
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Voltage Stacking and Timing Speculation with an SRAM Focus

Permalink
https://escholarship.org/uc/item/1hj7d74m

Author
Ebrahimi, Elnaz

Publication Date
2017

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1hj7d74m
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

VOLTAGE STACKING AND TIMING SPECULATION WITH AN SRAM
FOCUS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Elnaz Ebrahimi

March 2017

The Dissertation of
Elnaz Ebrahimi is approved:

Professor Jose Renau, Chair

Professor Matthew Guthaus

Professor Jishen Zhao

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright © by

Elnaz Ebrahimi

2017

Table of Contents

List of Figures vi

List of Tables x

Abstract xi

Dedication xiii

Acknowledgments xiv

1 Introduction 1

2 Level Shifters for Voltage Stacked Architectures 6
2.1 Introduction . 6
2.2 Overview of Level Shifter designs . 8

2.2.1 Capacitive-Coupling-based (Conventional) 8
2.2.2 Two-Stage Cross-Coupled (TSCC) . 9
2.2.3 Wilson Current Mirror (WCM) . 10
2.2.4 Stacked WCM . 11
2.2.5 Tong . 12
2.2.6 Modified Tong . 12

2.3 Characterization . 13
2.3.1 Transistor Sizing . 13
2.3.2 PVT Variation Effect . 16

2.4 Conclusion . 20

3 Voltage Stacking in SRAMs 22
3.1 Introduction . 22
3.2 Related Work . 24
3.3 SRAM Stacking Model . 25
3.4 Setup . 27
3.5 Evaluation . 29
3.6 Conclusion . 33

iii

4 GPU NTC Process Variation Compensation with Voltage Stacking 34
4.1 Introduction . 34
4.2 Related Work . 37
4.3 GPU Stacking . 39

4.3.1 Process Variation . 40
4.3.2 High Level Idea of Process Variation Compensation 40
4.3.3 Detailed Analysis of Process Variation Compensation with Voltage Stack-

ing . 42
4.3.4 General Purpose GPU . 45
4.3.5 Process Variation Model . 46
4.3.6 Which Lanes to Stack? . 47
4.3.7 Divergence and Extreme Conditions 51
4.3.8 Final Design . 53

4.4 Experimental Setup . 54
4.4.1 Process Variation Modeling . 55
4.4.2 Simulation Framework . 56
4.4.3 Power Delivery Network . 57

4.5 Near Threshold Computing and Baseline Choice 59
4.5.1 Power-Performance Trade-off . 59
4.5.2 GPU Sizing for NTC . 60

4.6 Evaluation . 63
4.6.1 Main Results of GPU Stacking on NTC 63
4.6.2 Load Mismatch . 65
4.6.3 Stacking FinFETs vs. Planar CMOS 67
4.6.4 Lateral Current . 72
4.6.5 GPU stacking Practicality Issues . 73
4.6.6 Other advantages of GPU stacking . 75

4.7 Conclusion . 76

5 Timing Speculative SRAM 78
5.1 Introduction . 78
5.2 Related Work . 79
5.3 Time Speculative SRAM . 83

5.3.1 Protecting from Read Time Failures 84
5.3.2 Protecting from Incorrect Writes . 85
5.3.3 Sense Amplifier . 86

5.4 Experiment Setup . 87
5.4.1 Tool Flow . 87

5.5 Evaluation . 88
5.5.1 Energy Efficiency . 89
5.5.2 Area . 89
5.5.3 Process Variation Effects . 91

5.6 Conclusion . 94

iv

6 Conclusion and Future Work 95
6.1 Conclusion . 95
6.2 Future Work . 96

Bibliography 98

v

List of Figures

2.1 Capacitive-Coupling-based (Conventional) . 9

2.2 (a) Cross-Coupled (CC) (b) Two-Stage Cross-Coupled (TSCC) 10

2.3 (a) Wilson Current Mirror (WCM) (b) Stacked Wilson Current Mirror (Stacked) 11

2.4 (a) Tong (b) Mod-Tong . 13

2.5 Level-up shifters active energy-delay with different transistor widths 14

2.6 Delay vs. temperature. In high to low conversion, as the temperature rises, the

average propagation delay will increase. Tong is the least sensitive and TSCC

is the most sensitive to temperature variation. 17

2.7 Active energy-delay: +/-6% Vth variation MC simulations 18

2.8 Active energy-delay: +/-5% Vdd variation MC simulations 19

2.9 Active and idle energy-delay: +/-5% capacitance variation MC simulations . . 20

3.1 Conventional vs. stacked power delivery mode 26

3.2 Voltage stacked SRAM . 28

3.3 Energy breakdown in voltage stacked SRAM vs. non-stacked. 29

3.4 Current breakdown in voltage stacked SRAM vs. non-stacked. 31

vi

3.5 Stacking introduces a 60ps delay in the top stack output bitline, which is equiv-

alent to 6% performance hit. 32

3.6 Voltage noise for stacked SRAM is within acceptable levels, even without a

voltage regulator. 32

4.1 Example of how the case study inverters are used in the stacked logic. The blue

inverters are the devices under test. 43

4.2 Stacked configuration (S− f oot and S−head) intrinsically mitigates the varia-

tion effects. These signals are closer to the case without process variation re f ,

than the non-stacked baseline PV . Since Vmid has shifted, there is more voltage

available for the slower part of the design. 44

4.3 Mitigation of the variation effects compared to conventional configuration. . . 45

4.4 GPGPUs present a large number of identical SIMD lanes, ideal for stacking. . . 46

4.5 Sample die with 4 lanes and different variations. 47

4.6 Shared Net configuration simplifies stacking and supports post-fabrication con-

figurability. 49

4.7 The proposed dual VR based on the Low Dropout Linear VR design [67]. . . . 52

4.8 GPU stacking allows a more fine-grained voltage adjustment per lane. 53

4.9 Experimental setup with VARIUS-NTV process variation modeling flow. VARIUS-

NTV generates GPU variation maps and then calculates the normalized Le f f and

effective Vth for each map. Vmid value changes after process variation effects and

is calculated and fed back to VARIUS-NTV for compensated delay and power

calculations. 56

vii

4.10 The power delivery model tool flow. 57

4.11 The complete power delivery model used for simulations. 58

4.12 Designs with more SMs become more efficient in terms of energy-delay prod-

uct, as well as energy-delay-area product as Vdd decreases. 62

4.13 The optimized baseline in near threshold region is different from the typical su-

per threshold region. Larger structure sizes for cache or register file or number

of lanes could become more desirable in near threshold. This demands recon-

sidering the architectural parameters to obtain the best energy efficiency, rather

than just lowering the voltage. 63

4.14 The proposed techniques shift the performance and power towards the ideal

scaling with no process variation. 64

4.15 When multi-clock domain architecture is used, GPU stacking shifts the perfor-

mance further towards the ideal scaling with no process variation. 65

4.16 It is possible to maintain the voltage in each level of the stacks with on package

decoupling capacitors . 68

4.17 The intrinsic compensation of PV effects seen for planar devices is not observed

for FinFET devices due to the inverted ED trend between those two technolo-

gies. 69

4.18 Delay increases more rapidly for Planar CMOS than FinFET as we vary Le f f . . 69

4.19 The proposed techniques shift the performance and power towards the ideal

scaling with no process variation. 71

4.20 When multiclock domain architecture is used, GPU stacking shifts the perfor-

mance further towards the ideal scaling with no process variation. 71

viii

4.21 GPU stacking reduces the IR drop by reducing the total current flowing through

Vdd . 73

5.1 Replica-based SRAM [4]. r is the height of Replica cells that are active and h

is the height of the SRAM core. 80

5.2 Timing Speculative SRAM . 83

5.3 RTS error signal generation . 85

5.4 Energy breakdown in small SRAMs. 90

5.5 Energy breakdown in medium SRAMs. 91

5.6 Energy breakdown in large SRAMs. 92

5.7 RBL and Razor achieve similar results, both allow protection from infrequent

failures . 93

ix

List of Tables

2.1 Minimum ED Pareto frontier points . 15

4.1 Simulation parameters . 61

4.2 GPU stacking delivers better performance and power than a non-stacked config-

uration under process variation. It also allows better VR efficiency, and reduced

number of power pins. 76

5.1 Experimental SRAM configurations model three typical processor SRAMs. . . 87

5.2 Experimental SRAM types . 88

5.3 RTS overhead is mainly due to Replica Bitline Column. The Razor sense am-

plifier is 5.5x RBL bitcell area and 7.4x the traditional sense amplifier. Units

are in µm2. 91

5.4 The area overhead percentage difference of RTS and Razor with RBL. 92

x

Abstract

Voltage Stacking and Timing Speculation with an SRAM Focus

by

Elnaz Ebrahimi

Power consumption and delivery have emerged as one of the major challenges facing modern

SoC design. As chip designs become more complex with aggressive architectures, pressure on

efficient power delivery mechanisms is increasing.

Designing efficient voltage regulators gets harder due to increased current as power

increases and voltage scales down. Off-chip voltage regulators can be made more efficient due

to fewer restrictions on capacitor sizes but need to take into account parasitics on pads. Process

variation further exacerbates the problem, because the design needs to take into account the

worst case. As technology scales towards nano-scale and with the prevalence of having multiple

voltage domains on the chip, voltage stacking offers an alternative in Power Delivery Network

(PDN) design that alleviates conventional power delivery inefficiencies.

The first part of this dissertation explores different types of existing level shifters

suitable for a voltage stacked logic, their optimal sizing, and the effect of PVT variation on

delay and energy consumption.

In the second part of the dissertation, instead of inserting an SRAM into a voltage

domain, as it is the common case, the SRAM logic itself is divided into multiple domain. The

symmetric logic of SRAM is leveraged for a stacking technique and is divided into two logic

domains, and the supply voltage Vdd is doubled. The supply voltage 2Vdd will distribute evenly

xi

between the stacks and the current demand will decrease up to half. Hence, the same amount of

power is delivered, but with half the current.

The third part of this dissertation builds upon the idea of a floating voltage level in a

voltage stacked system and on the observation that slower transistors have higher impedance in

the presence of process variation. This chapter offers a GPU stacking method based on voltage

stacking to manage the effects of process variation and improve the power delivery simulta-

neously. The evaluation conducted in this dissertation considers Near Threshold Computing

(NTC), because the effects of process variation are more severe in this scenario, however, the

technique can be applied without the use of NTC. Using GPU Stacking brings the chip distribu-

tion closer to the nominal, i.e., no process variation, and is shown to be better than simply using

multiple clock domains, which is the current state-of-the-art.

The final contribution of the dissertation looks at SRAM design, specifically into

reducing voltage and timing margins. I propose a timing speculative SRAM that extends the

existing Replica Bit-Line (RBL) technique to detect read timing failures. And to protect it from

incorrect write operations, the SRAM decode logic is extended. The Replica-based Timing

Speculative SRAM (RTS) is evaluated as an energy and area efficient design alternative to prior

techniques such as Razor-enabled SRAMs.

xii

Dedicated to my parents, Maryam and Hossein

xiii

Acknowledgments

The journey of my doctoral studies has been one of the most demanding and yet transformative

and rewarding phases of my life. It truly enriched both my academic and my personal life and

there are number of people I would like to thank for their immeasurable support and guidance.

Doctoral studies are known to be inherently challenging, and there were many times

when I lacked inspiration and energy, however, I was surrounded with family and friends who

inspired me and encouraged me to stay positive and continue with persistence. My sincere

thanks goes to my advisor, Professor Jose Renau, who never fails to inspire, motivate, and

provide guidance. His vast knowledge of computer architecture and his multi-angle research

interest opened the door for me to pursue various projects which helped me learn different

languages, design techniques, and problem solving skills.

I would like to express my gratitude to my committee members, Professor Matthew

Guthaus and Professor Jishen Zhao, who kindly accepted to serve on my dissertation committee.

Professor Guthaus has provided me with valuable feedback and research guidance throughout

the years. Taking his VLSI courses and seminars has helped me immensely in my research.

During my time as a Ph.D. student, I have been involved in various projects, some

of which are not included in this dissertation, yet they have been a product of collaborative

efforts with MicroArchitecture Santa Cruz (MASC) laboratory colleagues whom I would like

to acknowledge. Rafael Trapani and I have collaborated on a few projects related to “Fluid

Pipelines”, a repipelining idea applied to retry-based or elastic pipelines and we have published

our results in IWLS’16 [80] and ICCD’16 [79], and presented a poster in DAC’15 [78]. Our

most recent collaboration on “Level Shifter Design for Voltage Stacking“ will be presented at

xiv

ISCAS’17. I would like to thank Dr. Ehsan Ardestani and Dr. Gabriel Southern with whom I

have collaborated on a “Thermal Sampling” project which resulted in multiple peer-reviewed

publications: ISLPED’12 [33] and TCAD’13 journal [34]. These projects have strengthened

my knowledge of VLSI design and architecture design. And I will be forever grateful to them

for such rich joint efforts.

To all my dear colleagues in the MASC Laboratory, Gabriel, Rafael, Ehsan, Daphne,

Michael, Ian, Sina, David, Raj, Jason, Tom, Alamelu, Ethan, Blake, Akash, and Ramesh, thank

you for the stimulating discussions, for the sleepless nights we were working together before

deadlines, and for the positive environment you helped create which made the long working

hours untiring.

The continued love and support that I have received from my family over the course

of my doctoral studies has been an integral part of my journey. I am thankful to my husband,

Mehdi, for always encouraging me to focus my full energy on my research and for always being

patient and compassionate when I worked long hours for days and months. Last but not least, I

am thankful to my brother and sister for continuously sending me positive energy. I could not

have made this journey without all of your help.

xv

Chapter 1

Introduction

The power delivery network is an integral part of the chip design where it has to

be robust enough to ensure every device on the chip accesses stable voltage, and meets the

timing and functionality requirements. One of the challenges in current SoC design is that

there is not a single power domain on the chip, and the number of domains continues to grow

as the technology node scales down. As these voltage domains are sharing the same piece of

silicon and routed through the same package, they need to be optimized without jeopardizing

the voltage drop [72].

One of the most effective techniques for reducing the power consumption is dynamic

voltage scaling [86]. Since the dynamic power dissipation in a digital circuit is cubically pro-

portional to the supply voltage, lowering the supply voltage will decrease the dynamic and

short-circuit power dissipation [31]. However, it will increase the propagation delay of the

circuit and require slowing down of the clock frequency of the circuit, leading to an overall

quadratic reduction in the energy to complete a task [86]. As a result, the supply voltage of the

components present in the critical path cannot be modified due to speed constraints of the de-

1

sign. One way to overcome this problem is to use multi-VDD systems [49], where components

present in the critical path will work with the standard supply (VddH) and those present in the

non-critical path will work with the scaled-down supply voltages (VddL). This leads to different

voltage islands, and in order to communicate among each other, an interface circuit is required

for voltage level conversion. These circuits are called level converters or level shifters [31, 63].

Also, in a chip with multiple supply voltages, there is need for extra voltage regulators, either

on-chip or off-chip. Off-chip DC-DC converters suffer from slow voltage transition times, while

the high board-level footprint and system cost limit the number of voltage domains that can be

implemented. On-chip voltage regulators enable fast voltage transition times and facilitate mul-

tiple voltage domains, but such regulators suffer from low conversion efficiency, especially for

high step-down ratios [52].

In addition to adding propagation delay, lowering the supply voltage leads to a rapid

increase in the supply current requirements. With increasing current transients and average cur-

rent levels, more on-chip decoupling capacitance is required while the resistance and inductance

of the power distribution network (including on-chip wiring, pins, sockets and connectors) must

be kept stringently low for supply integrity. High current requirements also exacerbate on-chip

electromigration concerns [66,81], reduce efficiency of voltage regulators [7,53], increase volt-

age noise and losses due to parasitics [25, 52], and increase the number of dedicated power

pins [87].

Voltage stacking is an alternative to delivering power in a multi-VDD system that mit-

igates the aforementioned challenges [25, 52, 87]. Voltage stacking uses the concept of charge

recycling [66] and delivers power to logic blocks “stacked” or connected in series as opposed to

the usual parallel scheme. A high voltage is applied to the system and divided to deliver power

2

to each of the logic blocks by charge recycling. Using the stacking technique draws less current

to the stacks (voltage domains) without altering the original power budget. Voltage stacking

greatly reduces the amount of current drawn. However, it presents a challenge in stack load

balancing. If there is current mismatch between the stacks, voltage noise will be introduced in

the stacked architecture. Hence, it is a challenge to keep the loads in stacks balanced. Prior

approaches for voltage stacking relied on extra voltage regulators to deliver stable voltage to

each level [25, 52]. This is mainly required because those approaches applied voltage stacking

to full cores that were often running different applications.

Voltage stacking can be applied to SRAMs. SRAM is an indispensable part of most

modern Very-Large-Scale Integration (VLSI) designs and dominates silicon area in many ap-

plications. 20% of chip area is taken by SRAMs and that is when up to 60% of the total active

chip area is taken by memories, which translate to a large amount of chip power consump-

tion [2, 64]. In SRAM voltage stacking the logic can be divided into stacks with a much better

balancing than what is observed in a full core. If the activity and power consumption in the

voltage stacks are balanced, the shared voltage rails are less susceptible to noise. I leverage the

SRAM structure to show how the stacking technique benefits memory subsystems.

The second proposal for voltage stacking application is to use it to compensate for

process variation. Process variation affects transistors so that slower transistors will present

higher impedance. I will show that assuming balanced activity, and a floating rail between

stacking levels, stacking transistors with opposite variation would create a “natural compensa-

tion mechanism, because the slower transistor would have higher voltage drop. The challenge

in such a scenario would be to guarantee the balanced activity. GPUs parallelize the workload

and maintain the performance level across multiple processing units (PEs), and thus are an ideal

3

candidate for this application.

Power dissipation can be reduced by other techniques in SRAMs such as removing

the timing guardbands with the support of an error detection logic. SRAMs are failure prone

due to PVT variations and timing guardbands keep SRAMs less sensitive to such variations.

However, strict guardbands make it more challenging to meet the frequency requirements, and

in that regard SRAMs are overdesigned. There is a demand for architectural alterations which

ease the frequency margin without requiring large area or power overhead. We leverage the

existing RBL technique to detect timing errors and offer power savings without additional area

overhead and design complexity.

In this thesis, I present two different applications and evaluations of voltage stacking,

first as a way to reduce overall current in SRAMs operating in nominal voltage levels, with

good activity balancing across stack levels and then using GPUs at the near threshold region, to

compensate for process variation. I also present a power efficient Replica Bitline Column-based

timing speculative technique for SRAMs.

Chapter 2 surveys existing research on level shifter designs suitable for voltage stacked

systems. The analysis includes a Pareto optimal plot of existing designs (considering perfor-

mance, power, and area) and evaluates the robustness of designs while undergoing process

variation such as variation of effective length, width, and threshold voltage.

Using one of the level shifters in Chapter 2, I propose a novel voltage stacking tech-

nique for SRAMs in Chapter 3. The typical solution to has been to avoid stacking SRAMs or

stack the whole SRAM without leveraging the internal structure which happens to be suitable

for voltage stacking. This chapter presents the design process of a voltage stacked SRAM, the

implementation of the level shifters in the design, and the evaluation of stacked versus non-

4

stacked SRAMs in terms of energy consumption. This is the first work to propose voltage

stacking with a floating voltage rail.

Chapter 4 uses the efficiently stacked SRAM design from Chapter 3 in a GPU envi-

ronment operating at near threshold voltage. For the first time, this voltage stacking technique is

used to compensate for process variation in GPUs. This chapter includes details on how to stack

with uneven voltage levels, how to mitigate process variation in NTC, and how to configure the

design, post-silicon.

Chapter 5 presents the final contribution of the thesis, a novel timing error detection

scheme with minimal area and power overhead. It shows how to leverage an existing RBL

technology to detect read timing errors due to process variation with minimal area and power

overhead.

Finally, Chapter 6 concludes how power consumption limitations in current architec-

ture design leave researchers in search of methods to design in a power-aware fashion, while

the complex and intensive computations will not allow them to compromise performance. This

chapter recapitulates elements from previous chapters to further emphasize the need for simple

yet novel ideas such as stacked architectures to ease the power delivery and management in chip

power network design cycle.

5

Chapter 2

Level Shifters for Voltage Stacked

Architectures

2.1 Introduction

Using a multi-VDD system is an alternative to voltage scaling technique. It counter-

acts the negative impact on performance, because the critical path components will continue

running at Vdd level while non-critical components run at a scaled down Vdd [63]. In a multi-

VDD system, when the DC current flows from a low voltage gate to a high voltage gate, the

voltage is not sufficient to turn the PMOS “ON‘” and therefore, the PMOS in the high volt-

age gate is weakly “ON‘” conducting static current from the power supply to the ground. The

level shifters will remove the static current and restore the full voltage swing from VddL to

VddH [31].

