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Abstract

Modify the usual percolation process on the infinite binary tree by
forbidding infinite clusters to grow further. The ultimate configuration will
consist of both infinite and finite clusters. We give a rigorous construction
of a version of this process and show that one can do explicit calculations of
various quantities, for instance the law of the time (if any) that the cluster
containing a fixed edge becomes infinite. Surprisingly, the distribution of
the shape of a cluster which becomes infinite at time ¢ > 1/2 does not
depend on #; it 1s always distributed as the incipient infinite percolation
cluster on the tree. Similarly, a typical finite cluster at each time ¢ > 1/2
has the distribution of a critical percolation cluster. This elaborates an
observation of Stockmayer (1942).

AMS 1991 subject classification: 60K35, 05C80

*Research supported by N.S.F. Grant DMS96-22859



1 Introduction

Let T = (V,€) be the infinite binary tree, wherein each vertex has degree
three: V is the vertex-set and & is the set of undirected edges. Let (U, e € &)
be independent r.v.’s with U(0,1) (uniform on the interval (0,1)) law. Setting
By = {e : U. < t} gives the percolation process (B;,0 < t < 1) on T. This
has often been studied (e.g. Grimmett [7] sec. 8.1) as a simple proxy for the
more complicated percolation process on Z% It is elementary that the clusters
(connected edge components) of B; can be described in terms of Galton-Watson
branching processes, and that infinite clusters exist for ¢ > 1/2 but not for
t<1/2.
The evolution of the percolation process may be described by:

for each e € £, at time t = U, set B; = B;— U {e}.

The purpose of this paper is to study an analogous process of random subsets
Ay C & whose evolution (A, 0 <t < 1)is described informally by: Ag is empty,

(*) for each e € &, at time t = U, set Ay = A U {e} if each
end-vertex of e is in a finite cluster of A;_; otherwise set A; = A;_.

(A cluster is formally a set of edges, but we use the same word to denote the
induced set of vertices). This process is apparently novel, and seems natural
enough to warrant study. Our specific motivation is described in section 1.1,
and further related work and open problems are discussed in section 5.

Any process satisfying (*) must have A; = B; for ¢ < 1/2 but A; C By for
t > 1/2. Qualitatively, in the process A; the clusters may grow to infinite size
but, at the instant of becoming infinite, they are “frozen” in the sense that no
extra edges may be connected to an infinite cluster. The final state Ay will be
a random forest on T with both finite and infinite clusters, such that no two
finite clusters are separated by a single edge.

Rigorously speaking, it is not clear that (*) does specify a unique process.
In section 3 we give a rigorous construction, summarized as follows.

Theorem 1 There exists a joint law for (A;,0 <t < 1) and (Ue,e € &) such
that (*) holds and the joint law is invariant under automorphisms of T.

Call this (A¢) the frozen percolation process. We conjecture this is the unique
process satisfying (*), but it seems hard to exclude the possibility that there
might exist non automorphism-invariant processes satisfying (*). Here are some
explicit properties of the frozen percolation process.



Proposition 2 For a prescribed edge e and vertex v:

(a) P(cluster containing e becomes infinite in [t,t + dt]) = fzdt, T <t < 1.
(b) P(cluster containing v becomes infinite in [t,t + dt]) = Srdt, 3 <t < 1.
(¢) P(e in some infinite cluster of Ay) = T7/12
P(e in some finite cluster of Ay) = 1/16
Plegd Ay) = 17/48
(d) P(v in some infinite cluster of Ay) = 7/8
P(v in some finite cluster of Ay) = 7/64
P(v in no cluster of A1) = 1/64.

The pattern of our argument is as follows. A key distributional recursion is
isolated in section 2.1. In section 2.2 we assume the frozen percolation process
exists with natural independence and symmetry properties, and derive the for-
mulas in Proposition 2. The calculations use the idea that for a directed edge
€ there may be a first time ¢ that A; contains an infinite directed path from
e call this time Y;». The random variables Y;» satisfy the key recursion as r
varies, from which their law may be determined. In the rigorous construction
(section 3) we reverse the argument: first create by fiat random variables Y-
satisfying the recursion, then use them to define the frozen percolation process.
The point of this seemingly illogical order of presentation is that the rigorous
argument would appear very mysterious without having seen the results of the
heuristics.

