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Executive Summary 

The availability of detailed location data from personal mobile devices and fleet transponders has increased 

significantly in recent years. Carrying rich, detailed information on travel patterns, this data has already seen 

broad adoption in the transportation planning industry, for example, informing corridor studies and travel 

demand models. This report outlines an architecture and computational framework for the ingestion, 

processing, and analysis of raw location data, that can be used to transform GPS points from mobile devices 

into actionable insights about the transportation network. This method was used to generate traffic data for 

the San Francisco Bay Area and applied to a recent bridge closure to examine changes in local traffic patterns. 

The core focus of this work is to provide tools for research in transportation planning by enabling organizations 

and researchers across California to effectively take advantage of location data. For example, researchers will 

be able to better understand regional travel flows and understand the congestion impacts of emergencies and 

disasters, two applications which are explored in this report. Though this framework has been developed with 

proprietary location data and roadway network information provided by HERE Technologies, it can be 

generalized to operate on any type of geospatially referenced data and open-source maps, e.g., 

OpenStreetMap.  

Future studies can build upon the foundation presented in this report, most notably this work is being used to 

validate an urban-scale parallel discrete event simulator, Mobiliti, which is currently being developed at the 

Lawrence Berkeley National Laboratory and the Smart Cities and Sustainable Mobility Research Center at the 

Institute for Transportation Studies at UC Berkeley. The framework developed through this effort lays the 

groundwork for public agencies to build more efficient, safer, and more effective transportation systems. 
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Introduction 

Urban transportation planners and researchers often rely on models of travel demand to support their policy 

and operational planning. A travel demand model is a synthetic population travel profile that defines the 

number of trips, start time of the trips, and origin/destination of each trip taken by persons in the urban region. 

They often include information about the purpose of the trip. Building these models involves conducting large 

surveys of the population and analyzing information from focused traffic counts. They are very complex to 

build and require a significant amount of funding to develop. Consequently, they are often only conducted 

every five or more years. These travel demand models are then used to estimate traffic conditions on the road 

network using either simulation tools that emulate the actions of vehicles on the road network or traffic 

assignment tools that optimize the routes that the vehicles should take under specific constraints, such as 

travel time for the individual driver. The transportation planner can then use the results to predict when and 

where congestion may arise in the region during a typical day and take appropriate steps to mitigate it. 

As GPS-enabled smartphones, telematics units, and other mobile devices have proliferated, an unprecedented 

amount of mobile device data is being generated. The location data is collected by a variety of organizations, 

including Google, Apple, and fleet management companies. Navigation applications along with a wide variety 

of smartphone applications regularly collect location data. Organizations, like Google and Apple, use the data 

to optimize routing which considers current traffic conditions and predicted congestion patterns. Fleet 

management companies track the movement and delivery of their goods and often specify driver routing. This 

type of travel path data is rarely made available for public use and a market has emerged for purchasing and 

post-processing the raw GPS location data.  

The value of the GPS location data lies in its currency. Unlike a five-year-old travel demand model, this data 

provides up-to-date indicators of travel behavior which can improve our understanding of where travelers are 

going and when congestion is occurring. As such, it has significant value to transportation planners and 

researchers provided that the data is reduced, processed properly and integrated into road network models 

that generate relevant transportation-related metrics. Example metrics include regional and city level vehicle 

miles travelled, time series of the link congestion, and congestion hot spots. 

There are many challenges with accessing and using this data for transportation research and planning 

purposes. The size of the data poses a significant issue for many organizations that are not used to working 

with large datasets. A single day of GPS data for a region like the Los Angeles basin can be several hundred 

megabytes or more. The data only represents a small portion of the vehicles present on the roadway (called its 

penetration rate) and to generate meaningful statistics many days of GPS data must be aggregated to attain 

relevant geospatial coverage. To process this amount of data in a reasonable period requires cloud services, 

such as Amazon Web Services (AWS). In addition, the raw data itself can have significant veracity issues. The 

precision of GPS data can be affected by trees and buildings by as much as tens of meters. As such, processing 

the data involves a lot of physics-based data validation, such as ensuring that speeds and locations of vehicles 
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adhere to reasonable expectations. Consequently, building a processing pipeline (a set of data processing 

elements where the output of each element is the input of the next) to transform the raw data into a usable 

form can require a diverse team of software engineers with experience that may not traditionally be resident in 

organizations that can benefit from this type of data. 

The alternative for these organizations is to purchase data that has been post processed to generate selected 

types of information, or analytics, of particular interest. Data analytics is generally an exploratory process in 

which looks for patterns in real-world data. The problem with this solution is that the post-processing 

information is generally considered to be the intellectual property of the vendor and the purchaser cannot 

determine the original source of the data. Making decisions based on data without understanding how, where 

and when the data was collected can introduce embedded biases and equity issues. Beyond these processing 

issues, the cost of these purchases can often be beyond the means of city and researchers’ budgets for data. 