Designing a multi-VDD system is inherently complex as there are a few challenges in

using a Level Shifter (LS) in the system. They dissipate power and add propagation delay. It is

6

necessary to optimize the LS circuit for minimum energy-delay product to obtain the potential

benefit of using multiple power supply domains. As an LS includes both high voltage and low

voltage gate, it will require more area and routing resources. For example, when each functional

block on a die needs a different voltage for its desired performance, the number of level shifters

can easily grow and become a design area overhead. Techniques such as Dynamic Voltage

scaling (DVS) have been widely used in digital signal processing elements for reducing energy

consumption [86]. And future low-power systems-on-chips (SoCs) are likely to consist of many

scalable voltage domains. This requires level shifters to be able to perform at a high speed with

low power [63, 91].

As in the case of multi-VDD systems, voltage stacked systems require level shifters

for inter-level communication [25,53]. Traditional level shifters are inserted to translate or shift

the logic levels from the level supplied by one domain to another level supplied by the second

domain. In the context of voltage stacking, the level shifters will have a primary voltage rail

which sits at the top and a secondary voltage rail which sits in the middle. When placed in a

voltage stacked design, they will shift the both rails, either from GND-midrail to midrail-toprail

(low to high level shifters) or from midrail-toprail to GND-midrail (high to low level shifters).

Although many designs for level shifters exist, an evaluation of different designs in the context

of voltage stacking has not been made, so the trade-offs of different designs are not clear. As

the starting point for our research, we evaluate existing approaches of LSs for voltage stacking

applications. We are especially interested in delay and power, but area and sensitivity to PVT

(Process, Voltage and Temperature) variations are also considered. Each of those parameters

may have different importance in different designs. For instance, CoreUnfolding [7] allows an

entire clock cycle for level shifting, thus delay is less important. However, it requires a large

7

amount of shifters, which makes area a critical design factor. On the other hand, a voltage

stacked SRAM [20] requires minimal impact on timing, but due to the small number of shifters,

can tolerate more area overhead per shifter.

The contributions of this chapter are as follows:

• Overview of current level shifter designs.

• Comparison of level shifters in terms of energy, delay, and area.

• Comparison of level shifters in terms of PVT tolerance.

2.2 Overview of Level Shifter designs

This section explores some of the level shifter designs that are suitable for a stacked

architecture and their operational behavior. Figure 2.1 to Figure 2.4 include the schematics for

a mix of LS designs used in this study and each circuit diagram shows how the LS converts

Vin “low” to Vout “high”. Note that all of the chosen level shifters are bidirectional. This

exploration focuses on converting in a stacked architecture where the primary/top voltage rail

is 2V and the middle voltage rail is 1V. The signals are shifted from 0-1V voltage domain to

operate in 1-2V voltage domain and vice versa.

2.2.1 Capacitive-Coupling-based (Conventional)

Gu et al. designed the capacitive-coupling-based LS shown in Figure 2.1 for a multi-

story or voltage stacked power delivery scheme as they did not see the traditional level shifters

a good fit for such systems. This LS has a driving inverter, a coupling capacitor, and a receiver

with gain stages. Two diodes are connected back to back in order to constrain the voltage

8

swing at the output node of the coupling capacitor (gate and drain are shorted in the NMOS

transistors). Since it always settles near the inverter trip point, a signal transition takes place

with a minimal size coupling capacitor [25].

Vin

VddH

VddL

Vout

gnd

Figure 2.1: Capacitive-Coupling-based (Conventional)

2.2.2 Two-Stage Cross-Coupled (TSCC)

The conventional level shifter shown in Figure 2.2(a), is a differential cascade voltage

switched logic gate, using a cross-coupled PMOS half latch operating at the higher supply

voltage. To overcome the leakage of weakly conducting PMOS transistors, drive strength of

NMOS transistor is enhanced. Low Vin input voltage turns mn1 on, which discharges node A

to ground and activates mp2. Node B will be pulled up to VddH and the output voltage will

be low. Subsequently, when Vin is asserted, mn2 and mp1 are activated shifting the output

voltage up to VddH. The drive of the pull-down transistors needs to be much larger than the

PMOS transistors to overcome the PMOS latch action driven with a higher supply voltage. It is

a simple design suited for super-threshold conversion [26, 32, 58].

In order to achieve full voltage swing, two cross-coupled level-shifting stages are

cascaded. The diode-connected NMOS transistor is employed to weaken the pull-up network

9

in the 2.2(b) structure which expands the convertible input voltage. The operating range is

determined by the transistor size and the threshold voltage. As this is a two-stage cross-coupling

structure, the area automatically increases in comparison with Cross-Coupled LS [32, 46, 91].

Vin

Vout

VddH

VddL

VddH VddH

VddH

VddL

VddL VddL

(a) (b)

Vin

Vout

VddH

VddL

VddH VddH

VddL VddL

VddL

mn1 mn2

mp2mp1

B

A

Figure 2.2: (a) Cross-Coupled (CC) (b) Two-Stage Cross-Coupled (TSCC)

2.2.3 Wilson Current Mirror (WCM)

Wilson Current Mirror design is based on the topology of another conventional LS

called Current Mirror (CM). CM is a unity gain current amplifier which provides output current

proportional to its input current at its high impedance output node. It also maintains the output

current constant regardless of the load [3, 58]. The high drain-to-source voltage of PMOS

transistors facilitates the construction of a stable current mirror, which offers an effective on-

off current comparison at the output node. However, for super-threshold input voltage, a high

amount of quiescent current occurs. Because of this high power consumption limits the use

of the CM [32]. Figure 2.3(a) shows the schematic of the WCM. It uses a feedback PMOS

(mp3) to cut off the static current flowing through mn1 and mp1 after switching. This reduces

the standby power in the Current Mirror. However, as the source current is cut off, the mirror

10

current flowing through mp2 is largely reduced, resulting in weakened pull-up strength and a

voltage drop at node A. Although the voltage drop increases the source current through the

feedback control, the current increase is too small to pull the voltage at node A back to VddH.

The output finally stabilizes at a voltage below VddH, which causes large static current and

standby power in the output buffer of the LS [91].

2.2.4 Stacked WCM

Figure 2.3(b) is an enhancement to the WCM design [48] and uses a stacking tech-

nique to reduce the leakage power consumption. There is an addition of 3 NMOS transistors in

the pull-down network.

Vin

Vout

VddH

VddL VddL

VddH

(b)

Vin

Vout

VddH

VddL

VddH VddH

VddL VddL

VddL

(a)

mn1 mn2

mp2mp1

mp3
A

Figure 2.3: (a) Wilson Current Mirror (WCM) (b) Stacked Wilson Current Mirror (Stacked)

11

2.2.5 Tong

Figure 2.4(a) shows a capacitive-coupled LS that has been used in a 16-core voltage-

stacked system [53]. The voltage across the coupling capacitor depends on the difference be-

tween the two voltage domains but it can be up to ≈2.7V, much higher than the gate-oxide break-

down voltage of the transistors available. Hence, this approach requires the use of metaloxidemetal

(MOM) capacitors [77]. The original design has one 25fF capacitor on each side of the back

to back inverters. If we translate each fF to ≈ 1um2, the LS area is considerably large. Our

experiments show that the 25fF capacitors are over-designed for an LS, and we were able to

reduce that number to ≈2.6fF (details in the experimental section), taking into consideration a

30% margin over the minimum operation point. Even with this size reduction, the overall area

is still large.

2.2.6 Modified Tong

Since the capacitors occupy a large area in Tong LS (Figure 2.4(a)), utilizing it in a

stacked domain can be problematic. We have modified it by replacing each capacitor with two

NMOS transistors connected back to back, where the drain and gate are shorted (Figure 2.4.

This reduces the area, but is expected to increase the power consumption due to the resistive

effect added.

12

Vin

VddL

Voutb

VddH

VddL
Vout

VddL

VddH

VddL

VddH

VddL

VddH

Vin

VddL

Voutb

VddH

VddL
Vout

C1 C2

VddL

VddHVddH

VddL

VddL

VddH
VddL VddL

(a) (b)

Figure 2.4: (a) Tong (b) Mod-Tong

2.3 Characterization

2.3.1 Transistor Sizing

To setup the level shifters for energy, delay, and area comparison, we begin by de-

termining the optimal size for each LS. Our experiments use the NCSU FreePDK, the Open-

Access-based PDK for the 45nm technology node [73]. For each CMOS transistor in an LS

circuit, SPICE is run while varying the width from 90nm to 720nm. Energy and average prop-

agation delay for an input signal with 5% slew rate are calculated. The resulting points are

plotted in 2.5. Since each LS operates bidirectionally, the same experiment is repeated for level

down shifters (Figure 2.5).

There is a Pareto frontier for each LS in Figure 2.5 and any of the frontier points

could be of interest for a specific LS depending on its application. The minimum energy-delay

product (ED) point is our point of interest for optimal sizing of an LS (It is circled in the plot and

listed in Table 2.1. The power and delay are measured for a 1GHz input pulse as active energy

13

and idle energy, i.e., when the input voltage is kept constant. We estimate the area considering

it is proportional to the sum of widths of transistors in the design and the area of one transistor

(45nmx90nm).The capacitors in Tong LS dominate the area, 7x the area of Mod-Tong. The top

Pareto point is not shown for TSCC down shifter in Figure 2.5, because the delay is more than

250ps.

0

5

10

15

20

25

 0 50 100 150 200

E
n

e
rg

y
 (

p
J
)

Delay (ps)

Low to high conversion

FO4

0

5

10

15

20

25

 0 50 100 150 200

E
n

e
rg

y
 (

p
J
)

Delay (ps)

high to low conversion

Conventional
WCM

TSCC
Stacked WCM

Tong
mod-Tong

FO4

Figure 2.5: Level-up shifters active energy-delay with different transistor widths

Looking at the Pareto points in table 2.1, there is not a single level shifter that is

superior in area, delay, and energy. For instance, if minimum delay in the level up shifters is the

main design concern, Conventional and Tong are best choices, however, they impact the area

significantly as Tong uses two 2.6fF capacitors and Conventional uses a decoupling capacitor

and a diode [10]. Also, when down converting, Mod-Tong presents the best delay, but Tong

14

has the best Energy. Thus, it is not possible to pick a “winner” although Tong, Conventional

and Mod-Tong have overall best numbers. TSCC has by far the worst delay in this case.

Table 2.1: Minimum ED Pareto frontier points

Low to high conversion

name Area Delay (ps) Active Power (pW) Idle Power (pW)

Conv 2790 12.37 3.07 0.53

TSCC 2250 190 6.42 0.53

WCM 2610 30.69 6.04 0.41

Stacked WCM 3060 27.64 5.04 0.37

Tong 2430 14.36 0.48 0.001

Mod-Tong 3330 20.09 6.57 0.75

High to low conversion

name Area Delay (ps) Active Power (pW) Idle Power (pW)

Conv 2790 13.99 1.79 0.24

TSCC 1980 56.39 8.89 1.11

WCM 2610 21.51 6.04 0.41

Stacked WCM 1980 26.72 8.69 1.43

Tong 2160 14.13 0.36 0.01

Mod-Tong 3690 9.06 14.7 3.40

15

2.3.2 PVT Variation Effect

An integral deciding factor is LS robustness in presence of Process, Voltage, and Tem-

perature (PVT) variation. To see how temperature affects the delay and energy consumption,

we perform an SPICE temperature sweep from 10◦C to 90◦C. Figure 2.6 shows the trend when

converting from high to low.

When shifting down, Tong delay line has a slope of 0.046ps/◦C and there is less than

5ps difference in delay as the temperature rises up to 90◦C. Conventional and mod-Tong have

close slopes of 0.068 and 0.072ps/◦C respectively which translates to less than 10ps delay dif-

ference across different temperatures. WCM and Stacked WCM each have 3.4x and 4.3x the

slope of Tong LS which is equivalent to delay range of up to 16ps and up to 13ps respectively.

When shifting up, as the temperature increases, so does the average propagation delay, how-

ever, the delay increase is minimal for Conventional, Tong, and mod-Tong: 0.065, 0.053, and

0.082ps/◦C. TSCC follows an inverse trend of decreasing delay (22 times the slope of Tong’s),

where rise and fall delay vary ≈ 100ps from start to finish. The delay itself is large as the whole

circuit is slower when up shifting than it is when down shifting (Table 2.1). WCM and Stacked

WCM each have a slope twice as steep compared to Tong which translates to 10ps delay range.

Active energy has a small decreasing trend during the up and down conversion in all

the level shifters except for Tong where the line slope is ≈ 0pJ/◦C. For up conversion, Tong and

Conventional with slopes of 0.003 and -0.058pJ/◦C are the best candidates and mod-Tong has

the highest slope, -0.023pJ/◦C. However, for all the level shifters the range that energy varies is

less than 2pJ. During the down conversion as temperature increases, TSCC and Stacked WCM

are affected the most with slopes of -0.065 and 0.093pJ/◦C which translates to an energy range

16

 0

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60 70 80 90

D
e
la

y
 (

p
s
)

Temperature C

High to Low Conversion

conventional
wcm

stacked
Tong

tscc
mod-Tong

Figure 2.6: Delay vs. temperature. In high to low conversion, as the temperature rises, the average

propagation delay will increase. Tong is the least sensitive and TSCC is the most sensitive to temperature

variation.

of 7pJ and 8pJ. The least sensitive to varying temperature are Tong and Conventional with

slopes of 0 and -0.006pJ/◦C. Overall, as the temperature increases up to 90◦C, taking delay

sensitivity into consideration takes priority over the power sensitivity.

Continuing the PVT variation effect analysis, we use an HSpice Gaussian distribution

function with absolute variation to vary the threshold voltage +/-6% with 3σ value or 99.7%

yield and run 5000 Monte Carlo simulations. In this experiment, we vary NMOS and PMOS

threshold voltage by +/-6% and measure delay and energy in the active mode. Figure 2.7 is the

final plot and an FO4 delay point has been included as a point of reference. When up shifting,

the energy variation is a few pJs for all the level shifters , however, the delay variation is not

small. For example, WCM delay varies ≈30ps. TSCC points have been removed from the up

17

shifters plot, where the delay varies from 100ps to 450ps whereas energy varies from 4.3pJ to

6pJ and is comparable to that of WCM and Mod-Tong. Tong seems to be the least sensitive

to the Vth variation due to having capacitances. There is an energy-delay trade-off between

Mod-Tong and Stacked WCM. Mod-Tong has a smaller delay variation whereas Stacked WCM

power consumption varies less. When downshifting, the energy variation for all is less than

5pJ. And again, TSCC is the most sensitive with the largest delay range of ≈10ps. TSCC is

a two-stage LS, and therefore, is affected by variation differently. Other LS types have nearly

half the number of transistors as TSCC and therefore, their delay range is almost half as TSCC.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60

E
n
e
rg

y
 (

p
J
)

Delay (ps)

Low to High Conversion

FO4

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

E
n
e
rg

y
 (

p
J
)

Delay (ps)

High to Low Conversion

conventional
wcm

stacked
Tong

tscc
mod-Tong

FO4

Figure 2.7: Active energy-delay: +/-6% Vth variation MC simulations

We repeat the same experiment and vary the supply voltages by +/-5% (Figure 2.8).

Unlike previous experiment, Tong seems to be sensitive as the delay varies both in up conver-

18

sion and down conversion with an 11ps and 18ps range respectively. In up conversion, mainly

the delay difference separates the choices. The most unpredictable delay belongs to TSCC,

100ps, and Tong comes in second. However, the energy variation is less than 2pJ for TSCC.

Conventional or Mod-Tod might be better choices for down conversion as both energy and delay

vary a few units. When downshifting, WCM and Stacked WCM are more sensitive to variation

as their energy consumption differs from their Pareto frontier values (Table 2.1). Devices based

on capacitance have lower variation on energy, since they tend to not dissipate power.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50

E
n
e
rg

y
 (

p
J
)

Delay (ps)

Low to High Conversion

FO4

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

E
n
e
rg

y
 (

p
J
)

Delay (ps)

High to Low Conversion

conventional
wcm

stacked
Tong

tscc
mod-Tong

FO4

Figure 2.8: Active energy-delay: +/-5% Vdd variation MC simulations

Since Tong uses two capacitors, variation could affect the operational behavior of

the LS. We repeat the experiment by applying variation to the capacitors. Similar to Vdd , the

transient sweep is done by using +/-5% variation with 3σ . However, it hardly has any effect on

19

the delay and energy consumption of the LS (Figure 2.9).

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 13.5 14 14.5 15 15.5 16

A
c
ti
v
e
 E

n
e
rg

y
 (

p
J
)

Delay (ps)

Low to High Conversion

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 13.5 14 14.5 15 15.5 16

A
c
ti
v
e
 E

n
e
rg

y
 (

p
J
)

Delay (ps)

High to Low Conversion

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 13.5 14 14.5 15 15.5 16

Id
le

 E
n
e
rg

y
 (

fJ
)

Delay (ps)

Low to High Conversion

 0

 2

 4

 6

 8

 10

 12

 14

 16

 13.5 14 14.5 15 15.5 16

Id
le

 E
n
e
rg

y
 (

fJ
)

Delay (ps)

High to Low Conversion

Figure 2.9: Active and idle energy-delay: +/-5% capacitance variation MC simulations

2.4 Conclusion

In this study, we discussed the trade-offs between different designs of level shifters

existing in the literature, focusing on the applications in voltage stacked systems. The perfor-

mance, power, and area of those designs greatly vary depending on the transistor sizing. To

find the optimal sizing for each LS, we run experiments varying transistor widths and obtain

a Pareto frontier of delay vs. energy. We choose the minimum energy-delay product point as

the optimal point for each LS. In terms of power and delay, Tong [77] offers the best design

points, but requires large MOM capacitors, that may make it unsuitable for applications where

a considerable number of shifters may be required, therefore, we analyze various designs to

20

show how critical each design factor becomes in different contexts.

21

Chapter 3

Voltage Stacking in SRAMs

3.1 Introduction

Delivering power to the logic in a chip is one of the major challenges in current chip

design [52]. As technology scales, the reduction in voltage supply has led to a sharp increase

in the total current that needs to be delivered to a chip. Increased current has several draw-

backs: reduced efficiency of voltage regulators [53], increase in voltage noise and losses due to

parasitics [25,52], increase in the number of pins dedicated to power [87], and electromigration.

Voltage stacking is an alternative method to deliver power to components that are

placed in series, rather than in parallel. The charge between the layers is recycled, i.e., it passes

through multiple components [66]. Thus, for the same power budget, voltage stacking allows

for delivering less current at an increased voltage level. This effectively reduces the total chip

current by n, where n is the number of stack levels used in the design [53]. Voltage stacking of

CPU and GPU cores has been proposed by several groups to mitigate these problems [25, 52,

87, 88] and it will be further discussed in Chapter 4. In this study we focus on voltage stacking

22

in the context of SRAMs.

Previous work has focused on the voltage stacking of cores and logic components of

a chip, however, chips dedicate a large portion of their area to SRAMs and cache blocks [2],

and thus SRAMs account for a considerable amount of the chip power. Research groups have

been able to reduce the current drawn from on-chip SRAMs by focusing on reducing their total

power consumption [2, 28, 68]. Although reducing the power consumption is a goal by itself, it

has limited impact when it comes to reducing the total current. Voltage stacking mitigates such

problem by reducing the current drawn by a factor of n, where n is the number of voltage stacks.

The main challenge in voltage stacking is to balance the activity between the stack

levels to maintain the voltage at each level roughly constant [52]. This is a challenge that we

will address similarly in Chapter 4. An additional Voltage Regulator (VR) can be used in the

intermediate node to guarantee that the voltage stays within specified values [53]. SRAMs have

fairly predictable activity during operation, making them ideal candidates for voltage stacking.

Voltage stacking SRAM banks has been proposed as a technique to reduce the stand-by power

of those components [2]. In this approach, when the banks are not in use, power switches

change the banks to a stacked configuration where only half Vdd is applies to each bank. This

reduces the leakage power during the stand-by mode.

We propose applying voltage stacking to the SRAM structure. To guarantee that the

activity is the same across the stack levels, the stacking is done by splitting each word and

stacking the word parts which guarantees that the access to both stack levels occurs in the

same cycle. Besides the RAM core, sense amplifiers and prechargers are also stacked. Level

converters are used where needed to guarantee that each component receives the appropriate

voltage level.

23

Our experiments show that SRAM stacking is able to reduce the current drawn by

the SRAM by 40% during write, 36% during read and 44% during standby mode. We will

explain that on a circuit level, stacking has multiple benefits such as reducing the IR drop and

decreasing number of power rails which has a linear impact on the number of power delivery

pins.

To the best of our knowledge, this is the first study that proposes voltage stacking

in SRAMs at all times. It reduces the pressure of on-chip power grid design, by reducing the

current, especially when combined with core voltage stacking.

