
UCLA
Recent Work

Title
Agricultural expansion induced by biofuels: Comparing predictions of market‐equilibrium 
models to historical trends

Permalink
https://escholarship.org/uc/item/1hh5m933

Author
Rajagopal, Deepak

Publication Date
2011-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1hh5m933
https://escholarship.org
http://www.cdlib.org/


 
                UNIVERSITY OF CALIFORNIA, LOS ANGELES 
 
 

 
 
 
 
 

 
 

Working Paper Series 
 
 

 
 

Agricultural expansion induced by biofuels: 
Comparing predictions of market‐equilibrium 

models to historical trends 
 

D. Rajagopal, and D. Zilberman 
 

Jan 2011 
 

WP#5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Agricultural expansion induced by biofuels: Comparing

predictions of market-equilibrium models to historical trends

D Rajagopal∗, D Zilberman†

Running head: Biofuels and land use change
Keywords: biofuel, energy, food, land, climate change

∗Institute of Environment, University of California, Los Angeles, rdeepak@ioe.ucla.edu (corresponding author)
†Department of Agricultural and Resource Economics, University of California, Berkeley

1



Abstract

Predicting global land use change (LUC) due to biofuel expansion and predicting greenhouse
gas emissions attributable to LUC are both complex. This paper has the simpler objective of
describing what the weight of historical experience in maize production during the past five
decades in the US suggests about how much gross agricultural acreage may need to expand to
accommodate higher crop demand and how this compares with predictions in the literature
on LUC due to biofuels. We disaggregate historical change in crop production in the US into
intensive and extensive margin effects and use the latter to predict a range for LUC due to
US maize ethanol mandates. Analysis of historical data suggests that while for brief periods
(2 or 3 years) acreage expansion could occur at the high rates predicted by several studies, in
the long-run net expansion is likely to be smaller than such predictions.
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1 Introduction

Driven by public policies, biofuel production, in particular maize ethanol in the US, has expanded

several fold during the past mhade (FAO, 2008, Khanna et al., 2008, De Gorter and Just, 2009).

These policies were motivated by the expectation that biofuels can simultaneously both improve

fuel security and mitigate greenhouse gas (GHG) emissions. While the impact on fuel security

(by reducing the share of imports and/or by diversifying the types and sources of fuel supply)

is not a subject of much debate, its impact on the environment is controversial. A majority of

the early literature (prior to 2008) on the environmental footprint of biofuels suggested they can

contribute to reducing GHG emissions (Farrell et al., 2006, Sheehan et al., 2000, de Carvalho,

1998). Subsequent literature however paints a complex picture. It recognizes that in globalized

world, regional or national policies can have large impacts in international markets complicating

the calculations especially for a global pollutant such as GHG. Using well-established simulation

models of economic and trade policies such as FAPRI/CARD and GTAP, this literature hypoth-

esizes that the allocation of for cropland for maize ethanol will raise world price of agricultural

commodities and thereby induce agricultural expansion, a phenomenon referred to as indirect land

use change (iLUC), which leads to GHG emissions (from clearing of above ground biomass and

from soil) previously unaccounted for in environmental lifecycle assessment of biofuels. It is also

hypothesized that when these are accounted for, biofuels, specifically maize ethanol and biodiesel

from vegetable oils are more GHG intensive than current gasoline or diesel (Searchinger et al.,

2008, O’Hare et al., 2009, Hertel et al., 2010). Although this literature emphasizes GHG emis-

sions, iLUC has implications for a broader range of environmental issues such as biodiversity, soil

fertility, air and water pollution etc. (OECD, 2008) As a consquence, major biofuel regulations

such as US Renewable Fuel Standard(RFS) (EPA, 2009), California Low Carbon Fuel Standard

(LCFS) (ARB, 2009), European Union’s Renewable Energy Directiveand UK Renewable Trans-

port Fuel Obligationrequire that policy targets be achieved using biofuels whose land use change

related GHG emissions do not outweigh the GHG benefits calculated based on the footprint of

direct supply-chain and end-use. In particular, the RFS and LCFS require that every batch of

biofuel supplied be identified with an estimate of GHG emissions due to iLUC.

