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ABSTRACT OF THE DISSERTATION

ESSAYS ON MANAGERIAL LEARNING FROM FINANCIAL MARKET PRICES

By

Xiaoqi Xu

Doctor of Philosophy in Management

University of California, Irvine, 2021

Associate Professor Chong Huang, Chair

Learning from market prices by decision-makers in the real side of the economy affects

informed investor trading behavior and financial market efficiency, which feedback to man-

agers’ decisions and real efficiency. Such a feedback loop provides some interesting results on

what could be equilibrium outcomes in the financial markets. In this doctoral dissertation,

I study the role managerial learning from financial market prices plays in various financial

and economic settings.

Chapter 1 studies the dark pool effects on price discovery and real efficiency when

firm managers who need to make production investment decisions learn information from

financial market prices. A strategic informed investor trades on private information and

chooses a trading venue between an exchange market and a dark pool. An uninformed noise

investor randomly selects a trading venue and randomly trade. Managerial learning leads to

wiser real decisions and results in higher firm value, which aggravates the buying profits and

alleviates the short-selling profits of the informed investor. The magnitude of managerial

learning effects and the execution risk of dark pool trading vary in the noise trading in the

exchange market. As a result, the dark pool effects on informed investor trading venue

choice, exchange market efficiency, and real efficiency all depend on the noise trading in the

exchange market.

xi



Chapter 2 investigates the dark pool effects on investor trading venue choice in a model

featuring managerial learning from exchange market prices. The model is essentially the

one studied in Chapter 1 with transaction cost in the exchange market and delay cost of

the uninformed liquidity investor that make the uninformed liquidity investor trading venue

choice endogenous. While the transaction cost and the delay cost affect the informed trading

and liquidity trading in the exchange market, the dark pool does not divert investors away

from the exchange market and thus does not affect the exchange market efficiency. However,

the dark pool may initiate investors’ coordination motives to trade in the dark pool whenever

trading in the exchange market can not bring higher profits than choosing not to trade.

Chapter 3 analyzes the interaction between secondary financial market efficiency and

product market competition in an entry game. A potential entrant learns from an insider’s

trading in the stock market of a monopoly incumbent, such that the insider and the entrant

have conflicting interests. Once the entrant enters, it competes with the incumbent in a

Cournot duopoly setting and reduces the incumbent firm value. As a result, entrant learning

causes “buy-side” limits to arbitrage. Depending on different entry barriers, transaction costs

in the financial market may increase or decrease entry probability. The impact of transaction

costs on the entry probability is also affected by economic and informational conditions that

the insider faces. A policy of reducing entry barriers has non-monotonic effects on entry

probability.
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Chapter 1

Dark Pool Effects on Price Discovery

and Real Efficiency

Abstract This paper studies dark pool effects on exchange market efficiency and real eco-

nomic efficiency in a model featuring managerial learning from the exchange market. When

the exchange market has low noise trading, an informed investor surely trades in the dark

pool when firm fundamentals are bad and randomizes between the exchange market and

the dark pool when firm fundamentals are good. Such trading asymmetry is associated

with asymmetric firm investments and leads to asymmetric limits to arbitrage. At some

noise trading levels in the exchange market, the dark pool increases both exchange market

efficiency and real economic efficiency; at some others, the dark pool surprisingly increases

real economic efficiency even if it harms exchange market efficiency. Hence, using exchange

market efficiency to assess dark pools may overestimate their adverse effects on real eco-

nomic efficiency. We also find that the effects of managerial learning is non-monotonic in

the exchange market noise trading level.

JEL Classification: D83, G11, G14, G18

Key words: Dark pool, managerial learning, exchange market efficiency, real efficiency
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1.1 Introduction

Regulatory reform has led to the rapid growth of dark pools.1 Unlike exchange markets,

dark pools do not disclose their bid and ask quotes, and they delay publicly displaying

trading information. Such low transparency facilitates institutional investors’ block trading

by preventing large orders’ adverse price effects. Recently, the rise of electronic transactions,

together with the almost zero transaction fee, also makes dark pools attractive to retail

investors.

In spite of the fast growth of dark pools, their low transparency raises serious concerns in

policy circles. In particular, regulators are worried that dark pools may hinder price discovery

in exchange markets, a critical role played by exchange markets in modern economies. The

SEC (2018), for example, states that price discovery is harmed for high levels of trading on

alternative trading systems. Many recent studies, such as Ye (2011), Jiang, McInish, and

Upson (2014), and Zhu (2014), come on the heels of the regulatory debate over dark pools,

but they draw different conclusions on the dark pool effects on price discovery in exchange

markets.

Such a concern, however, is even more disquieting when real decisions are made based

on exchange market prices. Many empirical studies, such as Luo (2005), Chen, Goldstein,

and Jiang (2007), Bakke and Whited (2010), Foucault and Frésard (2012), and Jayaraman

and Wu (2019) have provided evidence that firm managers are gleaning information from

exchange market prices and making real decisions based on such information.2 Then, a

näıve implication will be that if dark pools hurt exchange market efficiency, they will weaken

1As of May 2018, dark pools accounted for 12.8% of average daily trading volume, and as of February
2020, there were more than 50 dark pools registered with the SEC. According to Rosenblatt Securities, an
institutional brokerage firm specializing in market structure, dark pool trading roughly rose from 6.5% in
2008 to around 14% in 2012 of U.S. equity volume, and it rose from 3% in 2010 to around 9% in 2017 of
European equity volume. We shall provide a brief introduction to dark pools in Section 1.2.

2See Bond, Edmans, and Goldstein (2012) for an excellent survey of this literature.
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the role of the exchange market in guiding firm investments and thus reduce real economic

efficiency.

In this paper, we investigate dark pool effects on exchange market efficiency and real eco-

nomic efficiency when managers are learning from the exchange market. Several interesting

questions arise. How does an informed investor’s trading venue choice depend on her private

information? Will dark pools necessarily reduce exchange market efficiency? When dark

pools reduce exchange market efficiency, do they necessarily reduce real economic efficiency?

We answer these questions in a model in which a firm manager decides to expand,

remain, or reduce the firm investment and an informed investor chooses to trade in an

exchange market or a dark pool. The firm value is determined by its investment and firm

fundamentals. The firm fundamentals are either high or low and are privately known by

the informed investor. There is a noise investor who randomly makes trading venue choices

and then randomly chooses positions after arriving at a trading platform. Both investors

trade simultaneously. If they submit orders to the exchange market, their orders will be

surely executed because the exchange market has a competitive market maker who provides

liquidity. Alternatively, investors may submit their orders to the dark pool where order

execution is not guaranteed and where potential execution price is the concurrent asset price

in the exchange market. The manager and the market marker then observe the total trading

volume in the exchange market; however, neither observes trading in the dark pool. Based

on their information, the market maker sets a price to make herself break even, and the

manager makes investment decisions to maximize the firm value.

We find that the dark pool effects on the informed investor trading venue choice, ex-

change market efficiency, and real economic efficiency all depend on the probability that the

noise investor trades in the exchange market. Specifically, when the noise investor is more

likely to trade in the exchange market (i.e., the exchange market has high noise trading), the

3



informed investor chooses the exchange market for sure,3 and the dark pool promotes both

exchange market efficiency and real economic efficiency. By contrast, when the exchange

market has low noise trading, the informed investor surely sells in the dark pool at low firm

fundamentals, while she randomizes between the two trading venues at high firm fundamen-

tals. That is, the informed investor trading venue choice is asymmetric, which is associated

with the asymmetric firm investments and leads to asymmetric limits to arbitrage in the

exchange market.

Comparing with a benchmark where there is no dark pool, and thereby both investors

can trade in the exchange market only, we find that the dark pool reduces exchange market

efficiency when the probability of noise investor trading in the exchange market is close to

zero or one half but promotes exchange market efficiency otherwise. Furthermore, whenever

the dark pool promotes exchange market efficiency, it increases real economic efficiency.

Surprisingly, we also identify circumstances when the dark pool harms exchange market

efficiency but increases real economic efficiency.

The asymmetric trading venue choices of the informed investor arises from several fea-

tures of our model. First, managerial learning significantly affects investor trading venue

choice since it determines firm investment and thus firm value. As in Edmans, Goldstein,

and Jiang (2015), we assume that expanding investment and reducing investment are re-

spectively the correct investment decisions when the firm fundamentals are high and low.

Therefore, when firm fundamentals are high, a long position of the informed investor in the

exchange market guides the manager to expand investment, leading to a higher firm value

and a higher buying profit. When firm fundamentals are low, a short position of the in-

formed investor in the exchange market leads the manager to reduce investment, resulting in

a higher firm value and a lower short-selling profit. Hence, managerial learning increases the

incentives of the positively informed investor (informed investor observing high firm funda-

3In our model, there is no transaction cost in either market. Hence, independent of the market she chooses
to trade, the informed investor buys when the firm fundamentals are high and sells otherwise.
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mentals) to buy in the exchange market but reduces the incentives of the negatively informed

investor (informed investor observing low firm fundamentals) to sell in the exchange market.

However, managerial learning alone is insufficient to explain the asymmetry of the in-

formed investor’s equilibrium trading venue choice. Indeed, the key insight in our paper is an

opportunity cost of trading in the exchange market, which is the trading profit in the dark

pool. Importantly, such an opportunity cost is endogenous: in the dark pool, the trading

profit depends on the execution price, which is the concurrent asset price in the exchange

market and is determined by the market maker’s belief about the informed investor trading

venue choice.

When the noise investor is more likely to trade in the exchange market, the informed

investor can hardly find a counterparty in the dark pool. The low execution rate in the

dark pool results in a low opportunity cost, which is dominated by the trading profit in the

exchange market. Hence, the informed investor trades in the exchange market, regardless of

the firm fundamentals.

By contrast, when the noise investor is more likely to trade in the dark pool, the in-

formed investor can easily find a counterparty in the dark pool. So, her opportunity cost

of trading in the exchange market is high. Importantly, the opportunity cost is asymmetric

in this case. Because of managerial learning, the negatively informed investor has strictly

weaker incentives to choose the exchange market than the positively informed investor. As a

result, the firm manager’s posterior belief shifts toward bad fundamentals after learning from

the exchange market, making her reduce firm investment. In turn, the negatively informed

investor’s profit by selling in the exchange market is dominated by that in the dark pool

(equivalent, the opportunity cost of trading in the exchange market dominates the trading

profit in the exchange market). Ultimately, in equilibrium, the negatively informed investor

surely chooses the dark pool. The positively informed investor, on the other hand, is indif-

ferent between the exchange market and the dark pool in equilibrium, so she randomizes

5



between these two trading venues. We further show that the probability of the positively in-

formed investor buying in the exchange market increases in the noise trading in the exchange

market.

The investor trading venue choice determines the exchange market efficiency. We mea-

sure the exchange market efficiency by mutual information introduced in information theory

(Shannon, 1948), because the endogenous firm value makes the commonly used variance

ratio (Kyle, 1985) implausible in our framework. When the exchange market has high noise

trading, the informed investor surely trades in the exchange market. Then, as noise trad-

ing increases further, the exchange market efficiency decreases. Therefore, the dark pool

increases exchange market efficiency because it helps divert noise trading from the exchange

market.

When the exchange market has low noise trading, the dark pool effect on exchange

market efficiency is non-monotone as the noise trading increases. In particular, when the

noise trading in the exchange market is extremely low, the informed investor prefers the dark

pool, so little information is incorporated into the exchange market. As a result, the dark pool

reduces exchange market efficiency. As the noise trading increases, the positively informed

investor is more likely to trade in the exchange market, increasing exchange market efficiency.

(Recall that the negatively informed investor surely chooses the dark pool, regardless of the

noise trading in the exchange market.) However, once the noise trading increases beyond a

threshold, the positively informed investor surely trades in the exchange market. Then, any

further increase in the noise trading will reduce exchange market efficiency.

The dark pool effect on exchange market efficiency then implies its effect on real eco-

nomic efficiency through managerial learning. We measure real economic efficiency by ex-

ante expected firm value. We show that whenever the emergence of a dark pool increases

exchange market efficiency, real economic efficiency increases. This is intuitive: a more effi-

cient exchange market can guide the manager to make wiser investment decisions. A more

6



surprising result is that the dark pool promotes real economic efficiency in some circum-

stances, even if it hurts exchange market efficiency. For example, when the probability of

noise investor trading in the exchange market is sufficiently close to one-half, the dark pool

reduces exchange market efficiency but increases real economic efficiency. Specifically, with

a dark pool, the manager is more likely to reduce corporate investment, which increases the

firm value when the firm fundamentals are low. When the firm fundamentals are high, the

positively informed investor surely trades in the exchange market, guiding the manager to

expand investment; hence, the firm value will also increase.

Our theoretical analyses have important policy implications. First, whether dark pools

increase or decrease exchange market efficiency depends on the noise trading in the exchange

market. Therefore, to evaluate the dark pool effects on price discovery in the exchange mar-

ket, we need to calibrate how dark pools affect the noise trading in the exchange market.

More importantly, when evaluating the dark pool effects on real economic efficiency, poli-

cymakers who aim to improve real economic efficiency should not simply use the exchange

market efficiency as a proxy because dark pools may sometimes hurt exchange market effi-

ciency while promoting real economic efficiency.

In addition to the dark pool effects, we also examine managerial learning effects on the

investor trading venue choice and generate empirical implications for the managerial learning

hypothesis. In a benchmark where the manager does not learn from the exchange market,

the informed investor’s trading venue choice is symmetric; that is, she chooses the exchange

market with a probability that is independent of the firm fundamentals. This probability

increases in the likelihood of the noise investor trading in the exchange market. By contrast,

when the manager is learning from the exchange market, there are more severe sell-side but

less severe buy-side limits to arbitrage in the exchange market, and the buy-side limits to

arbitrage are attenuated as the probability of the noise investor trading in the exchange

market increases. Finally, managerial learning promotes exchange market efficiency when
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the noise investor is very unlikely to trade in the exchange market but then hurts it when the

probability of the noise investor trading in the exchange market increases beyond a threshold.

When the noise investor is very likely to trade in the dark pool, managerial learning does

not affect exchange market efficiency.

Our paper contributes to the fast-growing literature on dark pools. Several papers focus

on dark pool effects on price discovery in the exchange market.4 Jiang, McInish, and Upson

(2014) find that as uninformed investors can segment their order flow to off-exchange venues,

a larger proportion of trades on the exchanges are informed, improving the price discovery in

the exchange market. Nimalendran and Ray (2011) reveal that crossing-network trades are

informed. Ye (2011) focuses on the strategies of informed investors in the presence of a dark

pool and finds that the dark pool deteriorates price discovery. Zhu (2014) suggests that dark

pools improve price discovery because they divert noise trading from the exchange market.

Our paper contributes to this literature by developing a tractable model featuring managerial

learning to analyze the dark pool effect not only on exchange market efficiency but also on

real economic efficiency. We show that managerial learning leads to new predictions of dark

pool effects on price discovery in the exchange market. We also identify conditions when the

emergence of a dark pool can increase the exchange market efficiency and the real economic

efficiency. Our analysis then has important policy implications.

Second, our paper belongs to the literature on interactions between financial market

and corporate decisions. Some studies find that a firm’s investment is sensitive to its own

stock price (Baker, Stein, and Wurgler, 2003, Goldstein and Guembel, 2008, Hirshleifer,

Subrahmanyam, and Titman, 2006, Khanna and Mathews, 2012), while others document

that a firm’s investment may be even sensitive to its peers’ stock prices (Foucault and

Frésard, 2012, 2014, Ozoguz, Rebello, and Wardlaw, 2018). The closest paper to ours in this

4Another strand of this literature shows that different trading venues cater to different categories of
investors (Buti, Rindi, and Werner, 2017, Degryse, Achter, and Wuyts, 2009, Hendershott and Mendelson,
2000).
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literature is Edmans, Goldstein, and Jiang (2015) who find that managerial learning causes

an informed investor’s asymmetric trading and “sell-side” limits to arbitrage. However, there

is no dark pool in their model, and thus the informed investor does not have trading venue

choices. In addition, asymmetric trading appears in their model only when the transaction

cost is in a certain range. By contrast, we focus on an informed investor’s trading venue

choice between the exchange market and the dark pool, and we assume that there is no

transaction cost in either market. We show that managerial learning and the availability

of a dark pool generate endogenous and asymmetric opportunity costs of trading in the

exchange market, which in turn lead to the informed investor’s asymmetric trading and the

firm’s asymmetric investment.

Third, the paper contributes to the large literature on the limits to arbitrage. In models

without agency problem, arbitragers trade more aggressively when prices move further out

of fundamental values (Campbell and Kyle, 1993, DeLong et al., 1990, Grossman and Miller,

1988). In Shleifer and Vishny (1997), the noise trader risk makes investors hardly finance

their bets against mispricing. Other studies focus on implementation cost, which includes

transaction costs, short-sale constraints, and the costs of discovering or exploiting mispricing

(D’Avolio, 2002, Gromb and Vayanos, 2002, Jones and Lamont, 2002, Lamont and Thaler,

2003, Nagel, 2005). We argue that the observed limits to arbitrage in the exchange market

may be due to the availability of alternative trading systems. Furthermore, when the man-

ager is learning from the exchange market, the limits to arbitrage is asymmetric and is more

severe on the sell-side.

Finally, our paper complements the existing literature on price efficiency. Kyle (1985)

defines a measurement of volatility to calibrate how much the insider’s information is in-

corporated into the price. Subrahmanyam (1991) and Spiegel and Subrahmanyam (1992)

use the posterior precision of terminal value conditional on the price (or trading volume)

to measure price efficiency. All these measurements are developed with the assumption
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that firm fundamental value is exogenous. Therefore, these measures may be implausible

in our model because managerial learning makes the firm value endogenous. We, therefore,

propose mutual information, which captures the average information revealed by the stock

price (or trading volume), as a measure of exchange market efficiency. We show that mutual

information is a robust measure even if cash flows are endogenous.

1.2 An Overview of Dark Pools

Before introducing the model, we first provide an overview of dark pools in this section.

We should discuss the special features of dark pools that distinguish themselves from the

exchange market. These features play critical roles in our theoretical analysis. First of all,

unlike the exchange markets, dark pools do not guarantee order execution. This is because

dark pools do not have market makers who provide liquidity. Hence, an order will not be

executed until it is successfully matched with a counterparty. This feature has also been

highlighted in Zhu (2014). As a result, a dark pool is more attractive to an investor when

other investors are more likely to trade on it.

Second, despite the non-execution risk, dark pools are popular among institutional

investors because of their relative opaqueness. On the one hand, dark pools do not display

their bids and asks, which helps prevent large orders’ adverse effects on the stock price.

On the other hand, dark pools delay disclosing their trading information. They were not

required to disclose trading information until November 2014. Since then, the Financial

Industry Regulatory Authority (FINRA) has required alternative trading systems, including

all “dark pools,” to report their weekly aggregate volume on a security-by-security basis.

FINRA will then publish the information regarding Tier 1 NMS stocks (i.e., stocks in the S&P

500 Index, the Russell 1000 Index, and certain ETPs) on a two-week to four-week delayed

basis. Information on all other NMS stocks and OTC equity securities will be released two
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weeks following the publication of information for the Tier 1 NMS stocks. While dark pools’

opaqueness may be attractive to certain investors, it hinders information from flowing from

dark pools to firms, potentially reducing the efficiency of corporate decisions.5

Third, trading conditions in dark pools may depend on exchange markets. Indeed,

when a match is formed at a dark pool, the execution price is primarily determined by the

concurrent price of the same security at the exchange market. For example, agency broker or

exchange-owned dark pools, such as ITG Posit, Liquidnet, and Instinet, derive prices using

quotes (e.g., at NBBO midpoint or VWAP) in the exchange market. Therefore, factors that

will affect the security price at the exchange market will also affect the execution prices at

dark pools, which in turn determine investors’ venue choices.

1.3 A Feedback Model with Investor Venue Choice

We now introduce our model. Our model has four agents: a firm manager, an informed

investor, a noise investor, and a market maker. The informed investor strategically chooses

to trade firm stocks in the exchange market or a dark pool, while the noise investor randomly

chooses the trading venue.6 The market maker is working for the exchange market and clears

the exchange market using her own inventories. Therefore, investors in the exchange market

will have their orders executed for sure. By contrast, investors who choose the dark pool

may not trade successfully. The firm manager and the market maker can observe the total

trading volume in the exchange market but can neither identify the trader nor observe the

5Nowadays, real-time off-exchange data may be accessible through some data vendors, whose subscribers
are mainly high-frequency trading firms. However, subscribing to the whole database is rather costly to a
corporation unless the corporation has many security investments. Hence, while firm managers are learning
from the exchange market (as documented in empirical studies), they are unlikely to learn from the dark
pool.

6To focus on the informed investor’s strategical venue choice, we model the noise investor as a passive
investor. She may randomly make venue choices due to behavioral reasons, such as animal spirits or cognitive
errors in processing information. For instance, a noise investor may be a retail investor who simply follows
her friends’ suggestions to choose a trading venue.
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tradings in the dark pool.

1.3.1 Corporate Decisions

The firm value, denoted by v(θ, d), depends on both the firm investment d and the firm

fundamentals θ ∈ {H,L}. In particular, θ is drawn by nature with equal probabilities. The

manager can choose to expand the investment (d = 1), to keep the current investment (d =

0), or to decrease the investment (d = −1).7 If the manager keeps the current investment,

the firm value is v(H, 0) = RH at state H and v(L, 0) = RL at state L. We assume that

RH > RL. As a convention, we assume that the manager does not change the investment

level if doing so cannot bring a strictly higher firm value.

At state H, the “correct” corporate investment is expansion, which creates an additional

value g and leads to the firm value v(H, 1) = RH +g; conversely, decreasing the investment is

a “wrong” decision at state H, which reduces the firm value (by g) to v(H,−1) = RH−g. By

contrast, at state L, decreasing the investment (d = −1) is correct and creates the additional

value g, while increasing the investment (d = 1) is incorrect and reduces the firm value by

g. The firm value v(θ, d) is then summarized in Table 1.1.

Investment d

1 0 -1

State θ
H RH + g RH RH − g

L RL − g RL RL + g

Table 1.1: Firm Value

We assume that state H dominates state L in terms of the fundamentals’ effect on the
7To focus on the effect of managerial learning effects on the informed investor’s venue choice, we follow

the literature on informational feedback to abstract away any agency problem. Therefore, the firm manager
aims to maximize the expected firm value. As a result, we will use the two terms, the firm and the firm
manager, interchangeably.
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firm value; that is, even the wrong investment decision at state H brings a higher firm value

than the right investment decision at state L; formally, we assume that v(H,−1) > v(L,−1),

which is equivalent to RH − g > RL + g.8 For simplicity, we further restrict the model

parameters to g = k (RH−RL)
2

, where k is strictly less than but arbitrarily close to 1.

1.3.2 Trading Venues

There are two parallel trading venues: an exchange market and a dark pool. We assume that

there is no transaction cost in each trading venue. The informed investor perfectly observes

the firm fundamentals and then chooses to trade in either the exchange market or the dark

pool. Importantly, the trading venue choice of the informed investor is unobservable to other

players.

We call the informed investor a “positively” or a “negatively” informed investor if the

firm fundamentals are respectively high or low. To focus on her trading venue choice, we

assume that after choosing a trading venue, the informed investor buys one share of the

firm’s stock (XI = 1) if she is positively informed and shorts one share (XI = −1) if she is

negatively informed. We denote by βH and βL the probabilities that the informed investor

chooses the exchange market when she is positively and negatively informed, respectively.

The noise investor chooses trading venues randomly. Specifically, the noise trader may

have a positive demand (` = 1), a negative demand (` = −1), or no demand (` = 0) for the

firm stock with equal probability. When having a demand, the noise investor chooses the

exchange market with probability α ∈ [0, 1]; she chooses the dark pool with the complement

probability 1 − α. Importantly, α is exogenous. Like the informed investor, once the noise

investor chooses a trading venue, she submits a market order XL = `.

The informed investor and the noise investor trade simultaneously. In the exchange

8We analyze the equilibrium when RH − g < RL + g in an Online Appendix.
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market, the market maker observes the total trading volume X = XI + XL, but not their

individual orders. Obviously, X ∈ {−2,−1, 0, 1, 2}. Since the market maker is competitive,

she sets a price based on the total trading volume in the exchange market to keep herself

break-even. That is, her pricing strategy is P (X) = E(v|X). She then clears any excess

demand or supply using her own inventory. In the dark pool, there is no market maker, and

thus orders are executed only when both the informed investor and the noise investor trade

in the dark pool and demand opposite positions. Therefore, the execution price in the dark

pool is the concurrent asset price in the exchange market.

1.3.3 Timing

Figure 1.1 presents the timeline of our model. At t = 0, nature chooses the firm fundamentals

θ. The informed investor observes θ perfectly and chooses a trading venue. The noise investor

with a demand ` 6= 0 chooses a trading venue randomly. At t = 1, trading occurs in the

exchange market or the dark pool. At t = 2, the manager observes the total trading volume

in the exchange market and then decides to expand the investment, remain the current

investment, or reduce the investment. At t = 3, all uncertainties are resolved, and all payoffs

are realized.

t=0 t=1 t=2 t=3

Nature chooses θ;

Traders select venue Trading occurs

Manager makes

decision to invest

All uncertainties

are resolved

Figure 1.1: Timeline
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1.3.4 A Perfect Bayesian Equilibrium

The informed investor’s strategy is a mapping from the firm fundamentals θ to the probability

of trading in the exchange market. The manager’s strategy is a mapping from the total

trading volume to her investment decision. Moreover, the market maker’s pricing strategy

is a mapping from the total trading volume to a price. We are interested in perfect Bayesian

equilibrium.

Definition 1.1. The informed investor’s strategy of venue choice β∗ : {H,L} → [0, 1], the

manager’s investment strategy d∗ : X → {−1, 0, 1}, and the market maker’s pricing strategy

P ∗(X) constitute a perfect Bayesian equilibrium if:

1. For the informed investor, β∗θ maximizes her expected final payoff for each θ ∈ {H,L},

given the market maker’s pricing strategy and the manager’s investment strategy.

2. For the manager, d∗(X) maximizes the expected firm value V given the information in

the exchange market and other agents’ strategies.

3. For the market maker, the price P ∗(X) = E(v|X) allows her to beak even in expectation

for each X ∈ {−2,−1, 0, 1, 2}, given all other agents’ strategies.

4. The manager and the market maker update their beliefs by Bayes’ rule after observing

the total trading volume in the exchange market.

1.4 Benchmark Model

To analyze the dark pool effects on the informed investor’s venue choice, exchange market

efficiency, and real economic efficiency, we establish a benchmark model where a dark pool is

not available. Hence, it is straightforward that in this benchmark, the informed investor will
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trade in the exchange market regardless of her private information about firm fundamentals.

The noise investor will also trade in the exchange market if she has a non-zero demand

(` 6= 0); that is, α = 1 in this benchmark.

As a result, when the total trading volume in the exchange market is X = 2 or X = 1,

both the market maker and the firm manager believe that the firm is surely at the state

θ = H, since if θ = L, the informed investor sells at the exchange market, leading to a total

trading volume at most 0. Similarly, when X = −2 or X = −1, they believe that the firm

is at the state L. In a third case that X = 0, because of the symmetry of the informed

investor’s venue choice, the market maker and the firm manager do not update their beliefs

about firm fundamentals, and so their posterior belief that θ = H remains 1/2. Proposition

1.1 then summarizes the agents’ equilibrium behavior in the benchmark.

Proposition 1.1. In the benchmark model where a dark pool is not available to investors,

the informed investor surely chooses the exchange market (βH = βL = βE = 1) regardless of

her private information about firm fundamentals. The firm’s investment and stock price are

X −2 −1 0 1 2

d(X) −1 −1 0 1 1

P RL + x RL + x 1
2
(RH +RL) RH + x RH + x

Table 1.2: Firm Investment and Stock Price in the Benchmark Model

This benchmark model is essentially the model studied by Edmans, Goldstein, and Jiang

(2015) with zero transaction cost and the informed investor surely appearing. The informed

investor surely trades in the exchange market to make positive profits. Importantly, because

of the noise investor’s random demand, the informed investor’s private information about the

firm’s fundamentals is not perfectly revealed by her trading when the total trading volume

is X = 0. Hence, the firm’s equilibrium investment is also symmetric in the total trading

volume: it reduces investment when X < 0, keeps the current investment when X = 0, and
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increases investment when X > 0.

1.5 Asymmetric Trading Venue Choices

We now analyze our core model where a dark pool is available to the investors. We start

with the market maker and the firm manager’s posterior beliefs about firm fundamentals,

which will determine the firm’s stock price and investment. We then characterize the in-

formed investor’s equilibrium venue choice, given the market maker’s and the manager’s best

responses.

The main result in this section is that when the exchange market is lack of noise trading,

that is, when α ∈ (0, 1/2), the informed investor is more likely to choose the exchange market

at state H than at state L. Associated with the informed investor’s asymmetric venue choice,

the firm investment is also asymmetric: It reduces investment when the total trading volume

is X = 0. These results are contrasting to those in the benchmark model.

1.5.1 Belief Updating, Asset Pricing, and Firm Investment

Since the manager and the market maker have the same prior information in our model,

conditional on a total trading volume X, they have the same posterior beliefs in equilibrium.

Figure 1.2 helps calculate the posterior belief of the manager and the market maker, given

any possible total trading volume.
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Figure 1.2: Manager and Market Maker’s Belief Updating

For example, the total trading volume in the exchange market is zero when either both

investors trade in the dark pool (with the probability 1
2
[(1−βH)+(1−βL)](1− 2

3
α)), or both

investors are trading in the exchange market but with opposite positions (with probability

1
2
(βH + βL)α

3
). Then, by Bayes’ rule, when the total trading volume in the exchange market

is zero, the firm manager and the market maker have a posterior belief about θ = H:

Pr(θ = H|X = 0) , q(X = 0) =
1
2
(1− βH)(1− 2

3
α) + 1

2
βH

α
3

1
2
[(1− βH) + (1− βL)](1− 2

3
α) + 1

2
(βH + βL)α

3

=
αβH + (3− 2α)(1− βH)

α(βH + βL) + (3− 2α)(2− βH − βL)
.
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Similarly, we calculate the manager’s and the market maker’s posterior belief follow-

ing each possible total trading volume X ∈ {−2,−1, 0, 1, 2}. Table 1.3 summarizes the

equilibrium posterior belief q(X).

X -2 -1 0 1 2

q 0 α(1−βH)
α(2−βH−βL)+(3−2α)βL

αβH+(3−2α)(1−βH)
α(βH+βL)+(3−2α)(2−βH−βL)

α(1−βH)+(3−2α)βH
α(2−βH−βL)+(3−2α)βH

1

Table 1.3: Manger’s and Market Maker’s Posterior Beliefs

In equilibrium, the market maker sets prices that make her break-even in expectation.

Thus, the pricing function in the exchange market is

P (X) = E(v|X) = q(X)v (H, d(X)) + (1− q(X)) v (L, d(X)) . (1.1)

Note that in equation (1.1), the market maker accounts for the manager’s investment strategy

when setting the price.

On the other hand, the execution price in the dark pool is assumed to be the concurrent

stock price at the exchange market. While there are five possible prices in the exchange

market (because there are five possible total trading volumes), only the one following a zero

total trading volume matters for the execution price at the dark pool. Intuitively, when the

informed investor chooses the dark pool, she can have her order executed only when the

noise investor is demanding an opposite position in the dark pool. This occurs only when

both the informed investor and the noise investor are trading in the dark pool, leading to a

zero total trading volume in the exchange market. Lemma 1.1 formally derives the execution

price in the dark pool in equilibrium.

Lemma 1.1. The execution price in the dark pool equals the stock price in the exchange

market when the total trading volume is zero. Formally, given the informed investor’s venue
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choice strategy (βH , βL), the execution price at the dark pool is

PD = P (X = 0), (1.2)

which is calculated by equation (1.1).

Lemma 1.1 shows that the informed investor’s venue choice strategy affects the execution

price at the dark pool, which in turn determines the informed investor’s trading profits in

the dark pool. Since the trading profits in the dark pool are essentially the opportunity costs

of choosing the exchange market, Lemma 1.1 implies that the opportunity cost of trading in

the exchange market is endogenous, and if βH 6= βL, such an opportunity cost is asymmetric.

Hence, the execution price in the dark pool in our model differs from that in Zhu (2014)

where the price in the dark pool is zero because it is assumed to be the midpoint of the bid

and ask prices in the exchange market.

We now analyze the manager’s investment decision. Denote by q1 and q−1 two thresholds

in the manager’s posterior belief space such that

q1RH + (1− q1)RL = q1(RH + g) + (1− q1)(RL − g) (1.3)

q−1RH + (1− q−1)RL = q−1(RH − g) + (1− q−1)(RL + g). (1.4)

Equation (1.3) indicates that when the manager’s posterior belief is exactly q1, the expected

firm value from keeping the current investment equals that from expanding the investment.

Similarly, equation (1.4) implies that with a posterior belief q−1, the manager is indifferent

between keeping the investment level and reducing the investment. Simple algebra shows

that

q1 = q−1 =
1

2
. (1.5)

Recall that the manager will keep the investment if changing the investment cannot lead to a
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strictly higher firm value. Then Lemma 1.2 formally characterizes the manager’s investment

decision based on her posterior beliefs.