3.2 Related Work

Voltage stacking has been proposed in the context of CPU cores to increase the effi-

ciency of voltage regulators as it reduces the high current demands for current chips [52, 66].

Voltage stacking does not reduce the power consumption in the chip, but rather allows for op-

eration at higher voltage and lower current, which is beneficial for VR design both by reducing

power losses in the VR and reducing its area [52].

Voltage stacking has also been proposed to reduce the number of pins dedicated to

power in a chip [87]. Since the number of power pins is roughly proportional to the current,

reducing the current by a factor of n (in a n stacked configuration) would result in a reduction

in the number of power pins by the same factor.

Gu et al. [25] note that voltage stacking can reduce voltage noise (IR and L dt
dt) and IR

drop in the power grid, which can ultimately lead to the reduction of power in the parasitics of

the system. We also observe that with the reduced noise it is possible to reduce voltage margins,

24

and increase power savings, although we do not evaluate this scenario in this manuscript, as it

would require a parasitics characterization to obtain meaningful results.

Cabe et al. [2] proposed to dynamically stack SRAM blocks while they are inactive.

This allows for a reduction in leakage power during the stand-by phase of the banks. The

technique uses power switches that choose between the stacked mode when in stand-by or

regular mode when in regular operation. However, this technique provides a constant Vdd ,

regardless of the circuit state (stacked or not), which means when stacked, half the Vdd is applied

to each stack level, with doubled Vdd , thus the full Vdd is applied to each level at all times.

We propose maintaining the circuit stacked during all phases of operation. This allows for a

reduction in leakage during all times, as well as other benefits of voltage stacking, such as

power pin reduction, VR efficiency increase, and voltage noise reduction.

3.3 SRAM Stacking Model

Voltage stacking helps reduce the current draw while applying a higher power-supply

voltage to the logic blocks in the design. To take advantage of the charge recycling, instead of

running the SRAM at Vdd , we divide it into two logic domains connected in series, and apply

2Vdd . If each logic domain consumes the same amount of power, the voltage will distribute

evenly between them. The logic domain loads however have to be selected in such way that

they have well-balanced charge utilization for achieving a high efficiency [66]. If the power

consumption of the two stacks is the same, as the voltage supply is multiplied by n, where

n is the number of stacks, the current draw will be reduced to 1
n . Two stacks are used and

Equation 3.1 shows that theoretically this leads to 50% reduced current in the SRAM.

25

p1 = p2

V1 × I1 =V2 × I2

V1 × I1 = 2×V1 × I2

I2 =
I1

2
(3.1)

In terms of circuit design, Figure 3.1 shows how the conventional model differs from

the stacking model. In Figure 3.1a, the two circuits are running in parallel and the same volt-

age differential is applied to each, the total current drawn from the power source is then the

summation of the current of all the components in the circuit. In Figure 3.1b, the stacks run in

series and the configuration reduces the current draw, and the IR drop across the stacked com-

ponents is reduced by a factor of n where n is the number of circuits in series. The current is

recycled through the stacks connected in series. Vmid will fluctuate depending on the load and

impedances present in each stack. If the impedances are similar, the Vmid balances in the middle

and is the most efficient stacked configuration.
P
o
w

e
r D

e
liv

e
ry

V
Z1 Z2

Iin(t) Vin = V1 =V2

I1=
Vin
Z1

I2=
Vin
Z2

(a) Conventional

2Vin

P
o
w

e
r D

e
liv

e
ry

V

Iin(t) = 2Vin
 Z1(t)+Z2(t)

Vmid(t) = Iin(t).Z2(t)

Stack

Levels Z1(t)

Z2(t)

VR

(b) Stacked

Figure 3.1: Conventional vs. stacked power delivery mode

26

Figure 3.2 shows a high level view of stacked SRAM. The SRAM size is 1Kb, 32

32-bit words, and it has 2 read ports and 1 write port. In order to divide it into two vertical logic

domains, we cut the 32-bit wordline in two, which leaves 16 bit for each stack. Bits 0-15 go to

the bottom stack and bits 16-31 go to the top stack. Consequently, each stack will have 16x32

bitcells, 16 precharge circuits, 16 write drivers and 3x32 wordline buffers.

The two stacks operate at 0-Vdd and Vdd-2Vdd where Vdd is 1.1V. The voltage level

of all the signals entering the top stack (2.2V) will need to be shifted; hence, level shifters are

placed in 3 locations. First, the input data to write drivers has to be converted to the same

voltage level as the top stack. The wordlines will pass both stacks in a row of bitcells, therefore,

each decoder will drive two wordlines. Second, the top stack wordline voltage level is shifted.

To avoid having the wordline be driven by the level shifters, we placed them before the read and

write address buffers. Third, the sense amplifier outputs exiting the top stack will have to be

converted back to the Vdd ; hence, level shifters are placed right after the sense amplifiers. The

read and write address decoders, placed in the middle of the RAM core, are the only components

which are not part of the stacked architecture.

The schematic of the level shifter used throughout the SRAM is shown in Figure 3.2.

There are two capacitors C1 and C2 ,which are sized 15fF each. The design is adopted from

Lee’s 16-core design [53].

3.4 Setup

We implemented our voltage stacking technique on SRAMs generated by FabMem.

FabMem is a multiported RAM and CAM compiler for design space exploration and given

27

R
e
a
d

 D
e
co

d
e
rs

W
o
rd

lin
e
 B

u
ff

e
rs

W
o
rd

lin
e
 B

u
ff

e
rs

W
o
rd

lin
e
 L

e
ve

l S
h

if
te

rs

Sense Amps

Write Drivers

Level Shifters

Level Shifters

Precharge Precharge

Sense Amps

Write Drivers

W
ri

te
 D

e
co

d
e
rs

Din

1.1V1.1V

1.1V

2.2V
blb

2.2V

1.1Vbl

C1 C2

bl

pclk

blb

soutb

blblb

sae

sout

Figure 3.2: Voltage stacked SRAM

the configuration it can generate netlists and layouts and estimate read/write delay and energy

consumption [71]. FabMem uses the NCSU FreePDK, the Open-Access-based PDK for the

45nm technology node [73].

Using FabMem, we generated an SRAM with a configuration that is similar to the

size of a typical Register File: A 2-read 1-write 1Kb consisting of 32 32-bit words. We use one

RF for the base case SRAM and another for the stacked version.

A few alterations had to be made to some of the SRAM components such as the

sense amplifier and the precharge circuits. In our experiments, we use current latch mode sense

amplifier [60] as opposed to the FabMem default voltage controlled sense amplifier circuitry,

because the current latch mode works with the stacked SRAM design. The precharge circuitry

used is shown in Figure 3.2.

All the energy related measurements were taken using Synopsys HSpice version I-

2013.12-1.

28

3.5 Evaluation

In this section, we discuss the overall results and share insights as how effective

SRAM voltage stacking is.

The two SRAM netlists are simulated using HSpice at Vdd = 1.1V with frequency of

500MHz. The simulation results compare the stacked SRAM against the non-stacked SRAM,

which we refer to as the base case in this section. Figure 3.3 shows the energy consumption

breakdown. Each colored section of the histogram bar shows the total energy consumption of

a particular component. The energy numbers pertain to the logic that is stacked. For instance,

the level shifters are placed before the buffers driving the wordlines, therefore, these buffers are

part of the stacked logic and the read and write address decoders are not. We refer to the read

and write wordline buffers as “decoder”.

 0

 2

 4

 6

 8

 10

 12

Base

Stacked

Base

Stacked

Base

Stacked

E
n

e
rg

y
 (

p
J
)

decode
precharge
write driver
sense amp
level shifter

StandbyWriteRead

Figure 3.3: Energy breakdown in voltage stacked SRAM vs. non-stacked.

29

The simulation includes periods of initialization, write, read, followed by standby.

Each write or read period consists of 10 write or read operations. Overall, the power con-

sumption increases by 20%, 23%, and 13% during write, read, and standby modes respectively.

During the read operations, the stacked SRAM consumes a bit more energy than the base case,

however, looking at the breakdown, the excess energy usage is due to having the level shifters

in the top stack. For instance they draw 8% more current during the read operation than the

precharge circuits. The other components such as sense amplifier, precharger, decoder, and

write drivers almost consume the same amount of energy. As the SRAM size increases, the

overhead of level shifters will become less of an issue. The standby energy consumption is the

same meaning at 2Vdd the SRAM has the same leakage as operating at Vdd . Figure 3.4 shows

the current consumption in the top stack of the stacked SRAM versus the base SRAM. Overall,

stacked components draw 40%, 36% and 44% less current than the base components during

the write, read, and standby modes. Comparing the current and energy breakdown plots for the

write operation, we notice that that the write drivers do not have a balanced load, leading to less

than expected current savings. For larger SRAMs however, we would expect that this gap will

decrease, since the relative power of write drivers are smaller.

We also evaluate the impact of stacking on the SRAM performance. For bitline tran-

sitions shown in Figure 3.5, we simulated both SRAMs with 1GHz frequency. Two read output

bits, are selected from the top and bottom stacks to show how level conversion affects the SRAM

read speed in each stack. As Figure 3.5b shows, there is no delay for the bottom stack bit, how-

ever, Figure 3.5a shows the stacked bit has some delay when transitioning from 0 to 1. It is

a 60ps delay which translates to 6% frequency hit. In reality, the performance hit should be

even smaller, because the stacking can be applied to the slower part of the SRAM. We did not

30

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

Base

Stacked

Base

Stacked

Base

Stacked

C
u

rr
e

n
t

(m
A

)

decode
precharge
write driver
sense amp
level shifter

StandbyWriteRead

Figure 3.4: Current breakdown in voltage stacked SRAM vs. non-stacked.

perform this optimization, because it is layout dependent. Thus, SRAM stacking has limited

impact on performance.

Finally, we evaluate the voltage noise level in the Vmid due to the fluctuation in the

load. One of the challenges in voltage stacking is load balancing. As expected in a stacked

architecture Vmid fluctuates and introduces noise to the power deliver network. Since we have

used an SRAM architecture, the nature of the circuitry allows for a division of stacks in such

way that the Vmid is maintained within an acceptable range. Figure 3.6 shows the stability of

Vmid during initialization, write, and read operations. In the case of Vmid noise, one option is

to place a voltage regulator at Vmid to guarantee that Vmid stays at Vdd which is 1.1V. In our

designed SRAM, the fluctuations observed are within the acceptable range and thus there is no

need for an extra voltage regulator, as it is used in stacking for cores [52].

31

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 46 46.2 46.4 46.6 46.8 47

V
o

lt
a

g
e

 (
V

)

Time (ns)

top stack bit baseline bit

(a) Top stack read delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 45 45.5 46 46.5 47 47.5 48

V
o

lt
a

g
e

 (
V

)

Time (ns)

bottom stack bit baseline bit

(b) Bottom stack read delay

Figure 3.5: Stacking introduces a 60ps delay in the top stack output bitline, which is equivalent to 6%

performance hit.

Voltage stacked SRAMs have a small area impact; the level shifter is the main source

of overhead. Even in a small SRAM, such as the one we evaluate, the level shifters represent

less than 6% of the transistors.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 15 20 25 30

V
o
lt
a
g
e
 (

V
)

Time (ns)

Vmid
1.1V

Figure 3.6: Voltage noise for stacked SRAM is within acceptable levels, even without a voltage regulator.

32

3.6 Conclusion

As the technology scales, and power supply is reduced, delivering power to the logic

on a chip becomes a major challenge as its current demand increases drastically. Increased

current has many drawbacks [25,52,53,87]. Voltage stacking is an alternative method to deliver

power to components on a chip that is stacked or placed in series. A large portion of the chip

area belongs to SRAMs and caches. In this research study, we focus on SRAMs and stack an

SRAM the size of a typical Register File. Our design keeps the SRAM in stacked mode at all

times. Other research work have been proposed where they keep the SRAM banks in stacked

mode during the standby mode [2]. We divide the SRAM words into 2 stacks and are able

to reduce current by 36%-44% while not letting energy consumption be more than 23%. In

addition, doubling Vdd and reducing the current could save as much as 10% power from the

increased VR efficiency [52], but this was not considered in this paper.

33

Chapter 4

GPU NTC Process Variation Compensation

with Voltage Stacking

4.1 Introduction

Near Threshold Computing (NTC) can improve energy efficiency by further reducing

the operating voltage [19]. It has been shown that the performance impact resulting from NTC

can be mitigated through parallelism. An ideal candidate for such operation is a GPU [9, 19].

Nonetheless, NTC complicates power delivery. It requires more current to flow at a lower

voltage [52] and the increased current flow reduces the efficiency of the power delivery circuitry.

It also makes the system more sensitive to process variation [39].

To manage the additional sensitivity to process variation (PV) introduced by NTC,

some researchers have proposed frequency scaling or having multiple voltage domains. Hav-

ing multiple voltage domains requires additional power rails which will further exacerbate the

current delivery problem. Frequency scaling [40] addresses some of the issues regarding our

34

proposal model which we will address in detail in Section 4.3.

In Chapter 3, we discussed why voltage stacking is a beneficial alternative power

delivery mechanism and how on a circuit level it reduces the current drawn from the main

Voltage Regulator (VR) that makes it more efficient taking less area. Not only has it been

applied to SRAMs, but also it has been proposed in the context of CPU cores [52], and GPU

cores [88] .

Voltage stacking can be analyzed from another interesting angle that it can compen-

sate for the process variation effects. The proposed GPU stacking methodology lets the voltage

node between the stacked elements (VMID) float1. This floating node is the key to process vari-

ation compensation. GPU stacking alleviates the current delivery challenges, and intrinsically

mitigates process variation effects without requiring multiple voltage domains. GPU stacking

automatically creates a voltage domain per level in the stack without the cost of multiple power

rails. We build on top of this premise, and discuss how it can be leveraged for managing pro-

cess variation. To the best of our knowledge, this is the first time that voltage stacking has been

utilized in NTC GPUs.

Voltage stacking of many cores has its own challenges, among which is the load

mismatch between the stacked cores [7]. Cores go through different phases while running

applications, which can result in transient impedance mismatch of the stacked cores, and yield

timing failures. As a result, stacking is successful when the cores have a matching workload.

GPGPUs are instances of such designs. Not only are the cores identical, but the applications

running on them are roughly homogeneous2.

1For safeguarding reasons, a few voltage regulators are used to cap the maximum and minimum levels of voltage
but the voltage does float between maximum and minimum values.

2Even though divergence exists in modern GPUs, the amount of load mismatch observed in traditional GPGPUs
benchmarks can be handled by our technique, as it will be shown in our evaluation.

35

The evaluation of GPU stacking is carried out in the near threshold region. Although

the use of this method in the near threshold region is proposed, it is not a requirement. The use

of NTC in this research study is justified by the increased sensibility of NTC to process variation

effects. The first part of this experiment consists of finding the ideal GPU configuration for the

NTC region. By carefully sizing the GPU to NTC, power consumption is reduced by 43% with

only 4.8% performance degradation compared to the baseline.

Based on our experiments, there is a potential for self balancing in the stacked con-

figuration. We observe that stacking of cores with opposing process variation trends is a better

choice to gain the best self balancing results. This is more likely to happen when there is a

certain distance between the stacks. This study proposes the stacking of SIMD Lanes, because

having a large number of lanes provides more opportunities for PV compensation. Analyzing

several PV maps, GPU stacking shows that it is able to deliver, on average, ≈ 80% of the nom-

inal performance in a multi-frequency domain scenario (as opposed to ≈ 60% in a non-stacked

configuration).

The floating Vmid node could be a source of problems in cases of extreme load mis-

match, or high temperatures. Thus, we propose the use of Dummy Activity (DA), and a small

voltage regulator to keep the voltage within safe operational margins (i.e., to avoid voltage star-

vation in one of the levels). We use SPICE simulations to verify the reliability of the power

delivery network (PDN), and show that GPU stacking does not incur extra voltage noise. In our

simulations, DA and the additional VR were not required, given the stability of the operational

voltage.

The following lists the contributions of this research study:

• The first study to show how voltage stacking alleviates process variation effects.

36

• The first study proposing stacking with an uneven voltage division (VMID).

• A study to propose a technique to make the post-silicon configuration of the design fea-

sible.

The remainder of this chapter is organized as follows: We start by presenting the

related work in Section 4.2, then in Section 4.3, we investigate, with an example case, how

Voltage Stacking can mitigate the effects of process variation, and discuss the application of

this technique in a GPU architecture. In Section 4.5, the trade-offs of designing a GPU at near

threshold are discussed, and the baseline architecture is defined. Section 4.4 and 4.6 present

the evaluation setup and the results for the conducted experiments. And finally, Section 4.7

concludes the findings of this study.

4.2 Related Work

GPU Stacking: As supply voltage decreases, the efficiency of power delivery com-

ponents degrades. On-chip voltage regulators [44] have been proposed to increase the PDN

efficiency, as well as the series configurations of units rather than parallel [25, 52, 66]. Such

configurations are known as Multi-Story Power Delivery [25], charge recycling [66], or mainly

as voltage stacked systems [52]. Our proposed technique depends on a series configuration of

cores, yet for a different purpose. Such configuration is referred to as GPU stacking through-

out this dissertation. Note that no previous research on voltage stacking exploits the stacking

method to control or neutralize process variation effect.

Process Variation: Process variation increases as feature size shrinks. And lowering

Vdd , as a power management technique, further exacerbates the effects of process variation.

37

Karpuzcu et al. [39] built a model on top of the VARIUS [70] tool which models process

variation for logic and memory cells, while targeting NTC [9, 19], called VARIUS-NTV. They

observed significant variation in core frequency, and power consumption as a result of process

variation.

Lee et al. study the impact of frequency variation on the throughput of a GPGPU [50].

Adaptive Body Bias (ABB) leverages the power-performance trade-off to manage process vari-

ation effects [84]. Slower devices due to process variation, can run faster by consuming more

power, and vice versa. Adaptive Supply Voltage (ASV) is another technique in managing pro-

cess variation [12]. Supply voltage of a region in the design can be adjusted to compensate for

performance loss due to variation. ABB and GPU stacking are orthogonal techniques, and could

be used together, although ABB efficiency is expected to reduce with technology scaling [40].

Our proposed technique intrinsically performs ASV.

NTC: An extensive amount of research targets increasing the power/energy efficiency

of processors. Apart from the many proposed techniques of how to reduce the utilization of

resources [18, 59], or how to promote the use of more power efficient structures [13, 15], there

are a significant number of proposals that attempt to utilize the power-performance trade-off.

DVFS and Power Gating are among the techniques widely studied at an architectural level, for

the same purpose [29,30]. Intel Turbo Boost technology is another example of utilizing voltage

and frequency scaling to adapt to runtime conditions.

Dreslinski et al. [19] study devices for near threshold operation, and Chang et al.

propose the optimization of device parameters for NTC [9]. They propose a slightly modified

SRAM cell to address the stability challenges introduced in near threshold regions. Lower Vdd

exacerbates the effects of process variation. In the context of NTC, again we refer to VARIUS-

38

NTV model built by Karpuzcu et al. [39] which models process variation. The same team

published another study of NTC in many cores where they argued in favor of fine-grained core

assignment and DVFS [40].

Energy efficiency in GPGPUs: With the rising popularity of GPGPUs, several re-

search groups discuss strategies to make them more energy efficient [24, 51, 69, 89]. Lee et al.

study the impact of frequency variation on the throughput of a GPGPU [50]. This methodology,

however, is the first to extend the evaluation to NTC trade-offs and it is an extension of previous

research addressing NTC challenges. Massive data parallelism and extremely repetitive nature

of the GPGPU applications is leveraged to adapt the operational region and configuration to the

runtime application demand.

4.3 GPU Stacking

Revisiting Figure 3.1, if the GPU core units in the stack consume the same amount

of power, the voltage across each GPU core will be equal to Vdd . Because as less current flows

through the system, the power delivery subsystem could operate more efficiently. However, in

the context of GPUs, balancing the overall load across the stacked elements, is not as easily

manageable as SRAMs. This is because a change in behavior of one core directly affects the

other core. If these changes have significant magnitude, they could result in timing failures as

one core could throttle the power delivery to the other. Nonetheless, stacking exhibits promis-

ing behavior in the presence of process variation that can be leveraged towards more variation

resilient designs.

Before presenting the final model, we formulate the high level effects of process vari-

39

ation expected in a circuit and explain the high level mechanisms by which voltage stacking can

compensate for the effects of process variation. Then, an example case is presented that quan-

tifies how much PV is compensated under simplistic and idealized scenarios. We conclude our

preliminary findings and apply them to the GPGPU architecture to mitigate the PV effects. The

section ends with a discussion of the architectural choices made for managing extreme cases.