In section 4 we study the shape of clusters of the frozen percolation process
for t > 1/2. Fix an edge é. Conditional on € being in a finite cluster of Ay,
the cluster has the law of a critical percolation cluster on T (Proposition 11).
Conditional on € being in an infinite cluster of Ay, the cluster has the law of the
incipient infinite percolation cluster on T, studied by Kesten [10], and moreover
is independent of the time at which the cluster becomes infinite (Theorem 14).
This simple structure seems remarkable — we do not have a simple explanation.

We remark that the alternative process (D;) defined by

for each e € T, at time ¢t = U, set D; = D;_ U {e} if at least one
end-vertex of e is in a finite cluster of D,_; otherwise set D; = D,_

is conceptually simpler, because there is a direct criterion in terms of (U.) for
whether a particular edge e enters the process at time ¢t = U,: is either end-
vertex of e in a finite cluster of {e : U, < t}7 Haggstrom [9] discusses Dy as



the minimal essential spanning forest on T. In Dy all clusters are infinite, but
([9] Theorem 4.5) the cluster containing a specified edge does not have the law
of the incipient infinite percolation cluster. The frozen percolation process is
harder to study because there is apparently no simple criterion, in terms of the
U’s only, for whether e enters the process at time U.. In fact it is not obvious
from our construction that A; is measurable with respect to (U, e € &): see
section 5.7.

1.1 Classical polymerization models

Regard a cluster in T as a polymer made up of “molecular units” capable
of forming three bonds. Then the ordinary percolation process B; can be re-
garded as a process of polymerization, where before the critical time there are
only finite polymers (the sol) and later there are infinite polymers (the gel)
also. Such models go back to Flory [6], but are usually presented in a differ-
ent way. Without explicitly mentioning the infinite tree, one gets the same
model by envisaging polymers in three-dimensional space and assuming that
any possible bond can form regardless of geometric position; without any ex-
plicitly specified underlying stochastic process, one can write down and solve
equations for ¢;(t) = proportion of size-i clusters at time ¢. See van Dongen
[13] for a recent review. In Flory’s model, like ordinary percolation, there is
interaction between sol and gel, while the variation in which bonds form only
between finite polymers was studied by Stockmayer [12], which contains the
following passage (without further elaboration).

As the reaction continues beyond the gel point, the number of small
molecules ...decreases, but ...their average size may be shown by
substitution into Eq. (15) to retain the constant value ...

Our frozen percolation process is intended as a interpretation of Stockmayer’s
idea within a precise stochastic model, with Proposition 11 as a formalization
of the passage above. Note that Proposition 11 deals with the distribution of
the cluster containing a given edge, i.e. the size-biasing of the distribution of a
typical cluster.



2 Computational arguments

2.1 The distributional recursion
Set I =[1/2,1]U {cc}. Define & : I x [0,1] — T by:
b(z,u) = zifa>u
= ooifz <wu.
Define a probability law v on I by
W(dy) = 3 dy, E<y <1 pis) = (1)

or equivalently by

v(y,00] = 55, 3 <y <L

Consider the following property for a probability law p on I.

If (Y1,Y2,U) are independent, each Y; having law p and U having U(0,1) law,
then ®(min(Y7,Y3),U) has law p. (2)

Lemma 3 Let p be a probability law on I which is non-atomic on [1/2,1].

Then p has property (2) if and only if for some 1/2 < 29 <1,

p(de) = 55 de, 1 <ax<awg ploc)=-—.

So in particular the law v at (1) has property (2).
Proof. From the definition of ®, alaw p on I has property (2) iff the distribution
function F' of u satisfies

F(z) = P(U <min(Y;,Y3) < z), <2<l
In the non-atomic case this is equivalent to
dF(z) =2z(1 — F(z)) dF(z), $<a<1
and hence equivalent to
F(z)=1- 5= on [1/2,1] N support(p).

Because the function 1 — % is strictly increasing, this can only happen if the

support is of the form [%, xo] for some 2. Reversing the argument, such laws

do indeed have property (2). O



2.2 The heuristic argument

In this section we assume the frozen percolation process exists and has the nat-
ural invariance and independence properties, and we proceed to do calculations.
The results of some of these calculations motivate the rigorous construction in
section 3.

