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ABSTRACT OF THE THESIS 

A Novel Approach To Extracellular Vesicle Isolation Using Immunoaffinity and Acoustic 

Microstreaming Microfluidic Device 

By 

Iember Hemben 

Master of Science in Biomedical Engineering 

University of California, Irvine 2019 

Professor Abraham P. Lee, Chair 

 

Early cancer detection results in higher survival rates for patients. Circulating tumor cells 

(CTCs) traveling through the blood can be used for early cancer diagnosis. Unfortunately, these 

CTCs are rare (as low as 1 CTC per billion red blood cells), limiting their use in early diagnostic 

applications. A substantial amount of research suggests a correlation between the presence of 

cancer and the circulation of EVs, but detailed knowledge on the role of EVs is still lacking due 

to inefficient methods in EV isolation. The current “gold standard” for EV isolation is 

ultracentrifugation. Ultracentrifugation produces low yield, contain damages cells, has poor 

reproducibility and low purity.  

Microfluidic technologies are an attractive alternative for EV isolation due to their low-cost, 

low sample and rapid throughput. We propose a quick, low-sample microfluidic solution to EV 

isolation with efficiencies that rival the gold standard of ultracentrifugation. Using acoustic 

microstreaming and immunoaffinity capture methods, we report isolation of EVs for downstream 

analysis at high efficiencies and faster turnaround times, fewer steps and less equipment than 

UC. 
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CHAPTER 1: Introduction 
 

1.1. Problem Statement 

 

With an estimated count of 9.6 million deaths in 2018, cancer is one of the leading causes of 

death globally. Responsible for one in six deaths worldwide, it is likely that everyone has 

encountered someone affected by this disease1. Furthermore, a vast majority of cancer-related 

deaths (70%) occur in low and middle-income countries where resources and treatment are 

scarce. According to a study completed by the Public Health England – National Cancer 

Registration and Analysis Service, the chances of survival after cancer diagnosis are much higher 

for patients diagnosed at Stage 1. Out of 30,400 female patients diagnosed with melanoma, those 

diagnosed at Stage 1 had a 100% net-survival rate after one year. Patients diagnosed at Stage 4 

yielded a 50% survival rate after one year. These statistics suggest that early detection of cancer 

could literally be a matter of life and death for many patients2. 

The importance of circulating tumor cells (CTCs) in cancer diagnosis has recently gained 

traction. CTCs can serve as a precursor to metastasis, provide genotypic and/or phenotypic 

information of a cancer and even offer ‘real-time’ tumor bioposies through simple blood tests3,4. 

While CTCs have the potential to aid in cancer screening protocols and guide prognosis, their 

rarity is an obstacle to their diagnostic application. With values as low as 1 CTC per billion 

blood cells, the reality is CTC capture is synonymous to the ‘needle in a haystack’ paradigm5. 

Thus, to address cancer diagnosis as early and accessibly as possible, a noninvasive, novel 

approach to identifying cancerous cells is needed. 

 

1.2. Proposed Solution 

 

The excessive release of extracellular vesicles (EVs) from cancer cells implies that EVs may 

play a significant role in tumor progression6. The rapid growth of cancer can be attributed to the 

cells ability to release factors which promote cancer growth and metastasis in the extracellular 

microenvironment. Extracellular vesicles have been shown to modulate tissue 

microenvironments by encouraging matrix remodeling and angiogenesis7. Unlike CTCs, 

quadrillions of EVs are constantly being circulated throughout the body, and cancer patients have 

exhibited higher concentrations of EVs. Specific markers associated with cancer permits the 

enrichment of cancer related EVs, opening doors for the use of cancer EVs in liquid biopsies. 

EVs have significant potential as a noninvasive biomarker for early detection, diagnosis and 

prognosis of cancer patients. 