4.3.1 Process Variation

VARIUS-NTV uses Equation 4.1 formulates the gate delay for a MOS transistor,

where Vdd is the supply voltage to the core, Le f f is the effective channel length, K and M are

fabrication constants [39].

delay ∝
Vdd ×Le f f

K × ln2(eM×(Vdd−Vth)+1)
(4.1)

Due to the exponential component with the (Vdd −Vth) term, the gate delay exhibits

more sensitivity to Vth variation at supply voltages close to Vth. Dreslinski et al. [19] point out

that this effect can be managed effectively by Adaptive Body Biasing (ABB), but it is a consen-

sus that ABB will have limited effect on new technologies [40], which are more susceptible to

the process variation effects we aim to mitigate.

Since the distribution of variation could exhibit discrete effects based on the granular-

ity of functional blocks or cores, for the purpose of trend evaluation, we use a guardband similar

to Chang et al. [9] to take the average penalty of variation and fault into consideration.

40

4.3.2 High Level Idea of Process Variation Compensation

GPU Stacking provides a unique opportunity to manage the effects of process varia-

tion. An increased channel length (Le f f) or an increased threshold voltage (Vth) due to process

variation will result in higher impedance of the channel and slower device.

In a conventional parallel power delivery system, the adverse process variation results

in a lowered current Iini through the corei, as Iini = Vdd/Ri. Since gate delay is inversely

proportional to the Iini, it will result in a higher delay and a slower core. To compensate for

the lower Iini, higher voltage can be applied to the core, or the body bias could be adjusted to

reduce the gate delay. In short, the adverse effect of process variation can be compensated by

delivering higher voltage.

In a stacked configuration, the same current passes through the stacks. Therefore,

higher impedance of a core, due to adverse process variation, results in a higher voltage across

that core (V = IZ).

Equation4.2 shows the voltage across each core. Index i is the core or lane number.

Depending on the switching activity of the circuit, the equivalent supply to ground impedance

of a core changes during execution. This will be referred to as Z(t). Process variation will bias

Z according to the magnitude of the variation. Switching activity (or the running application)

will change the transient aspect of Z. Using a performance and power simulator, we can obtain

the core power traces and when physical dimensions of the PDN are given, using a circuit

simulator, we can analyze the impedance change over time [55]. In our experiments, since the

power consumption changes over time, the impedance of the circuit has also varied over time

(A more detailed explanation in Sections 4.4 and 4.6.

41

Vi(t) =Vin(t)×
Zi(t)

∑Z(t)
(4.2)

Utilizing the inherent feature of stacking is a key contribution of this work. The

core with higher impedance due to adverse process variation will have a higher voltage drop

across its power terminals. This results in a core speed up, relative to its speed without the

higher voltage and with respect to a conventional power supply system, as delay is inversely

proportional to the voltage. This, of course, comes at the cost of a lower speed for the other

core in the stack. So stacking enables the slower core to run faster, relative to its speed in a

conventional configuration, at the cost of the faster core running slower. In other words, the

effects of process variation are intrinsically balanced in a stacked configuration.

Ideally, the variation effects in a stacked configuration converge to an average varia-

tion. With a simplification3, one can expect the frequency of the stacked cores to converge to

the average of the two cores in a conventional configuration.

For example, a core with 10% variation compared to the nominal value runs at 0.9 f in

a conventional configuration, and a core with -10% variation runs at 1.1 f . Stacking these cores

would result in both cores exhibiting delay properties similar to the nominal values and run at

about the nominal frequency (+1.1 f+0.9 f
2 = f). After all, the nominal value is nothing more than

the mean properties across all the samples. However, experiments in Section 4.3.3 show that

while the latencies of devices in the stack merge toward each other, they do not exactly converge

to the nominal latency.

3Le f f and Vdd both have linear effect on the delay, however, the impact of Vth on delay is not linear.

42

4.3.3 Detailed Analysis of Process Variation Compensation with Voltage Stack-

ing

Section 4.3.2 explained the hypothesis that GPU stacking can facilitate a pathway for

process variation compensation. However, the simplistic model does not consider the details of

such configuration. SPICE simulations (at 45nm technology [90]) are performed for an example

case where inverters are configured in conventional and series with two stack levels. Each

inverter drives a high load of 16 other inverters, 4× Fan out of 4, to exacerbate the delay effects

so that we can better observe the output signal changes due to process variation. Figure 4.1 is

the stacked inverters, and the blue inverter is the device under test. The stacked configuration

is supplied with 1.2V . Using SPICE simulations, the timing characteristics of the inverters

with and without presence of process variation are analyzed. For the stacked configuration, the

variation is set to affect the header inverter positively (i.e., shorter Le f f , thus faster), and the

footer negatively (i.e., longer Le f f , thus slower).

0.6V

gnd

1.2V

Figure 4.1: Example of how the case study inverters are used in the stacked logic. The blue inverters are

the devices under test.

In this example, there is a 20% process variation in effective channel length (Le f f). If

43

0

0.2

0.4

0.6

0 2e-10 4e-10

ref
V
o
lt
a
g
e
(V
)

Vmid

Time (s)

PV
S-foot

0.8

0.6

1

1.2

0 4e-10

ref
PV

S-head
Vmid

2e-10
Time (s)

V
o

lt
a

g
e

 (
V

)

Figure 4.2: Stacked configuration (S− f oot and S− head) intrinsically mitigates the variation effects.

These signals are closer to the case without process variation re f , than the non-stacked baseline PV .

Since Vmid has shifted, there is more voltage available for the slower part of the design.

the channel length increases, the response time will be slower than the nominal non-variation

case (lines PV and re f at the bottom of Figure 4.2). And if the channel shortens, the opposite

effect will be observed (PV will be faster than re f at the top of Figure 4.2). However, this also

implies different power consumption for each, as seen above.

The simulation results show that with voltage stacking, the voltage rail between the

two levels of the stack (Vmid−pv) settles around 0.63V. This is because the header transistors

have less resistance due to the shorter Le f f . The header transistors are effectively supplied with

1.2V - 0.63V = 0.57V, and the footer transistors with 0.63V. In this case, there is a mitigation of

the delay variation, shown by S− head and S− f oot, which are closer to the scenario without

process variation. This is a reduction of more than half the delay variation introduced by pro-

cess variation. Next, we evaluate the effects of Vth variation on the inverter delays. The same

scenarios are simulated, except that this time the variation is on Vth. The transient response for

this case is similar to that of Figure 4.2, and thus the graph is not included.

Figure 4.3 summarizes all the experiments for different variation values from -20%

44

to +20%. We evaluate both Le f f and Vth. Note how the delay variation is smaller with the use

of stacking. Only one line is presented for the stacked configuration, since the stack position

(header or footer) does not change the result.

Leff Variation %

Conventional
Stacked

-20

-10

10

20

D
e

la
y

V
a

ri
a

ti
o

n
%

-20 -15 -10 -5 0 5 10 15 20

0

Ideal

(a) Le f f

-20

-10

0

10

20

-20 -15 -10 -5 0 5 10 15 20

Conventional
StackedIdeal

Vth Variation %
D

e
la

y
 V

a
ri

a
ti
o

n
 %

(b) Vth

Figure 4.3: Mitigation of the variation effects compared to conventional configuration.

The SPICE model confirms the premise of intrinsic mitigation of process variation

in stacked configuration. In the remainder of this chapter, “variation” is used to name the

combination of the effects of different sources of process variation, and its total effect on the

frequency is measured, unless otherwise specified.

4.3.4 General Purpose GPU

So far we have assumed that the stacked devices are identical and are utilized in a

similar way. However, in reality even identical cores can run different applications or different

phases of the same application. As explained before, this complicates the operation in the

stacked configuration.

General purpose computing on graphic processing units (GPGPU) is becoming per-

45

vasive as it provides excellent computing power for massively parallel applications. GPGPUs

are mainly designed as a cluster of simple processors, depicted in Figure 4.4. Identical simple

processors (lane4) operate in lock-step inside a stream multiprocessor cluster (SM), running

identical threads (though processing different data). The homogeneous structure of GPGPUs,

both in hardware and application, makes them suitable for voltage stacking in order to manage

process variation. GPU stacking stacks lanes inside SMs. All the other structures remain in a

conventional configuration. The choice of stacking lane provides room for more configurability,

due to the larger number of lanes. It also provides a fine-grained mitigation of process variation,

while at the SM level, techniques like multi-clock and multi-voltage domain are possible. Thus,

GPU stacking needs an extra voltage domain. In the following paragraphs, we use the terms

core, SIMD lane, and lane interchangeably.

SM-0

L1

RF-0

Coalescing

L1Shared MemoryShared Memory

SM-1
SM-N

Scratchpad

Lane-0 Lane-1 Lane-2 Lane-3 Lane-i

RF-1 RF-2 RF-3 RF-i

DL1G

(a) GPGPU

S
F
U

Operand Buffer

ALUs
M
E
M

T
E
X

Clustered
Register File

(b) SIMD Lanes

Figure 4.4: GPGPUs present a large number of identical SIMD lanes, ideal for stacking.

4Some authors use the term lane to refer to each of the small execution cores within what we call a SIMD lane.
We use the same definition as Gebhart et al. [23], and thus count one lane per load/store unit.

46

4.3.5 Process Variation Model

Variation is divided in two categories: systematic and random. They differ on the

granularity at which they occur. Random variation occurs at the transistor level. Systematic

variation occurs at a much coarser granularity: within-die (WID) and die-to-die (D2D). Sig-

nificant variation can be seen on the order of half the chip length [39]. This also justifies the

use of lane as stacking elements. As seen in Section 4.3.3, the base of the compensation effect

comes from a deviation in Vmid from Vdd/2. For high variation levels, Vmid could approach the

failure voltage, especially in NTC, where the margin is smaller. GPU stacking addresses WID

variation, since Vmid will vary depending on local average of variation.

4.3.6 Which Lanes to Stack?

Stacking neighboring lanes can mitigate the process variation effects regionally. For

example, consider the die shown in Figure 4.5. The figure shows four lanes with differing

amounts of variation compared to the nominal properties. Stacking the lanes based on their

adjacency (i.e., lane 1 and 2 as one stack, and lane 3 and 4 as another) will help mitigate the

worst case variation (i.e., 20%). The 1-2 stack would operate at about -15% of the nominal

frequency ((1.1 f +1.2 f)/2 = 1.15 f , in practice the attenuation would be less). The 3-4 stack

would operate at about 15% of the nominal frequency ((0.9 f + 0.8 f)/2 = 0.85 f). The actual

frequency must be that of the slowest stack.

For the best results, however, the stacking configuration has to be determined based on

the observed variation, i.e., to stack a lane adversely affected by variation with a lane positively

affected. For example, stacking lane 1 and lane 4 together, and lane 2 and lane 3 as another

stack would result in each running at about the nominal frequency. The best strategy is to cluster,

47

1

-20%

3

10%

2

-10%

4

20%

Figure 4.5: Sample die with 4 lanes and different variations.

in each side of the stack, lanes minimizing the standard deviation of variation (the rationale is

that lanes with similar process variation require approximately the same compensation). Then,

the cluster with maximum process variation average in the header should be stacked with the

one with minimum negative variation in the footer. However, this might not be trivial to find,

since the number of possible combinations is large. A simpler approach, used in this study, is

to have the same number (for instance N) of lanes in all the clusters. The clustering is made

by simply picking the N lanes with maximum variation in the header and clustering them with

the N lanes with negative variation in the footer. The process is repeated for the remaining

lanes. This simpler approach works fine in the level of lanes, since their spatial proximity

causes similar variations.

Since the variation is not known until after fabrication, a configurable fabric is needed

to group and stack the lanes based on the observed variation. We adapt the idea of a config-

urable power delivery fabric [36, 66] to allow the connection of lanes that are not neighbors,

because in terms of variation management, neighboring lanes are most likely, affected similarly.

Our proposed fabric capitalizes on the fact that GPU stacking is actually better suited for the

connections of logic with opposite variation effects. Note that this may cause a problem, given

that it increases the path from Vdd to Gnd. Thus, there is a design trade-off here: on one hand,

the compensation would be better if the stacked logic were farther apart in the chip, on the other

48

hand, if this distance is larger, the voltage droop due to voltage rails and switches is increased.

That is another reason why stacking lanes is a good design choice as opposed to stacking SMs.

Lanes are well constricted in space, within the SM, while SMs will be farther apart in the chip,

still an SM is large enough to be used for the purposes of GPU stacking, i.e., there is enough

variation in the SM to allow for the type of compensation we aim, as observed in our evaluation.

4.3.6.1 Shared Net Based GPU Stacking

To simplify the design, we propose to cluster the stacking of lanes. The clustering is

a trade-off between cost and complexity. To cluster lanes for stacking, we define Shared Net.

Shared Net is a common net that connects a number of lanes. For example, Vdd is conceptually

a shared net. However, we specifically use the term Shared Net for an intermediate net that

connects a number of lanes in a stacked configuration (Vmid). The number of Shared Nets is a

design parameter and changes the trade-off between area and compensation granularity (more

Shared Nets result in a more fine-grained compensation).

Vdd

Gnd

C1 C2 C3

C4 C5 C6

(a) Stacked

Vdd

Gnd

C1 C2 C3

C4 C5 C6

S-Net
VR

(b) 3 Shared Nets

Figure 4.6: Shared Net configuration simplifies stacking and supports post-fabrication configurability.

Figure 4.6a shows a two-level stacked configuration of six cores with no shared nets.

The stacking configuration is static, and is determined at the design time. As the variation is

49

not known at the design time, and there is a spatial correlation in the variability, this scheme

is not likely to provide the compensation opportunities. Figure 4.6b shows the design with

three Shared Nets. To simplify the proposed design, each lane is fixed to either header or

footer at design time. This choice certainly reduces the freedom of the system, but because

there are several lanes per SM, the loss is minimal. The resistance in Figure 4.6b Shared

Nets is not modeled in this study. The scheme is similar to a multi-power domain case, where

multiple voltage rails are present and each part of the circuit connects to a different rail. The

configurability only applies to the intermediate nets.

The number of Shared Nets is determined at design time based on the expected varia-

tion of the technology, or the severity of variation effects on the design metrics and to the level

they need to be managed. This decision has to be based on the variation profile for the fabrica-

tion technology. Given the knowledge on the variation, it is possible to calculate the expected

power consumption for a block (in relative terms), e.g., using Varius-NTV models [39], the

power information can then be used to calculate the expected Vmid voltage for a given stacking

configuration, which can finally be used to calculate the expected performance. The decision

on the number of Shared Nets is then a trade-off between the cost of adding an extra Shared Net

and the extra performance boost gained. This is explored in our evaluation.

During post-silicon testing, each lane can be tested to characterize the observed vari-

ation for that particular lane. This increases binning time, but current chips already undergo

this type of testing for speedgrade purposes. Once the effect of variation is known for each die,

the lanes can join a cluster based on their observed variation. Note that the clustering is static

and done once in the lifetime of the chip in a calibration step, right after fabrication. To allow

for the post-silicon configurability, an array of power transistors or fuses can be used between

50

each lane and each Shared Net. Power transistors are present in modern designs for power

gating purposes. Although we did not consider them in this design, the reduced current passing

through them (due to voltage stacking) will largely reduce their impact on the circuit.

When multiple Shared Nets are present, the clustering is done by stacking the same

number of lanes (namely n) on each side (foot or head) of the Shared Net. The lanes are sorted

by variation (minimum delay), for both head and foot groups. The n first lanes in the head

group are stacked with the n last lanes in the foot group. The next n lanes in each group are

stacked together, and so forth. This configuration will have the maximum compensation within

each SM, as lanes with opposed variation trends tend to be in opposite sides of the same stack,

replicating the behavior observed in Section 4.3.2.

4.3.7 Divergence and Extreme Conditions

The process variation compensation comes from the fact that Vmid is “floating”, i.e.,

is not at a fixed frequency. Footer and header groups have different voltages instead. Never-

theless, it is possible that due to load unbalance (caused by GPU divergence), or e.g., , extreme

temperature conditions, the voltage difference is such that either level has not enough voltage

to guarantee functional correctness. We call this “voltage starvation”. We propose different

mechanisms to handle such scenarios.

Dummy-activity is inserted through the activation of parts of the lane that are not

being used. For instance, if divergence is observed for long periods of time, this could shift the

voltage towards the most active lanes. This shift can be canceled by adding activity in inactive

lanes, or inactive parts of lanes. When Dummy-activity is inserted, the lane does not commit

any change to the architectural state, nor does it execute stores, for obvious reasons.

51

“Lane turn-off” is a more drastic measure for extreme cases. In this case, there is no

scheduling for one of the lanes in the level consuming more power than expected. This can only

be done in architectures where each lane within the SM can execute different code, and would

require awareness in the scheduler to be able to maintain correctness. The actual “turning-off”

may be done in terms of power-gating, which would require lane level power-gating or in terms

of scheduling/clock-gating. If after the first lane is turned off, there would still be deviation, a

new lane is then turned-off. This could lead to a big impact on the performance, thus “Lane

turn-off” should only be used if Dummy-activity is not able to bring Vmid to an acceptable level.

Additional VRs are used for extreme cases. In the stacked logic, it is expected to have

Vmid floating, however, within a range that guarantees its functionality. Two small integrated

voltage regulators are used, one pull-up and one pull-down, which would be activated when Vmid

falls below 0.4V or rises above 0.8V, to guarantee correct behavior and avoid bit flips. Since

these regulators only cap extreme cases, they are not used in regular operations, therefore, they

can be small and their potential inefficiency is not problematic in the overall design. Figure 4.7

is the circuit diagram of our proposed pull-down VR. This is simplified. Vre f 1 is the lower

voltage level and Vre f 2 is the upper voltage level, so that Vmid will float in the middle. The

design is adapted from a Low Dropout Linear VR design [67], which can be used for the pull-

up VR.

The natural candidate for triggering these mechanisms is Vmid , so in the case of the

architectural mechanisms, the scheduler needs to be aware of the voltage during the regular

operation of the GPU. VR is always connected and is triggered without any architectural inter-

vention. In our experiments (details in Section 4.6), those mechanisms were never activated for

any of the benchmarks tested, even when divergence was observed (for instance in BFS).

52

Vref1

Vref2

Vdd

Load

Figure 4.7: The proposed dual VR based on the Low Dropout Linear VR design [67].

4.3.8 Final Design

GPU stacking does not change GPU organization (Figure 4.4), nor does it affect the

placement. GPU stacking divides the GPU into different power domains, one for non-stacked

structures (e.g., caches, shared memory), and one “super” power domain with the stacked lanes

(and associated register files). It is a “super” power domain because, to be precise, each stack

is a power domain of its own, but this is not known before fabrication. Figure 4.8 shows the

proposed micro-architecture, from a power delivery perspective. Each register file (RF) should

be stacked with the respective lane, to avoid the need for level shifters between them. The

figure shows a solution with four Shared Nets. Note that the stacked SRAMs in Figure 4.8 are

similarly stacked to the design proposed in Chapter 3.

4.3.8.1 Area Overhead

One concern about GPU stacking is the area overhead due to Shared Nets. Introducing

extra Shared Nets could increase the total amount of metal dedicated to power rails. On the other

hand, GPU stacking decreases the overall current of the chip and metal from Vdd and Gnd rails

could be reduced.

53

Scratchpad DL1

lane-j

lane-j+1 lane-2jlane-j+2

lane-0

RF

lane-1
SNETs

VDD2

GND
VDD1

GND

IL1 L2 L3

VR

Figure 4.8: GPU stacking allows a more fine-grained voltage adjustment per lane.

Let mb be the total metal budget for power rails in a chip. For a 2-level stacked system

(as the one proposed here), the overall current is reduced by half Istack = Ibase/2. Thus, Vdd and

Gnd could have roughly half the metal budget as needed in the baseline5 (mb/4 for each). For a

system with n Shared Nets, each Shared Net takes Istack/n current. Thus, each Shared Net needs

≈ n times less metal than Vdd (mb/4/n). Consequently in GPU stacking, the total metal budget

for power rails is mvdd +mgnd +msnets = mb/4+mb/4+n ·mb/4n = 3/4 ·mb. In other words,

in a GPU stacking configuration it is possible to reduce the amount of metal dedicated to power

rails. In our evaluation, we assume that the metal budget is kept constant instead (i.e., Vdd and

Gnd metal is reduced by 1/3 only), which in turns helps improving the PDN by reducing the

resistance.
5For clarity, we are referring to the amount of tracks dedicated to rails, not their pitch.

54

4.4 Experimental Setup

Our experimental setup has two main components. In the first part, we evaluate

the potential of GPU stacking to compensate for process variation both in performance and

power. Then, we evaluate the reliability of the PDN, as it is a main concern in voltage stacking

proposals.