Lemma 1.2. When the manager is learning from the exchange market, his equilibrium

investment decision is determined by his posterior belief. In particular,

d(X) =


1, if q(X) ∈

(
1
2
, 1
]

0, if q(X) = 1
2

−1, if q(X) ∈
[
0, 1

2

)
.

(1.6)

It then follows from Lemma 1.2 and Table 1.3 that the manager’s investment decision

depends on the informed investor’s strategy. Since the informed investor’s trading profit at

the dark pool is determined by the firm value and the stock price at a zero total trading

volume in the exchange market, we specifically show how the informed investor’s strategy

determines the manager’s investment when the total trading volume is X = 0 in Corollary

1.1.

Corollary 1.1. In equilibrium, the firm investment at a zero total trading volume in the

exchange market, d(X = 0), depends on the informed investor’s strategy, (βH , βL). Specifi-

cally,

d(X = 0) =


−1, if βH > βL

0, if βH = βL

1, if βH < βL.

(1.7)

Corollary 1.1 follows from the assumption that the noise investor’s venue choice is

independent of her demand; that is, when ` = 1 or ` = −1, the noise investor trades in the

exchange market with probability α. Then, if the manager believes that the probability of the

informed investor trading in the exchange market is independent of the firm fundamentals,

that is, βH = βL, he will find that a zero total trading volume occurs equally likely at state
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H and at state L. Hence, when the total trading volume is X = 0, the manager has a

posterior belief about θ = H equaling to 1/2 and thus keeps the current investment.

Conversely, Table 1.3 also shows that if βH 6= βL, q(X = 0) 6= 1/2. In particular, if

βH > βL, q(X = 0) < 1/2, which leads the manager to choose d(X = 0) = −1. This is

intuitive. With βH > βL, the positively informed investor is more likely to trade in the

exchange market than the negatively informed investor. So, a zero total trading volume

is more likely to occur at state L since the event that both investors trade in the dark

pool is more likely to occur at state L. As a result, the manager reduces investment (i.e.,

d(X = 0) = −1). Similarly, if βH < βL, q(X = 0) > 1/2 and d(X = 0) = 1.

1.5.2 Equilibria with Strong Real Effects

We define that the exchange market has “real effects” if the information in the exchange

market makes the firm manager expand or reduce investment in some cases. As shown in

Table 1.3, when the total trading volume in the exchange market is X = 2, the manager’s

posterior belief about θ = H is q(X = 2) = 1, because the total trading volume X = 2 occurs

if and only if the informed investor is buying in the exchange market. Therefore, observing

the total trading volume X = 2, the manager will expand the investment. Similarly, the

manager will reduce the investment when the total trading volume is X = −2.

The real effects when X = 2 and X = −2 arise purely from the manager’s rationality

and are not affected by the informed investor trading venue choice. Therefore, we further

define an equilibrium with strong real effects and focus on it in the rest of the paper.9

Definition 1.2. An equilibrium with strong real effects is a perfect Bayesian equilibrium in

which d(X) 6= 0 for some X ∈ {−1, 0, 1}.
9We find that there is an equilibrium in which the exchange market does not affect the manager’s invest-

ment decision when X ∈ {−1, 0, 1}. However, there is no strong real effect in such an equilibrium.
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We now characterize equilibria with strong real effects. Consider the positively informed

investor. If she decides to trade in the exchange market, her order will lead to a total trading

volume X ∈ {0, 1, 2} with probability (α/3, 1−(2/3)α, α/3). The pricing equation (1.1) then

implies that the informed investor’s expected profit by buying in the exchange market is

(
1− 2

3
α

)
[v(H, d(1))− P (1)] +

α

3
[v(H, d(0))− P (0)] . (1.8)

If the informed investor chooses the dark pool, on the other hand, she can buy one share

only when the noise investor sells in the dark pool, which occurs with probability (1−α)/3.

Conditional on such a match in the dark pool, the asset price is PD = P (0), as shown in

Lemma 1.1. Therefore, by choosing the dark pool, the informed investor’s expected trading

profit is

1− α
3

[v(H, d(0))− P (0)] . (1.9)

As we argue, the informed investor’s expected trading profit in the dark pool is essen-

tially her opportunity cost of trading in the exchange market. In addition, it follows from

Lemma 1.1 that the conditional trading profit in the exchange market when the total trading

volume is X = 0 will be the same as the conditional trading profit in the dark pool. (They

are both v(H, d(0)) − P (0) as derived in equations (1.9) and (1.8).) Therefore, to simplify

the discussion, we define

1− 2α

3
[v(H, d(0))− P (0)] , (1.10)

the difference between equation (1.9) and the second term in equation (1.8), as the positively

informed investor’s net opportunity cost. Similarly, we can calculate the negatively informed

investor’s net opportunity cost of choosing the exchange market as

1− 2α

3
[P (0)− v(L, d(0))] . (1.11)
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Intuitively, the informed investor’s net opportunity cost is decreasing in α, the probabil-

ity of the noise investor with ` 6= 0 trading in the exchange market. This is so both because

the informed investor is easier to hide her private information in the exchange market when

α is larger and because it is harder for her to find a counterparty in the dark pool. In

particular, when α ≥ 1
2
, the net opportunity cost is non-positive, implying that the informed

investor should choose the exchange market for sure, independent of her private information

about the firm fundamentals.

Proposition 1.2. When the dark pool is available to the investors, if the noise investor with

non-zero demand is more likely to trade in the exchange market, the model has a unique

equilibrium in which the informed investor surely chooses the exchange market. Formally,

when α ≥ 1/2, βH = βL = 1. In such a unique equilibrium, the manager’s investment

decision is symmetric:

d(X) =


−1, if X = −2 or X = −1;

0, if X = 0;

1, if X = 1 or X = 2.

(1.12)

The informed investor’s symmetric venue choice in the unique equilibrium when α ≥ 1/2

arises from the non-positive net opportunity cost of choosing the exchange market. However,

when α < 1/2, the net opportunity cost is positive. This will dramatically change the

informed investor’s equilibrium venue choice, as presented in Lemma 1.3.

Lemma 1.3. When the noise investor is less likely to trade in the exchange market, the

informed investor’s equilibrium venue choice must be asymmetric. Formally, when α ∈

(0, 1/2), in any equilibrium with strong real effects, βH 6= βL.

Lemma 1.3 and Corollary 1.1 then imply that in an equilibrium with strong real effects,

the manager will either reduce or expand investment when the total trading volume in the
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exchange market is zero. Furthermore, Lemma 1.4 argues that the manager’s investment

decision must be increasing in the total trading volume. This is intuitive. Once the informed

investor chooses the exchange market, she buys at state H and sells at state L. Hence, as

the total trading volume increases, it is more likely that the firm fundamentals are high.

Lemma 1.4. Both the manager’s posterior belief q(X) about θ = H and the manager’s

investment decision d(X) are increasing in the total trading volume X.

Lemma 1.3 and Lemma 1.4 largely simplify the equilibrium characterization. In an

equilibrium with strong real effects, the firm investment at the total trading volume X ∈

(−1, 0, 1) can only be (−1,−1, 0), (−1,−1, 1), (−1, 1, 1), and (0, 1, 1). A simple calculation

of the posterior beliefs in Table 1.3 shows that it is impossible for the manager’s posterior

belief to be exactly 1/2 when the total trading volume is either X = −1 or X = 1. So, the

equilibrium firm investment at the total trading volume (−1, 0, 1) can only be (−1,−1, 1) or

(−1, 1, 1).

Proposition 1.3 characterizes equilibria when the noise investor is unlikely to trade in

the exchange market (α < 1/2).

Proposition 1.3. When α < 1/2, there may be multiple equilibria with strong real effects.

1. For any α ∈ (0, 1/2), there is a unique equilibrium with strong real effects d(X) =

(−1,−1, 1) for X = (−1, 0, 1). In such an equilibrium, the informed investor’s strategy

is

βH =


4α(RH−RL)+16gα(1−α)

3(1−α)[(1−α)(RH−RL)+2g(3α−1)]
, ∀α ∈

(
0, 2g−(RH−RL)

2g−3(RH−RL)

)
1, ∀α ∈

[
2g−(RH−RL)
2g−3(RH−RL)

, 1
2

) (1.13)

βL = 0. (1.14)
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2. There is an α̂ ∈ (0, 1/2), such that for any α ∈ [α̂, 1/2), there is an equilibrium with

βH < βL and d(X) = (−1, 1, 1) for X = (−1, 0, 1). However, for any α ∈ (0, α̂), there

is no equilibrium with the strong real effects d(X) = (−1, 1, 1) for X = (−1, 0, 1).

βH ∈ (0, 1), βL = 0

d = (−1,−1, 1)

βH = 1, βL = 0

d = (−1,−1, 1)

βH < βL

d = (−1, 1, 1)

α
0 RH−RL−2g

3(RH−RL)−2g
α̂ 1

2

Figure 1.3: Equilibrium Characterization

Figure 1.3 illustrates the equilibria characterized in Proposition 1.3. In particular,

for each α < 1/2, there is an equilibrium with strong real effects (−1,−1, 1) at the total

trading volume (−1, 0, 1). It also follows from equations (1.13) and (1.14) that in such an

equilibrium, the informed investor’s venue choice is continuous in α ∈ (0, 1/2). On the other

hand, there is a nontrivial set of α’s (α ∈ (0, α̂)) for which an equilibrium with the real

effects (−1, 1, 1) at the total trading volume (−1, 0, 1) does not exist. Therefore, we shall

focus on the equilibrium with the real effects (−1,−1, 1) in the rest of the paper.

The most striking property of this equilibrium is the informed investor’s asymmetric

venue choice and the manager’s asymmetric investment. The asymmetry of the informed

investor’s trading venue choice first arises from the informational feedback effect of the

exchange market on firm investment. It directly follows from Table 1.3 that when βH = βL,

q(−1) < 1/2 < q(1). Therefore, the manager will reduce and increase investment when the

total trading volume in the exchange market is X = −1 and X = 1, respectively. On the

other hand, the net opportunity cost is independent of the value of βH or βL, since βH = βL

leads to the posterior belief q(0) = 1/2. Therefore, if trading in the exchange market, the

informed investor will guide the manager to make the right investment decision, which will
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lead to high firm values. This will increase the positively informed investor’s expected profit

from buying in the exchange market but decrease the negatively informed investor’s expected

profit from selling in the exchange market.

Therefore, if the manager and the market maker believe that the informed investor

employs a symmetric strategy, the negatively informed investor will have weaker incentives

to choose the exchange market than the positively informed investor. Hence, βH = βL

cannot be part of an equilibrium, unless βH = βL = 0 or βH = βL = 1. Furthermore,

βH = βL = 0 implies no strong real effects, and βH = βL = 1 makes X = −1 and X = 1

perfectly revealing and thus leads the informed investor to choose the dark pool (since the

opportunity cost of choosing the exchange market is positive). As a result, when α < 1/2,

the informed investor’s equilibrium venue choice must be asymmetric.

While such an informational feedback effect is similar to that in Edmans, Goldstein,

and Jiang (2015), the asymmetry of the informed investor’s venue choice is also associated

with the asymmetry of the net opportunity cost and the asymmetry of the firm investment.

Specifically, since the negatively informed investor has strictly weaker incentives to trade in

the exchange market than the positively informed investor does, both the market maker and

the firm manager believe that the firm fundamentals are more likely to be low at the zero total

trading volume. In addition, the firm manager will reduce the investment after observing

the zero total trading volume in the exchange market, following from Corollary 1.1. As a

result, the negatively informed investor’s net opportunity cost increases, further reducing

the negatively informed investor’s incentives to choose the exchange market. Ultimately,

when α < 1/2, the negatively informed investor will surely choose the exchange market.

Therefore, the mechanism of the asymmetry of the informed investor’s equilibrium trading

venue choice differs from that in Edmans et al. (2015).

We also notice an interesting discontinuity of the firm investment at α = 0. Intuitively,

when α = 0, the noise investor will surely trade in the dark pool. This maximizes the
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informed investor’s chance to find a counterparty in the dark pool. More importantly, since

the market maker knows that there is no noise trading in the exchange market, any non-

zero total trading volume is perfectly revealing. Therefore, when α = 0, both the positively

and negatively informed investor will choose the dark pool, leading the manager to keep

the current investment when the total trading volume is zero. However, in the equilibrium

characterized in Proposition 1.3, as α converges to zero, the firm investment when the total

trading volume is X = 0 is always d(X = 0) = −1, demonstrating a discontinuity at α = 0.

1.5.3 Limits to Arbitrage in Exchange Market

The informed investor’s asymmetric venue choice in the equilibrium with strong real effects

d(X) = (−1,−1, 1) for X = (−1, 0, 1) causes asymmetric limits to arbitrage in the exchange

market.10 This is formally shown in Corollary 1.2.

Corollary 1.2. The dark pool causes the limits to arbitrage in the exchange market when

α ∈ (0, 1/2). In particular,

1. When α ∈
(

0, 2g−(RH−RL)
2g−3(RH−RL)

)
, the dark pool causes the limits to arbitrage at both state

H and state L, and the limits to arbitrage at state L is more severe;

2. When α ∈
[

2g−(RH−RL)
2g−3(RH−RL)

, 1/2
)

, the dark pool causes the limits to arbitrage at state L

only.

Interestingly, Corollary 1.2 implies that the limits to arbitrage at state H is alleviated

as the noise investor is more likely to trade in the exchange market (that is, as α increases

from 0 to 1/2). Intuitively, when the noise investor is more likely to trade in the exchange

market, it is easier for the informed investor to hide her private information when trading

10We emphasize that in our model, the informed investor always trades, either in the exchange market
or in the dark pool. However, if we focus only on the trading in the exchange market, as empirical studies
usually do, when the informed investor trades in the dark pool, there are limits to arbitrage in the exchange
market.
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in the exchange market, and it is harder for the informed investor to find a counterparty in

the dark pool. Therefore, the positively informed investor has a lower net opportunity cost,

increasing her incentives to buy in the exchange market.

On the other hand, the probability of the informed investor trading in the exchange

market does not affect the limits to arbitrage at state L. This is due to the fact that the

firm investment d(0) = −1 and the market maker’s posterior belief q(0) < 1/2 joint imply

that the negatively informed investor has a large net opportunity cost. Since such a net

opportunity cost dominates, the negatively informed investor will surely choose the dark

pool, independent of the probability that the noise investor trades in the exchange market.

Corollary 1.3. When α ∈ (0, 1/2), βH is strictly increasing in α when α < 2g−(RH−RL)
2g−3(RH−RL)

and

βH = 1 for all α ∈
[

2g−(RH−RL)
2g−3(RH−RL)

, 1/2
)

. By contrast, at state L, βL = 0 for all α ∈ (0, 1/2).

1.6 Dark Pool Effects on Exchange Market Efficiency

We are now in a position to analyze the dark pool effects on exchange market efficiency and

real economic efficiency. These analyses are not only theoretically interesting but also have

important policy implications. We shall focus on the effects of the dark pool on exchange

market efficiency in this section and leave the analysis of the dark pool effects on real

economic efficiency to Section 1.7.

In this section, we also make a technical contribution to the studies of market efficiency.

The exchange market trading in our model is essentially a simplified static version of (Kyle,

1985). So, the variance ratio developed in Kyle (1985) seems a natural measure of market

efficiency. However, we find that the variance ratio is implausible in our model because the

firm value is endogenous. We, therefore, develop a firm-value-free measure of the exchange

market efficiency, and then apply it to analyze the dark pool effects on exchange market
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efficiency.

1.6.1 Variance Ratio and Mutual Information

Exchange market efficiency is generally defined as how much information is incorporated into

the asset price. Kyle (1985) develops a measure for exchange market efficiency, the variance

ratio.

E[Λ|p̃] = E
[
Var(ṽ|p̃)
Var(ṽ)

]
. (1.15)

It measures the variance of the firm value conditional upon the price, scaled by the

unconditional variance of the firm value. Therefore, the smaller the variance ratio, the more

efficient the exchange market.

When the firm value is exogenous, the variance ratio functions very well in measuring

exchange market efficiency. However, our model features the informational feedback effects

of the exchange market, so the asset price or the total trading volume in the exchange market

will not only reflect but also affect the firm value. Hence, in our model, the variance ratio

may be implausible in measuring exchange market efficiency.

We take as an example the exchange market efficiency conditional on the total trading

volume X = 0 in the exchange market. In the equilibrium characterized in Part 1 of

Proposition 1.3, the informed investor’s venue choice is asymmetric when α < 1/2 and is

symmetric when α ≥ 1/2. As we argued, if the informed investor’s venue choice is symmetric,

X = 0 does not provide any new information. On the other hand, when α is approaching 0,

βH > βL = 0. Then, the total trading volume X = 0 provides the market maker and the firm

manager with new information. Hence, conditional on X = 0, the exchange market is more

efficient when α is close to zero than when α ≥ 1/2. However, we show that the variance

ratio E[Λ|X = 0] is greater in the former case, suggesting that the variance ratio does not
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measure exchange market efficiency well. We discuss more details about the variance ratio

in measuring exchange market efficiency in the Online Appendix.

Therefore, we propose a new measure for exchange market efficiency: We apply the

entropy-based mutual information from information theory (Shannon, 1948) to measure ex-

change market efficiency. Mutual information of two random variables quantifies the amount

of information obtained by observing one random variable about the other. The amount of

uncertainty about one single random variable (Y ) is measured by entropy. The rest of

the uncertainty of the random variable (Y ) after observing another random variable (Z) is

measured by conditional entropy.

Specifically, consider a pair of random variables Y and Z with a joint discrete outcome

space Y×Z. The entropy H(Y ) and the conditional entropy H(Y |Z) of the random variable

Y conditional on Z are defined as

H(Y ) ≡ −
∑
y∈Y

p(y)log2p(y) (1.16)

H(Y |Z) ≡ −
∑
z∈Z

∑
y∈Y

p(y, z)log2p(y|z) (1.17)

The mutual information is then the amount of information about Y obtained by ob-

serving Z and is defined as

I(Y |Z) ≡ EzI(Z = z) = H(Y )−H(Y |Z). (1.18)

Intuitively, mutual information measures the difference between the amount of uncer-

tainty based on the unconditional distribution of Y and that based on the conditional (on

Z) distribution of Y . Therefore, if and only if we can obtain more information about Y by

observing Z, mutual information becomes larger.
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In our model, the mutual information of firm fundamentals (θ) through observing the

total trading volume X can well measure how the informed investor’s information is incor-

porated into the exchange market. Importantly, it does not depend on the equilibrium firm

value and thus can resolve the issue caused by the exchange market’s information feedback

effects, which affect the performance of variance ratio. Specifically, the reduction in the

uncertainty about firm fundamental θ by observing total trading volume X is given by

I(Θ|X) = ExI(X = x) = H(Θ)−H(Θ|X), (1.19)

in which the expected value is taken over the set of all possible trading volume x.

Since the prior belief about θ = H is 1/2, the entropy is

H(Θ) = −
[

1

2
log2

1

2
+

1

2
log2

1

2

]
= 1.

This is consistent with the general result in information theory that entropy reaches

its maximum value if the posterior belief is uniform. Then, the mutual information defined

in equation (1.19) then depends on the conditional entropy H(Θ|X) only. The distribution

of firm fundamentals conditional on the total trading volume, which is calculated in Table

1.3, is determined in equilibrium and is affected by the economic environments, such as the

likelihood of the noise investor trading in the exchange market.

We now compare mutual information with variance ratio in measuring exchange market

efficiency by revisiting the example of exchange market efficiency at the total trading volume

X = 0. A simple calculation shows that when α ≥ 1/2, H(Θ|X = 0) = H(Θ) = 1, which is

the maximum value of the conditional entropy, implying that the exchange market is least

efficient. On the other hand, when α ∈ (0, 1/2), the conditional entropy H(Θ|X) < 1,

showing that the market is much more efficient than in the case when α ≥ 1/2. This is

consistent with the intuitive argument that when X = 0, the exchange market is more
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efficient when α < 1/2, contrasting with the implausible conclusion when we measure the

exchange market efficiency by the variance ratio.

1.6.2 Dark Pool Effects

In Section 1.4, we establish a benchmark-setting without the dark pool where the informed

investor trades in the exchange market for sure regardless of her private information. That

is, βH = βL = βE = 1. Therefore, the informed investor’s private information is fully

incorporated into the asset price in the exchange market when the total trading volume is

X ∈ {−2,−1, 1, 2}. A zero total trading volume, on the other hand, does not reveal any

information to the manager: because the informed investor’s venue choice is symmetric, the

total trading volume X = 0 occurs equally likely at state H and state L. Therefore, given

that α = 1 without the dark pool, the conditional entropy is

HE (Θ|X) =
1

3

[
−log2

(
1

2

)]
=

1

3
, (1.20)

implying that the mutual information is

IE(Θ|X) = H(Θ)−HE (Θ|X) =
2

3
. (1.21)

With the dark pool, the informed investor also trades in the exchange market for sure

when α ∈ [1/2, 1). Therefore, for any α ∈ [1/2, 1), the mutual information (or the exchange

market efficiency) is

ID(Θ|X) = H(Θ)−HD (Θ|X) = 1− α

3
,∀α ∈

[
1

2
, 1

)
. (1.22)

Hence, it is straightforward that as the noise investor trades in the exchange market more

33



frequently (i.e., α increases from 1/2 to 1), it is harder to disentangle the orders submitted

by the informed investor, implying that the exchange market efficiency decreases. The fact

that ID is strictly decreasing in α in [1/2, 1) but ID > IE implies that if the noise investor is

likely to trade in the exchange market, the dark pool increases the exchange market efficiency

by reducing the noise trading in the exchange market.

When α ∈ (0, 1/2), However, exchange market efficiency is non-monotonic in α. Propo-

sition 1.3 shows that the negatively informed investor surely chooses the dark pool, while

the probability of positively informed investor trading in the exchange market increases from

0 to 1 as α increases from 0 to 2g−(RH−RL)
2g−3(RH−RL)

and stays at 1 as α varies between 2g−(RH−RL)
2g−3(RH−RL)

and 1/2. By substituting βH and βL into Table 1.3, we get the equilibrium posterior beliefs

when α ∈ (0, 1/2) in Table 1.4.

X -2 -1 0 1 2

q 0 1−βH
2−βH

αβH+(3−2α)(1−βH)
αβH+(3−2α)(2−βH)

α(1−βH)+(3−2α)βH
α(2−βH)+(3−2α)βH

1

Table 1.4: Equilibrium Posterior Beliefs When α ∈ (0, 1/2)

It follows from Table 1.4 that the conditional entropy H(Θ|X = −1) is decreasing in

α (strictly decreasing when α ∈
(

0, 2g−(RH−RL)
2g−3(RH−RL)

)
). That is, as the noise investor is more

likely to trade in the exchange market, the total trading volume X = −1 becomes more

informative. This is because in equilibrium, as α increases, the positively informed investor

is more likely to buy in the exchange market, so X = −1 is less likely to occur at state H.

Figure 1.4 depicts H(Θ|X = −1) as a function of α.

Figure 1.4 also depicts H(Θ|X = 0) and H(Θ|X = 1) as functions of α. From the

figure, we find that for α ∈ (0, 1/2), while the informativeness of the total trading volume

X = 0 is non-monotonic in α, the informativeness of the total trading volume X = 1 is

decreasing in α. The non-monotonicity of the zero trading volume’s informativeness is due

to the interaction between a higher probability of the positively informed investor trading

34



in the exchange market (which increases exchange market efficiency) and the more noise

trading in the exchange market (which reduces exchange market efficiency). In particular,

the former dominates when α is very small, but the latter dominates when α is large (when

α is greater than a threshold, βH = 1, so the former effect disappears). When we consider

the total trading volume X = 1, the noise trading effect always dominates, so H(Θ|X = 1) is

strictly increasing in α, implying that the informativeness of the total trading volume X = 1

decreases in α.
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Figure 1.4: Conditional Entropy

We next calculate the expected conditional entropy by taking into account the ex-

ante probability of each possible total trading volume X in equilibrium. Such an expected

conditional entropy can then measure how efficient the exchange market is on average. Then,

we obtain the mutual information when the dark pool is available to investors, which is

illustrated by the blue solid curve in Figure 1.5.
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Figure 1.5: Dark Pool Effects on Exchange Market Efficiency.

By comparing the mutual information with and without the dark pool, we study the

dark pool effects on exchange market efficiency. Recall that without the dark pool, both the

informed investor and the noise investor trade in the exchange market only. So, it follows

from equation (1.21) that the exchange market efficiency is quantified to be 2/3. Then, if

the mutual information with the dark pool is higher than 2/3, we say that the dark pool

promotes the exchange market efficiency. As illustrated in Figure 1.5, there are intervals of

α’s such that the dark pool does promote the exchange market efficiency.

Proposition 1.4. With the dark pool, there exist α1 and α2 with 0 < α1 < α2 < 1/2,

such that when the noise investor trades in the exchange market with a probability α ∈

(α1, α2) ∪ [1/2, 1), the dark pool promotes the exchange market efficiency.

Proposition 1.4 shows that the dark pool hurts the exchange market efficiency when

α is close to but strictly less than 1/2 or when it is close to 0. In the former case, much

more noise is added into the exchange market while the probability of the informed investor

trading in the exchange market is constant, making the total trading volumes X = 0 and

X = 1 less informative. In the latter case, the probability of the positively informed investor

trading in the exchange market is also close to zero. Then, the total trading volumes X = 0
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and X = −1 are almost uninformative, leading to lower exchange market efficiency.

On the other hand, at α = 2g−(RH−RL)
2g−3(RH−RL)

, βH reaches one. The total trading volume

X = −1 becomes perfectly revealing. In addition, at this point, the informativeness of

the total trading volume X = 0 reaches the highest level. Therefore, the average exchange

market efficiency with the dark pool is higher than that without the dark pool. As a result,

there are 0 < α1 < α2 < 0 such that the dark pool hurts the exchange market efficiency

when α ∈ (0, α1) or α ∈ (α2, 1/2), but it promotes the exchange market efficiency when

α ∈ (α1, α2).

1.7 Dark Pool Effects on Real Economic Efficiency

Proposition 1.4 provides answers to the policy debate about the dark pool effects on exchange

market efficiency. As we discuss, however, it is more important to consider the dark pool

effects on real economic efficiency, which is measured by the ex-ante expected firm value in

our model. Since a more efficient exchange market will guide firm investment better, it is

not too surprising that the dark pool promotes real economic efficiency when the dark pool

improves the exchange market efficiency.

What is surprising in our model is that in some instances, even if the dark pool hurts

exchange market efficiency, it still promotes real economic efficiency. This is illustrated in

Figure 1.6 and shown in Proposition 1.5.
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Figure 1.6: Dark Pool Effects on Real Economic Efficiency

Proposition 1.5. There is an α3 ∈ (0, α1) such that the dark pool improves the real

economic efficiency for any α ∈ (α3, 1).

Figure 1.5 and Figure 1.6 show that for any α ∈ (α3, α1) ∪ (α2, 1/2), the dark pool

hurts exchange market efficiency but promotes real economic efficiency. This arises from

the firm’s asymmetric investment. In particular, with α ∈ (0, 1/2), the manager reduces

the investment when the total trading volume is X = 0. That is, the equilibrium firm

investment for X = (−2,−1, 0, 1, 2) is d(X) = (−1,−1,−1, 1, 1). Given that βH ∈ (0, 1) and

βL = 0 in equilibrium, the probability of each total trading volume in the exchange market

is calculated in Table 1.5.

X -2 -1 0 1 2

d -1 -1 -1 1 1

H 0 (1− βH)α
3

(1− βH)(1− 2α
3

) + βH
α
3

(1− βH)α
3

+ βH(1− 2α
3

) βH
α
3

L 0 α
3

1− 2α
3

α
3

0

Table 1.5: Probability of Total Trading Volume Conditional on Firm Fundamentals for
α ∈ (0, 1/2).

At state H, if the informed investor buys in the dark pool (with a probability 1− βH),
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the expected firm value is the weighted average among those when the total trading volume

is X = −1, X = 0, and X = 1. On the other hand, if the informed investor buys in the

exchange market (with a probability βH), the expected firm value is the weighted average

among those when the total trading volume is X = 0, X = 1, and X = 2. Since reducing

investment is the wrong action at state H, the firm value is higher when the informed investor

buys in the exchange market. Then, it follows from Corollary 1.3 that as α increases from

0 to 2g−(RH−RL)
2g−3(RH−RL)

, the probability that the positively informed investor buys in the exchange

market increases, leading to a higher expected firm value at state H.

When α ∈
[

2g−(RH−RL)
2g−3(RH−RL)

, 1
2

)
, the positively informed investor always buys in the ex-

change market. Since the manager will make the wrong investment decision at state H

when X = 0, an increase in α decreases the expected firm value because it will increase

the probability of a zero total trading volume. (We note that this effect also exists when

α increases from 0 to 2g−(RH−RL)
2g−3(RH−RL)

. It is, however, dominated by the effect of the correct

investment when the informed investor buys in the exchange market and X = 1, due to

the assumption that RH − g > RL + g.) Importantly, when α is arbitrarily close to 1/2,

compared with the case without the dark pool, the adverse effect of the wrong investment

decision when X = 0 is just offset by the higher probability of the correct investment deci-

sion. Hence, as α converges to 1/2 from the left, the real economic efficiency with the dark

pool converges to that without the dark pool, implying that when α ∈ (α2, 1/2), the dark

pool promotes the real economic efficiency at state H.

When α ≥ 1/2, since the informed investor surely trades in the exchange market,

d(X = 0) = 0, as α increases in this region, the noise investor is more likely to sell in the

exchange market, making X = 0 occur more frequently. Therefore, the expected firm value

is strictly decreasing in α.

The expected firm value at state L is similar to that at state H when α ∈ [1/2, 1)

but differs significantly when α ∈ (0, 1/2). In particular, as α increases from 0 to 1/2, the
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negatively informed investor surely sells in the dark pool, and the total trading volume in

the exchange market is governed by the noise investor only. Then, X = 1, the total trading

volume that leads to the wrong investment decision at state L, occurs more frequently. Given

the assumption that RH − g > RL + g, an increase in α decreases the expected firm value.

We summarize the expected firm value conditional on the firm fundamentals in Lemma

1.5 and depict them in Figures 1.7 and 1.8, respectively.

Lemma 1.5. Without the dark pool, the firm value is RH + 2
3
g and RL + 2

3
g at state H

and state L, respectively; hence, the ex-ante firm value is (RH + RL)/2 + 2
3
g. By contrast,

with the dark pool, the firm value at each state of the firm fundamentals depends on the

probability of noise investor trading in the exchange market α. In particular,

1. The firm value at state H is
RH + (2βH − 4αβH

3
+ 2α

3
− 1)g, ∀α ∈

(
0, 2g−(RH−RL)

2g−3(RH−RL)

)
RH + (1− 2α

3
)g, ∀α ∈

[
2g−(RH−RL)
2g−3(RH−RL)

, 1
2

)
RH + (1− α

3
)g, ∀α ∈

[
1
2
, 1
) (1.23)

2. The firm value at state L is
RL + (1− 2α

3
)g, ∀α ∈

(
0, 1

2

)
RL + (1− α

3
)g, ∀α ∈

[
1
2
, 1
) (1.24)
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Figure 1.7: Real Economic Efficiency at State
H
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Figure 1.8: Real Economic Efficiency at State
L

From Figure 1.7 and Figure 1.8, it is obvious that when α is very close to 1/2, the

dark pool promotes real economic efficiency, even if it hurts the exchange market efficiency

by Proposition 1.4; this result is also true when α ∈ (α3, α1). Such a result implies that

lower exchange market efficiency does not necessarily imply lower real economic efficiency.

Therefore, when regulators design policies for the dark pool, using exchange market efficiency

may overestimate the adverse effects of the dark pool on real economic efficiency.

1.8 Managerial Learning Effects

In addition to the dark pool effects on investor venue choice, exchange market efficiency, and

real economic efficiency, our model also helps analyze managerial learning effects. Since the

literature on managerial learning focuses solely on investors’ trading behavior in the exchange

market, allowing investors to make trading venue choices may provide new predictions and

empirical implications. We, therefore, study managerial learning effects in this section,

focusing on the equilibrium with real effects d(X) = (−1,−1,−1, 1, 1) when the total trading

volume in the exchange market is X = (−2,−1, 0, 1, 2).

To study the managerial learning effects, we establish a benchmark model in which the
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manager does not learn from the exchange market for exogenous reasons, such as a high cost

of extracting information from the exchange market or the manager’s overconfidence. The

main result in this section is that for any given probability of the noise investor trading in

the exchange market, there is a unique symmetric equilibrium in which the informed investor

chooses the exchange market with the same probability regardless of the firm fundamentals.

Importantly, this symmetric equilibrium is the only equilibrium that exists at any probability

of noise investor trading in the exchange market.

We first consider the manager’s investment decision and the market maker’s pricing

decision. Since the manager does not learn from the exchange market, he will make the

investment decision based on his prior belief only. Given that the prior belief about state

H is 1/2, the expected firm value from either expanding the investment or reducing the

investment is (RH +RL)/2, which is the same as that from keeping the current investment.