A substantial amount of research suggests a correlation between the presence of cancer and 

the circulation of EVs, but detailed knowledge on the role of EVs is still lacking. This gap in 

knowledge is largely attributed to inefficient methods in EV isolation. Accounting for 56% of 

implemented EV isolation techniques, the most common method of EV isolation is 

ultracentrifugation. Ultracentrifugation (UC) consists of a series of increasing centrifugation 

cycles that can require forces as high as 1,000,000xg8. Though ultracentrifugation is a low-cost 
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technique for EV isolation, it still has a myriad of shortcomings including low RNA yield, 

impurities, damage to EVs and low reproducibility9.  

Microfluidic technologies are an attractive alternative for EV isolation due to their low-cost, 

low sample and rapid throughput. Despite these advantages, microfluidic devices account for a 

measly 3.5% of published papers on EV isolation while ultracentrifugation accounts for 66.6% 9. 

We propose a quick, low-sample microfluidic solution to EV isolation with efficiencies that rival 

the current gold standard of ultracentrifugation. 

 

1.3. Scope of Report 

 

This investigation details the motivation, design, methods, results, and discussion of a novel 

approach to EV isolation using an acoustic-streaming microfluidic device. An overview of the 

importance of EVs in cancer research and the current standards for EV isolation are provided in 

this report along with a comparison of the proposed microfluidic approach and 

ultracentrifugation. The verification of successful EV capture is corroborated by 

immunofluorescence, TEM imaging, flow cytometry and RNA quantification. Methodologies for 

the two approaches evaluated in this report are detailed. Subsequent findings are included in the 

report and the significance is discussed. A summary of the results, limitations, and future work 

conclude this report. 

 

1.4. Summary of Conclusion 

 

The results of this study demonstrate the combination of acoustic microstreaming and 

immunoaffinity capture as a promising alternative to ultracentrifugation for the isolation of EVs. 

The proposed method boasts faster turnaround, higher sample yields, less working sample and 

less specialized equipment required. 

 

CHAPTER 2: Background 
 

2.1. Extracellular Vesicles 

 

It is well-known that cells release EVs of endosomal and plasma membrane origin. The size, 

function and composition of these EVs are diverse in nature. “Extracellular vesicle” is a blanket 

term that includes microvesicles and exosomes10. While details behind the differences between 

microvesicles and exosomes are still developing, the general approach to separating these two 

types of EVs is based on origin, lipid composition and size. Microvesicles have a diameter of 

100-1000 nanometers and originate via outward budding and fission of the plasma membrane. 

Exosomes are much smaller in size, ranging from 40-150 nanometers in diameter. Produced 

internally, exosomes are created when membrane-bound compartments (endosomes) within a 

eukaryotic cell bud inward and fill the luminal space of the endosome with small vesicles. This 

endosome filled with vesicles is referred to as a multivesicular body (MVB) and the vesicles it 

holds are as known as exosomes. When the MVB fuses with the plasma membrane, it releases 
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exosomes into the extracellular space (Figure 2.17). Exosomes are of higher interest than 

microvesicles, however, they can contain overlapping information. In this report, we will use the 

terms “exosome” and “extracellular vesicle” interchangeably.  

 

 
Figure 2.1 – Extracellular Vesicle Formation7 

  

Recent discovery of the role of exosomes in intracellular communication has brought 

EVs to the forefront of cancer research. Originally nicknamed cellular “garbage bags”, the main 

function of exosomes was thought to be waste removal. However, similar to how one can learn a 

lot about the way a person lives based on their trash, much can be derived from a cell’s 

microenvironment based on the contents of its exosomes. Composed of a lipid bilayer that 

mirrors the cell they originated from, exosomes can contain DNA, RNA and proteins. Exosomes 

essentially mirror the “biological fingerprint” of their parent cell8. Several components of plasma 

membranes can be found in the lipid composition of exosomes including cholesterol, 

phosphatidylserine and saturated fatty acids. Exosomes are enriched with proteins associated 

with membrane transport/fusion, heat shock proteins, tetraspanins, epithelial cell adhesion 

molecules, MHC Class II proteins among others. All species of RNA have been identified in 

exosomes along with fragments of both single and double-stranded DNA6. 

