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Rainfall profile retrieval through spaceborne rain 
radars utilising a sea surface NRCS model 

F. Capo I i no 
L.Facheris 
D.Giuli 
F. Sottili 

Indexing terms: EM models, Sea surface, Rainfall rate vertical profile, Normalised radar cross-section 

Abstract: Vertical rainfall profile retrieval over 
the sea surface, based on reflectivity data 
collected by spaceborne rain radars, can be 
improved through existing algorithms that exploit 
estimates of the power backscattered from that 
surface. However, prediction errors of the sea 
surface normalised radar cross-section (NRCS) 
may significantly affect the performance of such 
algorithms. This is the first point highlighted in 
the paper, referring to the K, band. 
Consequently, the authors propose the utilisation 
of an electromagnetic model able to predict with 
acceptable accuracy the sea surface NRCS under 
the joint effect of wind- and rainfall-induced 
corrugation. The core of the paper is the 
description of an improved algorithm for rainfall 
rate vertical profile retrieval over the sea surface 
in the case of a single frequency, nadir-looking 
radars and the discussion of some simulation 
results. 

1 Introduction 

Observation of rainfall over the sea/ocean surface is 
highly relevant for understanding the earth’s climate 
and its changes. Therefore, spaceborne radars and suit- 
able data processing techniques for providing rainfall 
rate estimates over those surfaces on a regular basis, as 
can be made available through an orbiting satellite 
platform, are gaining increasing interest. Algorithms 
proposed for rainfall rate vertical profile (RRVP) 
retrieval exploit backscatter or attenuation estimates 
derived from radar measurements [I]. Attenuation- 
based algorithms cope with at least four different basic 
errors: 
(a) radar calibration errors 
(b) errors related to the uncertainty in the standard 
attenuation-reflectivity (k-Z), reflectivity-rainfall rate 
(Z-R) relationships 
(c) measurement errors of the total PIA (path- 
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integrated attenuation) related to the attenuation at the 
current range cell 
(d) errors in the estimate of the surface reflectivity 
(when exploited). 
Included in c is the heavy (and mostly unpredictable) 
additional attenuation due to the possible presence of 
the melting layer of precipitation [2, 31. 

Several single-frequency algorithms were proposed to 
reduce the effects of some of the aforementioned errors 
[4]; surface referenced techniques exploit estimates of 
the power backscattered by the sea surface as addi- 
tional reference information to solve the intrinsic ambi- 
guity of the RRVP problem [I]. However, they need 
sea NRCS estimates that, in practice, are quite rough 
[3]. It is thus reasonably expected that a well grounded 
prediction of the backscattering behaviour of the sea 
surface, accounting for the joint perturbations of wind 
and rainfall, can be usefully exploited to improve per- 
formance of existing RRVP retrieval algorithms of this 
kind. 

In this paper we focus on the Ku band (commonly 
utilised by spaceborne weather radars) and refer to the 
EM model described in the companion paper [SI, where 
the relevance of rainfall corrugation at that band is 
highlighted. We consider the kZS algorithm [6], one of 
the most effective RRVP retrieval methods. Based on 
the same numerical simulation setup used in [6], we 
show that expected variations of NRCS (also those 
that the EM model ascribes to rainfall) may cause sig- 
nificant errors. To overcome this problem we discuss a 
possible upgrade of the kZS algorithm that exploits the 
EM model prediction to improve the accuracy of 
RRVP retrieval. 

2 

We recall here for convenience the basic principle of 
the kZS algorithm, proposed by Marzoug and Amay- 
enc to estimate RRVPs with a nadir-looking radar 
operating at a wavelength attenuated by rainfall [6]. 
The algorithm exploits the ratio between the mean 
power P(r) backscattered from a generic rain-filled 
radar resolution cell ranging r and the mean power 
P,(r,) from the resolution cell including the sea surface 
ranging rr. The limiting assumption of the nadir inci- 
dence angle is needed to ensure that the surface return 
dominates the total return from the latter cell, thus 
avoiding any significant contamination of the former 
cell by the surface return, even through antenna 