Hence, the manager keeps the current investment in equilibrium. Unlike the manager, the

market maker learns from the total trading volume in the exchange market when setting

prices and clearing the market. Given her posterior belief about state H for each possible

total trading volume X in Table 1.3, her equilibrium pricing function is characterized in

equation (1.1).

Then, we derive the informed investor’s expected trading profits in the exchange market

and in the dark pool. Because the asset price in the exchange market and thus the net

opportunity cost of trading in the exchange market are both endogenously determined by

the market maker’s belief about the informed investor trading venue choice, this benchmark

model also features the self-fulfilling prophecy. That is, the informed investor trading venue

choice may be caused by the market maker’s belief about her choice, which determines the

asset price in the exchange market. Because of the self-fulfilling prophecy, multiple equilibria

may emerge in our model, which is shown in Proposition 1.6 below.

Proposition 1.6. In the benchmark model without managerial learning, there may be
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multiple equilibria. In particular:

1. For any α ∈ (0, 1), there is a unique symmetric equilibrium in which the informed

investor trading venue choice is independent of the firm fundamentals. Specifically,

βNH = βNL = βN =


4α

3−4α+4α2 , ∀α ∈
(
0, 1

2

)
1, ∀α ∈

[
1
2
, 1
)
.

(1.25)

2. For any α ∈
(
0.3299, 1

2

)
, the model has multiple asymmetric equilibria.

βNH = βNL = βN βNH = βNL = 1

βNH ∈ (0, 1)

βNL = 0

βNH = 0

βNL ∈ (0, 1)

βNH = 1

βNL = 0

βNH = 0

βNL = 1

0 1
2

0.3299 1
3

1
α

Figure 1.9: Equilibrium Venue Choice without Managerial Learning

Figure 1.9 illustrates the multiple equilibrium strategies of the informed investor in

the benchmark model without managerial learning. We notice that except for a small set

of parameters, the model has a unique equilibrium in which both the positively and the

negatively informed investor choose the exchange market with the same probability βN .

This follows from the symmetric structure of the benchmark model: If the market maker

believes that βNH = βNL = βN , in either the exchange market or the dark pool, both the

positively informed investor and the negatively informed investor have the same expected

payoffs. Since the only equilibrium that survives for all α ∈ (0, 1) is the one characterized

in Part 1 of Proposition 1.6, we focus on it in the rest of this section.
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Figure 1.10 depicts the informed investor’s equilibrium venue choice strategy, βN , as a

function of the probability that the noise investor trades in the exchange market. For com-

parison, we also depict the informed investor’s equilibrium venue choice strategy, (βH , βL),

when the manager is learning.
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Figure 1.10: Symmetric Equilibrium in Benchmark Model

It is clear in Figure 1.10 that when α ≥ 1/2, whether the manager is learning from the

exchange market or not, the informed investor will trade in the exchange market for sure.

This is again due to the negative net opportunity cost. However, α < 1/2 is a significantly

different case: when the manager is learning, the positively informed investor is more likely

to buy in the exchange market, while the negatively informed investor is less likely to sell in

the exchange market. This demonstrates the effects of managerial learning on the informed

investor’s trading venue choice.

Comparing the equilibrium when the manager is learning with that when the manager

does not learn, we show the managerial learning effect on exchange market efficiency. Denote

by IN(Θ|X) and I(Θ|X) the mutual information of the firm fundamentals conditional upon

the total trading volume without and with managerial learning, respectively. Then, the

managerial learning effects on exchange market efficiency is measured by I(Θ|X)−IN(Θ|X).
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Proposition 1.7. There is an α4 ∈ (0, 1/2), such that

I(Θ|X)− IN(Θ|X) =



> 0, if α ∈ (0, α4)

= 0, if α = α4

< 0, if α ∈ (α4, 1/2)

= 0, if α ∈ [1/2, 1) .

(1.26)
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Figure 1.11: Managerial Learning Effects on Exchange Market Efficiency

Figure 1.11 depicts IN(Θ|X) and I(Θ|X) by a red dotted curve and a blue solid curve,

respectively. First of all, when the noise investor is likely to trade in the exchange market

(α ≥ 1/2), managerial learning does not affect exchange market efficiency. This is intuitive.

Since the managerial learning does not affect the informed investor trading venue choice in

this case, it does not affect the exchange market efficiency either.

However, when the noise investor is less likely to trade in the exchange market, that

is, α ∈ (0, 1/2), managerial learning affects exchange market efficiency dramatically. Specif-

ically, when α ∈ (0, α4), I(Θ|X) > IN(Θ|X), implying that the managerial learning pro-

motes the exchange market efficiency. This is because the informed trading is higher with
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managerial learning than that without managerial learning. When α ∈ (α4, 1/2), however,

managerial learning reduces the exchange market efficiency because the informed trading is

lower with managerial learning.

1.9 Conclusion

The fast expansion of alternative trading systems, especially the dark pools, has generated

debates about their effects on price discovery in exchange markets in policy circles and among

academic scholars. Such a concern is more worrisome when real decision makers are making

decisions based on information from the exchange market. In this paper, we develop a model

to analyze dark pool effects on investor trading behavior, exchange market efficiency, and

real economic efficiency. We show that when the exchange market has low noise trading,

the informed investor surely chooses the dark pool when the firm fundamentals are low and

randomizes between the exchange market and the dark pool when the firm fundamentals

are high. Such an asymmetric trading venue choice, in turn, leads to asymmetric firm

investments. Specifically, when the total trading volume is zero, the manager reduces the

investment, differing from the case without a dark pool.

The dark pool effects on the exchange market efficiency and real economic efficiency

depend crucially on the noise trading in the exchange market. In particular, for a large

set of probabilities of the noise investor trading in the exchange market, the dark pool

increases both the exchange market efficiency and the real economic efficiency. Surprisingly,

in some circumstances, the dark pool hurts the exchange market efficiency but promotes

real economic efficiency. These results imply that when evaluating dark pools, policymakers

need to calibrate the noise trading in the exchange market and use the correct evaluation

criterion. In particular, if policymakers want to maximize the real economic efficiency, using

the exchange market efficiency as a measure may overestimate the dark pool’s adverse effects
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on real economic efficiency.

The contributions of this paper are three-fold. First, from an applied perspective,

we develop a tractable model to analyze the interaction between managerial learning and

investor trading venue choice. The theoretical analysis generates several new empirical and

policy implications. In addition, our model captures the main features of dark pools, and

thus can be used in future studies of alternative trading systems. Second, from a theoretical

perspective, we show that some economic factors may promote real economic efficiency while

hurt market efficiency. Therefore, it is not always correct to use market efficiency as a proxy

of real economic efficiency. Third, from a conceptual perspective, we demonstrate that

when firm cash flow is endogenous, the variance ratio developed by Kyle (1985) is no longer

plausible to measure market efficiency (i.e., as more information is incorporated into the asset

price, the variance ratio may be larger). We, therefore, propose to use mutual information to

measure market efficiency, which not only works well in our model but also helps understand

the informativeness of each possible asset price (or total trading volume).
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Chapter 2

Dark Pool Effects on Investor Trading

Venue Choice

Abstract This paper studies the dark pool effects on investor trading venue choice in a

model featuring managerial learning from the exchange market. The dark pool does not

divert investors away from the exchange market but initiates investors’ coordination incentive

when trading in the exchange market does not bring them positive profits. This is because the

informed investor goes to the dark pool for making positive profits, and the liquidity investor

goes to the dark pool for cost-saving. When the transaction cost in the exchange market

is high enough, the informed investor does not trade in the exchange market, regardless of

the liquidity investor’s trading behavior. When the delay cost of the liquidity investor is

higher than the transaction cost, the liquidity investor may trade in the exchange market,

regardless of the informed investor’s trading behavior. In addition, managerial learning may

encourage more informed trading in the exchange market when the transaction cost in the

exchange market is low enough.

JEL Classification: D83, G11, G14

Key words: Dark pool, managerial learning, trading venue choice, coordination
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2.1 Introduction

Dark pools are private trading systems that provide a platform for anonymous trading of

securities. Contrary to the exchange markets, dark pools offer execution prices no worse

than the National Best Bid Offer (NBBO). More importantly, they do not display bid and

ask quotes, and they delay displaying trading information. Such low transparency facili-

tates institutional investors’ block trading with minimal adverse price impact. Recently, the

expansion of electronic trading and the almost zero transaction fee also make dark pools

attractive to retail investors. These inherent advantages of dark pools, together with the

regulatory reforms, make dark pools occupy a considerable fraction of trading volume in

recent years (Figure 2.1). In mid-2011, dark pools accounted for around 30% of average

daily trading volume, but this number increased by more than 5% three years later.

Figure 2.1: Fast Growth of Dark Pools.

The rising market share of dark pool trading catches the eyes of regulators, scholars,

and industry professionals and results in serious concerns in policy circles such as loss of

price discovery, fragmentation of liquidity, and distribution of welfare between institutional

and retail investors, etc. Exchange markets officials are concerned that dark pool trading

divert huge volume away from exchanges, and thus they urge the Securities and Exchange

49



Commission SEC to set rules or amend regulations to hinder dark pool trading.

These concerns, however, are even more worrisome when real decisions are made based

on exchange market prices. Many empirical studies, such as Luo (2005), Chen, Goldstein,

and Jiang (2007), Bakke and Whited (2010), Foucault and Frésard (2012), and Jayaraman

and Wu (2019) have provided evidence that firm managers are gleaning information from

exchange market prices and making real decisions based on such information.1 Then, a näıve

implication will be that the informed investors will choose dark pools to hide their informa-

tion and reduce the trading volume in the exchange market. In this paper, we investigate

the dark pool effects on investor trading venue choice. Several interesting questions arise.

What is the impact of dark pools on investor trading venue choice? Do dark pools divert

investors away from exchange markets? If not, which factors cause exchange markets to lose

their order flows?

We answer these questions in a model in which a firm manager decides to expand,

remain, or reduce the firm investment and investors who select a trading venue between an

exchange market and a dark pool, or choose not to trade. The firm value is determined by

its investment and firm fundamentals. The firm fundamentals are either high or low and

are privately known by an informed investor. There is a liquidity investor who strategically

makes trading venue choices or chooses not to trade after receiving a liquidity shock. Both

the informed investor and the liquidity investor trade simultaneously. If they submit orders

to the exchange market, their orders will be surely executed, because the exchange market

has a competitive market maker who provides liquidity. Alternatively, investors may submit

their orders to the dark pool where order execution is not guaranteed and potential execution

price is the concurrent asset price in the exchange market. The manager and the market

marker then observe the total trading volume in the exchange market; however, neither of

them observes trading in the dark pool. Based on their information, the market maker sets a

1See Bond, Edmans, and Goldstein (2012) for an excellent survey of this literature.
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price to make herself break-even, and the manager makes investment decisions to maximize

the firm value.

We find that when the dark pool is not available to investors, the investor trading

behavior is determined by the transaction cost in the exchange market and the delay cost of

the liquidity investor. When the transaction cost in the exchange market is very high, the

informed investor chooses not to trade, regardless of the liquidity investor’s trading strategy.

When the liquidity investor’s delay cost is lower than the transaction cost, the liquidity

investor does not trade; otherwise, she may choose to trade in the exchange market. Given

that the liquidity investor always trades in the exchange market, as the transaction cost

reduces, the informed investor’s strategy changes from not to trade to trade on one side of

information and finally changes to trades on both sides of information when the transaction

cost is very low. In addition, managerial learning encourages more informed trading in the

exchange market when the transaction cost is low enough.

When the dark pool is available to the investors, all pure strategy equilibria when the

dark pool is shut down still hold. However, for those equilibria in which the liquidity investor

does not necessarily trade in the exchange market when the dark pool is shut down, the dark

pool leads to multiple equilibria in which investors may coordinate to trade in the dark pool.

Intuitively, the informed investor goes to the dark pool to make more positive profits, and

the liquidity investor goes to the dark pool to save cost.

Therefore, the dark pool does not divert investors from the exchange market. Instead,

transaction cost in the exchange market and the delay cost of the liquidity investor signifi-

cantly affect the trading volume in the exchange market. Given the delay cost of the liquidity

investor, exchange markets may increase the trading volume by setting lower transaction fees.

Our paper contributes to the fast-growing literature on dark pools. Several papers

show that different trading venues cater to different categories of investors. Hendershott and
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Mendelson (2000) find that exchange markets attract more traders who put a high value

on the assurance of immediate execution, while crossing networks attract more traders who

pursue certainty of execution in return for lower costs. Degryse, Achter, and Wuyts (2009)

find that investors with a high willingness to trade are more likely to trade at a dealer

market. Buti, Rindi, and Werner (2017) extend Degryse, Achter, and Wuyts (2009) by

investigating the competition between a dark pool and a limit order book. Jiang, McInish,

and Upson (2014) find that as uninformed investors can segment their order flow to off-

exchange venues, a larger proportion of trades on the exchanges are informed. Nimalendran

and Ray (2011) reveal that crossing-network trades are informed. Zhu (2014) suggests that

dark pools divert noise trading from the exchange market. Our paper contributes to this

literature by developing a tractable model featuring managerial learning to analyze the dark

pool effects on investor trading venue choice. We show that dark pools do not significantly

divert investors from the exchange markets.

Second, our paper belongs to the literature on interactions between financial market

and corporate decisions. Some studies find that a firm’s investment is sensitive to its own

stock price (Baker, Stein, and Wurgler, 2003, Goldstein and Guembel, 2008, Hirshleifer,

Subrahmanyam, and Titman, 2006, Khanna and Mathews, 2012), while others document

that a firm’s investment may be even sensitive to its peers’ stock prices (Foucault and

Frésard, 2012, 2014, Ozoguz, Rebello, and Wardlaw, 2018). The closest paper to ours in this

literature is Edmans, Goldstein, and Jiang (2015) who find that managerial learning causes

an informed investor’s asymmetric trading and the “sell-side” limits to arbitrage. However,

in their model, there is no dark pool, and thus the investors do not have trading venue

choices. By contrast, we focus on investors’ trading venue choice between the exchange

market and the dark pool. We show that managerial learning may encourage more informed

trading in the exchange market when the transaction cost is low enough.

Last but not least, the paper complements the large literature on the limits to arbitrage.
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In models without agency problem, arbitragers trade more aggressively when prices move

further out of fundamental values (Campbell and Kyle, 1993, DeLong et al., 1990, Grossman

and Miller, 1988). In Shleifer and Vishny (1997), the noise trader risk makes investors hardly

finance their bets against mispricing. Other studies focus on implementation cost, which

includes transaction costs, short-sale constraints, and the costs of discovering or exploiting

a mispricing (D’Avolio, 2002, Gromb and Vayanos, 2002, Jones and Lamont, 2002, Lamont

and Thaler, 2003, Nagel, 2005). We argue that the transaction cost in the exchange market

and the delay cost of the liquidity investor cause the limits to arbitrage in the exchange

market.

2.2 Model

Our model has four market participants: an informed investor, a liquidity investor, a market

maker, and a firm manager. Both the informed investor and the liquidity investor strategi-

cally choose to trade firm stocks in the exchange market or the dark pool. The market maker

works for the exchange market and clears the market by inventories. Therefore, investors in

the exchange market will have their orders implemented for sure. In contrast, investors who

choose the dark pool may not trade successfully. The firm manager and the market maker

can observe the total trading volume in the exchange market but cannot identify the trader

nor observe the tradings in the dark pool.

2.2.1 Corporate Decisions

The firm value, denoted by v(θ, d), depends on both the manager’s investment d and the

firm fundamentals θ ∈ {H,L}. In particular, the state θ is drawn by nature with an equal

probability. The manager can choose to expand the investment (d = 1), to keep the current
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investment (d = 0), or to decrease the investment (d = −1). If the manager keeps the

current investment, the firm value is v(H, 0) = RH at state H and v(L, 0) = RL at state

L. We assume that RH > RL. As a convention, the manager changes the investment

level only if doing so can bring a strictly higher firm value. g is the bonus and penalty of

making the “correct” and “wrong” action, respectively. Thus, the “correct” action at state

H – expanding the investment – creates an additional value g and leads to the firm value

v(H, 1) = RH + g. In contrast, the “wrong” action at state H – decreasing the investment

– reduces the firm value (by g) to v(H,−1) = RH − g. Similarly, at state L, decreasing

the investment is the correct action and creates an additional value g, while increasing the

investment is incorrect and reduces the firm value (by g). Table 2.1 summarizes the firm

value v(θ; d).

Investment d

1 0 -1

State θ
H RH + g RH RH − g

L RL − g RL RL + g

Table 2.1: Investment Decision and Firm Value

We assume that state H dominates state L in term of the fundamentals effect on the

firm value; that is, even the wrong investment decision at state H brings a higher firm value

than the right investment decision at state L; formally, we assume that v(H,−1) > v(L,−1),

which is equivalent to RH − g > RL + g. By this assumption, the firm value is increasing

in its fundamentals, so to the informed investor, her private information about the state is

more important than the manager’s investment decision. For simplicity, we further restrict

the model parameters to g = k (RH−RL)
2

, where k is strictly less than but arbitrarily close to

1.
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2.2.2 Trading Venues

There are two parallel trading venues: an exchange market and a dark pool. We assume

that there is a transaction cost2 k in the exchange market. The informed investor perfectly

observes the firm fundamentals and then selects a trading venue, either the exchange market

or the dark pool, or she does not trade. We call the informed investor as a “positively”

and a “negatively” informed investor if the firm fundamentals are respectively high and low.

The liquidity investor may have a positive liquidity demand (l = 1), a negative liquidity

demand (l = −1), or have no liquidity demand (l = 0). We call the liquidity investor as

a “positively” and a “negatively” liquidity investor if l = 1 and l = −1 respectively. After

receiving a liquidity shock l 6= 0, the liquidity investor may select a trading venue between

the exchange market and the dark pool, or she does not trade. We assume that the liquidity

investor suffers a delay cost δ if she does not trade or does not trade successfully when l 6= 0.

For simplicity, we assume that after choosing a trading venue, both the informed investor

and the liquidity investor trade unit share. We denote by βHE and βLE (βHD and βLD) the

probabilities that the informed investor chooses the exchange market (the dark pool) when

she is respectively positively and negatively informed, and denote by αBE and αSE (αBD

and αSD) the probabilities that the liquidity investor chooses the exchange market (the dark

pool) when she has a positive and a negative liquidity demand, respectively. The informed

investor and the noise investor trade simultaneously. In the exchange market, the market

maker observes the total trading volume X = XI + XL, but not their individual trades.

Obviously, X ∈ {−2,−1, 0, 1, 2}. The market maker is competitive and sets a price based

on the total trading volume in the exchange market to keep herself break-even. That is, her

pricing strategy is P (X) = E(v|X). She then clears any excess demand or supply using her

2The transaction cost is exogenous such as commission fees, borrowing costs for short-selling, and the
opportunity costs of capital commitment for purchases. While the transaction costs may differ between
buying and selling, we assume the same transaction costs in both directions to prevent generating any
asymmetry mechanically.
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own inventory. In the dark pool, there is no market maker, and thus orders are executed only

when both investors trade in the dark pool and demand opposite positions. The execution

price in the dark pool therefore is the concurrent asset price in the exchange market.

2.2.3 Timing

Figure 2.2 presents the timeline of our model. At t = 0, nature chooses the firm fundamentals

θ. The informed investor observes θ perfectly and chooses a trading venue or does not trade.

The liquidity investor with a demand l 6= 0 chooses a trading venue or does not trade. At

t = 1, trading may occur in the exchange market or the dark pool. The manager observes

the total trading volume in the exchange market and then makes an investment decision. At

t = 2, all uncertainties are resolved and payoffs are realized.

t=0 t=1 t=2

Nature chooses θ;

Traders select venue

or choose not to trade

Trading may occur;

Manager makes

decision to invest

All uncertainties

are resolved and

payoffs are realized

Figure 2.2: Model Timeline

2.2.4 A Perfect Bayesian Equilibrium

The informed investor’s strategy is a mapping from the firm fundamentals θ to the prob-

abilities of trading in the exchange market and trading in the dark pool. Similarly, the

liquidity investor’s strategy is a mapping from the liquidity demand l to the probabilities

of trading in the exchange market and trading in the dark pool. The manager’s strategy is

a mapping from the total trading volume to her investment decision. The market maker’s
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pricing strategy is a mapping from the total trading volume to a price. We are interested in

perfect Bayesian equilibrium.

Definition 2.1. The informed investor’s strategy of venue choice β∗ : {H,L} → [0, 1], the

liquidity investor’s strategy of venue choice α∗ : {−1, 1} → [0, 1], the manager’s investment

strategy d∗ : X → {−1, 0, 1}, and the market maker’s pricing strategy P ∗(X) constitute a

perfect Bayesian equilibrium if:

1. For the informed investor, β∗θ maximizes her expected final payoff for each θ ∈ {H,L},

given the liquidity investor’s venue choice strategy, the market maker’s pricing strategy,

and the manager’s investment strategy.

2. For the liquidity investor, α∗l maximizes her expected final payoff, given the informed

investor’s venue choice strategy, the market maker’s pricing strategy and the manager’s

investment strategy.

3. For the manager, d∗(X) maximizes the expected firm value V given the information in

the exchange market and other agents’ strategies.

4. For the market maker, the price P ∗(X) = E(v|X) allows her to beak-even in expecta-

tion for each X ∈ {−2,−1, 0, 1, 2}, given all other agents’ strategies.

5. The manager and the market maker update their beliefs by Bayes’ rule after observing

the total trading volume in the exchange market.

2.3 Benchmark Model

To analyze the dark pool effects on the investor trading venue choice, we establish a bench-

mark model where a dark pool is not available. Hence, the informed investor will trade in

the exchange market if she can earn positive profits and not trade otherwise. The liquidity
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investor will trade in the exchange market if her profit in the exchange market is higher than

the delay cost.

We first analyze the market maker and the firm manager’s posterior beliefs for any given

trading venue choice strategies of investors, which will determine the firm’s stock price and

investment. We then characterize investors’ equilibrium venue choice strategies, given the

market maker’s and the manager’s best responses.

The main result in this section is that when the dark pool is shut down, depending on

the transaction cost in the exchange market and the liquidity investor’s delay cost, there are

multiple pure strategy equilibria. In particular, when the transaction cost in the exchange

market is very high, the informed investor chooses not to trade, regardless of the liquidity

investor’s trading strategy. For the liquidity investor, when the delay cost is lower than

the transaction cost, she may choose not to trade; otherwise, she may choose to trade in

the exchange market. When the liquidity investor always trades in the exchange market, as

the transaction cost reduces, the informed investor’s strategy changes from not to trade to

trade on one side of information, and finally changes to trade on both sides of information

when the transaction cost is very low. In addition, when the transaction cost is low enough,

managerial learning encourages more informed trading in the exchange market.

2.3.1 Belief Updating, Asset Pricing, and Firm Investment

We first analyze the manager’s and the market maker’s posterior beliefs about state H for

each possible total trading volume X, given the investors’ strategies of trading venue choice.

Since the manager and the market maker have the same prior information in our model,

conditional on a total trading volume X, they should have the same posterior beliefs in

equilibrium. Figure 2.3 helps calculate the posterior belief of the manager and the market

maker given each possible total trading volume.
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Figure 2.3: Manager and Market Maker’s Belief Updating

For example, the total trading volume in the exchange market is zero either when

neither of the investors trades in the exchange market (with the probability 1
2
[(1 − βHE) +

(1 − βLE)](1 − αBE+αSE
3

)), or when both investors are trading in the exchange market but

with opposite positions (with probability 1
2

(βHEαSE+βLEαBE)
3

). Then, by Bayes’ rule, when

the total trading volume in the exchange market is zero, the firm manager and the market
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maker have a posterior belief about θ = H:

Pr(θ = H|X = 0) , q(X = 0) =
1
2
(1− βHE)(1− αSE+αBE

3
) + 1

2
βHEαSE

3

1
2
(2− βHE − βLE)(1− αSE+αBE

3
) + 1

2
(βHEαSE+βLEαBE)

3

=
βHEαSE + (3− αBE − αSE)(1− βHE)

βHEαSE + βLEαBE + (2− βHE − βLE)(3− αBE − αSE)
.

Similarly, we calculate the manager’s and the market maker’s posterior belief following

each possible total trading volume X ∈ {−2,−1, 0, 1, 2}. Equation (2.1) summarizes the

equilibrium posterior belief q(X).

q(X) =



0, X = −2

αSE(1−βHE)
αSE(2−βHE−βLE)+(3−αBE−αSE)βLE

, X = −1

βHEαSE+(3−αBE−αSE)(1−βHE)
βHEαSE+βLEαBE+(2−βHE−βLE)(3−αBE−αSE)

, X = 0

αBE(1−βHE)+(3−αBE−αSE)βHE
αBE(2−βHE−βLE)+(3−αBE−αSE)βHE

, X = 1

−1, X = 2.

(2.1)

In equilibrium, the market maker sets prices that make her break-even in expectation.

Thus, the pricing function in the exchange market is

P (X) = E(v|X) = q(X)v (H, d(X)) + (1− q(X)) v (L, d(X)) . (2.2)

Note that in Equation (2.2), the market maker accounts for the manager’s investment

strategy when setting the price.

We now analyze the manager’s investment decision. Denote by q1 and q−1 two thresholds
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in the manager’s posterior belief space such that

q1RH + (1− q1)RL = q1(RH + g) + (1− q1)(RL − g) (2.3)

q−1RH + (1− q−1)RL = q−1(RH − g) + (1− q−1)(RL + g). (2.4)

Equation (2.3) indicates that when the manager’s posterior belief is exactly q1, the

expected firm value from keeping the current investment equals that from expanding the

investment. Similarly, Equation (2.4) implies that with a posterior belief q−1, the manager

is indifferent between keeping the investment level and reducing the investment. Simple

algebra shows that

q1 = q−1 =
1

2
. (2.5)

Recall that the manager will keep the investment if changing the investment cannot

lead to a strictly higher firm value, then Lemma 2.1 formally characterizes the manager’s

investment decision based on her posterior beliefs.

Lemma 2.1. When the manager is learning from the exchange market, his equilibrium

investment decision is determined by his posterior belief. In particular,

d(X) =


1, if q(X) ∈

(
1
2
, 1
]

0, if q(X) = 1
2

−1, if q(X) ∈
[
0, 1

2

)
.

(2.6)

2.3.2 Trading Profit in Exchange Market

Consider the informed investor. If the informed investor does not trade, her expected pay-

off is zero. If the positively informed investor decides to trade in the exchange market,
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her order will lead to a total trading volume X ∈ {0, 1, 2} with probability (αSE/3, 1 −
αSE+αBE

3
, αBE/3). Similarly, if the negatively informed investor decides to trade in the ex-

change market, her order will lead to a total trading volume X ∈ {0,−1,−2} with proba-

bility {αBE/3, 1 − αSE+αBE
3

, αSE/3}, respectively. With the pricing Equation (2.2), Lemma

2.2 shows the informed investor’s expected profit in the exchange market.

Lemma 2.2. The informed investor’s expected payoff in the exchange market is

(
1− αSE + αBE

3

)
[v(H, d(1))− P (1)] +

αSE
3

[v(H, d(0))− P (0)]− k (2.7)

if she is positively informed, and it is

(
1− αSE + αBE

3

)
[P (−1)− v(L, d(−1))] +

αBE
3

[P (0)− v(L, d(0))]− k. (2.8)

if she is negatively informed.

We now turn to the liquidity investor. If the liquidity investor does not trade when

l 6= 0, she suffers the delay cost δ. If the positive liquidity investor decides to trade in the

exchange market, her order will lead to a total trading volume X = 0 in state L with a

probability βSE
2

, lead to a total trading volume X = 1 in state H with a probability 1−βBE
2

and in state L with a probability 1−βSE
2

, and lead to a total trading volume X = 2 in state

H with a probability βBE
2

. Similarly, if the negative liquidity investor decides to trade in the

exchange market, her order will lead to a total trading volume X = 0 with probability βBE
2

,

lead to a total trading volume X = −1 in state H with a probability 1−βBE
2

and in state

L with a probability 1−βSE
2

, and lead to a total trading volume X = −2 in state L with a

probability βSE
2

. With the pricing equation (2.2), Lemma 2.3 shows the liquidity investor’s

expected profit in the exchange market.
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Lemma 2.3. The liquidity investor’s expected payoff in the exchange market is

1− βBE
2

[v(H, d(1)− P (1)] +
1− βSE

2
[v(L, d(1)− P (1)] +

βSE
2

[v(L, d(0)− P (0)]− k (2.9)

if she has a positive liquidity demand, and it is

1− βBE
2

[P (−1)− v(H, d(−1)] +
1− βSE

2
[P (−1)− v(L, d(−1)] +

βBE
2

[P (0)− v(H, d(0)]− k.

(2.10)

if she has a negative liquidity demand.

2.3.3 Pure Strategy Equilibria

We define that the exchange market has “real effects” if the information in the exchange

market makes the firm manager expand or reduce investment. As shown in Equation 2.1,

when the total trading volume in the exchange market is X = 2, the manager’s posterior

belief about θ = H is q(X = 2) = 1, because the total trading volume X = 2 occurs if

and only if the informed investor is buying in the exchange market. Therefore, observing

the total trading volume X = 2, the manager will expand the investment. Similarly, the

manager will reduce the investment, when the total trading volume is X = −2.

The real effects when X = 2 and X = −2 arises purely from the manager’s rationality

and are not affected by the informed investor trading venue choice. Therefore, we focus on

the manager’s investment decision when X ∈ {−1, 0, 1}.

Lemma 2.4 argues that the manager’s investment decision must be increasing in the

total trading volume. This is intuitive. Once the informed investor chooses the exchange

market, she buys at state H and sells at state L. Hence, as the total trading volume increases,

it is more likely that the firm fundamentals are high.
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Lemma 2.4. Both the manager’s posterior belief q(X) about θ = H and the manager’s

investment decision d(X) are increasing in the total trading volume X.

Lemma 2.4 simplify the equilibrium characterization. The firm investment at the total

trading volume X = (−1, 0, 1) can only be (−1, 0, 0), (−1,−1, 0), (−1, 0, 1), (−1,−1, 1),

(−1, 1, 1), (0, 0, 1), and (0, 1, 1). Simple calculation of the posterior beliefs in Equation (2.1)

shows that it is impossible for the manager’s investment decision to be (−1,−1, 0) and

(0, 1, 1) at the total trading volume X = (−1, 0, 1). So, the equilibrium firm investment

at the total trading volume X = (−1, 0, 1) can only be (−1, 0, 0), (−1, 0, 1), (−1,−1, 1),

(−1, 1, 1), and (0, 0, 1).

Proposition 2.1 characterizes equilibria with different transaction cost k and delay cost

δ.

Proposition 2.1. Depending on transaction cost k and delay cost δ, there may be multiple

pure strategy equilibria.

1. When k > RH−RL
2

and k > δ, the unique pure strategy is that both investors choose

not to trade, and the manager’s decision is d = (0, 0, 0).

2. When k > RH−RL
3

and δ > k, the unique pure strategy is that the liquidity investor

always trades in the exchange market, the informed investor does not trade, and the

manager’s decision is d = (0, 0, 0).

3. When RH−RL
3

> k > RH−RL
6

and δ > RH−RL
4

+ k, there are two pure strategy equilibria

in which the liquidity investor always trades in exchange. If the informed investor only

buys but does not sell in exchange, the manager’s decision is d = (−1, 0, 0); if the

informed investor only sells but does not buy in exchange, the manager’s decision is

d = (−1, 0, 0).
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4. When RH−RL
6

> k > 0 and δ > RH−RL
4

+k, the unique pure strategy equilibrium is that

both investors always trade in exchange, and the manager’s decision is d = (−1, 0, 1).

5. When 2(RH−RL)−4g
9

> k > 0 and RH−RL+2g
2

+ k > δ > RH−RL−2g
3

+ k, there are two

pure strategy equilibria in which the liquidity investor only sells but does not buy

in exchange. If the informed investor only buys but does not sell in exchange, the

manager’s decision is d = (−1,−1, 1); if the informed investor only sells but does not

buy in exchange, the manager’s decision is d = (−1, 1, 1).

L: No Trade, I: No Trade; d = (0,0,0).

L: Trade, I: No Trade; d = (0,0,0).

L: Trade, I: Buy Not Sell; d = (-1,0,0).

L: Trade, I: Sell Not Buy; d = (0,0,1).

L: Trade, I: Trade; d = (-1,0,1).

L: Sell Not Buy, I: Buy Not Sell; d = (-1,-1,1).

L: Sell Not Buy, I: Sell Not Buy; d = (-1,1,1).

k̂

δ = k

Figure 2.4: Equilibria without Dark Pool

Denote the liquidity investor and the informed investor by “L” and “I” respectively,

Figure 2.4 illustrates the equilibria characterized in Proposition 2.1. In particular, for any

k > k̂ = RH−RL
3

, the informed investor does not trade, regardless of the liquidity investor’s

trading strategy. It also shows that for any δ > k, there are multiple equilibria in which the

liquidity investor always trades in the exchange market, regardless of the informed investor’s

trading strategy. Besides, if given the transaction cost and delay cost such that the liquidity

investor always trades in the exchange market, as transaction cost reduces, the informed

investor’s trading strategy changes from no trade to asymmetric trading, and finally changes
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to always trade in exchange market when transaction cost is almost zero.

