi = λixi then φ(xi) = λix

i, and thus ψ ◦ φ−1(xi) = λ−1
i xi. It

follows that ψ ◦ φ−1 = J−1 on û∗. Next, ãd
t

u(w)ψ(x) = −ãd
t

p(x)ψ(w). Since ψ(xi) = xi we
can conclude that

R(f ⊗ g) = −
∑
i>0

ãd
t

p(xi)g ⊗ ãd
t

p(xi)J
−1f,

where ãd
t

p(xi) is regarded as a map from p̂∗ to û∗.
If S, T ∈ End(p̂∗), let Switch(S, T ) be the second order operator on

∧∗ p̂∗⊗S∗p̂∗ sending

α⊗ β 7→ Tβ ⊗ Sα. Note that ãd
t

p(xi)
∗ = −ãd

t

p(xi). We have shown that R is the restriction
of the operator ∑

i

Switch
(

ãd
t

p(xi)J
−1, ãd

t

p(xi)
∗
)

to
∧∗ û∗⊗S∗p̂∗, where J−1 is zero on g0. It is easy to see that Switch(S, T ) = dL(T )dR(S)−

(TS)∧, where (TS)∧ is the operator TS extended to
∧∗ p̂∗ as a derivation. Also, dL(T )∗ =
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dR(T ∗J−1), where T ∗ is the adjoint of T in the contragradient metric. Note that the J−1

term comes from the difference between the contragradient metric on the symmetric factor
and the Kahler metric on the exterior factor. Finally we have

R =
∑
i

dR

(
ãd

t

p(xi)J
−1
)∗
dR

(
ãd

t

p(xi)J
−1
)

+
∑
i

(
ãd

t

p(xi)ãd
t

p(xi)J
−1
)∧

.

Now
∑

i ãd
t

p(xi)ãd
t

p(xi) is the negative of the dual of the derivation J on u, while J−1 is the
dual of the inverse of J . Thus on

∧∗ û∗, this second summand is simply − deg. But since we
have chosen a Kahler metric with fundamental form iγ, we have i[ε(γ),Λ] = [L,Λ] = −H =
deg, finishing the proof of the Proposition.

Similarly, given endomorphisms S and T of û∗ we can define operators dR(S) and dL(T )
on
∧∗ û∗ ⊗ S∗û∗.

Proposition 3.3.2. Let p be a parahoric subalgebra of a twisted loop algebra g, and let u
be the nilpotent subalgebra. Let V = S∗û∗ with the contragradient metric. The Laplacian on
C∗(V ) with respect to the dual Kahler metric from Proposition 3.2.1 has curvature term

i[ε(γ + Θ),Λ] =
∑
i≥0

dR

(
ãd

t

u(yi)J
−1
)∗
dR

(
ãd

t

u(yi)J
−1
)
,

where {yi}i≥0 is a basis for p orthonormal in the contragradient metric.

Proof. Once again, let R = i[ε(Θ),Λ], and let V ′ = S∗u. The proof is similar to the proof of
Proposition 3.3.1, except that if f ∈ ut, w ∈ u, then

R′(f ⊗ w) =
∑
i≥0

ãd
t

p(w)yi ⊗ ãdu(yi)φ
−1(f), (3.2)

where {yi}i≥0 is a basis for p. To prove this, let {zi} be orthonormal with respect to the
Kahler metric, and think about f = zk, w arbitrary. Observe that

ãdu(z)w =
∑
i<0

zi([z, w])zi.

So if z−j ∈ g−m, then

ãdu(zi)ãdu(z−j)w =
∑
k≥1

z−k([zi, [z−j, w]])z−k,

ãdu(z−j)ãdu(zi)w =
∑
k≥1

z−k([zi, w])[z−j, z−k]

=
∑
n<0

∑
z−k∈gn−m

z−k([z−j, [zi, w]])z−k, and
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ãdu([zi, z−j])w =
∑
k≥1

z−k([[zi, z−j], w])z−k.

Consequently([
ãdu(zi), ãdu(z−j)

]
− ãdu([zi, z−j])

)
w =

∑
−m≤n<0

∑
z−k∈gn

z−k([z−j, [zi, w]])z−k.

Removing the reference to m, we have

([ãdu(zi), ãdu(z−j)]− ãdu([zi, z−j]))w =
∑
k>0

∑
s≥0

z−k([z−j, ys])y
s([zi, w])z−k.

From Equation (2.1),

i[ε(Θ),Λ](zk ⊗ w) = −
∑
i>0

zi ⊗
(

[ãdu(zi), ãdu(z−k)]− ãdu([zi, z−j])
)
w

= −
∑
i,j>0

∑
s≥0

zi ⊗ z−j([z−k, ys])ys([zi, w])z−j.

Now moving the z−l action from zi to zi, we get

−
∑
s≥0

∑
j>0

ãd
t

p(w)ys ⊗ z−j([z−k, ys])z−j =
∑
s≥0

ãd
t

p(w)ys ⊗ ãdu(ys)(z−k).

Finally z−k = φ−1(zk).

3.4 Proof of Theorems 3.1.3 and 3.1.5

Once again let J denote the operator on û∗ which is the dual of the derivation J on u. We
give a proof of Theorem 3.1.3; the proof of Theorem 3.1.5 is identical. Let J∆ denote the

diagonal extension of J to the exterior factor of
∧∗ û∗ ⊗ S∗p̂∗. The adjoint of ãd

t

u(x) in the

Kahler metric is −J ãdu(x)J−1. Thus we can directly calculate that

D∗ = −
∑
i<0

ε(xi)
(

(J ãd
t

u(x−i)J
−1)∧ + ãd

t

p(x−i)
Sym
)
,

where {xi} is a basis of u orthonormal in the contragradient metric and x−i = xi. On
C0,q(V ) the D-Laplacian is � = DD∗, so the set of harmonic cocycles is the joint kernel of

the operators D∗ above and dR

(
ãd

t

p(xi)J
−1
)

, i ≥ 1. The kernel of D∗ on C0,q(V ) is the

joint kernel of the operators
(
J ãd

t

u(xi)J
−1
)∧

+ ãd
t

p(xi)
Sym, i ≥ 1. Now we have

dR

(
ãd

t

p(xi)J
−1
)
J∆ = J∆dR

(
ãd

t

p(xi)
)

and((
J ãd

t

u(xi)J
−1
)∧

+ ãd
t

p(xi)
Sym

)
J∆ = J∆

(
ãd

t

u(xi)
∧ + ãd

t

p(xi)
Sym
)
.
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Thus we see that J−1
∆ identifies the set of harmonic cocycles with the joint kernels of the

operators dR

(
ãd

t

p(xi)
)

, i ≥ 1, and
(

ãd
t

u(xi)
∧ + ãd

t

p(xi)
Sym
)

, i ≥ 1. Since the elements of

C0,q(V ) are g0-invariant by definition, the kernel of the latter family of operators is the set
of p-invariant cochains. The kernel of the former family of operators is the set of u-basic
cochains, finishing the proof.
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Chapter 4

Adjoint orbits of arc and jet groups

Let L be a reductive Lie algebra with a diagram automorphism σ of finite order k, and
fix a qth root of unity. Let p0 be a parabolic in L0, and let p be the standard parahoric
{f ∈ L[z]σ̃ : f(0) ∈ p0} of the twisted loop algebra g = L[z±1]σ̃. Let u denote the nilpotent
subalgebra of p. Grade g so that p =

⊕
n≥0 gn and g0 = p0 ∩ p0. Theorems 3.1.3 and

3.1.5 state that the cohomology H∗cts(p̂, g0;S∗p̂∗) is isomorphic to the ring of basic invariant
elements of Ω>0p̂, and that H∗cts(p̂, g0;S∗û∗) is isomorphic to the ring of basic invariant
forms on û. Thus, to prove the strong Macdonald theorems in the next chapter, we need
to show that basic invariant elements of Ω>0p̂ correspond to certain types of forms on the
GIT quotient of p̂, and similarly with û. In this chapter, we extend two well-known results
on the orbit structure of the adjoint representation of a reductive Lie algebra to the case
of a standard parahoric. The results we are interested in extending are the slice theorem
for regular-semisimple orbits (addressed in subsection 4.2.1) and part of the Kostant slice
theorem for regular orbits (addressed in subsection 4.2.2). These results will then be used
in the next chapter to determine the ring of basic invariant forms.

This chapter is adapted from part of [Sl11b].

4.1 Twisted arc and jet schemes and the twisted arc

group

This section covers background material on twisted arc and jet schemes, and proves basic
facts about the twisted arc group arising from a diagram automorphism. The material in
this section will be used to study adjoint orbits in Section 4.2.

4.1.1 Twisted arc and jet schemes

By a variety, we mean a separated, reduced, but not necessarily irreducible, scheme of
finite type over C. The arc scheme J∞X of a variety X over C is a separated scheme of
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infinite type representing the functor Y 7→ Hom(Y × SpecC[[z]], X). Intuitively the arc
scheme is the space of maps from the formal arc SpecC[[z]] into X. The mth jet scheme
JmX (0 ≤ m < +∞) is a separated scheme of finite type over C representing the functor
Y 7→ Hom(Y ×SpecC[z]/zm, X). If m ≤ n then there is a morphism JnX → JmX, and J∞X
is the inverse limit of the jet schemes of X. The C-points of JmX are m-jets, i.e. morphisms
SpecC[z]/zm → X. For example, J0X = X and J1X is the tangent scheme of X. If X is the
affine subset of Cn cut out by the equations f1 = . . . = fk = 0 then JmX is the subscheme
of (C[z]/zm)n cut out by the equations fi(x1, . . . , xn) = 0, i = 1, . . . , fk, where xi ∈ C[z]/zm

and (C[z]/zm)n is regarded as the affine space of dimension mn. The association V 7→ JmV
is functorial, so if G is an algebraic group then JmG is an algebraic group when m < +∞,
and a pro-group when m = +∞. The arc scheme of X is sometimes denoted by X[[z]], but
we use the notation J∞X so that propositions can be stated uniformly for both arc and jet
schemes.

The following well-known lemma is useful for working with jet schemes:

Lemma 4.1.1 ([Mu01]). If X → Y is etale then JmX = X ×Y JmY for all 0 ≤ m ≤ +∞.

Open immersions are etale, so if U ⊂ X is an open subset then the pullback of U via
JmX → X is equal to JmU . In particular, JmX is covered by open subsets JmU , where
U ⊂ X is an affine open (if m = +∞ then we use the fact that the inverse limit of affine
schemes is affine). If there is an etale map X → An then JmX = X ×Amn for all m < +∞,
while J∞X = X × A∞. Consequently if X is smooth of dimension n then JmX → JkX is a
(Zariski) locally-trivial An(m−k)-bundle for all k ≤ m < +∞. In particular, JmX is smooth
and the truncation morphisms JmX → JkX are surjective. Similarly J∞X → JkX is a
locally-trivial A∞-bundle for all 0 ≤ k < +∞.1

The following lemma is likely well-known (and follows easily from formal smoothness):

Lemma 4.1.2. If X → Y is smooth and surjective then the maps JmX → JmY are smooth
for all 0 ≤ m < +∞, and surjective for all 0 ≤ m ≤ +∞

From Lemmas 4.1.1 and 4.1.2 we get the following proposition:

Proposition 4.1.3. Let 0 ≤ m < +∞. If E → M is an etale-locally trivial principal
G-bundle then JmE → JmM is an etale-locally trivial principal JmG-bundle.

Proof. For E →M to be etale-locally trivial means that there is a surjective etale morphism
U → M such that the pullback of E over U is isomorphic to the trivial G-bundle U × G.
Now Jm preserves etale maps (by Lemma 4.1.1 and the fact that etale maps are preserved
under base change) and thus JmU → JmM is etale and surjective. The proof is finished by
observing that Jm preserves pullbacks (which follows from the definition of the pullback via
the functor of points).

1The infinite-type schemes we work with are nice enough that they could be called “smooth” in their
own right. However, we avoid this complication and only use smoothness for schemes of finite type. See for
instance the wording of Lemma 4.1.2.



CHAPTER 4. ADJOINT ORBITS OF ARC AND JET GROUPS 44

Proposition 4.1.3 on jet schemes has the following corollary:

Corollary 4.1.4. Suppose X has a free G-action such that an etale-locally trivial quotient
X → X/G exists. Then Jm(X/G) is isomorphic to JmX/JmG, 0 ≤ m < +∞, and J∞(X/G)
is isomorphic to J∞X/J∞G, where this last quotient is the pro-group quotient, i.e. the inverse
limit of the quotients JmX/JmG, 0 ≤ m < +∞.

If X → X/G is etale-locally trivial then it is also surjective, so by Corollary 4.1.4 and
Lemma 4.1.2 the map J∞X → J∞X/J∞G is surjective. If X is affine with a free G-action
and G is reductive then X/G = X//G, the GIT quotient, and X → X/G is etale-locally
trivial by Luna’s slice theorem [Lu73] (the theorem applies because all orbits under a free
action are closed, see the discussion on page 53 of [Bo91]). All the quotients we study will
be of this type.

Now suppose that X has an automorphism σ of finite order k. This automorphism lifts
to an automorphism σ of the jet and arc schemes JmX. Choose a fixed kth root of unity q,
and let m(q) denote the automorphisms of C[z]/zn and C[[z]] induced by sending z 7→ qz.

Definition 4.1.5. Let σ̃ denote the automorphism σ ◦m(q)−1. The twisted jet (resp. arc)
scheme J σ̃mX is the equalizer of the morphisms 1JmX and σ̃ in the category of schemes.

In other words, if m < +∞ then J σ̃mX represents the functor Y 7→ {f ∈ Hom(Y ×
SpecC[z]/zm, X) : f ◦m(q) = σ ◦f}, while J σ̃∞X represents the functor Y 7→ {f ∈ Hom(Y ×
SpecC[[z]], X) : f ◦m(q) = σ ◦ f}.

J σ̃mX is a closed subscheme of JmX, and (JmX)σ̃ is separated for all m. Since SpecC[[z]] is
the direct limit of schemes SpecC[z]/zn, it follows from the functor of points characterisation
that J σ̃∞X is the inverse limit of schemes J σ̃mX, 0 ≤ m < +∞. Since J σ̃mX is a closed
subscheme of JmX, it is covered by the inverse images of the open subschemes JmU ⊂ JmX,
for U ⊂ X open affine. The inverse image of JmU in J σ̃mX is the same as the inverse image
of σ̃(JmU) = Jmσ(U). Thus the inverse image of JmU in J σ̃mX is the same as in the inverse
image of JmV , where V = U ∩σ(U)∩ . . .∩σk−1(U). By definition σ(V ) = V , and V is affine
because X is separated. Finally, the pullback of JmV to J σ̃mX is J σ̃mV , and J σ̃mV is affine.
We conclude that J σ̃mX is covered by open affines J σ̃mU where U ⊂ X runs through open
affines such that σ(U) = U .

The following lemma is an immediate consequence of the definition of tangent and jet
(resp. arc) schemes via functor of points.

Lemma 4.1.6. Let σ∗ be the automorphism induced by σ on TX. Then the tangent scheme
to J σ̃mX is naturally isomorphic to the twisted jet (resp. arc) scheme J σ̃∗m (TX) of the tangent
scheme to X.

Using known results for finite-dimensional varieties, we can show that the twisted jet
scheme of a smooth variety is also smooth.
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Lemma 4.1.7. Let 0 ≤ m < +∞. If X is a smooth variety with a finite-order automorphism
σ then J σ̃mX is a smooth variety. In addition, if X and Y are both smooth varieties with
finite-order automorphisms σX and σY and X → Y is a σ-equivariant smooth map then
J σ̃mX → J σ̃mY is smooth.

Proof. We can assume that X is affine. Since X is smooth, JmX is also a smooth variety. The
twisted jet scheme J σ̃mX is the fixed-point scheme of the finite group 〈σ̃〉. It is a well-known
consequence of Luna’s slice theorem that the fixed-point variety of a reductive algebraic
group acting on a smooth variety is also smooth. This also holds for the fixed-point scheme
by Proposition 7.4 of [Fo73], so J σ̃mX is smooth.2

Since J σ̃mX is a smooth variety the tangent scheme is a vector bundle. By Lemma
4.1.6, TxJ

σ̃
mX = (TxJmX)σ̃∗ and similarly TyJ

σ̃
mY = (TyJmY )σ̃∗ . If X → Y is smooth then

JmX → JmY is smooth by Lemma 4.1.2, hence TJmX → TJmY is surjective on fibres, and
it follows that (TxJmX)σ̃∗ → (TyJmY )σ̃∗ is surjective. Since both J σ̃mX and J σ̃mY are smooth,
J σ̃mX → J σ̃mY is a smooth map.

Note that J σ̃mX is not necessarily irreducible, as Xσ can be disconnected.
We also have the following analogue of Lemma 4.1.1.

Lemma 4.1.8. Let 0 ≤ m ≤ +∞. Suppose that X and Y have finite-order automorphisms
σX and σY . If X → Y is an etale σ-equivariant map then J σ̃mX = Xσ ×Y σ J σ̃mY .

Proof. By Lemma 4.1.1, JmX ∼= X ×Y JmY . The automorphism σ̃X on JmX translates to
the unique automorphism on the latter space which lies above σX on X, σY on Y , and σ̃Y
on JmY . The result follows from the functor of points characterisations of the twisted jet
and arc schemes and the fibre product.

Finally, the jet structure distinguishes a subbundle of the tangent bundle of a jet or arc
space.

Definition 4.1.9. If X is a variety with finite-order automorphism σ, we let TconstJ
σ̃
mX

denote the pullback Xσ ×TXσ TJ σ̃m, where TJ σ̃mX → TXσ is the differential of the projec-
tion J σ̃mX → Xσ and Xσ → TXσ is the zero section. Intuitively TconstJ

σ̃
m is the space of

infinitesimal families of jets (resp. arcs) which are constant at z = 0.

4.1.2 Connectedness of the twisted arc group

In this section G will be a connected algebraic group with Lie algebra L, such that the
diagram automorphism σ lifts to G (for example, this occurs if G is simply-connected). H
will be the torus corresponding to the chosen Cartan h.

We recall some basic facts about diagram automorphisms and the structure of L, using
terminology and basic results from Chapter 9, Section 5 of [Ca05]. Let hi denote the qith

2If X is not smooth then the fixed-point scheme of a reductive group action can be non-reduced.
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eigenspace of σ acting on h. By definition, there is a choice of simple roots α1, . . . , αl such
that σ permutes the corresponding coroots hαi and Chevalley generators eαi . If J is an orbit
the σ-action on simple roots, let αJ = 1

|J |
∑

α∈J α. Then the set {αJ |h0 : J is an orbit of σ} is
a set of simple roots for L0. Restriction to h0 gives an isomorphism between the subgroup W σ

(where W is the Weyl group of L) and the Weyl group W (L0) of L0. The simple generator
sJ of W (L0) given by reflection through αJ on h0 corresponds to the element of W σ ⊂ W (L)
which is the maximal element in the subgroup of W (L) generated by reflection through the
simple roots in J . In addition, we will need:

Lemma 4.1.10. If N(H) is the normalizer of H in G, then N(H)σ = NGσ(Hσ), the nor-
malizer of Hσ in Gσ. Consequently W σ = N(H)σ/Hσ ⊂ W (L). Furthermore, the inclusion
W (L0) ∼= W σ ↪→ W (L) is length-preserving, in the sense that if w ∈ W σ, then it is possible
to get a reduced expression for w by first taking a reduced expression w = sJ1 · · · sJr for w in
W (L0), and then replacing each sJi with a reduced expression in W (L).