To further understand the role of extracellular vesicles, specifically exosomes, in cell-to-

cell communication and unlock their potential as disease biomarkers, efficient and reproducible 

EV isolation technologies that do not require large volumes or high turnaround time is needed. 
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2.2. Isolation Methods 

 

Most biology related research labs are equipped with centrifuges. The use of a centrifuge 

is simple to implement, and the actual centrifugation process does not require much intervention 

once it has begun. The accessibility and ease of use for centrifugation is likely the reason 

ultracentrifugation is still the gold standard for EV isolation despite its shortcomings. The 

procedure is simple, but the UC process is lengthy, requires specialized equipment and the 

isolation efficiency is dependent on several factors such as the rotor type, sample viscosity and 

centrifugation acceleration. Sample purity is another concern with UC, compensated by repeated 

ultracentrifugation and microfiltration to further purify the sample. However, increasing the 

purity of the sample results in additional loss of sample quantity. Furthermore, exosomes tend to 

stick together, a feature that decreases efficiency of exosome isolation due to aggregate 

formation and pellet compaction at high ultracentrifugation speeds. In addition to these concerns, 

ultracentrifugation protocols differ widely, causing low reproducibility9.  

It is speculated that high speeds have a negative effect on exosomes. A comparison of UC 

to commercial kit exosome isolation reveals that exosomes isolated via UC produce significantly 

larger particles. This phenomenon may be attributed to proteins and other contaminants fusing 

with exosomes11. One study found that an increase in serum volume did not equate to an increase 

in exosome samples isolated by UC12. Additionally, in the same study, a western blot analysis 

revealed the UC samples were significantly contaminated with albumin. High protein 

contamination is a prevalent issue in UC samples 12–14.  

Ultrafiltration is another alternative to UC, but it comes with a different set of challenges. 

Non-specific protein binding to filtration membranes, vesicle deformation resulting from 

materials forced though the membrane, and membrane clogging are drawbacks to the 

ultrafiltration process 15–17. 

Commercial kits such as ExoQuick are attractive due to their high yields and simplified 

protocol. However, the commercial kits are expensive, produce low protein yields18 and can 

require overnight incubation. Non-exosomal particle isolation such as contaminants and 

polymeric materials are observed in samples isolated using commercial kits, making this method 

a poor choice for downstream analyses that requires pure exosome samples8,13,17. 

Immunoaffinity-based capture methods for EV isolation have exhibited significant 

potential in their purity and high selectivity. Their high specificity feature has the ability for 

characterization and specific isolation of target exosome populations19. This method has been 

proven effective by several researchers, but it is still lacking a simple microfluidic solution 

capable of integrating an immunoaffinity approach with minimal preparation and harvesting 

protocol steps19–22. Exosome elution is another drawback of immunoaffinity-based capture 

method, as most elution methods result in some loss of sample. 
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2.3. Microfluidic Technologies 

 

As mentioned in the introduction of the report, most victims of cancer-related fatalities 

reside in low-income areas. This statistic has driven an increase in microfluidic technologies, 

which offer low procedural costs and point-of-care diagnostic solutions. Microfluidic solutions 

have permeated the diagnostic field, including this area of EV research. 

Several microfluidic devices have demonstrated the ability to isolate sub-micron 

particles. Many of the current proposed designs exhibit benefits of a microfluidic approach such 

as high purity, faster reaction times, and low cost, but they also increase in complexity. 

Additional equipment and logistics such as external pumps, magnets, layered microchips, 

variable flowrate and multiple inlets for various reagents give rise to daunting protocols23–27. 

Microfluidic EV isolation platforms such as a microfluidic membrane filtration system28 and 

nanopillars29 circumvent the issues of vesicular damage and expensive equipment present in 

conventional EV isolation methods. However, the design of these approaches inherently 

introduces challenges associated with device clogging.  

In this report, we detail a microfluidic device that requires minimal additional equipment, 

quick turnaround times, simple fabrication methods and an EV capture efficiency surpassing 

ultracentrifugation. 