Quantifying global land use change due to the biofuels is a complex task. Predicting GHG

emissions related to LUC which requires predicting changes in land management for different

categories of land in different parts of the world is another challenge. These are beyond the scope

of this paper and so it is not our objective to contribute a new improved estimate of iLUC or

its related GHG emissions. Instead, it has a simpler objective of analyzing what historical data
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on US agriculture, specifically maize production since 1961, suggests about the first part of the

problem, namely, how much agricultural acreage may need to expand to accomodate increased

crop demand for biofuel and compare this with the current literature on iLUC. Our analysis

proceeds in three steps. In the first step we disaggregate the change in agricultural production

into intensive margin (change in productivity per acre) and extensive margin (change in acreage)

effects. It is worth clarifying here, that we do not intend to identify a causal relationship between

acreage and output, but identifying a correlation. In the next step, we develop a simple one-crop,

one-region economic model of crop supply and crop demand, which we use to compute the net

change in supply due a given ethanol mandate. We show using mathematical proof why the net

change supply derived using a one-crop, one-region model is an upper-bound on the net change

in supply one will derive using a larger multi-commodity, multi-region model such as the large

partial and general equilibrium models of international trade that are employed by the existing

literature. Finally, we combine the estimate of the average extensive margin effect and the economic

model to predict LUC for US maize. We however do not derive any conclusions whatsoever about

the implications of estimates for the lifecycle GHG intensity of maize ethanol or any particular

kind of biofuel or any specific biofuel policy. To reiterate, we only aim to estimate iLUC using

an alternative approach that is not common in the current iLUC literature. We conclude by

comparing the relative advantage and disadvantages of our approach and identifying directions for

further research.
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2 Literature

While there exists a large literature on biofuels, we focus on the literature that derives quantitative

estimates of land use change to biofuels. Within this literature, the assessment of iLUC impacts

generally proceeds in two steps. The first step involves the calculation of the land requirement to

meet demand for food, feed, fiber and biofuel at any given instant in time (when there exists a

market for environmental services, say in the form of price on carbon or price on biodiversity, then

the demand for land in such markets can be taken into account in this framework). The current

approach is to use regional or national-level economic models of international trade in goods and

services to simulate the impact of policy such as biofuel mandate on variables such a prices and

consumption of finished goods, intermediate goods and primary inputs etc. Gross LUC within each

region is computed as the difference in land consumption between the biofuel policy scenario and a

counter-factual scenario. The second step then employs biophysical models of land use to compute

the change in GHG emissions from change in land use patterns within each region. The changes

in each region is aggregated to compute global iLUC and associated GHG emissions. The study

by Searchinger et al. (2008) was amongst the first to use this approach to quantify iLUC. Using

the FAPRI/CARD system of partial equilibrium (PE) models of international trade in agriculture,

they predict that 15 billion gallons of maize ethanol, which is the US Renewable Fuel Standard

target for 2015, will increase global land use by 10.8 million hectares (mha) and the associated

average GHG emissions would be 108 gCO2/MJ per unit of ethanol. This increases the lifecycle

emissions per MJ of maize ethanol by 140% (assuming a direct lifecycle value 77 gCO2/MJ as

reported in Farrell et al. (2006)) and implies that lifecycle GHG emission intensity of per MJ

of ethanol is almost twice that of gasoline from conventional crude oil. Focussing only on the

biophysical aspects of land use change, Fargione et al. (2008) predict that converting rainforests,

peatlands, savannas, or grasslands to produce food cropbased biofuels creates a biofuel carbon debt

by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that

these biofuels would provide by displacing fossil fuels. Different from Searchinger et al. who analyze

the long-run equilibrium from a large cumulative increase in ethanol, Fabiosa et al. (Fabiosa et al.,

2009) analyze the short-run equilibrium from smaller 10% increase in ethanol demand and report

a 50% smaller iLUC for each percent increase in ethanol demand. They point out that their

land allocation effects may be understated because of large stock adjustments occurring in the

short term. Using the modified FAPRI/CARD system of models, and making several changes to

Searchinger et al.’s calculations, namely, assumption relating to crop yield projections and oil price,

assuming no deforestation within the US, and emplying an alternative model to GREET for direct
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lifecycle emissions called BESS (which is supposed reflect recent advances in maize and ethanol

production technology and hence a lower lifecycle GHG intensity for maize ethanol), Dumortier et

al. (Dumortier et al., 2009) compute a iLUC GHG intensity of 21.33 gCO2/MJ.

Whereas the above studies adopt a partial equilibrium approach, Hertel et al. (2010) use the

GTAP computable general equilibrium (CGE) model to compute iLUC. Using more recent data

and co-product credits to land usethey calculate that the accumulated global agricultural expansion

due to a 13.23 billion gallon increase in maize ethanol would be 4.2 mha and the associated GHG

emissions would be 30 gCO2/MJ per unit of ethanol. This implies an increase in the lifecycle

emissions per MJ of maize ethanol of almost 40%. A more recent study by Tyner et al. (Tyner

et al., 2010) predicts that a 13.23 billion gallon increase in maize ethanol would only induce a 1.5

million hectare expansion in global agricultural acreage and the associated GHG emissions would

not be large enough to render maize ethanol more GHG intensive than conventional gasoline, i.e.,

even accounting for iLUC emissions maize ethanol is beneficial. This implies an increase in the

lifecycle emissions per MJ of maize ethanol by 15%.