Proof. For the first part, let ρ ∈ h be the element such that α(ρ) = 1 for all simple roots α
of L. Then ρ is regular in h and belongs to h0. Any element of NGσ(Hσ) sends ρ to another
regular element of h, and hence belongs to N(H).

For the second part, we we refer to the proof of Proposition 9.17 of [Ca05].

We can use Lemma 4.1.10 to prove:

Lemma 4.1.11. Choose a Borel subgroup B of G containing H and compatible with σ and
let X = BB be the big cell of the corresponding Bruhat decomposition. If x ∈ G belongs to
a Bruhat cell BwB with w ∈ W σ then there is g ∈ N(H)σ such that gx ∈ X.

Proof. If we take for g a representative of w−1 in N(H)σ, then gBwB ⊂ BB.

Proposition 4.1.12. Gσ is connected.

Proof. The connected component (Gσ)◦ of Gσ is a connected reductive group with Lie algebra
L0. Since σ permutes coroots, it is easy to see that Hσ is a connected torus, and in fact is
a Cartan in (Gσ)◦. As in Lemma 4.1.11, let B be a Borel subgroup of G containing H and
compatible with σ, and let X be the corresponding big cell. If g ∈ Gσ belongs to a Bruhat
cell BwB then g ∈ BwB∩σ(BwB), so w ∈ W σ. By Lemma 4.1.10, every element of N(H)σ

can be implemented by an element of (Gσ)◦. So by Lemma 4.1.11, we just need to prove
that Gσ ∩X is contained in (Gσ)◦.

Now as an algebraic variety, X ∼= U ×H×U , where U is the unipotent radical of B. The
action of σ on X translates to the action of σ on each factor. Let u be the Lie algebra of U .
The exponential map for nilpotent Lie algebras is bijective, so Uσ is the unipotent subgroup
corresponding to the nilpotent Lie algebra uσ. In particular Uσ is connected, and similarly
with U

σ
. We conclude that Xσ = Gσ ∩X is connected.
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Using the fact that the exponential map for nilpotent (resp. pro-nilpotent) Lie algebras
is bijective, we immediately get the following corollary.

Corollary 4.1.13. If 0 ≤ m < +∞ then J σ̃mG is a connected algebraic group with Lie algebra
L[z]/zm. Similarly J σ̃∞G is a connected pro-algebraic group with Lie algebra L[[z]]σ̃.

As a scheme the Lie algebra of J σ̃mG can be identified with J σ̃mL.
The following proposition will be crucial in the next section, since it proves that J σ̃m(G/H)

is a J σ̃mG-homogeneous space.

Proposition 4.1.14. J σ̃m(G/H) ∼= J σ̃mG/J
σ̃
mH, where the latter space is either the group

quotient if 0 ≤ m < +∞, or the pro-group quotient if m = +∞.

Proof. G → G/H is an etale-locally trivial principal bundle, so Jm(G/H) ∼= JmG/JmH.
There is an inclusion J σ̃mG/J

σ̃
mH ↪→ (JmG/JmH)σ̃. To prove the proposition, we will show

that this inclusion is surjective for all m < +∞. If m < +∞ then biregularity follows from
bijectivity because (JmG/JmH)σ̃ will be a homogeneous space. Biregularity for m = +∞
follows from the universal property of inverse limits.

Define α : JmG → JmG by g 7→ g−1σ̃(g). To show that the inclusion is surjective we
need to show that every element of (JmG/JmH)σ̃ has a representative x ∈ JmG such that
α(x) = e. The map α has a number of nice properties. First, the fibres of α are left J σ̃mG-
cosets. Second, g ∈ JmG represents an element of (JmG/JmH)σ̃ if and only if α(g) ∈ JmH.
Third, if α(g) ∈ JmH and h ∈ JmH then α(gh) = α(g)α(h). By these last two properties,
we will have (JmG/JmH)σ̃ = J σ̃mG/J

σ̃
mH if and only if α(JmG) ∩ JmH = α(JmH).

Our proof depends on the Bruhat geometry of G, so pick a Borel subgroup B ⊂ G
compatible with σ. Let X = BB be the big cell. Suppose x ∈ JmG and α(x) ∈ JmH.
Writing x(0) = b0wb1, we get α(x(0)) = b−1

1 w−1α(b0)σ(w)σ(b1) ∈ H. But α(b0) ∈ B, so
wB ∩ Bσ(w)B 6= ∅, and thus w belongs to W σ. Consequently there is g0 ∈ Gσ such that
g0x(0) ∈ X, implying that g0x ∈ JmX. Since α(x) = α(g0x) for g0 ∈ Gσ, we just need to
show that α(JmX) ∩ JmH is contained in α(JmH).

The space X is isomorphic to U × B via the multiplication map, where U is the unipo-
tent subgroup of B. Thus we can write any element of JmX uniquely as a(z)b(z), where
a(z) ∈ JmU and b(z) ∈ JmB. Suppose α(a(z)b(z)) = h(z) ∈ JmH. Since α(a(z)b(z)) =
b(z)−1α(a(z))σ̃(b(z)), we see that α(a(z)) = b(z)h(z)σ̃(b(z))−1 ∈ JmB. Since α(a(z)) ∈ JmU ,
this implies that α(a(z)) = e and consequently α(b(z)) = h(z). To finish the proof, observe
that B ∼= U×H via the multiplication map, where U is the unipotent subgroup of B. Writing
b(z) = b′(z)h′(z) for b′(z) ∈ JmU and h′(z) ∈ JmH, we get α(b(z)) = h′(z)−1α(b′(z))σ̃(h′(z)),
and hence α(b′(z)) can be written as an element of JmH. This implies that α(b′(z)) = e,
finishing the proof, since α(h′(z)) = h(z).
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4.2 Slice theorems for the adjoint action

We continue to use the notation from Section 4.1. In particular, G is a connected algebraic
group with Lie algebra L such that σ extends to G, and the Lie algebra of J σ̃mG is identified
with J σ̃mL. In addition, we fix a standard parabolic subalgebra p0 ⊂ L0, and let pm = {f ∈
J σ̃m : f(0) ∈ p0}. Note that p∞ is the completion of a standard parahoric in L[z±1]σ̃, which
we also denote by p̂. We let Pm be the connected algebraic (resp. pro-algebraic) subgroup
of J σ̃mG corresponding to pm, and Nm be the nilpotent (resp. pro-nilpotent) radical of Pm.
The reductive factor p0 ∩ p0 of p0 is denoted by g0.

In this section we prove two slice theorems for the adjoint action of Pm on pm. The first
is an analogue of the well-known slice theorem for regular semisimple elements in L, and is
given in Subsection 4.2.1. The second is an analogue of the Kostant slice theorem, and is
given in Subsection 4.2.2. These theorems will be used in the next section to determine the
P∞-invariant N∞-basic elements of Ω∗>0p∞.

The slice theorems are stated in terms of the GIT quotients Q := L//G (i.e. Q is the
affine variety with coordinate ring C[Q] = (S∗L∗)G) and R := p0//P0. Recall that C[Q] is
a free algebra generated by homogeneous elements in degrees m1 + 1, . . . ,ml + 1, where l is
the rank of L and m1, . . . ,ml are the exponents. A similar result holds for C[R]:

Lemma 4.2.1. Let u0 the nilpotent radical of p0, so that p0 = g0 ⊕ u0. If f ∈ C[R] then
f(x, y) = f(x, 0) for all x ∈ g0, y ∈ u0. Consequently, if M is the Levi subgroup of P0 then
R ∼= g0//M∼= h0//W (g0), where W (g0) is the Weyl group of g0, and C[R] is a free algebra
generated by homogeneous elements in degrees given by the exponents of g0.

Proof. The set of regular elements hr0 is dense in h0. Since [g0, x] + h0 = g0 for any element
x ∈ hr0, the set Mhr0 is dense in g0. Let N0 be the unipotent subgroup corresponding to u0.
If x belongs to hr0 then N0x = x + u0. Since N0 is normal in P0, this property extends to
any x ∈Mhr0. So if f is invariant then f(x, y) = f(n(x, 0)) = f(x, 0) for x in an open dense
subset of p0 ∩ p0.

4.2.1 The regular semisimple slice

Let Lrs ⊂ L be the subset of regular semisimple elements. Lrs is an affine open subset of L
(its complement is the vanishing set of a single G-invariant function) and consequently the
image Qr of Lrs in Q = L//G is open. The well-known regular semisimple slice theorem
states that there is a commutative square

G/H ×W hr //

��

Lrs

��
hr/W // Qr

, (4.1)
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where W is the Weyl group of L and hr is the set of regular elements in h. The notation
G/H×W hr denotes the quotient of G/H×hr under the free action of W = N(H)/H acting
by right multiplication on G/H and by the adjoint action on hr. Both horizontal maps
are isomorphisms. The top horizontal map is given by multiplication, while the bottom
horizontal map is projection to Q.

Since σ is an automorphism, the sets Lrs and hr are closed under σ and we can apply
J σ̃m to both spaces. The image Rr of p0 ∩ Lrs0 in R is open, since it’s complement is the zero
set of a single P0-invariant function. As usual, let P∞/J σ̃∞H denote the pro-group quotient.
Similarly P∞/J σ̃∞H ×W (g0) J

σ̃
∞h

r will denote the pro-group quotient of P∞/J σ̃∞H × J σ̃∞hr by
W (g0), and J σ̃∞h

r/W (g0) denotes the pro-group quotient of J σ̃mh
r by W (g0). We have the

following analogue of Equation (4.1) for twisted jet and arc schemes.

Theorem 4.2.2. Let 0 ≤ m ≤ +∞. Then there is a commutative diagram

Pm/J σ̃mH ×W (g0) J
σ̃
mh

r //

��

pm ∩ J σ̃mLrs

��(
J σ̃mh

r
)
/W (g0) // Rr ×Qσ J σ̃mQr

(4.2)

in which the horizontal maps are isomorphisms, with the top map induced by multiplication
and the bottom map induced from the two projections J σ̃mh

r/W (g0)→ J σ̃mQ
r and hr0/W (g0) ∼=

Rr.

To prove Theorem 4.2.2, we start with the case m = 0 (likely well-known, but we give
the proof for completeness).

Lemma 4.2.3. There is a commutative diagram

P0/H
σ ×W (g0) h

r
0

//

��

p0 ∩ Lrs0

��
hr0/W (g0) // Rr

in which both horizontal maps are isomorphisms. The top horizontal map is induced by
multiplication, while the bottom horizontal map is induced by the projection h0 → R.

Proof. That the bottom map is an isomorphism comes from Lemma 4.2.1.
The Weyl groups of g0 and L0 can be expressed in terms of M and Gσ as W (g0) =

NM(Hσ ∩ M)/(Hσ ∩ M) and W (L0) = NGσ(Hσ)/Hσ. Using the Bruhat decomposition
for Gσ and M simultaneously, as well as the Levi decomposition for P0, it is possible to
show that NGσ(Hσ) ∩ P0 ⊂ NM(Hσ ∩M). The resulting inclusion NGσ(Hσ) ∩ P0/H

σ ⊂
NM(Hσ ∩M)/Hσ ∩M is an isomorphism.
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Now the commutative diagram in Equation (4.1) can be extended by adding the com-
mutative square

P0/H
σ ×W (g0) h

r
0

//

��

p0 ∩ Lrs0

��
Gσ/Hσ ×W (L0) h

r
0

// Lrs0

, (4.3)

in which the vertical maps are the natural inclusions. To show that the left vertical map is
injective take two elements ([p], x) and ([p′], x′) which are equal in the codomain. This means
that there is w ∈ NGσ(Hσ) with [pw−1] = [p′] and wx0 = x′0. The former condition implies
that w ∈ P0∩NG(H), so [w] ∈ W (L0) represents an element of W (g0), and ([p], x) = ([p′], x′)
in P0/H0 ×W (g0) h

r
0.

Since the bottom map of Equation (4.3) is an isomorphism, we just need to show that
P0/H

σ ×W (g0) h
r
0 maps onto p0 ∩ Lrs0 . Suppose x ∈ p0 is semisimple in L0. Since diagonaliz-

ability is preserved by restriction to an invariant subspace and by descent to a quotient by an
invariant subspace, we can write x = x0 +x1, where x0 is a semisimple element of p0∩p0 and
x1 ∈ u0. Conjugating x0 by an element of the Levi factorM to be in h0, we can assume that
x ∈ b0, a Borel subalgebra of L0 contained in p0. Thus the problem is reduced to showing
that b0 ∩Lrs0 ⊂ B0h

r
0. Given x in the former set, take g ∈ Gσ such that gx = y ∈ hr0. Then

b0 and g b0 both contain h0, so there is w ∈ NGσ(Hσ) such that w b0 = g b0. Since Borel’s
are self-normalizing, g−1w ∈ B0 and x = (g−1w)(w−1y) ∈ B0h

r
0.

We need two facts about diagram automorphisms and the structure of L. We use the
convention from Section 4.1 to express the simple roots {αJ} of L0 in terms of simple roots
{α} of L.

Lemma 4.2.4. h0 ∩ hr = hr0, the set of elements in h0 which are regular in L0. Similarly,
L0 ∩ Lrs = Lrs0 .

Proof. The restriction map h∗ → h∗0 sends roots of L to positive multiples of roots of L0 by
Proposition 9.18 of [Ca05]. All the roots of L0 are covered by this map, so h0 ∩ hr = hr0. An
element x ∈ L0 is semisimple in L0 if and only if it is semisimple in L. If it is semisimple in
L0 then it can be conjugated to an element of h0, so the statement for L0 follows from the
statement for h0.

Lemma 4.2.5. There is a parabolic p′ of L preserved by σ such that p′ ∩ L0 = p0. If m
is the standard reductive factor of p′ then m ∩ L0 = g0, the reductive factor of p0, and
W (m)σ = W (g0), where both are regarded as subgroups of W (L).

Proof. Let S be the subset of simple roots {αJ} determining p0 and let S ′ be the subset
of simple roots of L which appear in some σ-orbit J for αJ ∈ S. Let p′ be the parabolic
subalgebra determined by S ′. Clearly p′ is σ-invariant. By Lemma 4.1.10, an element
w ∈ W σ belongs to W (g0) if and only if it has a reduced expression consisting of reflections
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through simple roots in S ′, which is exactly the condition that w belongs to W (m). If αJ
is a simple root of L0, then the corresponding positive Chevalley generator eJ is a linear
combination of the positive Chevalley generators corresponding to the simple roots of L in
J , and similarly for the negative Chevalley generator fJ . Since p0 is generated as a Lie
algebra by h0, all the eJ ’s, and the fJ ’s such that αJ ∈ S, it follows that p0 ⊂ p′ ∩L0. Since
the fJ ’s with αJ ∈ S are the only negative generators in p′ ∩ L0, and p′ ∩ L0 is a parabolic
subalgebra of L0, it follows that p′ ∩ L0 = p0. Similarly m ∩ L0 = g0.

The real form hR of h is the real subspace where all roots take real values, or equivalently
the real span of the coroots. If x ∈ h let Rex be the projection of x to hR under the
(real-linear) splitting h = hR ⊕ ihR. Note that Reσx = σRex and Rewx = wRex for all
w ∈ W .

Proof of Theorem 4.2.2. First we show that the bottom map of Equation (4.2) is an isomor-
phism. Let p′ be the parabolic of L over p0, as in Lemma 4.2.5. We start by proving that
J σ̃mh

r/W (g0) ∼= J σ̃m(hr/W (m)), where W (m) is the Weyl group of the reductive factor of p′.
Since J σ̃m(hr/W (m)) is smooth when m < +∞ by Lemma 4.1.7, it is sufficient to prove that
the map is bijective. By Corollary 4.1.4, Jmh

r/W (m) ∼= Jm(hr/W (m)), so every element
of J σ̃m(hr/W (m)) is represented by an element of f ∈ Jmhr such that wσ̃(f) = f for some
w ∈ W (m). Let S ′ be the set of simple roots determining p′, let ∆′ be the set of all roots
of m, and let D = {x ∈ hR : α(x) 6= 0, α ∈ ∆′}. The connected components of D are of the
form C × Rr, where C is an open Weyl chamber of m and r = dim h − |S ′|. Consequently
W (m) acts transitively and freely on the connected components of D, so we can assume that
Re f(0) ∈ D0 = {x ∈ hR : α(x) > 0, α ∈ S ′}. But S ′ is σ-invariant, so D0 is also σ-invariant,
and thus Reσf(0) = σRe f(0) ∈ D0. Since Re f(0) = wσRe f(0), this implies that w = e
and consequently f ∈ J σ̃mh

r. Thus the map J σ̃mh
r → J σ̃m(hr/W (m)) is surjective. Suppose

f, g ∈ J σ̃mhr are equal in J σ̃m(hr/W (m)). Then there is w ∈ W (m) such that wf = g. Since
f(0), g(0) ∈ hr0, we have σ(w)f(0) = g(0) = wf(0), and consequently σ(w) = w. Thus f and
g are related by an element of W (m) ∩W σ = W (g0).

As a special case of the above argument, we have (hr/W (m))σ ∼= hr0/W (g0) = Rr. Con-
sequently J σ̃m(hr/W (m)) maps to Rr via evaluation at zero, and we conclude that the map
J σ̃mh

r/W (g0) → Rr ×Qσ J σ̃mQr factors through the isomorphism to J σ̃m(hr/W (m)). Since
hr/W (m) → hr/W (L) is etale, the space J σ̃m(hr/W (m)) is isomorphic to Rr ×Qσ J σ̃mQr by
Lemma 4.1.8.

We have shown that the bottom map of Equation (4.2) is an isomorphism, so we just need
to do the same for the top map. Consider the case when p0 = L0, so that Pm = J σ̃mG and
W (g0) = W (L0). Combining Corollary 4.1.4 (note that H is reductive so that G/H is affine)
and the isomorphism (G/H) ×W hr → Lrs, we get an isomorphism Jm(G/H) ×W Jmh

r →
JmL

rs, where the former space is the quotient (resp. pro-quotient). The automorphism σ̃
on JmL

rs translates to the diagonal action on Jm(G/H)×W (L) Jmh
r, and we can show that

this isomorphism identifies J σ̃mL
rs with J σ̃m(G/H)×W (L0) J

σ̃
mh

r by a similar argument to the
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proof of Lemma 4.2.3. Namely, ([f ], g) ∈ Jm(G/H) × Jmhr represents an element of J σ̃mL
rs

if and only if there is w ∈ W (L) such that [σ̃(f)]w−1 = [f ] and wσ̃(g) = g. Assuming
that Re g(0) is in the open Weyl chamber we get that w = e and thus [f ] ∈ J σ̃m(G/H),
g ∈ J σ̃mhr. Similarly, any two elements of J σ̃m(G/H) × J σ̃mhr with the same image in JmL

rs

are W (L0)-translates. Finally we can apply Proposition 4.1.14 to replace J σ̃m(G/H) with
J σ̃mG/J

σ̃
mH.

Now for the general case look at the square

Pm/J σ̃mH ×W (g0) J
σ̃
mh

r //

��

pm ∩ J σ̃mLrs

��
J σ̃mG/J

σ̃
mH ×W (L0) J

σ̃
mh

r // J σ̃mL
rs

.

The group quotient (resp. pro-group quotient) Pm/J σ̃mH is a closed subscheme of J σ̃mG/J
σ̃
mH.