It is convenient to start by studying a modified tree T = (17, E), wherein one
distinguished vertex (the root) has degree 1, and the other vertices have degree
3. This T is sometimes called the planted binary tree. Write € = (root, v.) for
the edge at the root. Clearly T is isomorphic to certain subtrees of T, in the
following way. Distinguish an edge in £ and call it € = (root, v.), then delete
the other two edges at “root” and their induced subtrees: the resulting subtree
is isomorphic to T.

As in section 1, let (U.,e € E) be independent r.v.’s distributed uniformly
on [0, 1], and consider a frozen percolation process on T. Let Y be the time at
which the component containing € becomes infinite, with Y = oo if never. Write
e1 and ey for the other two edges at v,, write ’i‘l for the subtree containing
e1 obtained by deleting é and ey and their induced subtrees. Let Y] be the
time at which, in frozen percolation on ’i‘l, the cluster containing e; becomes
infinite. Define Ty and Y3 similarly. Then in frozen percolation on ’i‘, the
cluster containing vertex v, becomes infinite at time min(Y7y,Y3). At that time,
if edge € has already appeared, i.e. if Uz < min(Y7,Y3), then edge € joins an
infinite component; otherwise é never enters the process. Thus

Y = &(min(Yy, Y3), Us). (3)

Since the trees ’i‘z are isomorphic to T we expect Y7 and Y3 to have the same
law as Y. So this law satisfies (2), and Lemma 3 strongly suggests it is the
law (1). Assuming this is true, we proceed to do the calculations leading to
Proposition 2. Consider the frozen percolation process on T. Fix an edge e
and let Z be the time at which e enters an infinite cluster (7 = oo if never).
Write ey, €3, €3, €4 for the edges adjacent to e, ’i‘l, .. .,’i‘4 for the corresponding
subtrees isomorphic to ’i‘, and (Y;,1 < i < 4) for the times at which e; enters
an infinite cluster of the frozen percolation process restricted to T,. Then

7 = min(Yl,Yg,Yg,Y4) if U, < min(Yl,Yg,Yg,Y4) (4)

= oo if not.

We can therefore obtain the density fz of Z on % < 2 <1 1in terms of the law
(1)of V:

J7(2) = 2 X 4203 (2, 00) = da (L) = 1. (5)



This is assertion (a) of Proposition 2. So

1

P(e in some infinite cluster of A1) = P(Z <1) = / rde = 5.
1/2

Next, note that the event {e in some finite cluster of Ay} is the event {Y; =
00,1 < i < 4}. Clearly the latter event has chance v*(c0) = (1/2)* = 1/16.
These calculations establish assertion (c) of Proposition 2, since the three events
in question are exclusive and exhaustive.

Now fix a vertex v. Let ’i‘l,’i‘g,’i‘g be the subtrees induced by the three
edges ey, €9, e3 at v, and (V;, 1 <7 < 3) the times at which, in frozen percolation
on ’i‘i, the cluster containing e; becomes infinite. Then in the frozen percolation
process on T,

the time at which v joins an infinite cluster is distributed as min(Y7,Y2,Ys).
(6)
By (1) the density of this minimum is

34 v (y,0) = 355 (3;)° = oo

establishing assertion (b) of Proposition 2. Moreover
P(v in some infinite cluster of A;) =1 — P*(Y = 00) = 1 — (1/2)* = 7/8.

Similarly
P(v in no cluster of A;) = ¢*

where ¢ is the chance that, in frozen percolation on ’i‘, the special edge € is not
in A;. Now in the notation of (3)

1 1

zmmmmgagxmx:/ (1=(L)2)dz =

q:m@zmmnn»:/ L
1/2

1
1/2 4

Thus P(v in no cluster of Ay) = (1)® = 2, establishing assertion (d) of Propo-

sition 2.