2.4 Trading Venue Choice

We now analyze our core model where a dark pool is available to the investors. We start

with the market maker and the firm manager’s posterior beliefs about firm fundamentals,

which will determine the firm’s stock price and investment. We then characterize investors’

equilibrium venue choice, given the market maker’s and the manager’s best responses.

The main result in this section is that when the dark pool is available to the investors,

all pure strategy equilibria when the dark pool is shut down still hold. However, for those

equilibria in which the liquidity investor does not necessarily trade in the exchange market

when the dark pool is shut down, the dark pool may lead to multiple equilibria in which

investors take coordination actions of choosing the dark pool.

2.4.1 Dark Pool and Belief Updating, Pricing, and Investment

We first analyze the manager and the market maker’s posterior beliefs about state H for

each possible total trading volume X, given the investors’ strategies of trading venue choice.

Figure 2.5 helps calculate the posterior belief of the manager and the market maker given

each possible total trading volume.
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Figure 2.5: Manager and Market Maker’s Belief Updating

From Figure 2.5, it is straightforward to see that adding a dark pool does not affect
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the manager’s and the market maker’s posterior beliefs about state H, which is stated in

Lemma 2.5. Intuitively, the dark pool does not change any information incorporated into

the exchange market, given any informed investor’s trading strategy.

Lemma 2.5. The dark pool does not affect the manager and the market maker’s posterior

beliefs about state θ, given each total trading volume in the exchange market X.

Lemma 2.6 argues that given the same total trading volume in the exchange market,

the manager’s investment decision and the market price after adding a dark pool must be

the same as those without the dark pool. This is intuitive. Since the manager’s and the

market maker’s posterior beliefs keep the same after adding a dark pool, the manager will

make the same decision, and the market maker will set the same price for each total trading

volume in the exchange market.

Lemma 2.6. The dark pool does not affect the manager’s investment decision d(X) and

market price P (X) given each total trading volume in the exchange market X.

Lemma 2.6 simplify the equilibrium characterization. The firm investment at the total

trading volume X ∈ (−1, 0, 1) can only be (−1, 0, 0), (−1,−1, 0), (−1, 0, 1), (−1,−1, 1),

(−1, 1, 1), (0, 0, 1), and (0, 1, 1).

On the other hand, the execution price in the dark pool is assumed to be the concurrent

stock price at the exchange market. While there are five possible prices in the exchange

market (because there are five possible total trading volumes), only the one following a zero

total trading volume matters for the execution price at the dark pool. Intuitively, when an

investor chooses the dark pool, she can have her order executed only when the counter-party

is demanding an opposite position in the dark pool. This occurs only when both the informed

investor and the liquidity investor are trading in the opposite directions in the dark pool,

leading to a zero total trading volume in the exchange market. Lemma 2.7 formally derives

the execution price in the dark pool in equilibrium.

68



Lemma 2.7. The execution price in the dark pool equals the stock price in the exchange

market when the total trading volume is zero. Formally, given the informed investor’s and

the liquidity investor’s venue choice strategies, the execution price at the dark pool is

PD = P (X = 0), (2.11)

which is calculated by equation (2.2).

Lemma 2.7 shows that the investors’ venue choice strategies affect the execution price at

the dark pool, which in turn determines investors’ trading profits in the dark pool. Lemma 2.7

implies that the investors’ trading profits in the dark pool are endogenous, and if βHE 6= βLE,

or αBE 6= αSE, or αBD 6= αSD, such trading profits in the dark pool are asymmetric. Hence,

the execution price in the dark pool in our model differs from that in Zhu (2014) where the

price in the dark pool is zero because it is assumed to be the midpoint of the bid and ask

prices in the exchange market.

2.4.2 Payoffs and Venue Choice

If the informed investor does not trade in both markets, she earns zero profit. Similarly,

the liquidity investor suffers a delay cost δ if she does not trade when l 6= 0. Lemma 2.5

and Lemma 2.6 imply that the dark pool does not change the informed investor’s and the

liquidity investor’s trading profits in the exchange market, given the firm investment d at

the total trading volume X ∈ (−1, 0, 1). Therefore, we focus on the informed investor’s and

the liquidity investor’s trading profits in the dark pool.

If the positively informed investor decides to trade in the dark pool, her order will be

executed with probability αSD/3. Similarly, if the negatively informed investor decides to

trade in the dark pool, her order will be executed with probability αBD/3. With the pricing
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Equation (2.2), Lemma 2.8 shows the informed investor’s expected profit in the dark pool.

Lemma 2.8. The informed investor’s expected payoff in the dark pool is

αSD
3

[v(H, d(0))− P (0)] (2.12)

if she is positively informed, and it is

αBD
3

[P (0)− v(L, d(0))] . (2.13)

if she is negatively informed.

We now turn to the liquidity investor. If the positive liquidity investor decides to trade

in the dark pool, her order can be executed with probability βLD/2. With the complement

probability 1 − βLD/2, she can not execute her order successfully and thus has to pay the

delay cost δ. Similarly, if the negative liquidity investor decides to trade in the dark pool, her

order can be executed with probability βHD/2. With the complement probability 1−βHD/2,

her order can not be executed, and she has to pay the delay cost δ.

With the pricing equation (2.2), Lemma 2.9 shows the liquidity investor’s expected

profit in the exchange market.

Lemma 2.9. The liquidity investor’s expected payoff in the exchange market is

βSD
2

[v(L, d(0)− P (0))]− (1− βSD
2

)δ (2.14)

if she has a positive liquidity demand, and it is

βBD
2

[P (0)− v(H, d(0))]− (1− βBD
2

)δ. (2.15)

if she has a negative liquidity demand.
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Since both investors are uncertain about execution risk in the dark pool, which causes

them to hesitate in choosing the dark pool, it is straightforward that even if the dark pool is

available to the investors, all equilibria when the dark pool is shut down still hold. Proposi-

tion 2.2 summarizes such equilibria.

Proposition 2.2. When the dark pool is available to the investors, any pure strategy equi-

librium when the dark pool is shut down still holds.

Since compared with no trade, going to the dark pool may bring positive profits to the

informed investor and reduce the cost of the liquidity investor, the investors may have some

incentives to coordinate to trade in the dark pool. Proposition 2.3 characterizes equilibria

when the investors take coordination action.

Proposition 2.3. For those equilibria in which the liquidity investor does not necessarily

trade in the exchange market when the dark pool is shut down, the emergence of dark pool

may cause multiple equilibria in which investors coordinate to trade in the dark pool.

1. When k > RH−RL
2

and k > δ > RH−RL
2

, there are three multiple equilibria. Either the

liquidity investor only buys and sells and the informed investor only sells and buys

respectively in the dark pool, or both investors always trade in the dark pool. The

manager’s decision is d = (0, 0, 0).

2. When k > RH−RL
2

and 1
2
(RL−RH + 4k) > δ > k, the unique pure strategy equilibrium

is that both investors always trade in the dark pool. The manager’s decision is d =

(0, 0, 0).

3. When 1
9
(2RH − 2RL − 4x) > k > 0 and 1

3
(2RH − 2RL + 6k + 8g) > δ > 1

3
(RH −RL +

3k − 2g), the unique pure strategy equilibrium is that the liquidity investor sells in

the exchange market and buys in the dark pool, and the informed investor buys in the

exchange market and sells in the dark pool. The manager’s decision is d = (−1,−1, 1).
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L: no trade; I: no trade.

L: buys in dark pool;

I: sells in dark pool.

L: sells in dark pool;

I: buys in dark pool.

L: trades in dark pool;

I: trades in dark pool.

Figure 2.6: Equilibria When d = (0, 0, 0)

L: sells in exchange;

I: buys in exchange.

L: sells in exhange;

I: sells in exchange.

L: sells in exchange,

buys in dark pool;

I: buys in exchange,

sells in dark pool.

Figure 2.7: Equilibria When d = (−1,−1, 1)

Figure 2.6 and Figure 2.7 illustrate the equilibria when investors may take coordination

actions given the real effects are respectively d = (0, 0, 0) and d = (−1,−1, 1) at the total

trading volume X = (−1, 0, 1). Figure 2.6 shows that with real effects d = (0, 0, 0), when the

delay cost is relatively high to the liquidity investor, that is, when δ > RH−RL
2

, the liquidity

investor has coordination incentives of choosing the dark pool to save cost. On the other

hand, the informed investor also has coordination incentives of choosing the dark pool to

make positive profits. Similarly, Figure 2.7 shows that with real effects d = (−1,−1, 1),

the positive liquidity investor and the negatively informed investor may have coordination

incentives of trading in the dark pool3.

2.5 Conclusion

The dark pools have expanded substantially in recent years due to the regulatory reforms

and the fast-growing electronic trading methods. Their rising market share caches the eyes

of regulators, scholars, and industry professionals and results in serious concerns in policy

3The coordination motives of investors are not relevant to negotiations between the informed investor and
the liquidity investor. Instead, the coordination actions are strategic complementarity in investors’ trading
venue choices.
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circles. Such concerns are more disquieting when real decision makers are making decisions

based on information from the exchange market. In this paper, we develop a model to

analyze the dark pool effects on the investor trading behavior. We find that the investors

may coordinate with each other and trade in the dark pool when the liquidity investor does

necessarily trades in the exchange market. This is because the informed investor can make

positive profits in the dark pool instead of no trade and earns nothing. Likewise, the liquidity

investor pays less by trading in the dark pool instead of no trade and pays the huge delay

costs.

Besides, the paper also shows that when the transaction cost in the exchange market is

high enough, the informed investor does not trade in the exchange market, regardless of the

liquidity investor’s trading behavior. When the delay cost of the liquidity investor is higher

than the transaction cost, the liquidity investor may always trade in the exchange market,

regardless of the informed investor’s trading behavior. In addition, managerial learning may

encourage more informed trading in the exchange market when the transaction cost in the

exchange market is low enough.
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Chapter 3

Informed Trading and Product Market

Competition

Abstract This paper studies the interaction between secondary financial market efficiency

and product market competition. An insider trades incumbent stocks based on her knowl-

edge about product market demand, which conveys information to a potential entrant. In

equilibrium, entrant learning causes a “buy-side” limit to arbitrage. With different entry

barriers, entry probability is a function of financial market trading friction and exhibits dif-

ferent patterns. In particular, when the entrant is optimistic ex-ante, its learning will reduce

entry probability, which will lead to a higher product price and lower consumer welfare. A

policy of reducing entry barriers has non-monotonic effects on entry probability. Further-

more, the product market uncertainty may increase or decrease entry probability, depending

upon trading frictions.

JEL Classification: D83, G14, G18, L13, L22, L50

Key words: Oligopoly, managerial learning, limits to arbitrage, product market compe-

tition, barriers to entry
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3.1 Introduction

How does the financial market affect competition in the product market (or industrial organi-

zation)? Previous studies have shown that the primary capital market significantly impacts

firms’ decisions to enter a product market with incumbents because the primary financial

market can supply the necessary entry funds.1 However, does the secondary financial market

also affect competition in the product market? If so, how? Conversely, what are the effects

of the potential entry on trading behavior and market efficiency in the incumbent’s stock

market? How does the secondary financial market play a role when policymakers want to

promote product market competition?

This paper addresses these questions. We consider an entrant’s learning from the incum-

bent stock market a key channel through which the incumbent stock market and the product

market competition interact. Indeed, since Hayek (1945), researchers have been document-

ing empirical evidence about how asset prices convey useful information to decision-makers.2

Since entering a new product market is a core corporate decision, the potential entrant will

naturally make entry decisions based on information extracted from the incumbent stock

market. Insiders in the incumbent stock market will take into account entrant learning when

trading, which determines stock market efficiency that will feedback to the entrant’s entry

decisions and thus product market competition.

In this paper, we analyze an entry game where a potential entrant learns from an

1For instance, in Benoit (1983,1984), predatory pricing may prevent entry if entry decision is financially
constrained. Poitevin (1989) shows that incumbent finances with equity, while high-value entrant must
issue debt to signal his quality to investors such that it comes into market heavily leveraged. Matveyev
and Zhdanov (2019) show that entrant may issue substantially less debt than would be optimal by merely
trading off tax benefits against bankruptcy costs to undercut the incumbent in leverage.

2For example, Fama and Miller (1972) note “at any point in time market prices of securities provide
accurate signals for resource allocation; that is, firms can make production-investment decisions...”. Chen,
Goldstein, and Jiang (2007), Bakke and Whited (2010), and Foucault and Frésard (2012) document that
firms learn from their own stock markets. Foucault and Frésard (2014, 2019), and Dessaint, Foucault,
Frésard, and Matray (2018) further show that firms are also learning from their peers’ stock prices. See
Bond, Edmans, and Goldstein (2012) for an excellent survey.
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insider’s trading in the stock market of a monopoly incumbent. The maximum demand for

a homogeneous consumption good is either high or low, which is privately known by the

insider. The insider then trades in the incumbent’s stock market with a simplified Kyle

(1985), which is similar to Edmans, Goldstein, and Jiang (2015) with the difference that

the insider and the entrant have conflicting interests. Once the entrant enters (by paying

an entry fee), it competes with the incumbent in a Cournot duopoly setting; otherwise, the

incumbent remains its monopoly status.

In equilibrium, entrant learning may lead to financial market inefficiency. Since the

insider trades shares of the incumbent, she suffers a loss while the entrant makes a profit by

entering the product market. To deter the entrant from entering, the insider refrains from

buying on positive information to avoid revealing the high state to the entrant. However, in

the low state, she sells and reveals to the entrant that entry is non-profitable. This “buy-side”

limits to arbitrage may lead to financial market inefficiency and is different from Edmans,

Goldstein, and Jiang (2015). In their paper, an insider trades shares of a firm, the firm

manager learns from the financial market while making an investment decision. Since the

insider and the firm manager have the same interests, she refrains from selling on negative

information to avoid disinvestment, but she buys to encourage investment when she receives

positive information.

Our key result is that, the transaction cost in the financial market significantly affects

the ex-post entry probability, and such an effect is determined by entrant’s prior belief.

When the entrant is sufficiently optimistic about the market demand ex-ante and enters the

market without learning from the incumbent stock market, an increase in the transaction

cost weakly increases the entry probability. Conversely, when the entrant is pessimistic

about the market demand and does not enter the market without learning, an increase in

the transaction cost weakly reduces the entry probability. The intuition of this result lies

on the transaction cost effects on the stock market efficiency. In equilibrium, an increase in
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the transaction cost weakly reduces the informativeness of the stock market. Hence, if the

entrant enters the market based on its prior belief, lower stock market efficiency prevents it

from learning such that it enters; but if the entrant does not enter the market based on its

prior belief, lower stock market efficiency cannot provide the entrant sufficient information

for it to enter.

Besides, how the trading cost affects the entrant’s entry probability is also affected by

economic and informational conditions that the insider faces. The insider is more likely to

enter the financial market when she has more information that the entrant does not know.

Therefore, when the product market is more uncertain, the entrant has higher incentives to

learn from the financial market. In turn, additional information from the financial market

may alter the decision more likely, leading to stronger incentives of the insider to enter the

financial market. We find that the product market uncertainty may increase or decrease the

ex-post entry probability, depending on different trading frictions.

Intuitively, when the product market becomes more uncertain, the insider is more likely

to present in the financial market, leading to higher financial market efficiency. As a result,

more information in the financial market may guide the entrant to make better entry de-

cisions. We find that when transaction cost is extremely high, the insider does not trade,

regardless of the product market uncertainty. Hence, entry probability does not change.

By contrast, when transaction cost is extremely low, the insider always trades, regardless

of the product market uncertainty. Hence, the entrant alters its decision when learning

from the financial market. Besides, when transaction cost is high, the insider only sells on

negative information. Therefore, when the product market becomes more uncertain, more

negative information will be revealed to the entrant, leading to a lower entry probability.

When transaction cost is low, the insider always trades on both directions of information.

However, when the product market becomes more uncertain, the insider only trades on the

negative information. As a result, entry probability decreases if the entrant is pessimistic

77



ex-ante because less positive information is revealed to the entrant, but it increases if the

entrant is optimistic ex-ante because less negative information is revealed to the entrant.

In addition, we find that the relation between entrant’s ex-ante entry probability and

the entry cost is non-monotonic. It is an inverse “U” shape. With financial market, a

public policy that reduces entry barriers may reduce entry probability. If the entrant is

pessimistic ex-ante, reducing entry cost increases entry probability. However, if the entrant

is optimistic ex-ante, reducing entry cost decreases entry probability. Intuitively, as barriers

to entry reduce, the entrant has more incentive to enter the industry, while the insider has

less incentive to trade on positive private information to deter the entrant from entering. As

a result, entry decision is determined by the net effect.

Our results provide new insights into policy implications. In Stigler (1971) theory

of regulatory capture, the stricter regulation of entry raises barriers to entry, keeps out

competitors, and raises incumbents’ profits. As applies to deregulation of entry, the reduction

of barriers to entry may encourage product market competition and improve product market

efficiency. However, this capture theory (Peltzman, 1989, Posner, 1974, Stigler, 1971) does

not consider the financial market. In the presence of the financial market, if the entrant is

optimistic ex-ante, new information may deteriorate entry. Therefore, policies on industry

organization should also take into account managerial learning.

Our paper has three main contributions. First, it is among the first papers that connects

the financial market with industry organization3. An insider trades incumbent stocks based

on her private information about product market demand, and an entrant makes its entry

decision when learning from the financial market. In equilibrium, entrant learning causes

a “buy-side” limits to arbitrage, making the financial market inefficient. This paper finds

3For instance, in Yang (2019), firms in a duopoly market faces a trade-off between suffering a proprietary
cost and improving learning quality from asset prices when making disclosure decisions. He induces feedback
effects by a future market in which speculators trade future contracts based on their private information
about product market demand.

78



that financial market frictions can affect entry decisions: when transaction cost reduces,

entry probability decreases if the entrant is optimistic ex-ante, but it increases if the entrant

is pessimistic ex-ante. It also reveals that a policy of reducing entry barriers may impede

product market competition. In particular, if the entrant is optimistic ex-ante, a reduction

of entry cost reduces entry probability. Second, it provides some empirical implications.

For example, the correlation between trading friction and entry probability is positive if the

entrant is optimistic ex-ante. Third, it provides some policy implications on entry barriers

and entry probability. For instance, a policy of reducing entry barriers may decrease product

market competition when entry barriers are low enough.

Our paper relates to several important strands of literature. First, it is part of the

research agenda that links the financial market to the industry organization. Starting from

Titman (1984), firm’s capital structure choice affects shareholders’ incentive to liquidate

when the firm is not bankrupt, so firm’s capital structure choice is a determinant of the

liquidation policy that it implements. In Brander and Lewis (1986), the financial structure

can affect the output market through the limited liability effect of debt financing and the

strategic bankruptcy effect. In Chemla and Faure-Grimaud (2001), the strategic use of debt

by a durable good monopolist can induce consumers with high valuation to reveal their type.

However, none of these researches discuss whether the secondary capital market can affect

industry organization.

Second, it relates to the feedback effects from the financial market to the real market.

Bond, Edmans, and Goldstein (2012), Ozoguz, Rebello, and Wardlaw (2018), and Foucault

and Frésard (2014) document that the investment of a firm is sensitive to its own (or its

peers’) stock price. In Dessaint, Foucault, Frésard, and Matray (2018), noise in stock prices

influences real decisions. It also relates to another feedback literature that features a strate-

gic trader. In Goldstein and Guembel (2008), the feedback effects from the financial market

to real investment raises the uninformed speculator’s incentive to sell the stock to induce
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disinvestment, generating a profit on the speculator’s short position. Most relevantly, Ed-

mans, Goldstein, and Jiang (2015) study a firm’s investment decision in response to trade

in the financial market. They are the first finding that feedback effects create the limits to

arbitrage on the “sell-side” and affect the investment decision. In their work, a speculator

does not sell on bad news since selling activity makes manager dis-invest and thus reduces his

profit from selling. Another model where the feedback effects leads to asymmetric trading

by strategic investor is Boleslavsky, Kelly, and Taylor (2017). In their work, an authority

learns from financial market to guide a bailout, since an intervention erodes the value of

private information, informed investors are reluctant to take short positions. Different from

their work, we study how the feedback effects affects entrant’s entry decision. In our paper,

the informed trader refrains from taking a long position to deter the entrant from entering.

Third, it relates to the literature on the limits to arbitrage. Campbell and Kyle (1993)

study fundamental risk. The risk that fundamentals may change in the process of pursuing

arbitrage. DeLong, Shleifer, Summers, and Waldmann (1990) focus on noise trader risk.

They find that mispricing may get worse in the short run, making early liquidation at a loss.

As Shleifer and Vishny (1997) note, this can make it hard for investors to finance their bets

against mispricing. Other authors (D’Avolio (2002), Gromb and Vayanos (2002), Lamont

and Thaler (2003), Jones and Lamont (2002), Nagel (2005), etc.) focus on implementation

costs such as the costs of discovering or exploiting mispricing, transactions costs, and short-

sale constraints. More recently, Edmans, Goldstein, and Jiang (2015) and Boleslavsky, Kelly,

and Taylor (2017) find that the feedback effects generates limits to arbitrage on the short

side. However, different from previous works, our paper is the first that finds limits to

arbitrage on the long side due to the feedback effect.

Fourth, it relates to the research about how financial variables such as trading volume,

the volatility of idiosyncratic returns and the informativeness of stock prices are related to

market power. In Stoughton, Wong, and Zechner (2001), consumers infer product quality
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from stock price, so firms may signal their quality through going public. Gaspar and Massa

(2006) argue that competition increases return volatility through raising profit volatility or

decreasing uncertainty about the firm’s future performance. In Hou and Robinson (2006),

either barriers to entry or less innovation enables highly concentrated industries to earn

higher risk-adjusted returns. Tookes (2008) predicts that informed traders may have incen-

tives to make information-based trades in the stocks of competitors, especially when private

information events occur at individual firms with large market shares. In Irvine and Pontiff

(2009), increased competition is a source of increased idiosyncratic volatility. Peress (2010)

argues that firms with more market power can pass on shocks to consumers, which encour-

ages stock trading, expedites the capitalization of private information into stock prices, and

improves capital allocations.

Finally, the paper also belongs to the large body of research on trading under asym-

metric information. To the best of our knowledge, the role of the financial market to the

competition of the product market has not been studied in this context. Our paper con-

tributes in particular to policymakers. They indicate that product market deregulation can

encourage market competition, but our findings reveal that such reforms should be conducted

in combination with reforms of improving the financial market efficiency.

3.2 Model

In this section, we present a model to analyze the learning and entry game. We modify the

Kyle (1985) model to consider informed trading in a stock that derived its value from an

imperfectly competitive industry. We first analyze firm value and competition in the product

market, and then we analyze financial market participants. Finally, we combine these two

markets through entrant learning of financial market total trading volume.
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3.2.1 Competition in Product Market

In the product market, there is an incumbent. A potential entrant makes its entry decision.

The incumbent is a public firm whose shares are traded in the stock market, and the entrant

is a private firm. If the entrant does not enter the market, it is a monopoly market with

a single producer. Otherwise, it is a standard Cournot duopoly with a single homogeneous

good and symmetric constant marginal costs. Given marginal cost Ci(qi) = cqi and a linear

inverse demand function p(Q) = S − Q, where S is affected by the state θ ∈ {H,L} and

SH > SL > c, Q is total demand. If the entrant does not enter, Q = q1, where q1 is the

optimal quantity of the incumbent. Otherwise, firms simultaneously choose quantities q,

where Q = q1 + q2, and q2 is the optimal quantity of the entrant. Equilibrium profits are

returned to shareholders.

If the entrant does not enter the market, the incumbent maximize its firm value by

choosing optimal quantity q1 in the monopoly market:

max
{q1}

q1(S − q1)− cq1

The first-order condition gives optimal quantity and profit:

qM1θ =
Sθ − c

2
; V M

1θ =
(Sθ − c)2

4
(3.1)

It is clear from equation 3.1 that high state results in a higher quantity (qM1H > qM1L) and

higher profit (V M
1H > V M

1L ).

If the entrant enters the market, firms maximize their firm value by choosing optimal
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quantities q1 and q2 in the Cournot duopoly market.

max
{q1,q2}

qi(S − q1 − q2)− cqi

The first-order condition gives optimal quantity and profit:

qCiθ =
Sθ − c

3
; V C

1θ =
(Sθ − c)2

9
; V C

2θ =
(Sθ − c)2

9
− E (3.2)

where E is an exogenous entry cost suffered by the entrant.

Clearly, V M
1H > V C

1L but we can not compare V M
1L and V C

1H without knowing SH and

SL. If the high state dominates the low state, V M
1H > V M

1L > V C
1H > V C

1L. Otherwise,

V M
1H > V C

1H > V M
1L > V C

1L. We first consider the scenario in which the high state dominates

the low state, and then we analyze the second scenario. Indeed, as we will explain later, the

two scenarios have the same results.

3.2.2 Trading in Financial Market

In the financial market, there are three types of equity market participants: an insider who

may arrive in the financial market with a probability 0 < β < 1; an uninformed noise trader;

and a risk-neutral market maker.

The insider is risk-neutral. Whether she presents or not is unknown to anyone else. We

assume that if the insider presents, she receives a perfect private signal regarding the state

of the product market. She acts as an inter-temporal monopolist in the stock market. If the

insider observes a high and low state, we describe the insider “positively” and “negatively”

informed insider when she respectively. Similar to Glosten and Milgrom (1985), the insider

endogenously trades unit share s ∈ {−1, 0, 1}, and she suffers a transaction cost k by selling
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one share or buying one share. The noise trader is an uninformed liquidity trader whose

trades are unrelated to the realization of the true state of the industry. The noise trader

trades z ∈ {−1, 0, 1} with equal probability. The insider and noise trader trade simulta-

neously. The competitive market maker collects total trading volume X ∈ {−2,−1, 0, 1, 2}

from the insider and the noise trader, but it cannot identify traders. It absorbs any excess de-

mand or supply out of its inventory and sets a price by the pricing function P (X) = E(V |X)

and earns on average zero profit.

3.2.3 Timing

Figure 3.1 presents the timeline of the events. At t = 0, nature chooses the state of the

incumbent’s industry, a potential entrant appears in the product market, a risk neutral

speculator may present in the financial market. If she presents, she receives a perfect private

signal regarding incumbent’s industry. If it is a high state, the signal reveals a high state; if

it is a low state, the signal reveals a low state. At t = 1, trading occurs in the stock market.

At t = 2, the entrant makes entry decision after learning from the stock market. If it enters,

it suffers an entry cost E. At t = 3, production begins. Profits are realized in the product

market and returned to shareholders.

t=0 t=1 t=2 t=3

Nature chooses θ;

Potential entrant appears;

Insider may presents Trading occurs

Entrant makes

decision to enter

All uncertainties

are resolved

Figure 3.1: Timeline of Events
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3.2.4 Information Distribution and Learning

In our model, the insider has exclusive information that the entrant does not have. If the

entrant does not learn from the stock market for some exogenous reasons, it makes entry

decisions based on its prior α0 and the entry cost E. At t = 2, the entrant makes its entry

decision when learning from the stock market.

The setting subsumes the traditional belief that the entrant has internal information

and the insider’s information is a subset of that of the entrant. The old view corresponds to

an empty insider unique information set. The key insight of our setting is that the optimal

real decision depends on both internal information to the firm and external information,

so the entrant has incentives to learn as long as the insider’s unique information set is not

empty.

3.3 Equilibrium Characterization

The insider’s strategy is a mapping from the firm fundamentals θ to the trading strategy

in the stock market. The entrant’s strategy is a mapping from the total trading volume to

its entry decision. The market maker’s pricing strategy is a mapping from the total trading

volume to a price. We are interested in perfect Bayesian equilibrium.

Definition 3.1. The insider’s trading strategy s∗ → {−1, 0, 1}, the entrant’s entry decision

d∗ → {Enter, Not Enter}, and the market maker’s pricing strategy P ∗(X) constitute a

perfect Bayesian equilibrium if:

1. For the insider, s∗ maximizes her expected gross gain s(V −P )−|s|k, given the market

maker’s price setting rule and the entrant’s entry decision;

2. For the entrant, d∗(X) maximizes the expected firm value, given the information in
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the stock market and other agents’ strategies.

3. For market maker, the price P ∗(X) = E(v|X) that results in zero profit for each

X ∈ {−2,−1, 0, 1, 2}, given all other agents’ strategies.

4. The entrant and the market maker update their beliefs by Bayes’ rule after observing

the total trading volume in the stock market.

3.3.1 Trading Strategies

As we will show, depending on different values of transaction cost k, four pure-strategy

equilibrium outcomes can raise:

1. No Trade Equilibrium NT : the insider does not trade.

2. Trade Equilibrium T : the insider buys when she knows θ = H and sells when she

knows θ = L.

3. Buy-Not Sell Equilibrium BNS: the insider buys when she knows θ = H and does not

trade when she knows θ = L.

4. Sell-Not Buy Equilibrium SNB: the insider does not trade when she knows θ = H

and sells when she knows θ = L.

3.3.2 Entry Decision

Without learning, the entrant makes the entry decision based on its prior α0 and the entry

cost E. In the presence of the financial market, the entrant makes the entry decision based

on its prior α0, the trading volume X in the financial market, and the entry cost E. We

first consider how does the entrant update its posterior α when learning from the financial
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market, then we discuss how does the entrant make its entry decision with and without

learning.

Learning With learning, the entrant updates its posterior belief α based on its prior

belief α0 about the state of the industry and the trading volume X. For simplicity, we assume

that α0 = 1
2
, which means the entrant believes that the industry is in the high state and the

low state with equal probability. We calculate its posteriors α by Bayes’ rule under different

trading strategies.

No Trade Equilibrium NT: This equilibrium is straightforward because there is nothing

to learn from the stock market based on this trading strategy. As a result, the posterior

should be identical to the prior. Since X = −2 and X = 2 are off equilibrium path with

posteriors 0 and 1.

Trade Equilibrium T: For the trade equilibrium, the insider buys when she receives posi-

tive information, and sells when she receives negative information. ThusX ∈ {−2,−1, 0, 1, 2}

are on the equilibrium path. The posteriors can be calculated by Bayes’ rule.

Under the T, X=-1 includes three situations. First, the industry is in the high state H,

the insider does not presents in the financial market with probability 1 − β, and the noise

trader sells. The probability of this situation is 1
2
∗ (1 − β) ∗ 1

3
. Second, the industry is in

the low state L, the insider does not present in the financial market with probability 1− β,

and the noise trader sells. The probability of this situation is 1
2
∗ (1 − β) ∗ 1

3
. Third, the

industry is in the low state L, the insider presents in the financial market with probability β

and sells, and the noise trader does not trade. The probability of this situation is 1
2
∗ β ∗ 1

3
.

Based on these three situations, the probability that X=-1 and the industry is on the high

state H is P (X = −1|H) ∗ P (H) = 1
2
∗ (1 − β) ∗ 1

3
, the probability that X=-1 and the

industry is on the low state L is 1
2
∗
(
β ∗ 1

3
+ (1− β) ∗ 1

3

)
, thus the probability that X=-1 is

1
2

(
(1−β)∗ 1

3
+β∗ 1

3
+(1−β)∗ 1

3

)
. We can solve for the probability that the industry is in the high
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state H conditional on observing trading volume X=-1 : α(−1) = Pr(H|X = −1) = 1−β
2−β .

Following the same logic, we can solve for the probability that the industry is in the high

state H conditional on observing trading volume X=0 : α(0) = Pr(H|X = 0) = 1/2, and

the probability that the industry is in the high state H conditional on observing trading

volume X=1 : α(1) = Pr(H|X = 1) = 1
2−β . The probability that the industry is in the high

state H conditional on observing trading volume X=2 and X=-2 are respectively 1 and 0.

Similarly, we can solve for the posteriors under other trading strategies Partial Trade

Equilibrium SNB, and Partial Trade Equilibrium BNS. Table 3.1 summarizes the posteriors

after learning given insider’s different trading strategies.

Strategy

X
-2 -1 0 1 2

NT 0 1
2

1
2

1
2

1

SNB 0 1
2

1
2

1
2−β 1

BNS 0 1−β
2−β

1
2

1
2

1

T 0 1−β
2−β

1
2

1
2−β 1

Table 3.1: Posterior Belief of the Entrant

Table 3.1 shows that when X = 1, the posterior is higher under SNB and T than NT

and BNS. This is because the SNB and T exclude the case in which the insider presents and

receives negative information revealing the low state. Similarly, when X = −1, the posterior

is higher under NT and SNB than under BNS and T . This is because the BNS and T

exclude the case in which the insider presents and receives positive information revealing the

high state.

Entry Decision with Learning Let αI denote the entrant’s posterior of the high state

that makes no difference between entering and not entering. Since the profit of not entering
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is zero, the following condition must hold.

αIV
C

2H + (1− αI)V C
2L − E = 0

This condition implies αI =
E−V C1L
V C1H−V

C
1L

. The entrant makes entry decision based on the

following criteria:

Entry decision d(X) =


Enter E , if α > αI ;

Not Enter NE , if α ≤ αI .

(3.3)

Entry Decision without Learning Given that the entrant’s prior of the high state H

is α0, which is common knowledge, without learning, the entrant’s expected payoff from

entering is

α0V
C

2H + (1− α0)V C
2L

Because of the entry cost E, its profit after entry is

α0V
C

2H + (1− α0)V C
2L − E

If E ≥ α0V
C

2H + (1− α0)V C
2L, entering generates a negative profit, and thus the entrant

does not enter without learning. Otherwise, it enters.