As in Lemma 4.2.3, both vertical maps are inclusions and consequently the top horizontal
map is injective. Every x ∈ J σ̃mL

rs can be written as gy for g ∈ J σ̃mG and y ∈ J σ̃mh
r. If

x ∈ pm then x(0) ∈ p0, after which Lemma 4.2.3 implies that there is w ∈ W (L0) such
that g(0)w−1 ∈ P0. Consequently gw−1 ∈ Pm and (gw−1, wy) maps to x, so the top map is
surjective as required.

4.2.2 Arcs in the regular locus

Let Lreg denote the open subset of regular elements in L, i.e. the set of elements x such
that the stabilizer Lx has dimension equal to the rank l of L. Note that Lreg is σ-invariant.
Kostant famously proved that the map Lreg → Q is surjective and smooth, and furthermore
is a G-orbit map, in the sense that every fibre is a single G-orbit [Ko63b]. The proof uses the
Kostant slice, an affine subspace ν ⊂ Lreg of the form e + Lf , where {h, e, f} is a principal
sl2-triple. Kostant showed that ν intersects each regular G-orbit in a unique point, and that
ν ↪→ Lreg → Q is an isomorphism. The following theorem extends this idea to jet and arc
groups.

Theorem 4.2.6. There is a Kostant slice ν of L which is σ-invariant and such that νσ is
a Kostant slice for L0. If ν is such a slice then J σ̃mν → J σ̃mQ

σ̃ is an isomorphism for all
0 ≤ m ≤ +∞, and every J σ̃mG-orbit in J σ̃mL

reg intersects J σ̃mν in a unique point.

At m = 0, Theorem 4.2.6 implies that Qσ = L0//G
σ.

For Kostant’s smoothness result it is possible to incorporate a parabolic component.

Theorem 4.2.7. The map pm ∩ J σ̃mLreg → R×Qσ J σ̃mQ is a surjective Pm-orbit map for all
0 ≤ m ≤ +∞, and is smooth for 0 ≤ m < +∞.

Finally, we have a technical corollary which we will need in the next section. Recall the
definition of Tconst from the previous section, and define T>0pm to be the subbundle of Tpm
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of the form pm × um where um is the nilpotent subalgebra of pm, i.e. the subset of elements
f ∈ pm with f(0) ∈ u0, the nilpotent radical of p0.

Corollary 4.2.8. Let 0 ≤ m ≤ +∞. The differential of the map pm → R×Qσ J σ̃mQ induces
a bundle map T>0pm → R ×Qσ TconstJ σ̃m. Over pm ∩ J σ̃mLreg the bundle map is surjective on
fibres.

To prove Theorem 4.2.6, we start by proving some simple facts about regular elements
in L0, using Kostant’s characterisation of regular elements (Proposition 0.4 of [Ko63b]) in
L: if x = y+ z is the Jordan decomposition of x, so that y is semisimple, z is nilpotent, and
[y, z] = 0, then x is regular if and only if z is a principal nilpotent in the reductive subalgebra
Ly. Note that, by definition, a nilpotent element of a reductive algebra L is required to be
in [L,L], and if z is a nilpotent in L commuting with a semisimple element y, then z is also
a nilpotent in Ly.

Lemma 4.2.9. Lreg ∩ L0 = Lreg0 , the set of regular elements in L0.

Proof. Suppose x in L0 has Jordan decomposition x = y+ z in L. Then x = y+ z is also the
Jordan decomposition in L0, and in particular y and z are in L0. Now by conjugating by an
element of Gσ we can assume that y ∈ h0, and in fact that y is in the closed Weyl chamber
corresponding to the Borel L0 ∩ b, where b is the Borel in L compatible with σ. Since the
simple roots of L project to positive multiples of the simple roots of L0, y is also in the closed
Weyl chamber of L corresponding to b. Let S be the set of simple roots αJ for L0 that are
zero on y, and similarly let S ′ be the set of simple roots for L that are zero on y. Since y is
in the closed Weyl chamber, the stabilizer Ly0 (respectively Ly) is the reductive Lie algebra
h0 ⊕

⊕
α∈Z[S](L0)α (respectively h⊕

⊕
α∈Z[S′] Lα). Now x is regular in L0 (respectively L) if

and only if z is a principal nilpotent in Ly0 (respectively Ly). Every nilpotent element of Ly0
is contained in a Borel, and all Borels are conjugate, so we can conjugate z by an element
of (Gσ)y to get z contained in the Borel Ly0 ∩ b (since it does not have a component in the
centre, z will in fact be in the nilpotent radical of Ly0 ∩ b). By Theorem 5.3 of [Ko59], z is a
principal nilpotent in Ly0 if and only if the component of z in (L0)α is non-zero for all α ∈ S.
But by the construction of the simple Chevalley generators of L0, this is equivalent to the
component of z in Lα being non-zero for all α ∈ S ′. So z is a principal nilpotent in Ly0 if and
only if z is a principal nilpotent in Ly, and hence x is regular in L0 if and only if x is regular
in L.

We also need the following standard technical lemma.

Lemma 4.2.10. Let q be a Z≥0-graded Lie algebra, and let n denote the ideal
⊕

k>0 qk.
Suppose y is an element of q0, and that r ⊂ n is a graded subspace such that n = [n, y] ⊕ r.
Then for every x in the completion n̂ there is g in the pro-nilpotent group exp(n̂) such that
g(y + x) ∈ y + r̂.
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Proof. Let {xi} be the sequence in n̂ with x0 = x and xi+1 = exp(−zi)(y + xi) − y, where
zi ∈ n̂ is chosen so that xi = [zi, y]+ri for ri ∈ r̂. Since exp(−zi)(y+xi) = y+ri− [zi, xi], we
can show by induction that zi and the component of xi in [n, y] are both zero below degree
i + 1. Hence the element g = · · · exp(−z2) exp(−z1) exp(−z0) is a well-defined element of
exp(n̂), and g(y + x) is contained in y + r̂ as desired.

Proof of Theorem 4.2.6. If m < +∞ then there is a homomorphism of Lie groups J σ̃mG →
J σ̃m−1G, so the induced map J σ̃mL → J σ̃m−1L on Lie algebras preserves semisimple (resp.
nilpotent) elements. We say that an element of J σ̃∞L is pro-semisimple (resp. pro-nilpotent)
if the image of the element is semisimple (resp. pro-nilpotent) in J σ̃mL for every m < +∞.
Just as in the finite-dimensional case, every element of J σ̃∞L can be written uniquely as y+z
where y is pro-semisimple, z is pro-nilpotent, and [y, z] = 0.

If y ∈ J σ̃mL is semisimple (resp. pro-semisimple) then y(0) is semisimple in L, and
hence L = Ly(0) ⊕ [L, y(0)]. It follows from Lemma 4.2.10 that there is g ∈ J σ̃mG such that
gy = y(0) + z, where z ∈ J σ̃mLy(0) and z(0) = 0. Since z is nilpotent (resp. pro-nilpotent),
uniqueness of the Jordan decomposition implies that z = 0.

More generally, if x is an arbitrary element of J σ̃mL then there is g ∈ J σ̃m such that
gx = y + z, where y ∈ L0 is semisimple and z ∈ J σ̃mL

y is nilpotent (resp. pro-nilpotent).
In particular e = z(0) is nilpotent in Ly0, so pick an sl2-triple {h, e, f} in Ly0 containing e.
Then Ly = L{y,f} ⊕ [Ly, e], so applying Lemma 4.2.10 again there is g′ ∈ J σ̃mGy such that
g′z ∈ e+ J σ̃mL

{y,f} = J σ̃m(e+ L{y,f}) and g′(0)z(0) = e.
Using this canonical form, we move on to the proof of the theorem statement. Pick

a principal sl2-triple {h, e, f} in L0. By Lemma 4.2.9 {h, e, f} is also principal in L, so
ν = e+Lf is a Kostant slice in L invariant under σ, and νσ = e+Lf0 is a Kostant slice in L0.
It follows immediately that J σ̃mν → J σ̃mQ is an isomorphism, and also that Qσ = L0//G

σ.
Since J σ̃mL

reg → //J σ̃mQ is J σ̃mG-invariant, each orbit in J σ̃mL
reg can intersect J σ̃mν at most

once. So we just need to show that the multiplication map J σ̃mG×J σ̃mν → J σ̃mL
reg is surjective,

or equivalently that every fibre of the map J σ̃mL
reg → J σ̃mQ is a J σ̃mG-orbit.

The projection Lreg → Q is smooth and every fibre is a G-orbit, so the multiplication
map G× ν → Lreg is surjective and smooth. Hence by Lemma 4.1.2 the multiplication map
JmG × Jmν → JmL

reg is surjective. Suppose x1 and x2 are two points of J σ̃mL
reg with the

same value in J σ̃mQ. Using the m = 0 case and the canonical form above, we can assume
that x1(0) = x2(0) = y+ e′, where y is semisimple in L0 and e′ is a principal nilpotent in Ly0,
and that x1 and x2 are in y + J σ̃mν

′, where ν ′ is the Kostant slice e′ + L{y,f
′} in Ly. Since x1

and x2 have the same image in JmQ, there is g ∈ JmG such that gx1 = x2. Multiplication
by g preserves Jordan decomposition, so g ∈ (JmG)y. The subgroup Gy is a connected
reductive subgroup of G by Lemma 5, page 353 of [Ko63b], and the exponential map is a
bijection for nilpotent (resp. pro-nilpotent) groups, so (JmG)y = Gy · exp(zJmL

y) = JmG
y,

the connected subgroup of JmL with Lie algebra JmL
y. Hence x1 − y and x2 − y are in the

same regular JmG
y-orbit of Jm(Ly)reg. But x1 − y and x2 − y belong to J σ̃mν

′ ⊂ Jmν
′, which

we have already observed intersects each JmG
y-orbit exactly once, implying that x1 = x2 as
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desired.

Theorem 4.2.6 implies that the map J σ̃mL
reg → J σ̃mQ is surjective for 0 ≤ m ≤ +∞, and

smooth for 0 ≤ m < +∞. To prove Theorem 4.2.7, we need to account for the parabolic
component. Recall that g0 = p0 ∩ p0.

Lemma 4.2.11. The projection p0 ∩ Lreg0 → R is a surjective smooth P0-orbit map. In
addition, if g ∈ Gσ fixes an element of p0 ∩ Lreg0 then g belongs to P0.

Proof. Let b0 be a Borel of L0 contained in p0 and compatible with h0. Let u0 be the
unipotent radical of p0, so that g0 = p0/ u0. Finally let ∆ be the set of roots of L0, and
let S ⊂ ∆ be the set of simple roots. Similarly let S0 ⊂ S be the set of simple roots of g0

corresponding to the Borel b0 ∩g0, and let ∆0 = ∆ ∩ Z[S0] be the set of roots of g0.
Now suppose y ∈ p0 is semisimple in L0, and let y = y0 + y1 where y0 ∈ g0 and y1 ∈ u0.

Then u0 = [u0, y0] ⊕ uy00 , so by Lemma 4.2.10 there is p ∈ P0 such that py = y0 + z, where
z ∈ uy00 . Since py is semisimple, we conclude that z = 0, and ultimately that y is conjugate
by P0 to an element of h0.

Every element x ∈ p0 can be written as x = y + z where y, z ∈ p0, y is semisimple
in L0, z is nilpotent in L0, and [y, z] = 0. By the previous paragraph, it is possible to
conjugate x by an element of P0 so that y ∈ h0. We can then conjugate x by an element
of Py0 so that z belongs to by0. Assume x is given with y ∈ h0 and z ∈ by0. By a dimension
argument, by0 is a Borel for the reductive Lie algebra Ly0. The corresponding simple roots are
the indecomposable elements Sy of ∆+

y = {α ∈ ∆+ : α(y) = 0}. Similarly by0 ∩g
y
0 is a Borel

for gy0, and the simple roots are the elements of Sy ∩∆0. The element x is regular in L0 if
and only if z is a principal nilpotent in Ly0, which is true if and only if the projection to (L0)α
is non-zero for all α ∈ Sy. If this latter condition holds then the image of x in g0 = p0/ u0 is
regular in g0. The projection p0 → g0 is P0-equivariant, so we conclude that the projection
sends regular elements of L0 to regular elements of g0.

Conversely, if x ∈ greg0 then we can conjugate x by an element of the subgroup of g0 to
be of the form y + z where y ∈ h0 and z ∈ by0 is a principal nilpotent. This means that the
projection of z to (L0)α is non-zero for every α ∈ Sy ∩∆0. Let z′ be an element of L0 such
that the projection of z′ to (L0)α is non-zero if α ∈ Sy \ ∆0, and is zero otherwise. Then
x + z′ is a regular element of L0 which projects x. Using equivariance again, we conclude
that the projection p0 → g0 induces a surjection p0 ∩ Lreg0 → greg0 . The map greg0 → R is a
smooth surjection, and p0 → g0 is smooth, so we conclude that p0 ∩ Lreg0 → R is a smooth
surjection.

Now suppose x1 and x2 in p0 ∩ Lreg0 map to the same element of R. As in the third
paragraph, we can assume without loss of generality that xi = yi + zi with yi ∈ h0 and zi a
principal nilpotent element of Lyi0 contained in byi0 . In addition, the images of x1 and x2 in
g0 are conjugate by an element of P0, so in particular we can assume that y1 = y2. Thus z1

and z2 are both principal nilpotents of Ly10 contained in by10 , and hence are conjugate by an
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element of the Borel subgroup of by10 . We conclude that the projection p0 ∩ Lreg0 → R is a
P0-orbit map.

For the last part of the lemma, we again assume that x ∈ p0∩Lreg0 is of the form y+z with
y ∈ h0 and z ∈ by0. If x is regular then Lx0 = (Ly0)z is contained in b0 ⊂ p0. By Proposition
14, page 362 of [Ko63b], (Gσ)x is connected, and hence a subgroup of P0.

Proof of Theorem 4.2.7. Suppose x1, x2 ∈ pm ∩ J σ̃mLreg have the same image in R×Qσ J σ̃mQ.
By Theorem 4.2.6 there is g ∈ J σ̃mG such that gx1 = x2, while by Lemma 4.2.11 there is
p0 ∈ P0 such that p0x1(0) = x2(0). Thus p−1

0 g(0) fixes x1(0) ∈ p0 ∩ Lreg0 , so g ∈ Pm by
Lemma 4.2.11, and pm ∩ J σ̃mLreg → R×Qσ J σ̃mQ is a Pm-orbit map.

To show surjectivity, observe that pm ∩ J σ̃mLreg = (p0 ∩ Lreg0 ) ×L0 J
σ̃
mL

reg. A point of
R ×Qσ J σ̃mQ is determined by a pair of points x ∈ R and y ∈ J σ̃mQ which have the same
image in Qσ. Given a point specified in this manner, choose x′ ∈ p0∩Lreg0 mapping to x and
y′ ∈ J σ̃mLreg mapping to y. Since x and y have the same image in Qσ, there is g ∈ Gσ such
that gy(0) = x. Then gy belongs to pm and maps to the point (x, y) ∈ R×Qσ J σ̃mQ.

Since pm ∩ J σ̃mLreg → R ×Qσ J σ̃mQ is a Pm-orbit map, to show smoothness it is enough
to show that the map Tpm ∩ J σ̃mLreg → T (R ×Qσ J σ̃mQ) is surjective. This follows from a
similar argument to the last paragraph. As mentioned in the proof of Theorem 4.2.6, if ν0 is
a Kostant slice in L0 then Gσ × ν0 → Lreg0 is smooth and surjective, so TGσ × Tν0 → TLreg0

is also surjective, and hence if two elements of TLreg0 have the same image in TQσ then they
are conjugate by an element of TGσ. Surjectivity of p0 ∩ Lreg0 → R and J σ̃mL

reg → J σ̃mQ
follows from Lemma 4.2.11 and Theorem 4.2.6.

Proof of Corollary 4.2.8. R×QσTconstJ σ̃mQ is isomorphic to the pullback R×TQσTJ σ̃mQ, where
the map R → TQσ is the composition of the zero section R → TR with the differential
TR → TQσ. The restriction of the differential Tpm → TR to T>0pm factors through the
zero section R → TR, so the image of T>0pm is contained in R ×TQσ TJ σ̃mQ. To show that
this bundle map is surjective on fibres, observe that, in the argument for smoothness in the
proof of Theorem 4.2.7, if x ∈ TR is a zero tangent vector, then we can pick x′ ∈ Tp0∩TLreg
mapping to x which is also a zero tangent vector, and hence the resulting point of Tpm will
be contained in T>0pm.
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Chapter 5

Strong Macdonald theorems

In this chapter we state and prove the strong Macdonald theorems for a parahoric. We
assume that p = {f ∈ L[z] : f(0) ∈ p0} is a standard parahoric in a twisted loop algebra
L[z±1]σ̃, where p0 is a parabolic in a reductive Lie algebra L.

This chapter is adapted from part of [Sl11b].

5.1 Statement of theorems

5.1.1 Exponents and diagram automorphisms

The exponents of L are integers m1, . . . ,ml such that H∗(L) is the free super-commutative
algebra generated in degrees 2m1 + 1, . . . , 2ml + 1, where l is the rank of L. Equivalently, we
can define the exponents by saying that (S∗L∗)L is the free commutative algebra generated
in degrees m1 + 1, . . . ,ml + 1. Extend the action of σ to S∗L∗ by σ(f)(z) = f(σ−1z). This
convention is chosen so that σ(adt(x)f) = adt(σ(x))σ(f) for all f ∈ S∗L∗ and x ∈ L. Let
M be the ideal in (S∗L∗)L generated by elements of degree greater than zero. The diagram
automorphism σ acts diagonalizably on the space M/M2 of generators for (S∗L∗)L, and
consequently it is possible to find homogeneous generators of C[Q] which are eigenvectors of
σ.

Definition 5.1.1. Choose a set of homogeneous generators for (S∗L∗)L which are eigenvec-

tors of σ. The exponents of L can be sorted into different sets m
(a)
1 , . . . ,m

(a)
la

, a ∈ Zk, by

letting m
(a)
1 + 1, . . . ,m

(a)
la

+ 1 be the list of degrees of homogeneous generators of (S∗L∗)L with
eigenvalue q−a (note the negative exponent). We call the elements of these sets the exponents
of La.

Recall that if V is an L0-module and {h, e, f} is a principal sl2-triple in L0, then the
generalized exponents of V are the eigenvalues of h/2 on the subspace V Le0 fixed by the
abelian subalgebra Le0. The generalized exponents are always non-negative integers, and the
dimension of V Le0 is equal to the dimension of the zero weight space of V .
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Proposition 5.1.2. The exponents of La are the generalized exponents of La as an L0-
module.

The proof of Proposition 5.1.2 will be given in Subsection 5.2.1. The generalized expo-
nents of L0 are the same as the ordinary exponents, and l0 is the rank of L0, so there is no
conflict in our terminology. In general la is the dimension of h ∩ La, where h is a Cartan
compatible with σ. If L is simple, then k is either 1 or 2, except when L = so(8) in which
case k can be 3 and L1 is isomorphic to L2. As a result, the exponents of La are the same as
the exponents of L−a. A principal sl2-triple in L0 is also principal in L (see Lemma 4.2.9),

so Le is abelian and hence L
Le0
a = Lea, simplifying the definition of generalized exponents in

this case. The eigenvalues of h/2 give a principal grading La =
⊕

L
(i)
a of each La such that

L =
⊕

i

⊕
a L

(i)
a is a principal grading for L. The representation theory of sl2 then implies:

Corollary 5.1.3. The multiplicity of m in the list of exponents of La is dimL
(m)
a −dimL

(m+1)
a ,

where La =
⊕

L
(i)
a is a principal grading.