3 The construction

Recall T = (V,&) is the infinite binary tree, and (U.,e € &) are independent
r.v.’s with U(0,1) law. Each undirected edge e can be identified with two
directed edges ?,Z: write E for the set of directed edges. For ?EE define
U =U-=Ue where e is the corresponding undirected edge. According to
context, (v, w) may denote either the undirected edge or the directed edge. For
directed edges we have a natural language of family relationships: the edge
€= (v, w) has two children of the form (w,z1) and (w, z3).

Recall v is the law (1). Note that direction matters in the following lemma:
Y;» is typically different from Yg.

Lemma 4 There exists a joint law for ((U-,Y-) ‘ee€&) which is invariant

under automorphisms of T, and such that for each el

Yg has law v
Y- = ®(min(Y-,Y-),U-) a.s. (7)
e €1 €2 €

— — ) —
where e1 and ey are the children of e.

Proof. Fix an undirected edge eg. Fix h > 1. Let Egh be the set of directed

edges whose distance from eq is at most h. Let &}, be the set of directed edges
whose distance from eq is exactly h and which are directed away from eq. Take

(Y- :?Ezh) to be independent of (U-, 26?) with each Y- having law v. Use

(7) recursively to define Y- for ?Ezgh. Lemma 3 ensures that each Y- has
law v. As h increases, these joint laws are consistent (again, by Lemma 3) and
so the Kolmogorov consistency theorem establishes existence of a joint law for
(U=, Y=) :?EE). Checking invariance is straightforward. O

It is easy to check the following independence properties of the construction
above. For a directed edge ?, consider the set consisting of ¢ and all its
descendants; then write D(€) for this set of edges, considered as undirected
edges.

Corollary 5 Foreach ¢ > 1let f;1, fio,... € & and let ez_':l, 62_':2, ... €E. Write
D; = UjD(eZ_':j) U{fi1, fi2,...}. If the sets D; are disjoint as i varies then the
o-fields U(Y; Uy, ;7 > 1) are independent as i varies.

2,9 >



By modifying on a null set, we may suppose that in (7) the equality holds

always (instead of a.s.) and that the values of U.,Y~,Y~ (where finite) are
€1 €2

surely distinct, and not equal to 1. Suppose Yg < 1. Then exactly one child of

¢ has Y-value = Y. So arguing inductively, associated with ¢ is an infinite

- = = —

ray e=eg,e€1,e€es,...such that Ye—; = Y;» for all 1.

We can now state the construction of the frozen percolation process. Fs-
sentially, we take the heuristically obvious property (4) as a definition. For an
undirected edge e, write d({e}) for the set consisting of the four edges adjacent
to e, each directed away from e. Define

A1 ={eec&:U. <min(Y,:e € d({e})) }.

Then define
At:{eEAl:Uegt}, 0<t<l. (8)

It is clear that (A;) inherits from (Y- ) the automorphism-invariance property.

It is also clear that the only possible time at which e can join the process
(A4, 0 <t <1)is at time U.. To complete the proof of Theorem 1 we need a
further result. Say a vertex v percolates at time t if it is in an infinite cluster
of Ay, that is if there exists an infinite ray » = wvg, vy, v9,... such that each
(vi,viq1) is in Ay,

Proposition 6 Lett < 1. A vertex v percolates at time t ifft > min(Ye—{,Ya,Ya),

€2 €3
— = — .
where €1, €9, €3 are the edges at v, directed away from v.

Granted this result, fix an undirected edge e and consider time t = U, < 1. Let
€= (v, w) be a directing of e. By (7), Y- > . By Proposition 6, v is in a finite
cluster at time ¢ iff ¢ < min(Yg,Y;S), where 3 and e3 are the other edges at

v, directed away from v. Applying the same argument to w, we see that the
property

both end-vertices of e are in finite clusters at time ¢
is equivalent to the property
t <min(Y : e’ € 9({e}).

Thus the defining criterion (8) for e joining the frozen percolation process (A¢)
is exactly the same as rule (*). This establishes Theorem 1.
The proof of Proposition 6 requires a series of lemmas.



Lemma 7 Let ey be a child of e1. If e (the undirected edge corresponding to
e_{) has e; € Ay then Y- <Y-.
€1 €2

Proof. Let e5 be the other child of €. By the recursion (7), the only way it can
happen that Y- > Y- is if min(Y=,Y-) < U-, but in that case e; ¢ A;. O

e1 (=) €2 €3 €1
Lemma 8 Ift < Y;» and t < 1 then there is no infinite ray of edges in A;

starting with €.
Proof. Fix t <13 <1 and a finite path ?:e_{),e_{,e_ﬁ, ...,ep. Consider the event

D:{Y;»Ztg and e; € Ay for 0 <7 < h}.