4.4.1 Process Variation Modeling

To evaluate the impact GPU stacking has where it compensates for the performance

loss due to process variation, process variation needs to be modeled. We use a similar modeling

flow to Thomas et al. in their Core Tunneling study [76]. Figure 4.9 shows the step-by-step

flow of VARIUS-NTV [39] which is the process variation modeling tool used throughout this

study. VARIUS-NTV [39] has models to compute the effect of parametric variation on logic

and memory structures and it is a recommended tool for managing parameter variation when

operating in near threshold voltages [38]. It is a tool based on VARIUS [70] and VARIUS fo-

cuses on WID variation and divide it into systematic and random components and they assume

their effects to be additive. The systematic component is modeled using a multivariate distri-

bution with a spherical spatial correlation structure and the random component, which occurs

at the transistor level, is modeled analytically. VARIUS divides the chip into n small equally

sized rectangles. Each grid point has a systematic variation of Le f f and Vth which are assumed

to have normal distribution. The random variation of Le f f and Vth is treated differently because

of the level of granularity at which it occurs and it is assumed to be distributed normally and

without any correlation [70].

55

Given the GPU floorplan as the input, VARIUS-NTV provides die maps each with a

specific process variation case. The goal is to use VARIUS-NTV to consider the worst process

variation over maps or die maps and understand how Vmid behaves in extreme cases of process

variation effects or an application. VARIUS-NTV also outputs normalized delay, normalized

Le f f , and effective Vth for each component of the GPU die (lanes, caches, register files, etc.).

The information from VARIUS-NTV is then used to calculate the expected power for each

element in the stack and then the expected voltage on each Shared Net. The calculated Vmid is

then fed back into VARIUS-NTV to calculate the delay and power after compensation in the

stacked configurations.

10K	Varia)on	Maps	

Normalized	Leff	 Effec)ve	Vth	

GPU	configura)ons	 GPU	Floorplan	

VARIUS-NTV	 Recalculate	Vth	

Recalculate	Vmid	

Recalculate	Delay	

Normalized	Delay	 Normalized	Power	

Figure 4.9: Experimental setup with VARIUS-NTV process variation modeling flow. VARIUS-NTV

generates GPU variation maps and then calculates the normalized Le f f and effective Vth for each map.

Vmid value changes after process variation effects and is calculated and fed back to VARIUS-NTV for

compensated delay and power calculations.

This experiment is performed for different number of Shared Nets, where we com-

pare our scheme with a conventional non-stacked baseline and against multi-frequency domain,

which has been shown to have promising results in mitigating process variation effects [40].

56

4.4.2 Simulation Framework

To evaluate the Vmid noise and voltage noise behavior in the GPGPU PDN, the time

varying impedance in Equation 3.1 needs to be determined. We adapt the same methodology

used by Leng et al. [55] for forming our simulation framework and modeling our power

delivery network. In order to show how impedance in each core changes over time, we use

ESESC, a cycle-accurate superscalar simulator [35], to approximate the current variation profile

of each core under a certain supply voltage level. This is an approach used in related research

studies led by Leng et al. [54, 55], Thomas et al. [76], and Kim et al. [45].

A modified version of ESESC [35] is used to simulate a GPGPU. For power esti-

mation, we use a GPGPU model developed based on McPAT [56], very similar to GPUSim-

Pow [57]. McPAT, integrated with ESESC, takes the microarchitectural activity statistics from

ESESC, and calculates the power consumption of each component. This simulation setup pro-

vides both dynamic and leakage power. The temperature dependency of leakage is also taken

into account. The power traces are then used to generate a time varying impedance model for

each core or lane.

4.4.3 Power Delivery Network

The power delivery system of a chip consists of off-chip and on-chip components.

The off-chip network includes a voltage regulator, capacitors used to stabilize supply voltage

and other components. On the chip, power is delivered through a set of pins and C4 pads that

deliver the required voltage to the various chip components. To model the entire PDN and

evaluate the voltage supplying the cores, we adapt the modeling flow (Figure 4.10) proposed by

Leng et al. [55].

57

ESESC Power	Traces/	Lane	 SPICE	
Package	

PDN	
PCB	

Figure 4.10: The power delivery model tool flow.

To evaluate Vmid voltage, voltage noise, and current during execution, the impedance

models obtained using our simulation framework 4.4.2 are run by SPICE model that simu-

lates the printed circuit board (PCB), the package, and the on-chip PDN. In this flow, we use

the off-chip power delivery model proposed by Leng et al. [55] and the on-chip IBM Power

Grid benchmark (ibmpg1t) [61]. Figure 4.11 shows a lumped RC model of the complete PDN

with the simulation parameters. The grid is represented by the four resistors in the box named

“PDN”, but the simulation is performed using the full grid. The cores are modeled as variable

resistances based on the power traces from ESESC. This methodology is compatible with cur-

rent industry practices, and short of fabricating a chip, it is the best available method for this

type of low-level analysis.

Vdd

C4 Bumps

Rpcb,s

Rpcb,p

Cpcb

bump

Nbump

R

PDN

Lpcb,s

Rpkg,s L pkg,s

0.1mΩ

21pH

L pcb,s

Rpcb,s

0.27mΩ

240μF

0.55mΩ

Rpkg,s
L pkg,s

60pH

Rpkg,p

0.54mΩ

L pkg,p

2.8pH

Cpkg
52μF

20mΩ/N

PCB Package

0.36pH/N

core
cd

cd

cd

cd

bump

Nbump

R

bump

Nbump

Rbump

Nbump

R

core

core

core

Figure 4.11: The complete power delivery model used for simulations.

58

Since each stack level will operate at a different voltage level, we will assume to have

the level shifter proposed in [25]. Our SPICE simulations show that this circuit has one FO4

delay overhead when communicating between different stacks, however these level shifters can

substitute buffers that were present in the design, minimizing the performance impact. Memory

and caches are not stacked in this study, and since the process variation is being mitigated due to

the stacking in the cores, it is expected that they will end up achieving a higher frequency than

memory. To keep the improvement on the logic side, we consider an increase in the number of

access cycles rather than reducing the frequency of the core.

Each SM runs at a single frequency. In order to meet timing, this will be the frequency

of the slowest lane (after compensation). It is possible to have different frequencies for different

SMs, but in this study only one frequency is considered for the whole GPU.

4.5 Near Threshold Computing and Baseline Choice

In this section, we analyze how NTC affects choosing architectural parameters in

GPUs to determine the baseline configuration for the remainder of this chapter and provide an

optimal starting point for the evaluations.

4.5.1 Power-Performance Trade-off

The NTC region is considered to be the most energy-efficient area for operation [39].

Frequency has a linear relationship with the voltage down to the near threshold region. Going

from 1V to 0.5V, the device delay increases by factor of 2, while the power is lowered to (1/2)3

of the original value which results in a reduction of energy consumption, as a product of power

59

and delay, to (1/2)2 of its original value.

The performance loss can be compensated with extra resources to support more par-

allelism. If we consider 2× more resources to compensate for the 2× increase in delay, the

power would increase by a factor of 2, and the delay would decrease by half, leaving the energy

reduction unchanged. So ideally, without considering the impact of process variation and faults,

energy consumption can be cut to (1/2)2.

4.5.2 GPU Sizing for NTC

We use the simulation flow discussed in Section 4.4.2 to simulate a GPGPU with a

range of configurations, created either by varying the number of SMs or the structures within

each (e.g., number of lanes in each SM). This is summarized in Table 4.1. McPAT [56] tool

estimates the power consumption of the GPGPU model and only the on chip structures are

modeled for this experiment.

Benchmarks used are from popular suites like Rodinia [11] and Parboil [74] and a

few from the CUDA SDK (bfs, cfd, convolution, hotspot, backprop, lbm, transpose, srad and

sgemm).

Figure 4.12 shows the trend on average across all the evaluated applications for

energy-delay product (ED), and energy-delay-area product (EDA). The y-axis shows the nor-

malized value for each metric with reference to the 1x/4SM configuration at 1V supply. The

x-axis is Vdd . The figure shows the trend for 1x configuration–the most energy efficient. In

general, energy decreases as the Vdd approaches near threshold region. Then the delay starts

to degrade more rapidly, increasing the energy consumption, mainly due to clocked logics and

leakage.

60

Parameter 1x 1.5x 2x

Processing Elements (lanes) per SM 32 32 64

Register File (RF) per SM 32K 64K 64K

DL1G-Scratchpad memory per SM 32KB 32KB 64KB

Maximum Frequency 1.5 GHz

Streaming Multiprocessors (SM) up to 8

Threads per warp 32

Maximum Warps per SM 24

L2 256KB 16w

L3 4MB 32w

Memory access latency 180 cyc

Vdd 0.4-1.0 V

Vth 0.30 V

δV 0.1

Ambient Temperature 25C

Table 4.1: Simulation parameters

EDA is of particular interest in this study. Let’s consider the 4SM configuration oper-

ating at 1.0V as the baseline configuration. The baseline meets the power budget for the chip.

Increasing the resources would result in exceeding the power budget. Thus 8SM, for example,

is not a feasible configuration in this condition. Now let’s consider the EDA of 4SM and 8SM

configurations. As expected 8SM has a higher EDA than 4SM at 1.0 V. As the Vdd approaches

the near threshold, EDA of both configuration decreases. However, at Vdd of around 0.6 V, EDA

of 8SM configuration crosses that of 4SM. This means that the 8SM configuration is more effi-

61

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
o

rm
a

li
z
e

d

ed 4SM

eda 4SM

ed 6SM

eda 6SM

ed 8SM

eda 8SM

Figure 4.12: Designs with more SMs become more efficient in terms of energy-delay product, as well

as energy-delay-area product as Vdd decreases.

cient at lower voltages. Also the delay metric for 8SM configuration at this point is the same as

the delay of the baseline 4SM running at 1.0 V. This shows that investment in extra resources

pays off as the Vdd approaches the near threshold region by maintaining the performance within

4.8% of 1x/4SM configuration operating at 1.0 V, while reducing the power consumption to

about 43% of baseline.

Another observation is that the optimal configuration for different metrics changes

by changing the Vdd . For example Figure 4.13a shows the design space for ED at 1.0 V. The

optimal configuration is 1x/6SM. Bigger structure sizes for cache or number of lanes could

increase the performance, but the increased power makes such a trade off less desirable due to

power budget constraints and possible thermal issues. Figure 4.13b shows the design space for

the same metrics at 0.6 V. At this condition, the optimal configuration is 8SM. Also the relative

efficiency of bigger structure sizes (e.g., 1.5×) increases. This implies that the architectural

parameters, such as cache or RF size, should be reconsidered for maximum efficiency as the

62

operating voltage changes.

1x
1.5x

2x 4

6

8

 1.1

E.D

Best configuration 1x/6SM
with E.D = 0.85

SM Size

#SM

E.D

(a) Typical

1x
1.5x

2x 4

6

8

 1.1

E.D

Best configuration 1x/8SM
with E.D = 0.82

SM Size

#SM

E.D

(b) Near Threshold

Figure 4.13: The optimized baseline in near threshold region is different from the typical super threshold

region. Larger structure sizes for cache or register file or number of lanes could become more desirable

in near threshold. This demands reconsidering the architectural parameters to obtain the best energy

efficiency, rather than just lowering the voltage.

4.6 Evaluation

We start our discussion by presenting the main results for GPU stacking for mitigating

process variation in GPGPUs operating in near threshold region. Then, we analyze the relia-

bility of the PDN, in particular we show that GPU stacking does not increase voltage noise or

droop and that the lateral current in the long Shared Net rails is not a problem for GPU stacking.

We end our evaluation by discussing some practical aspects for implementing GPU stacking in

real chips.

4.6.1 Main Results of GPU Stacking on NTC

We evaluate our method to manage process variation at near threshold (0.6V) supply

voltage with single frequency. These results were generated using variation maps generated by

63

 0

 5

 10

 15

 20

 25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e

rc
e

n
ta

g
e

Normalized Performance

no-stack

1SN

2SN

4SN

8SN

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

P
e

rc
e

n
ta

g
e

Normalized Power

no-stack

1SN

2SN

4SN

8SN

Figure 4.14: The proposed techniques shift the performance and power towards the ideal scaling with

no process variation.

VARIUS-NTV (each map corresponds to one die), as described in Section 4.4.1. The baseline

GPU was modeled as a 1x/8SM, as explored in Section 4.5. We then estimate the performance

and power for each die. Figure 4.14 shows histograms for performance and power, i.e., the

y-axis is the percentage of chips (out of 10K chips) and the x-axis is the performance/power.

Performance and power are normalized to the value obtained in the case with no process vari-

ation. Both Non-Stacked and Stacked (xSN, where x is the number of Shared Nets) methods

are shown. Two and four Shared Nets provide good design solutions, but we consider the four

Shared Nets case. In all the cases, the non-variation threshold voltage is set to 0.35. GPU

stacking delivers about 75% of the performance, with 75% power, compared to the no

variation conditions. This represents a reduction in the degradation due to process variation:

37% in performance, and 39% in power compared to the conventional configuration. The in-

crease in power is due to the increased frequency, but Energy-per-instruction remains roughly

the same. This may seem like a no-gain approach, but means that GPU stacking is able to reduce

the effects of process variation, delivering a chip that is closer to ideal scaling.

We now consider the case where multiple clock domains are present. GPUs are spe-

cially suited for this type of scenario, because SMs provide a natural bound for clock domain

64

partitioning. Also, letting each SM run at its maximum frequency yields very good performance

results even when process variation is considered [50]. This technique is orthogonal to GPU

stacking, and we leverage it in our evaluation. Our results (Figure 4.15) show that the use of

multiple clock domains does increase the overall performance of the GPU when process varia-

tion exists, but this improvement is limited compared to those of the super-threshold region [50].

Still, GPU stacking improves by 33% the overall performance of the GPU, delivering about

80% of the nominal performance, with 70% of the power.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e
rc

e
n
ta

g
e

Normalized Performance

no-stack

1SN

2SN

4SN

8SN

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

P
e
rc

e
n
ta

g
e

Normalized Power

no-stack

1SN

2SN

4SN

8SN

Figure 4.15: When multi-clock domain architecture is used, GPU stacking shifts the performance further

towards the ideal scaling with no process variation.

4.6.2 Load Mismatch

In typical GPGPU applications, threads exhibit a very similar execution, or activity

rate. This minimizes the possibility of a load mismatch in the stack. In our experiments, we

observe that the power consumption of lanes are within 5% of each other 98% of the time, and

is within 10% of each other 99.2% of the time. Powerlane1/Powerlane2 averages in 1.000024,

with standard deviation of 0.070. The sampling rate for our measurement is on the order of 1-10

MHz.

One source of concern is peak difference, which can be as high as 40% in our exper-

65

iments. We observe that mismatches higher than 30% only occurred for the backprop bench-

mark, but only 0.1% of the time for that benchmark. Since the elevated mismatches are observed

in a very short interval, they can be handled by decoupling capacitors between Vdd / Vmid and

Vmid / Gnd. The mismatch evaluation for the same kernels is carried out in this section.

To examine whether the achievable range of decoupling capacitance in the design is

enough for the observed mismatches, we ran a SM-like design through synthesis and back-end

design down to GDS. We then extracted the capacitance of the supply nets. Our experiments

show that such a design using standard cell decoupling capacitance cells (dcaps) would have

total capacitance of 1.4nF/mm2. At the super threshold region, with a power density of about

1W/mm2, the time constant for the power supply RC circuit would be on the order of a couple

of nanoseconds. Such a small time constant is not enough to sustain the transient mismatches

that appear on the order of 100ns to 1us. At the near threshold region, with smaller power

density, the time constant would be on the order of 10 nanoseconds which is still not enough.

To increase the decoupling capacitance, a technology similar to the one used in fab-

ricating DRAM memory cells can be used. Trenches in the silicon can provide over an order

of magnitude more capacitance per area compared to the standard cell dcaps. DRAM cells are

as big as 4F2 to 6F2 (F is the feature size, e.g., 22 nm) with about 25-30fF capacitance across

generations. With less than 1% density of such cells in the design, the amount of capacitance

per area, and consequently the time constant can increases by an order of magnitude.

The same process for trench capacitors can be incorporated into a CMOS process like

IBM has done. In such system, a lane operating in near threshold has close to 1000 cycles

before the voltage fluctuates by more than 10%. Effectively, giving enough time to change

the workload if needed. Nevertheless, we do not see such need for the applications evaluated

66

because of the high regularity of GPGPU workload. If the trench capacitor is not an option, it

is also possible to use on-package capacitors. On-package capacitors are common to stabilize

current PDNs. Adding additional capacitors for the Shared Nets will not increase the package

pins.

4.6.2.1 Load Mismatch in a process variation scenario

This figure changes when process variation is considered. The load mismatch in-

creases. But as discussed in Section 4.3.3 this mismatch is desirable in GPU stacking as it

compensate the delay variation caused by process variation. We evaluate the voltage mismatch

between two core-configurations, as explained in Section 4.4.3. We evaluate how the load mis-

match affects the voltage available for both levels of the stack by carrying a SPICE simulation

of the model presented in Figure 4.11. Each stack contains 16 lanes, 8 in the header and 8 in the

footer, a total of 4 stacks (2 SMs with 32 lanes each) are hooked in the grid, equally distributed,

each Vmid has two 5µF on package decoupling capacitor (one between Vmid and Gnd and the

other between Vmid and Vdd). BFS and backprop are run, one in each SM (those where the two

benchmarks with higher mismatch between lanes).

Figure 4.16 shows the on-chip transient voltage for each stack level during the execu-

tion time, one of the stacks is omitted for clarity. The global voltage source is 1.2V . Instead of

plotting the voltage with relation to the global Gnd, we plot the local voltage difference, which

is more meaningful. Voltage for each stack level stays within 10% the expected voltage for

compensation, showing a very good balance.

67

0

0.2

0.4

0.6

0 0.5 1 1.5 2

V
ol
ta
ge

(V
)

Execution Time (us)

stack1-bfs-head
stack1-bfs-foot

stack2-bfs-head
stack2-bfs-foot

stack3-backprop-head
stack3-backprop-foot

Figure 4.16: It is possible to maintain the voltage in each level of the stacks with on package decoupling

capacitors .

4.6.3 Stacking FinFETs vs. Planar CMOS

All the evaluations thus far used traditional planar technology. This section evaluates

the use of FinFET devices. BSIMG-CMG SPICE models are used for common multi-gate, i.e.,

FinFET devices to validate the concept of stacking. BSIM-CMG models are developed by UC

Berkeley BSIM Group and designed to be scalable and predictive MOSFET SPICE models that

can be used for circuit simulation and CMOS technology development [41]. FinFET models

used, aim at the 15nm technology node. Repeating the planar CMOS experiments in 4.3.3,

results in the graph in Figure 4.17. It shows an interesting trend in FinFETs. There is an

inversion in the Vmid trend, which seems to have eliminated the compensation effect of stacking

observed for planar devices.

FinFETs behave differently under process variation. For instance, the plots in Fig-

ure 4.17 are obtained using a simple inverter example with an FO4 and tracking its delay and

power. The Energy-Delay graphs in Figure 4.18 show as we increase Le f f variation in FinFETs,

the effect on energy-delay is much smaller than planar CMOS. FinFETs are more tolerant of

68

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 40.06 40.08 40.1 40.12 40.14 40.16 40.18 40.2

V
o

lt
a

g
e

 (
V

)

Time (ns)

PV
ref

s-head
vmid

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 40.06 40.08 40.1 40.12 40.14 40.16 40.18 40.2

V
o

lt
a

g
e

 (
V

)

Time (ns)

PV
ref

s-foot
vmid

Figure 4.17: The intrinsic compensation of PV effects seen for planar devices is not observed for FinFET

devices due to the inverted ED trend between those two technologies.

variation.

35.00

40.00

45.00

50.00

55.00

60.00

65.00

3.34 3.36 3.38 3.40 3.42 3.44 3.46 3.48

D
e

la
y
 (

p
s
)

Energy (uJ)

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

(a) Planar CMOS 45nm

15.00

15.50

16.00

16.50

17.00

17.50

18.00

3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28

D
e

la
y
 (

p
s
)

Energy (uJ)

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

(b) BSIM-CMG FinFET 15nm

Figure 4.18: Delay increases more rapidly for Planar CMOS than FinFET as we vary Le f f .

Nevertheless, it is still possible to use GPU stacking to compensate for PV effects

on FinFET devices. To do so, we propose the use of the extra VRs to force the Vmid voltage

to a beneficial level. GPU stacking is designed and evaluated in the same way, but during the

binning process, a voltage level is chosen for each Shared Net based on the variation of the

lanes assigned to it. The VRs need to be slightly larger in the FinFET version of GPU stacking

69

than in the planar version, but is still much smaller than what is used in a regular multi-VDD

domain system which requires full fledged VRs for each voltage domain.

Compared with the bulk planar devices, the challenge in analyzing FinFET circuit

delay lies in the computation of the different timing parameters. Currently, no FinFET timing

model has been presented that is both efficient and sufficiently accurate [85], and no analytical

models short of SPICE models exist to accurately estimate FinFET timing.