The exponents of La can be easily determined when L is simple, and are given in the
following table:

Type of L k Type of L0 Exponents of L0 Exponents of L±1

A2n 2 Bn 1, 3, . . . , 2n− 1 2, 4, . . . , 2n

A2n−1 2 Cn 1, 3, . . . , 2n− 1 2, 4, . . . , 2n− 2

Dn 2 Bn−1 1, 3, . . . , 2n− 3 n− 1

E6 2 F4 1, 5, 7, 11 4, 8

D4 3 G2 1, 5 3

5.1.2 Cohomology of superpolynomials in a standard parahoric

Let p = {f ∈ g : f(0) ∈ p0} be a standard parahoric in a twisted loop algebra g, and let p̂[s]
denote the superpolynomial algebra in one odd variable with values in p̂. The cohomology of
the super Lie algebra p̂[s] can be calculated as in the ordinary case using the Koszul complex,
so any grading on p̂[s] induces a grading on H∗cts(p̂[s]). In particular H∗cts(p̂[s]) is graded by
z-degree and by s-degree.

Theorem 5.1.4. Let m
(a)
1 , . . . ,m

(a)
la

denote the exponents of La, and let r1, . . . , rl0 denote
the exponents of the reductive algebra p0 ∩ p0, where p0 is a parabolic in L0. If p is the
standard parahoric {f ∈ L[[z]]σ̃ : f(0) ∈ p0} then the cohomology ring H∗cts(p̂[s]) is a free
super-commutative algebra generated in degrees given in the following table:
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Cohomological degree s-degree z-degree Index set

2ri + 1 0 0 i = 1, . . . , l0

ri + 1 ri + 1 0 i = 1, . . . , l0

m
(−a)
i + 1 m

(−a)
i + 1 kn− a n ≥ 1, a = 0, . . . , k − 1, i = 1, . . . , l−a

m
(−a)
i + 1 m

(−a)
i kn− a n ≥ 1, a = 0, . . . , k − 1, i = 1, . . . , l−a

To prove Theorem 5.1.4, we give an explicit description of a generating set of cocycles for
the relative cohomology ring H∗cts(p̂, g0;S∗p̂∗), where g0 = p0∩p0. Choose a set of generators
Iai , a ∈ Zk, i = 1, . . . , la for (SL∗)∗ such that Iai is an eigenvector of σ with eigenvalue
q−a. Also choose a set of homogeneous generators R1, . . . , Rl0 for (S∗g∗0)g0 . The polynomial
functions Iak on L induce functions Ĩak : L[[z]] → C[[z]], and the coefficients [zn]Ĩak of zn in
Ĩak restrict to p̂-invariant polynomial functions on p̂. Similarly, the polynomials Ri on p0

can be pulled back via the quotient map p → g0 to p̂-invariant polynomials on p̂. Finally,
1-cocycles can be constructed as follows. If J is a derivation of p̂ that kills g0 and φ ∈ Skp̂∗
is p̂-invariant then the tensor

û⊗ Sk−1p̂→ C : x⊗ s1 ◦ . . . ◦ sk−1 7→ φ(Jx ◦ s1 ◦ · · · ◦ sk−1). (5.1)

is a cocycle (see Lemma 3.1.1).

Theorem 5.1.5. Let p be a standard parahoric in g, and let J be the derivation from Theorem
3.1.3. Then there is a metric on the Koszul complex such that the harmonic cocycles for
H∗cts(p̂, g0;S∗p̂∗) form a free supercommutative ring generated by the cocycles in the following
table:

Cocycle description Coh. deg. Sym. deg z-deg. Index set

Ri 0 degRi 0 i = 1, . . . , l0

[zkn−a]Ĩ−ai 0 deg I−ai kn− a n ≥ 1, i = 1, . . . , l−a,
a = 0, . . . , k − 1

x⊗ s 7→ [zkn−a]Ĩ−aj (Jx ◦ s) 1 deg I−aj − 1 kn− a n ≥ 1, i = 1, . . . , l−a,
a = 0, . . . , k − 1

Proving Theorem 5.1.5 is the main concern of the paper; the proof is finished in Subsection
5.2.2.

Proof of Theorem 5.1.4 from Theorem 5.1.5. Since the bracket of p̂[s] is zero on the odd
component, the Koszul complex for p̂[s] reduces to the Koszul complex for p̂ with coefficients
in S∗p̂∗. Thus there is a ring isomorphism H∗cts(p̂[s]) ∼= H∗cts(p̂;S∗p̂∗) in which Hn−q

cts (p̂;Sqp̂∗)
corresponds to the cohomology classes in Hn

cts(p̂[s]) of s-degree q. This isomorphism preserves
z-degree. The degree zero component of p is g0 = p0 ∩ p0, a reductive algebra which is the
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quotient of p by the standard nilpotent subalgebra u. It follows from the Hochschild-Serre
spectral sequence (in particular Theorem 12 of [HS53]) that there is a ring isomorphism

H∗cts(p̂;S∗p̂∗) ∼= H∗(g0)⊗H∗cts(p̂, g0;S∗p̂∗).

Then Theorem 5.1.4 follows from the description of relative cohomology.

When p0 = L0, Theorem 5.1.4 states that the algebra H∗cts(L[z, s])σ̃ is the free super-

commutative algebra with generators in tensor degree 2m
(a)
i + 1 and 2m

(a)
i + 2, and z-degree

nk+a, for a = 0, . . . , k−1, i = 1, . . . , la, and n ≥ 0. In addition the Hochschild-Serre spectral
sequence implies that H∗(p0[s]) ∼= H∗(g0) ⊗ (S∗g∗0)g0 , where g0 = p0 ∩ p0, so H∗(p0[s]) is
isomorphic to the subalgebra of H∗cts(p̂[s]) of z-degree zero. In fact, the inclusion is the
pullback map given by evaluation at zero, as can be seen from the explicit description of
harmonic cocycles, so H∗cts(p̂[s]) is naturally isomorphic to H∗(p0[s])⊗H∗(L0[s]) H

∗
cts(L[z, s]σ̃).

We can also ask for an explicit description of the relative cohomology groupsH∗cts(p̂, g0;S∗û∗).
In this case, we can only provide an answer when p is an Iwahori subalgebra—that is, a stan-
dard parahoric {f ∈ L[[z]]σ̃ : f(0) ∈ p0} where p0 is a Borel subalgebra.

Theorem 5.1.6. Let b be an Iwahori subalgebra of g, and let n be the nilpotent subalgebra.
Let J be the derivation from Theorem 3.1.3. Then there is a metric on the Koszul complex

such that the harmonic cocycles for H∗cts

(
b̂, h0;S∗n̂∗

)
form a free supercommutative ring

generated by the cocycles in the following table:

Cocycle description Coh. deg. Sym. deg z-deg. Index set

[zkn−a]Ĩ−ai 0 deg I−ai kn− a n ≥ 1, i = 1, . . . , l−a,
a = 0, . . . , k − 1

x⊗ s 7→ [zkn−a]Ĩ−aj (Jx ◦ s) 1 deg I−aj − 1 kn− a n ≥ 1, i = 1, . . . , l−a,
a = 0, . . . , k − 1

Theorem 5.1.6 can be used to calculate H∗cts

(
b̂;S∗n̂

)
as in the proof of Theorem 5.1.4.

With an appropriate degree shift, the cohomology ring H∗cts

(
b̂, h;S∗n̂

)
can also be regarded

as the h-invariant part of H∗cts(n̂[s]). The proof of Theorem 5.1.6 will be completed in
Subsection 5.2.3.

5.1.3 Cohomology of the truncated algebra

If N is a multiple of k then zNL[z]σ̃ is a subset of L[z]σ̃, and hence zNp is an ideal of p.
Theorem 5.1.5 can be used to determine the cohomology of the finite-dimensional Lie algebra
p/zNp.

Recall that the coinvariant algebra of the Weyl group W (L0) is the quotient of S∗h∗0 by the
ideal generated by (S>0h∗0)W (L0). We define Coinv(L0, g0) to be the graded algebra which is
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the quotient of (S∗g∗0)g0 by the ideal generated by (S>0L∗0)L0 , where S∗L∗0 acts on S∗g∗0 by re-
striction. By the Chevalley restriction theorem, Coinv(L0, g0) is isomorphic to the subalgebra
of W (g0)-invariants in the coinvariant algebra of W (L0). It is well-known that the Poincare

series for Coinv(L0, g0) with the symmetric grading is
∏l0

i=1(1− qri+1)−1
∏l0

i=1

(
1− qm

(0)
i +1

)
,

where m
(0)
i refers to the exponents of L0 and ri refers to the exponents of g0. The dimension

of Coinv(L0, g0) is |W (L0)|/|W (g0)|.

Theorem 5.1.7. Let m
(a)
1 , . . . ,m

(a)
la

denote the exponents of La, and let r1, . . . , rl0 be the
exponents of the reductive Lie algebra g0 = p0 ∩ p0. Let Coinv(L0, g0) denote the coinvariant
algebra, with a cohomological grading (resp. z-grading) defined by setting the cohomological
degree (resp. z-degree) to twice (resp. N times) the symmetric degree.

If p is the standard parahoric {f ∈ L[[z]]σ̃ : f(0) ∈ p0} and N is a multiple of k then
the cohomology algebra H∗(p/zNp) is isomorphic to Coinv(L0, g0) ⊗ Λ, where Λ is the free
super-commutative algebra generated in degrees given by the following table:

Cohomological degree z-degree Index set

2ri + 1 0 i = 1, . . . , l0

2m
(a)
i + 1 Nm

(a)
i + nk + a a = 0, . . . , k − 1, i = 1, . . . , la, 0 < nk + a < N

As in the proof of Theorem 5.1.4, we have

H∗(p/zNp) ∼= H∗(g0)⊗H∗(p/zNp, g0),

so we only need to compute the relative cohomology. This will be done with a spectral
sequence argument in Section 5.3 (see Proposition 5.3.6).

When the parabolic component is trivial, H∗
(
L[z]σ̃/zN

)
is simply the free super-commutative

algebra with one set of generators in cohomological degree 2m
(0)
i + 1 and z-degree 0 for

i = 1, . . . , l0, and another set of generators in cohomological degree 2m
(a)
i + 1 and z-

degree Nm
(a)
i + nk + a, where a = 0, . . . , k − 1, i = 1, . . . , la, and n such that 0 <

nk + a < N . Theorem 5.1.7 can be restated as saying that H∗(p/zNp) is the algebra
H∗(g0)⊗ Coinv(L0, g0)⊗H∗(L0) H

∗(L[z]σ̃/zN).
In Lemma 5.3.7, we prove that if g is untwisted andN = 1 thenH∗(p/zp, g0) is isomorphic

to H∗(L0, g0). This algebra is in turn isomorphic to the cohomology ring of the generalized
flag variety corresponding to the pair (L0, p0). The z-grading on H∗(p/zp, g0) corresponds to
the holomorphic grading appearing in the Hodge decomposition. The fact that Coinv(L0, g0)
is isomorphic to H∗(L0, g0) is a classic theorem of Borel ([Bo53], see Theorem 5.5 of [BGG73]
for the parabolic case). Thus Theorem 5.1.7 can be seen as a generalization of Borel’s
theorem.

We can compare the cohomology of p/zNp with the cohomology of more general trunca-
tions. If P (z) is a polynomial in z, then P (zk)L[z]σ̃ is a subset of L[z]σ̃, and hence P (zk)p is
an ideal of p. We can assume that P is monic, and write P = zd +P0, where d is the degree
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of P and P0 contains lower degree terms. Suppose x ∈ Li for i ≥ 0. Then (zdk + P0(zk))xzi

is in P (zk)p if and only if either i > 0 or x ∈ p0, so the dimension of p/P (zk)p is d · dimL.

Lemma 5.1.8. If P and Q are coprime then p/P (zk)Q(zk)p ∼= p/P (zk)p⊕ p/Q(zk)p.

By Lemma 5.1.8 the study of p/P (zk)p reduces to the case where P is the power of a
linear factor. In the untwisted case, L[z] ∼= L[z−α], so L[z]/(z−α)N ∼= L[z]/zN . However, in
the twisted case this argument does not apply, since the automorphism z 7→ q−1z is different
from z − α 7→ q−1(z − α). In particular:

Lemma 5.1.9. If α 6= 0 then p/(zk − α)p is isomorphic to L.

Proof. Let β be a kth root of α. Then evaluation at β defines a morphism p/(zk−α)p→ L.
Both L and p/(zk − α)p have the same dimension, so we just need to show that this map
is onto. Given x ∈ L, write x =

∑k−1
i=0 xi where xi ∈ Li. Let f =

∑k−1
i=1 xiβ

−izi + x0α
−1zk.

Then f(β) = x.

The author does not know if an analogue of Lemma 5.1.9 holds for higher powers of
(zk − α). The main case of interest is p/(zN − t)p, which can be regarded as a deformation
of p/zNp. Since zN/k − t splits into N/k coprime linear factors, the algebra p/(zN − t)p
is isomorphic to L⊕N/k for t 6= 0. At t = 0, the algebra p/zNp has a large nilpotent
ideal. Ignoring z-degrees, Theorem 5.1.7 tells us that H∗

(
L[z]σ̃/zN

) ∼= H∗(L)⊗N/k, so the
cohomology of L[z]σ̃/(zN − t) is independent of the value of t. On the other hand, Theorem
5.1.7 tell us that H∗

(
p/(zN − t)p

)
changes from H∗(L)⊗N/k to H∗(g0)⊗H∗(L0, g0)⊗H∗(L0)

H∗(L)⊗N/k as t degenerates to zero, where H∗(L0) acts on H∗(g0) via pullback. Interestingly,
the cohomology of p/zk(zN − t)p is unchanged as t degenerates to zero.

If p = b is an Iwahori and n is the nilpotent subalgebra, then a similar analysis can be
performed for b /zNn.

Theorem 5.1.10. Let m
(a)
1 , . . . ,m

(a)
la

denote the exponents of La, let b be an Iwahori subal-
gebra of the twisted loop algebra g, and let n be the nilpotent subalgebra. Then H∗(b /zNn)

is the free super-commutative algebra with a generator in cohomological degree 2m
(a)
i + 1

and z-degree Nm
(a)
i + nk + a for every a = 0, . . . , k − 1, i = 1, . . . , la, and n such that

0 < nk + a ≤ N , as well as l0 generators of cohomological degree 1 and z-degree 0.

As with Theorem 5.1.7, the proof of Theorem 5.1.10 reduces via the Hochschild-Serre
spectral sequence to the computation of the relative cohomology, which is also completed in
Section 5.3 (see Proposition 5.3.8).

If P (z) is a polynomial of degree d, then b /P (zk)n has dimension d ·dimL+ l0. Further-
more, [b, P (zk)h0] is contained in P (zk)n, and there is a morphism b /P (zk)n → b /P (zk) b
with kernel P (zk)h0, so b /P (zk)n is a central extension of b /P (zk) b of rank l0.

Lemma 5.1.11. If t 6= 0 then b /(zN − t)n is isomorphic to L⊕N/k ⊕ Cl0, where the second
summand is abelian.
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Proof. b /(zN − t) b is isomorphic to the direct sum of N/k copies of L. If L is semisimple,
then so is b /(zN − t) b, so all central extensions are trivial. The reductive case reduces to
the semisimple case by splitting off the centre.

Thus H∗
(
b /(zN − t)n

)
is also independent of t when z-degrees are disregarded.

5.1.4 The Macdonald constant term identity

Theorem 5.1.7 can be used to prove the affine version of Macdonald’s constant term conjec-
ture. If α̂ = α + nδ is an affine root, α a weight of L0, set eα̂ = q−neα. In a slight abuse of
notation, the operator [e0] will denote the sum of the enδ terms, i.e. it is C(q)-linear. Let δ∗

denote the dual element to δ. The following theorem is Conjecture 3.3 of [Ma82], and was
proven for all root systems by Cherednik [Ch95].

Theorem 5.1.12 (Cherednik). Let N be a multiple of k, and let SN be the set of real roots1

α+nδ of the twisted loop algebra g with 0 ≤ n ≤ N , such that α is a positive (resp. negative)
root of L0 if n = 0 (resp. n = N). Let ρ be the element of h0 such that αi(ρ) = 1 for all
simple roots α1, . . . , αl0 of L0, and let ρN = −Nρ+ δ∗. Then

[e0]
∏
α∈SN

(1− e−α) =
∏
α∈SN

(
1− q|α(ρN )|)ε(α)

,

where ε(α) is the sign of α(ρN).

Define a twisted q-binomial coefficient for a ∈ Zk and multiples N,M of k by(
N

M

)
k,a

=
∏

N−M<i≤N
i≡a mod k

(1− qi)
∏

0<i≤M
i≡a mod k

(1− qi)−1.

The right-hand side of Theorem 5.1.12 can be simplified by extending an idea of [Ma82] from
the untwisted case.

Lemma 5.1.13. The identity of Theorem 5.1.12 is equivalent to

[e0]
∏
α∈SN

(1− e−α) =
∏
a∈Zk

la∏
i=1

(
N(m

(a)
i + 1)

N

)
k,a

. (5.2)

Proof. Let ∆a be the set of weights of the L0-module La, and let ∆+
a denote the subset

of α ∈ ∆a such that α(ρ) > 0. If θ is an arbitrary function from positive integers to a
multiplicative group, then

∏
α∈∆+

a

θ(α(ρ) + 1)

θ(α(ρ))
=

la∏
i=1

θ
(
m

(a)
i + 1

)
θ(1)

.

1i.e. α 6= 0
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To prove this, note that the eigenvalues of ρ on La are integers giving the principal grading
of La, so the identity follows immediately from Corollary 5.1.3 by comparing the number of
times θ(m) occurs on the top versus the bottom.

Define
Aa =

∏
α+nδ∈SN
α∈∆a

(
1− q|α(ρN )|)ε(α)

,

and set θ−a(m) = (1− qNm−a)(1− qNm−k−a) · · · (1− qNm−N+k−a), for a ∈ Zk represented by
one of 0, . . . , k − 1. Then

A0 =
∏
α∈∆+

0

N/k−1∏
n=0

(
1− qNα(ρ)−nk)−1

N/k∏
n=1

(
1− qNα(ρ)+nk

)
while if a 6= 0 we have

Aa =
∏
α∈∆+

a

N/k−1∏
n=0

(
1− qNα(ρ)−nk−a)−1 (

1− qNα(ρ)+nk+a
)
.

In both cases,

Aa =
∏
α∈∆+

a

θ−a(α(ρ))−1θa(α(ρ) + 1).

Even if −a and a are not congruent, La and L−a are still isomorphic, so

AaA−a =
∏
α∈∆+

a

θ−a(α(ρ))−1θa(α(ρ) + 1)θa(α(ρ))−1θ−a(α(ρ) + 1).

Hence the right hand side of Theorem 5.1.12 is equal to

k−1∏
a=0

Aa =
∏
a∈Zk

la∏
i=1

θa

(
m

(a)
i + 1

)
θa(1)

,

as required.

Let C∗ be a chain complex with an additional grading C∗ =
⊕

C∗n. The weighted Euler
characteristic of C∗ is

χ(C∗; q) =
∑
n,i

(−1)∗ dimCi
nq

n.