 

Table 2.1 – Comparison of common EV isolation methods 

EV Isolation 

Method 

Pros Cons Ref. 

Ultracentrifugation 

 

Simple implementation, 

widely used method, no 

additional chemicals 

Time consuming, multiple 

centrifugation steps, multiple 

centrifuges required, specialized 

equipment, low yield, damage to 

cells, poor reproducibility 

8,9,11–

14,30 

Ultrafiltration Simple procedure Sample loss to membrane, damage to 

cells, clogging 

9,15–17 

Commercial kits 

(i.e. ExoQuick) 

Simple procedure, short 

experiment run time, EV 

preservation, no 

specialized equipment 

Cost of kit, contaminated sample, low 

protein yields 

8,9,11,13,1

7 

Microfluidic Shorter experiment run 

time, high purity, low 

sample, EV preservation 

Specialized equipment, complex 

protocols 

9,23–29 
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CHAPTER 3: Research and Design Methods 
 

3.1. Lateral Cavity Acoustic Transducer 

 

Acoustic microstreaming is a phenomenon that occurs when bubbles trapped by a liquid 

phase are excited by acoustic energy. The acoustic energy causes the air/liquid interface to 

oscillate, resulting in a first-order periodic flow (𝑈𝑠) located at the interface and a second-order 

bulk flow (𝑈𝑏) within in the oscillatory boundary layer31. The lateral cavity acoustic transducer 

(LCAT) is an acoustic microstreaming microfluidic device equipped with on chip pumping, 

enrichment and size-based trapping capabilities. The size-based capture capabilities of the LCAT 

are attributed to the distance between the open and closed microstreaming vortices, referred to as 

the 𝑑𝑔𝑎𝑝. Particles with a diameter larger than 2*𝑑𝑔𝑎𝑝  are trapped within the closed the 

streamlines while particles smaller than the threshold will pass through the vortex and continue 

with the bulk flow32,33.  A paper completed in 2018 by Garg et. al, demonstrates the use of LCAT 

to enrich, sort, and labels cells within whole blood. Figure 3.1 taken from this paper illustrates 

the basic principles that allow LCAT to perform multi-step processes on target particles within a 

microchannel31,33–36.   

 

 
Figure 3.1 – LCAT Diagram: sorting, enrichment and labeling of trapped cells from Garg et. al., 

paper33 

 

The LCAT device consists of hydrophobic PDMS channels bonded to a glass slide 

(Figure 3.2). Primed channels create air/liquid interfaces at the angled lateral cavities. The lateral 

cavity is the main feature that drives the functionality of the device. A piezoelectric transducer 

Garg et. al., 2018  
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topped with a ceramic pad is run at 50.2kHz frequency to transfer acoustic energy through the 

glass slide. Ultrasound gel placed in between the glass slide and the piezoelectric transducer 

increases the coupling efficiency. Introducing a voltage to the piezoelectric transducer transfers 

acoustic energy to the air/liquid interfaces, which oscillate and pump fluid through the PDMS 

microchannels.  

 
Figure 3.2 – LCAT Experimental Set-up 

 

3.2. Bead-based Sandwich Assay 

 

The functionality of LCAT is based on the liquid-gas interfaces formed by air trapped in 

dead-end side channels. When this interface oscillates, it creates two streaming flows: a 

streaming viscous flow velocity (𝑈𝑠) that is the highest at the outer edge of the microstreaming 

vortices and a bulk flow (𝑈𝑏). There is a critical open streamline that borders closed streamlines 

at end of the air-liquid interface vortex. In between this open and closed streamline is a gap 

referred to as the 𝑑𝑔𝑎𝑝. Particles larger than 2*𝑑𝑔𝑎𝑝 are trapped within the vortex. The equation 