S. Khatamifard et al. performed a case study on thin channel FinFETs. Due to

stronger control of the gate over the channel, FinFET features better performance and power

characteristics. To see how miniaturization of technology nodes affects digital switches, they

build a model using VARIUS [70] modeling tool as the base, called VARIUS-TC [42]. Similarly

to VARIUS, it models variation for logic and memory cells, but it targets thin channel FinFETs

instead of planar MOSFET. The tool decouples architecture-level analysis from circuit- and

device-level characterization by abstraction. It uses look-up tables to capture electrical charac-

teristics which the circuit module uses to extract power and performance characteristics at the

logic gate and memory cell level, and then passes them to the architecture module. Overall,

VARIUS-TC is able to keep track of architectural implications of process variation in emerging

switches [42].

The experiment in Section 4.6.1 is repeated to evaluate the impact of GPU stacking

to compensate the performance loss due to process variation in a FinFET scenario. 50,000 vari-

ation maps are generated using VARIUS-TC [42]. lanes were clustered following the strategy

proposed in Section 4.3. VARIUS-TC is then used to calculate the delay and power for each of

the lanes with the set voltage. Figure 4.19 shows histograms for performance and power. The

y-axis is the percentage of chips (out of 50K) and the x-axis is performance/power.

70

In Figure 4.19 performance and power numbers are normalized to the values of the

no-process-variation case and we consider the four Shared Nets case. GPU stacking improves

performance by 4% with 4% additional power consumption, compared to the no variation con-

ditions and it still reduced the performance degradation due to PV effects. The improvement

itself is much smaller compared to planar MOSFET 4.14, nevertheless, the FinFET baseline

understandably is more power efficient and has better performance than the planar baseline.

 0

 2

 4

 6

 8

 10

 12

 0.8 0.85 0.9 0.95 1 1.05 1.1

P
e
rc

e
n
ta

g
e

Normalized Performance

no-stack

1SN

2SN

4SN

8SN

 0

 2

 4

 6

 8

 10

 12

 0.8 0.85 0.9 0.95 1 1.05 1.1

P
e
rc

e
n
ta

g
e

Normalized Power

no-stack

1SN

2SN

4SN

8SN

Figure 4.19: The proposed techniques shift the performance and power towards the ideal scaling with

no process variation.

Replicating the planar MOSFET evaluation for FinFETs, we let the GPU operate in a

multiclock domain and the results in Figure 4.20 show that GPU stacking improves the overall

performance of the GPU by 4% with a 4% increase in power consumption.

 0

 2

 4

 6

 8

 10

 12

 0.8 0.85 0.9 0.95 1 1.05 1.1

P
e
rc

e
n
ta

g
e

Normalized Performance

no-stack

1SN

2SN

4SN

8SN

 0

 5

 10

 15

 20

 25

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

P
e
rc

e
n
ta

g
e

Normalized Power

no-stack

1SN

2SN

4SN

8SN

Figure 4.20: When multiclock domain architecture is used, GPU stacking shifts the performance further

towards the ideal scaling with no process variation.

71

When using FinFETs in a stacked architecture, the compensation trend in power and

performance is different, in such way that the power delivery mechanism is mainly improved as

opposed to that of a multi-VDD domain. The number of power rails decrease and the number

and the size of voltage regulators used decreases. For instance, if a voltage regulator is used

per Shared Net, in a multi-VDD domain, we need to utilize 8 voltage regulators. In a stacked

architecture, we will need to use 1 voltage regulator to keep Vmid at an optimal level and to

benefit from the stacking technique.

4.6.4 Lateral Current

One of the main concerns in GPU stacking is lateral current, and thus the IR drop. We

evaluate it both for Vdd , and for Vmid . The total current for Vdd in GPU stacking is roughly half

the current than the conventional case, therefore, one would expect decreased voltage droop.

On the other hand, given a fixed budget for power delivery, the insertion of new power rails

requires that some of the resources used by Vdd and Gnd in the conventional scenario be used to

Shared Nets instead. Since the current in this rails is expected to be much smaller, the resource

reduction in Vdd and Gnd is small. We consider that 1/3 of the metal used to power delivery

is used to Shared Nets. Figure 4.21 shows a 2D color map of the IR drop for Vdd , both in

the conventional configuration and in GPU stacking for the BFS benchmark from our SPICE

simulations, already considering the reduced resources for Vdd , the contour lines are traced

every 0.02V . The conventional configuration was scaled up for better comparison.

From the variation maps generated by Varius-NTV [39], we find the worst case (max-

imum power difference in a stack). We note that, since we are stacking lanes, within an SM, and

given the spatial correlation of the variation, in most cases the variation is well below this max-

72

 0

 4

 8

 12

 16

 0 20 40 60 80 100 120
 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

V
o

lt
a

g
e

 (
V

)

(a) Conventional

 0

 4

 8

 12

 16

 0 20 40 60 80 100 120
 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

V
o

lt
a

g
e

 (
V

)

(b) GPU stacking

Figure 4.21: GPU stacking reduces the IR drop by reducing the total current flowing through Vdd .

imum. To estimate the resistance, we use the IBM Power Grid Benchmark (ibmpg1t), which

is properly scaled to estimate the equivalent grid of one Shared Net. The transient simulation

considers the maximum variation case. The maximum observed IR drop in Vmid was 65mV in

our simulations for all benchmarks, which is 5% of the whole supply voltage (1.2V).

4.6.5 GPU stacking Practicality Issues

A key concern for GPU stacking is practicality. This can be viewed from different per-

spectives: in-rush current, non-uniform benchmarks, and difficulty of implementation among

many. We will discuss some of these concerns and how to address them.

4.6.5.1 Extreme variation cases

In some extreme cases, the difference in variation between the stack levels may be

significantly elevated, reducing the voltage in one of the levels to non-acceptable levels (com-

pared to VT H). After fabrication, chips are divided in performance/power grades or discarded

73

according to the variation. This should also be the case in the GPU stacking case. To evaluate

how GPU stacking affects yield, we use VARIUS-NTV [39] to calculate the expected Vmid for

each stack. We then compare this value to the Vth of each lane in the stack. If the supply voltage

in the lane is smaller than 1.2·Vth for at least one of the lanes, we consider the chip discarded.

Our simulations show that, in such scenario, 1.8% of the chips would be discarded. A more

aggressive approach would be to disable lanes which are not meeting such requirement, but we

do not consider such scenario.

4.6.5.2 In-Rush current and power gating

GPU stacking reduces the current drawn from the PDN by roughly half during the

regular operation. This is also the case for the start-up phase. Our SPICE models were simulated

for both stacked and non-stacked configurations, and showed that in-rush is indeed smaller in

GPU stacking (data is not included).

Power gating can be applied in addition to the GPU stacking. The only requirement is

that pairs of lanes need to be powered off together (one in the head and one in the foot group),

but there is no need to power gate one entire SM at a time.

4.6.5.3 Implementation flow

GPU stacking operates in the physical level only and does not make changes in the

RTL level. But the physical implementation flow needs to be altered. GPU stacking creates

voltage rails that will be connected to the “local” GND rail of some portions of logic and to the

“local” Vdd rail of others. The idea of having multiple power rails is similar to multiple power

domains. Power transistors can then be used to open or close the circuit and choose which

74

Shared Net each core will tap. Another option is to crack open some connections, since the

clustering decision do not change after fabrication.

Voltage stacking also requires isolated wells to avoid unwanted body bias effects

between stack levels, thus either Fully-Depleted SOI or a simple triple-well technology are

needed [52]. Although this is restrictive, FD-SOI has high availability and triple-well only

requires an extra mask during fabrication.

4.6.6 Other advantages of GPU stacking

The increase in the supply voltage has some indirect advantages, some of which are

quantified in this section. They share two main causes: voltage regulators are more efficient at

higher voltages and the overall current in the circuit is reduced to roughly half [25, 52]. Using

results from Hong et al. research [27], we estimate memory power as 17% of the total GPU

power. The memory power is not affected by GPU stacking.

Some of the main advantages of GPU stacking are related to the voltage regulators:

the voltage regulator (VR) area is reduced by roughly 2× with half the current [16]. In the Intel

Haswell integrated VR, each 2.8mm2 cell can delivery a 25A maximum current. A modern low-

end GPU consumes ≈ 55W [1]. VR efficiency is a function of both Vdd and output current [75].

Considering both the efficiency from increasing Vdd from ≈ 0.6V (at the near-threshold region)

to ≈ 1.2V , and reducing by half the total current, we expect an improvement in the VR efficiency

of 12%. This is a saving of 10% in total power (excluding memory). Also, it is possible to

reduce the VR for the logic to 50%, this yields a reduction of 41% in the total VR area.

The number of pins and pads is mainly determined by the total amount of current

flowing through them. To keep the current per pin constant, it is now possible to reduce the

75

Parameter Expected Variation

Performance vs. PV not-stacked +37%

Power vs. PV not-stacked +39%

VR area -41%

VR efficiency +10%

Supply pins -41%

Table 4.2: GPU stacking delivers better performance and power than a non-stacked configuration under

process variation. It also allows better VR efficiency, and reduced number of power pins.

number of pins. Again the current related to the logic decreases to roughly half, but the current

in memories is the same. Once more, this yields a reduction of 41% in the total number of power

pins. Note that the number of pads dedicated to Vdd can be also decreased, but pads are now

needed for Shared Nets, since on-package decaps are used. The overall number of pads is not

expected to change. Table 4.2 summarizes the expected variation in multiple chip parameters

due to GPU stacking.

4.7 Conclusion

This part of the dissertation presents GPU Stacking as a method to manage the effects

of process variation. We show that the stacking of cores with opposite variations tend to balance

the variation effects that would have appeared in a conventional configuration. To maximize the

balancing effect, cores with opposite variations should be stacked, which requires post-silicon

configurability. We propose a clustering technique to make such a configurability feasible. The

homogeneous nature of GPGPU applications make them suitable candidates for GPU stacking.

76

Previous voltage stacking publications only analyzed multicores and required complex circuitry

to stabilize the voltage. This work is the first to use stacking in the context of process variation,

and also the first to propose a floating middle rail. We show that the stable nature of GPGPUs

allows for the use of only decoupling capacitors to stabilize the power delivery.

This research provides a detailed evaluation of NTC with GPGPUs, and the idea of

GPU stacking. We first carefully size a GPU for NTC operation, achieving 43% power savings,

with only 4.8% performance degradation. We then apply GPU stacking to manage process

variation, which impacts NTC circuits more than circuit in the super-threshold region. The

homogeneous nature of GPGPU architectures and applications, make them a very interesting

candidate for exploration in the extreme domains, with both low voltages and small feature

sizes. We show that stacking can increase performance under process variation at near threshold,

on average, by 37% compared to the traditional (not stacked) configuration, delivering 80% of

the performance compared to the no variation (ideal) conditions.

77

Chapter 5

Timing Speculative SRAM

5.1 Introduction

As fast on-chip memories continue to occupy a great portion of the area in System-

on-Chip (SoC) designs, their speed and power consumption significantly impacts the system

performance. Up to 60% of the total active chip area is taken by memories and 20% of that area

is taken by SRAMs [64]. In SRAMs, read operations are the most time consuming operations

that affect the access time. Therefore, optimal Sense Amplifier Enable (SAE) signal genera-

tion is crucial for having speedy SRAM operations that consume low power. As technology

scales down, intra-die variations such as random dopant fluctuations affect Vth and become

more pronounced in small circuits such as SRAM cells causing various read and write failures.

Timing guardbands prevent such failures, while inherently requiring an over-design to meet the

performance goals and an increase in the overall power consumption. Hence, there is a grow-

ing demand for architectural schemes and sensing circuits which ease the conventional design

methods.

78

Razor is one of the most common delay-error tolerant flip-flops used in voltage man-

agement techniques. It eliminates the frequency margins needed due to PVT variations [21].

Follow up designs to the original Razor proved that recovering from errors is highly costly and

resorted to detecting the timing errors only [17]. Read errors have previously been detected us-

ing a Razor-based technique [37] in the boundary sense amplifier. Unfortunately, the additional

logic for error detection and correction adds significant area to the sense amplifier and, in turn,

increases read energy consumption. In the case of having to recover from an error, Razor will

add a penalty of one cycle delay to every read operation in order to recover the correct data. In

addition, when the error detection scheme is applied on a per bit basis, the final error signal is

a logical OR of all the error signals which adds additional delay in computing the error signal.

These drawbacks limit the overall efficiency as the size of the SRAM increases [17, 21]. In ad-

dition, Razor-based SRAM is assumed to be placed in a system that is Razor-enabled, however

in case of a system error, there is no mechanism for preventing incorrect writes to the SRAM.

Therefore, there is a chance of corrupting the SRAM data.

We propose a timing error detecting scheme that utilizes existing hardware called

Replica-based Timing Speculative SRAM (RTS) which can

• leverage the RBL concept in timing speculation due to variation,

• prevent erroneous writes,

• provide an area and power efficient error detecting mechanism.

5.2 Related Work

RBL-based SRAMs: During the read operation, sense amplifiers can become acti-

79

vated too early and misread the data or stay open for a long period dissipating power more than

needed for detecting the bitline voltage swing [6]. B. Amrutur proposed the Replica Bitline

(RBL) technique to optimize the SAE timing signal and ensure protection against erroneous

reads [4] (Figure 5.1. The conventional RBL is a column containing bitcells similar to the

SRAM core bitcells. During the read operation, the RBL control signal is asserted. A number

of RBL cells that have been hardwired to ‘0’ are going to fully discharge. The column out-

put signal is then buffered, inverted and used as the SAE signal. The buffering is needed to

replicate the wordline delay. RBL predicts the maximum discharging delay of the SRAM core

bitlines. Once RBL column is activated, the precharged bitline entering the column will begin

discharging. The time it takes RBL to discharge through the column bitcells, and fall below the

threshold voltage is used to generate the SAE signal.
R

e
a
d

 A
d

d
re

ss
 D

e
co

d
e
rs

W
o
rd

lin
e
 B

u
ff

e
rs

W
o
rd

lin
e
 B

u
ff

e
rs

Sense Amps

Write Drivers

Precharge Precharge

Sense Amps

Write Drivers

W
ri

te
 A

d
d

re
ss

 D
e
co

d
e
rs

r

h

Replica Bitline

Replica Cell

Figure 5.1: Replica-based SRAM [4]. r is the height of Replica cells that are active and h is the height

of the SRAM core.

80

RBL technique is best suited for SAE timing generation because bitline delay tracking

in presence of variation. Many Replica-based SRAM design and testing techniques have been

proposed to maintain optimal timing for the SAE signal while keeping the SRAM error-proof

during read operation. Viveka et al. proposed a post-silicon tunable testing approach using RBL

to minimize margin for generating SAE [83]. The RBL signal can also be used to digitally tune

the SA and WL signals in post-fabrication [62]. Arslan et al. proposed a cRBL, a reconfigurable

RBL. Another post fabrication technique that uses statistical analysis to select a subset of bitcell

drivers in the RBL column that best cancel the local transistor mismatches in memory cells [82].

Concept of Timing Speculation: Ernst et al. proposed RazorI which is a delay-error tolerant

flip-flop for error detection in critical paths [21].

Razor eliminates the safety margins by achieving variable tolerance through in-situ

timing error detection and correction. It uses a flip-flop and shadow latch to double sample the

input. The main flip-flop is triggered at the positive edge of the clock whereas the shadow latch

samples input data at the negative edge, so that the data is given 1/2 cycle to stabilize before

being sampled by the shadow latch. Since the setup and hold time of the main flip-flop are

allowed to be violated, a metastability detector is required at the output of the flip-flop. Razor

uses a comparator to detect any discrepancy between the main and the speculative data. In case

of error, the error flag is raised and OR’ed with the other “error” flags, and then propagated

backwards so that the correct data stored on the shadow latch will be restored at the next clock

cycle. Due to large number of logical OR’s throughout the design, the “restore” signal can

become a critical path itself. Costly correction is one of the reasons that RazorII was proposed

later. RazorII performs error detection and leaves the data correction to the architectural replay

schemes already present in processor pipelines [17]. Razor technique has been implemented in

81

many designs [43, 47] and it has been taped out in many chips [8, 22].

Timing Speculative SRAMs Karl et al. use the Razor technique to protect against erroneous

reads by implementing a main and a shadow sense amplifier. We will compare against their

design and refer to their solution as Razor. Similar to the Razor [21] technique, Karl et al. use

a main and a shadow sense amplifier that double samples the bitline voltage swings. During a

read operation, the two SAE signals are generated from the falling edge of the clock using an

inverter delay chain. The delay chain is tapped to generate the precharge clock which is also

used in the SA circuitry. First, the main SA is enabled and shortly after the shadow SA. A

comparator is used to detect any discrepancy between inputs and generate an error signal. The

generated “error” signal will select the shadow SA value at the output MUX [37]. The Razor

will have a penalty associated with using Razor system which is a 1-cycle latency, but it will

protect against data dependent delays during readings of the SRAM core. When using Razor,

the read operation failures are detected and corrected, however, when there is a write operation,

the lack of write failure detection will lead to an erroneous write and corrupt SRAM data unless

the error is fixed before the wordline is enabled. For many SRAMs, the allotted time is less

than half a cycle. A simple alternative is having a write scheme which is “failure” aware. This

alternative is presented in section 5.3.

Another example of the timing speculative SRAM is the Domino Register File design

by Kulkarni et al. [47], which double samples read output and its delayed version to detect

timing errors within a clock window. Similar to Razor and Memory Timing Error Correction

designs, it has an area overhead and the error detection mechanism can be defective due to

metastability. Khayatzadeh et al. propose another Razor like SRAM that has been fabricated

implementing Razor at the sense amplifier boundary for detecting read errors. While this is a

82

bl

pclk

blb

Write Drivers

b
l<

0
>

b
lb

<
0

>

bl blbsae

q qbar

b
l<

3
1

>

b
lb

<
3

1
>

Replica Bitline ColumnWD

Error
EN

R
e
a
d

 A
d

d
re

ss
 D

e
co

rd
e
rs

Pre

Error Detection Logic

W
o
rd

lin
e
 B

u
ff

e
rs

WREN
wl

A0

Clk
A1

A2

A3

nofailure

A5

A4

W
ri

te
 A

d
d

re
ss

 D
e
co

d
e
rs

W
o
rd

lin
e
 B

u
ff

e
rs

R
e
a
d

 A
d

d
re

ss
 D

e
co

d
e
rs

Sense Amps Sense Amps

Precharge Precharge

Write Drivers

Figure 5.2: Timing Speculative SRAM

novel idea, the issue remains where razor is applied o per bit basis [43] and Razor’ed sense

amplifier and the final logical “OR”s will an area overhead.

5.3 Time Speculative SRAM

Figure 5.2 shows a high-level block diagram of our proposed design which includes

the enhancements to a generic 1Kb SRAM with two read ports and one write port. We refer to

our Timing Speculative SRAM as RTS. The circuit enhancements and added logic are shown in

color green i.e., the added logic for generating the SAE, the write address decoder and the error

detection logic. The following sections will include the detailed implementation of the new and

modified components in the SRAM.

83

5.3.1 Protecting from Read Time Failures

To detect read time failures, RTS leverages the RBL technique. Replica Bitline Col-

umn (Figure 5.2) consists of a column of 6T bitcells that are identical to the bitcells used in

the SRAM core. As opposed to adding dummy decoders, we utilize the decoders and word-

lines to activate the RBL bitcells. Dummy write drivers produces a ’0’ bit which is written in

all the RBL bitcells. During the precharge period, when clock is ’0’, the RBL bitlines will be

precharged to ’1’. When the clock signal transitions to ’1’, the wordline is raised, the reading

begins. The SRAM core wordline (highlighted in Figure 5.2) is extended and connected to the

wordline enable of the RBL bitcells. Therefore, the corresponding RBL bitcells will discharged

mimicking the SRAM bitcell behavior. The time it takes to discharge the ‘1’ in Replica cells is

used to predict the SAE signal as it generates sufficient delay for enabling the sense amplifier.

During the precharge period, when the clock signal is ‘0’, the Replica bitcells are precharged to

‘1’ and when the clock transitions to ‘1’ and reading operation begins, the bitcells in the Replica

column will begin discharging. The output of the Replica Bitline Column is connected to one

large inverting buffer, shown in Figure 5.2, for 2 reasons. First, the RBL output signal needs to

be inverted and able to drive all the 32 sense amplifiers and second, we need to compensate for

the wordline enabling delay.

The error detection logic is shown in Figure 5.2. It includes another input signal

besides RBL, named EN. for RTS. If during the period that EN is on, the RBL signal is also on,

an error flag will be raised. The RBL signal already predicts the worst reading time delay for

enabling the SAE. By using the RBL to generate SAE, we allow a window for detecting errors.

During the read operation, when the clock is ‘1’, SAE becomes active with some delay. If at

84

the second half of the negative edge of the clock, SAE signal is not yet lowered, the chance to

read the data properly is missed and an error signal will be generated before the rising edge of

the clock. The timing diagram in Figure 5.3 show when the error signal is generated.