As in the unweighted case, the weighted Euler characteristic is invariant under taking homol-
ogy. Let p = {f ∈ L[[z]]σ̃ : f(0) ∈ p0} be a standard parahoric and g0 = p0 ∩ p0. Theorem
5.1.12 can be proved by comparing the z-weighted Euler characteristic for the Koszul complex
of the pair (p/zNp, g0) with the weighted Euler characteristic of the cohomology ring:
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Proof. Write p0 = g0⊕u0, for u0 the nilpotent radical. Let K be a compact subgroup acting
on L with complexified Lie algebra g0, and let T be a maximal torus in K with complexified
Lie algebra h0. Let πa denote the representation of K on La, and let φ and φ denote the
representation of K on u0 and u0 respectively. The weighted Euler characteristic of the
Koszul complex is

χ(q) =
∑

(−1)iqi dim

(
i∧

(p/zNp)∗

)K

.

By orthogonality of traces of representations with respect to Haar measure,

χ(q) =

∫
K

det(1− φ(k)) det(1− qNφ(k))
∏

0<n<N

det(1− qnπn(k))dk.

The integrand is conjugation invariant, so by the Weyl integral formula,

χ(q) =
1

|W (g0)|

∫
T

det(1− φ(t)) det(1− qNφ(t))
∏

0<n<N

det(1− qnπn(t))
∏

α∈∆(g0)

(1− eα(t))dt

=
1

|W (g0)|
[e0]

∏
α∈∆(g0)

(1− eα) · Φ,

where ∆(g0) is the root system of g0 and

Φ =
∏

α∈∆+(g0)

(1− e−α)−1(1− qNeα)−1
∏
α∈SN

(1− e−α)
∏

0<n<N

(1− qn)ln

(note that the inverses divide into the other multiplicands). The coefficient of qj in Φ is (up
to sign) the character of a g0-module, so Φ is W (g0) invariant. Now we use the identity∑

w∈W (g0)

∏
α∈∆+(g0)

1− qNewα

1− ewα
=

l0∏
i=1

1− qN(ri+1)

1− qN
(5.3)

found in [Ma82][Ma72b] to get

χ(q) =
1

|W (g0)|

l0∏
i=1

1− qN

1− qN(ri+1)
·
[
e0
] ∑
w∈W (g0)

∏
α∈∆+(g0)

1− qNewα

1− ewα
∏

α∈∆(g0)

(1− eα) · Φ

=
1

|W (g0)|

l0∏
i=1

1− qN

1− qN(ri+1)
·
[
e0
] ∑
w∈W (g0)

w ·
∏

α∈∆+(g0)

1− qNeα

1− eα
∏

α∈∆(g0)

(1− eα) · Φ.

Since the action of W (g0) does not change the constant term, this last sum gives

χ(q) =

l0∏
i=1

(1− qN(ri+1))−1
∏

0<n≤N

(1− qn)ln ·
[
e0
] ∏
α∈SN

(1− e−α).
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On the other hand, Theorem 5.1.7 implies

χ(q) =

l0∏
i=1

(
1− qN(ri+1)

)−1 ∏
0<n≤N

ln∏
i=1

(
1− qNm

(n)
i +n

)
Identifying these two equations gives the identity of Lemma 5.1.13.

Note that when p = b is an Iwahori the equivalence follows without using the Weyl
integration argument or identity (5.3). The z-weighted Euler characteristic identity for
H∗(b /zNn, h0), is similarly equivalent to the identity of Lemma 5.1.13.

5.2 Calculation of parahoric cohomology

In this section we finish the proofs of Theorems 5.1.5 and 5.1.6 and Proposition 5.1.2. We
continue to use the notation of Section 4.2.

5.2.1 Proof of Proposition 5.1.2

Pick a principal sl2-triple {h, e, f} in L0, and note that {h, e, f} is principal in L by Lemma
4.2.9. We need to show that the eigenvalues of h/2 on Lea agree with the subset of the
exponents defined in Definition 5.1.1. Let L =

⊕
L(i) denote the principal grading of

L induced by the eigenspace decomposition of h/2. Then m ≥ 0 appears in the list of
exponents of L with multiplicity dim

(
L(m)

)e
.

Let ν denote the Kostant slice f+Le. As previously mentioned, Kostant’s theorem states
that the restriction map C[Q] → C[ν] is an isomorphism. Actually, a stronger statement
is true. Identity C[ν] with polynomials on Le in the obvious way. Filter C[ν] by setting
C[ν]m to be the subring of polynomials on

⊕m
i=0

(
L(i)
)e

. Choose homogeneous generators
for C[Q] = (S∗L∗)G and let C[Q]m be the subring generated by generators of degree at most
m+ 1. Then, by Theorem 7, page 381 of [Ko63b], the restriction map gives an isomorphism
between C[Q]m and C[ν]m. Furthermore, if I is a generator of degreem+1 then the restriction
of I to ν takes the form f + I0 where f is in the dual space of

(
L(m)

)e
and I0 ∈ C[ν]m−1 does

not have constant term.
The automorphism σ acts on both C[ν] and C[Q], preserving the filtration in both cases,

and the restriction map is σ-equivariant. As before, let M denote the ideal in (S∗L∗)G

containing all elements of degree greater than zero, so thatM/M2 is the space of generators.
By definition, the multiplicity of m as an exponent is the multiplicity of q−a as an eigenvalue
of σ acting on the degree m + 1 subspace of M/M2. By the previous paragraph, this is
equal to the multiplicity of q−a as an eigenvalue of σ acting on the dual space of

(
L(m)

)e
, or

equivalently the dimension of qa as an eigenvalue of σ acting on
(
L(m)

)e
itself.
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5.2.2 Proof of Theorem 5.1.5

Let Ω∗constR×Qσ J σ̃mQ denote the sections of
∧∗R×Qσ T ∗constJ σ̃mQ, where T ∗constJ

σ̃
mQ is the dual

bundle to TconstJ
σ̃
mQ. Similarly, let Ω∗>0pm denote the sections of

∧∗ T ∗>0pm, where T ∗>0pm
is the dual bundle to T>0pm. As per Theorem 3.1.3, we want to calculate the algebra of
P∞-invariant N∞-basic elements of Ω∗>0p∞.

Proposition 5.2.1. Pullback via the bundle map T>0pm → R×Qσ TconstJ σ̃m gives an isomor-
phism from the algebra Ω∗constR ×Qσ J σ̃mQ to the algebra of Pm-invariant Nm-basic elements
of Ω∗>0pm.

Proof. Every section of Ω∗>0p∞ is a pullback from Ω∗>0pm for some m < +∞. By Corollary
4.2.8, the pullback map is injective, so it is enough to prove surjectivity when m < +∞.

Let prsm denote the open subset pm ∩ J σ̃mLrs of pm. We start by showing that the pullback
map is an isomorphism from Ω∗constR

r ×Qσ J σ̃mQr to the algebra of Pm-invariant Nm-basic
elements of Ω∗>0p

rs
m . By Theorem 4.2.2, prsm is isomorphic to Pm/J σ̃mH ×W (g0) J

σ̃
mh

r. By
Proposition 4.1.3,

T
(
Pm/J σ̃mH ×W (g0) J

σ̃
mh

r
) ∼= TPm/J σ̃mH ×W (g0) TJ

σ̃
mh

r.

Pm/Nm is isomorphic to the connected reductive subgroup of Pm corresponding to the
subalgebra g0 ⊂ J σ̃mL. We work for a moment in the analytic category. Suppose γt is a curve
in prsm representing an element of T>0pm, so that the image γt of γt in g0 is constant. There are
curves αt and βt in Pm and J σ̃mh

r respectively such that αtβt = γt. Let αt denote the image
of αt ∈ Pm/Nm. Then γt = αtβt(0) is a constant curve in g0, so α0

−1αtβt(0) is a constant
curve in hr0. This implies that α0

−1αt ∈ wHσ for some w ∈ N(H)σ, from which we can
conclude that α0

−1αtβt(0) = wβt(0), so βt(0) is constant, and hence represents an element of
TconstJ

σ̃
mh

r. Since w−1α0
−1αt ∈ Hσ, the curves αt and αtαt

−1α0w are equal in Pm/J σ̃mH. The
latter curve projects to a constant curve in Pm/Nm, and since Pm ∼= Pm/NmnNm, is tangent
to a left Nm-coset in Pm. Since Nm is normal, every left Nm-coset is a right Nm-coset. We
conclude that over prsm , T>0pm is isomorphic to the subbundle TNmPm/J σ̃mH×W (g0)TconstJ

σ̃
mh

r

of T
(
Pm/J σ̃mH ×W (g0) J

σ̃
mh

r
)
, where TNmPm/J σ̃mH is the subbundle of tangents to Nm-orbits.

Recall from the proof of Theorem 4.2.2 that J σ̃mh
r/W (g0) is isomorphic to J σ̃m(hr/W (m)),

so Tconst of the former space is well-defined. By Proposition 4.1.3 again, (TJ σ̃mh
r)/W (g0) ∼=

T (J σ̃mh
r/W (g0)), so Tconst(J

σ̃
mh

r/W (g0)) is a subbundle of (TJ σ̃mh
r)/W (g0). A tangent vector

v ∈ TJ σ̃mh
r represents an element of Tconst(J

σ̃
mh

r/W (g0)) if and only if the projection of
v(0) to hr0/W (g0) ∼= (hr/W (m))σ is a zero tangent vector, where v(0) is the image of v in
Thr0. Since hr0 → hr0/W (g0) is etale, this is true if and only if v(0) is a zero tangent vector,
so Tconst(J

σ̃
mh

r/W (g0)) ∼=
(
TconstJ

σ̃
mh

r
)
/W (g0). Similarly the isomorphism J σ̃mh

r/W (g0) ∼=
Rr×Qσ J σ̃mQr sends TconstJ

σ̃
mh

r/W (g0) to Rr×Qσ TconstJ σ̃mhr (see the proof of Corollary 4.2.8).
Applying Theorem 4.2.2, we want to show that the bundle map

TNmPm/J σ̃mH ×W (g0) TconstJ
σ̃
mh

r → TconstJ
σ̃
mh

r/W (g0)
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induced by projection on the second factor gives an isomorphism from Ω∗constJ
σ̃
mh

r/W (g0) to
the ring of P-invariant N -basic sections of

∧∗ T ∗NmPm/J σ̃mH ×W (g0) T
∗
constJ

σ̃
mh

r.
By pulling back to Pm/J σ̃mH × J σ̃mhr, we can identify the ring of Pm-invariant Nm-basic

sections of
∧∗ T ∗NmPm/J σ̃mH ×W (g0) T

∗
constJ

σ̃
mh

r with a subring of the Pm-invariant Nm-basic
sections of

∧∗ TNmPm/J σ̃mH×T ∗constJ σ̃mhr. This latter ring is isomorphic to the ring Ω∗constJ
σ̃
mh

r

by pullback via projection on the second factor. An element of Ω∗constJ
σ̃
mh

r descends to
a section over Pm/J σ̃mH ×W (g0) J

σ̃
mh

r if and only if it is W (g0)-equivariant. The split-
ting TJ σ̃mh

r = J σ̃mh
r × h0 ⊕ TconstJ

σ̃
mh

r allows us to identify the W (g0)-module Ω∗constJ
σ̃
mh

r

with the subalgebra of differential forms which vanish on J σ̃mh
r × h0.2 There is a sim-

ilar splitting for TJ σ̃mh
r/W (g0), and thus a similar identification for Ω∗constJ

σ̃
mh

r/W (g0).
The differential TJ σ̃mh

r → TJ σ̃mh
r/W (g0) preserves this splitting, so the pullback map

Ω∗constJ
σ̃
mh

r/W (g0) → Ω∗constJ
σ̃
mh

r agrees with the pullback map on differential forms. Thus
pullback gives an isomorphism from Ω∗constJ

σ̃
mh

r/W (g0) to the W (g0)-equivariant elements of
Ω∗constJ

σ̃
mh

r (see, e.g., Theorem 1 of [Br98]), and this implies that all Pm-invariant Nm-basic
sections of

∧∗ T ∗NmPm/J σ̃mH ×W (g0) T
∗
constJ

σ̃
mh

r come from pullback on the second factor.
To finish the proof, let pregm = p ∩ J σ̃mLreg, and let φ denote the map pregm → R×Qσ J σ̃mQ.

By Theorem 4.2.7, φ is smooth and surjective. Hence if f is a regular function defined on
an open dense subset of R ×Qσ J σ̃mQ such that φ∗f extends to pregm , then f has a unique
extension to R×Qσ J σ̃mQ.

Suppose ω ∈ Ω∗>0p
reg
m is Pm-invariant and Nm-basic. Then there is α ∈ Ω∗constR

r×Qσ J σ̃mQ
such that φ∗α = ω over prsm . We can write α =

∑
fiαi, where the αi’s are elements of

Ω∗constR ×Qσ J σ̃mQ which are linearly independent in fibres, and the fi’s are functions on
Rr ×Qσ J σ̃mQr. Since the bundle map is surjective on fibres, the pullbacks φ∗αi are linearly
independent in fibres. Since φ∗α =

∑
i φ
∗fiφ

∗αi extends to pregm , the functions φ∗fi must
extend to pregm , and consequently α extends to R×Qσ J σ̃mQ. The pullback φ∗α agrees with ω
on an open dense subset, so every Pm-invariant Nm-basic element of Ω∗>0p

reg
m is the pullback

of an element of Ω∗constR×Qσ J σ̃mQ as desired.

Proof of Theorem 5.1.5. Let Iai and Ri be generators for C[Q] and C[R] as in the statement of
Theorem 5.1.5. Choose coordinates {yia} for Q such that pullback of yia via the projection
L → Q is Iai . Similarly, choose coordinates {ri} for R such that the pullback of ri via
the projection p0 → R is Ri. Note that the coordinates {yia} with a fixed correspond to
the subspace Qa of Q on which σ acts as multiplication by qa (by previously established
convention, this means that σyia = q−ayia). Consider the ri’s as functions on R ×Qσ J σ̃∞Q,
and let ỹia denote the induced map J∞Q→ Q. Then the coordinate ring of R×Qσ J σ̃mQ is the
free ring generated by the ri’s and the functions [znk−a]ỹi,−a for a = 0, . . . , k − 1 and n ≥ 1.
Consequently the ring Ω∗constR×Qσ J σ̃mQ is the free super-commutative ring generated by the
above generators for the coordinate ring, along with the restrictions of the differential forms
d[znk−a]ỹi,−a, a = 0, . . . , k − 1 and n ≥ 1. Let p̂ = p∞ denote the completion of a standard
parahoric. Applying Proposition 5.2.1 we conclude that Ω∗>0p̂ is the free super-commutative

2In contrast, there is no such identification for the Pm-module Ω>0pm.



CHAPTER 5. STRONG MACDONALD THEOREMS 69

algebra generated by the Ri’s, the functions [znk−a]Ĩ−ai for a = 0, . . . , k − 1 and n ≥ 1, and
the restrictions of the 1-forms d[zkn−a]Ĩ−ai to T>0p̂, again for a = 0, . . . , k − 1 and n ≥ 1.
Theorem 5.1.5 then follows from Theorem 3.1.3.

5.2.3 Proof of Theorem 5.1.6

The proof of Theorem 5.1.5 can be simplified and used to prove that pullback via the map
pm → R ×Qσ J σ̃mQ gives an isomorphism between algebraic forms on R ×Qσ J σ̃mQ and Pm-
basic and invariant forms on pm. When p0 = L0, this can be proved without Theorem
4.2.2. Namely, if ν is a Kostant slice in L then, as previously mentioned, G × ν → Lreg

is surjective and smooth. By Lemma 4.1.7 and Theorem 4.2.6, the multiplication map
J σ̃mG × J σ̃mν → J σ̃mL

reg is surjective for all m, and smooth for m < +∞. Since J σ̃mν is
isomorphic to J σ̃mQ, identification of algebraic forms on J σ̃mQ with J σ̃mG-basic and invariant
algebraic forms on J σ̃mL follows by pulling back to J σ̃mG× J σ̃mν.

This idea can be adapted to determine the algebra of B-basic and invariant forms on n̂,
where b is an Iwahori subalgebra, B is the subgroup corresponding to the completion b̂, and
n̂ is the completion of the nilpotent subalgebra of b. More specifically, let bm be the image
of b̂ in J σ̃mL, let Bm be the corresponding connected subgroup of J σ̃mG, and let nm be the
image of n̂ in J σ̃mL. If X is a variety with finite order automorphism σ, and p ∈ X, let J σ̃m,pX
denote the subscheme {f ∈ J σ̃mX : f(0) = p} of jets with a fixed base point.

Proposition 5.2.2. There is a map nm → J σ̃m,0Q, and pullback via this map gives an isomor-
phism between the ring of algebraic forms on J σ̃m,0Q and the ring of Bm-basic and invariant
algebraic forms on nm.

Proof. Once again it is sufficient to give the proof for m < +∞. Let e be a principal nilpotent
of L0, contained in n0. Recall that Ge is a connected subgroup of B0. Let

(
J σ̃mG

)
e

denote the
connected subgroup {f ∈ J σ̃mG : f(0) ∈ Ge} of J σ̃mG with Lie algebra {f ∈ J σ̃mL : f(0) ∈ Le0}.
Since f ∈ nm belongs to J σ̃mL

reg if and only if f(0) is a principal nilpotent in n0, and all
principal nilpotents in n0 are conjugate by an element of B0, it follows that the map

Bm ×(J σ̃mG)e
J σ̃m,eL→ nm ∩ J σ̃mLreg

is an isomorphism. Consequently Bm-basic and invariant forms on nm ∩ J σ̃mLreg correspond
to
(
J σ̃mG

)
e
-basic and invariant forms on J σ̃m,eL.

The projection L→ Q sends e to zero, so the restriction of J σ̃mL→ J σ̃mQ to J σ̃m,eL factors
through J σ̃m,0Q. Choose a principal sl2-triple {h, e, f} in L0 containing e, and let ν = e+Lf .

The isomorphism J σ̃mν → J σ̃mQ identifies J σ̃m,eν with J σ̃m,0Q, and every
(
J σ̃mG

)
e
-orbit on J σ̃m,eL

intersects J σ̃m,eν in a unique point. Consequently the map J σ̃m,eL → J σ̃m,0Q is a surjective

smooth
(
J σ̃mG

)
e
-orbit map. It follows that the multiplication map

(
J σ̃mG

)
e
× J σ̃m,eν → J σ̃m,eL

is smooth and surjective. We conclude that the pullback map from algebraic forms on
J σ̃m,eL to algebraic forms on

(
J σ̃mG

)
e
× J σ̃m,eν is injective, and thus pullback via the map
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J σ̃m,eL → J σ̃m,0Q gives an isomorphism between algebraic forms on J σ̃m,0Q and
(
J σ̃mG

)
e
-basic

and invariant forms on J σ̃m,eL.
Thus every Bm-basic and invariant form on nm ∩ J σ̃mLreg is the pullback of a form from

J σ̃m,0Q. Since nm ∩ J σ̃mLreg is dense in nm, the proposition follows.

This proof does not extend to nilpotent subalgebras of other parahorics, as u∩Lreg[[z]]
is non-empty only in the Borel case. As in the proof of Theorem 5.1.5, Theorem 3.1.5 and
Proposition 5.2.2 together imply Theorem 5.1.6.