Principle of the kZS algorithm 
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sidelobes. Analytically P(r) is proportional to the rain 
reflectivity factor Z(r) and to the attenuation factor 
along the path 

and Px) is proportional to the sea surface NRCS 
(referred to as 0,) 

The overbar indicates mean value, r and r, are in km, 
k(s) is the specific attenuation coefficient (dB/km) at 
range s for propagation through rainfall, while C and 
C, are the radar constants in the volume and surface 
backscatter cases, respectively [3, 61. Assuming that 
attenuation is due exclusively to rainfall, 2 and k are 
tied by a standard empirical relationship 

Z(r )  = a(.) . @ ( r )  ( 3 )  
where a and depend on frequency and drop size dis- 
tribution (DSD) [2]. /3 is supposed to be constant and 
known along the path, while a is considered variable 
with rangedntrducing the Z-k relationship in eqn. 1, 
the ratio P(r) / P,(r,) gives 

where 

With respect to 

eqn. 4 is a first-order differential equation of the kind 
0.46 '9 " )  - - --WO ( r )  

dr P 
Its solution 

implicitly provides k(r) 

The RRVP R(r) is then obtained through a standard 
frequency-dependent relationship of the kind R(r) = 
AkB(r). 

Eqn. 6 shows that kZS, exploiting the power ratio 
instead of the absolute power, takes the sea surface as 
the starting point for the integration of radar measure- 
ments. Besides avoiding errors due to absolute system 
calibration errors, rainfall rate at a given altitude is 
thus obtained by integrating power estimates related to 
radar cells below that altitude, and is independent of 
precipitation above. Therefore, bias errors due to ice 
particles melting in the melting layer can never occur. 

Finally, wo(r) increases with increasing attenuation 
between the surface and the cell ranging r .  This causes 
a lower sensitivity to a,. Instead, when attenuation is 
low, sensitivity to the accuracy of a, becomes relevant 
161. 
234 

3 
factor for the kZS algorithm 

Sea NRCS prediction accuracy as the limiting 

A basic problem is that the actual NRCS a, of the sea 
surface is a priori unknown, while it obviously should 
be well approximated before being used by the kZS 
algorithm. The 'guess' value of 0, will be hereafter 
referred to as 0,. In general, a systematic error 0, 

(which may also take negative values) is introduced, 
depending on the way oo is determined 

U s  = g o  $. U B  

To verify the effectiveness of the kZS algorithm, Mar- 
zoug and Amayenc simulated spaceborne radar meas- 
urements based on the acquisition of 60 independent 
echo samples [4, 61. Assuming a 'true' RRVP, they 
reconstructed 100 RRVPs through the kZS algorithm, 
accounting for all errors mentioned in Section 1. In the 
Appendix (Section 9.1) we report the error model they 
utilised. Doing that, they assumed a climatological 
fixed value oo = 12dB at 13.75GHz, which can be 
approximately considered as the mean value of the sea 
NRCS with respect to wind speed variations [7]. 

Indeed, resorting to such a fixed 'guess' is the only 
solution when no other data are available but space- 
borne rain radar measurements. However, remarkable 
variations of a, occur with wind velocity. At the I&, 
band, the EM model described in the companion paper 
[5] shows that the intensity of rainfall on the sea sur- 
face also plays an important role. Fig. 6 of that paper 
reports the sea surface NRCS against rainfall rate R 
for some wind velocities at nadir incidence. If oo does 
not account for such variations, 0, may directly and 
heavily affect the RRVP retrieval. The same Figure 
shows that 0, = 3dB can be reasonably considered as a 
potential (not maximum) value of the absolute bias 
error, suitable to evaluate performance degradation of 
the kZS algorithm. 

(7)  

R,mm/h 
Fig. 1 Simulated reconstruction of a 'true' rainfall pro de by means of 
the kZS algorithm assuming a 'true' NRCS os = 9 dB a n L  guess value 00 
= 12 dB 
Mean value and standard deviation of the 100 reconstructed profiles are plot- 
ted for :ach range cell 
~ true' orofile -.- estimated mean value 

f = 13.75GH.z 
estimated standard deviation ...... 