The significance of the estimate of 15% is that it implies maize ethanol provides GHG benefits

when compared to conventional gasoline even after accounting for iLUC. Taken together with

the fact the both the yield of biomass per hectare and the yield of biofuel per unit of biomass are

increasing with time and that the oil supply is undergoing a transition towards more GHG intensive

unconventional sources (such as oilsands etc.), this suggests that maize ethanol can contribute to

mitigating climate change. However, if iLUC raises average GHG intensity by 40% (as imputed

from Hertel et al. (2010)) then maize ethanol is likely to be as GHG intensive as gasoline from

oilsand, not to mention conventional gasoline. It is worth mentioning that all these studies predict

lower iLUC emissions for cane ethanol and cellulosic ethanol which are not yet commercial. In

summary, uncertainty about the magnitude of iLUC and the associated GHG emissions, present a

major challenge to implementing biofuel regulations that require accounting of indirect emissions.
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3 Method and model

3.1 Disaggregating historical change in crop output into intensive and

extensive margin effects

To understand the historical relationship between production and acreage, we disaggregate the

annual change in output into three parts namely, a change attributable solely to change in pro-

ductivity per acre holding acreage fixed, a change attributable to change in acreage while holding

productivity per acre fixed and a change attributable to both change in acreage and change in pro-

ductivity. Mathematically, this can be described as follows. Let q denote the annual production, A

denote the annual harvested acreage and y the average output per acre. This derives the identity

q = yA. Given a productivity change, dy, and a change in acreage, dA between two points in time,

then the corresponding change in output dq can be expressed as,

dq = (q + dq)− q = (y + dy)(A+ dA)− yA

= Ady + (y + dy)dA (1)

Then ρ = (y+dy)dA
dq represents the share of the change in output attributable to change in

acreage i.e., the extensive margin. 1−ρ, then represents the change in output due solely to change

in productivity, i.e., the intensive margin. A value of ρ < 0.5 implies the major fraction of change in

output accrued from change in productivity while ρ > 0.5 implies that acreage change contributed

the major fraction of change in output. While we can expect that typically ρ ∈ (0, 1), under

certain conditions we may find either that ρ < 0 or ρ > 1. When acreage increases (dA > 0)

and yield decreases (dy < 0) , say due to adverse weather such that production declines (dq < 0)

during a given periods, then ρ < 0. Alternatively, when acreage decreases (dA < 0) and yield

increases (dy > 0) such that production increases (dq > 0), then again ρ < 0. In this case output

increases while acreage shrinks. When acreage decreases (dA < 0) and yield increases (dy > 0)

and production decreases (dq < 0) such that |dq| < |(y + dy)dA|, then ρ > 1.

Using county level data recorded by the National Agricultural Statistics Survey of the USDA,

we calculate ρ for each county in nine major maize growing states (IL, IN, IO, KA, MO, NE, OH,

SD, WI) in the US. These states account for approximately 70% of US maize production. We

calculate ρ for different time spans such as one, five, ten, fifteen years etc. between the years 1961

and 2009. We then compute a weighted average extensive margin for the 9 state aggregate. where

the weight is the ratio of change in output in a given county to the total change in output across all

counties. Mathematically this can be described as follows. Let subscript i denote a county within
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state j and subscript t denote time. The weighted-average aggregate extensive margin between

time t− k and t is computed as follows,

ρkt =

∑N
j=1

∑nj

i=1 ρ
k
ijt∆q

k
ijt

∆qkt
∀t ∈ (1..T ) (2)

where, N is the number of states, nj is the number of counties in state j, ∆qkijt = qij,t − qij,t−k is

the change in output in county i in state j between time t−k and t, and ∆qkt =
∑N
j=1

∑nj

i=1 ∆qkijt is

the aggregate change in output across all counties in all states. When k = 1, we derive the annual

average extensive margin. When k = 5 we derive the quinquennial average extensive margin and

so on.