—

On D, for 1 < i < h the fact e;_y € Ay implies U, < min(Y;,Y;), where f;

€1
is the other child of 22'—17 and therefore

Y- = mln(Y;,Y‘?)

€i—1

On the other hand, on D we have Y;» > ity and so by applying Lemma 7
repeatedly we see Y? > 13. So the equality above shows YJT > 13. So
t—1 .

P(D)gP(Ueigt,YFth, 1§i§h).

By Corollary 5 the random variables involved in the right side are independent,
and using (1) we find
P(D) < (t/2t)".

Summing over all 2" possible paths of length h,
P(Y= > 15,3 h-edge path in A; starting with €) < (t/tx)" (9)
Letting h — oo,
P(Yg > ty, dinfinite path in A; starting with ?) = 0.

Letting t5 | t establishes the lemma. O

Recall the statement of Proposition 6 and change the notation slightly:
write eﬁ],ea], eE)] for the edges at a vertex v, directed away from v. Lemma 8
establishes half of Proposition 6: if t < min(Y-,Y - Y —)and ¢t < 1 then v

€11 €21 €[a]
does not percolate at time ¢. The next lemma establishes the other half.

10



Lemma 9 Ift =Y~ < min(Y; ,Y;) then v percolates at time t via edge
[1] [2] [3]

6[1] .

Proof. We may take t < 1. Since Ye[—>] < 1, using (7) repeatedly there exists an
1

- = = —

associated infinite ray e;jj=ey, €z, €3, ... such that
U-< t=Y- 1> 1 (10)
t:Y; <1/;>7 222 (11)

where f; is the other child of ?i_l. We need to show e_}e Ay for each 7 > 1.
For j > 2 this means we need to show

U—- < min (Ya Y- Y- Y- )
€5 Citr [y fy fi1
The first three terms on the right satisfy the inequality by (10,11), so it is

enough to show
t<Y- , j>2

g—1

If this fails, it fails for some minimal j, and Y- = < t, say. If 7 > 3 then
€ J—1
by (7) either Y? =t or Y- =1 but the former is forbidden by (11) and
1 €j=-2

S
the latter by minimality. If it fails for j = 2 then (7) implies either Y{—»} =t
€[2
or Y{—»} = ', but this is forbidden by hypothesis. So 676 A; for all j > 2.
€[a

Similarly, to show eE]E A; it is enough to show

t < min (Ya,Ya,Ya ,Y—»)
€2 fo €21 €3]

and again this follows from (11) and hypothesis. O

3.1 Complements to the construction

Reconsider the calculations in section 2.2 which led to the formulas stated as
Proposition 2. The calculations were based on (3,4,6) and independence prop-
erties; these were rigorously established in (7,8), Proposition 6 and Corollary
5. So Proposition 2 is rigorously established.

In the proof of Proposition 6 we made use (at (9)) of the fact ¢t # 1. A
further argument, Lemma 13 below, extends Proposition 6 to t = 1, which
then implies the corresponding result for edges, which we state as

11



Corollary 10 For e € £ define
Z. =min(Y. : € € 0({e}) ).

Then either Z. = oo and e & Ay, or e enters the frozen percolation process at
time U, and its cluster becomes infinite at time Z., where U, < Z., < 1.

It is easy to see that each infinite cluster is a “tree with one end”, i.e. any
two infinite rays agree outside some finite set of edges. Theorem 14 gives more
precise information about the infinite clusters.

12



4 The shape of clusters in frozen percolation

Distinguish an undirected edge € of the binary tree T = (V, ). Write C; for the
cluster containing € in the state A; of the frozen percolation process, with C;

empty if € ¢ A;. Proposition 2(c) shows the probabilities of Cy being { infinite,

finite non-empty, empty } are {%, 11—6, %}. In this section we elaborate on the

shape of C;.