3.3.3 Price Setting Strategies

From the previous analysis, we have already known the incumbent’s firm value with and

without competition. If the entrant does not enter the market, the firm value of the incum-

bent is V M
1θ = (Sθ−c)2

4
; if the entrant enters, the firm value of the incumbent is V C

1θ = (Sθ−c)2
9

,
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where θ ∈ {H,L}. The market maker sets prices such that E(X(P − V )|X) = 0, so the

price function is P = E(V |X), then we calculate prices P given the insider’s different trading

strategies.

No Trade Equilibrium NT: For the no trade equilibrium, the trading volume X∈ {−1, 0, 1}

are on the equilibrium path with posteriors α ∈ {1
2
, 1

2
, 1

2
}. If the entrant is pessimistic and

does not enter the market without learning, it does not enter when its posterior α = α0 = 1/2.

Hence, the entry decisions are d∗ ∈ {NE,NE,NE}. However, if the entrant is optimistic

and enters without learning, it enters the market when its posterior α = α0 = 1/2. Hence,

the entry decisions are d∗ ∈ {E,E,E}. Trading volume X∈ {−2, 2} are off equilibrium path

with posteriors α ∈ {0, 1}, and entry decisions are d∗ ∈ {NE,E}. Based on this information,

we solve for the equilibrium price corresponds to trading volumes.

If the entrant enters the market without learning, when trading volume X =-2, the

posterior α = 0, the entry decision d = NE, and then the price P = 0 ∗V M
1H + 1 ∗V M

1L = V M
1L ;

when trading volume X∈ {−1, 0, 1}, the posterior α ∈ {1
2
, 1

2
, 1

2
}, the entry decision d∗ ∈

{NE,NE,NE}, and then the price P = 1
2
∗ V M

1H + 1
2
∗ V M

1L ; when trading volume X =2, the

posterior α = 1, the entry decision d = E, and then the price P = 1 ∗ V C
1H + 0 ∗ V C

1L = V C
1H .

If the entrant does not enter the market without learning, when trading volume X =-2,

the posterior α = 0, the entry decision d = NE, and then the price P = 0 ∗ V M
1H + 1 ∗ V M

1L =

V M
1L ; when trading volume X∈ {−1, 0, 1}, the posterior α ∈ {1

2
, 1

2
, 1

2
}, the entry decision

d∗ ∈ {E,E,E}, and then the price P = 1
2
∗ V C

1H + 1
2
∗ V C

1L; when trading volume X =2, the

posterior α = 1, the entry decision d = E, and then the price P = 1 ∗ V C
1H + 0 ∗ V C

1L = V C
1H .

Similarly, we can solve for the prices under other trading strategies Partial Trade Equilib-

rium SNB, Partial Trade Equilibrium BNS, and Trade Equilibrium T. Table 3.2 summarizes

the prices after learning given the insider’s different trading strategies.
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w/o Learning
S.

X
-2 -1 0 1 2

Not Enter

NT VM
1L

1
2(VM

1L + VM
1H) 1

2(VM
1L + VM

1H) 1
2(VM

1L + VM
1H) V C

1H

SNB VM
1L

1
2(VM

1L + VM
1H) 1

2(VM
1L + VM

1H) 1
2−βV

M
1H + 1−β

2−βV
M

1L V C
1H

BNS VM
1L

1−β
2−βV

M
1H + 1

2−βV
M

1L
1
2(VM

1L + VM
1H) 1

2(VM
1L + VM

1H) V C
1H

T VM
1L

1−β
2−βV

M
1H + 1

2−βV
M

1L
1
2(VM

1L + VM
1H) 1

2−βV
M

1H + 1−β
2−βV

M
1L V C

1H

Enter

NT VM
1L

1
2(V C

1L + V C
1H) 1

2(V C
1L + V C

1H) 1
2(V C

1L + V C
1H) V C

1H

SNB VM
1L

1
2(V C

1L + V C
1H) 1

2(V C
1L + V C

1H) 1
2−βV

C
1H + 1−β

2−βV
C

1L V C
1H

BNS VM
1L

1−β
2−βV

C
1H + 1

2−βV
C

1L
1
2(V C

1L + V C
1H) 1

2(V C
1L + V C

1H) V C
1H

T VM
1L

1−β
2−βV

C
1H + 1

2−βV
C

1L
1
2(V C

1L + V C
1H) 1

2−βV
C

1H + 1−β
2−βV

C
1L V C

1H

Table 3.2: Price after Learning.

3.3.4 Benchmark Setting without Feedback Effects

The entrant may or may not enter without learning. We analyze both cases and summarize

the equilibrium of the benchmark settings in the following lemma.

Lemma 3.1. If the entrant does not enter without learning, and posteriors 1
2
< 1

2−β ≤ αI ,

there is no feedback effects, but there exist transaction costs kNF < kNT (defined in the analysis)

such that insider trading strategy has the following pure-strategy equilibria:

1. The only pure-strategy equilibrium is NT when k ≥ kNT .

2. The two pure strategy equilibria are SNB and BNS when kNF ≤ k < kNT .

3. The only pure strategy equilibrium is T when k < kNF .

From the previous analysis, we know that after learning from stock m arket, the entrant

may have posteriors α ∈ {0, 1−β
2−β ,

1
2
, 1

2−β , 1}. Intuitively, if it does not enter the market
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without learning, it also does not enter the market after learning when its posterior α =

α0 = 1/2, where α0 is its prior. When its posterior α = 1−β
2−β < α0 = 1

2
, it does not enter the

market. It also does not enter when its posterior α = 1
2−β > α0 = 1

2
, but α = 1

2−β ≤ αI ,

where αI is the posterior that the entrant is indifferent between entering and not entering.

The only case that the entrant enters the market is when its posterior α = 1, which means

the H state is fully revealed. Thus when its posteriors 1
2
< 1

2−β ≤ αI , there is no feedback

effects. Information in the financial market can not change the entrant’s entry decision NE.

Now turn to analyze the conditions for the equilibrium to be sustainable, we focus on the

insider’s expected payoffs. Under the pure-strategy equilibrium NT, the insider’s expected

gross gain is 0 when she receives positive information. If she deviates to buying, trading

volume X = 2 with probability p = 1
3
, and she is fully revealed with payoff 0; trading

volume X ∈ {0, 1} with probability p = 2
3
, she pays the stock price 1

2
(V M

1H + V M
1L ) and

receives V M
1H per share, thus her expected gross gain from deviating to buying is given by:

1
3
(V M

1H − V M
1L ) ≡ kNT . Following the same logic, the insider’s expected gross gain is 0 when

she receives negative information. If she deviates to selling, her expected gross gain from

deviating is also kNT . Thus, if and only if k ≥ kNT , the no trade equilibrium is sustainable.

Similarly, we can find conditions for the two pure strategy equilibria SNB and BNS, and

the pure-strategy equilibrium T to be sustainable. There exist transaction costs kNF < kNT ,

where kNF ≡ 1
3
∗ 1

2
∗(V M

1H−V M
1L )+ 1

3
∗ 1−β

2−β (V M
1H−V M

1L ), such that The two pure strategy equilibria

SNB and BNS exist when kNF ≤ k < kNT , and the only pure strategy equilibrium T is

sustainable when k < kNF .

Lemma 1 gives the equilibria when the entrant does not enter the market without

learning and when there is no feedback effects. We now turn to consider the equilibria when

the entrant enters the market without learning and when there is no feedback effects in the

following Lemma 2.

Lemma 3.2. If the entrant is optimistic and enters without learning, and posteriors 0 <
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αI < 1−β
2−β < 1

2
, there is no feedback effects, but there exist transaction costs kCSNB <

kCNT (defined in the analysis) such that insider trading strategy has the following pure-strategy

equilibria:

1. The only pure-strategy equilibrium is NT when k ≥ kCNT .

2. The two pure strategy equilibria are SNB and BNS when kCSNB ≤ k < kCNT .

3. The only pure strategy equilibrium is T when k < kCSNB.

The entrant may have posteriors α ∈ {0, 1−β
2−β ,

1
2
, 1

2−β , 1} after learning. Intuitively, if it

enters the market optimistically without learning, it also enters the market after learning

when its posterior α = α0 = 1/2, where α0 is its prior. It enters when its posterior α = 1−β
2−β <

α0 = 1
2
, but α = 1−β

2−β > αI , where αI is the posterior that the entrant is indifferent between

entering and not entering. The only case that the entrant does not enter the market is when

its posterior α = 0, which means the L state is fully revealed. Thus when its posteriors

0 < αI <
1−β
2−β <

1
2
, there is no feedback effects. Information in the financial market can not

change the entrant’s entry decision E.

Similar to previous analysis, we can find conditions for the pure-strategy equilibrium NT,

the two pure strategy equilibria SNB and BNS, and the pure-strategy equilibrium T to be

sustainable. There exist transaction costs kCSNB < kCNT , where kCSNB ≡ 1
3
∗ 1

2
∗ (V C

1H − V C
1L) +

1
3
∗ 1−β

2−β (V C
1H−V C

1L), and kCNT ≡ 1
3
(V C

1H−V C
1L) such that the only pure strategy equilibrium NT

is sustainable when k ≥ kCNT , the two pure strategy equilibria SNB and BNS exist when

kCSNB ≤ k < kCNT , and the only pure strategy equilibrium T is sustainable when k < kCSNB.

Lemma 1 and Lemma 2 analyze the equilibria when the entrant is respectively

pessimistic and optimistic ex-ante and when there is no feedback effects. Now we analyze

the equilibria when there is feedback effects in the following subsection.
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3.3.5 Product Market Equilibrium and Financial Market Equilib-

rium

After learning from the financial market, the entrant alters its entry decision. We summarize

the results in the following propositions.

Proposition 3.1. If the entrant does not enter without learning, and posteriors 1
2
≤

αI < 1
2−β , there is feedback effect, and there exist transaction costs kSNB < kNF <

kNT (defined in the analysis) such that insider trading strategy has the following pure-strategy

equilibria:

1. The only pure-strategy equilibrium is NT when k ≥ kNT .

2. The two pure-strategy equilibria are SNB and BNS when kNF ≤ k < kNT .

3. The only pure-strategy equilibrium is SNB when kSNB < k < kNF .

4. The only pure strategy equilibrium is T when k < kSNB.

The entrant may have posteriors α ∈ {0, 1−β
2−β ,

1
2
, 1

2−β , 1} after learning. Intuitively, if it

does not enter the market without learning, it also does not enter the market after learning

when its posterior α = α0 = 1/2, where α0 is its prior. When its posterior α = 1−β
2−β < α0 = 1

2
,

it does not enter the market. However, it enters when its posterior α = 1
2−β > α0 = 1

2
, and

α = 1
2−β > αI , where αI is the posterior that the entrant is indifferent between entering and

not entering. It also enters the market when its posterior α = 1, which means the H state is

fully revealed. Thus when its posteriors 1
2
≤ αI <

1
2−β , there is feedback effects. Information

in the financial market changes the entrant’s entry decision from NE to E.

Similar to previous analysis, we can find conditions for the pure-strategy equilibrium

NT, the two pure strategy equilibria SNB and BNS and the pure-strategy equilibrium T to
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be sustainable. There exist transaction costs kSNB < kNF < kNT , where kSNB ≡ 1
3
∗ 1

2
∗

(V M
1H − V M

1L ) + 1
3
∗ 1−β

2−β (V C
1H − V C

1L), kNF ≡ 1
3
∗ 1

2
∗ (V M

1H − V M
1L ) + 1

3
∗ 1−β

2−β (V M
1H − V M

1L ) and

kNT ≡ 1
3
(V M

1H − V M
1L ) such that the only pure strategy equilibrium NT is sustainable when

k ≥ kNT , the two pure strategy equilibria SNB and BNS exist when kNF ≤ k < kNT , the

only pure strategy equilibrium SNB is sustainable when kSNB < k < kNF , and the only pure

strategy equilibrium T is sustainable when k < kSNB.

Proposition 1 gives the equilibria when the entrant does not enter the market without

learning and when there is feedback effects. We now turn to consider the equilibria when

the entrant enters the market without learning and when there is feedback effects in the

following Proposition 2.

Proposition 3.2. If the entrant is optimistic and enters without learning, and 1−β
2−β <

αI <
1
2
, there is feedback effects, there exist transaction costs kCSNB < kCNF and kCSNB <

kCNT (defined in the analysis) such that the insider trading strategy has the following pure-

strategy equilibria:

1. The only pure-strategy equilibrium is NT when k ≥ kCNT .

2. The pure-strategy equilibrium is SNB when kCSNB ≤ k < kCNT .

3. The only pure strategy equilibrium is T when k < kCSNB.

4. If kCNF < kCNT , BNS is also a pure-strategy equilibrium; Otherwise, the pure-strategy

equilibrium BNS does not exist.

If the entrant enters the market optimistically without learning, it also enters the market

after learning when its posterior α = α0 = 1/2, where α0 is its prior. It enters when its

posterior α = 1
2−β > α0 = 1

2
, but does not enter when α = 1−β

2−β < αI , where αI is the

posterior that the entrant is indifferent between entering and not entering. It also does not

enter the market when its posterior α = 0, which means the L state is fully revealed. Thus
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when its posteriors 1−β
2−β < αI <

1
2
, there is feedback effects. Information in the financial

market changes the entrant’s entry decision from E to NE.

Similar to the previous analysis, we can find conditions for the pure-strategy equilibrium

NT, the pure strategy equilibrium SNB, the pure-strategy equilibrium T to be sustainable.

In particular, as we will show if 1 > β >
2[VM1H−VM1L−(V C1H−V

C
1L)]

2(VM1H−V
M
1L )−(V C1H−V

C
1L)

, we can also find conditions

for the the pure strategy equilibrium BNS to be sustainable. There exist transaction costs

kCSNB < kCNT and kCSNB < kCNF , where kCSNB ≡ 1
3
∗ 1

2
∗ (V C

1H − V C
1L) + 1

3
∗ 1−β

2−β (V C
1H − V C

1L),

kCNF ≡ 1
3
∗ 1

2
∗ (V C

1H − V C
1L) + 1

3
∗ 1−β

2−β (V M
1H − V M

1L ) and kCNT ≡ 1
3
(V C

1H − V C
1L) such that the only

pure strategy equilibrium NT is sustainable when k ≥ kCNT , the pure strategy equilibrium SNB

is sustainable when kCSNB ≤ k < kCNT , and the only pure strategy equilibrium T is sustainable

when k < kCSNB. However, the existence of the pure strategy equilibrium BNS requires the

condition kCNF < kCNT to be satisfied, which gives the range of β: 1 > β >
2[VM1H−VM1L−(V C1H−V

C
1L)]

2(VM1H−V
M
1L )−(V C1H−V

C
1L)

.

If
2[VM1H−VM1L−(V C1H−V

C
1L)]

2(VM1H−V
M
1L )−(V C1H−V

C
1L)

> β > 0, the pure strategy equilibrium BNS does not exist.

3.3.6 Discussion on the Limits to Arbitrage

Based on the above analysis, we can find two sources of the limits to arbitrage no matter

whether there is feedback effects or not.

Transaction Cost As transaction cost k increases, insider’s trading strategy moves

from Trade to Sell-Not Buy or Buy-Not Sell, and finally move to No Trade. The transac-

tion cost impedes insider’s trading on her private information. When the transaction cost is

sufficiently small, the insider earns profits from trading her private information on both direc-

tions, so she always trades; when the transaction cost is sufficiently high, the insider suffers

a loss from trading her private information on both directions, so she does not trade; when

transaction cost is in between, the insider only trades one side of her private information.

Price Impact The price impact makes the insider trade one type of information but not
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the other. For instance, in the pure-strategy equilibrium SNB, if the market maker believes

that the insider does not trade when she receives positive information, after observing a

positive market order flow, the market maker knows that the state is good, and then sets a

higher price to reflect the true fundamental, and the insider does not buy.

Besides, similar to Edmans et al. (2015), we also find that the feedback effects creates

a source of the limits to arbitrage:

Feedback Effect By comparing Lemma 1 and Proposition 1, we can find that if the

entrant does not enter the market without learning, in the range of transaction cost kSNB <

k < kNF , the feedback effects changes the insider’s trading strategy from T to SNB, which

means that the feedback effects leads to asymmetric trading. Similarly, by comparing Lemma

2 and Proposition 2, if the entrant enters the market optimistically without learning, in the

range of transaction cost kCSNB < k < kCNF , the feedback effects leads to asymmetric trading

in which selling is more common than buying.

3.3.7 Equilibrium when Firm Value is Non-Monotonic in States

In the second scenario, V M
1H > V M

1L > V C
1H > V C

1L, the firm value may be higher in state

L. In this case, entry not only mitigates the firm value in the low state but is sufficiently

powerful to overturn the value in the high state. As firm value is higher in the state L,

a positively-informed insider may find it optimal to sell to pretend it is in L state, but a

negatively-informed insider does not have any incentive to pretend it is in the H state to

avoid the entrant enter the market. Hence, there seems to be six possible pure-strategy

equilibria. Except for the four equilibria in the first scenario V M
1H > V C

1H > V M
1L > V C

1L that

the high state dominates the low state, the insider may sell when θ = H, so the insider may

both sell when the state is H and L, or the insider sells when θ = H and not trade when

θ = L. We discuss the equilibrium in these situations.
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Proposition 3.3. There is no equilibrium with trading against information. The trading

game has no pure-strategy equilibrium where the insider sells when she knows θ = H.

The reason why the positively-informed insider never sells in equilibrium is that she

cannot gain from selling when the market maker and the entrant believe that she sells in

the stock market. However, she still has incentives to deviate to selling in any of the four

equilibria. When she sells, she may mislead the market maker and the entrant to believe

that the negatively-informed insider is present, which causes the entrant does not enter the

market. This decision increases the firm value of the incumbent such that the insider earns

a positive profit.

However, if the insider sells when she knows that θ = H, then X ∈ {−2,−1, 0}. In each

of these nodes, the price will incorporate the possibility that θ = L. As the firm value is

lower under θ = L than under θ = H, the price is always smaller than the firm value of the

incumbent. Therefore, the insider’s expected payoff will be negative if she sells when θ = H,

which means she suffers a loss. Thus both the equilibrium that the insider sells when θ = H

and θ = L, and the equilibrium that the insider sells when θ = H and does not trade when

θ = L are not sustainable.

3.4 Real Effects

In this section, we analyze the real effects of the entry game in the presence of the financial

market. First, we analyze how financial market efficiency affects real market efficiency by

studying the relationship between the transaction costs and the entry probability conditional

on different posteriors. Second, we analyze how the ex-post entry probability changes with

the market uncertainty given the transaction costs. Last, we investigate the relationship

between the entrant’s entry decision and the barriers to entry by studying the relationship

between ex-ante entry probability and the barriers to entry.
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3.4.1 Trading and Product Market Efficiency

From the previous analysis, we know that there may be feedback effects if the entrant learns

from the financial market while making its entry decision. As transaction cost reduces, the

insider trades more such that the financial market becomes more efficient. If the entrant

does not enter without learning, the feedback effects changes its entry decision from Not

Enter NE to Enter E, which creates the competition in the real market and makes the real

market more efficient; if the entrant enters without learning, the feedback effects changes its

entry decision from Enter E to Not Enter NE, which impedes the competition in the real

market and makes the real market less efficient. We analyze how financial market efficiency

affects real market efficiency by studying the relation between the transaction costs and the

entry probability conditional upon different posteriors.

Entry Probability Table 3.3 gives the entry probabilities corresponds to the trading

strategies under different posteriors.

Posteriors No Trade SNB BNS Trade
1
2
< 1

2−β ≤ αI 0 0 1
6
β 1

6
β

1
2
≤ αI <

1
2−β 0 1

6
(2− β) 1

6
β 1

3
1−β
2−β < αI <

1
2

1 1− β
6

1
6
(2 + β) 2

3

0 < αI <
1−β
2−β <

1
2

1 1− β
6

1 1− β
6

Table 3.3: Conditional Entry Probability

If posteriors 1
2
< 1

2−β ≤ αI , entrant does not enter under strategies NT and SNB.

Under strategy BNS, it enters when X = 2. This is the case when the state is high, the

insider presents in the financial market and buys one share, and noise trader buys one share,

so the conditional probability is 1
2
∗β ∗ 1

3
= β

6
. Under strategy T , entrant enters when X = 2.

This is the case when the state is high, insider presents in the financial market and buys one

share, and noise trader buys one share, so the conditional probability is: 1
2
∗ β ∗ 1

3
= β

6
.
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Proposition 3.4. When posteriors 1
2
< αI < 1, the entry probability may increase as

transaction cost reduces. When posteriors 0 < αI <
1
2
, the entry probability may decrease

as transaction cost reduces.

Figure 3.2 and Figure 3.3 plot the relationship between transaction cost and entry

probability when the entrant does not enter without learning and posteriors 1
2
< αI < 1,

Figure 3.4 and Figure 3.5 plot the relationship between transaction cost and entry probability

when the entrant enters without learning and posteriors 0 < αI <
1
2
. We assume values for

different variables V M
1H = 100, V C

1H = 80, V M
1L = 70, V C

1L = 65 and β = 0.4.
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Figure 3.2: Pessimistic: No Feedback Effects
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Figure 3.3: Pessimistic: Feedback Effects

Seeing from Figure 3.2 and Figure 3.3, if the entrant is pessimistic ex-ante, when trans-

action cost is extremely high, the insider does not trade on her private information, so that

the entrant learns nothing from the financial market and does not enter. As transaction

cost reduces, the insider starts to trade, and then positive information may be revealed to

the entrant. Thus, entry probability may increase. As transaction cost reduces a lot, since

more positive information is revealed to the entrant, the entry probability may increase even

more. In these cases, a reduction in transaction cost improves the financial market efficiency,

leading to higher competition and real market efficiency.
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Figure 3.4: Optimistic: No Feedback Effects
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Figure 3.5: Optimistic: Feedback Effects

Seeing from Figure 3.4 and Figure 3.5, if the entrant is optimistic and enters without

learning, when transaction cost is extremely high, the insider does not trade on her private

information, the entrant learns nothing from financial market and always enters the market.

As transaction cost reduces, the insider may start to trade, and then negative information

may be revealed to the entrant. Thus, the entry probability may decrease. As transaction

cost reduces a lot, since more negative information is revealed to the entrant, the entry

probability may decrease even more. In these cases, a reduction in transaction cost improves

the financial market efficiency, leading to lower competition and real market efficiency.

3.4.2 Market Uncertainty and Entry Probability

The relation between the ex-post entry probability and trading friction varies with economic

and informational conditions that the insider faces. The insider is more likely to enter the

financial market when she is expected to have more information that the entrant does not

know. Since the insider receives perfect private information that fully reveals the state of

the industry, she has higher incentives to present in the financial market when the product

market is more uncertain. We investigate how the entry decision changes with the changes

of market uncertainty. Since the insider is more likely to present in the financial market with
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probability β, β may represent the product market uncertainty, the higher the β, the more

uncertain the product market is. We analyze how the ex-post entry probability changes with

the market uncertainty given the transaction costs.

Proposition 3.5. The relation between market uncertainty and ex-post entry probability

depends on the trading frictions. Market uncertainty may create the limits to arbitrage on

the “buy side”.
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Figure 3.6: Pessimistic Entrant: Entry Probability and Entry Barriers

Figure 3.6 shows the impact of product market uncertainty on the relation between

ex-post entry probability and transaction cost when the entrant does not enter the market

without learning. When the entrant does not enter the market without learning, if the

insider does not trade her private information on both directions, the entrant cannot learn

from the financial market, it makes entry decision based on its prior belief and entry cost,

and it does not enter the market; if the insider only trades on her negative information, the

entrant enters the market when the total trading volume X = 1; if the insider trades on both

directions of her private information, the entrant enters the market when the total trading

volume X = {1, 2}.

When transaction cost is sufficiently high, the insider does not trade on information re-
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gardless of market uncertainty, and the entrant does not enter the market. When transaction

cost decreases, the insider starts to trade on negative information, and the entrant enters the

market when it observes positive trading volume. If the market becomes more uncertain,

then the insider is more likely to present in the financial market and trade her negative

private information. Since more negative information is revealed, the entry probability may

decrease. When transaction cost reduces a lot, as the market becomes more uncertain, the

insider’s trading strategy changes from trade on both positive and negative information to

only trade on negative information. Since less positive information is revealed, entry proba-

bility may decrease. When transaction cost is sufficiently low, the entrant enters the market

regardless of the market uncertainty, and entry probability does not change.
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Figure 3.7: Optimistic Entrant: Entry Probability and Entry Barrier

Figure 3.7 shows the impact of product market uncertainty on the relation between

ex-post entry probability and transaction cost when the entrant enters the market without

learning. When the entrant enters the market without learning, if the insider does not

trade on both positive and negative information, the entrant cannot learn from the financial

market, it makes entry decision based on its prior belief and entry cost, it enters the market

regardless of the market uncertainty; if the insider only trades on her negative information,

the entrant does not enter the market when the total trading volume X = −2. If the insider
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trades on both directions of her private information, the entrant does not enter the market

when the total trading volume X = {−1,−2}.

When transaction cost is sufficiently high, the insider does not trade on information

regardless of market uncertainty, and the entrant enters the market. When transaction cost

decreases, the insider starts to trade on negative information, and the entrant does not enter

when the total trading volume X = −2. If the market becomes more uncertain, the insider

is more likely to present in the financial market and trades her negative private information.

Since more negative information is revealed, the entry probability may decrease. When

transaction cost decreases a lot, as the market becomes more uncertain, the insider’s trading

strategy changes from trade on both positive and negative information to only trade on

negative information. Since less negative information is revealed, the entry probability may

increase. When transaction cost is sufficiently low, the insider trades on both positive and

negative information regardless of market uncertainty, and entry probability does not change.

The Limits to Arbitrage Based on the above analysis, we know that given transaction

cost, if increase in market uncertainty makes trading strategy changes from T to SNB, it

may create a limits to arbitrage on the “buy side.”

3.4.3 Entry Cost and Product Market Efficiency

Intuitively, when the barriers to entry reduces, entrant’s incentives to enter the market

increases. However, since the entrant becomes more likely to enter, the insider’s incentive to

deter the entrant from entering also increases. The relation between ex-ante entry probability

and the barriers to entry seems uncertain. We analyze the relationship between the entrant’s

entry decision and the barriers to entry by studying the relationship between the ex-ante

entry probability and the barriers to entry.

Barriers to Entry Since there are different types of barriers to entry, we do not
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consider any certain type of barriers to entry, but instead, we regard entry barriers as a whole

and investigate the relationship between the mean of barriers to entry and ex-ante entry

probability. We assume that the entry cost E follows a log normal distribution with mean

µ and variance σ2, that is LnE ∼ N(µ, σ2). Thus we have E ∼ LN(eµ+ 1
2
σ2
, e2µ+σ2

(eσ
2 − 1))

and E ∼ N(Lnµ − 1
2
σ2
E, σ

2
E), where σE =

√
ln[(σ

µ
)2 + 1]. Then we calculate the ex-ante

entry probability under different ranges of transaction cost k by:

P (β,E, µ, σ, k) =

∫
∞

0

p(β|E, k)f(E, µ, σ)dE

where p(β|E, k) is the conditional probability, and f(E, µ, σ) is the density function.

Proposition 3.6. The relation between entry barriers and ex-ante entry probability is non-

monotonic. As entry barriers reduce, entry probability first increases then decreases.

Figure 3.8 shows the relation between the entry cost and ex-ante entry probability when

transaction cost kSNB < k < kNF by taking values for parameters V M
1H = 100, V C

1H = 80,

V M
1L = 70, and V C

1L = 65.

Figure 3.8: Entry Probability and Entry Barrier

From Figure 3.8, we find that the relationship between entry barriers and entry prob-

105



ability is non-monotonic. A reduction in the entry barriers does not necessarily increase

the entry probability. When the entry barriers reduces, there are two effects. First, it in-

creases entrant’s net-profit, thus increases entrant’s incentives to enter, which increases entry

probability. Second, since entry may reduce insider’s expected gross gain, it further reduces

insider’s incentives to trade on positive information, which makes the limits to arbitrage

on the “buy side” more severe and reduces entry probability. When the entrant does not

enter without learning, the first effect dominates the second effect, so that entry probability

increases as the entry cost reduces. When the entrant enters without learning, the second

effect dominates the first effect, so that entry probability decreases as entry cost reduces.

3.5 Empirical Implications

This paper provides some empirical implications, which are untested. First, due to entrant

learning, the limits to arbitrage on the “buy side” may exist in the incumbent stock market.

Second, there is a negative correlation between entry probability and trading cost when the

entrant is pessimistic ex-ante, but such a correlation is positive when the entrant is optimistic

ex-ante. Third, how the trading cost affects entry probability is affected by economic and

informational conditions that the insider faces. Fourth, when entry barriers are low enough,

a policy of reducing entry barriers decreases entry probability.

3.6 Policy Implications

Our results provide new insights into the policy implications. In Stigler (1971) theory of

regulatory capture, the stricter regulation of entry raises barriers to entry, keeps out com-

petitors, and raises incumbents’ profits. As applies to deregulation of entry, the reduction

of barriers to entry may encourage market competition and improve market efficiency. How-
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ever, this capture theory (Peltzman, 1989, Posner, 1974, Stigler, 1971) does not take into

account the financial market. Based on our analysis, if the entrant is optimistic and enters

the market without learning, deregulation reduces entry probability.

In addition to government regulation, financial market policies affect financial market

efficiency and thus affect entry probability. When the insider trades only her negative infor-

mation, less positive information will be revealed to the entrant when the financial market

becomes more efficient, leading to lower entry probability and product market competition.

Therefore, policy on the financial market should also consider its impact on industry orga-

nization.

3.7 Conclusion

This paper studies the interaction between secondary financial market efficiency and product

market competition. An insider trades incumbent stocks based on her knowledge about prod-

uct market demand. A potential entrant learns from the financial market when making the

entry decision. Because of entrant learning, the insider may refrain from trading on positive

information to avoid revealing good information to the entrant, leading to the “buy-side”

limits to arbitrage and financial market inefficiency. With different priors, entry probabil-

ity as a function of financial market trading friction exhibits different patterns. Reducing

transaction costs may make the insider change her trading strategies. When transaction

cost is extremely high, the insider does not trade on her private information, the entrant

cannot learn from the financial market and makes entry decision based on its prior. When

transaction cost is extremely low, the insider buys when she receives positive information

and sells when she receives negative information. When transaction cost is in between, the

insider only sells on negative information but does not buy on positive information. As

transaction cost reduces, entrant learning increases and reduces entry probability when the
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entrant is respectively optimistic and pessimistic ex-ante. Therefore, increase in financial

market efficiency may encourage or impede product market competition, depending on en-

trant’s prior belief. Besides, a policy of reducing entry barriers has non-monotonic effects

on entry probability. In particular, when entry barriers are sufficiently low, reducing entry

barriers may reduce entry probability. Furthermore, the product market uncertainty may

increase or decrease entry probability, depending upon trading frictions.
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Appendix to Chapter 1

Proof of Table 1.3

Proof. Since the probability that the state is high and the total trading volume is X = −1

is 1
2
α
3
(1− βH), and the probability that the total trading volume is X = −1 is 1

2
α
3
(1− βH) +

1
2
α
3
(1 − βL) + 1

2
(1 − 2α

3
)βL, the posterior belief that the state is H given the total trading

volume is X = −1 is q(−1) = p(H|X = −1) = α(1−βH)
α(2−βH−βL)+(3−2α)βL

.

Similarly, given that the probability that the state is high and the total trading volume

is 1 is 1
2
α
3
(1 − βH) + 1

2
(1 − 2α

3
)βH , and the probability that the total trading volume is 1 is

1
2
α
3
(1 − βH) + 1

2
(1 − 2α

3
)βH + 1

2
α
3
(1 − βL), the posterior belief that the state is H given the

total trading volume is 1 is q(1) = p(H|X = 1) = α(1−βH)+(3−2α)βH
α(2−βH−βL)+(3−2α)βH

.

Given that the probability that the state is high and the total trading volume is X = 0

is 1
2
α
3
βH + 1

2
α
3
βL + 1

2
(1− βL)(1− 2α

3
) + 1

2
(1− 2α

3
)(1− βH), and the probability that the total

trading volume is X = 0 is p(X = 0) = 1
2
α
3
βH + 1

2
(1− 2α

3
)(1− βH), the posterior belief that

the state is H given X = 0 is q(0) = p(H|X = 0) = αβH+(3−2α)(1−βH)
α(βH+βL)+(3−2α)(2−βH−βL)

.

Since X = −2 or X = 2 fully reveal the low state or the high state, q(−2) = p(H|X =

−2) = 0 and q(2) = Prob(H|X = 2) = 1.
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Proof of Corollary 1.1

Proof. Taking the first order derivative of q(X = 0) with respect to βH , the numerator

is 3(α − 1)
(
αβL + (1 − βL)(3 − 2α)

)
< 0, thus q(X = 0) decreases as βH increases. We

have already shown that if βH = βL, q(X = 0) = 1
2

and d(X = 0) = 0, thus if βH > βL,

q(X = 0) < 1/2, and d(X = 0) = −1. Similarly, q(X = 0) increases as βH decreases. If

βH < βL, q(X = 0) > 1
2

and d(X = 0) = 1.