Figure 1 plots the extensive margin for the annual change in production (ρ1
t ), against annual

change in acreage (∆q1t ), for each year since 1961. It shows that the extensive margin is unstable

ranging between -4.372 and 13.00 (not shown in figure) with a simple mean of 0.646. The running

mean over a five year period exhibits relatively less instability (as expected) varying between -0.223

and 1.56 with a mean of 0.625. However, a simple mean may be misleading if there is a correlation

between extensive margin and the change in the output. When we weight ρ1
t by ∆q1t , the mean

decreases to 0.512. The relationship between cumulative quantity change and cumulative extensive

margin for different time spans relative to 2009 is shown in figure 2. In other words it shows the

extensive margin for the cumulative change for different time spans such as (2008 to 2009), (2007

to 2009), (2006 to 2009) and so on with the last observation being for the span 1980 to 2009. The

5 year cumulative margin excluded, the remaining values range between 0.153 and 0.548. Table

1 lists the mean extensive margin both on an annual basis and cumulative basis for various time

spans between 1961 and 2009. The extensive margin on a cumulative basis is generally smaller (the

exception being the ρ5
2009) in magnitude than the mean of the annual variation during any given

time period (note the difference in the scale of the y-axis between figure 1 and figure 2). This is

consistent with the findings in the empirical literature that productivity growth is the major driver

of change in the long run(Federico, 2005, Miranowski and Cochran, 1993, Mundlak, 2005, Sunding

and Zilberman, 2001). Furthermore, since technology adoption is a gradual process, the relative

share of extensive margin in a given change in output will tend to be higher in the short-run than

in the long-run. We will use the range of values reported here to predict the range within which

indirect land use change may occur in the future as a result of expansion of maize biofuel in the

US.

We then compute a weighted average of the cumulative extensive margin, ρk, over all pairs of
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years with a given time span k i.e., {ti, ti + k}∀i ∈ [1..(T − k)]. This is computed as

ρk =
∑T−k
t=1 ρkt∆qkt∑T−k
t=1 ∆qkt

(3)

Given an estimate of ρk, we can predict a range for the mean predicted change in acreage from

time t−k to t for a given increase in production, dqk and a projected increase in productivity, d̂ykt

as follows.

d̂Akt = ρk
dqk

yt−k + d̂ykt

(4)

Figure 3 plots the ρk versus k. The simple mean ρ̄ =
PK

k=k0
ρk

K−k0 = 0.377. For k > 5, ρ̄ = 0.372.

The appendix contains a similar plot for soybean in the US.

3.2 Model to compute the impact of biofuel mandate on crop demand

and supply

The previous section described an empirical approach to estimate the extensive margin effect which

can be used to predict LUC for a given increase in crop demand. In this section we develop a model

to compute this increase in crop demand given an increase in demand for biofuel. For this we extend

the model of Rajagopal et al. (Rajagopal et al., 2007). To simplify the mathematical exposition,

we illustrate this assuming there is only one crop which is used for both food and fuel. In doing so,

we are being conservative in that the change in crop supply (and therefore land use) we derive from

the one crop model is an upper-bound on the change in supply of the biofuel crop derived when

assuming more than one crop which are substitutes and compete for land. This is presented as

a formal proposition along with proof in the appendix (see proposition 1 in supporting material).

Let us assume that a given crop has two uses, namely, food (subscript f) and biofuel (subscript b).

Let p and q denote price and quantity respectively. Let S and Df crop supply and crop demand for

food as a function of price. Let εs and εd denote the elasticity of crop supply and crop demand for

food consumption respectively. Let Qb denote the quantity of crop required for producing a given

quantity of biofuel, B and Q0 denote total consumption. Let φ denote the co-product credit. The

effective crop utilization for biofuel is Qeffb = (1 − φ)Qb. The market-clearing condition implies

that total supply equals total demand

S = Df +Qeffb = Q0 (5)
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To analyze the effect of a increase in the level of the biofuel mandate, let us differentiate the market

clearing equation.

dS = dDf + dQeffb (6)

Using the definition of elasticities of supply and demand, for small increases in crop use for biofuel

relative to total crop supply and demand, we have,

εs
dp

p
Q0 = εd

dp

p
Df + dQeffb (7)

Rearranging we get,
dp

p
=

dQeffb

εsQ0 − εdDf
=

(1− φ)dQb
εsQ0 − εdDf

(8)

The net change in crop production is

dS = εs
dp

p
Q0 = (1− φ)

[
εs

εs − εdDf/Q0

]
dQb (9)

Since εs ≥ 0, εd ≤ 0, 0 ≤ φ ≤ 1 and Df/Q0 ≤ 1, we have, dS ≤ dQb i.e., increase in crop production

cannot exceed increase in crop use for biofuel. We next relate the above expression with empirical

model of section 3.1 to develop a relationship between a biofuel mandate and increase in acreage

of the crop used for biofuel. Let B denote the initial quantity of biofuel and let η denote the yield

of biofuel per unit of crop. Then the quantity of crop required for biofuel, Qb = B
η . The change

in crop requirement for a change dB in the mandate is dQb =
dB

η
(assuming η fixed). Using

equations (4), (9), and substituting dS = dq, we can write,

d̂Akt = ρk
dqk

yt−k + d̂ykt

d̂Akt = ρk
1− φ
y + dŷ

[
1

1− (εd/εs)(Df/S)

]
dQb (10)

We can see that larger the biofuel mandate, larger is acreage expansion ceteris paribus. Sim-

ilarly, higher the rate of growth in productivity, smaller the acreage expansion ceteris paribus.