for the 𝑑𝑔𝑎𝑝 is as follows: 𝑑𝑔𝑎𝑝 =
𝑈𝑏

𝑈𝑠

𝑊

2
, where 𝑈𝑏 is the bulk streaming velocity, 𝑈𝑠 is the 

streaming viscous flow velocity, and 𝑊 is the width of the channel. LCAT has demonstrated the 

ability to directly capture red blood cells in whole blood (5-7 µm wide) and perform on-chip 

sorting and immunolabeling 33. Theoretically, the size-based capture approach used to sort and 

enrich red blood cells can be applied to capture smaller particles, but the minuscule size of 

exosomes makes them a challenging target for direct capture. As a result, we opted for a bead-

based sandwich assay approach, merging LCAT’s acoustic microstreaming with immunoaffinity 

capture methods.  

Streptavidin-coated beads were conjugated with biotin-anti-human CD63. CD63 is a 

known biomarker of exosomes37–39, thus this tetraspanin protein was chosen for the analysis. The 

streptavidin bead and anti-CD63 conjugate was mixed into fresh plasma to directly capture EVs 

expressing the CD63 biomarker. The plasma is then pumped through LCAT to capture the beads, 

which can be either lysed for genotypic analysis or eluded for phenotypic analysis. Figure 3.3 

contains an overview of this process. 
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Figure 3.3 – Bead-Based Sandwich Assay for Capture of EVs 

 

3.3. Device Fabrication Methods 

 

LCAT was fabricated using standard soft lithography methods. A silicon wafer was 

cleared of debris using a nitrogen gun and negative photoresist SU-8 2050 was spin coated per 

the manufacturer’s protocol for a channel height of 100 µm. After spin coating, the silicon wafer 

was soft-baked, exposed, post baked and developed. Developed wafers were inspected under a 

microscope, then hard baked at 200°C and treated with silane overnight. Polydimethylsiloxane 

(PDMS) base and curing agent mixed at an 11.5:1 ratio was poured onto the silicon wafer mold 

and the mixture was degassed in a desiccator. Following degassing, the PDMS was cured 

overnight at 65°C. After overnight curing, the hardened PDMS channels were cut and carefully 

peeled from the mold. A 4 mm biopsy punch was used to create the inlet and outlet holes. The 

device was cleaned and bonded with a thin cover slip using standard plasma procedure. The 

plasma bonded device was placed on a hotplate set at 65°C overnight to allow oxygen plasma 

treated PDMS to become hydrophobic. 

 

3.4. EV Isolation Experiments 

 

Spherotech streptavidin-coated beads were obtained and washed by gently centrifuging 

for 10 minutes and replacing the supernatant with an equivalent amount of PBS buffer. A stock 

solution of streptavidin-coated polystyrene microspheres conjugated with biotin-anti-human 

CD63 was created and stored in the refrigerator for use over the duration of the study. The same 

stock solution was used for experiments. 



9 

 

Blood plasma from the UCI Institute for Clinical and Translational Science (ICTS) was 

used for all experiments under UCI’s Institutional Review Board approval. Blood samples from 

healthy patients were centrifuged at 3500 RPM for 10 minutes, per standard plasma separation 

procedure. The streptavidin bead and biotin-anti-CD63 conjugate was introduced to 1 mL of 

fresh plasma and incubated for 10 minutes. From this 1 mL of plasma, as little as 90 ul of plasma 

was necessary for the experiment. 30 µl of plasma was introduced to the inlet and a syringe was 

used to manually prime the first half of the microchannels. LCAT devices with larger channel 

widths can self-prime (automatically create interfaces when fluid is introduced to inlet), but the 

resistance in the 250 µm channel width device requires a partial prime to introduce the 

interfaces. Once the device has been partially primed, it is able to fully prime itself using the 

piezoelectric transducer. Partially priming the device assists in minimizing any human variability 

associated with the manual priming process, resulting in more stable interfaces. During the 

experiment, the inlet and outlet are monitored. The inlet is replenished periodically in 30 µl 

increments and the waste in the outlet is removed periodically to prevent an overflow. The waste 

is harvested throughout the experiment to quantify how much sample is lost to the outlet during 

RNA quantification. After flowing 90-120 µl, 30 µl of PBS wash buffer is pumped through the 

device. The beads trapped in the device are pushed to the outlet and harvested for analysis along 

with the collected waste (Figure 3.4). 