Proof of Proposition 1.2

Proof. Assume that manager’s investment decision is d = (−1,−1, 1) when X = (−1, 0, 1).

The informed investor’s trading profit from the exchange market is

VH =
α

3

(
αβL + (3− 2α)(1− βL)

)
(RH −RL − 2g)

α(βH + βL) + (3− 2α)(2− βH − βL)
+

(
1− 2α

3

)
α(1− βL)(RH −RL + 2g)

α(2− βH − βL) + (3− 2α)βH

when she is positively informed, and it is

VL =
α

3

(
αβH + (3− 2α)(1− βH)

)
(RH −RL − 2g)

α(βH + βL) + (3− 2α)(2− βH − βL)
+

(
1− 2α

3

)
α(1− βH)(RH −RL − 2g)

α(2− βH − βL) + (3− 2α)βL

when she is negatively informed.

Her trading profit from the dark pool is

DPH =
1− α

3

(
RH − g − P (X = 0)

)
=

1− α
3

(
αβL + (3− 2α)(1− βL)

)
(RH −RL − 2g)

α(βH + βL) + (3− 2α)(2− βH − βL)

when she is positively informed, and it is

DPL =
1− α

3

(
P (X = 0)−RL − g

)
=

1− α
3

(
αβH + (3− 2α)(1− βH)

)
(RH −RL − 2g)

α(βH + βL) + (3− 2α)(2− βH − βL)
.
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when she is negatively informed.

Hence, the informed investor’s net opportunity cost is

1− 2α

3

(
αβL + (3− 2α)(1− βL)

)
(RH −RL − 2g)

α(βH + βL) + (3− 2α)(2− βH − βL)

if she is positively informed, and it is

1− 2α

3

(
αβH + (3− 2α)(1− βH)

)
(RH −RL − 2g)

α(βH + βL) + (3− 2α)(2− βH − βL)

if she is negatively informed.

Since when the noise investor with non-zero demand is more likely to trade in the

exchange market, that is, α ∈ (1
2
, 1], the net opportunity cost is non-positive for ∀βH , βL ∈

[0, 1], it is straightforward that DPH − VH < 0 and DPL − VL < 0, which means that the

informed investor earns a higher profit in the exchange market. Therefore, she prefers to trade

in the exchange market, regardless of firm fundamentals. The equilibrium is βH = βL = 1,

which contradicts d = (−1,−1, 1).

Similarly, we can proof that given the manager’s investment decision is d = (−1, 0, 1),

DPH − VH < 0 and DPL − VL < 0 for ∀α ∈ (1
2
, 1]. Therefore, there is a unique equilibrium

in which the informed investor’s venue choice strategy is βH = βL = 1, and the manager’s

decision is d = (−1, 0, 1) at X = (−1, 0, 1).

Proof of Lemma 1.4

Proof. When the total trading volume is X = −2, the low state θ = L is fully revealed, and

thus the posterior belief about the high state is q(−2) = 0, which is the lowest posterior
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belief. When the total trading volume is X = 2, the high state θ = H is fully revealed,

and thus the posterior belief about the high state is q(2) = 1, which is the highest posterior

belief.

q(X = 1)− q(X = 0) =
α(1− βH) + (3− 2α)βH

α(2− βH − βL) + (3− 2α)βH
− αβH + (3− 2α)(1− βH)

α(βH + βL) + (2− βH − βL)(3− 2α)

=
αβL(α + 3βH(1− α)) + 3βH(1− βL)(3− α)(1− α)

(α(2− βH − βL) + (3− 2α)βH)(α(βH + βL) + (2− βH − βL)(3− 2α))

Since α ∈ (0, 1), {βH , βL} ∈ [1, 0], the numerator is positive and thus q(X = 1) − q(X =

0) > 0.

q(X = 0)− q(X = −1) =
αβH + (3− 2α)(1− βH)

α(βH + βL) + (2− βH − βL)(3− 2α)
− α(1− βH)

α(2− βH − βL) + (3− 2α)βL

=
3βL(1− βH)(3− α)(1− α) + α2βH(1− βL) + αβHβL(3− 2α)

(α(2− βH − βL) + (3− 2α)βL)(α(βH + βL) + (2− βH − βL)(3− 2α))

Since α ∈ (0, 1), {βH , βL} ∈ [1, 0], the numerator is positive, and thus q(X = 0) − q(X =

−1) > 0.

Therefore, the posterior belief is increasing in the total trading volume X, and thus the

real effects are monotonic on the total trading volume.

Proof of Proposition 1.3

Proof. The proof of Proposition 1.3 relies on the self-fulfilling hypothesis. There are two

steps to find out equilibrium with strong real effects. Given the informed investor venue

choice strategy βH and βL, and the manager’s investment decision d at X = (−1, 0, 1), the

first step is to check if we can find ∀α ∈ (0, 1] that support for the manager’s investment

decision d at X = (−1, 0, 1). If such α exists, we further check if the informed investor’s

venue choice strategy βH and βL could be sustainable, given the informed investor’s expected

payoffs from the exchange market and the dark pool.
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For example, given the equilibrium βH = 1, βL = 0, the manager’s posterior beliefs are

q = (0, α
3−α ,

3−2α
3−α ) at X = (−1, 0, 1) respectively. If the manager’s investment decision is

d = (−1,−1, 1) at X = (−1, 0, 1), q must satisfy the condition 0 ≤ q(X = 0) = α
3−α < 1

2
,

and the condition 1
2
< q(X = 1) = 3−2α

3−α ≤ 1. Then we can find α′s support for these two

conditions.

Given the α′s, we further check if the informed investor’s venue choice strategy βH =

1, βL = 0 is sustainable, that is, if VH ≥ DPH and VL ≤ DPL survive for some α′s.

When g → RH−RL
2

−
, we have

VH =
α

3

3− 2α

3− α
(RH −RL − 2g) + (1− 2α

3
)

α

3− α
(RH −RL + 2g)

VL =
α

3

α

3− α
(RH −RL − 2g) + (1− 2α

3
)0 =

α

3

α

3− α
(RH −RL − 2g),

DPH =
1− α

3

3− 2α

3− α
(RH −RL − 2g),

DPL =
1− α

3

α

3− α
(RH −RL − 2g).

The condition VH ≥ DPH and VL ≤ DPL survive for ∀α ∈
[

RH−RL−2g
3(RH−RL)−2g

, 1
2

)
, thus

the asymmetric equilibrium in which the informed investor’s venue choice strategy is βH =

1, βL = 0, and the manager’s investment decision is d = (−1,−1, 1) exists.

Following the same logic, we first check the pure strategy βH = 1 and βL = 0, and the

pure strategy βH = 0 and βL = 1. In the pure strategy βH = 1 and βL = 0, the posterior

belief q(X = −1) = 0, thus the corresponding investment decision is d(X = −1) = −1.

Given Lemma 1.2 and Lemma 1.4, there are two potential manager’s investment decision

d ∈
{

(−1,−1, 0), (−1,−1, 1)
}

at X = (−1, 0, 1) to consider. However, only d = (−1,−1, 1)

survives for ∀α ∈ (0, 1). Thus we further check if the informed investor’s venue choice

strategy βH = 1 and βL = 0 survive for ∀α ∈
[

RH−RL−2g
3(RH−RL)−2g

, 1
2

)
, that is, if VH ≥ DPH
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and VL ≤ DPL survive for ∀α ∈
[

RH−RL−2g
3(RH−RL)−2g

, 1
2

)
. We have show this proof in the above

example, thus there is a pure strategy equilibrium in which the informed investor’s venue

choice is βH = 1 and βL = 0, and the manager’s investment decision is d ∈ {−1,−1, 1} for

∀α ∈
[

RH−RL−2g
3(RH−RL)−2g

, 1
2

)
.

In the pure strategy βH = 0 and βL = 1, the manager’s posterior beliefs are q =

( α
3−α ,

3−2α
3−α , 1) at X = (−1, 0, 1), then given Lemma 1.4 and d(X = 1) = 1, there are two

potential investment decision d ∈
{

(0, 1, 1), (−1, 1, 1)
}

to consider. After checking, only

d = (−1, 1, 1) survives for ∀α ∈ (0, 1). Thus we further check if the informed investor’s

venue choice strategy βH = 0 and βL = 1 survive for ∀α ∈ (0, 1), that is, if VH ≤ DPH and

VL ≥ DPL survive for ∀α ∈ (0, 1).

When g → RH−RL
2

−
, we have

VH =
α

3

α

3− α
(RH −RL + 2g) + (1− 2α

3
)0 =

α

3

α

3− α
(RH −RL + 2g),

VL =
α

3

3− 2α

3− α
(RH −RL + 2g) + (1− 2α

3
)

α

3− α
(R−H −RL − 2g),

DPH =
1− α

3

α

3− α
(RH −RL + 2g),

DPL =
1− α

3

3− 2α

3− α
(RH −RL + 2g).

We find that for ∀α ∈
[

RH−RL+2g
3(RH−RL)+2g

, 1
)

, VH ≤ DPH and VL ≥ DPL, thus there is a pure

strategy equilibrium in which informed investor’s venue choice is βH = 0 and βL = 1 and

the manager’s decision is d = (−1, 1, 1) for ∀α ∈
[

RH−RL+2g
3(RH−RL)+2g

, 1
)

.

Now we check the mixed strategy. In the mixed strategy βH = 1, βL ∈ (0, 1), the

manager’s posterior beliefs are q = (0, α
α(1+βL)+(1−βL)(3−2α)

, 3−2α
α(1−βL)+3−2α

) at X = (−1, 0, 1),

then given Lemma 1.2 and Lemma 1.4, d(X = 0) = −1 and d(X = −1) = −1, there are

two potential investment decision d ∈
{

(−1,−1, 0), (−1,−1, 1)
}

to consider. However, only

118



d = (−1,−1, 1) survives for ∀α ∈ (0, 1). Then, we check if the informed investor venue

choice strategy βH = 1 and βL ∈ (0, 1) is sustainable for ∀α ∈ (0, 1), that is, if VH ≥ DPH

and VL = DPL survive for ∀α ∈ (0, 1).

When g → RH−RL
2

−
, we have

VH =
α

3

αβL + (3− 2α)(1− βL)

α(1 + βL) + (1− βL)(3− 2α)
(RH−RL−2g)+(1−2α

3
)

α(1− βL)

α(1− βL) + 3− 2α
(RH−RL+2g)

VL =
α

3

α

α(1 + βL) + (1− βL)(3− 2α)
(RH −RL − 2g) + (1− 2α

3
)0

=
α

3

α

α(1 + βL) + (1− βL)(3− 2α)
(RH −RL − 2g),

DPH =
1− α

3

αβL + (3− 2α)(1− βL)

α(1 + βL) + (1− βL)(3− 2α)
(RH −RL − 2g),

DPL =
1− α

3

α

α(1 + βL) + (1− βL)(3− 2α)
(RH −RL − 2g).

We can not find ∀α ∈ (0, 1) to satisfy these conditions, thus there is no asymmetric

equilibrium βH = 1, βL ∈ (0, 1) with strong real effects d = (−1,−1, 1).

In the mixed strategy βH ∈ (0, 1), βL = 0, we know the manager’s posterior beliefs

are q = (1−βH
2−βH

, αβH+(3−2α)(1−βH)
αβH+(3−2α)(2−βH)

, α(1−βH)+(3−2α)βH
α(2−βH)+(3−2α)βH

) at X = (−1, 0, 1), then there are two

potential investment decision d ∈
{

(−1,−1, 0), (−1,−1, 1)
}

to consider. Similarly, only

d = (−1,−1, 1) survives for ∀α ∈ (0, 1). After further check if βH ∈ (0, 1) and βL = 0 is

sustainable for ∀α ∈ (0, 1), that is, if VH = DPH and VL ≤ DPL survive for ∀α ∈ (0, 1).

When g → RH−RL
2

−
, we have

VH =
α

3

3− 2α

αβH + (2− βH)(3− 2α)
(RH−RL−2g)+(1−2α

3
)

α

α(2− βH) + (3− 2α)βH
(RH−RL+2g)

VL =
α

3

αβH + (3− 2α)(1− βH)

αβH + (3− 2α)(2− βH)
(RH −RL − 2g) + (1− 2α

3
)
1− βH
2− βH

(RH −RL − 2g),

DPH =
1− α

3

3− 2α

αβH + (2− βH)(3− 2α)
(RH −RL − 2g),

DPL =
1− α

3

αβH + (3− 2α)(1− βH)

αβH + (3− 2α)(2− βH)
(RH −RL − 2g).
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The conditions VH = DPH and VL ≤ DPL hold for ∀α ∈
(

0, RH−RL−2g
3(RH−RL)−2g

)
, thus

the informed investor’s venue choice strategy βH ∈ (0, 1) and βL = 0 holds for ∀α ∈(
0, RH−RL−2g

3(RH−RL)−2g

)
.

In the mixed strategy βH ∈ (0, 1), βL = 1, we know the manager’s posterior beliefs are

q = ( α(1−βH)
α(1−βH)+3−2α

, αβH+(3−2α)(1−βH)
α(1+βH)+(3−2α)(1−βH)

, 1) at X = (−1, 0, 1), then there are two potential

investment decision d ∈
{

(0, 1, 1), (−1, 1, 1)
}

to consider. Only d = (−1, 1, 1) survives for

∀α ∈ (0, 1). Then, further check if the informed investor’s venue choice βH ∈ (0, 1) and

βL = 1 is sustainable for ∀α ∈ (0, 1), that is, if VH = DPH and VL ≥ DPL survive for

∀α ∈ (0, 1).

When g → RH−RL
2

−
, we have

VH =
α

3

α

α(βH + 1) + (1− βH)(3− 2α)
(RH −RL + 2g) + (1− 2α

3
)0

=
α

3

α

α(βH + 1) + (1− βH)(3− 2α)
(RH −RL + 2g)

VL =
α

3

αβH + (3− 2α)(1− βH)

α(1 + βH) + (3− 2α)(1− βH)
(RH−RL+2g)+(1−2α

3
)

α(1− βH)

α(1− βH) + 3− 2α
(RH−RL−2g)

DPH =
1− α

3

α

α(βH + 1) + (1− βH)(3− 2α)
(RH −RL + 2g),

DPL =
1− α

3

αβH + (3− 2α)(1− βH)

α(1 + βH) + (3− 2α)(1− βH)
(RH −RL + 2g).

The condition VH = DPH and VL ≥ DPL survives only when α = 1
2
, thus the informed

investor’s venue choice strategy βH ∈ (0, 1) and βL = 1 does not exist. Therefore, there is

no mixed strategy βH ∈ (0, 1) and βL = 1 for ∀α ∈ (0, 1).

In the mixed strategy βH = 0, βL ∈ (0, 1), we know the manager’s posterior beliefs

are q = ( α
α(2−βL)+(3−2α)βL

, 3−2α
αβL+(3−2α)(2−βL)

, 1
2−βL

) at X = (−1, 0, 1), then given Lemma 1.4,

there are two potential investment decision d ∈
{

(0, 1, 1), (−1, 1, 1)
}

to consider. Only

d = (−1, 1, 1) survives for ∀α ∈ (0, 1). Then we further check if the informed investor venue
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choice βH = 0 and βL ∈ (0, 1) is sustainable for ∀α ∈ (0, 1), that is, if VH ≤ DPH and

VL = DPL survive for ∀α ∈ (0, 1).

When g → RH−RL
2

−
, we have

VH =
α

3

αβL + (3− 2α)(1− βL)

αβL + (3− 2α)(2− βL)
(RH −RL + 2g) + (1− 2α

3
)

αβL
α(2− βL)

(RH −RL + 2g)

VL =
α

3

3− 2α

αβL + (3− 2α)(2− βL)
(RH−RL+2g)+(1−2α

3
)

α

α(2− βL) + (3− 2α)βL
(RH−RL−2g)

DPH =
1− α

3

αβL + (3− 2α)(1− βL)

αβL + (3− 2α)(2− βL)
(RH −RL + 2g),

DPL =
1− α

3

3− 2α

αβL + (3− 2α)(2− βL)
(RH −RL + 2g).

The condition VH ≤ DPH and VL = DPL hold for ∀α ∈
(

8g−2(RH−RL)
6g+RH−RL

, RH−RL+2g
3(RH−RL)+2g

)
,

thus the informed investor’s venue choice strategy βH = 0 and βL ∈ (0, 1) exists for ∀α ∈(
8g−2(RH−RL)

6g+RH−RL
, RH−RL+2g

3(RH−RL)+2g

)
.

In the mixed strategy βH ∈ (0, 1) > βL ∈ (0, 1), the manager’s posterior beliefs are

q = ( α(1−βH)
α(2−βH−βL)+(3−2α)βL

, αβH+(3−2α)(1−βH)
α(βH+βL)+(3−2α)(2−βH−βL)

, α(1−βH)+(3−2α)βH
α(2−βH−βL)+(3−2α)βH

) at X = (−1, 0, 1).

As βH > βL, there are two potential investment decision d ∈
{

(−1,−1, 0), (−1,−1, 1)
}

to consider. After checking the posterior beliefs that satisfy the investment decision, only

d = (−1,−1, 1) survives for ∀α ∈ (0, 1). Then, we further check if the informed investor’s

venue choice strategy βH ∈ (0, 1), βL ∈ (0, 1), and βH > βL is sustainable for ∀α ∈ (0, 1),

that is, if VH = DPH and VL = DPL survive for ∀α ∈ (0, 1).

When g → RH−RL
2

−
, we have

VH =
α

3

αβL + (3− 2α)(1− βL)

α(βH + βL) + (2− βH − βL)(3− 2α)
(RH −RL − 2g)

+ (1− 2α

3
)

α(1− βL)

α(2− βH − βL) + (3− 2α)βH
(RH −RL + 2g)
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VL =
α

3

αβH + (3− 2α)(1− βH)

α(βH + βL) + (2− βH − βL)(3− 2α)
(RH −RL − 2g)

+ (1− 2α

3
)

α(1− βH)

α(2− βH − βL) + (3− 2α)βL
(RH −RL − 2g)

DPH =
1− α

3

αβL + (3− 2α)(1− βL)

α(βH + βL) + (2− βH − βL)(3− 2α)
(RH −RL − 2g),

DPL =
1− α

3

αβH + (3− 2α)(1− βH)

α(βH + βL) + (2− βH − βL)(3− 2α)
(RH −RL − 2g).

The condition VH = DPH and VL = DPL does not hold for ∀α ∈ (0, 1), thus the informed

investor’s venue choice strategy βH ∈ (0, 1) > βL ∈ (0, 1) does not exist. Therefore, there is

no mixed strategy βH ∈ (0, 1) > βL ∈ (0, 1) for ∀α ∈ (0, 1).

In the mixed strategy βH ∈ (0, 1) < βL ∈ (0, 1), we know the manager’s posterior

beliefs are q = ( α(1−βH)
α(2−βH−βL)+(3−2α)βL

, αβH+(3−2α)(1−βH)
α(βH+βL)+(3−2α)(2−βH−βL)

, α(1−βH)+(3−2α)βH
α(2−βH−βL)+(3−2α)βH

) at X =

(−1, 0, 1). As βH < βL, there are two potential investment decision d ∈
{

(0, 1, 1), (−1, 1, 1)
}

to consider. After checking the posterior beliefs that satisfy the investment decision, only

d = (−1, 1, 1) survives for ∀α ∈ (0, 1). Thus we further check if the informed investor’s venue

choice strategy βH ∈ (0, 1), βL ∈ (0, 1), and βH < βL is sustainable for ∀α ∈ (0, 1), that is,

if VH = DPH and VL = DPL survive for ∀α ∈ (0, 1).

When g → RH−RL
2

−
, we have

VH =
α

3

αβL + (3− 2α)(1− βL)

α(βH + βL) + (2− βH − βL)(3− 2α)
(RH −RL + 2g)

+ (1− 2α

3
)

α(1− βL)

α(2− βH − βL) + (3− 2α)βH
(RH −RL + 2g),

VL =
α

3

αβH + (3− 2α)(1− βH)

α(βH + βL) + (2− βH − βL)(3− 2α)
(RH −RL + 2g)

+ (1− 2α

3
)

α(1− βH)

α(2− βH − βL) + (3− 2α)βL
(RH −RL − 2g),

DPH =
1− α

3

αβL + (3− 2α)(1− βL)(3− 2α)

α(βH + βL) + (2− βH − βL)(3− 2α)
(RH −RL + 2g),
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DPL =
1− α

3

αβH + (3− 2α)(1− βH)

α(βH + βL) + (2− βH − βL)(3− 2α)
(RH −RL + 2g).

The condition VH = DPH and VL = DPL holds for ∀α ∈ (α̂, 1
2
), in which

α̂ = (RH−RL)2−7g(RH−RL)+42g2

4g(10g−RH+RL)
−
√

84g3(RH−RL)+(85g2−4RHRL)(RH−RL)2−14g(RH−RL)3+(R2
H−R

2
L)−156g4

4g(10g−RH+RL)
.

Thus the informed investor’s venue choice strategy βH ∈ (0, 1) < βL ∈ (0, 1) exists for

∀α ∈ (α̂, 1
2
).

Discussion of Kyle’s Market Efficiency with Real Effects

After observingX = (−2,−1, 0, 1, 2), the manager makes the decision d = (−1,−1,−1, 1, 1).

We know Var(V |X = x) = E[(V − µV |X=x)
2|X = x], where µV |X=x = E(V |X = x).

Thus the price P (X = x) = µV |X=x.

The price informativeness is:

E[α(P )] = E
[Var[V |P ]

Var[V ]

]
First, solve for the conditional variance under different total trading volume. Second, solve

for the unconditional variance.

However, price fully reveals the true value when X = (−2, 2), thus

Var(V |X = −2) = Var(V |X = 2) = 0
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The unconditional variance is Var(V ) = E(V 2)− [E(V )]2, given that

E[V ] = (
1

2
− βH

2
)
[α

3
VH(1) + (1− 2α

3
)VH(0) +

α

3
VH(−1)

]
+
βH
2

[α
3
VH(0) + (1− 2α

3
)VH(1)

+
α

3
VH(2)

]
+ (

1

2
− βL

2
)
[α

3
VL(1) + (1− 2α

3
)VL(0) +

α

3
VL(−1)

]
+
βL
2

[α
3
VL(0)

+ (1− 2α

3
)VL(−1) +

α

3
VL(−2)

]
and

E[V 2] = (
1

2
− βH

2
)
[α

3
VH(1)2 + (1− 2α

3
)VH(0)2 +

α

3
VH(−1)2

]
+
βH
2

[α
3
VH(0)2 + (1− 2α

3
)VH(1)2

+
α

3
VH(2)2

]
+ (

1

2
− βL

2
)
[α

3
VL(1)2 + (1− 2α

3
)VL(0)2 +

α

3
VL(−1)2

]
+
βL
2

[α
3
VL(0)2

+ (1− 2α

3
)VL(−1)2 +

α

3
VL(−2)2

] .

Thus the price informativeness is:

E[α(P )] =
1

2
E[αH(P )] +

1

2
E[αL(P )]

in which

E[αH(P )] = EH
[Var[V |P ]

Var[V ]

]
=

1− βH
Var(V )

[α
3
Var(V |X = 1) + (1− 2α

3
)Var(V |X = 0) +

α

3
Var(V |X = −1)

]
+

βH
Var(V )

[α
3
Var(V |X = 0) + (1− 2α

3
)Var(V |X = 1)

]
and

E[αL(P )] = EL
[Var[V |P ]

Var[V ]

]
=

1− βL
Var(V )

[α
3
Var(V |X = 1) + (1− 2α

3
)Var(V |X = 0) +

α

3
Var(V |X = −1)

]
+

βL
Var(V )

[α
3
Var(V |X = 0) + (1− 2α

3
)Var(V |X = −1)

]
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With managerial learning, the firm fundamental are endogenous, but the Kyle (1985)

variance ratio does not take it into account, thus the variance ratio is not a plausible measure

for the exchange market efficiency. We use the variance ratio E[Λ|X = 0] as an example.

First, when α→ 0+, the condition variance when X = 0 is given by

limα→0+Var(V |X = 0) = limα→0+q(0)(1− q(0)(RH −RL − 2g)2

Substitute limα→0+q(0) = limα→0+(1−q(0)) = 1
2

into the above equation, limα→0+Var(V |X =

0) = (RH−RL−2g)2

4
.

Since when α→ 0+, limα→0+βH → 0+ and βL = 0, we have

limα→0+E(V ) =
1

2
VH(0) +

1

2
VL(0) =

RH +RL

2

and

limα→0+E(V 2) =
1

2
VH(0)2 +

1

2
VL(0)2 =

R2
H +R2

L + 2g2 − 2gRH + 2gRL

2
.

Thus, the unconditional variance is given by

limα→0+Var(V ) = limα→0+ [E(V 2)− (E(V ))2] =
(RH −RL − 2g)2

4
.

The variance ratio limα→0+E[Λ|X = 0] is given by

limα→0+E[Λ|X = 0] = limα→0+
Var(V |X = 0)

Var(V )
= 1.

Similarly, when α→ 1−, the condition variance when X = 0 is given by

limα→1−Var(V |X = 0) = limα→1−q(0)(1− q(0)(RH −RL − 2g)2
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Substitute limα→1−q(0) = limα→1−(1−q(0)) = 1
2

into the above equation, limα→1−Var(V |X =

0) = (RH−RL−2g)2

4
.

Since when α→ 1−, βH = 1 and βL = 0, we have

limα→1−E(V ) =
1

2
[
1

3
VH(0)+

1

3
VH(1)+

1

3
VH(2)]+

1

2
[
1

3
VL(0)+

1

3
VL(−1)+

1

3
VL(−2)] =

3RH + 3RL + 4g

6

and

limα→1−E(V 2) =
3R2

H + 3R2
L + 2RHg + 6RLg + 6g2

6
.

Thus, the unconditional variance is given by

limα→1−Var(V ) = limα→1− [E(V 2)−(E(V ))2] =
9R2

H + 9R2
L − 12g(RH −RL) + 20g2 − 18RHRL

36
.

The variance ratio limα→1−E[Λ|X = 0] is given by

limα→1−E[Λ|X = 0] = limα→1−
Var(V |X = 0)

Var(V )
=

1

1 + 24g(RH−RL)−16g2

9(RH−RL−2g)2

.

Since g → RH−RL
2

−
, 24g(RH−RL)−16g2

9(RH−RL−2g)2
> 0 such that limα→1−E[Λ|X = 0] < 1 = limα→0+E[Λ|X =

0]. Therefore, it is clear to see due to the real effects, the variance ratio does not work any-

more.
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Proof of Proposition 1.4

Proof. With real effects, the conditional entropy is given by:

H(Θ|X) =
∑
x∈X

p(x)H(Θ|X = x)

= −
∑
x∈X

p(x)
∑
θ∈Θ

q(θ|x)log2q(θ|x)

= −p(−2)
[
q(H| − 2)log2q(H| − 2) + q(L| − 2)log2q(L| − 2)

]
− p(−1)

[
q(H| − 1)log2q(H| − 1) + q(L| − 1)log2q(L| − 1)

]
− p(0)

[
q(H|0)log2q(H|0) + q(L|0)log2q(L|0)

]
− p(1)

[
q(H|1)log2q(H|1) + q(L|1)log2q(L|1)

]
− p(2)

[
q(H|2)log2q(H|2) + q(L|2)log2q(L|2)

]
in which the ex ante probabilities are p(−2) = αβL

6
, p(2) = αβH

6
, p(−1) = 1

2
(1 − βH)α

3
+

1
2
βL(1 − 2α

3
) + 1

2
(1 − βL)α

3
, p(1) = 1

2
(1 − βH)α

3
+ 1

2
βH(1 − 2α

3
) + 1

2
(1 − βL)α

3
, and p(0) =

1
2
βH

α
3

+ 1
2
(1 − βH)(1 − 2α

3
) + 1

2
βL

α
3

+ 1
2
(1 − βL)(1 − 2α

3
). The ex post probabilities are

q(H|−2) = q(−2) = 0 and q(L|−2) = 1−q(−2) = 1, q(H|−1) = q(−1) = α(1−βH)
α(2−βH−βL)+(3−2α)βL

and q(L| − 1) = 1− q(−1) = α(1−βL)+(3−2α)βL
α(2−βH−βL)+(3−2α)βL

, q(H|0) = q(0) = αβH+(3−2α)(1−βH)
α(βH+βL)+(2−βH−βL)(3−2α)

and q(L|0) = 1− q(0) = αβL+(3−2α)(1−βL)
α(βH+βL)+(2−βH−βL)(3−2α)

, q(H|1) = q(1) = α(1−βH)+(3−2α)βH
α(2−βH−βL)+(3−2α)βH

and

q(L|1) = 1− q(1) = α(1−βL)
α(2−βH−βL)+(3−2α)βH

, and q(H|2) = q(2) = 1 and q(L|2) = 1− q(2) = 0.
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Hence, the conditional entropy with managerial learning is given by

H(Θ|X) = −α(2− βH − βL) + βL(3− 2α)

6[
α(1− βH)

α(2− βH − βL) + (3− 2α)βL
log2

α(1− βH)

α(2− βH − βL) + (3− 2α)βL

+
α(1− βL) + (3− 2α)βL

α(2− βH − βL) + (3− 2α)βL
log2

α(1− βL) + (3− 2α)βL
α(2− βH − βL) + (3− 2α)βL

]
− α(βH + βL) + (2− βH − βL)(3− 2α)

6[
αβH + (3− 2α)(1− βH)

α(βH + βL) + (2− βH − βL)(3− 2α)
log2

αβH + (3− 2α)(1− βH)

α(βH + βL) + (2− βH − βL)(3− 2α)

+
αβL + (3− 2α)(1− βL)

α(βH + βL) + (2− βH − βL)(3− 2α)
log2

αβL + (3− 2α)(1− βL)

α(βH + βL) + (2− βH − βL)(3− 2α)

]
− α(2− βH − βL) + βH(3− 2α)

6[
α(1− βH) + (3− 2α)βH

α(2− βH − βL) + (3− 2α)βH
log2

α(1− βH) + (3− 2α)βH
α(2− βH − βL) + (3− 2α)βH

+
α(1− βL)

α(2− βH − βL) + (3− 2α)βH
log2

α(1− βL)

α(2− βH − βL) + (3− 2α)βH

]
(4)

Given Equation 1.13 and Equation 4, it is easy to find out when α→ 0+, βH → 0, and

then H(Θ|X) = 1. Hence the exchange market efficiency is 0 when α→ 0+.

When α ∈
(

0, 2g−(RH−RL)
2g−3(RH−RL)

)
, βL = 0 by Equation 1.14, βH = 4α(RH−RL)+16gα(1−α)

3(1−α)[(1−α)(RH−RL)+2g(3α−1)]
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by Equation 1.13, which is strictly increasing in α. Hence,

H(Θ|X) = −2− βH
6

[
1− βH
2− βH

log2
1− βH
2− βH

+
1

2− βH
log2

1

2− βH

]
− αβH + (2− βH)(3− 2α)

6

[
αβH + (3− 2α)(1− βH)

αβH + (2− βH)(3− 2α)
log2

αβH + (3− 2α)(1− βH)

αβH + (2− βH)(3− 2α)

+
3− 2α

αβH + (2− βH)(3− 2α)
log2

3− 2α

αβH + (2− βH)(3− 2α)

]
− α(2− βH) + βH(3− 2α)

6

[
α(1− βH) + (3− 2α)βH
α(2− βH) + (3− 2α)βH

log2
α(1− βH) + (3− 2α)βH
α(2− βH) + (3− 2α)βH

+
α

α(2− βH) + (3− 2α)βH
log2

α

α(2− βH) + (3− 2α)βH

]
,

(5)

which is strictly decreasing in α such that the exchange market efficiency is strictly increasing

in α when α ∈
(

0, 2g−(RH−RL)
2g−3(RH−RL)

)
. When α→ 2g−(RH−RL)

2g−3(RH−RL)

−
, βH → 1, and then H(Θ|X) < 1

3

always hold for ∀g → RH−RL
2

−
, thus the exchange market efficiency is highest when α →

2g−(RH−RL)
2g−3(RH−RL)

−
, and it is higher than 2

3
.

When α ∈
[

2g−(RH−RL)
2g−3(RH−RL)

, 1
2

)
, βH = 1 by Equation 1.13 and βL = 0 by Equation 1.14.

Hence H(Θ|X) = −3−α
3

[
α

3−α log2
α

3−α + 3−2α
3−α log2

3−2α
3−α

]
, which is strictly increasing in α such

that the exchange market efficiency is strictly decreasing in α. Hence, for ∀g → RH−RL
2

−
,

H(Θ|X) < 1
3

always hold when α = 2g−(RH−RL)
2g−3(RH−RL)

, thus the exchange market efficiency when

α = 2g−(RH−RL)
2g−3(RH−RL)

is the highest, and it is higher than 2
3
.

Besides, We can get

lim
α→ 1

2

−H(Θ|X) = −1

6

[
log2

1

5
+ 4log2

4

5

]
= 0.6016, (6)

then the exchange market efficiency when α→ 1
2

−
is 0.3984, which is lower than 2

3
.