Similarly smaller the ratio of elasticity of crop demand to elasticity of crop supply, smaller is

acreage expansion ceteris paribus.
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3.3 Computing global land use change due to change in acreage of bio-

fuel crop

Using an approach similar to that in section 3.2 we can show that if the global average productivity

of agricultural land does not decline, then the increase in global agricultural acreage due to a biofuel

demand shock cannot exceed the change in acreage of the crop used to produce biofuel (This is

stated as proposition 2 with mathematical proof in supporting material). This implies that change

in acreage of the biofuel crop is an upper bound on global land use change if global average

productivity does not decline when agriculture expands into new lands. Existing estimates in the

literature indeed support the hypothesis that net global agricultural expansion is a fraction, δ < 1,

of the expansion in biofuel crop acreage. Searchinger et al. (2008) predict an iLUC of 10.8 mha

for a 12 million hectare increase in maize acreage (δ = 0.9). Hertel et al. (2010) predict global

iLUC of 4.2 mha for a 6 million hectare increase in maize acreage (δ = 0.7). However, in contrast

to predicting expansion of biofuel crop acreage due to biofuel expansion which is relatively simple,

predicting global agricultural expansion due to increase in biofuel crop acreage is far more complex.

Numerical computation or statistical estimation of the latter is beyond the scope of this paper.

Therefore, once we compute the expansion of maize acreage using the models described in section

3.1 and 3.2, we simply employ Hertel et al.’s estimate for δ(= 0.7) to compute global LUC.
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4 Numerical exercise

We use the values for the extensive margin (ρ) reported in table 1 to derive a range for expansion

of maize acreage in the US in response to US ethanol mandates. Ethanol production in the US was

averaged about 1.3 billion gallons during the 1990s reaching 1.46 billion in 1999. Since we would

like to compute the effect of increasing maize ethanol production by 15 billion gallons, which is

both the target set by the Energy Security and Independence Act (EISA) 2007 and is also the

quantity assumed by Searchinger et al. in their 2008 Science paper for computing land use change,

we extrapolated ethanol production to reach 16.3 billion gallons by 2017 for a net increase of 14.8

billion gallons since 1999. We use actual data on ethanol production and maize acreage, production

and yield between 1999 and 2009. For future ethanol production we use targets under EISA 2007

for the years 2010 through 2015. For the years 2016 and 2017, we assume the same annual increase

in ethanol production as for year 2015 stipulated by the EISA 2007. For future productivity of

maize per unit of land we use USDA’s projections for the years beyond 2009. We also analyze the

sensitivity to the ratio of elasticity of crop supply and crop demand (εs/εd) whose range is chosen

as (-3,-0.5). This is representative of elasticities of supply and demand reported in the literature.

For instance Roberts and Schlenker (2010) estimate that elasticity of global supply of food calories

is approximately twice the elasticity of global demand elasticities for food calories. While the

elasticities themselves tend to be higher in the long run compared to short-run, the ratio is less

variable and hence likely to lie within the range -3 to -0.5. We report results for simulation using

three different time steps, namely, an annual time step (∆t = 1), five year time step (∆t = 5) and

nine year time step (∆t = 9). Since we only model acreage expansion for US maize, in order to

derive global iLUC we simply multiply the former by the ratio global iLUC to US maize acreage

expansion imputed from Hertel et al. They compute maize acreage expansion as 6 mha and global

iLUC as 4.2 mha which implies a ratio of 0.7.

Table 2 shows the sensitivity of US maize acreage expansion to ρ and to εs/εd for three different

time steps, namely, 1 year, 5 years and 9 years. Our estimates are within the same order of

magnitude as that reported in the literature. Figure 4 plots the results for the 9 year time step.