Location data generated by mobile devices present additional problems. For example, the data is often a 

generated by a variety of mobile device types, including consumer devices such as smartphones and personal 

navigation devices, as well as telematics devices on trucks and delivery vehicles. While the reported average 

vehicle speeds might appear to be within reasonable ranges, the source of the data must be considered. 

Because trucks often drive slower than private vehicles, if the share of data collected from trucks is higher than 

their actual share on the road then the analytics produced may reflect slower highway speeds than reality. This 

will bias the predicted travel times for private vehicles and indicate the presence of congestion patterns that 

may not exist. 

This research project focused on driver responses to different traffic scenarios using large-scale GPS data from 

mobile devices. It established a consistent methodology for processing GPS‐based travel data that can then be 

used to understand transportation system performance and optimization. Key features of the travel paths, or 

trajectories, were identified to enable their classification and identify congested or free‐flow traffic conditions. 

Large‐scale patterns in the data, such as baseline activity, anomalies, locations of blockages, and potential 

network inefficiencies were identified. The computational framework described in this report will provide a 

core foundation for future transportation research. 
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Large-Scale Mobility Data Exploration 

Data can be used to look for patterns in mobility data that reflect driver behavior in context of a particular 

event. such as: What routes would drivers take if a bridge in the Bay Area were closed unexpectedly? How 

would congestion patterns change? What congestion mitigation plans should cities near the bridge employ if 

the bridge is unexpectedly closed? 

Mobility data can present unique challenges for data scientists, as the size of the data files can be quite large 

compared to other transportation datasets. The quality of the raw data must be evaluated, and the data must 

be cleaned based on knowledge of the collection process and the devices that were used for data collection. 

Because of the scale of the data, it may require cloud-based services which can be expensive and require 

specialized expertise.  

While the goal of this research was to use data science techniques to generate actionable information for 

transportation planning purposes, a key focus was to provide a computational foundation for future research 

within the University of California Institute of Transportation Studies. The aim was to build a robust core 

processing pipeline for mobility data that can be leveraged and expanded over time. As such, the data analytics 

framework — called Advance — was designed to build data transformation pipelines [1] that can be used 

economically and collaboratively. 

Advance: A Flexible Data Processing Framework 

Advance is a framework for concise scripting of a data transformation process that can be incrementally built 

and easily debugged. The design of Advance partitions the processing infrastructure from the data 

transformation code itself. It encourages simple small data transformations that can be reused in the same 

pipeline or integrated into other pipelines. Fundamental to Advance is the notion of multithreading that allows 

the computation algorithm to make the best use of the host machine and process the data as quickly as 

possible to support creative data exploration. Furthermore, the large scale for which the processing 

architecture is designed — millions of vehicle paths over hundreds of days and over large geographic regions — 

allows for analyzing travel patterns beyond the scales generally found in the typical corridor or local municipal 

studies. 

Advance has several key features:  

● It maintains provenance of the data so that anyone receiving data from the pipeline can easily 

determine the processing steps that were applied to the raw data. 

● It is flexible. New steps can easily be introduced, and steps can be reordered quickly. 

● It is multilingual. New analytics can be written in any computer language. 

● It uses multithreading on the host machine where possible to reduce processing time. 
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● It does not require continued reprocessing of data. 

● It is simple and easy to use so that students could quickly and easily contribute to the processing 

pipeline. 

● It can be easily ported to a cloud environment once the core pipeline has been established. 

Details regarding the construction and operation of the Advance framework can be found in Appendix A. 

The architecture of Advance allows for a hybrid environment in which the analytics can be implemented on a 

local server or on cloud-services. This is particularly important in the learning environment where students, 

who may not be computer science focused, can experiment, and pursue investigative paths without concern for 

the cost of computing time.  

Enriching Mobility Data 

Mobility data enrichment is implemented using an ordered set of scripts that are managed by the Advance 

framework. The scripts create metrics for identifying problematic data, add actual road links that the vehicle 

may have taken, and determine the locations of intermediary stops. The geospatial extent of the datasets used 

for this study is illustrated in Figure 1 and Figure 2 and are described further in Appendix A, along with the 

basic data cleaning scripts used to remove bad data. 

 

Figure 1. Heatmap of individual GPS points showing the geospatial extent of mobility data for the San 

Francisco Bay Area 
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Figure 2 Geospatial extent of mobility data for the Los Angeles Basin 

Roadway Link Matching  

A necessary capability for extracting information from mobility data is to match the GPS locations to an actual 

road link so that the path of the mobile device on the road network is revealed. The computational algorithms 

that attempt to define which road link is being used by the mobile device is called map-matching. Map-

matching is a complex problem for several reasons. A GPS point has inherent limits in accuracy and its location 

can also be affected by its environment. As such, its actual position on the road network can be ambiguous. 