CLK

WL

EN

RBL

ERROR

Figure 5.3: RTS error signal generation

RBL is a common technique in modern SRAM designs. Leveraging this existing

technology reduces the overhead of area consuming and complex error detection mechanisms.

RTS error detection overhead is insignificant regardless of the SRAM size. If the SRAM is large,

the area overhead of large error detection mechanisms such as Razor might be acceptable, but

in small SRAMs, the area overhead is significant in comparison with other components.

5.3.2 Protecting from Incorrect Writes

Previous state-of-the-art RAM [37] do not protect against incorrect inputs without

requiring faster SRAMs. As a result, studies that use Razor-like solutions have assumptions

similar to the Bubble Razor design [22], which state "Writes are clocked on the negative edge

of the clock when data is guaranteed to be error free". Although writes tend to be faster than

reads, requiring them to complete in half a SRAM cycle adds additional overhead. We propose

85

a minor modification to the write decoder to make it failure-aware.

We define an external failure to be corrupt data that causes the “error” or “failure” flag

to be raised in the system. When SRAM is placed within a system that has an error detection

mechanism, there exists an “error” or “failure” flag. To prevent an incorrect write, error has to

be detected and the wordline disabled in less than half a cycle. However, when the system is

equipped with error detecting latches/flops, the failure flag can be used to disable the wordline

immediately. In order to protect an upcoming write in case of an external failure, RTS uses a

decoder that has an active low failure input. When the write operation starts, at the rising edge of

the clock, the address decoding takes place and wordline is selected. If the error flag along with

the input data is raised, the wordline will be not be selected. Figure 5.2 shows the modification

needed for the write address decoder used in RTS design. By adding a single NMOS transistor

to the decoder with an active low failure signal input, the wordline is selected only if there is

no failure present in the system. In RTS this external active low signal is called “nofail”. The

address bit NMOS transistors are connected in series with the “nofail” signal. When there is a

failure, the WL will be deselected and the write operation will be discontinued.

5.3.3 Sense Amplifier

RTS uses latch-type sense amplifier (Figure 5.2), used in Amrutur’s low power RBL

SRAM [4]. It has a pair of cross coupled inverters which are turned on when SAE is active

and an adequate input differential is set up. The SAE also enables the two PMOS transistors

which are connected to the bitlines. Overall, the sense amplifier behaves similarly to a latch.

Compared with other sense amplifiers, it consumes less energy. It will be slower than a current

SA, but it will not be problematic as enough timing margin is provided in the generation of the

86

SAE signal [5].

5.4 Experiment Setup

There are 4 types of SRAMs built as shown in Table 5.2. Each type is designed for

3 different sizes listed in Table 5.1. Size small models a typical 1Kb register file for in-order

processor. Size medium represents a 2Kb register file fit for a 3-way superscalar out-of-order

processor, and size large models a large 8Kb single cache bank. Area of a size large SRAM is

15% more than a size medium.

Table 5.1: Experimental SRAM configurations model three typical processor SRAMs.

Size Ports Words Word Width

Small 2r1w 32 32

Medium 6r3w 64 32

Large 1r1w 128 64

5.4.1 Tool Flow

All the SRAMs were designed and implemented using libraries available in FabMem,

which is a subset of FabScalar toolset [14]. It uses FreePDK 45nm technology library and

customized SRAM components to generate netlists and layouts for multiported SRAMs given

the main configurations such as read and write ports, capacity, and word width. Table 5.2

explains each designed SRAM. Type Trad uses the FabScalar circuitry that FabMem provides.

RBL builds on the Trad by adding an RBL support and a latch-type SA. RTS is a modified RBL

87

that incorporates the RBL, latch-type SA and a modified write address decoder. Razor is also

a modified version of the Trad where the output sense amplifiers have been replaced with the

Razor-enabled version.

Using FabMem, we built the Spice netlist for each of these SRAM types and con-

figurations. The layouts for all of the modified RTS components have been drawn for a closer

area approximation of the final SRAM design. All the introduced components have their own

customized layout except the Razor-ed sense amplifier, however, we have estimated the area

based on the used delay chains and control logic shown in Razor-enabled sense amplifier [37].

Its netlist excludes the extra logic for generating the enable signals (en1 and en2) and they are

included as input data to the HSpice stimulus file for analysis.

Table 5.2: Experimental SRAM types

Type Description

Trad FabScalar proposed design.

RBL FabScalar + RBL support + latch-type SA.

RTS FabScalar + wr decoder + RBL + latch-type SA.

Razor FabScalar RAM + Razor-ed SA.

5.5 Evaluation

To evaluate RTS, we run SPICE for all the SRAM types in Table 5.2 and compare read

and write energy consumption, maximum frequency, and the SRAM area consumed against

Razor.

88

5.5.1 Energy Efficiency

To compare the read and write energy consumption, we run size small with a fre-

quency of 1GHz and sizes medium and large with a frequency of 700MHz. We run HSpice

for a period of initialization, followed by 10 consecutive writes and 10 consecutive reads. For

multiported structures, all read and write ports are active simultaneously during the read or

write period respectively. Figures 5.4, 5.5, and 5.6 show the average energy breakdown for each

SRAM type.

RTS and RBL have the RBL in common and, therefore, they consume similar energy

levels during read or write operations. Considering Razor is reading and using the large sense

amplifiers, it ends up consuming the largest amount of power. In order to have Razor operate

faster, either the precharge devices have to be largely sized to elongate the precharge period or

the buffer sizes that drive the bitlines to the comparator in the sense amplifier [37].

For small size SRAMs, Razor read energy consumption is 11.96x and 11.89x than

RBL and RTS respectively. For medium size SRAMs, Razor consumes 8x more energy than

both RBL and RTS. For size large, the read energy consumption for Razor is 3.37x and 3.30x

more than RBL and RTS. As we increase the size of the SRAM the energy overhead becomes

smaller, however, for typical/small sizes, the overhead is a considerable part of the design bud-

get.

5.5.2 Area

Table 5.3 contains the area of the components used, added, or modified in all the

SRAMs. In RBL the total area overhead is mainly due to the Replica Bitline Column and its

dummy write driver and precharge circuits. Comparing RBL and Razor, For the size small

89

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Trad
R
azor

R
BL

R
TS

Trad
R
azor

R
BL

R
TS

Trad
R
azor

R
BL

R
TS

E
n

e
rg

y
 (

p
J
)

decode
precharge
write driver
sense amp

StandbyWriteRead

Figure 5.4: Energy breakdown in small SRAMs.

SRAM which we have used, RBL overhead is 111.7µm2 and Razor overhead is 332.3µm2.

Razor has 3 times more area overhead than RBL. The area difference between RBL and RTS, is

the error detection (AND gates) and the slightly larger write address decoders 3.37 vs. 3.18µm2.

The precharge circuit used for the RBL is identical to the precharge circuit used for the RAM

core and to the rest of the SRAMs. The dummy write drivers are also the same as write drivers

in all the other SRAMs.

Overall, Razor has the highest area overhead among all the SRAM types and among

the error detecting SRAMs, RTS will have a small overhead. If the SRAM has the RBL imple-

mented, the overhead of RTS would be negligible compared to the overall size of the SRAM.

Table 5.4 compares the percentage difference in total area overhead of RTS and Razor

compared with RBL for 3 different sizes of SRAM. As the size increases, the overhead of RTS

becomes negligible.

90

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Trad
R
azor

R
BL

R
TS

Trad
R
azor

R
BL

R
TS

Trad
R
azor

R
BL

R
TS

E
n

e
rg

y
 (

p
J
)

decode
precharge
write driver
sense amp

StandbyWriteRead

Figure 5.5: Energy breakdown in medium SRAMs.

Table 5.3: RTS overhead is mainly due to Replica Bitline Column. The Razor sense amplifier is 5.5x

RBL bitcell area and 7.4x the traditional sense amplifier. Units are in µm2.

Type SA RBL Wr Dec Xtra Buff Xtra PreCharge Xtra Wr Dri Err logic

Trad 0.98 - 3.18 - - - -

RBL 1.36 1.82 3.18 3.03 0.87 1.51 -

RTS 1.36 1.82 3.37 3.03 0.87 1.51 0.98

Razor 10 - 3.18 - - - -

5.5.3 Process Variation Effects

We performed Monte Carlo simulations to analyze the frequency of the RBL and

estimate the maximum clock period for performing reads. In order to perform Monte Carlo

simulations and introduce variability, VARIUS is used [70]. VARIUS is a tool that given the

91

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Trad
R
azor

R
BL

R
TS

Trad
R
azor

R
BL

R
TS

Trad
R
azor

R
BL

R
TS

E
n

e
rg

y
 (

p
J
)

decode
precharge
write driver
sense amp

StandbyWriteRead

Figure 5.6: Energy breakdown in large SRAMs.

Table 5.4: The area overhead percentage difference of RTS and Razor with RBL.

Type RTS Razor

Small 0.43 5.46

Medium 0.16 2.45

Large 0.02 2.33

floorplan can create variation maps that considers both systematic and random variations. We

generated a floorplan for RBL and run it with 50 variation maps generated by VARIUS. For

each map, 10 different data points are read and the maximum output delay or the read speed

is measured. Out of the 10 data points, the point with the maximum delay is chosen for that

particular map.

Figure 5.7 shows the max clock period density function for the Small RBL which

92

300 310 320 330

Max Clock Period (ps)

D
e
n
si

ty

RBL-RAM Max Clock

RTS-RAM & Razor Max Clock

FailPass

Figure 5.7: RBL and Razor achieve similar results, both allow protection from infrequent failures

corresponds to a typical Register File in simple in-order cores. To have high yield, the RBL

should operate around 330ps. Since both RTS and Razor can protect against infrequent errors,

it is possible to have a higher operating frequency. In the figure, it shows around 322ps. Both

Razor and the proposed RTS can protect against errors.

Razor has a slow dynamic OR gate to detect failures. The figure uses a small SRAM,

and the dynamic OR logic is not in the critical path, but SRAMs with larger number of read bits

will affect the overall maximum frequency. This would not happen in RTS, because it uses the

Replica Bitline to detect the errors. For simplicity, the Razor additional overhead is not included

in Figure 5.7. Overall, RTS achieves the same operating frequency as Razor with area and the

energy efficiency.

93

5.6 Conclusion

The final part of the dissertation includes the proposal for a new way to efficiently

implement time speculation in SRAMs. RTS detects read and prevents write failures by offering

a simple, yet efficient, solution that avoids costly shadow latches. Previous approaches like

Razor required costly shadow latches and error detection logic. RTS leverages RBL to detect

timing failures, and modifies the decoder logic to avoid requiring half cycle writes. This simple

yet effective design shows to be 22% to 58% more energy efficient in reading operations. All

this is achieved with a significant area reduction. The resulting RTS has less an error detection

mechanism which is 35% to 73% more area efficient that Razor-enabled SRAM. RTS has 1%

total area difference compared with traditional Replica-based RAM while Razor has up to 6%

total area difference.

94

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Throughout this thesis, I have addressed several applications of voltage stacking

power delivery mechanism. To ease the design space exploration for level shifters, I have pre-

sented a detailed comparison of commonly used level shifters in terms of delay versus energy,

and more importantly analyzing their correct functionality under voltage, temperature, and pro-

cess variation. Once the optimal level shifter is determined, it is then applied to a circuit that

inherently helps balancing the loads in different voltage stacks. The results shows that the same

amount of power is consumed, but the current is cut by a the number of stack levels.

The second application of voltage stacking aims to compensate for process variation

in the NTC region in GPGPUs. NTC has the potential to significantly reduce power in GPGPUs,

but it makes the circuitry more susceptible to process variation and complicates PDN design. I

have proposed a novel method, GPU Stacking, to concurrently manage the effects of variation

and improve the power delivery.

95

I leveraged the logic used in the SRAM architecture to divide it into stacks that allow

power distribution evenly. As the final contribution of this thesis, I propose to further leverage

the RBL technique widely used in modern SRAM designs to detect timing errors and trim the

voltage guardbands.

6.2 Future Work

SRAMs are prevalent in today’s industrial and academic SoC designs, and voltage

stacking is becoming a more common power management technique used in many designs [7,

20, 52, 88]. Chapter 3 presents how an SRAM is stacked. To extend this evaluation, the small

sized SRAM can be replaced by a larger sized SRAMs, for instance, similarly sized to typical

cache level sizes. As the size increases, so do the number of level shifters. Area overhead

should be less of a concern as the SRAM size itself is large, however, the Pareto frontier curves

in Chapter 2 will help the designer choose the optimal level shifter based on required timing

and/or area budget. Another evaluation which adds more insights into the concept of voltage

stacking is having more than 2 voltage levels. As the memory size increases, the designers

might need more than 2 voltage levels.

Additionally, the voltage stacking and timing speculation techniques could be incor-

porated in an open source memory compiler such as FabMEM [14] and OpenRAM [65] in the

future. It would make them applicable to larger size memories, and more importantly, it would

make them more portable and accessible especially for academic research. FabMEM generates

layout for different SRAM configurations, however, for stacked SRAM, it could only be used

if the layout generation tool was modified. OpenRAM is a collaborative project designed and

96

implemented by VLSI groups from UC Santa Cruz and Oklahoma State University group. It

is a Python-based tool which uses SRAM configurations to generate netlists and layouts. It

uses the RBL technique to generate the SAE, omnipresent in many current SRAM designs. It

provides the opportunity to integrate the timing speculation technique in RTS with the toolset.

Since OpenRAM allows the designers to do power analysis, it is a critical step to ensure that

the power constraints are met properly and to avoid any later design complications. It would be

beneficial for the researchers to be able to apply an alternative power delivery method such as

voltage stacking and have quick and yet more deterministic results for energy consumption of

their desired memory subsystem.

The next step for researcher working on voltage stacking technique would be to fab-

ricate a chip that uses this methodology in power design, and be able to conduct off the chip

experiments and concretely validate that such power delivery mechanism is a definite alternative

for chip designers.

97

Bibliography

[1] NVIDIA GeForce GTX750 specifications. Available on http://www.geforce.

com/hardware/desktop-gpus/geforce-gtx-750/specifications.

[2] Zhenyu Qi Adam C. Cabe and Mircea R. Stan. Stacking SRAM Banks for Ultra Low

Power Standby Mode Operation. In Proceedings of the 47th Design Automation Confer-

ence, DAC ’10, pages 699–704.

[3] Bhawna Aggarwal, Maneesha Gupta, and A.K. Gupta. A Comparative Study of Various

Current Mirror Configurations: Topologies and Characteristics. Microelectronics Journal,

53:134–155, 2016.

[4] Bharadwaj S. Amrutur and Mark A. Horowitz. A Replica Technique for Wordline and

Sense Control in Low-Power SRAM’s. IEEE Journal of Solid-State Circuits, 33:1208–

1219, August 1998.

[5] Bharadwaj S. Amrutur and Mark A. Horowitz. Speed and Power Scaling of SRAM’s.

IEEE Journal of Solid-State Circuits, 35(2):175–185, February 2000.

[6] Christiensen D.C. Arandilla and Joy Alinda R. Madamba. Comparison of Replica Bitline

Technique and Chain Delay Technique as Read Timing Control for Low-Power Asyn-

98

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-750/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-750/specifications

chronous SRAM. In Modelling Symposium (AMS), 2011 Fifth Asia, pages 275–278, May

2011.

[7] Ehsan K. Ardestani, Rafael Trapani Possignolo, Jose Luis Briz, and Jose Renau. Managing

mismatches in voltage stacking with coreUnfolding. ACM Trans. Archit. Code Optim.,

12(4):43:1–43:26, Nov. 2015.

[8] David Bull, Shidhartha Das, Karthik Shivashankar, Ganesh S. Dasika, Krisztian Flautner,

and David Blaauw. A Power-Efficient 32-Bit ARM Processor Using Timing-Error De-

tection and Correction for Transient-Error Tolerance and Adaptation to PVT Variation.

Solid-State Circuits, IEEE Journal of, 46(1):18–31, January 2011.

[9] Leland Chang, David J. Frank, Robert K. Montoye, Steven J. Koester, Brian L. Ji, Paul W.

Coteus, Robert H. Dennard, and Wilfried Haensch. Practical Strategies for Power-Efficient

Computing Technologies. Proceedings of the IEEE, 98(2):215–236, 2010.

[10] Leland Chang, Robert K. Montoye, Brian L. Ji, Alan J. Weger, Kevin G. Stawiasz, and

Robert H. Dennard. A Fully-Integrated Switched-Capacitor 2:1 Voltage Converter with

Regulation Capability and 90% Efficiency at 2.3A/mm2. In VLSI Circuits (VLSIC), 2010

IEEE Symposium on, pages 55–56, June 2010.

[11] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha

Lee, and Kevin Skadron. Rodinia: A Benchmark Suite for Heterogeneous Computing.

In Proceedings of the 2009 IEEE International Symposium on Workload Characterization

(IISWC), IISWC ’09, pages 44–54, Washington, DC, USA, 2009. IEEE Computer Society.

[12] Tom Chen and Samuel Naffziger. Comparison of Adaptive Body Bias (ABB) and Adaptive

99

Supply Voltage (ASV) for Improving Delay and Leakage Under the Presence of Process

Variation. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 11(5):888–

899, 2003.

[13] Jin-Hyuck Choi, Jung-Hoon Lee, Seh-Woong Jeong, Shin-Dug Kim, and Charles Weems.

A Low Power TLB Structure for Embedded Systems. IEEE Computer Architecture Let-

ters, pages 3–3, 2002.

[14] N. K. Choudhary, S. V. Wadhavkar, Tanmay A. Shah, Hiran Mayukh, Jayneel Gandhi,

Brandon H. Dwiel, Sandeep Navada, Hashem H. Najaf-abadi, and Eric Rotenberg. Fab-

Scalar: composing synthesizable RTL designs of arbitrary cores within a canonical super-

scalar template. In Proc. of the 38th Int’l Symp. on Computer Architecture, pages 11–22,

New York, NY, USA, 2011. ACM.

[15] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn Rein-

man. CHARM: a Composable Heterogeneous Accelerator-Rich Microprocessor. In Pro-

ceedings of the 2012 ACM/IEEE international symposium on Low power electronics and

design, ISLPED ’12, pages 379–384, 2012.

[16] Intel Corporation. A 400 amp fully integrated silicon voltage regulator with in-die mag-

netically coupled embedded inductors, 2010.

[17] Shidhartha Das, Carlos Tokunaga, Sanjay Pant, Wei-Hsiang Ma, Kalaiselvan Sudherssen,

Kevin Lai, David M. Bull, and David T. Blaauw. RazorII: In Situ Error Detection and

Correction for PVT and SER Tolerance. Solid-State Circuits, IEEE Journal of, 44(1):32

–48, Jan. 2009.

100

[18] Eric Donkoh, Teck Siong Ong, Yan Nee Too, and Patrick Chiang. Register File Write

Data Gating Techniques and Break-even Analysis Model. In Proceedings of the 2012

ACM/IEEE international symposium on Low power electronics and design, ISLPED ’12,

pages 149–154, 2012.

[19] Ronald G. Dreslinski, Michael Wieckowski, David Blaauw, Dennis Sylvester, and Trevor

Mudge. Near-threshold computing: Reclaiming moores law through energy efficient inte-

grated circuits. 98(2):253–266, Feb 2010.

[20] Elnaz Ebrahimi, Rafael Trapani Possignolo, and Jose Renau. SRAM Voltage Stacking. In

2016 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1634–1637,

May 2016.

[21] D. Ernst, Nam Sung Kim, S. Das, S. Pant, R. Rao, Toan Pham, C. Ziesler, D. Blaauw,

T. Austin, K. Flautner, and T. Mudge. Razor: a low-power pipeline based on circuit-level

timing speculation. In Proceedings of the 36th Int’l Symp. on Microarchitecture (MICRO-

36), pages 7 – 18, Dec. 2003.

[22] Matthew Fojtik, David Fick, Yejoong Kim, Nathaniel Pinckney, David Harris, David

Blaauw, and Dennis Sylvester. Bubble Razor: An Architecture-Independent Approach

to Timing-Error Detection and Correction. In Solid-State Circuits Conference Digest of

Technical Papers (ISSCC), 2012 IEEE International, pages 488 –490, Feb. 2012.

[23] Mark Gebhart, Daniel R. Johnson, David Tarjan, Stephen W. Keckler, William J. Dally,

Eric Lindholm, and Kevin Skadron. A Hierarchical Thread Scheduler and Register File

101

for Energy-Efficient Throughput Processors. ACM Trans. Comput. Syst., 30(2):8:1–8:38,

Apr. 2012.

[24] Mark A. Gebhart. Energy-Efficient Mechanisms for Managing On-Chip Storage in

Throughput Processors. PhD thesis, The University of Texas at Austin, May. 2012.

[25] Jie Gu and Chris H. Kim. Multi-story Power Delivery for Supply Noise Reduction and

Low Voltage Operation. In Proceedings of the 2005 International Symposium on Low

Power Electronics and Design, ISLPED ’05, pages 192–197, New York, NY, USA, 2005.