 

 
Figure 3.4 – EV Isolation Using LCAT 

Ultracentrifugation was also performed on blood plasma obtained from UCI ICTS. A 

protocol was adapted from Miltenyi Biotech for characterization of exosomes. Figure 3.5 

compares the LCAT and UC protocols for EV isolation. 
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Figure 3.5 – LCAT vs UC EV Isolation Protocol 
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3.5. Device Optimization 

 

Several iterations of LCAT were tested for extracellular vesicle isolation. Lee lab has 

published several papers demonstrating that the size-cutoff for LCAT trapping capabilities can 

be adjusted by decreasing the width of the main channel 32,33,40. However, reducing the main 

channel width also increases the resistance within the channel and can cause the vortices to 

interfere with one another. The high resistance also effects the device’s flowrate and increases 

the force required to prime the device, two factors that can affect the stability and longevity of 

the device during an experiment. A 250 µm width device was chosen due to its ability to remain 

stable and consistently flow 90-120 µl of plasma under 1 hour while still capturing smaller 

beads. 

Considering the bead capture efficiency is dependent on the device, bead optimization 

was completed in conjunction with the LCAT channel width optimization. 10 µm beads were 

originally tested due to 100% trapping efficiency in 250 µm channel devices. Surprisingly, RNA 

extraction analyses of the LCAT EV isolation using 10 µm beads did not produce any results. 

The group speculated that the large surface area of the 10 µm beads causes the surface of each 

individual bead to be less saturated with exosomes. Though the details of this phenomenon are 

not certain, experimental observation revealed that the same RNA extraction analysis that failed 

to produce results with 10 µm beads was able to produce results using 2 µm and 3 µm beads. 

Consequently, these sizes were chosen and compared for bead size optimization.  

The hypothesis for optimal bead size considers LCAT’s lower capture efficiency of 

smaller diameter particles. Due to a lower trapping efficiency in a 250 µm device, it was 

hypothesized that 3 µm beads would yield more favorable results in the LCAT device than 2 µm 

beads. Experimental observations and RNA isolation results revealed that at the same 

concentration (and even at higher concentrations) 2 µm beads demonstrate lower capture 

efficiency on average (Figure 3.6). From this information, 3 µm beads were chosen for the next 

optimization step: bead concentration. 

 
Figure 3.6 – Bead Size Optimization Results 
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For concentration optimization, 3 µm beads were tested at 1 million, 5 million, and 10 

million beads per mL. When LCAT vortices become overly saturated, they become unstable and 

release beads, causing more beads to be lost to the waste outlet. Introducing an excessive 

concentration of beads to a plasma sample with a finite amount of exosomes means each 

individual bead will be less saturated with exosomes. These two factors are significant because 

they influence the following hypothesis: increasing the bead concentration will decrease the 

trapping efficiency by encouraging sample loss through unstable, overly saturated vortices and 

undersaturated beads. Figure 3.7 illustrates the accuracy of this prediction. 

 

 
Figure 3.7 – Bead Concentration Optimization Results 

CHAPTER 4: Results and Discussion 
 

In order to verify the presence of extracellular vesicles, RNA isolation, flow cytometry 

and TEM imaging were performed on LCAT and UC isolated EV samples for comparison.  