5.3 Spectral sequence argument for the truncated al-

gebra

In this section we finish the proof of Theorem 5.1.7 using a spectral sequence argument. We
start by defining the spectral sequence, and establishing its convergence. We then prove, in
Lemma 5.3.5, the key step: the collapse of the spectral sequence at the E2-term.

Recall from Chapter 3 the definition of the operators dR(S) and dL(T ) on
∧∗ p̂ ⊗ S∗p̂.

The operator dR(S) is a generalized interior product, while dL(T ) is a generalized exterior
derivative. Hence we have the following version of Cartan’s identity:

Lemma 5.3.1. dR(S)dL(T ) + dL(T )dR(S) = (ST )Sym + (TS)∧, where (ST )Sym is the ex-
tension of ST to the symmetric factor as a derivation, and (TS)∧ is the extension of TS to
the exterior factor as a derivation.

Let P : p̂∗ → p̂∗ be the dual of multiplication by zN on p̂. Define Q : p̂∗ → p̂∗ by
(Qf)(x) = f

(
x
zN

)
, where x is the projection to zN p̂ using the splitting p̂ = (zN p̂)⊕ (p̂/zN p̂)

suggested by the root grading. Note that PQ = 1, while QP is projection to (zN p̂)∗

using the corresponding splitting of p̂∗. Thus (dR(P )dL(Q) + dL(Q)dR(P ))ω = (n + q)ω
if ω ∈

∧∗(p̂/zN p̂)∗ ⊗
∧n(zN p̂)∗ ⊗ Sqp̂∗. Then dR(P )2 = 0, and we can use Cartan’s identity

to show that

0 //
∧∗(p̂/zN p̂)∗ //

∧∗ p̂∗ dR(P ) // ∧∗−1 p̂∗ ⊗ S1p̂∗
dR(P ) // . . .

is exact. Further, dR(P ) commutes with the Lie algebra cohomology operator ∂̄ with co-
efficients in S∗p̂∗. Since dR(P ) is p-equivariant and preserves the subset of cochains which
vanish on g0, we can restrict to the relative cochain complex to get an exact sequence

0 //
(∧∗(û/zN p̂)∗

)g0 // K∗,0
dR(P ) // K∗,1

dR(P ) // . . . ,

where K∗,∗ is the bigraded algebra (
∧∗ û∗ ⊗ S∗p̂∗)g0 graded by tensor (i.e. combined exterior

and symmetric) degree and symmetric degree, regarded as a bicomplex with differentials ∂̄
(the Lie algebra cohomology differential for û with coefficients in S∗p̂∗) and dR(P ). Note
that both ∂̄ and dR(P ) are derivations of the algebra structure.
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Lemma 5.3.2. Give K∗,∗ a z-grading by taking the usual z-degree for the exterior factor,
and z-degree + N on p̂∗ for the symmetric factor. This z-grading descends to H∗(totalK∗,∗),
and there is an isomorphism H∗(p/zNp, g0)→ H∗(totalK∗,∗) which preserves z-degrees.

Proof. We have just shown that there is a chain map from the Koszul complex for (p/zNp, g0)
to totalK∗,∗. Consider the spectral sequence induced by the column-wise filtration of K∗,∗,
i.e. the descending filtration where the pth level contains all elements of Ka,b with a ≥ p.
The E1-term of this spectral sequence is

Ep,q
1 =

{(∧p(û/zN p̂)∗
)g0 q = 0

0 q > 0
,

with differential the restriction of ∂̄. Hence

Ep,q
2 =

{
Hp(p/zNp, g0) q = 0

0 q > 0
.

It follows from naturality of the spectral sequence that the induced map H∗(p/zNp, g0) →
H∗(totalK∗,∗) is an isomorphism. The z-degrees on K∗,∗ are preserved by ∂̄ and dR(P ), so
the z-grading descends to homology and likewise is preserved by the isomorphism.

To calculate H∗(totalK∗,∗), consider the spectral sequence of the bicomplex K∗,∗ in-
duced by the row-wise filtration, i.e. the descending filtration where the pth level contains
all elements of Ka,b with b ≥ p. This spectral sequence has Ep,q

1 = Hq−p
cts (p̂, g0;Spp̂) with

differential dR(P ) (note that the order of the degrees is swapped compared to K∗,∗, so p
is symmetric degree and q is tensor degree). Thus E∗,∗1 is a freely generated differential
super-commutative algebra, with generating cocycles explicitly described in Theorem 5.1.5
as follows. If r1, . . . , rl0 is a list of exponents for g0 then there is a generator in Eri+1,ri+1

1 repre-

sented by a cocycle Ri. If m
(−a)
1 , . . . ,m

(−a)
l−a

is a list of twisted exponents then there is a gener-

ator in E
m

(−a)
i +1,m

(−a)
i +1

1 for every n ≥ 1, represented by a cocycle fnk−ai = [znk−a]Ĩ
(−a)
i , and a

generator in E
m

(−a)
i ,m

(−a)
i +1

1 for every n ≥ 1, represented by a cocycle ωnk−ai = J∆d[znk−a]Ĩ
(−a)
i .

Since dR(P ) is a derivation, we just need to determine its action on these generators. By

degree considerations, dR(P ) kills the generators Ri and fnk−ai . Note that f 0
i = [z0]Ĩ

(0)
i

lies in E∗,∗1 , as it belongs to the algebra C[R] generated by the Ri’s (apply Theorem 4.2.6
with m = 0). If the reductive algebra L splits as a direct sum L = z⊕

⊕
L(i), where z is

the centre and the L(i)’s are σ-invariant simple components, then we can assume that the
generators I

(−a)
i of (S∗L∗)L used to construct the cochains fnk−ai belong either to S∗ z∗ or to(

S∗
(
L(i)
)∗)L

for some i. With this assumption we have:

Lemma 5.3.3. The differential dR(P ) on K∗,∗ sends ωnk−ai to a non-zero scalar multiple of
fnk−a−Ni if nk − a ≥ N , and to zero otherwise.
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Proof. The generator ωnk−ai can be rewritten as dL(J)fnk−ai . Both dR(P ) and dL(J) preserve
the subalgebras (S∗(L(i))∗)L and S∗ z∗, so we can assume that L is either simple or abelian.
Since dR(P )fnk−ai = 0, we can use Lemma 5.3.1 to get dR(P )ωnk−ai = (PJ)Symfnk−ai . As an
element of the dual of S∗p̂, (PJ)Symfnk−ai is defined by

x1 ◦ · · · ◦ xm(−a)
i +1

7→
∑
j

[znk−a]I
(−a)
i (· · · ◦ JzNxj ◦ · · · ).

Suppose L is abelian. Then, as noted after the statement of Theorem 3.1.3, we can assume
that J is the identity, so (PJ)Symfnk−ai = fnk−a−Ni as required.

This leaves the case that L is simple, in which case J is defined as the derivation of p̂
acting on weight spaces gα as multiplication by 〈ρ, α〉, where ρ is the weight of the associated
Kac-Moody satisfying ρ(α∨i ) = 1 if di > 0 in the grading of type d determining p, and
ρ(α∨i ) = 0 otherwise. Following the Kac convention in [Ka83], the Kac-Moody associated to
g is g̃ = g⊕Cc⊕Cd, where c is central and d acts by z d

dz
. The roots of g̃ belong to the dual

of the Cartan h0 ⊕ Cc ⊕ Cd, and are defined similarly to the roots of g, with d∗ replacing
δ. If α0 = d∗ − ψ, α1, . . . , αl is a list of simple roots for g̃, then the associated coroots are
α∨0 = c∗ − ψ0, α

∨
1 , . . . , α

∨
l , where ψ0 is either ψ∨ in the untwisted case, or the element of h0

such that 〈x, ψ0〉 = ψ(x) in the twisted case. The standard non-degenerate invariant form
〈, 〉 for g̃ satisfies 〈h0, c〉 = 〈h0, d〉 = 〈c, c〉 = 〈d, d〉 = 0 and 〈c, d〉 6= 0.

Write ρ = ρ0+Ac∗ for some ρ0 in h∗0. If xj ∈ gα in the above equation then zNxj ∈ gα+Nd∗ ,
so JzNxj = zN(N〈ρ, d∗〉+ J)xj. Since 〈ρ, d∗〉 = A〈c∗, d∗〉, we have

dR(P )ωnk−ai =

{(
NA(m

(−a)
i + 1)〈c∗, d∗〉+ JSym

)
fnk−a−Ni nk > N

0 nk ≤ N
.

Take a basis {xα,i} for gα, and let xiα be the dual basis. Then JSymxiα = 〈ρ, α〉xiα = (〈ρ0, α〉+
A〈c∗, α〉)xiα. There is ρ̃0 ∈ h0 such that α(ρ̃0) = 〈ρ0, α〉 for all roots α, so adt(ρ̃0)xiα =
−〈ρ0, α〉xiα. Hence on the subring of h0-invariant functions of S∗p̂∗, JSym agrees with the
derivation which sends xiα to A〈c∗, α〉xiα. The product 〈c∗, α〉 is equal to 〈c∗, d∗〉 times the
z-degree of xiα. We conclude that JSymfnk−a−Ni = A〈c∗, d∗〉(nk − a − N)fnk−a−Ni , and
consequently that

dR(P )ωnk−ai = A〈c∗, d∗〉
(
N(m

(−a)
i + 1) + nk − a−N

)
fnk−a−Ni

if N ≤ nk − a. Since nk − a−N ≥ 0, the coefficient is non-zero as required.

We now have a situation parallel to when we defined dR(P ). Let V0 be the free vector
space spanned by basis elements vnk+a

i for n ≥ 0, a = 0, . . . , k− 1, and i = 1, . . . , la. For any
integer m, let Vm be the subspace of V0 spanned by the vnk+a

i ’s with nk + a ≥ m. Identify∧∗ V1⊗S∗V0 with a subalgebra of E∗,∗1 by sending vnk+a
i to fnk+a

i in the symmetric term and
to ωnk+a

i in the exterior term. Let P ′ be the linear map V0 → V0 sending vnk+a
i to vnk+a−N

i if
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nk+a ≥ N , and to zero otherwise. Let Q′ be the operator V0 7→ V1 sending vnk+a
i 7→ vnk+a+N

i .
Then P ′Q′ = 1, while Q′P ′ is projection to VN . So dR(P ′)dL(Q′) + dL(Q′)dR(P ′) acts as
multiplication by the combined symmetric degree and exterior VN -degree. By Lemma 5.3.3,
the differential on E∗,∗1 restricts to dR(P ′) on

∧∗ V1 ⊗ S∗V0, and hence the homology of the
differential on this subspace is the subalgebra Λ1 of the E2-term generated by ωnk+a

i ’s with
0 < nk + a < N . To get the whole E2-term, recall:

Lemma 5.3.4. (S∗g∗0)g0 is a free (S∗L∗0)L0-module.

Proof. Let S = (S∗g∗0)g0 and A = (S∗L∗0)L0 . Restriction to the Cartan h0 gives isomorphisms
S ∼= (S∗h∗0)W (g0) and A ∼= (S∗h∗0)W (L0), so A is a subalgebra of S. By the Chevalley-Shephard-
Todd theorem [Ch55] [Ko63b], there is a subset H0 ⊂ S∗h∗0 such that S∗h∗0

∼= A ⊗ H0 as a
W (L0)-module, where the isomorphism is given by multiplication, and H0 is isomorphic to

the regular representation. Hence S ∼= A⊗H where H = H
W (g0)
0 .

The algebra C[Qσ] generated by the f 0
i ’s is a subalgebra of

∧∗ V1 ⊗ S∗V0. Note that
dR(P ′) is C[Qσ]-linear, since it kills C[Qσ] and is a derivation. The E1-term is isomorphic
to the base extension C[R]⊗C[Qσ ]

∧∗ V1⊗ S∗V , with differential given by the base extension
1⊗ dR(P ′) of dR(P ′). Freeness implies that the E2-term is C[R]⊗C[Qσ ] Λ1. Since the action
of C[Qσ] on Λ1 sends everything of symmetric degree > 0 to zero, the E2-term is isomorphic
to Coinv(L0, g0)⊗ Λ1.

Lemma 5.3.5. The spectral sequence collapses at the E2-term. Consequently the graded al-
gebra of H∗(totalK∗,∗) with respect to the row-wise filtration is isomorphic to Coinv(L0, g0)⊗
Λ1.

Proof. Λ1 is a free algebra with a generator ωnk−ai ∈ Em
(−a)
i ,m

(−a)
i +1

2 for every twisted exponent

m
(−a)
i of L and n such that 0 < nk−a < N . The subring Coinv(L0, g0) lies in bidegrees (a, a),

so the entire E2-term is contained in bidegrees (a, b) with a ≤ b. Suppose more generally
that the Er-term is contained in bidegrees (a, b) with a ≤ b, and is generated in bidegrees
(a, a + 1) and (a, a). The E2-term differential has bidegree (2,−1), and thus annihilates
Coinv(L0, g0) and the generators ωnk−ai . The same argument works for higher Er-terms as
well.

Now we just need to determine the ring structure of H∗(totalK∗,∗). The row-wise filtra-
tion ofK∗,∗ is the descending filtration where F PK∗,∗ =

⊕
r≥pK

∗,r. Likewise F pH∗(totalK∗,∗)
is the subspace of homology classes which have a representative cocycle in F pK∗,∗. If k ∈ Kq,p

is such that ∂̄k = dR(P )k = 0, then k determines a homology class [k] in F pHp+q(totalK∗,∗).
Referring to the construction of the spectral sequence of a filtered differential module (see,
e.g., pages 34-37 in [MC01]), we also see that k determines a persistent element of the spec-
tral sequence, i.e. k represents an element in each Ep,q

r (once again, note that the degrees
are swapped between K∗,∗ and E∗,∗) that is killed by the rth differential, and the homology
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class of this element corresponds to the element represented by k in Ep,q
r+1. The projection

F pHp+q(totalK∗,∗) → Ep,q
∞ sends [k] to the element represented by k in E∞. Finally, when

Ep,q
1 is identified with Hq(K∗,p, ∂̄) the element of E1 represented by k is simply the homology

class represented by k in Hq(K∗,p, ∂̄), and consequently the same is true of the identification
of E2 with H∗(H∗(K∗,∗, ∂̄), dR(P )). Note that this would not necessarily be true if k was
not homogeneous.

We know that the E2-term is generated by classes represented by elements Ri, i = 1, . . . , l0
and ωnk+a

i , i = 1, . . . , la and 0 < nk + a < N in K∗,∗. Let Λ denote the subalgebra of K∗,∗

generated by the elements ωnk+a
i , i = 1, . . . , la, 0 < nk + a < N . By Theorem 5.1.5 and

Lemma 5.3.3, C[R] ⊗ Λ ⊂ K∗,∗ is annihilated by both ∂̄ and dR(P ). Hence there is a
homomorphism C[R] ⊗ Λ → H∗(totalK∗,∗). Since ∂̄ωNi = 0, Lemma 5.3.3 implies that the
image of f 0

i in H∗(totalK∗,∗) is zero, so the homomorphism C[R] ⊗ Λ → H∗(totalK∗,∗)
descends to a map Coinv(L0, g0)⊗ Λ→ H∗(totalK∗,∗). By Lemma 5.3.5 and the argument
of the last paragraph, this map is a bijection. We record this calculation in the following
proposition.

Proposition 5.3.6. Let Coinv(L0, g0) denote the algebra of Lemma 5.3.4, graded by symmet-
ric degree. Give Coinv(L0, g0) a cohomological grading by doubling the symmetric grading,
and a z-grading by multiplying the symmetric grading by N . Then H∗(p/zNp, g0) is iso-
morphic to Coinv(L0, g0)⊗ Λ, where Λ is the free algebra generated in cohomological degree

2m
(a)
i + 1, z-degree Nm

(a)
i + nk + a, for a = 0, . . . , k − 1, i = 1, . . . , la, and n such that

0 < nk + a < N .

Consider the untwisted case where n = 1. In this case, p/zp is the semi-direct product
p0 n L0/p0, where L0/p0 has Lie bracket equal to zero. Then Proposition 5.3.6 implies that
H∗(p0nL0/p0, g0) is isomorphic to Coinv(L0, g0). The following Lemma implies that Propo-
sition 5.3.6 actually gives a direct Lie algebra proof of Borel’s theorem that Coinv(L0, g0) is
isomorphic to H∗(L0, g0). Note that the z-grading on H∗(p0 nL0/p0, g0) is half the cohomo-
logical grading, and thus corresponds to the holomorphic grading on H∗(L0, g0).

Lemma 5.3.7. Let p0 nL0/p0 be the semi-direct product where L0/p0 has Lie bracket equal
to zero. The cohomology ring H∗(p0 n L0/p0, g0) is isomorphic to H∗(L0, g0).

Proof. We use a standard Hodge theory argument. Let X be the generalized flag variety
Gσ/P0, where P0 is the parabolic subgroup of Gσ corresponding to p0. The complex-valued
de Rham complex of X can be realized as the relative Koszul complex

C∗ (L0, g0;C∞(K;C)) =

(
∗∧

(L0/g0)∗ ⊗ C∞(K;C)

)g0

,

where K is a compact form of X. The de Rham differential d translates to the Lie algebra
cohomology boundary operator for (L0, g0). Let u0 be the nilpotent radical of p0. The
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holomorphic structure on X gives the de Rham complex a bigrading, which can be written
in terms of C∗(L0, g0;C∞(K;C) as

Cp,q(C∞(K;C)) =

(
p∧
u0
∗ ⊗

q∧
u∗0⊗C∞(K;C)

)g0

,

where p is the holomorphic degree, and q is the anti-holomorphic degree. The differential d =
∂+ ∂̄, where ∂ and ∂̄ are the holomorphic and anti-holomorphic differentials respectively. On
C∗,∗, ∂ is the Lie algebra cohomology differential of u0 with coefficients in

∧∗ u∗0⊗C∞(K;C),
where u0 is the u0-module L0/p0. Similarly ∂̄ is the Lie algebra cohomology differential of u0

with coefficients in
∧∗ u0

∗⊗C∞(K;C). The Kahler identities then imply that the Laplacian
dd∗ + d∗d of d with respect to a Kahler metric is equal to twice the Laplacian ∂̄∂̄∗ + ∂̄∗∂̄. In
particular the two differentials give the same cohomology.

A theorem of Chevalley-Eilenberg implies that the de Rham complex is quasi-isomorphic
to the subcomplex C(L0, g0;C) of equivariant forms [CE48]. Since K acts by holomorphic
maps on X, the same is true of the de Rham complex with the anti-holomorphic differential.
Hence the Kahler identities imply that the cohomology of C∗(L0, g0;C) is the same with
respect to either d or ∂̄. Finally

(
C(L0, g0;C), ∂̄

)
can be identified with the Koszul complex

for the Lie algebra cohomology of H∗(p0 n L0/p0, g0).