Adding to the complexity of this problem is the variety of sampling rates — time between each GPS point — 

that are often found in location datasets. Because of the complexity involved in map matching, software 

solutions are usually proprietary to companies that work with geospatial data, such as map makers. An open-

source map matcher, OSRM [2], that also does routing is available that uses the OSM network. Due to the 

requirements of our project that focus on driver behavior on the Mobiliti network, we chose to develop a link 

matcher that uses additional details of road characteristics that are not available in the OSM network. 

For the purposes of this project, we developed new link-matching software — the Smart Cities Link Matcher 

(SCLM). SCLM provides a mechanism to determine link level metrics, including average speed estimates. The 

cleaned vehicle paths are the inputs for this software that is also implemented as a script and managed by the 

Advance framework [Appendix]. 

The algorithm for transforming the cleaned GPS data into link-matched roadway paths is illustrated in the 

following series of steps and associated Figures.  

Step 1: The process begins with a set of GPS locations, as shown in Figure 3. These are expressed as linear 

segments as shown in Figure 4. The data cleaning scripts generate a start point and end point for each 

segment. 



 

Mobile Device Data Analytics for Next-Generation Traffic Management  8 

 

 

Figure 3. Original GPS points 

 

Figure 4. Example set of GPS segments in San Francisco. In this trajectory, the data was collected every 90 

seconds. 

Step 2: For each GPS point, identify all roadway links within 10 meters as candidate links (highlighted in blue in 

Figure 5). 
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Figure 5. All links within 10 meters of each GPS point 

Step 3: Calculate Dijkstra’s shortest free-flow travel-time path between all nodes of subsequent sets of 

candidate links. GPS data from a device that is sampled at high frequency, such as once a second, provides 

good information for selecting the next link in the path. GPS data from a device that is sampled at low 

frequency, like once every 90 seconds, creates gaps in our perception of where on the road network the device 

went. This makes it more difficult to select the next link in the path. The Dijkstra algorithm generates a possible 

path. 

Step 4: Extract the road links from the full network based on the paths identified in the previous step, as shown 

in Figure 7. 

 

Figure 6. Subsetted road network 

Step 5: Select the most likely path in the small subsetted road network, based on the starting point of the trip 

and ending point of the trip and a similarity metric. The similarity metric chosen was the difference between 

the geometric length of the distances between the GPS points and the geometric length of all the candidate 

links. The route with the smallest difference is chosen as the candidate path. Figure 7 shows the selected path. 
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Figure 7. Final selected path 

Step 6: Associate the original GPS information with links in the selected path. For each link in the selected 

path, the GPS points closest to that link are identified. Links are tagged with the GPS reported speeds for 

calculating link-level metrics. 

The output of the SCLM is the conversion of all raw GPS locations into sets of road links and their associated 

metrics. Figure 8 shows the active links — meaning that mobile devices were on them — between the hours of 

8am and 9am on February 6, 2019. 

 

Figure 8. Active Links in the Bay Area 8am - 9am 2/6/2019 
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Though effective in the vast majority of cases, there are opportunities to improve and refine this algorithm.1 

Several edge cases, including vehicle paths with U-turns, should be addressed in future work in order to 

improve the accuracy of the link-matching and subsequent analysis. In addition, alternate routing mechanisms 

might be considered in contrast to the use of Dijkstra’s shortest-path solely based on free-flow travel time as 

drivers do not always take the shortest path.  

Extracting Driver Behavior Indicators 

Once link-matching has been completed for a collection of GPS locations, various other metrics can be 

calculated. For example, using properties of the roads that the vehicle most likely took, it is simple to 

determine the number of unique named streets traversed, the road types along the route, and the heading 

changes. These metrics can be indicators that drivers took circuitous routes to reduce their travel time. This 

could also indicate that the driver might be taking a route suggested by a navigation app that is using 

residential roads to bypass traffic on a major arterial. 

Furthermore, approximate entry and exit times for each link along the map-matched path are calculated by 

interpolating between GPS points and assuming a constant ratio between reported speed and free-flow for 

links without associated GPS points. This interpolation-based approach enables the estimation of entry times 

and traversal speeds for every link in the path even when the GPS sampling rate is low.  

The generated metrics can also be used to check the accuracy of the link-matching. For example, by comparing 

the length of the initially assumed vehicle trajectory to the length of the final path, a significant difference can 

indicate a mismatched path. Interpolation can also help detect mismatched paths or erroneous paths, by 

identifying discrepancies between the spatial and temporal ordering of GPS points and associated roadway 

links. Such situations can arise due to GPS errors, or edge cases — such as when a vehicle exits a highway, then 

doubles back along a frontage road. If many GPS points must be removed for the interpolation approach to 

work, it suggests that the map matched path does not match the GPS trajectory very well. In such cases the 

entire trajectory is flagged as problematic. The entry and traversal times for every link of the non-problematic 

trajectories can then be aggregated.  