 

4.1. Visual detection via immunofluorescence 

 

Several methods were used to verify the presence of exosomes. The first and most 

simplistic method was by visual detection. Immunofluorescence is an immunoassay technique in 

which a detector antigen or antibody is labeled with fluorophores41. Immunofluorescence allows 

for the staining of specimen that contain the targeted molecule. Fluorescein isothiocyanate 

(FITC) is a commercially available fluorescent probe widely used for biological molecule 

conjugates. FITCs popularity is attributed to its bright fluorescence, easy preparation, and low 

nonspecific binding41. FITC conjugated with anti-human CD63 was chosen for this application 
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because EVs express CD63 on their surface13,37,42.  After the volume of plasma was finished 

pumping through the device, FITC was added to the inlet. A small sample of the harvested beads 

were placed under a fluorescent microscope for imaging. As seen in Figure 4.1 beads imaged 

under the fluorescent lamp are stained fluorescent green suggesting the successful capture of 

exosomes on the surface of the bead.

 
Figure 4.1 – Fluorescent Imaging: A: Schematic of bead conjugate with exosome and anti-CD63 

FITC. B: Bright field and dark field images of LCAT captured EV-bead conjugates with anti-

CD63 FITC fluorescent labeling. Right: Bright field image of 3 µm beads at 40X. Left: 

Fluorescent image of 3 µm beads at 40X 

 

4.2. RNA Quantification 

 

Following visual detection, the next EV verification method implanted was verifying the 

presence of RNA in a captured bead sample. Quantification of RNA is a common method for 

identifying the presence of extracellular vesicles 18,24,43–45. RNA was extracted from EV samples 

using Trizol RNA isolation kit and evaluated using Quibit RNA High Sensitivity (HS) Assay kit.  

Trizol is a method for simultaneous isolation of RNA, DNA and proteins from a biological 

sample46. Separated into three phases, the top RNA aqueous phase was extracted for Quibit 

quantification and the DNA and proteins were discarded. Following RNA extraction, the highly 

selective Qubit RNA HS Assay Kit does not quantify DNA, protein or free nucleotides, 

providing confidence that the Qubit Fluorometer is only quantitating RNA in sample. 

RNA quantification was performed on three samples following experimentation: captured 

beads, waste collected throughout the experiment and plasma sample that has not undergone EV 

isolation. Table 4.1 includes the raw values provided by the Qubit fluorometer analysis. RNA 

extraction was also performed on a UC sample for comparison.  

 

A B 
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Table 4.1 – RNA Quantification Results 
 

Trial A Trial B Trial C Trial D UC 

Bead Solution RNA 

(ng/ul)  

1.61  0.256  1.39 0.403 0.724 

Waste RNA (ng/ul) 0.828 0.306 0.41 1.51  

Plasma (ng/ul) 2.81 0.351 1.53 0.84 1.67 

Efficiency 57% 73% 91% 48% 43% 

 

4.3. Flow Cytometry 

 

Used to measure both physical and chemical characteristics of individual particles, flow 

cytometry is an incredibly valuable tool for single cell characterization46. Particles inside a flow 

cytometer are focused and passed through an “interrogation point” individually. A laser is 

focused at the interrogation point. When a particle passes the laser, light is emitted in all 

directions. These light signals are analyzed in the computer and a histogram is created from the 

resulting data. The laser excites fluorescent labeled particles to a higher state. These fluorophores 

emit light energy at higher wavelengths following excitation46,47. This mechanism is the basis 

behind the use of flow cytometry to analyze FITC-CD63+ EV samples. Figure 4.2 displays flow 

cytometry results from a blank sample and a sample of plasma with streptavidin-CD63 bead 

conjugate. 

 

 
Figure 4.2 – Flow Cytometry Results: Streptavidin-beads with Exosomes. Right: Blank Sample.         

Left: Sample with CD63+ conjugated beads and exosomes. 
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4.4. TEM Imaging 

 

Transmission electron microscopy (TEM) is an imaging technique that transmits electron 

beams through an ultrathin specimen. When the diffraction pattern of electrons transmitted 

through the specimen are focused, a magnified image of the specimen materializes48,49. 

In order to perform TEM imaging on sub-micron particles attached to microspheres, the 

exosomes must be removed from the microspheres. An EV elution protocol was adapted to break 

the biotin streptavidin bonds and release EVs for further analysis50.  