To finish the section, we observe that if p is an Iwahori, then a similar spectral sequence
calculation can be made with S∗p̂∗ replaced by S∗û. In this case the spectral sequence will
converge to H∗(p̂/zNn, h0), while the E1-term of the spectral sequence is the free super-

commutative algebra H∗cts(p̂, h0;S∗û) generated by elements fnk−ai ∈ E
m

(−a)
i +1,m

(−a)
i +1

1 and

ωnk−ai ∈ Em
(−a)
i ,m

(−a)
i +1 for every n ≥ 1, a = 0, . . . , k − 1, and i = 1, . . . , la. The differential

on the E1-term sends ωnk−ai to fnk−a−Ni if nk − a > N , and to zero otherwise. Thus the
E2-term will be the free algebra generated by the ωnk−ai ’s with 0 < nk − a ≤ N . Since the
algebra is free, the isomorphism on graded algebras lifts to give:

Proposition 5.3.8. Let b be an Iwahori subalgebra of g, and let n be the nilpotent subalgebra.
Then H∗(b /zNn, h0) is a free algebra generated in cohomological degree 2m

(a)
i + 1, z-degree

Nm
(a)
i + nk + a, for a = 0, . . . , k − 1, i = 1, . . . , la, and n such that 0 < nk + a ≤ N .
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Chapter 6

The Brylinski filtration

The point of this chapter is to define a Brylinski filtration for affine (i.e. indecomposable
of affine type) Kac-Moody algebras. Throughout, g will refer to a symmetrizable Kac-Moody
algebra. For standard notation and terminology, we mostly follow [Ku02]. We assume a fixed
presentation of g, from which we get a choice of Cartan h, simple roots {αi}, simple coroots
{α∨i }, and Chevalley generators {ei, fi}. We can then grade g via the principal grading,
i.e. by assigning degree 1 to each ei and degree −1 to each fi. By choosing a real form
hR of h we get an anti-linear Cartan involution x 7→ x, defined as the anti-linear involution
sending ei 7→ −fi for all i and h 7→ −h for all h ∈ hR. As usual g has the triangular
decomposition g = n ⊕ h ⊕ n, where n is the standard nilpotent

⊕
n>0 gn. The standard

Borel is the subalgebra b = h⊕ n. Associated to n and b are the pro-algebras n̂ = lim← n/nk
and b̂ = lim← b /nk, where nk =

⊕
n>k gn.

Recall from the introduction that the Kostant partition functions K(β; q) are defined for
weights β by ∑

β

K(β; q)eβ =
∏
α∈∆+

(1− qeα)−multα,

where ∆+ is the set of positive roots and multα = dim gα. The q-character of a weight space
L(λ)µ is the function

mλ
µ(q) =

∑
w∈W

ε(w)K(w ∗ λ− µ; q), (6.1)

where W is the Weyl group of g, ε is the usual sign representation of W , and w ∗ λ =
w(λ+ ρ)− ρ is the shifted action of W .

Let L(λ) denote the irreducible representation of g of highest weight λ. We show that, as
in the finite-dimensional case, there is a filtration on L(λ)µ such that when µ is dominant,
mλ
µ(q) is equal to the Poincare series of the associated graded space. Unlike the finite-

dimensional case, the principal nilpotent is not sufficient to define the filtration in the affine
case; instead, we use the positive part of the principal Heisenberg (this form of Brylinski’s
identity was first conjectured by Teleman). Brylinski’s original proof of the identity mλ

µ =
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eP λ
µ uses a cohomology vanishing result for the flag variety. Our proof is based on the same

idea, but uses the Lie algebra cohomology approach of [FGT08]. In particular we prove
a vanishing result for Lie algebra cohomology by calculating the Laplacian with respect
to a Kahler metric. Although we concentrate on the affine case for simplicity, our results
generalize easily to the case when g is a direct sum of algebras of finite or affine type.
There are two difficulties in extending this result to indefinite symmetrizable Kac-Moody
algebras: there does not seem to be a simple analogue of the Brylinski filtration, and the
cohomology vanishing result does not extend for all dominant weights µ. We can overcome
these difficulties by replacing the Brylinski filtration with an intermediate filtration, and by
requiring that the root λ − µ has affine support. Thus we get some partial non-negativity
results for the coefficients of mλ

µ(q) even when g is of indefinite type.
This chapter is adapted from [Sl11a].

6.1 The Brylinski filtration for affine Kac-Moody alge-

bras

A principal nilpotent (with respect to a given presentation) of a symmetrizable Kac-Moody
algebra is an element e ∈ g1 of the form e =

∑
ciei, where ci ∈ C \ {0} for all simple roots

ei. If g is affine it is well known that the algebras se = {x ∈ g : [x, e] ∈ Z(g)} are Heisenberg
algebras, and these algebras are called principal Heisenberg subalgebras.

Definition 6.1.1. Let L(λ) be a highest-weight module of an affine Kac-Moody algebra g.
Define the Brylinski filtration with respect to the principal Heisenberg s by

sF iL(λ)µ = {v ∈ L(λ)µ : xi+1v = 0 for all x ∈ s∩n}.

Let
sP λ

µ (q) =
∑
i≥0

qi dim sF iL(λ)µ /
sF i−1L(λ)µ.

be the Poincare series of the associated graded space of L(λ)µ.

Note that the principal nilpotents form a single H-orbit, so the filtration sF ∗ is indepen-
dent of the choice of principal Heisenberg.

Recall that a weight µ is real-valued if µ(h) ∈ R for all h ∈ hR, and dominant if µ(α∨i ) ≥ 0
for all simple coroots α∨i .

Theorem 6.1.2. Let L(λ) be an integrable highest weight representation of an affine Kac-
Moody algebra g, where λ is a real-valued dominant weight. If µ is a dominant weight of
L(λ) then sP λ

µ (q) = mλ
µ(q).

The dual n̂∗ of a pro-algebra will refer to the continuous dual. If V is a b̂-module then
H∗cts(b̂, h;V ) will denote the relative continuous cohomology of (b̂, h). The proof of Theorem
6.1.2 depends on
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Theorem 6.1.3. Let L(λ) be an integrable highest weight representation of an affine Kac-
Moody algebra g, where λ is a real-valued dominant weight. Let V = L(λ) ⊗ S∗n̂∗ ⊗ C−µ,

where µ is a dominant weight of L(λ). Then Hd
cts(b̂, h;V ) = 0 for d > 0, and in addition

there is a graded isomorphism grL(λ)µ ∼= H0
cts(b̂, h;V ), where the latter space is graded by

symmetric degree.

Proof of Theorem 6.1.2 from Theorem 6.1.3. Let V p = L(λ) ⊗ Spn̂∗ ⊗ C−µ. By Theorem

6.1.3, P λ
µ (q) =

∑
p≥0 dimH0

cts(b̂, h;V p)qp =
∑
χ(b̂, h;V p)qp, where χ is the Euler characteris-

tic (the second equality follows from cohomology vanishing). Since n̂∗ has finite-dimensional
weight spaces and all weights belong to the negative root cone,

∧∗ n̂∗ ⊗ L(λ) ⊗ Spn̂∗ has
finite-dimensional weight spaces. Thus we can write

∑
p≥0

χ(b̂, h;V p)qp =
∑
p,k≥0

(−1)kqp dim

(
k∧
n̂∗ ⊗ V p

)h

= [eµ] chL(λ)
∏
α∈∆+

(1− e−α)multα(1− qe−α)−multα.

Applying the Weyl-Kac character formula

chL(λ) =
∑
w∈W

ε(w)ew∗λ ·
∏
α∈∆+

(1− e−α)−multα

we get the result.

The proof of Theorem 6.1.3 will be given in Sections 6.3 and 6.4. If g =
⊕

gi is a
direct sum of indecomposables of finite and affine type, the conclusions of Theorems 6.1.2
and 6.1.3 remain true with s replaced by a direct sum of principal nilpotents (for the finite
components) and principal Heisenbergs (for the affine components).

6.2 Examples

In the finite-dimensional case, the Brylinski filtration is defined to be the increasing filtration
eF ∗, where

eF i(L(λ)µ) = {v ∈ L(λ)µ : ei+1v = 0},

for e a principal nilpotent. This definition makes sense for an arbitrary Kac-Moody algebra.
Let eP λ

µ (q) be the Poincare series of the associated graded space of L(λ)µ.
We now give some elementary examples to show that sF is different from eF . Consider

ŝl2, the affine Kac-Moody algebra realized as sl2[z±1]⊕Cc⊕Cd, where c is a central element,
and d is the derivation ∂

∂z
. Let {H,E, F} be an sl2-triple in sl2, and take principal nilpotent
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e = E + Fz. The principal Heisenberg s is spanned by the elements ezn, n ∈ Z, along with
c.

The Cartan subalgebra of ŝl2 is span{H, c, d}. Denote a weight αH∗ + hc∗ + nd∗ by
(α, h, n). The weight λ = (α, h, n) is dominant if 0 ≤ α ≤ h, and the corresponding
irreducible highest-weight representation L(λ) can be realized as the quotient of the Verma
module U(g)⊗U(b) Cλ by the U(g)-submodule generated by Fα+1 ⊗ 1 and (Ez−1)h−α+1 ⊗ 1.
Let

w = (Fz−1)(Ez−1)v,

where v is the highest weight vector in L(c∗). Note that w is a weight vector of weight
(0, 1,−2). It is easy to check, using the defining relations for L(c∗), that e2w = 0, while
(ez)ew = 3v, so w ∈ eF 2 but is not in sF 2.

The same idea can be used to calculate Poincare series. For the above example, where
λ = (0, 1, 0) and µ = (0, 1,−2), we have dimL(λ)µ = 2. The Poincare series for eF is q+ q4,
while the Poincare series for sF is mλ

µ(q) = q2 + q4. For an example with a dominant regular
weight, let λ = (0, 3, 0) and µ = (2, 3,−3). The Poincare series of eF is q + 2q2 + q3 + q5,
while mλ

µ(q) = q + q2 + 2q3 + q5.

6.3 Reduction to cohomology vanishing

In this section we introduce an equivalent filtration to the Brylinski filtration, which will allow
us to reduce Theorem 6.1.3 to a cohomology vanishing statement. The line of argument is
inspired by [Bry89] and [FGT08]. As usual, g will be an arbitrary symmetrizable Kac-Moody
algebra except where stated.

Associated to g is a Kac-Moody group G. The standard Borel subgroup B of G is a solvable
pro-group with Lie algebra b̂. The standard unipotent subgroup U ⊂ B is a unipotent pro-
group with Lie algebra n̂. The Borel B also contains a torus H corresponding to h. Defining
the new filtration requires two lemmas.

Lemma 6.3.1. There are algebraic isomorphisms U ∼= B/H ∼= n̂ giving U the structure of a
linear space with an affine B-action.

Proof. Note that the spaces in question can be naturally expressed as inverse limits of affine
schemes, and hence are affine schemes in their own right. Pick δ ∈ h acting on gn as
multiplication by n, and define π : B → n̂ by Ad(b)δ = δ+π(b). Then the composition U ↪→
B → B/H → n̂ is an isomorphism. n̂ has a linear structure, while B/H has a left-translation
action of B. If b1, b2 ∈ B then Ad(b1b2)δ = Ad(b1)(δ + π(b2)) = δ + π(b1) + Ad(b1)π(b2), so
π(b1b2) = Ad(b1)π(b2) + π(b1) and the resulting action of B on n̂ is affine.

Lemma 6.3.2. Let V be a pro-representation of B. Then evaluation at the identity gives an
isomorphism (V ⊗ C[U ])B → V H .
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Proof. Any element v ∈ V H extends to a B-invariant function U → V by [b] 7→ bv.

The linear structure on n̂ and the isomorphism of U with n̂ gives a B-stable filtration of
C[U ] by polynomial degree. Lemma 6.3.2 implies that if V is a pro-representation of B then
V H can be filtered via polynomial degree on C[U ]. If µ is a weight of g then extending µ
by zero on U makes C−µ into a pro-representation of B. The reason for introducing a new
filtration is the following lemma, which reduces the proof of Theorem 6.1.3 to a vanishing
result.

Lemma 6.3.3. Let W = L(λ) ⊗ C−µ, and filter L(λ)µ = WH via the isomorphism WH ∼=
(W ⊗ C[U ])B. If H1

cts(b̂, h;W ⊗ S∗n̂∗) = 0 then H0
cts(b̂, h;W ⊗ S∗n̂∗) ∼= grL(λ)µ.

Proof. Let Fp be the subset of C[U ] of polynomials of degree at most p. Then grC[U ] = S∗n̂∗

as B-modules, so there are short exact sequences

0→ W ⊗Fp−1 → W ⊗Fp → W ⊗ Spn̂∗ → 0

of B-modules for all p. The corresponding long exact sequence in Lie algebra cohomology is

H i
cts(b̂, h;W ⊗Fp−1)→ H i

cts(b̂, h;W ⊗Fp)→H i
cts(b̂, h;W ⊗ Spn̂∗)
→ H i+1

cts (b̂, h;W ⊗Fp−1).

Since H i
cts(b̂, h;W ⊗ Spn̂∗) = 0 for i = 1, the inclusion W ⊗ Fp−1 ↪→ W ⊗ Fp induces a

surjection in degree one cohomology for all p. Since F−1 = 0, H1
cts(b̂, h;W ⊗Fp) = 0 for all

p. The long exact sequence in degree i = 0 gives an isomorphism H0
cts(b̂, h;W⊗Spn̂∗) ∼= (W⊗

Fp)b/(W ⊗Fp−1)b. This latter quotient is the graded space of (W ⊗C[U ])b as required.

Now we show that the new filtration is equal to the Brylinski filtration when g is affine.

Proposition 6.3.4. Let L(λ) be an integrable highest-weight representation of an affine
Kac-Moody g. Then the Brylinski filtration on a weight space L(λ)µ agrees with the filtration
of L(λ)µ ∼= (L(λ)⊗ C−µ ⊗ C[U ])B by polynomial degree.

The proof of Proposition 6.3.4 requires two lemmas.

Lemma 6.3.5. If g is affine and s is a principal Heisenberg then Ad(B)(s∩n) is dense in
n̂.

Proof. The principal nilpotents form a single orbit, so it is only necessary to prove this
fact for a single principal nilpotent. We claim that there is a principal nilpotent such that
f = −e ∈ se, so that in particular [e, f ] ∈ Z(g). Indeed, let A be the generalized Cartan
matrix defining g, i.e. Aij = αj(α

∨
i ). Since g is affine there is a vector c > 0, unique up

to a scalar multiple, such that Atc = 0. If we pick e =
∑√

ciei then [e, f ] =
∑
ciα
∨
i , and

αj([e, f ]) =
∑
ciAij = (Atc)j = 0 for all simple roots αj.
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Now we show that n = (se ∩n) + [b, e]. In degree one we have [h, e] = g1. For higher
degrees, let {, } denote the standard non-degenerate contragradient Hermitian form on g
which is positive definite on n. An element x ∈ n is orthogonal to [b, e] if and only if
0 = {[e, z], x} = {z, [f, x]} for all z ∈ b, or in other words if and only if x ∈ Cg(f).
Suppose x ∈ gn, n ≥ 2 belongs to [b, e]⊥. Using the fact that [e, f ] ∈ Z(g) we get that
{[e, x], [e, x]} = {[f, x], [f, x]} = 0, and conclude that x ∈ se.

(s∩n) + [b, e] = n implies that the multiplication map B × (s∩n) → n̂ is a submersion
in a neighbourhood of (1, e). Since B acts algebraically on s∩n ⊂ b̂, the subset B(s∩n) is
dense in n̂.

Lemma 6.3.6. Let L(λ) be an integrable highest-weight module. Considered as a B-module,
L(λ) is a submodule of C[U ]⊗ Cλ.

Proof. This statement would follow immediately from a Borel-Weil theorem for the thick
flag variety of a Kac-Moody group. As we are not aware of a formal statement of the
Borel-Weil theorem in this context, we recover the result from the dual of the quotient map
Mlow(−λ)→ Llow(−λ), where Mlow(−λ) = U(g)⊗U(b)C−λ is a lowest weight Verma module,
and Llow(−λ) is the irreducible representation with lowest weight −λ. Both these spaces
are g-modules with finite gradings induced by the principal grading of g. Let Mlow(−λ)∗

and L(−λ)∗ denote the finitely-supported duals, consisting of linear functions which are
supported on a finite number of graded components.

Using the fact that Mlow(−λ) is a free U(n)-module, we can identity Mlow(−λ) with
S∗n ⊗ C−λ where S∗n has the b-action (y, x) 7→ [y, δ] ◦ x + ad(y)x, the symbol ◦ denotes
symmetric multiplication, and δ is defined as in Lemma 6.3.1 as an element of h which acts
on gn as multiplication by n. The finitely supported dual of Mlow(−λ) can be identified with
S∗n̂∗ ⊗ Cλ where b acts on S∗n̂∗ by (y, f) 7→ adt(y)f + ι([δ, y])f . It is not hard to check
that this action integrates to the B-action coming from identifying S∗n̂∗ with C[U ]. Since
the quotient map preserves the principal grading, the dual of the surjection Mlow(−λ) →
Llow(−λ) is an inclusion L(λ) = Llow(−λ)∗ ↪→Mlow(−λ)∗ = C[U ]⊗ Cλ as required.

Proof of Proposition 6.3.4. Let V = Cβ ⊗ C[U ], where β = λ − µ. By the last lemma, we
can prove the proposition with L(λ)µ replaced by V H , where the filtration on V H is defined
by V H ∼= (V ⊗ C[U ])B. An element f of this latter set can be identified with a B-invariant
function U × U → Cβ. The polynomial degree on the second factor is the maximum t-
degree of f(u, tx) as u ranges across U and x ranges across n̂ ∼= U . Suppose this maximum
is achieved at (u0, x0). Since B(s∩n) is dense in n̂, we can assume that x0 = Ad(b)s for
b ∈ B and s ∈ s∩n. Now s∩n is abelian and graded, so the graded components of s
commute with each other. This allows us to find s̃ ∈ s∩n such that π(ets̃) = ts. Since the
degree of f(u0, ·) is achieved on the line Ad(b)π(ets̃), it is also achieved on the parallel line
Ad(b)π(ets̃) + π(b) = π(bets̃). Thus the polynomial degree of f is equal to the t-degree of
f(u0, bπ(ets̃)) = β(b)f(b−1u0, π(ets̃)). Since β(b) is a non-zero scalar, we conclude that there
is u ∈ U and s ∈ s∩n such that the degree of f is equal to the t-degree of f(u, π(ets)).
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Conversely if s ∈ s∩n then π(ets) is a line in n̂, so the degree of f is equal to the t-degree of
f(u, π(ets)) as u ranges across U and s ranges across s∩n.

Given f ∈ (Cβ ⊗ C[U ] ⊗ C[U ]) let f̃ ∈ Cβ ⊗ C[U ] be the restriction to U × {1}. The
B-action on Cβ ⊗C[U ] is defined by (b · f)(u) = β(b)f(b−1u), so if f is B-invariant then the
t-degree of f(u, π(ets)) is equal to the t-degree of (etsf̃)(u). Since

etsf̃ =
∑
n≥0

tn

n!
snf̃ ,

the degree of f is equal to the smallest n such that sn+1f̃ = 0 for all s ∈ s∩n.

The proof of Proposition 6.3.4 works just as well with s∩n replaced by any graded abelian
subalgebra a of n̂ such that Ad(B) a is dense in n̂. For example, in the finite-dimensional case
we could take a = Ce. If g =

⊕
gi is a direct sum of indecomposables of finite or affine type

then we can take a =
⊕

ai, where ai is either the positive part of the principal Heisenberg,
or the line through the positive nilpotent, depending on whether gi is affine or finite.