Thus, the exchange market efficiency is single-peaked when α ∈ (0, 1
2
), and it reaches

the peak when α = 2g−(RH−RL)
2g−3(RH−RL)

. Therefore, there exist α1 and α2 with 0 < α1 < α2 <
1
2
,
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such that Proposition 1.4 holds.

Proof of Proposition 1.5

Proof. When α ∈
(

0, 2g−(RH−RL)
2g−3(RH−RL)

)
, the informed investor’s venue choice is βL = 0 and

βH = 4α(H−L)+16gα(1−α)
3(1−α)[(1−α)(H−L)+2g(3α−1)]

. By Proposition 5, we know α1 is the cutoff such that

1−H(Θ|X) in Equation 5 equals to 2
3
. That is,

1−H(Θ|X) =
2

3
. (7)

From Equation 1.23 and Equation 1.24, we know the real economic efficiency on average

is RH+RL
2

+ βHg(1− 2α
3

) with dark pool. It is RH+RL
2

+ 2g
3

without dark pool. Thus α3 is the

cutoff such that

RH +RL

2
+ βHg(1− 2α

3
) =

RH +RL

2
+

2g

3
,

or simply,

βH(1− 2α

3
) =

2

3
. (8)

Figure 9 compares α1, which makes the exchange market efficiency indifferent without

and with dark pool, with α3, which makes the real economic efficiency indifferent without

and with dark pool. It is clearly that α3 < α1 because βH(1 − 2α
3

) > 1 − H(Θ|X) for

∀α ∈
(

0, 2g−(RH−RL)
2g−3(RH−RL)

)
.
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Figure 9: α of market efficiency and real economic efficiency

We assume g = k ∗ (RH −RL) where k → 1
2

−
, then solve for Equation 8 gives

α3 =
7 + 22k

48k

+
−196 + 1072k − 1936k2

192k(−343 + 2814k − 1524k2 + 10088k3 + 144
√

5
√
−49k2 + 404k3 − 768k4 + 1520k5 − 112k6)1/3

− (−343 + 2814k − 1524k2 + 10088k3 + 144
√

5
√
−49k2 + 404k3 − 768k4 + 1520k5 − 112k6)1/3

48k

(9)

Plug Equation 9 into 1−H(Θ|X), and then we can find that lim
k→ 1

2

−1−H(Θ|X) < 2
3

for ∀α ∈
(

0, 2g−(RH−RL)
2g−3(RH−RL)

)
. Therefore, α1 > α3.

Proof of Lemma 1.5

Proof. Without dark pool, α = 1 and βH = βL = 1, state H is fully revealed for X = (1, 2)

and state L is fully revealed for X = (−2,−1). Thus the firm value at state H is RH + 2
3
g

and the firm value at state L is RL + 2
3
g. Hence, the ex-ante firm value is RH+RL

2
+ 2

3
g.

With managerial learning, the informed investor’s venue choice is βL = 0 and βH =

4α(H−L)+16gα(1−α)
3(1−α)[(1−α)(H−L)+2g(3α−1)]

when α ∈ (0, 2g−(RH−RL)
2g−3(RH−RL)

). Given Table 1.5, the firm value at state

H is RH +
(
2βH − 4αβH

3
− 1 + 2α

3

)
g, and the firm value at state L is RL + (1− 2α

3
)g.
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The informed investor’s venue choice is βH = 1, βL = 0 when α ∈ [ 2g−(RH−RL)
2g−3(RH−RL)

, 1
2
).

Hence, the firm value is RH + (1− 2α
3

)g at state H and RL + (1− 2α
3

)g at state L.

The informed investor’s venue choice is βH = 1 and βL = 1 when α ∈ [1
2
, 1). Hence, the

firm value is RH + (1− α
3
)g at state H and RL + (1− α

3
)g at state L.

Proof of Proposition 1.6

Proof. Payoffs in exchange market and dark pool The positively informed investor’s expected

payoff is

V N
H =

α

3

(
αβNL + (3− 2α)(1− βNL )

)
(RH −RL)

α(βNH + βNL ) + (3− 2α)(2− βNH − βNL )
+ (1− 2α

3
)

α(1− βNL )(RH −RL)

α(2− βNH − βNL ) + (3− 2α)βNH

For a negatively informed investor, with probability α
3
, the total trading volume is -2,

and the expected payoff is 0. With probability α
3
, the total trading volume is -1, and the

expected payoff is α
3

(αβNH+(3−2α)(1−βNH ))(RH−RL)

α(βNH+βNL )+(3−2α)(2−βNH−β
N
L )

. With probability 1 − 2α
3

, the total trading

volume is 0, the expected payoff is (1− 2α
3

)
α(1−βNH )(RH−RL)

α(2−βNH−β
N
L )+(3−2α)βNL

.

Thus the negatively informed investor’s expected payoff is

V N
L =

α

3

(
αβNH + (3− 2α)(1− βNH )

)
(RH −RL)

α(βNH + βNL ) + (3− 2α)(2− βNH − βNL )
+ (1− 2α

3
)

α(1− βNH )(RH −RL)

α(2− βNH − βNL ) + (3− 2α)βNL

The informed investor’s expected payoff from trading in the dark pool is

DPN
H =

1− α
3

(
RH − P (X = 0)

)
=

1− α
3

(
αβNL + (3− 2α)(1− βNL )

)
(RH −RL)

α(βNH + βNL ) + (3− 2α)(2− βNH − βNL )

when she is positively informed, and it is

DPN
L =

1− α
3

(
P (X = 0)−RL

)
=

1− α
3

(
αβNH + (3− 2α)(1− βNH )

)
(RH −RL)

α(βNH + βNL ) + (3− 2α)(2− βNH − βNL )
.
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when she is negatively informed.

Pure Strategy Equilibrium If the informed investor’s expected payoff from both buying

and selling activities in the exchange market is higher than those from the dark pool, she

prefers the exchange market regardless of the information type. When she prefers both

buying and selling in the exchange market, βNH = βNL = 1 for ∀α ∈ [1
2
, 1) if and only if

α
3
RH−RL

2
> 1−α

3
RH−RL

2
, given that her expected payoff is α

3
RH−RL

2
in the exchange market

and 1−α
3

RH−RL
2

in the dark pool.

Similarly, if the informed investor’s expected payoff from both buying and selling activ-

ities in the dark pool is higher than those from trading in the exchange market, she prefers

the dark pool regardless of the information type and βNH = βNL = 0 for ∀α ∈ (0, 1). Thus

(1− α
3
)RH−RL

2
< 1−α

3
RH−RL

2
, given that her expected payoff is (1− α

3
)RH−RL

2
in the exchange

market and 1−α
3

RH−RL
2

in the dark pool. However, we can not find any parameters to satisfy

the conditions, thus there is not pure strategy βNH = βNL = 0.

If the informed investor prefers buying in the exchange market (βNH = 1) and selling in

the dark pool (βNL = 0), then α
3

3−2α
3−α (RH−RL)+(1− 2α

3
) α

3−α(RH−RL) > 1−α
3

3−2α
3−α (RH−RL)

and α
3

α
3−α(RH −RL) < 1−α

3
α

3−α(RH −RL), which means her expected payoff from buying in

the exchange market is higher than that from the dark pool and her expected payoff from

selling in the exchange market is lower than that from the dark pool. Both conditions hold

for ∀α ∈ (1
3
, 1

2
).

If the informed investor prefers buying in the dark pool (βNH = 0) and selling in the

exchange market (βNL = 1), α
3

α
3−α(RH − RL) < 1−α

3
α

3−α(RH − RL) and α
3

3−2α
3−α (RH − RL) +

(1− 2α
3

) α
3−α(RH −RL) > 1−α

3
3−2α
3−α (RH −RL), which means her expected payoff from buying

in the exchange market is lower than that from the dark pool and her expected payoff from

selling in the exchange market is higher than that from the dark pool. Both conditions hold

for ∀α ∈ (1
3
, 1

2
).
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Based on the above analysis, there are three pure strategy equilibrium: βNH = βNL = 1

for ∀α ∈ (1
2
, 1), βNH = 1, βNL = 0 for ∀α ∈ (1

3
, 1

2
), and βNH = 0, βNL = 1 for ∀α ∈ (1

3
, 1

2
).

Mixed Strategy Equilibrium If the informed investor is indifferent between trading in the

exchange market and trading in the dark pool, then her expected gross gains are the same

from trading in both venues and there are mixed strategies. There are three possible cases

to consider: βNH > βNL , βNH < βNL , and βNH = βNL = βN ∈ (0, 1).

When βNH > βNL , V N
H > V N

L . If V N
H = DPN

H and DPN
L > V N

L , βNH = 12α−8α2

9−24α+21α2−6α3 >

βNL = 0 for ∀α ∈ (0.3299, 1
3
). If V N

H > DPN
H and V N

L = DPN
L , βNH = 1 > βNL ∈ (0, 1) only

exists when α = 1
2
, thus we do not take it into account.

When βH < βNL , V N
H < V N

L . If V N
L = DPN

L and DPN
H > V N

H , βL = 12α−8α2

9−24α+21α−6α3 >

βNH = 0 for ∀α ∈ (0.3299, 1
3
). If V N(−) > DPN

L and DPN
H = V N

H , βNL = 1 > βH ∈ (0, 1) hold

only when α = 1
2
, thus we do not take it into account.

When βNH = βNL ∈ (0, 1), there are V N
H = V N

L = DPN
H = DPN

L . Thus βNH = βNL = βN =

4α
3−4α+4α2 for ∀α ∈ (0, 1

2
).

Monotonicity in βN When V N
H = DPN

H and V N
L = DPN

L , βNH = βNL = βN = 4α
3−4α+4α2 for

∀α ∈ (0, 1
2
). Taking the first order derivative of βN with respect to α gives: dβN

dα
= 12−16α2

(3−4α+4α2)2
.

The numerator 12 − 16α2 > 0 for ∀α ∈ (0, 1
2
). Thus for ∀α ∈ (0, 1

2
), dβN

dα
> 0. We find

lim
α→ 1

2

−βN = 1. βN is continuously increasing in α.

Proof of Proposition 1.7

Proof. We measure the impact of managerial learning on price informativeness through the

following measure:

4I = I(Θ|X)− IN(Θ|X) = HN(Θ|X)−H(Θ|X)
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which is the difference between mutual information with and without managerial learning. If

4I > 0, managerial learning improves the exchange market efficiency; if4I < 0, managerial

learning reduces the exchange market efficiency; otherwise, managerial learning does not

change the exchange market efficiency.
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Appendix to Chapter 2

Proof of Proposition 2.1

Proof. Given the liquidity investor’s trading venue choice αBE and αSE, and the informed

investor’s trading venue choice βHE, βLE, there are 16 potential possible pure strategy equi-

libria. After checking the real effects d at the total trading volume X = (−1, 0, 1), we

have:

1. When αBE = 0, αSE = 1, βHE = 1, and βLE = 0, q(H| − 1) = 0, q(H|0) = 1
3
, and

q(H|1) = 1, and the manager’s decision is d = (−1,−1, 1). The positively informed

investor’s trading profit in the exchange market is given by

V H = (1− αBE + αSE
3

)P (L|1)(RH −RL + 2g) +
αSE

3
P (L|0)(RH −RL − 2g)− k

=
2(RH −RL − 2g)

9
− k

and the negatively informed investor’s trading profit is given by

V L = (1− αBE + αSE
3

)P (H| − 1)(RH −RL − 2g) +
αBE

3
P (H|0)(RH −RL − 2g)− k

= −k.
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The positive liquidity investor’s trading profit in the exchange market is given by

LV H = (
1− βLE

2
)P (H|1)(RL −RH − 2g) +

1− βHE
2

P (L|1)(RH −RL + 2g)

+
βLE

2
P (H|0)(RL −RH + 2g)− k

=
RL −RH

2
− k − g

and the negative liquidity investor’s trading profit in the exchange market is given by

LV L = (
1− βHE

2
)P (L| − 1)(RL −RH + 2g) +

1− βLE
2

P (H| − 1)(RH −RL − 2g)

+
βHE

2
P (L|0)(RL −RH + 2g)− k

=
RL −RH + 2g

3
− k

Solving LV H < −δ, LV L > −δ, V H > 0, and V L < 0 gives 0 < k < 2(RH−RL−2g)
9

,

and 1
3
(RH + 3k −RL − 2g) < δ < 1

2
(RH + 2k −RL + 2g).

2. When αBE = 0, αSE = 1, βHE = 1, and βLE = 1, q(H| − 1) = 0, q(H|0) = 1, and

q(H|1) = 1, and the manager’s decision is d = (−1, 1, 1). The positively informed

investor’s trading profit in the exchange market is given by

V H = (1− αBE + αSE
3

)P (L|1)(RH −RL + 2g) +
αSE

3
P (L|0)(RH −RL + 2g)− k

= −k

and the negatively informed investor’s trading profit is given by

V L = (1− αBE + αSE
3

)P (H| − 1)(RH −RL − 2g) +
αBE

3
P (H|0)(RH −RL + 2g)− k

= −k.
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The positive liquidity investor’s trading profit in the exchange market is given by

LV H = (
1− βLE

2
)P (H|1)(RL −RH − 2g) +

1− βHE
2

P (L|1)(RH −RL + 2g)

+
βLE

2
P (H|0)(RL −RH − 2g)− k

=
RL −RH

2
− k − g

and the negative liquidity investor’s trading profit in the exchange market is given by

LV L = (
1− βHE

2
)P (L| − 1)(RL −RH + 2g) +

1− βLE
2

P (H| − 1)(RH −RL − 2g)

+
βHE

2
P (L|0)(RL −RH − 2g)− k

= −k

Solving LV H < −δ, LV L > −δ, V H > 0, and V L > 0 leads to contradiction.

3. When αBE = 1, αSE = 0, βHE = 0, and βLE = 0, q(H| − 1) does not exist.

4. When αBE = 1, αSE = 0, βHE = 0, and βLE = 1, q(H| − 1) = 0, q(H|0) = 2
3
, and

q(H|1) = 1, and the manager’s decision is d = (−1, 1, 1). The positively informed

investor’s trading profit in the exchange market is given by

V H = (1− αBE + αSE
3

)P (L|1)(RH −RL + 2g) +
αSE

3
P (L|0)(RH −RL + 2g)− k

= −k

and the negatively informed investor’s trading profit is given by

V L = (1− αBE + αSE
3

)P (H| − 1)(RH −RL − 2g) +
αBE

3
P (H|0)(RH −RL + 2g)− k

=
2(RH −RL + 2g)

9
− k
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The positive liquidity investor’s trading profit in the exchange market is given by

LV H = (
1− βLE

2
)P (H|1)(RL −RH − 2g) +

1− βHE
2

P (L|1)(RH −RL + 2g)

+
βLE

2
P (H|0)(RL −RH − 2g)− k

=
RL −RH − 2g

3
− k

and the negative liquidity investor’s trading profit in the exchange market is given by

LV L = (
1− βHE

2
)P (L| − 1)(RL −RH + 2g) +

1− βLE
2

P (H| − 1)(RH −RL − 2g)

+
βHE

2
P (L|0)(RL −RH − 2g)− k

=
RL −RH

2
− k + x

Solving LV H > −δ, LV L < −δ, V H < 0, and V L > 0 gives 0 < g < RH−RL
10

,

0 < k < 2(RH−RL+2g)
9

,and RH−RL+2g+3k
3

< δ < 1
2
(RH −RL) + k − x.

5. When αBE = 1, αSE = 0, βHE = 1, and βLE = 0, q(H| − 1) = 0, q(H|0) = 0, and

q(H|1) = 2
3
, and the manager’s decision is d = (−1,−1, 1). The positively informed

investor’s trading profit in the exchange market is given by

V H = (1− αBE + αSE
3

)P (L|1)(RH −RL + 2g) +
αSE

3
P (L|0)(RH −RL − 2g)− k

=
2(RH −RL + 2g)

9
− k

and the negatively informed investor’s trading profit is given by

V L = (1− αBE + αSE
3

)P (H| − 1)(RH −RL − 2g) +
αBE

3
P (H|0)(RH −RL − 2g)− k

= −k.
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The positive liquidity investor’s trading profit in the exchange market is given by

LV H = (
1− βLE

2
)P (H|1)(RL −RH − 2g) +

1− βHE
2

P (L|1)(RH −RL + 2g)

+
βLE

2
P (H|0)(RL −RH + 2g)− k

=
RL −RH − 2g

3
− k

and the negative liquidity investor’s trading profit in the exchange market is given by

LV L = (
1− βHE

2
)P (L| − 1)(RL −RH + 2g) +

1− βLE
2

P (H| − 1)(RH −RL − 2g)

+
βHE

2
P (L|0)(RL −RH + 2g)− k

=
RL −RH

2
− k + g

Solving LV H > −δ, LV L < −δ, V H > 0, and V L < 0 gives 0 < k < 2(RH−RL+2g)
9

,

and RH−RL+2g
3

+ k < δ < RH−RL
2

+ k − g.

6. When αBE = 1, αSE = 0, βHE = 1, and βLE = 1, q(H| − 1) = 0, q(H|0) = 0, and

q(H|1) = 1, and the manager’s decision is d = (−1,−1, 1). The positively informed

investor’s trading profit in the exchange market is given by

V H = (1− αBE + αSE
3

)P (L|1)(RH −RL + 2g) +
αSE

3
P (L|0)(RH −RL − 2g)− k

= −k

and the negatively informed investor’s trading profit is given by

V L = (1− αBE + αSE
3

)P (H| − 1)(RH −RL − 2g) +
αBE

3
P (H|0)(RH −RL − 2g)− k

= −k.
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The positive liquidity investor’s trading profit in the exchange market is given by

LV H = (
1− βLE

2
)P (H|1)(RL −RH − 2g) +

1− βHE
2

P (L|1)(RH −RL + 2g)

+
βLE

2
P (H|0)(RL −RH + 2g)− k

= −k

and the negative liquidity investor’s trading profit in the exchange market is given by

LV L = (
1− βHE

2
)P (L| − 1)(RL −RH + 2g) +

1− βLE
2

P (H| − 1)(RH −RL − 2g)

+
βHE

2
P (L|0)(RL −RH + 2g)− k

=
RL −RH

2
− k + x.

Solving LV H > −δ, LV L < −δ, V H > 0, and V L > 0 leads to contradiction.

7. When αBE = 0, αSE = 0, βHE = 0, and βLE = 0, q(H| − 1) = 1
2
, q(H|0) = 1

2
,

and q(H|1) = 1
2
, and the manager’s decision is d = (0, 0, 0). The positively informed

investor’s trading profit in the exchange market is given by

V H = (1− αBE + αSE
3

)P (L|1)(RH −RL) +
αSE

3
P (L|0)(RH −RL)− k

=
RH −RL

2
− k

and the negatively informed investor’s trading profit is given by

V L = (1− αBE + αSE
3

)P (H| − 1)(RH −RL) +
αBE

3
P (H|0)(RH −RL)− k

=
RH −RL

2
− k.
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The positive liquidity investor’s trading profit in the exchange market is given by

LV H = (
1− βLE

2
)P (H|1)(RL −RH) +

1− βHE
2

P (L|1)(RH −RL)

+
βLE

2
P (H|0)(RL −RH)− k

= −k

and the negative liquidity investor’s trading profit in the exchange market is given by

LV L = (
1− βHE

2
)P (L| − 1)(RL −RH) +

1− βLE
2

P (H| − 1)(RH −RL)

+
βHE

2
P (L|0)(RL −RH)− k

= −k

Solving LV H < −δ, LV L < −δ, V H < 0, and V L < 0 gives k > δ > 0 and

k > RH−RL
2

.

8. When αBE = 0, αSE = 0, βHE = 0, and βLE = 1, q(H| − 1) = 0, q(H|0) = 1, and

q(H|1) = 1, and the manager’s decision is d = (−1, 1, 1). The positively informed

investor’s trading profit in the exchange market is given by

V H = (1− αBE + αSE
3

)P (L|1)(RH −RL + 2g) +
αSE

3
P (L|0)(RH −RL + 2g)− k

= −k

and the negatively informed investor’s trading profit is given by

V L = (1− αBE + αSE
3

)P (H| − 1)(RH −RL − 2g) +
αBE

3
P (H|0)(RH −RL + 2g)− k

= −k.
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The positive liquidity investor’s trading profit in the exchange market is given by

LV H = (
1− βLE

2
)P (H|1)(RL −RH − 2g) +

1− βHE
2

P (L|1)(RH −RL + 2g)

+
βLE

2
P (H|0)(RL −RH − 2g)− k

=
RL −RH

2
− k − g

and the negative liquidity investor’s trading profit in the exchange market is given by

LV L = (
1− βHE

2
)P (L| − 1)(RL −RH + 2g) +

1− βLE
2

P (H| − 1)(RH −RL − 2g)

+
βHE

2
P (L|0)(RL −RH − 2g)− k

=
RL −RH

2
− k + g.

Solving LV H < −δ, LV L < −δ, V H < 0, and V L > 0 leads to contradiction.

9. When αBE = 0, αSE = 0, βHE = 1, and βLE = 0, q(H| − 1) = 0, q(H|0) = 0, and

q(H|1) = 1, and the manager’s decision is d = (−1,−1, 1). The positively informed

investor’s trading profit in the exchange market is given by

V H = (1− αBE + αSE
3

)P (L|1)(RH −RL + 2g) +
αSE

3
P (L|0)(RH −RL − 2g)− k

= −k

and the negatively informed investor’s trading profit is given by

V L = (1− αBE + αSE
3

)P (H| − 1)(RH −RL − 2g) +
αBE

3
P (H|0)(RH −RL − 2g)− k

= −k.
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The positive liquidity investor’s trading profit in the exchange market is given by

LV H = (
1− βLE

2
)P (H|1)(RL −RH − 2g) +

1− βHE
2

P (L|1)(RH −RL + 2g)

+
βLE

2
P (H|0)(RL −RH + 2g)− k

=
RL −RH

2
− k − g

and the negative liquidity investor’s trading profit in the exchange market is given by

LV L = (
1− βHE

2
)P (L| − 1)(RL −RH + 2g) +

1− βLE
2

P (H| − 1)(RH −RL − 2g)

+
βHE

2
P (L|0)(RL −RH + 2g)− k

=
RL −RH

2
− k + g.

Solving LV H < −δ, LV L < −δ, V H > 0, and V L < 0 leads to contradiction.

10. When αBE = 0, αSE = 1, βHE = 0, and βLE = 0, q(H|1) = 1 does not exist;

11. When αBE = 0, αSE = 0, βHE = 1, and βLE = 1, q(H| − 1) = 0, q(H|0) = 1
2
, and

q(H|1) = 1, and the manager’s decision is d = (−1, 0, 1). The positively informed

investor’s trading profit in the exchange market is given by

V H = (1− αBE + αSE
3

)P (L|1)(RH −RL + 2g) +
αSE

3
P (L|0)(RH −RL)− k

= −k

and the negatively informed investor’s trading profit is given by

V L = (1− αBE + αSE
3

)P (H| − 1)(RH −RL − 2g) +
αBE

3
P (H|0)(RH −RL)− k

= −k.
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The positive liquidity investor’s trading profit in the exchange market is given by

LV H = (
1− βLE

2
)P (H|1)(RL −RH − 2g) +

1− βHE
2

P (L|1)(RH −RL + 2g)

+
βLE

2
P (H|0)(RL −RH)− k

= −k

and the negative liquidity investor’s trading profit in the exchange market is given by

LV L = (
1− βHE

2
)P (L| − 1)(RL −RH + 2g) +

1− βLE
2

P (H| − 1)(RH −RL − 2g)

+
βHE

2
P (L|0)(RL −RH)− k

= −k.

Solving LV H < −δ, LV L < −δ, V H > 0, and V L > 0 leads to contradiction.

12. When αBE = 0, αSE = 1, βHE = 0, and βLE = 1, q(H| − 1) = 1
3
, q(H|0) = 1, and

q(H|1) = 1, and the manager’s decision is d = (−1, 1, 1). The positively informed

investor’s trading profit in the exchange market is given by

V H = (1− αBE + αSE
3

)P (L|1)(RH −RL + 2g) +
αSE

3
P (L|0)(RH −RL + 2g)− k

= −k

and the negatively informed investor’s trading profit is given by

V L = (1− αBE + αSE
3

)P (H| − 1)(RH −RL − 2g) +
αBE

3
P (H|0)(RH −RL + 2g)− k

=
2(RH −RL − 2g)

9
− k.
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The positive liquidity investor’s trading profit in the exchange market is given by

LV H = (
1− βLE

2
)P (H|1)(RL −RH − 2g) +

1− βHE
2

P (L|1)(RH −RL + 2g)

+
βLE

2
P (H|0)(RL −RH − 2g)− k

=
RL −RH

2
− k − g

and the negative liquidity investor’s trading profit in the exchange market is given by

LV L = (
1− βHE

2
)P (L| − 1)(RL −RH + 2g) +

1− βLE
2

P (H| − 1)(RH −RL − 2g)

+
βHE

2
P (L|0)(RL −RH − 2g)− k

=
RL −RH + 2g

3
− k.

Solving LV H < −δ, LV L > −δ, V H < 0, and V L > 0 gives 0 < k < 2(RH−RL−2g)
9

,

and 1
3
(RH −RL − 2g + 3k) < δ < 1

2
(RH −RL) + k + g.

13. When αBE = 1, αSE = 1, βHE = 0, and βLE = 0, q(H| − 1) = 1
2
, q(H|0) = 1

2
,

and q(H|1) = 1
2
, and the manager’s decision is d = (0, 0, 0). The positively informed

investor’s trading profit in the exchange market is given by

V H = (1− αBE + αSE
3

)P (L|1)(RH −RL) +
αSE

3
P (L|0)(RH −RL)− k

=
RH −RL

3
− k

and the negatively informed investor’s trading profit is given by

V L = (1− αBE + αSE
3

)P (H| − 1)(RH −RL) +
αBE

3
P (H|0)(RH −RL)− k

=
RH −RL

3
− k.
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The positive liquidity investor’s trading profit in the exchange market is given by

LV H = (
1− βLE

2
)P (H|1)(RL −RH) +

1− βHE
2

P (L|1)(RH −RL)

+
βLE

2
P (H|0)(RL −RH)− k

= −k

and the negative liquidity investor’s trading profit in the exchange market is given by

LV L = (
1− βHE

2
)P (L| − 1)(RL −RH) +

1− βLE
2

P (H| − 1)(RH −RL)

+
βHE

2
P (L|0)(RL −RH)− k

= −k

Solving LV H > −δ, LV L > −δ, V H < 0, and V L < 0 gives k > RH−RL
3

, and δ > k.

14. When αBE = 1, αSE = 1, βHE = 0, and βLE = 1, q(H| − 1) = 1
2
, q(H|0) = 1

2
,

and q(H|1) = 1, and the manager’s decision is d = (0, 0, 1). The positively informed

investor’s trading profit in the exchange market is given by

V H = (1− αBE + αSE
3

)P (L|1)(RH −RL + 2g) +
αSE

3
P (L|0)(RH −RL)− k

=
RH −RL

6
− k

and the negatively informed investor’s trading profit is given by

V L = (1− αBE + αSE
3

)P (H| − 1)(RH −RL) +
αBE

3
P (H|0)(RH −RL)− k

=
RH −RL

3
− k.
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The positive liquidity investor’s trading profit in the exchange market is given by

LV H = (
1− βLE

2
)P (H|1)(RL −RH − 2g) +

1− βHE
2

P (L|1)(RH −RL + 2g)

+
βLE

2
P (H|0)(RL −RH)− k

=
RL −RH

4
− k

and the negative liquidity investor’s trading profit in the exchange market is given by

LV L = (
1− βHE

2
)P (L| − 1)(RL −RH) +

1− βLE
2

P (H| − 1)(RH −RL)

+
βHE

2
P (L|0)(RL −RH)− k

= −k

Solving LV H > −δ, LV L > −δ, V H < 0, and V L > 0 gives RH−RL
6

< k < RH−RL
3

,

and δ > 1
4
(RH −RL + 4k).

15. When αBE = 1, αSE = 1, βHE = 1, and βLE = 0, q(H| − 1) = 0, q(H|0) = 1
2
, and

q(H|1) = 1
2
, and the manager’s decision is d = (−1, 0, 0). The positively informed

investor’s trading profit in the exchange market is given by

V H = (1− αBE + αSE
3

)P (L|1)(RH −RL) +
αSE

3
P (L|0)(RH −RL)− k

=
RH −RL

3
− k

and the negatively informed investor’s trading profit is given by

V L = (1− αBE + αSE
3

)P (H| − 1)(RH −RL − 2g) +
αBE

3
P (H|0)(RH −RL)− k

=
RH −RL

6
− k.
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The positive liquidity investor’s trading profit in the exchange market is given by

LV H = (
1− βLE

2
)P (H|1)(RL −RH) +

1− βHE
2

P (L|1)(RH −RL)

+
βLE

2
P (H|0)(RL −RH)− k

=
RL −RH

4
− k

and the negative liquidity investor’s trading profit in the exchange market is given by

LV L = (
1− βHE

2
)P (L| − 1)(RL −RH + 2g) +

1− βLE
2

P (H| − 1)(RH −RL − 2g)

+
βHE

2
P (L|0)(RL −RH)− k

=
RL −RH

4
− k

Solving LV H > −δ, LV L > −δ, V H > 0, and V L < 0 gives RH−RL
6

< k < RH−RL
3

,

and δ > 1
4
(RH −RL + 4k).

16. When αBE = 1, αSE = 1, βHE = 1, and βLE = 1, q(H| − 1) = 0, q(H|0) = 1
2
, and

q(H|1) = 1, and the manager’s decision is d = (−1, 0, 1). The positively informed

investor’s trading profit in the exchange market is given by

V H = (1− αBE + αSE
3

)P (L|1)(RH −RL + 2g) +
αSE

3
P (L|0)(RH −RL)− k

=
RH −RL

6
− k

and the negatively informed investor’s trading profit is given by

V L = (1− αBE + αSE
3

)P (H| − 1)(RH −RL − 2g) +
αBE

3
P (H|0)(RH −RL)− k

=
RH −RL

6
− k.
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The positive liquidity investor’s trading profit in the exchange market is given by

LV H = (
1− βLE

2
)P (H|1)(RL −RH − 2g) +

1− βHE
2

P (L|1)(RH −RL + 2g)

+
βLE

2
P (H|0)(RL −RH)− k

=
RL −RH

4
− k

and the negative liquidity investor’s trading profit in the exchange market is given by

LV L = (
1− βHE

2
)P (L| − 1)(RL −RH + 2g) +

1− βLE
2

P (H| − 1)(RH −RL − 2g)

+
βHE

2
P (L|0)(RL −RH)− k

=
RL −RH

4
− k.

Solving LV H > −δ, LV L > −δ, V H < 0, and V L < 0 gives 0 < k < RH−RL
6

, and

δ > 1
4
(RH −RL + 4k).

Proof of Proposition 2.3

Proof. Intuitively, the informed investor has incentives to trade in the dark pool to earn

positive profits, and the liquidity investor has incentives to trade in the dark pool to save

cost. Therefore, possible equilibrium with dark pool trading should only include cases in

which both investors trade in the dark pool and demand opposite positions. Besides, the

dark pool does not affect the investors’ trading profits from the exchange market. Thus,

in the presence of the dark pool, the informed investor’s trading profits from the exchange

market are the same as Equation 2.7 and Equation 2.8, and the liquidity investor’s trading

profits from the exchange market are the same as Equation 2.9 and Equation 2.10. We

summarize these cases as follows:
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1. When αBE = 0, αSE = 1, βHE = 1, βLE = 0, αBD = 1, αSD = 0, βHD = 0, and

βLD = 1, q(H| − 1) = 0, q(H|0) = 1
3
, and q(H|1) = 1, and the manager’s decision is

d = (−1,−1, 1). The positively informed investor’s trading profit in the dark pool is

given by

DH =
αSD

3
P (L|0)(RH −RL − 2g)

= 0

and the negatively informed investor’s trading profit is given by

DL =
αBD

3
P (H|0)(RH −RL − 2g)

=
RH −RL − 2g

9

The positive liquidity investor’s trading profit in the dark pool is given by

LDH =
βLD

2
P (H|0)(RL −RH + 2g) + (1− βLD

2
)(−δ)

=
RL −RH

6
− δ

2
+
g

3

and the negative liquidity investor’s trading profit in the dark pool is given by

LDL =
βBD

2
P (L|0)(RL −RH + 2g) + (1− βBD

2
)(−δ)

= −δ

Solving LDH > LVH, LDH > −δ, LV L > LDL, LV L > −δ, V H > DH, V H > 0,

DL > V L, and DL > 0 gives 1
9
(2RH−2RL−4x) > k > 0 and 1

3
(2RH−2RL+6k+8g) >

δ > 1
3
(RH −RL + 3k − 2g).