4.1 The shape of finite clusters

In the ordinary critical percolation process By, on the edges £, write B for

the cluster containing €, conditional on edge € being present. So B is a certain
modified critical Galton-Watson tree.

Proposition 11 et % <t < 1. Conditional on C; being finite non-empty, Cy

has the same law as B.

Proof. Let s be a non-random finite subtree of T containing é. Write #s for
the number of edges of s. Clearly

P(s C B) = (1/2)#1, (12)
We will show
P(s CCyand Cy is finite ) = (1/2)#5+373, (13)
Applying this to s = {€} shows
P(C, is finite non-empty ) = (1/2)*%?
and then applying (13) for general s shows
P(s C C4] C; finite non-empty) = (1/2)#571, (14)

Comparing (12) and (14), the desired equality of laws then follows, by inclusion-
exclusion or by Dynkin’s 7 — A lemma.

Write 0(s) for the set of edges in & \ s which are adjacent to some edges
of s, directed away from s. It is easy to check that #09(s) = #s + 3. Equality
(13) then follows from the next lemma, since the events in (ii) are independent
(Corollary 5), making the probability of event (i) equal (4 )#831#8,

13



Lemma 12 The following are equivalent.

(i) s CCy and Cy is finite .

(ii) Y= > 1 ¥ €€ d(s) and U. < 1 Ve € s.

Proof. Suppose (ii) holds. Applying (7) recursively we see that Y- > ¢ for

each directing ¢ of each edge e € s. Therefore each e € s enters the frozen
percolation process and so s C C;. And by Proposition 6 no vertex of s is in
an infinite cluster of Ay, so C; is finite. Conversely suppose (ii) fails, so there

is some vertex fE J(s) such that Y? <t. Now f must have a parent edge r
for which the undirected edge e is in s. If (i) holds then e € C; and so Lemma
7 implies Yg <'t. Then Proposition 6 shows that some end-vertex of € is in an
infinite cluster of A;, contradicting the assertion (i) that C; is finite. O

4.2 Infinite clusters don’t form at time ¢ =1

As mentioned earlier, our proof of Lemma 8 doesn’t work for t = 1. Here is the
patch needed to establish Proposition 6 for ¢t = 1.

Lemma 13 P(#C: < oo Vit < 1, #(C1 = ) = 0.

Proof. Because a finite cluster can only grow at times of the form U, for some
adjacent edge e,

P(#Cy <k, #C1 = x) < P(U—» > t for some €€ E<k) < (L =1)#E<h
where £« is the set of directed edges whose distance from € is at most £. Also,
Pk < #Cy < 00) < P(k < #C; < 00|l < #Cy < 00) = P(#B > k)

by Proposition 11. Thus

P(#Cy < 00, #C1 = ) < mkin(P(#B > k)4 (1 - O)#E<r)
— Oast] 1.

4.3 The incipient infinite percolation cluster

As above, distinguish an undirected edge € of the tree T. Construct a random
infinite tree C*° containing é as follows. First pick uniformly at random an
infinite ray

— = —

— . . ~
€1,€2,€3,..., Where e is a directing of é. (15)

14



Let each edge of this ray be present with probability one; let each other edge
of £ be independently present with probability 1/2; define C* to be the cluster
of edges containing €. This C™ is the incipient infinite percolation cluster
containing €. It arises by considering the cluster containing € in the ordinary
percolation process B; with ¢ > 1/2, conditioning on this cluster being infinite,
and then taking a weak limit as ¢ | 1/2 (cf. Kesten [10], Haase [8]). Recall C; is
the cluster containing € in the final state Ay of the frozen percolation process.
Write Z; for the time at which the cluster containing é becomes infinite. So
(Corollary 10) the event {#Cy = oo} is the event {Z; < 1}.

Theorem 14 Conditional on the event {#C1 = oo}, C1 has the same law as
C® and is independent of Zs.

We find this result quite surprising. Our initial intuition was that for ¢t > 1/2,
the lack of availability of edges already frozen into other infinite components
would mean that the trees which become infinite at ¢ should become “thinner”
as t increases.