6.4 Cohomology vanishing

Throughout this section g will be an arbitrary symmetrizable Kac-Moody algebra. (V, π)
will be a b̂-module such that π|g0 extends to an action of b (this conjugate action will also be

denoted by π). Note that since n = g/b, n̂∗ is both a b̂-module and a b-module. The space
n = g/ b has the same property. Recall that the semi-infinite chain complex (C∗,∗(V ), ∂̄, D)
is the bicomplex

C−a,b(V ) =

(
b∧
n̂∗ ⊗

a∧
n⊗ V

)g0

.

with differentials ∂̄ and D, where the former is the Lie algebra cohomology differential of
n̂ with coefficients in

∧∗ n ⊗ V , and the latter is the Lie algebra homology differential of n
with coefficients in

∧∗ n̂∗ ⊗ V , both restricted to g0-invariants.
The semi-infinite cocycle is defined by γ|gm×gn = 0 if m+ n 6= 0 and by

γ(x, y) =
∑

0≤n<k

trgn(ad(x) ad(y))

for x ∈ gk, y ∈ g−k, k ≥ 0. Since h = g0 is abelian, (x, y) = −γ(x, y) defines a Hermitian
form on n.

Lemma 6.4.1. Let 〈, 〉 be a symmetric invariant form on g (real-valued on a real-form of
g) such that {·, ·} = −〈·, ·〉 is contragradient and positive-definite on n. Then the Hermitian
form (·, ·) = −γ(·, ·) on n agrees with the form defined by

(x, y) = 2〈ρ, α〉{x, y}, x ∈ gα.
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Proof. Suppose x, y ∈ gα. If {ui} and {ui} are dual bases of h with respect to 〈, 〉 then

trg0(ad(x) ad(y)) =
∑
i

〈ui, [x, [y, ui]]〉

= 〈x, y〉〈α, α〉.

Next, let {eiβ} and {ei−β} be dual bases of gβ and g−β with respect to 〈, 〉. Let ρ ∈ h∗ be
such that ρ(α∨i ) = 1 for all coroots α∨i . Then

γ(x, y) = 〈x, y〉〈α, α〉+
∑
β∈∆+

∑
i

〈ei−β, [x, [y, eiβ]−]〉,

where x− is the projection of x ∈ g to n using the triangular decomposition. Rearranging
〈ei−β, [x, [y, eiβ]−]〉 = 〈x, [ei−β, [eiβ, y]−]〉 and applying Lemma 2.3.11 of [Ku02], we get that
γ(x, y) = 2〈ρ, α〉〈x, y〉.

The result of Lemma 6.4.1 is that (, ) defines a g0-contragradient Kahler metric on n.
Suppose V has a positive-definite Hermitian form contragradient with respect to π. Using
the Kahler metric on n, we can give C∗,∗(V ) a positive-definite Hermitian form by defining
(x, y) = (x, y) for x, y ∈ n. Let � = ∂̄∂̄∗ + ∂̄∗∂̄ be the ∂̄-Laplacian, and � = DD∗ + D∗D
be the D-Laplacian. Recall that Nakano’s identity states that the ∂̄-Laplacian � and the
D-Laplacian � are related by

� = � + deg + Curv,

where deg acts on Ca,b(V ) as multiplication by a+ b, and

Curv = −
∑
i,j≥1

ε(zi)ι(zj) ([π(zi), π(z−j)]− π([zi, z−j])) ,

on C0,b(V ) for {zi} a homogeneous basis of n orthonormal in (, ).

6.4.1 Laplacian calculation

Given an operator T on n̂∗, let dR(T ) and dL(T ) denote the operators on
∧∗ n̂∗⊗S∗n̂∗ defined

by

α1 ∧ . . . ∧ αk ⊗ β 7→
k∑
i=1

(−1)iα1 ∧ . . . α̌i . . . ∧ αk ⊗ T (αi) ◦ β

and

α⊗ β1 ◦ . . . ◦ βl 7→
l∑

i=1

T (βi) ∧ α⊗ β1 ◦ . . . ◦ β̌i ◦ . . . ◦ βl

respectively. Define an operator J on n̂∗ by f 7→ f/2〈ρ, α〉 if f ∈ g∗α. As in the last
section, let 〈, 〉 be a real-valued symmetric invariant bilinear form such that {, } = −〈·, ·〉 is
contragradient and positive-definite on n.
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Proposition 6.4.2. Extend the contragradient Hermitian form {, } on n to V = S∗n̂∗. On
C0,b(V ),

CurvV =
∑
s≥0

dL(adt(y′s))dR(adt(ys)J)− deg,

where {ys} is a homogeneous basis for b and {y′s} is a basis for b dual with respect to 〈, 〉.

Proof. Let V ′ = S∗n, and let π denote the actions of b and b on V ′. From Proposition
2.5.4 we see that CurvV ′ is a second-order differential operator, and thus is determined by
its action on n̂∗ ⊗ n. We claim that if f ∈ n̂∗ and w ∈ n then

CurvV ′(f ⊗ w) =
∑
s≥0

adtn(w)ys ⊗ adn(ys)φ
−1(f),

where φ : n → n̂∗ is the isomorphism induced by the Kahler metric, and {ys} is any homo-
geneous basis of b. To prove this claim, let {zi} be orthonormal with respect to the Kahler
metric, and think about f = zk, w = z−l. Observe that

π(z)w =
∑
i<0

zi([z, w])zi.

Using this expression, we get that if z−j ∈ g−m then

([π(zi), π(z−j)]− π([zi, z−j]))w =
∑

−m≤n<0

∑
z−k∈gn

z−k([z−j, [zi, w]])z−k.

We can then remove the reference to m and write

([π(zi), π(z−j)]− π([zi, z−j]))w =
∑
k>0

∑
s≥0

z−k([z−j, ys])y
s([zi, w])z−k.

Now we can calculate

CurvV ′(z
k ⊗ z−l) = −

∑
i>0

zi ⊗ ([π(zi), π(z−k)]− π([zi, z−k])) z−l

= −
∑
i,j>0

∑
s≥0

zi ⊗ z−j([z−k, ys])ys([zi, z−l])z−j.

By summing over zi ∈ gn for fixed n, it is possible to move the z−l action from zi to zi. The
last expression becomes

−
∑
s≥0

∑
j>0

(adt(z−l)y
s)⊗ z−j([z−k, ys])z−j =

∑
s≥0

(adt(z−l)y
s)⊗ π(ys)(z−k).
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The proof of the claim is finished by noting that z−k = φ−1(zk).
Next, the contragradient metric {, } gives an isomorphism ψ : n→ n̂∗ of b and b-modules.

J = ψφ−1, while adt(w)ys = adt(y′s)ψ(w) where {y′s} is the dual basis to {ys}. Identifying
V with V ′ via ψ gives

CurvV (f ⊗ g) =
∑
s≥0

adt(y′s)g ⊗ adt(ys)Jf.

Given S, T ∈ End(n̂∗), define a second-order operator Switch(S, T ) on
∧∗ n̂∗ ⊗ S∗n̂∗ by

f ⊗ g 7→ Tg⊗ Sf . Then Switch(S, T ) = dL(T )dR(S)− (TS)∧, where (TS)∧ is the extension
of TS to

∧∗ n̂∗ as a derivation. We have shown that

CurvV =
∑
s≥0

Switch(adt(ys)J, adt(y′s)) =
∑
s≥0

dL(adt(y′s))dR(adt(ys)J)− (TJ)∧,

where T =
∑

s≥0 adt(y′s) adt(ys). It is not hard to see that (Tψ(y))(x) = −γ(x, y) for x ∈ n,
y ∈ n, so T = J−1 by Lemma 6.4.1.

Note that dR(TJ) = dL(T ∗), where T ∗ is the adjoint of T ∈ End(n̂∗) in the contragra-
dient metric. The map J appears because the Kahler metric is used on

∧∗ n̂∗ while the
contragradient metric is used on S∗n̂∗. Since the isomorphism ψ appearing in the proof is
an isometry, adt(x)∗ = − ad(x)∗ in the contragradient metric.

6.4.2 Cohomology vanishing for affine algebras

If g is affine then g can be realized as the algebra (L[z±1]⊕ Cc⊕ Cd)σ̃, where L is a simple
Lie algebra and σ̃ is an automorphism of g defined by

σ̃(c) = c, σ̃(d) = d, σ̃(xzn) = ζ−nσ(x)zn, x ∈ L

for σ a diagram automorphism of L of finite order k and ζ a fixed kth root of unity. We use
the conventions of [Ka83] (see chapters 7 and 8 in particular). The bracket is defined by

[xzm + γ1c+ β1d, yz
n + γ2c+ β2d] =

[x, y]zm+n+β1nyz
n − β2mxz

m + δm,−nm〈x, y〉c,

for x, y ∈ L, γ1, γ2, β1, β2 ∈ C, where 〈, 〉 is the symmetric invariant bilinear form on L
normalized by setting the length squared of a long root to 2k. The diagram automorphism
acts diagonalizably on L, so that

g =
k−1⊕
i=0

Liz
i ⊗ C[z±k]⊕ Cc⊕ Cd,
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where Li is the ζ i-eigenspace of σ. The eigenspace L0 is a simple Lie algebra, and there

is a Cartan
◦
h⊂ L compatible with σ such that

◦
h0=

◦
h ∩L0 is a Cartan in L0. The algebra

h =
◦
h0 ⊕Cc⊕Cd is a Cartan for g. The eigenspaces Li are irreducible L0-modules. Choose a

set of simple roots α1, . . . , αl for L0, and let ψ be either the highest weight of L1 (if k > 1),
or the highest root of L0 (if k = 0). Then α0 = d∗ − ψ, α1, . . . , αl is a set of simple roots

for g, and α∨0 = c − ν−1(ψ), α∨1 , . . . , α
∨
l is a set of simple coroots, where ν :

◦
h0→

◦
h
∗

0 is the
isomorphism defined by 〈, 〉. There is a unique real form hR = spanR{α∨i } ⊕ Rd, and the
anti-linear Cartan involution sends xzm + αc + βd 7→ xz−m − αc − βd, where x 7→ x is the
anti-linear Cartan involution of x in L. The real-valued symmetric invariant bilinear form
〈, 〉 on g is defined by

〈xzm, yzn〉 = δm,−n〈x, y〉, 〈c, d〉 = a0, and

〈xzm, c〉 = 〈xzm, d〉 = 〈c, c〉 = 〈d, d〉 = 0,

where a0 = 〈ψ, ψ〉/2 (in fact, a0 = 1 except when L = sl(2l + 1) and k = 2, in which case
a0 = 2). The contragradient metric {, } = −〈·, ·〉 is positive-definite on n as required.

The following lemma finishes the proof of Theorem 6.1.3.

Lemma 6.4.3. Let µ be a dominant weight of an integrable highest weight g-module L(λ),
where λ is a real-valued dominant weight and g is affine. If µ is dominant then Hd

cts(b̂, h;L(λ)⊗
S∗n̂∗ ⊗ C−µ) = 0 for all d > 0.

Proof. The result is trivial if λ = µ = 0, so assume that λ and µ have positive level.
S∗n̂∗ has a contragradient positive-definite Hermitian form from {, }. Since µ is a real-

valued weight, C−µ has a contragradient positive-definite Hermitian form. Finally, L(λ) has
a contragradient positive-definite Hermitian form because λ is a real-valued dominant weight.
Putting everything together, V = L(λ)⊗ S∗n̂∗ ⊗ C−µ has a contragradient positive-definite
Hermitian form.

The cohomology H∗cts(b̂, h;V ) can be identified with the kernel of the Laplacian � on
the zero column C0,∗(V ) of the semi-infinite chain complex. By Nakano’s identity, � =
� + deg + Curv. � is positive semi-definite by definition. The curvature term splits into
a sum Curv = CurvL(λ) + CurvS∗ + CurvC−µ . Since L(λ) is representation of g, CurvL(λ) is
zero. Next consider CurvS∗ + deg. We use the realisation of g via the loop algebra. The
contragradient metric {, } induces a positive-definite metric on the loop algebra g′/Cc, so
we can pick a homogeneous basis for b consisting of an orthonormal basis {ys} for the
projection of b to g′/Cc, as well as c and d. The dual basis to {c, d, y0, . . . , ys, . . .} is
{a−1

0 d, a−1
0 c,−y0, . . . ,−ys, . . .}. Since c is in the centre, we have adt(c) = 0, so the terms

dL(adt(a−1
0 c)) and dR(adt(c)J) in CurvS∗ are zero. Consequently

CurvS∗ + deg =
∑
s≥0

dL(adt(−ys))dR(adt(ys)J) =
∑
s≥0

dR(adt(ys)J)∗dR(adt(ys)J)
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is semi-positive. Finally we get that

CurvC−µ = −
∑
α∈∆+

∑
i,j

ε(ziα)ι(zα,j)µ([zα,i, zα,j]),

where zα,i runs through a basis for gα orthonormal in the Kahler metric. Now

−µ([zα,i, zα,j]) = {zα,i, zα,j}〈µ, α〉.

The result is that CurvC−µ is a derivation which multiplies occurrences of zjα by the non-
negative number 2〈ρ, α〉〈µ, α〉, and thus is semi-positive.

Now we look more closely at the kernel of �. The operator CurvC−µ is strictly positive
on zβ1,i1 ∧ · · · ∧ zβk,ik ⊗ v unless all βi ∈ Z[Y ], where Y = {αi : µ(α∨i ) = 0}. Let AY be
the submatrix of the defining matrix A of g with rows and columns indexed by {i : αi ∈
Y }. Recall that the Kac-Moody algebra g(AY ) defined by AY embeds in g. The standard
nilpotent of g(AY ) is nY =

⊕
α∈∆+∩Z[Y ] gα ⊂ g. Let uY =

⊕
α∈∆+\Z[Y ] gα. Since µ has positive

level, Y is a strict subset of simple roots, and since g is affine, g(AY ) is finite-dimensional.
Harmonic cocycles must belong to the kernel of CurvC−µ , so any harmonic cocycle ω must
be in the h-invariant part of

∗∧
n̂∗Y ⊗ S∗n̂∗ ⊗ L(λ)⊗ C−µ.

As a vector space, this set can be identified with Ω∗poln̂Y ⊗ C[ûY ] ⊗ L(λ), where Ω∗pol is the
ring of polynomial differential forms and ûY is pro-Lie algebra associated to uY . For ω to be
in the kernel of deg + CurvS∗ , ω must lie in the kernel of the operators dR(adt(ys)J), s ≥ 0.
Since dR(adt(c)J) = 0, we get that dR(adt(x)J)ω = 0 for every x ∈ bY ⊂ g′ ∩ b, where bY is
the standard Borel of g(AY ). Let J−1

∆ denote the diagonal extension of J−1 to
∧∗ n̂∗. Then

J−1
∆ ω vanishes under contraction by the vector fields nY → TnY : x 7→ (x, [x, y]), y ∈ b. At a

point x ∈ nY , these vector fields span the tangents to BY -orbits. nY is the positive nilpotent
of a finite-dimensional Kac-Moody, so nY has a dense BY -orbit and thus ω must be of degree
zero.

The same proof applies with slight modification if g is a direct sum of indecomposables
of finite or affine type.

6.5 Indefinite Kac-Moody algebras

In this section g will be an arbitrary symmetrizable Kac-Moody algebra. Recall from the
proof of Lemma 6.4.3 that if A is the defining matrix of g and Z is a subset of the simple
roots then AZ refers to the submatrix of A with rows and columns indexed by {i : αi ∈ Z}.
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Proposition 6.5.1. Let g be the symmetrizable Kac-Moody algebra defined by the gen-
eralized Cartan matrix A, and suppose µ is a dominant weight of an integrable highest
weight representation L(λ), where λ is real-valued. Write λ − µ =

∑
kiαi, ki ≥ 0, and

let Z = {αi : ki > 0}. If AZ is a direct sum of indecomposables of finite and affine type then
Hd
cts(b̂, h;S∗n̂∗ ⊗ L(λ)⊗ C−µ) = 0 for d > 0.

Recall that the weight space L(λ)µ of an integrable highest weight representation is
filtered via polynomial degree on the isomorphic space (L(λ)⊗C−µ⊗C[U ])B. Let degP λ

µ (q) be
the corresponding Poincare polynomial. Excepting Proposition 6.3.4, the results of Sections
6.1 and 6.3 imply the following corollary:

Corollary 6.5.2. If the hypotheses of Proposition 6.5.1 hold then mλ
µ(q) = degP λ

µ (q)

The conclusions of Theorem 6.1.3 hold similarly, with the Brylinski filtration replaced by
the degree filtration.

The requirement in Proposition 6.5.1 and Corollary 6.5.2 that λ− µ have affine support
is a technical assumption used to prove the positive-definiteness of the deg + CurvS∗ term in
the Laplacian. It is unclear to the author whether or not this hypothesis can be dropped.

Proof of Proposition 6.5.1. We continue to use the notation of Section 6.4. For instance, V =
S∗n̂∗⊗L(λ)⊗C−µ. Recall that � = �+deg + CurvV , and CurvV = CurvL(λ) + CurvC−µ + CurvS∗ .
The operators �, CurvL(λ), and CurvC−µ are positive semi-definite as before, while

deg + CurvS∗ =
∑
k≥1

dR(adt(xk)J)∗dR(adt(xk)J) +
∑
i

dL(adt(ui))dR(adt(ui)J),

where {xk} is a basis for n orthonormal in the contragradient metric, and {ui} and {ui} are
dual bases for h. The first summand in this equation is positive semi-definite, but the second
is not if there are roots with 〈α, α〉 < 0. Indeed, writing∑

i

dL(adt(ui))dR(adt(ui)J) =∑
i

Switch(adt(ui)J, adt(ui)) +
∑
i

(adt(ui) adt(ui)J)∧, (6.2)

we see that the first summand in Equation (6.2) is the second order operator defined by

x⊗ y 7→ 〈α, β〉
2〈ρ, α〉

y ⊗ x, x ∈ g∗α, y ∈ g∗β,

while the second summand in Equation (6.2) is the derivation of
∧∗ n̂∗ induced by the map

x 7→ 〈α, α〉
2〈ρ, α〉

x, x ∈ g∗α
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on n̂∗.
Let g(AZ) be the corresponding Kac-Moody subalgebra of g, and let nZ be the stan-

dard nilpotent. g(AZ) has a Cartan subalgebra hZ ⊂ h, and the real-valued non-degenerate
symmetric invariant form on g restricts to such a form on g(AZ). Any h-invariant ele-
ment of

∧∗ n̂∗ ⊗ V must belong to
∧∗ n̂∗Z ⊗ S∗n̂∗Z ⊗ L(λ) ⊗ C−µ. We claim that the opera-

tor
∑

i dL(adt(ui))dR(adt(ui)J) on
∧∗ n̂∗ ⊗ S∗n̂∗ restricts on

∧∗ n̂∗Z ⊗ S∗n̂∗Z to the operator∑
i dL(adt(vi))dR(adt(vi)J), where {vi} and {vi} are dual bases of hZ . To verify this claim,

note that a choice of symmetric invariant form corresponds to a choice of a diagonal ma-
trix D with positive diagonal entries, such that DA is a symmetric matrix. If x ∈ h∗ the
invariant form satisfies 〈x, αi〉 = Diix(α∨i ). The operator in Equation (6.2) thus depends
only on A and D; the claim follows from the observation that the action of the operator on∧∗ n̂∗Z ⊗ S∗n̂∗Z depends only on AZ and DZ .

Now suppose AZ is a direct sum of indecomposables of finite and affine type. The operator∑
i dL(adt(vi))dR(adt(vi)J) decomposes into a summand for each component, each of which

is positive semi-definite as in the proof of Lemma 6.4.3. We finish as in the proof of Lemma
6.4.3, but taking Y = {αi ∈ Z : µ(αi) = 0}.
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