For instance, Fig. 1 shows the error made utilising 
the kZS algorithm with a particular 'true' profile, for 
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os = 9dB and oo = 12dB, and a rainfall rate of 20mm/ 
h at the sea surface level. Simulations were carried out 
following the method mentioned above. The ‘true’ rain- 
fall profile is constant up to 4.5km altitude, then 
decreases with a corresponding reflectivity decrease rate 
of 5dB/km. Mean value and standard deviation of the 
100 independent RRVP reconstructions are plotted for 
32 range cells (range resolution: 250m), up to 8km alti- 
tude. The relative uncertainty (error) on R, defined as 

f l R  

R 
E R  = = 

where R and oR are mean value and standard devia- 
tion of the estimated rainfall rate, respectively, falls 
around 34% in the lower region. A still increased error 
is expected when rainfall effects are not accounted for 
by 0,; according to Fig. 6 of the companion paper [5], 
for a maximum expected R = l00mm/h, the maximum 
NRCS bias due to rainfall is about 3dB, almost inde- 
pendent of wind velocity. 

4 
exploiting EM modelling: ‘two cells’ method 

At nadir incidence and for a given surface wind, the 
EM model described in [5] provides the sea NRCS as a 
function of rainfall. This is exploited by the simple 
method introduced here to jointly predict both NRCS 
and rainfall rate over the sea surface. We call it the 
‘two cells’ method, since it accounts only for echoes 
from a couple of adjacent radar range cells, namely 
those closest to the sea surface. For simplicity, suppose 
that range sidelobes are sufficiently low, so that inter- 
ference among contiguous range cells can be neglected. 
Suppose also that the contribution of the sea surface to 
the first cell return at range r, is prevailing over that 
due to rainfall, and that the rainfall rate is the same in 
the two range cells. 

and 
7 the mean powers related to the first cell (including 
the sea surface) and second cell (centred at range r) ,  
respectively, and with A the total PIA at the second 
cell, we get, under the aforementioned hypotheses 

Estimating rainfall rate vertical profiles 

Denoting with Ar the range resolution, with 

and 

“ ’ as(R)  . exp(-0.46Ark(R))A P, = (10) 
- 

T,2 

where Z(R) and os@) express, respectively, the depend- 
ence of the cell reflectivity and of the sea NRCS on the 
rainfall rate R. Being r/r ,  - 1 

- 

- (11) 
P, - C, . a,(R) . exp(-0.46Ark(R)) 

- - 
P C .  Z ( R )  

Exploiting eqn. 3, we obtain 

atia(R) . exp (-0.469k(R)) ^ , _  

To estimate the rainfall rate in the proximity of the sea 
surface, f (R)  in eqn. 12 c g  be inverted with respect to 
R, once estimates of P,, P and a (r,), as well as of the 
radar constants C and Cs are available. However, the 
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actual relationship a, (R) is not known. The EM model 
is thus exploited to provide the ‘guess’ law oo(R) which 
is introduced in eqn. 12 in place of oo(R). Notice that 
one single solution is found by invertingf(R), since it is 
a monotonically decreasing function. In fact, k(R) 
(given by the second eqn. 19) increases and oo(R) 
decreases with increasing R. 

The simple principle described can be exploited by 
algorithms like kZS, that rely on the sea surface 
NRCS, at frequency bands, such as the K, band, where 
rainfall dependence cannot be neglected. Indeed, the 
estimate may suffer from the aforementioned approxi- 
mations. Interference problems between surface and 
volumetric echoes deriving from echo pulse spreading 
induced by beamwidth, rough surface and limited sys- 
tem bandwidth could be overcome by applying the ‘two 
cells’ method to a couple of non adjacent range cells. 
Obviously, this requires the stronger assumption of 
constant rainfall in a higher column over the sea sur- 
face. However, the alternative would be to tolerate a 
priori a residual NRCS bias in the standard kZS algo- 
rithm. 

Summarising, the following steps should be followed 
for RRVP retrieval through the new proposed method: 
(a)  utilise a measured, estimated or predicted value of 
wind velocity over the sea surface 
(b)  for that wind velocity, select the theoretical relation- 
ship between rainfall rate R and surface NRCS 
(e)  utilise the ‘two cells’ method to provide the rainfall 
rate estimate over the sea surface, jointly with the 
related NRCS estimate, 
(4 utilise the NRCS estimate in the standard kZS algo- 
rithm for RRVP retrieval. 