Based on the average cumulative extensive margin, ρ9 = 0.372 (the mean over all time spans (k)

> 5, see figure 3), and εs/εd = −2, we predict maize acreage expansion in US attributable to

14.83 billion gallon increase of maize ethanol to be 4.41 mha. Using ρ9
2009 = 0.339, the acreage

expansion is 4.02 mha. In comparison, Hertel et al. (2010) predict 6 mha increase for 13.23 billion

gallons. Using the multiplier of 0.7, and linearly scaling from 14.83 to 13.23 billion gallons we

predict global iLUC to be 2.75 mha and 2.51 mha based on the average 9 year and last 9 year
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margins respectively.

Finally we calculate sensitivity of iLUC to future yield shocks. For this we assume the yield

shock to be a multiplicative uniformly distributed random variable between 0.95 and 1.05. In

other words, the shock causes the yield to lie between 95% and 105% of projected yield in a given

year. The mean, minimum and maximum iLUC for 10000 trials for cumulative nine year extensive

margins, ρ9
t = 0.372 and εs/εd = −2 were 2.76 mha, 2.69 mha and 2.82 mha respectively. For the

nine year period ending in 2009, ρ9
2009 = 0.339 the mean, min and max are predicted to be 2.51,

2.45 and 2.57 mha respectively.
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5 Discussion

Policy makers are faced with the a need for a reasonable ex ante estimate of LUC and LUC related

emissions for implementing biofuel mandates and biofuel blending standards such as the RFS and

LCFS respectively. The assumption about the role of intensive margin (increase in productivity)

and extensive margin (increase in acreage) in meeting crop demand due to biofuel is key to deriving

good prediction of iLUC due to biofuels. Beyond biofuels, a good understanding of these two

phenomena is crucial to understanding the sustainability of food production. Towards this end,

and different from the current approaches for estimating iLUC, we disaggregate the historical trend

in relationship between production and acreage into intensive and extensive margin effect and use

the latter to predict a range for LUC due to maize ethanol.

Although data suggests that the extensive margin is unstable, it varies with the time span

(long-run is generally smaller than short-run i.e, ρk1t < ρk2t for k1 > k2) and it varies over time for

a given time span (ρkt1 6= ρkt2), it also suggests the average cumulative extensive margin lies within

a reasonably narrow range (0.32, 0.38) with a mean around 0.37 for a broad span of 6 to 30 years

(see figure 3). Using the mean estimate of 0.37 our mean estimate for global agricultural acreage

expansion for 14.83 billion gallon increase in maize ethanol is 3.08 mha. This is 34.4% lower than

Hertel et al. (after adjusting for the fact that Hertel et al. calculate iLUC for only 13.23 billion

gallon increase) and 71.4% lower than Searchinger et al. (2008). If the extensive margin is 0.4 our

global iLUC estimate increases to 3.32 mha and if the margin is 0.2 it decreases to 1.66 (multiply

table 2 by 0.7). While our predictions are in the same order of magnitude as previous estimates

we predict smaller net expansion in the long-run than most studies. The percentage reduction in

GHG emissions is likely to be higher than percentage reduction in LUC as a lower estimate of LUC

implies less deforestation. Our range of estimates are however almost than twice that of Tyner et

al. (2010). It is worth pointing that all estimates including ours refer to gross acreage as opposed

to net acreage. With some of the agricultural lands under double-cropping, i.e., multiple harvests

of either the same crop (e.g. rice in south asia) or different crops (e.g. wheat and sunflower) the

gross harvested acreage is larger than the net harvested acreage. For instance if a fraction α of the

gross harvested area (Ag) is double cropped, then the net harvested area (An) is Ag

1+α . We return

to this in the concluding paragraph. Ours is a conservative estimate also for the reason that being

a one crop model, we do not incorporate cross price elasticities between crops, which (as we show

in the appendix) will lower our estimates further.

Previous estimates on iLUC were derived using more detailed models that have a strong theoret-

ical basis (as in the case of CGE) and/or also capture the interlinkages between multiple economic
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sectors and regions (as with CGE, PE and mathematical programming models) that determine

iLUC. These models also have a long track record in economic and policy analysis. The objective

of our paper is therefore not to derive a better estimate but to estimate iLUC using an alternative

approach and to compare the predictions from large numerical models against historical evidence.

To this end, we derived a direct correlation between output and the extensive margin based on

historical data over about five decades (1961 to 2009) from 915 counties across 9 major maize

growing states in the US. A strength of our model its transparency to the assumptions that derive

the predictions, which in our case are two parameters, namely, the share of the extensive margin

in total change in output and the ratio of elasticity of maize supply and maize demand. Our

work highlights the need for more empirical research on the contribution of intensive and extensive

margins in increasing global agricultural output and on the elasticities of supply and demand for

calories. The fact that our estimates are of the same order of magnitude as those from more de-

tailed models serves to improve the confidence in the range of estimates reported in the literature.