Isolated exosome samples were fixed to a carbon mesh grid and stained used uranium 

acetate. Following staining, the sample ready for TEM imaging. TEM images of exosome 

samples isolated by UC and LCAT are found in Figure 4.3 and Figure 4.4.  Refer to Figure 4.5 

for details on the TEM imaging protocols.  

 

  
Figure 4.3 – TEM Imaging of UC Isolated EV Sample: three EVs are identified by yellow 

arrows. 

 
Figure 4.4 – TEM Imaging of LCAT Isolated EV Sample 
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Figure 4.5 – Exosome Elution and TEM Imaging Protocols 
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CHAPTER 5: Conclusion 
 

5.1. Discussion of Results 

 

Despite emerging alternatives to EV isolation, ultracentrifugation remains the gold 

standard. Current proposed microfluidic solutions demonstrate higher efficiencies and faster 

reaction times at the sacrifice of simplicity and accessibility of the necessary equipment. The 

presence of EVs isolated by LCAT and UC methods were successfully verified using 

immunofluorescence, RNA quantification, flow cytometry, and TEM imaging. Both methods are 

able to produce EV samples for downstream analysis, however, advantages of the LCAT 

approach include a reduction in time, protocol steps, equipment, and sample loss. The average 

EV isolation efficiency for 3 µm beads in an LCAT device was 67%, compared to the average 

efficiency of 5-25% for UC30. Based on this analysis, LCAT is a viable microfluidic solution for 

EV capture, outperforming UC in terms of experiment time, isolation efficiency, and working 

volume (Table 5.1). 

 

Table 5.1 – Comparison of LCAT and UC Results 

Parameter LCAT Bead Based Assay Ultracentrifugation 

Experiment 

Time  
30-45 minutes 4 hours 

Average 

efficiency 
40-70% 5-25% (39) 

Sample 

Volume 
1 mL of plasma 5 mL of plasma 

Specialized 

Equipment 

- LCAT chip 

- Centrifuge capable of 3500 RPM 

- Piezoelectric transducer 

 

 

- Different centrifuges capable of 3 

levels serial centrifugation (1,000-

2,000xg, 10,000xg, and 100,000xg) 

- High performance centrifuge tubes 

- Specialized rotors compatible with 

specialized ultracentrifuge tubes 

 

 

5.2. Limitation of the Study 

 

While the LCAT protocol utilized in this study produced favorable results, more 

experiments to further optimize the device could have reduced the standard deviation in the 

LCAT EV isolation efficiency. Time being the greatest limiting factor, this study did not 

investigate why larger beads were unable to recover large quantities of exosomes despite having 

higher bead trapping efficiencies within the LCAT device. This study was also unable to 

evaluate and compare the viability of EVs isolated using both methods. 
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5.3. Future Work 

 

Isolation of extracellular vesicles is only the first step of LCAT sub-micron particle 

analysis. This study focuses on using CD63, a biomarker present in both healthy and tumor 

derived EVs, but beads conjugated with a tumor specific antibody could potentially isolate 

tumor-derived exosomes from a population of exosomes. The next direction is to use LCAT to 

capture tumor derived exosomes. A VEGF kit can be used to verify if the sample captured by the 

exosomes contains the growth factor present in cancer cells. Proof of this concept could lead to 

use of LCAT for on-chip isolation and immunolabeling of tumor-related exosomes from plasma. 

LCAT has demonstrated its ability to perform enrichment, sorting and immunolabeling of red 

blood cells from whole blood. The integration of the previous LCAT applications with LCAT 

exosome isolation has the potential to provide on-chip immunolabeling of cancer derived 

exosomes.  

 The future of diagnostics is microfluidic. From accessibility to quick reaction times, the 

advantages of true lab-on-a-chip methodologies are endless. There is still much work to be done 

to integrate the multifaceted capabilities of LCAT into a POC device for early cancer detection, 

but the results of this study demonstrate that the research is moving in a promising direction. The 

work described in this report moves us a step closer to understanding and capitalizing on the role 

of EVs in cancer behavior. 
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