5 Numerical simulations: some considerations 
and results 

We present here the results of some simulations carried 
out to evaluate the performance of the RRVP retrieval 
based on the described method and referring to 
13.75GHz (the frequency of the TRMM radar [3]). As 
a matter of fact several uncertainties affect the intro- 
duced 2-k, 2-R and q ( R )  relationships, and simula- 
tions need to consider these. Following the example of 
[6], to compare the simulated RRVP reconstructions 
with some ‘truth’ reference, we used as deterministic 
references the relationships among R, Z and k in 
eqn. 19 of the Appendix (Section 9.1, eqn. 19), with 
the values suggested in [4], namely E = 0.66 lo6, b = 
1.5, F = 0.309 and d = 1.156. Integration of 60 inde- 
pendent echo samples for each radar range cell was 
supposed. Furthermore, we assumed that the ‘true’ law 
a,(R) coincided with oo(R) as provided by the EM 
model. Then, random error parameters (see the Appen- 
dix (Section 9.3)) were used to simulate uncertainties 
related to those relationships and to radar power esti- 
mates. The result is a modified version of eqn. 12, 
namely eqn. 27. 

A separate discussion is opportune about uncertain- 
ties affecting the sea NRCS estimate. These were mod- 
elled, after [6], through the random variable o, defined 
as follows: 

am = 01 . f lo  

where ol is the uncertainty in the ‘guess’ value of 
eqn. 7. As in [6], a, was taken as a Gamma-distributed 
r.v. with unitary mean value and 0.5 standard devia- 

(13) 
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tion; thus the NRCS relative uncertainty E, defined 
analogously to of eqn. 8, is 50%. 

Notice now that, still in [6], the authors observed 
that ‘possible systematic changes in 0, due to the effects 
of raindrops impinging on the ocean surface or to the 
effects of surface winds’ had been neglected. Therefore, 
through ol they modelled all possible uncertainties 
around the fixed guess oo, including those due to wind 
and rainfall. Our formulation of the sea NRCS, which 
does account for both corrugations due to wind and 
rainfall, may indeed be affected by EM model approxi- 
mations related to height and slope distributions, and 
to the wind and rainfall corrugation spectra, as dis- 
cussed in the companion paper [5]. However, the new 
model-based approach leads to the following observa- 
tions, with direct consequences for the interpretation of 
the simulation results: 
(a)  The aforementioned hypothesis q(R) = q ( R )  
(implying the assumption 0, = 0 in the simulations) is 
consistent with: (i) the evidence that wind and rainfall 
effects are primary causes of NRCS bias errors at the 
K, band; and (ii) the expectation that the residual bias 
error is lower, on average, than that made adopting an 
a priovi fixed guess. Consequently, the average bias 
error is neglected as a second-order effect, and model- 
ling the other NRCS discrepancies and approximations 
is left to q. 
(b) Our proposed method requires a wind velocity esti- 
mate; a relative uncertainty E, on such an estimate, 
defined analogously to and E,, generates an uncer- 
tainty on the ‘guess’ law ao(R), which in all likelihood 
dominates that due to EM model approximations. For 
this reason, in our simulations we kept E, = 50% as in 
[6]. In any case, the example of Fig. 2 shows that the 
proposed method is a valid alternative. The perform- 
ances of (a)  the ‘standard’ kZS algorithm and (b) our 
model-based method are compared through the follow- 
ing parameter: 

120 

8” 
F 60-  30 

40 - 
40 

7 
O b  10 20 30 40 50 

wind speed relative uncertainty %,% 

Fig2 
to that o f  the kZS alzorithm 

Performance of the proposed RRVP retrieval method compared 

IS plotfed against t h i  wind speed relative uncertainty, wmd velocity 1s 1 3 d s  
at  height 19 5m 
Curves refer to different values of E, (in%) In the kZS case, a fixed E, = 50% 
was assumed 