4.4 Proof of Theorem 14

We follow the pattern of the proof of Proposition 11. Let s be a finite subtree
of T containing é. Write #s for the number of edges of s. Let e, be an edge
of s, directed, and such that no child of e, is an edge of s. Recall C* is the
incipient infinite percolation cluster. We claim

P (s C C* and e, is in the infinite directed ray (15) of COO) = (1/2)#%. (16)

Because, writing d for the number of edges on the path from ¢ to e, (including
end-edges), then the chance that the ray (15) starts as this d-edge path segment
equals (1/2)%, and the chance that the remaining #s — d edges of s are in C*°
equals (1/2)#871,

Now consider Ci. As in the proof of Lemma 9, if Z; < 1 there exists an
infinite ray e_{,e_ﬁ,e_;;, ... with e_{ a directing of € such that Y;» = 7 for each e

in the ray. Fix a finite tree s and an edge e, as above. Let 1/2 < t < 1. We
shall show that the event

s C Cy and Zs € [t,t + dt] and e, is in the infinite directed ray eq, ez, €3, ...

(17)
has probability (%)#Sﬁdt. By (16), this agrees with the probability of the
corresponding event for the independent pair (C*, Zz). Then Dynkin’s 7 — A

15



lemma identifies the joint laws of (Cq, Z¢) and (C*, Z;) as being identical on
{Zs < 1}, which is the assertion of Theorem 1.

We first need a criterion for when event (17) occurs. Recall from section
4.1 the set d(s) of edges adjacent to s, directed away from s.

Lemma 15 Fvent (17) occurs iff
(i) Uc < t for each e € s
(ii) min{Y_ :¢ € d(s)} € [t,1 + di]

(iii) the minimum in (ii) is attained at some child of ..

Proof. Suppose (i) - (iii) occur, and set y = min{Y- ec d(s)y € [t,t + di).
Write £ for the set of directed edges corresponding to the undirected edges of
s. C0n51der ec ES with both of its children outside ES By the basic recursion
(7), if € =c, then Yg = y and otherwise Yg > y. Arguing recursively “away

from the boundary of s” we see that Yg > y for those € Es which are not part

of the ray eq, e, €3, .. and Y;» = y for edges ¢ within the ray. So Zz = y and
by definition (8) of A; we have s C A;. Conversely, suppose event (17) occurs.
Then (i) is immediate. Now Y= = Z; for all e; in the ray and in particular for

some child of e, so to establish (ii) and (iii) it is enough to show
min{Y- e d(s)) > t.

If not, then Y= = y < ¢ for some €= (wy,wy) € d(s). Thus the vertex wy

enters an infinite cluster at or before time y. But € € d(s) means wy is a vertex
of s and hence of Cy; since the infinite cluster containing wy can’t grow after
time y, this means Z; < y, a contradiction. O

Using Lemma 15, the chance of event (17) equals

2
#0(s)

where the three terms correspond to the three requirements of the lemma. Since

#0(s) = #s + 3, this reduces to ( V#8 Ldt as required.

4%

1 _
S X #8( )2t2 (%)#8(8) !
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5 Related work and open problems

5.1 The lattice setting

Obviously one can seek the define the frozen percolation process on Z% (d > 2)
or more general graphs. But proving existence and uniqueness on Z¢ seems a
challenging problem. To see the difficulty, one could start with the analogous
process on the finite region [— L, L]? in which the distinction between finite and
infinite clusters was replaced by the distinction between clusters disconnected
from or connected to the boundary. Heuristically, letting . — oo and taking
weak limits should give the frozen percolation process on Z% But a limit of
finite clusters is not necessarily finite, so it seems hard to prove even existence
this way.

As suggested by Jennifer Chayes and by Geoff Grimmett (personal com-
munications), one might suspect that existence and uniqueness of the frozen
percolation process on Z¢ might be related to uniqueness of infinite clusters in
supercritical percolation. The same remark holds for the next process.

5.2 A stationary process

Somewhat analogous to the frozen percolation process is the following process.
Each edge of T may be “on” or “off”. An edge which is off will turn on at
(stochastic) rate 1. When an infinite cluster of “on” edges appears, all the
edges in the cluster turn off simultaneously.

It seems intuitively clear that some unique stationary process satisfies this
description, but I do not see a rigorous proof. Note this is a kind of interacting
particle process on the edges of T, but different from the usual processes in
which only one or two changes may occur simultaneously.