2. When αBE = 0, αSE = 0, βHE = 0, βLE = 0, αBD = 1, αSD = 0, βHD = 0, and

βLD = 1, q(H| − 1) = 1
2
, q(H|0) = 1

2
, and q(H|1) = 1

2
, and the manager’s decision is

d = (0, 0, 0). The positively informed investor’s trading profit in the dark pool is given
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by

DH =
αSD

3
P (L|0)(RH −RL)

= 0

and the negatively informed investor’s trading profit is given by

DL =
αBD

3
P (H|0)(RH −RL)

=
RH −RL

6

The positive liquidity investor’s trading profit in the dark pool is given by

LDH =
βLD

2
P (H|0)(RL −RH) + (1− βLD

2
)(−δ)

=
RL −RH

4
− δ

2

and the negative liquidity investor’s trading profit in the dark pool is given by

LDL =
βBD

2
P (L|0)(RL −RH) + (1− βBD

2
)(−δ)

= −δ

Solving LDH > LVH, LDH > −δ, −δ > LV L, −δ > LDL, V H ≤ 0, DH ≤ 0,

DL > 0, and DL > V L gives k > RH−RL
2

and k > δ > RH−RL
2

.

3. When αBE = 0, αSE = 0, βHE = 0, βLE = 0, αBD = 0, αSD = 1, βHD = 1, and

βLD = 0, q(H| − 1) = 1
2
, q(H|0) = 1

2
, and q(H|1) = 1

2
, and the manager’s decision is

d = (0, 0, 0). The positively informed investor’s trading profit in the dark pool is given

by

DH =
αSD

3
P (L|0)(RH −RL)

=
RH −RL

6
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and the negatively informed investor’s trading profit is given by

DL =
αBD

3
P (H|0)(RH −RL)

= 0

The positive liquidity investor’s trading profit in the dark pool is given by

LDH =
βLD

2
P (H|0)(RL −RH) + (1− βLD

2
)(−δ)

= −δ

and the negative liquidity investor’s trading profit in the dark pool is given by

LDL =
βBD

2
P (L|0)(RL −RH) + (1− βBD

2
)(−δ)

=
RL −RH

4
− δ

2

Solving LDH ≤ −δ, LV H ≤ −δ, LDL > LV L, LDL > −δ, DH > VH, DH > 0,

0 ≥ DL, and 0 ≥ V L gives k > RH−RL
2

and k > δ > RH−RL
2

.

4. When αBE = 0, αSE = 0, βHE = 0, βLE = 0, αBD = 1, αSD = 1, βHD = 1, and

βLD = 1, q(H| − 1) = 1
2
, q(H|0) = 1

2
, and q(H|1) = 1

2
, and the manager’s decision is

d = (0, 0, 0). The positively informed investor’s trading profit in the dark pool is given

by

DH =
αSD

3
P (L|0)(RH −RL)

=
RH −RL

6

and the negatively informed investor’s trading profit is given by

DL =
αBD

3
P (H|0)(RH −RL)

=
RH −RL

6
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The positive liquidity investor’s trading profit in the dark pool is given by

LDH =
βLD

2
P (H|0)(RL −RH) + (1− βLD

2
)(−δ)

=
RL −RH

4
− δ

2

and the negative liquidity investor’s trading profit in the dark pool is given by

LDL =
βBD

2
P (L|0)(RL −RH) + (1− βBD

2
)(−δ)

=
RL −RH

4
− δ

2

Solving LDH > −δ, LDH > LVH, LDL > LV L, LDL > −δ, DH > VH, DH > 0,

DL > 0, and DL > V L gives k > RH−RL
2

and 1
2
(RL −RH + 4k) > δ > k.
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Appendix to Chapter 3

Proof of Table 3.1

Proof. Under the NT, X=-1 includes four situations. First, the industry is in the high state

H, the insider presents in the financial market with probability β and does not trade, and

the noise trader sells. The probability of this situation is β ∗ 1
3
. Second, the industry is in

the high state H, the insider does not present in the financial market with probability 1−β,

and the noise trader sells. The probability of this situation is (1−β)∗ 1
3
. Third, the industry

is in the low state L, the insider presents in the financial market with probability β and

does not trade, and the noise trader sells. The probability of this situation is β ∗ 1
3
. Last,

the industry is in the low state L, the insider does not present in the financial market with

probability 1− β, and the noise trader sells. The probability of this situation is (1− β) ∗ 1
3
.

Based on these four situations, the probability that X=-1 and the industry is on the high

state H is P (X = −1|H) ∗ P (H) =
(
β ∗ 1

3
+ (1− β) ∗ 1

3

)
∗ 1

2
, the probability that X=-1 and

the industry is on the low state L is P (X = −1|L) ∗ P (L) =
(
β ∗ 1

3
+ 1

2
∗ (1 − β) ∗ 1

3

)
∗ 1

2
,

thus the probability that X=-1 is 1
2
∗
(
β ∗ 1

3
+ (1− β) ∗ 1

3
+ β ∗ 1

3
+ (1− β) ∗ 1

3

)
. We can solve

for the probability that the industry is in the high state H conditional on observing trading

volume X=-1 : α(−1) = Pr(H|X = −1) = 1/2. Following the same logic, we can solve for

the probability that the industry is in the high state H conditional on observing trading

volume X=0 : α(0) = Pr(H|X = 0) = 1/2, and the probability that the industry is in the
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high state H conditional on observing trading volume X=1 : α(1) = Pr(H|X = 1) = 1/2.

X=-2 and X=-1 are off equilibrium with posteriors 0 and 1.

Under the SNB, X=-1 includes four situations. First, the industry is in the high state

H, the insider presents in the financial market with probability β and does not trade, and the

noise trader sells. The probability of this situation is 1
2
∗β ∗ 1

3
. Second, the industry is in the

high state H, the insider does not present in the financial market with probability 1−β, and

the noise trader sells. The probability of this situation is 1
2
∗(1−β)∗ 1

3
. Third, the industry is in

the low state L, the insider presents in the financial market with probability β and sells, and

the noise trader does not trade. The probability of this situation is 1
2
∗β∗ 1

3
. Last, the industry

is in the low state L, the insider does not present in the financial market with probability 1−β,

and the noise trader sells. The probability of this situation is 1
2
∗(1−β)∗ 1

3
. Based on these four

situations, the probability that X=-1 conditional on the high state H is 1
2
∗β∗ 1

3
+ 1

2
∗(1−β)∗ 1

3
,

the probability that X=-1 conditional on the low state L is 1
2
∗β ∗ 1

3
+ 1

2
∗ (1−β)∗ 1

3
, thus the

probability that X=-1 is 1
2
∗ β ∗ 1

3
+ 1

2
∗ (1− β) ∗ 1

3
+ 1

2
∗ β ∗ 1

3
+ 1

2
∗ (1− β) ∗ 1

3
. We can solve

for the probability that the industry is in the high state H conditional on observing trading

volume X=-1 : α(−1) = Pr(H|X = −1) = 1/2. Following the same logic, we can solve for

the probability that the industry is in the high state H conditional on observing trading

volume X=0 : α(0) = Pr(H|X = 0) = 1/2, and the probability that the industry is in the

high state H conditional on observing trading volume X=1 : α(1) = Pr(H|X = 1) = 1
2−β .

The probability that the industry is in the high state H conditional on observing trading

volume X=-2 : α(−2) = 0, and X=2 are off equilibrium with posterior 1.

Under the BNS, X=-1 includes three situations. First, the industry is in the high state

H, the insider does not presents in the financial market with probability 1−β, and the noise

trader sells. The probability of this situation is 1
2
∗ (1 − β) ∗ 1

3
. Second, the industry is in

the low state L, the insider does not present in the financial market with probability 1− β,

and the noise trader sells. The probability of this situation is 1
2
∗ (1 − β) ∗ 1

3
. Third, the
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industry is in the low state L, the insider presents in the financial market with probability β

and sells, and the noise trader does not trade. The probability of this situation is 1
2
∗ β ∗ 1

3
.

Based on these three situations, the probability that X=-1 conditional on the high state H is

1
2
∗(1−β)∗ 1

3
, the probability that X=-1 conditional on the low state L is 1

2
∗β∗ 1

3
+ 1

2
∗(1−β)∗ 1

3
,

thus the probability that X=-1 is 1
2
∗ (1− β) ∗ 1

3
+ 1

2
∗ β ∗ 1

3
+ 1

2
∗ (1− β) ∗ 1

3
. We can solve

for the probability that the industry is in the high state H conditional on observing trading

volume X=-1 : α(−1) = Pr(H|X = −1) = 1−β
2−β . Following the same logic, we can solve for

the probability that the industry is in the high state H conditional on observing trading

volume X=0 : α(0) = Pr(H|X = 0) = 1/2, and the probability that the industry is in the

high state H conditional on observing trading volume X=1 : α(1) = Pr(H|X = 1) = 1
2
. The

probability that the industry is in the high state H conditional on observing trading volume

X=2 : α(2) = 1, and X=-2 are off equilibrium with posterior 0.

Under the T, X=-1 includes three situations. First, the industry is in the high state H,

the insider does not presents in the financial market with probability 1 − β, and the noise

trader sells. The probability of this situation is 1
2
∗ (1 − β) ∗ 1

3
. Second, the industry is in

the low state L, the insider does not present in the financial market with probability 1− β,

and the noise trader sells. The probability of this situation is 1
2
∗ (1 − β) ∗ 1

3
. Third, the

industry is in the low state L, the insider presents in the financial market with probability β

and sells, and the noise trader does not trade. The probability of this situation is 1
2
∗ β ∗ 1

3
.

Based on these three situations, the probability that X=-1 conditional on the high state H is

1
2
∗(1−β)∗ 1

3
, the probability that X=-1 conditional on the low state L is 1

2
∗β∗ 1

3
+ 1

2
∗(1−β)∗ 1

3
,

thus the probability that X=-1 is 1
2
∗ (1− β) ∗ 1

3
+ 1

2
∗ β ∗ 1

3
+ 1

2
∗ (1− β) ∗ 1

3
. We can solve

for the probability that the industry is in the high state H conditional on observing trading

volume X=-1 : α(−1) = Pr(H|X = −1) = 1−β
2−β . Following the same logic, we can solve for

the probability that the industry is in the high state H conditional on observing trading

volume X=0 : α(0) = Pr(H|X = 0) = 1/2, and the probability that the industry is in the

high state H conditional on observing trading volume X=1 : α(1) = Pr(H|X = 1) = 1
2−β .
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The probability that the industry is in the high state H conditional on observing trading

volume X=2 and X=-2 are fully revealed with posteriors 1 and 0.

Proof of Lemma 1

Proof. Sell-Not Buy Equilibrium: SNB

Under the pure strategy equilibrium SNB, the insider’s expected gross gain is 0 when she

receives a positive information. If she deviates to buying, with probability p = 1
3
, X = 2,

and he is fully revealed, and her payoff is 0. With probability p = 1
3
, X = 1, her payoff is

1−β
2−β (V M

1H−V M
1L ). With probability p = 1

3
, X = 0, her payoff is 1

2
(V M

1H−V M
1L ), thus her expected

gross gain from deviating to buying is given by: 1
3
∗ 1

2
∗(V M

1H−V M
1L )+ 1

3
∗ 1−β

2−β (V M
1H−V M

1L ) ≡ kNF .

If the insider receives negative information and sells, with probability p = 1
3
, X = −2, she

is fully revealed and her payoff is 0. With probability p = 2
3
, X ∈ {−1, 0}, she receives

1
2
(V M

1H + V M
1L ) and pays V M

1L per share, her payoff is 1
2
(V M

1H − V M
1L ), thus her expected gross

gain from selling is 1
3
(V M

1H − V M
1L ) ≡ kNT . If she deviates to not trading, her expected gross

gain is 0. Thus her expected gross gain from deviating to not trading is −kNT .

Thus if if and only if kNF ≤ k < kNT , the SNB equilibrium is sustainable.

Buy-Not Sell Equilibrium: BNS

Under the pure strategy equilibrium BNS, under positively informed insider’s equilibrium

strategy of buying, with probability p = 1
3
, X = 2, she is fully revealed and her payoff is

0. With probability p = 2
3
, X ∈ {0, 1}, she receives V M

1H and pays 1
2
(V M

1H + V M
1L ) per share,

her payoff is 1
2
(V M

1H − V M
1L ), her expected gross gain is 1

3
(V M

1H − V M
1L ) ≡ kNT from buying. If

she deviates to not trading, her expected gross gain is 0. Thus her expected gross gain from

deviating to not trading is −kNT . Under negatively informed insider’s equilibrium strategy

of not trading, her expected payoff is 0. If she deviates to selling, with probability p = 1
3
,

X = −2, she is fully revealed, and her payoff is 0. With probability p = 1
3
, X = −1, her

158



payoff is 1−β
2−β (V M

1H−V M
1L ). With probability p = 1

3
, X = 0, and her payoff is 1

2
(V M

1H−V M
1L ). Her

expected gross gain from deviating to selling is 1
3
∗ 1

2
∗(V M

1H−V M
1L )+ 1

3
∗ 1−β

2−β (V M
1H−V M

1L ) ≡ kNF .

Thus, if and only if kNF ≤ k < kNT , the BNS equilibrium is sustainable.

Trade Equilibrium: T

Under the pure strategy equilibrium T, under negatively informed insider’s equilibrium

strategy of selling, with probability p = 1
3
, X = −2, she is fully revealed and her payoff is

0. With probability p = 1
3
, X = −1, she receives 1−β

2−βV
M

1H + 1
2−βV

M
1L and pays V M

1L per share.

With probability p = 1
3
, X = 0, she receives 1

2
(V M

1L + V M
1H) and pays V M

1L per share. Her

expected gross gain is 1
3
∗ 1

2
∗ (V M

1H − V M
1L ) + 1

3
∗ 1−β

2−β (V M
1H − V M

1L ) ≡ kNF . If she deviates to

not trading, her expected gross gain is 0. Thus her expected gross gain from deviating to

not trading is −kNF . Under positively informed insider’s equilibrium strategy of buying, her

payoff is kNF . If she deviates to not trading, her payoff is 0. His expected gross gain from

deviating to not trading is −kNF .

Thus, if and only if k < kNF , T equilibrium is sustainable.

Proof of Lemma 2

Proof. Sell Not Buy Equilibrium: SNB

Under the pure strategy equilibrium SNB, the insider’s expected gross gain is 0 when she

receives a positive information. If she deviates to buying, with probability p = 1
3
, X = 2,

and she is fully revealed, and her payoff is 0. With probability p = 1
3
, X = 1, her payoff is

1−β
2−β (V C

1H−V C
1L). With probability p = 1

3
, X = 0, her payoff is 1

2
(V C

1H−V C
1L), thus her expected

gross gain from deviating to buying is given by: 1
3
∗ 1

2
∗(V C

1H−V C
1L)+ 1

3
∗ 1−β

2−β (V C
1H−V C

1L) ≡ kCSNB.

If the insider receives negative information and sells, with probability p = 1
3
, X = −2, she

is fully revealed and her payoff is 0. With probability p = 2
3
, X ∈ {−1, 0}, she receives
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1
2
(V C

1H + V C
1L) and pays V C

1L per share, her payoff is 1
2
(V M

1C − V C
1L), thus her expected gross

gain from selling is 1
3
(V C

1H − V C
1L) ≡ kCNT . If she deviates to not trading, her expected gross

gain is 0. Thus her expected gross gain from deviating to not trading is −kCNT .

Thus if if and only if kCSNB ≤ k < kCNT , the SNB equilibrium is sustainable.

Buy-Not Sell Equilibrium: BNS

Under the pure strategy equilibrium BNS, under positively informed insider’s equilibrium

strategy of buying, with probability p = 1
3
, X = 2, she is fully revealed and her payoff is

0. With probability p = 2
3
, X ∈ {0, 1}, she receives V C

1H and pays 1
2
(V C

1H + V C
1L) per share,

her payoff is 1
2
(V C

1H − V C
1L), her expected gross gain is 1

3
(V C

1H − V C
1L) ≡ kCNT from buying. If

she deviates to not trading, her expected gross gain is 0. Thus her expected gross gain from

deviating to not trading is −kCNT . Under negatively informed insider’s equilibrium strategy

of not trading, her expected payoff is 0. If she deviates to selling, with probability p = 1
3
,

X = −2, she is fully revealed, and her payoff is 0. With probability p = 1
3
, X = −1, her

payoff is 1−β
2−β (V C

1H−V C
1L). With probability p = 1

3
, X = 0, and her payoff is 1

2
(V C

1H−V C
1L). Her

expected gross gain from deviating to selling is 1
3
∗ 1

2
∗(V C

1H−V C
1L)+ 1

3
∗ 1−β

2−β (V C
1H−V C

1L) ≡ kCSNB.

Thus, if and only if kCSNB ≤ k < kCNT , the BNS equilibrium is sustainable.

Trade Equilibrium: T

Under the pure strategy equilibrium T, under negatively informed insider’s equilibrium

strategy of selling, with probability p = 1
3
, X = −2, she is fully revealed and her payoff is

0. With probability p = 1
3
, X = −1, she receives 1−β

2−βV
C

1H + 1
2−λV

C
1L and pays V C

1L per share.

With probability p = 1
3
, X = 0, she receives 1

2
(V C

1L + V C
1H) and pays V C

1L per share. Her

expected gross gain is 1
3
∗ 1

2
∗ (V C

1H − V C
1L) + 1

3
∗ 1−β

2−β (V C
1H − V C

1L) ≡ kNF . If she deviates to

not trading, her expected gross gain is 0. Thus her expected gross gain from deviating to

not trading is −kCNF . Under positively informed insider’s equilibrium strategy of buying, her

payoff is kCSNB. If she deviates to not trading, her payoff is 0. Her expected gross gain from
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deviating to not trading is −kCSNB.

Thus, if and only if k < kCSNB, T equilibrium is sustainable.

Proof of Proposition 1

Proof. No Trade Equilibrium: NT

Now turn to the insider’s payoff. Under the positively-informed insider’s equilibrium

strategy of not trading, her payoff is 0. If she deviates to buying, with probability p = 1
3
,

X = 2, and she is fully revealed, and her payoff is 0. With probability p = 2
3
, X ∈ {0, 1}, she

pays 1
2
(V M

1H + V M
1L ) and receives V M

1H per share, thus her expected gross gain from deviating

to buying is given by: 1
3
(V M

1H − V M
1L ) ≡ kNT . Similarly, if the negatively informed insider

deviates to selling, her expected gross gain from deviating is also kNT .

Thus, if and only if k ≥ kNT , the no trade equilibrium is sustainable.

Sell Not Buy Equilibrium: SNB

Under negatively informed insider’s equilibrium strategy of selling, with probability

p = 1
3
, X = −2, she is fully revealed and her payoff is 0. With probability p = 2

3
, X ∈ {−1, 0},

she receives 1
2
(V M

1H + V M
1L ) and pays V M

1L per share, her payoff is 1
2
(V M

1H − V M
1L ), her expected

gross gain is 1
3
(V M

1H − V M
1L ) ≡ kNT . If she deviates to not trading, her payoff is 0. Thus

her expected gross gain from deviating to not trading is −kNT . Under positively informed

insider’s equilibrium strategy of not trading, her expected payoff is 0. If she deviates to

buying, with probability p = 1
3
, X = 2, and she is fully revealed with payoff 0. With

probability p = 1
3
, her payoff is 1−β

2−β (V C
1H − V C

1L). With probability p = 1
3
, X = 0, and her

payoff is 1
2
(V M

1H − V M
1L ). Her expected gross gain from deviating to buying is 1

3
∗ 1

2
∗ (V M

1H −

V M
1L ) + 1

3
∗ 1−β

2−β (V C
1H − V C

1L) ≡ kSNB.
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Thus, SNB equilibrium is sustainable if and only if kSNB < k < kNT .

Buy Not Sell Equilibrium: BNS

Under positively informed insider’s equilibrium strategy of buying, with probability

p = 1
3
, X = 2, she is fully revealed and her payoff is 0. With probability p = 2

3
, X ∈ {0, 1},

she receives V M
1H and pays 1

2
(V M

1H + V M
1L ) per share, her payoff is 1

2
(V M

1H − V M
1L ), her expected

gross gain is 1
3
(V M

1H − V M
1L ) ≡ kNT . If she deviates to not trading, her payoff is 0. Thus

her expected gross gain from deviating to not trading is −kNT . Under negatively informed

insider’s equilibrium strategy of not trading, her expected payoff is 0. If she deviates to

selling, with probability p = 1
3
, X = −2, she is fully revealed, and her payoff is 0. With

probability p = 1
3
, X = −1, her payoff is 1−β

2−β (V M
1H − V M

1L ). With probability p = 1
3
, X =

0, and her payoff is 1
2
(V M

1H − V M
1L ). Her expected gross gain from deviating to selling is

1
3
∗ 1

2
∗ (V M

1H − V M
1L ) + 1

3
∗ 1−β

2−β (V M
1H − V M

1L ) ≡ kNF .

Thus, BNS equilibrium is sustainable if and only if kNF ≤ k < kNT .

Trade Equilibrium: T

Under negatively informed insider’s equilibrium strategy of selling, with probability

p = 1
3
, X = −2, she is fully revealed and her payoff is 0. With probability p = 1

3
, X = −1,

she receives 1−β
2−βV

M
1H + 1

2−βV
M

1L and pays V M
1L per share. With probability p = 1

3
, X = 0, she

receives 1
2
(V M

1L + V M
1H) and pays V M

1L per share. Her expected gross gain is 1
3
∗ 1

2
∗ (V M

1H −

V M
1L ) + 1

3
∗ 1−β

2−β (V M
1H − V M

1L ) ≡ kNF . If she deviates to not trading, her payoff is 0. Thus her

expected gross gain from deviating to not trading is −kNF .

Similarly, under positively informed insider’s equilibrium strategy of buying, her payoff

is kSNB. If she deviates to not trading, her payoff is 0. Her expected gross gain from deviating

to not trading is −kSNB.

Thus, T equilibrium is sustainable if and only if k < kSNB.
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Proof of Proposition 2

Proof. No Trade Equilibrium: NT

Now turn to the insider’s payoff. Under the positively-informed insider’s equilibrium

strategy of not trading, her payoff is 0. If she deviates to buying, with probability p = 1
3
,

X = 2, and she is fully revealed, and her payoff is 0. With probability p = 2
3
, X ∈ {0, 1}, she

pays 1
2
(V C

1H + V C
1L) and receives V C

1H per share, her payoff is 1
2
(V C

1H − V C
1L), and her expected

gross gain from deviating to buying is given by: 1
3
(V C

1H − V C
1L) ≡ kCNT . Similarly, if the

negatively informed insider deviates to selling, her expected gross gain from deviating is also

kCNT . Thus, if and only if k ≥ kCNT , the no trade equilibrium is sustainable in the case.

Sell Not Buy Equilibrium: SNB

Under negatively informed insider’s equilibrium strategy of selling, with probability

p = 1
3
, X = −2, she is fully revealed and her payoff is 0. With probability p = 2

3
, X ∈ {−1, 0},

she receives 1
2
(V C

1H + V C
1L) and pays V C

1L per share, her expected gain is 1
3
(V C

1H − V C
1L) ≡ kCNT .

If she deviates to not trading, her payoff is 0. Thus her expected gross gain from deviating

to not trading is −kCNT .

Under positively informed insider’s equilibrium strategy of not trading, her expected

payoff is 0. If she deviates to buying, with probability p = 1
3
, X = 2, and she is fully

revealed, her payoff is 0. With probability p = 1
3
, X = 1, her payoff is 1−β

2−β (V C
1H −V C

1L). With

probability p = 1
3
, X = 0, and her payoff is 1

2
(V C

1H − V C
1L). Her expected gross gain from

deviating to buying is 1
3
∗ 1

2
∗ (V C

1H − V C
1L) + 1

3
∗ 1−β

2−β (V C
1H − V C

1L) ≡ kCSNB.

Thus, SNB equilibrium is sustainable if and only if kCSNB ≤ k < kCNT .

Buy Not Sell Equilibrium: BNS
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Under positively informed insider’s equilibrium strategy of buying, with probability

p = 1
3
, X = 2, she is fully revealed and her payoff is 0. With probability p = 2

3
, X ∈ {0, 1},

she receives V C
1H and pays 1

2
(V C

1H + V C
1L) per share, her expected gain is 1

3
(V C

1H − V C
1L) ≡ kCNT .

If she deviates to not trading, her payoff is 0. Thus her expected gross gain from deviating

to not trading is −kCNT . Under negatively informed insider’s equilibrium strategy of not

trading, her expected payoff is 0. If she deviates to selling, with probability p = 1
3
, X = −2,

she is fully revealed, and her payoff is 0. With probability p = 1
3
, X = −1, her payoff

is 1−β
2−β (V M

1H − V M
1L ). With probability p = 1

3
, X = 0, and her payoff is 1

2
(V C

1H − V C
1L). Her

expected gross gain from deviating to selling is 1
3
∗ 1

2
∗(V C

1H−V C
1L)+ 1

3
∗ 1−β

2−β (V M
1H−V M

1L ) ≡ kCNF .

As kCNF ≡ 1
3
∗ 1

2
∗ (V C

1H − V C
1L) + 1

3
∗ 1−β

2−β (V M
1H − V M

1L ) and kCNT ≡ 1
3
(V C

1H − V C
1L), to

make this equilibrium sustainable, we require kCNF < kCNT , this gives the condition for β:

β >
2[VM1H−VM1L−(V C1H−V

C
1L)]

2(VM1H−V
M
1L )−(V C1H−V

C
1L)

.

Therefore, when β >
2[VM1H−VM1L−(V C1H−V

C
1L)]

2(VM1H−V
M
1L )−(V C1H−V

C
1L)

, BNS equilibrium is sustainable if and only

if kCNF ≤ k < kCNT .

Trade Equilibrium: T

Under negatively informed insider’s equilibrium strategy of selling, with probability

p = 1
3
, X = −2, she is fully revealed and her payoff is 0. With probability p = 1

3
, X = −1,

her payoff is 1−β
2−β (V M

1H − V M
1L ). With probability p = 1

3
, X = 0, her payoff is 1

2
(V C

1L − V C
1H).

Her expected gain is 1
3
∗ 1

2
∗ (V C

1H − V C
1L) + 1

3
∗ 1−β

2−β (V C
1H − V C

1L) ≡ kCSNB. If she deviates to

not trading, her payoff is 0. Thus her expected gross gain from deviating to not trading

is −kCSNB if α < 1−β
2−β . Similarly, under positively informed insider’s equilibrium strategy

of buying, with probability p = 1
3
, X = 2, she is fully revealed and her payoff is 0. With

probability p = 1
3
, X = 1, she receives V C

1H and pays 1
2−βV

C
1H + 1−β

2−βV
C

1L per share. With

probability p = 1
3
, X = 0, she receives V C

1H and pays 1
2
(V C

1L + V C
1H) per share. Her expected

payoff is kCSNB. If she deviates to not trading, her payoff is 0. Therefore, her expected gross
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gain from deviating to not trading is −kCSNB.

Thus, T equilibrium is sustainable if and only if k < kCSNB.

Proof of Entry Probability

Proof. If α0 <
1

2−β < α < 1, entrant does not enter under strategies NT and SNB. Under

strategy BNS, it enters when X = 2, this is the case when the state is high, insider presents

in financial market and buys one shares, and noise trader buys one share, the conditional

probability is: 1
2
∗ β ∗ 1

3
= β

6
. Under strategy T , entrant enters when X = 2, this is the case

when the state is high, insider presents in financial market and buys one shares, and noise

trader buys one share, the conditional probability is: 1
2
∗ β ∗ 1

3
= β

6
.

If α0 < α < 1
2−β < 1, entrant does not enter under strategy NT . Under strategy BNS,

it enters when X = 2, this is the case when the state is high, insider presents in financial

market and buys one shares, and noise trader buys one share, the conditional probability is:

1
2
∗ β ∗ 1

3
= β

6
. Under strategy SNB, it enters when X = 1, this is the case when the state

is high, insider presents but does not trade, noise trader buys; or the case when the state is

high, insider does not present, noise trader buys; or the state is low, insider does not present,

noise trader buys. The conditional entry probability is: 1
2
∗β∗ 1

3
+ 1

2
∗(1−β)∗ 1

3
+ 1

2
∗(1−β)∗ 1

3
=

1
6
(2− β).

If 0 < 1−β
2−β < α < α0, entrant always enters. Under strategy NT , entrant enters

regardless of trading volume. Under strategy SNB, entrant enters when X ∈ {−1, 0, 1}.

If X = −1, it is the case when state is high, insider presents but does not trade, noise

trader sells; or the case when state is high, insider does not present and noise trader sells;

or the case when state is low, insider sells and noise trader does not trade; or the case when

state is low, insider does not present and noise trader sells, the conditional probability is:

1
2
∗ β ∗ 1

3
+ 1

2
∗ (1 − β) ∗ 1

3
+ 1

2
∗ β ∗ 1

3
+ 1

2
∗ (1 − β) ∗ 1

3
= 1

3
. If X = 0, it is the case
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when state is high, insider presents but does not trade, noise trader does not trade; or

the case when state is high, insider does not present and noise trader does not trade; or

the case when state is low, insider sells and noise trader buys; or the case when state is

low, insider does not present and noise trader does not trade, the conditional probability is:

1
2
∗ β ∗ 1

3
+ 1

2
∗ (1 − β) ∗ 1

3
+ 1

2
∗ (1 − β) ∗ 1

3
+ 1

2
∗ β ∗ 1

3
= 1

3
. If X = 1, it is the case when

state is high, insider presents but does not trade, noise trader buys; or the case when state

is high, insider does not present and noise trader buys; or the case when state is low, insider

does not present and noise trader buys, the conditional probability is 1
6
(2 − β). Therefore,

the conditional probability is: 1
3

+ 1
3

+ 1
6
(2 − β) = 1 − β

6
. Under the equilibrium BNS,

entrant enters when X ∈ {0, 1, 2}. If X = 0, it is the case when state is high, insider buys,

noise trader sells; or the case when state is high, insider does not present and noise trader

does not present; or the case when state is low, insider does not trade and noise trader does

not trade; or the case when state is low, insider does not present and noise trader does not

trade, the conditional probability is 1
3
. If X = 1, it is the case when state is high, insider

buys, noise trader does not trade; or the case when state is high, insider does not present

and noise trader buys; or the case when state is low, insider does not trade and noise trader

buys; or the case when state is low, insider does not present and noise trader buys, the

conditional probability is 1
3
. If X = 2, it is the case when state is high, both insider and

noise trader buys, the conditional probability is 1
6
β. Therefore, the conditional probability

is: 1
3

+ 1
3

+ 1
6
β = 1

6
(4 + β). Under equilibrium T , entrant enters when X ∈ {0, 1, 2}. If

X = 0, it is the case when state is high, insider buys, noise trader sells; or the case when

state is high, insider does not present and noise trader does not present; or the case when

state is low, insider sells and noise trader buys; or the case when state is low, insider does

not present and noise trader does not trade, the conditional probability is 1
3
. If X = 1, it

is the case when state is high, insider buys, noise trader does not trade; or the case when

state is high, insider does not present and noise trader buys; or the case when state is low,

insider does not present and noise trader buys, the conditional probability is 1
6
(2 − β). If
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X = 2, it is the case when state is high, both insider and noise trader buys, the conditional

probability is 1
6
β. Therefore, the conditional probability is: 1

3
+ 1

6
(2− β) + 1

6
β = 2

3
.

If 0 < α < 1−β
2−β < 1

2
, entrant always enters under strategies NT and BNS. Under

strategy SNB, the conditional probability is 1 − β
6
. Under strategy T , it enters when

X ∈ {−1, 0, 1, 2}, the conditional probability is 1− β
6
.

Proof of Proposition 4

For simplicity, denote E1 = V C
1L, E2 = V C

1L + 1−β
2−β (V C

1H − V C
1L), E3 = 1

2
(V C

1H + V C
1L),

E4 = 1
2−β (V C

1H − V C
1L) + V C

1L and E5 = V C
1H , we calculate the ex-ante entry probability by

P (β,E, µ, σ, k) =
∫
∞
0
p(β|E, k)f(E, µ, σ)dE. Given certain ranges of transaction cost k,

taking the conditional probability and density function into it, we obtain:

Transaction cost Ex-ante entry probability

kNT < k 1
2 [erf( lnE3−µ

σ
√

2
)− erf( lnE5−µ

σ
√

2
)]

kNF < k < kNT
2−β
12 erf( lnE2−µ

σ
√

2
) + 4+β

12 erf( lnE3−µ
σ
√

2
)− 1

2erf( lnE5−µ
σ
√

2
)

kSNB < k < kNF
β
12erf( lnE5−µ

σ
√

2
) + 1−β

3 [1
2erf( lnE4−µ

σ
√

2
)] + 4+β

12 erf( lnE3−µ
σ
√

2
)− 1

2erf( lnE1−µ
σ
√

2
)

kCNT < k < kSNB
β
12erf( lnE1−µ

σ
√

2
) + 2−β

12 erf( lnE2−µ
σ
√

2
) + 1

6erf( lnE3−µ
σ
√

2
)− 1

2erf( lnE5−µ
σ
√

2
)

kCSNB < k < kCNT
β
12erf( lnE1−µ

σ
√

2
) + 2−β

12 erf( lnE2−µ
σ
√

2
)− β

12erf( lnE3−µ
σ
√

2
)− (1

2 −
β
12)erf( lnE5−µ

σ
√

2
)

k < kCSNB
β
12erf( lnE1−µ

σ
√

2
) + 2−β

12 erf( lnE2−µ
σ
√

2
) + β

6 erf( lnE3−µ
σ
√

2
) + 2−β

12 erf( lnE4−µ
σ
√

2
)

−(1
2 −

β
12)erf( lnE5−µ

σ
√

2
)

Table 4: Ex-ante entry probability
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