R,mmlh 
Fi .3 Mean value and standard deviation curves o the ‘estimated’ rain- 
f a  lyrate R,,, (’two cells’ method) against ‘true’ rainfaimte R at sea level 
Wind velocity is 4 32mk at height 19 5m, f = 13 75GHz 
_ _ - _  exact value 
~ estimated mean value 

estimated standard devlabon 

To simulate RRVP retrieval through our model- 
based method, we first considered ‘true’ rainfall profiles 
like that of Fig. 1. Fig. 4 reports the m 
standard deviation of 100 independent 
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structions for R = lOmm/s at sea level and v, = 4.32“ 
s. Fig. 5 shows analogous results for R = 5Ommih. In 
both cases, the relative error is comparable at all alti- 
tudes. Fig. 6, instead, was obtained for v, = 2Qm/s and 
R = lOmm/h. Comparing it with Fig. 4, notice that the 
remarkable difference in wind velocity does not influ- 
ence the accuracy of profile retrieval (assuming the 
same E,). 

I I I 
ob 25 50 75 I 

R,mm/h 
Fig. 4 Rainjallprofile obtained through the proposed scheme at K ,  band 
Rainfall rate at sea level: lOmm/h; wind velocity: 4 .32ds at height 19.5m; f = 
13.75GHz 
Mean value and standard deviation estimated over 100 runs are plotted 

~ true’ velocity -.- estimated mean value 
. . . . . . . . estimated standard deviation 

“J 

Through RRVP retrieval, evaporation processes or 
increase of rainfall rate in proximity to the sea surface 
can be detected. In these cases, reflectivity gradients 
occur immediately over the sea surface, that may affect 
the rainfall profile retrieval. Therefore, in other simula- 
tions we employed a different type of profile, with a 
gradient below 4.5km altitude corresponding to a 
reflectivity loss rate of ldBZ/km, and a rainfall rate of 
50mm/h at that altitude. Fig. 7 shows the results for 
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for v, = 4.3mis and a positive reflectivity gradient. 
Reconstruction performance is still good in terms of 
mean values, and eR is comparable to that of previous 
profiles. Similar results were obtained for a negative 
gradient. 

0 

Fig. 6 
Rainfalirate at sea level: 10mmih; f = 13.75GHz; v, = 20mis 
~ true’ velocity -.- estimated mean value 
. . . . . . . . 

RamfalIproJile obtained through the proposed scheme at K,, band 

estimated standard deviation 

R,mm/h 
Fig. 7 
Rainfall rate at the referenced altitude of 4.5km: IOmm/h, wind velocity: 
4.32mis at height 19.5m; f = 13.75GHz 
Mean value and standard deviation estimated over 100 independent runs are 
plotted 
~ ‘true’ velocity -.- estimated mean value 
. . . . . . . . 

Rainfall profile obtained through the proposed scheme 

estimated standard deviation 

6 Conclusions 

The problem of an accurate prediction of the power 
backscattered at nadir incidence by the sea surface is 
highly relevant to enhance the potentiality of the exist- 
ing surface referenced RRVP retrieval algorithms, like 
kZS, for spaceborne weather radars. We highlighted 
that a direct use of kZS with a ‘blind’ guess of the sea 
NRCS (which remains the only solution when no infor- 
mation is available), may cause relevant errors. A 
chance to increase the reliability of RRVP retrieval 
comes from predictions based on EM models, like that 
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proposed in the companion paper [5]. We pointed out 
that this is particularly important at the K, band, since 
rainfall intensity remarkably modifies the NRCS that 
would be predicted accounting for wind only. A real 
physical limitation of the adopted EM model is that it 
does not account for an increase of the NRCS at nadir 
incidence due to damping of sea waves [9], as resulting 
from heavy rainfall and associated vertical winds. This 
problem is partially attenuated by a reduced sensitivity 
of the kZS algorithm to the NRCS estimate errors in 
the case of heavy rainfall. 

We proposed a method to integrate the NRCS pre- 
diction with the kZS retrieval, jointly providing the 
estimated rainfall rate at sea level; improved perform- 
ance was demonstrated through simulations, carried 
out at 13.75 GHz. Of course, the foreseeable improve- 
ment is real, provided that some additional information 
allows us to overcome the bare hypothesis of a generic 
‘standard’ average value of sea NRCS. Our proposed 
approach requires that wind velocity in the area of 
interest is available, given by either measurements or 
models, or joint exploitation of both of them. Addi- 
tional measurements should refer to the same or a con- 
tiguous area, provided by an independent sensor, such 
as a scatterometer. 