ACM.

[26] Amir Hasanbegovic and Snorre Aunet. Low-power Subthreshold to Above Threshold

Level Shifters in 90Nm and 65Nm Process. volume 35, pages 1–9, Amsterdam, The

Netherlands, The Netherlands, Feb. 2011. Elsevier Science Publishers B. V.

[27] Sunpyo Hong and Hyesoon Kim. An integrated GPU power and performance model.

SIGARCH Comput. Archit. News, 38(3):280–289, Jun. 2010.

[28] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas. Cache decomposition for energy-efficient

processors. In International Symposium on Low Power Electronics and Design, Aug 2001.

[29] Michael Huang, Jose Renau, Seung-Moon Yoo, and Josep Torrellas. A Framework for

Dynamic Energy Efficiency and Temperature Management. In Proceedings of the 33rd

Annual ACM/IEEE International Symposium on Microarchitecture, MICRO 33, pages

202–213, New York, NY, USA, 2000. ACM.

[30] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, and Margaret

Martonosi. An analysis of efficient multi-core global power management policies: Max-

102

imizing performance for a given power budget. In Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 39, pages 347–358,

2006.

[31] Renatas Jakushokas, Mikhail Popovich, Andrey V. Mezhiba, Seluk Kse, and Eby G. Fried-

man. Power Distribution Networks with On-Chip Decoupling Capacitors. Springer Pub-

lishing Company, Incorporated, 2nd edition, 2010.

[32] Tejas S. Joshi and Priya M. Ravale Nerkar. A Wide Range Level Shifter using a Self

Biased Cascode Current Mirror With PTL-based Buffer. IJCA Proceedings on National

Conference on Emerging Trends in Advanced Communication Technologies, NCETACT

2015(5):8–12, June 2015.

[33] Ehsan K. Ardestani, Elnaz Ebrahimi, Gabriel Southern, and Jose Renau. Thermal-aware

Sampling in Architectural Simulation. In Proceedings of the 2012 ACM/IEEE Interna-

tional Symposium on Low Power Electronics and Design, ISLPED ’12, pages 33–38, New

York, NY, USA, 2012. ACM.

[34] Ehsan K. Ardestani, Francisco J. Mesa-Martinez, Gabriel Southern, Elnaz Ebrahimi, and

Jose Renau. Sampling in thermal simulation of processors: Measurement, characteriza-

tion, and evaluation. Transaction on Computer Aided Design of Integrated Circuits and

Systems (TCAD), 2013.

[35] Ehsan K. Ardestani and Jose Renau. ESESC: A Fast Multicore Simulator Using Time-

Based Sampling. In International Symposium on High Performance Computer Architec-

ture, HPCA’19, 2013.

103

[36] Svilen Kanev. Motivating Software-Driven Current Balancing in Flexible Voltage-Stacked

Multicore Processors. PhD thesis, Harvard University Cambridge, Massachusetts, 2012.

[37] Eric Karl, Dennis Sylvester, and D. Blaauw. Timing Error Correction Techniques for

Voltage-Scalable On-Chip Memories. In Circuits and Systems (ISCAS), 2005 IEEE Inter-

national Symposium on, volume 4, pages 3563–3566, May 2005.

[38] Ulya R. Karpuzcu, Nam Sung Kim, and Josep Torrellas. Coping with Parametric Variation

at Near-Threshold Voltages. IEEE Micro, 33(4):6–14, July 2013.

[39] Ulya R. Karpuzcu, Krishna B. Kolluru, Nam Sung Kim, and Josep Torrellas. VARIUS-

NTV: A microarchitectural model to capture the increased sensitivity of manycores to pro-

cess variations at near-threshold voltages. In Dependable Systems and Networks (DSN),

2012 42nd Annual IEEE/IFIP International Conference on, pages 1–11. IEEE, 2012.

[40] Ulya R. Karpuzcu, Abhishek Sinkar, Nam Sung Kim, and Torrellas Josep. EnergySmart:

Toward Energy-Efficient Many cores for Near-Threshold Computing. In 2013 IEEE 19th

International Symposium on High Performance Computer Architecture (HPCA), pages

542–553. IEEE Computer Society, Feb 2013.

[41] Sourabh Khandelwal, Juan Duarte, Navid Paydavosi, Darsen Lu, Chung-Hsun Lin, Mo-

han, Shijing Yao, Tanvir Morshed, Ali Niknejad, and Chenming Hu. BSIM-CMG 108.0.0

Multi-Gate MOSFET Compact Model. 2014.

[42] S. Karen Khatamifard, Michael Resch, Nam Sung Kim, and Ulya R. Karpuzcu. VARIUS-

TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel

104

Switches. 2016 IEEE 34th International Conference on Computer Design (ICCD),

00:654–661, 2016.

[43] Mahmood Khayatzadeh, Mehdi Saligane, Jingcheng Wang, Massimo Alioto, David

Blaauw, and Dennis Sylvester. 17.3 A Reconfigurable Dual-Port Memory with Error De-

tection and Correction in 28nm FDSOI. In 2016 IEEE International Solid-State Circuits

Conference (ISSCC), pages 310–312, Jan 2016.

[44] Wonyoung Kim, David Brooks, and Gu-Yeon Wei. A fully-integrated 3-level dc/dc con-

verter for nanosecond-scale dvs with fast shunt regulation. In Solid-State Circuits Confer-

ence Digest of Technical Papers (ISSCC), 2011 IEEE International, pages 268–270. IEEE,

2011.

[45] Wonyoung Kim, Meeta S Gupta, Gu-Yeon Wei, and David Brooks. System Level Anal-

ysis of Fast, per-Core DVFS Using on-Chip Switching Regulators. In 2008 IEEE 14th

International Symposium on High Performance Computer Architecture, pages 123–134,

Feb 2008.

[46] Kyoung-Hoi Koo, Jin-Ho Seo, Myeong-Lyong Ko, and Jae-Whui Kim. A new level-up

shifter for high speed and wide range interface in ultra deep sub-micron. In 2005 IEEE

International Symposium on Circuits and Systems, pages 1063–1065 Vol. 2, May 2005.

[47] J. P. Kulkarni, C. Tokunaga, P. A. Aseron, T. Nguyen, C. Augustine, J. W. Tschanz, and

V. De. A 409 GOPS/W Adaptive and Resilient Domino Register File in 22 nm Tri-Gate

CMOS Featuring In-Situ Timing Margin and Error Detection for Tolerance to Within-Die

105

Variation, Voltage Droop, Temperature and Aging. IEEE Journal of Solid-State Circuits,

51(1):117–129, 2016.

[48] Manoj Kumar, Sandeep K. Arya, and Sujata Pandey. Level Shifter Design for Low Power

Applications. Computer Science & Information Technology, International Journal of,

2(5), Oct. 2010.

[49] Volkan Kursun and Eby G Friedman. Multi-voltage CMOS circuit design. John Wiley &

Sons, 2006.

[50] Jungseob Lee, Paritosh P. Ajgaonkar, and Nam Sung Kim. Analyzing throughput of GPG-

PUs exploiting within-die core-to-core frequency variation. In Performance Analysis of

Systems and Software (ISPASS), 2011 IEEE International Symposium on, pages 237–246.

IEEE, 2011.

[51] Jungseob Lee, Vijay Sathisha, Michael Schulte, Katherine Compton, and Nam Sung Kim.

Improving throughput of power-constrained gpus using dynamic voltage/frequency and

core scaling. In Proceedings of the 2011 International Conference on Parallel Architec-

tures and Compilation Techniques, PACT ’11, pages 111–120, 2011.

[52] Sae Kyu Lee, David Brooks, and Gu-Yeon Wei. Evaluation of Voltage Stacking for Near-

threshold Multicore Computing. In Proceedings of the 2012 ACM/IEEE International

Symposium on Low Power Electronics and Design, ISLPED ’12, pages 373–378, New

York, NY, USA, 2012. ACM.

[53] Sae Kyu Lee, Tao Tong, Xuan Zhang, D. Brooks, and Gu-Yeon Wei. A 16-Core Voltage-

106

Stacked System with an Integrated Switched-Capacitor DC-DC Converter. In VLSI Cir-

cuits (VLSI Circuits), 2015 Symposium on, pages C318–C319, June 2015.

[54] Jingwen Leng, Yazhou Zu, and Vijay Janapa Reddi. GPU Voltage Noise: Characteriza-

tion and Hierarchical Smoothing of Spatial and Temporal Voltage Noise Interference in

GPU Architectures. In 2015 IEEE 21st International Symposium on High Performance

Computer Architecture (HPCA), pages 161–173, Feb 2015.

[55] Jingwen Leng, Yazhou Zu, Minsoo Rhu, Meeta Gupta, and Vijay Janapa Reddi. Gpuvolt:

Modeling and characterizing voltage noise in gpu architectures. In Proceedings of the

2014 International Symposium on Low Power Electronics and Design, ISLPED ’14, pages

141–146, New York, NY, USA, 2014. ACM.

[56] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and

Norman P. Jouppi. McPAT: an integrated power, area, and timing modeling framework for

multicore and manycore architectures. In Microarchitecture. 42nd IEEE/ACM Int’l Symp.

on, pages 469–480. IEEE, 2009.

[57] Jan Lucas, Sohan Lal, Michael Andersch, Alvarez-Mesa Mauricio, and Ben Juurlink. How

a Single Chip Causes Massive Power Bills GPUSimPow: A GPGPU Power Simulator. In

IEEE International Symposium on Performance Analysis of Systems and Software, 2013.

[58] Shien-Chun Luo, Ching-Ji Huang, and Yuan-Hua Chu. A Wide-Range Level Shifter Using

a Modified Wilson Current Mirror Hybrid Buffer. IEEE Transactions on Circuits and

Systems I: Regular Papers, 61(6):1656–1665, June 2014.

[59] Michael J. Lyons and David Brooks. The design of a bloom filter hardware accelerator for

107

ultra low power systems. In Proceedings of the 14th ACM/IEEE international symposium

on Low power electronics and design, ISLPED ’09, pages 371–376, 2009.

[60] Baker Mohammad, Percy Dadabhoy, Ken Lin, and Paul Bassett. Comparative study of

current mode and voltage mode Sense Amplifier used for 28nm SRAM. In Microelectron-

ics (ICM), 2012 24th International Conference on, pages 1–6, Dec. 2012.

[61] Sani R. Nassif. Power grid analysis benchmarks. In Design Automation Conference, 2008.

ASPDAC 2008. Asia and South Pacific, pages 376–381, 2008.

[62] Adam Neale and Manoj Sachdev. Digitally Programmable SRAM Timing for Nano-scale

Technologies. In Quality Electronic Design (ISQED), 2011 12th International Symposium

on, pages 1–7, March 2011.

[63] K.R. Pasupathy and Boby Bindu. Low Power, High Speed Carbon Nanotube FET Based

Level Shifters for multi-VDD Systems-On-Chips. Microelectron. J., 46(12):1269–1274,

Dec. 2015.

[64] H. Pilo, I. Arsovski, K. Batson, G. Braceras, J. Gabric, R. Houle, S. Lamphier, F. Pavlik,

A. Seferagic, Liang-Yu Chen, Shang-Bin Ko, and C. Radens. A 64Mb SRAM in 32nm

High-k Metal-gate SOI Technology with 0.7V Operation Enabled by Stability, Write-

ability and Read-ability Enhancements. In Solid-State Circuits Conference Digest of Tech-

nical Papers (ISSCC), 2011 IEEE International, pages 254–256, Feb 2011.

[65] Matthew R. Guthaus, James E. Stein, Samira Ataei, Brian Chen, Bin Wu, and Mehedi

Sarwar. OpenRAM: An Open-Source Memory Compiler. In Proceedings of the 35th

International Conference on Computer-Aided Design, page 93. ACM, 2016.

108

[66] Saravanan Rajapandian, Kenneth L. Shepard, Peter Hazucha, and Tanay Karnik. High-

voltage Power Delivery Through Charge Recycling. Solid-State Circuits, IEEE Journal

of, 41(6):1400–1410, 2006.

[67] Gabriel A Rincon-Mora and Phillip E Allen. A low-voltage, low quiescent current, low

drop-out regulator. IEEE journal of Solid-State circuits, 33(1):36–44, 1998.

[68] Bharadwaj S.Amrutur. Design and Analysis of Fast Low Power SRAMs. Technical report,

Stanford, CA, USA, 2000.

[69] Alamelu Sankaranarayanan, Ehsan K. Ardestani, Jose Luis Briz, and Jose Renau. An

energy efficient gpgpu memory hierarchy with tiny incoherent caches. In International

Symposium on Low-Power Electronics and Design, Beijing, China, Sept. 2013.

[70] Sarangi R. Sarangi, Brian Greskamp, Radu Teodorescu, Jun Nakano, Abhishek Tiwari,

and Josep Torrellas. VARIUS: A model of process variation and resulting timing errors

for microarchitects. Semiconductor Manufacturing, IEEE Transactions on, 21(1):3–13,

2008.

[71] Tanmay Shah. FabMem: A Multiported RAM and CAM Compiler for Superscalar Design

Space Exploration. Master’s thesis, North Carolina State University, 2010.

[72] E. Sperling. Power Delivery Network Challenges Grow, 2010.

[73] J. E. Stine, J. Chen, I. Castellanos, G. Sundararajan, M. Qayam, P. Kumar, J. Reming-

ton, and S. Sohoni. FreePDK v2.0: Transitioning VLSI education towards nanometer

variation-aware designs. In Microelectronic Systems Education, 2009. MSE ’09. IEEE

International Conference on, pages 100–103, July 2009.

109

[74] J.A. Stratton, C. Rodrigues, I.J. Sung, N. Obeid, L.W. Chang, N. Anssari, G.D. Liu, and

W.W. Hwu. Parboil: A Revised Benchmark Suite for Scientific and Commercial Through-

put Computing. Center for Reliable and High-Performance Computing, 2012.

[75] Infineon Technologies. High performance DrMos TDA21220, 2013.

Available on http://www.infineon.com/cms/en/product/

power/dc-dc-converter/dc-dc-integrated-power-stage/

drmos-integrated-power-stage/TDA21220/productType.html?

productType=db3a3044243b532e0124de3165386adc.

[76] Renji Thomas, Kristin Barber, Naser Sedaghati, Li Zhou, and Radu Teodorescu. Core

tunneling: Variation-aware voltage noise mitigation in gpus. In 2016 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages 151–162, March

2016.

[77] Tao Tong, Sae Kyu. Lee, Xuan Zhang, David Brooks, and Gu-Yeon Wei. A Fully In-

tegrated Reconfigurable Switched-Capacitor DC-DC Converter With Four Stacked Out-

put Channels for Voltage Stacking Applications. IEEE Journal of Solid-State Circuits,

51(9):2142–2152, Sept 2016.

[78] Rafael Trapani Possignolo, Elnaz Ebrahimi, and Jose Renau. Recycling of elastic systems

without throughput penalty, 2015. Work-in-Progress Poster presented at the 52th Annual

Design Automation Conference, DAC’15, June 7–11, San Francisco, CA.

[79] Rafael Trapani Possignolo, Elnaz Ebrahimi, Haven Skinner, and Jose Renau. Fluid-

pipelines: Elastic circuitry meets out-of-order execution.

110

http://www.infineon.com/cms/en/product/power/dc-dc-converter/dc-dc-integrated-power-stage/drmos-integrated-power-stage/TDA21220/productType.html?productType=db3a3044243b532e0124de3165386adc
http://www.infineon.com/cms/en/product/power/dc-dc-converter/dc-dc-integrated-power-stage/drmos-integrated-power-stage/TDA21220/productType.html?productType=db3a3044243b532e0124de3165386adc
http://www.infineon.com/cms/en/product/power/dc-dc-converter/dc-dc-integrated-power-stage/drmos-integrated-power-stage/TDA21220/productType.html?productType=db3a3044243b532e0124de3165386adc
http://www.infineon.com/cms/en/product/power/dc-dc-converter/dc-dc-integrated-power-stage/drmos-integrated-power-stage/TDA21220/productType.html?productType=db3a3044243b532e0124de3165386adc

[80] Rafael Trapani Possignolo, Elnaz Ebrahimi, Haven Skinner, and Jose Renau. Fluid-

Pipelines: Elastic circuitry without throughput penalty. In Logic Synthesis (IWLS), Pro-

ceedings of the 2016 International Workshop on, Jun 2016.

[81] J.T. Trattles, Anthony G. O’NEILL, and Barrie C. Mecrow. Three-dimensional finite-

element investigation of current crowding and peak temperatures in VLSI multilevel in-

terconnections. IEEE transactions on electron devices, 40(7):1344–1347, 1993.

[82] Mudit Bhargava Xin Li Ken Mai Umut Arslan, Mark P. McCartney and Lawrence T.

Pileggi. Variation-tolerant SRAM Sense-amplifier Timing Using Configurable Replica

Bitlines. In Custom Integrated Circuits Conference, 2008. CICC 2008. IEEE, pages 415–

418, September 2008.

[83] K.R. Viveka and Bharadwaj S. Amrutur. Digitally Controlled Variation Tolerant Tim-

ing Generation Technique for SRAM Sense Amplifiers. In Quality Electronic Design

(ASQED), 2013 5th Asia Symposium on, pages 233–239, August 2013.

[84] H Clement Wann, Chenming Hu, Kenji Noda, Dennis Sinitsky, Fariborz Assaderaghi, and

Jeff Bokor. Channel doping engineering of mosfet with adaptable threshold voltage using

body effect for low voltage and low power applications.

[85] Yang Yang and Niraj K. Jha. FinPrin: FinFET Logic Circuit Analysis and Optimiza-

tion Under PVT Variations. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 22(12):2462–2475, Dec 2014.

[86] Bo Zhai, David Blaauw, Dennis Sylvester, and Krisztian Flautner. Theoretical and Prac-

111

tical Limits of Dynamic Voltage Scaling. In Proceedings of the 41st Annual Design Au-

tomation Conference, DAC ’04, pages 868–873, New York, NY, USA, 2004.

[87] Yong Zhan and Sachin S Sapatnekar. Automated module assignment in stacked-vdd de-

signs for high-efficiency power delivery. ACM Journal on Emerging Technologies in Com-

puting Systems (JETC), 4(4):18, 2008.

[88] Qixiang Zhang, Liangzhen Lai, Mark Gottscho, and Puneet Gupta. Multi-story power

distribution networks for GPUs. In Design, Automation, and Test in Europe (DATE),

Proceedings of, Mar 2016.

[89] Jishen Zhao, Guangyu Sun, Gabriel H. Loh, and Yuan Xie. Energy-efficient gpu design

with reconfigurable in-package graphics memory. In Proceedings of the 2012 ACM/IEEE

international symposium on Low power electronics and design, ISLPED ’12, pages 403–

408, 2012.

[90] Wei Zhao and Yu Cao. New generation of predictive technology model for sub-45nm early

design exploration. Electron Devices, IEEE Transactions on, 53(11):2816–2823, 2006.

[91] Jun Zhou, Chao Wang, Xin Liu, and Minkyu Je. Fast and Energy-efficient Low-voltage

Level Shifters. Microelectron. J., 46(1):75–80, Jan. 2015.

112

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Level Shifters for Voltage Stacked Architectures
	Introduction
	Overview of Level Shifter designs
	Capacitive-Coupling-based (Conventional)
	Two-Stage Cross-Coupled (TSCC)
	Wilson Current Mirror (WCM)
	Stacked WCM
	Tong
	Modified Tong

	Characterization
	Transistor Sizing
	PVT Variation Effect

	Conclusion

	Voltage Stacking in SRAMs
	Introduction
	Related Work
	SRAM Stacking Model
	Setup
	Evaluation
	Conclusion

	GPU NTC Process Variation Compensation with Voltage Stacking
	Introduction
	Related Work
	GPU Stacking
	Process Variation
	High Level Idea of Process Variation Compensation
	Detailed Analysis of Process Variation Compensation with Voltage Stacking
	General Purpose GPU
	Process Variation Model
	Which Lanes to Stack?
	Divergence and Extreme Conditions
	Final Design

	Experimental Setup
	Process Variation Modeling
	Simulation Framework
	Power Delivery Network

	Near Threshold Computing and Baseline Choice
	Power-Performance Trade-off
	GPU Sizing for NTC

	Evaluation
	Main Results of GPU Stacking on NTC
	Load Mismatch
	Stacking FinFETs vs. Planar CMOS
	Lateral Current
	GPU stacking Practicality Issues
	Other advantages of GPU stacking

	Conclusion

	Timing Speculative SRAM
	Introduction
	Related Work
	Time Speculative SRAM
	Protecting from Read Time Failures
	Protecting from Incorrect Writes
	Sense Amplifier

	Experiment Setup
	Tool Flow

	Evaluation
	Energy Efficiency
	Area
	Process Variation Effects

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