5.8 Trees with one end

Random infinite trees with one end arise in several contexts. Omne context
(Kesten [10]) is as critical or subcritical Galton-Watson branching processes,
conditioned to be infinite via some limiting procedure. Aldous - Pitman [3] give
a detailed study of growth processes associated with such trees. The notion of
uniform random spanning forest on an infinite graph, analogous to uniform
random spanning tree on a finite graph, has attracted study since Pemantle’s
[11] treatment of Z?. See Benjamini et al [4] for a detailed recent treatment. In
many cases the tree-components of the forest have only one end, for instance ([4]
Theorem 10.1) the wired uniform spanning forest on any Cayley graph which is
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not a finite extension of 7, and ([4] Theorem 12.4) any planar recurrent graph
with a finite number of sides to each face.

5.4 d-regular trees

Our arguments extend essentially unchanged to the tree T¢ in which each vertex
has d > 3 edges. In this setting, the random time that the cluster containing a
prescribed vertex becomes infinite (given by Proposition 2(b) in the case d = 3)
has density function

—d _2(d-1)

dd—2)""(d-1)7= 27772, L <z <1,

Writing X¢ for a r.v. with the law above, we see that as d — oo there is a limit
law for dX® with density x%, 1 <z < oo. This limit law reappears below.

5.5 Random graph analogs

The Erdés - Rényi random graph process (n vertices; each edge present indepen-
dently with chance ¢/n) provides an alternate mean-field model of percolation.
The n — oo limit of the component containing a specified vertex is the family
tree of a Galton-Watson branching process with Poisson(t) offspring, for which
the critical time is ¢ = 1, and the analogous incipient infinite percolation cluster
is this branching process conditioned to be infinite (call this law PGW®(1),
say). Now one can consider an analog of frozen percolation in the Erdds - Rényi
setting, by freezing components when their size exceeds a threshold size w(n)
for which w(n) — oo, w(n)/n — 0. Conjecture 3.6 in Aldous [1] says that
in the n — oo limit, the component (C, say) ultimately containing a specified
vertex and the time (7, say) when the component exceeds the threshold satisfy
(i) C has PGW™(1) law;

(ii) 7 has density x%, 1 <2 < oo;

(iii) C and Z are independent.

This joint law is the d — oo limit (cf. section 5.4) of the T? analog of the
joint law in Theorem 14. Now there is a rather subtle abstract structure (see
[2] Construction 8 for an outline) which plays the role of the n = oo case of
the random graph; and presumably within this structure one can construct an
analog of the frozen percolation process satisfying (i)-(iii). But this construc-
tion, and deriving the weak convergence asserted in the conjecture, both seem
rather tricky.
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5.6 Emergence of the infinite cluster

How the cluster containing a specified edge € becomes infinite (if it does) is
qualitatively different in the frozen percolation process and the ordinary per-
colation process. In the latter, at some random time the finite cluster gets
linked to an already-infinite cluster, whereas in the former case the cluster size
#C; 1 o0 ast T Zz. In fact, conditional on the infinite cluster C forming at time
Ze < 1, the values (U, e € C) arei.i.d. U(0, Zz), implying that the conditioned
process (C¢,0 <t < Zz) is a “pruning process” in the class discussed in section

3.3 of [3].

5.7 Reconstructions and uniqueness

As mentioned in the introduction, it is not clear that the frozen percolation
process (A¢, 0 <t < 1)is a measurable function of (U,e € £). Proving this

reduces to proving that for a fixed fEE,

Y? is o(U., e € £) — measurable. (18)

Now the process ((Y-,U-), ¢ a descendant of ?) is a branching Markov
process on state-space I x [0, 1] whose transition law can be written explicitly.
We suspect that analysis of this branching Markov process can be used to
establish (18), but we have not pursued the details. This issue is analogous
to questions about the Ising model on T, specifically about extremality of free
boundary Gibbs states: see section 2.2 of Evans et al [5] for a recent account.
Similarly, the question of whether the frozen percolation process constructed
in Lemma 4 is the unique process satisfying (*) is analogous to questions about
uniqueness of Gibbs distributions.
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