An interesting perspective for future developments 
could be to utilise two frequency bands, e.g. C and K, 
bands, for measurements over the same area. Actually, 
in [lo] we showed that sea NRCS is not influenced sig- 
nificantly by rainfall at the C band. Exploiting the 
NRCS estimate at the lower frequency, the wind veloc- 
ity could be inferred and then integrated with the 
higher-frequency measurements and the NRCS predic- 
tion to estimate the rainfall rate. 
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9 Appendix 

9.7 Error model 
The error model recalled here is that utilised in [6]. 
eqns. 5 and 11 exploit a power ratio; assuming the 
same radar calibration error for all the cells, it can be 
neglected [6]. 

The Marshall-Palmer model [2] is considered as 
‘truth’ DSD reference 

N ( D )  = No exp(-AD) No = 0.8 x lo7 m-‘ (15) 
Random variations of No along the propagation path 
are accounted for by the r.v. Nom 

NO, = U N O  (16) 
where Y is a unitary mean value r.v. following a gamma 
distribution, with 0.5 standard deviation. The ‘meas- 
ured’ powers P, and Ps,, from cells where rainfall 
echo and surface echo is prevailing, respectively, are 
related to the expected powers as follows: 

P, = 6,P and Ps, = 6sPs (17) 
where 6,. and Ss are r.v. accounting for estimation 
errors, with the following pdf [3, 61: 

p ( z )  = N p ~ ~ ~ - ~ e x p ( - N i z ) / ( N ,  - l)! (18) 
N, being the number of independent integrated sam- 
ples. 

The variability of No is considered as the only source 
of uncertainty in the Z-R, k-R and Z-k relationships. 
It follows [6] 

z = E N ; - ~ R ~  
k = FNtPdRd  

z = E F - P N , ~ - P ~ P  (19) 
where E, F, 6 ,  d depend on frequency and /3 = bld. 
Comparing the third equation of eqn. 19 with eqn. 3 
follows a = EF1-pNol-p. The uncertainty on a is 
accounted for by the r.v. a, 

where, from eqn. 16, al = v’-P. Finally, as discussed in 
Section 5,  the uncertainty in the NRCS ‘guess’ oo = 
os - 0, is modelled through ol 

a,  = ala (20) 

om = gl(gs - O B )  (21) 

9.2 Use of the error model parameters in the 
kZS algorithm simulations 
Exploiting the error model, the ‘measured’ function 
corresponding to wo(r) is 

= WO(?-) . T ( r )  
where T(r) is a random process 

and 6,(r) accounts for range variations of the mean 
power estimate errors, supposed independent from cell 
to cell. Substituting in eqn. 6, and exploiting eqn. 4, 
the ‘estimated’ attenuation factor km(r) becomes 
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/c(r)T(r) exp (7 j./c(s)cis) 
km(T)  = 

T 

1 + ? k ( s ) T ( s )  exp (y ? k ( t ) d t )  ds 

Introducing the k-R relationship, we can relate the 
‘estimated’ RRVP R,(r) to the ‘true’ reference R(r) 

T 

(24) 

Rm ( r )  

1: 

( 2 5 )  

9.3 Use of the error model parameters in the 
‘two cells‘ method simulations 
Rewriting eqn. 12 by inserting all needed error parame- 
ters, one gets the following expression, that implicitly 
defines the ‘measured’ rainfall rate R,: 

6,  . P, .  c c l a o ( ~  . e - 0 . 4 6 A ~ ~ ~ , l ~ “ ~ i  
(26) 

m - - 
6, ’ F .  c, EN;;~R& 

where p and 5 are defined in eqns. 9 and 10, respec- 
tively, and where 0, = 0 for the reasons discussed in 
Section 5. Introducing eqn. 11, posing o,(R) = q ( R )  
and exploiting again eqn. 19, one gets 
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utilised in the simulations to provide R, and, in turn, 
d R m ) .  
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