The method we describe can be applied to generate predictions about iLUC due to sugarcane and

more broadly to develop hypotheses about the land intensity of future food supply.

In relying on correlations in historical data for prediction the future, the critical assumption

is that the future is structurally similar to the past. However, for a variety of reasons the fu-

ture may turn out different than the past. For instance, if future agriculture expansion occurs on

marginal land with poorer soils and less favorable agro-climatic conditions with lower productivity,

productivity growth rate may decline or even become negative. That said, higher agricultural com-

modity prices which is the driving force for agricultural expansion has traditionally been shown to

accelerate adoption of yield enhancing technologies in existing farmland counteracting the reduc-

tion in yield, if any due to expansion into marginal land. Hertel et al. (2010) assume these two

counter-acting forces offset each other. These are hypotheses for future empirical research.

In addition to biofuel-specific studies of land use change which is the focus of this paper, there

is a rich tradition of applied research on economics and management of land. One strand of this

literature applies statistical techniques to analyze economic problems, to test economic theory,

and to estimate key parameters such as elasticities which partial and general equilibrium models

rely on for prediction. Some of the relevant key findings of this literature are the following. High

rate of technical innovation has led to a tripling of world-output between 1950 and 2009 while

agricultural acreage expanded by less than 30% (Federico, 2005, Mundlak, 2005, Sunding and

Zilberman, 2001). Historical analyses suggest that extensification occurs first in order to capture

land base and establish ownership rights and intensification begins in earnest only subsequently

and that government policies affect both. Extensification was supported homesteading policies
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and development of the railroad and transportation while intensification was supported by the

establishment of the land grant systems and dedicated government support for research(Miranowski

and Cochran, 1993). Thus while acreage may expand in the short-run, technology adoption and

innovation led to lower price and induced contraction of land in the longer-run. Our correlations

are consistent with such findings. Incorporating the dynamics of land use is an area for future

research.

A comparison of iLUC due to biofuels with the actual expansion underway driven by global

economic and population growth highlights the much bigger policy challenge of reducing GHG

emissions while achieving economic growth. FAO data shows that global agricultural acreage has

expanded by about 93 mha from 1999 to 2009. This implies that the increase in acreage attributable

to maize ethanol would represent only 1.3% of global acreage expansion between 1999 and 2009.

Figure 5 shows that the increase in maize acreage explains less than 1/4th the total global acreage

expansion during this period. Discounting co-product credit for maize, the increase in maize use

for ethanol accounts for 40% of the increase in maize output withinin US and for only for 18% of

the global increase in maize output. While we focussed on LUC due to maize ethanol, there exist

alternative biofuels, the most important being cane ethanol produced in Brazil. Different from

the approach of the LUC literature on maize ethanol, Hausman (2009) econometrically estimates

land response to change in commodity prices in Brazil over the past three decades. Using county-

level data from 1973 to 2005, the author finds that land use change in Brazil is more a product

of reaction of soybean production to market prices than the reaction of sugarcane production.

Indeed soybean acreage may have responded to US ethanol mandates, but data also suggests that

the steepest increase in soy production was between 1990 and 2000 before the expansion of maize

ethanol in US. This also suggests that while agricultural acreage may expand somewhat in the

long-run as biofuels displace a larger share of crude oil globally, economic and population growth

are the major drivers of land use.

Nevertheless, agricultural expansion due to biofuels is important in and of itself for although

biofuels induce only a small fraction of the total global agricultural expansion, it also represents a

small fraction of the current global oil use.. The target of 15 billion gallons of ethanol represents

(on energy equivalent basis) approximately 7% of current consumption of gasoline in US and less

than 2% of gasoline use world-wide. Given that several countries around globe aim to increase

biofuel use, a global target of 20% replacement of gasoline by ethanol, may entail land-use change

on a significantly larger scale. To this end, the pertinent policy question is not the land use impact

of the US RFS mandates taken in isolation but the impact of world-wide adoption of biofuels

on a significant scale. The approach we outline can be extended to derive order of magnitude
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estimates of global biofuel expansion. In this context, the need for a global agreement towards

conservation of ecologically important areas that may be affected by expansion of agriculture

regardless of whether it is driven by food, pasture, fuel or timber cannot be over-emphasized.

Past studies show that government policies can have a drastic impact on land use. In the past

they have both encouraged deforestation (say, establishment of railroad which was crucial for

agricultural expansion in Brazil(Fearnside, 2005)) and also been successful in inducing conservation

(say, through payments of ecosystem services in Costa Rica (Pagiola, 2008) and Mexico(Alix-Garcia

et al., 2008))

Another important but under-emphasized aspect is the accounting of land that is under multiple

cropping, i.e., land with more than one harvest per year. Availability of irrigation together with

the favorable climatic conditions such as in the tropics enables multiple harvests within a year.

Combining sub-national irrigation statistics with geospatial information on location and extent of

irrigation schemes in the different regions of world, Siebert et al. (2005) calculate that about 274

mha of agricultural area (19% of global agricultural acreage of 1440 mha (http://faostat.fao.org) is

equipped for irrigation worldwide with more than 41% of this area located in the tropical regions

not including South America. Puma and Cook (2010) report that gross irrigation, the amount of

water that actually has to be extracted from external sources such as lakes, rivers, and groundwater,

has steadily increased over the course of the 20th century. While climatic conditions and seasonal

availability of irrigation water, in the case of irrigation from seasonal rivers, may imply that land

equipped for irrigation still yields only one harvest per year, it nevertheless suggests that net

expansion of agriculture into new lands will be a fraction of the gross iLUC predicted by our

model and also the existing literature on iLUC. Indeed irrigation and irrigation infrastructure have

their own environmental impacts. Statistics on multi-cropping are either not easily found in the

literature or are not comprehensive with data available only for specific multi-crop systems in

specific regions of the world. Developing a global inventory of double cropped agricultural systems

is an important area for future research.
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Time period Mean annual exten-
sive margin ρ1

t

Cumulative exten-
sive margin relative
to 2009 ρk2009

*

2004 to 2009 0.6306 1.0664
1999 to 2009 0.6937 0.3676
1994 to 2009 0.7982 0.2911
1989 to 2009 0.6322 0.3537
1984 to 2009 0.6266 0.2413
1979 to 2009 0.5473 0.2289
1974 to 2009 0.5259 0.2791
1969 to 2009 0.6712 0.4796
1964 to 2009 0.6687 0.4352
1961 to 2009 0.6463 0.4381
* Cumulative change with respect to a fixed end year, namely,

2009 but varying time spans i.e, k = 5, 10, 15..

Table 1: Extensive margin based on annual and cumulative aggregate change for 9 major maize
growing states in the US between 1961 and 2009
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εs/εd
* εs/εd εs/εd

ρ1
t
** -1 -2 -3 ρ5

t
*** -1 -2 -3 ρ9

t
**** -1 -2 -3

0.4 3.94 5.07 5.61 0.3 2.87 3.71 4.12 0.2 1.82 2.37 2.64
0.5 4.93 6.33 7.01 0.4 3.83 4.95 5.5 0.3 2.73 3.56 3.96
0.6 5.91 7.60 8.41 0.5 4.78 6.19 6.87 0.4 3.64 4.75 5.28
0.7 6.90 8.87 9.81 0.6 5.74 7.43 8.24 0.5 4.55 5.93 6.61
* ratio of elasticity of maize supply to maize demand
** mean annual extensive margin
*** mean cumulative extensive margin for 5 year intervals
**** mean cumulative extensive margin for 9 year intervals

Table 2: Corn acreage expansion in mha in US for 14.83 billion gallon increase from 1999 to 2017
under different scenarios of elasticities and extensive margins
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Figure 1: Extensive margin for annual change (ρ1
t ) for nine state aggregate (ρ1

1972 = 11 is not
shown). The figure shows that the extensive margin is unstable ranging between -4.372 and 13.00
(not shown in figure) with a simple mean of 0.646. The running mean over a five year period
exhibits relatively less instability (as expected) varying between -0.223 and 1.56 with a mean of
0.625.

Figure 2: Extensive margin for cumulative change with respect to 2009 for nine state aggregate
(numbers next to arrows indicate the time elapsed since the year 1961). In other words it shows
the extensive margin for the cumulative change for different time spans such as (2008 to 2009),
(2007 to 2009), (2006 to 2009) and so on with the last observation being for the span 1980 to 2009.
The 5 year cumulative margin excluded, the remaining values range between 0.153 and 0.548.

Figure 3: Weighted average cumulative extensive margin for all pairs of years for a given span,

k, (> 5) for US maize (see equation (3)). The simple mean ρ̄ =
PK

k=k0
ρk

K−k0 = 0.377. For k > 5,
ρ̄ = 0.372.
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Figure 4: Corn acreage expansion in mha in US for 14.83 billion gallon increase from 1999 to 2017
under different scenarios of elasticities and extensive margins

Figure 5: Share of cumulative change in global agricultural acreage (= 93 mha) between 2000 and
2009 attributable to specific crops. It shows that the increase in maize acreage explains less than
1/4th the total global acreage expansion during this period.
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