  

 
1 The algorithm required the use of several geospatial tools, including a number of Python packages and the use 
of a PostgreSQL/PostGIS database. Trajectories are ingested into SCLM as GeoJSONs, and the final selected 
path is returned as a JSON of links and associated GPS information. The routing algorithms are handled within 
the Python script, while many of the spatial operations to select candidate links for each GPS point, and to 
associate GPS points to links in the selected path, are handled by the database. 
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Using Large-Scale Mobility Data Analytics for 

Transportation Planning 

There are many potential opportunities for integrating this large-scale, mobility data analytics into 

transportation planning. The link matching capability creates the opportunity to develop speed tables for links 

across the region and because it is temporal as well as geospatial, estimates of speed changes over time can be 

generated. This type of data, along with historical data, is typically used by traffic congestion models to provide 

a view of congestion and propose alternative routes to reduce travel times. It has significant implications for 

travel demand modelling, corridor management, transportation simulation, and for disaster and emergency 

planning, which are explored in this section.  

Travel Demand Modeling & Corridor Planning 

The methodology developed by this research project can be used to enhance activity-based travel demand 

models. Travel demand models help agencies understand regional travel flows, and plan for infrastructure 

investments. They describe the origins, destinations, purposes and times of day of travel demand within a 

region. For example, aggregated data from sources such as Google can be used to generate origin-destination 

flows along specific corridors, which can provide detailed metrics on average speeds, estimates of vehicle 

volumes, and regional trip flows on any given link. These metrics can then be used to evaluate different 

transportation demand management (TDM) strategies [3, 4], and give insights to the current road network’s 

performance and potential future network changes. Figure 9 and Figure 10 are trip maps that use the 

processed GPS data to show the trips that access two different road corridors in the Bay Area region.  
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Figure 9. Trajectories for Vehicles Using Southbound 19th Street, denoted by the blue dot, in San 

Francisco. Line thickness is logarithmically proportional to number of vehicles using a road. 

 

Figure 10. Trajectories for Vehicles Using Eastbound University Avenue in Berkeley 
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Freight Related Dynamics 

The particular mobile location data used for this project tagged information from consumer devices, such as 

personal cell-phones and built-in GPS units in privately-owned vehicles, and information from commercial fleet 

devices. Commercial vehicles will often travel at lower speeds than privately-owned vehicles and can result in 

biasing the data analytics. This difference may also highlight roadway features that fleet drivers are 

experiencing.  

Figure 11 shows network links with distinct private/commercial differences across the entire Bay Area. Line 

width of a link indicates the total vehicle flow on the link and the color indicates the speed difference between 

privately-owned and commercial vehicles. The data is from the PM peak, 3pm until 7pm, averaged across 

multiple days. We note that State Route 37 just west of Vallejo, which has only one lane in either direction, is 

one of the few major routes where both vehicle classes travel at roughly the same speed. In general, we find 

that privately-owned vehicles travel faster than commercial vehicles. One notable exception to this is around 

toll plazas, where fleet vehicles travel 20kph faster or more, which can be seen in Figure 12. The speed 

comparisons can help to identify and highlight locations across the region where substantial differences exist 

between car and truck speeds that could present opportunities for improving traffic flows. For example, 

commercial vehicles travel much slower on roads with steep inclines, such I-580 over Altamont Pass to the east 

of Livermore, where commercial vehicles travel roughly 20kph slower than private vehicles. Our particular  

 

Figure 11. Speed difference between commercial and private vehicles for all links in the San Francisco Bay 

Area. Thicker lines indicate higher total vehicle flows. Red indicates average privately-owned vehicle 

speeds are faster while blue indicates commercial vehicles speeds are faster. The black box outlines the 

area shown in Figure 12. 
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dataset only distinguishes between private and commercial vehicles; future processed datasets could include 

more detailed breakdowns, such as specific vehicle make and model, that could help identify additional road 

network characteristics that impact driver behavior. 

 

Figure 12. Zoomed in view of differences between privately-owned and commercial vehicles in the region 

around the Carquinez and Benicia-Martinez bridges. 

Transportation Simulation 

Transportation simulations are often used for planning and evaluating the operations of transportation 

infrastructure. In such simulations, a virtual model is created of a region’s transportation network, and travel 

within the region throughout the day is simulated. The Smart Cities and Sustainable Mobility Research Center 

in the Institute of Transportation Studies at UC Berkeley and Lawrence Berkeley National Laboratory are 

currently developing an urban-scale transportation simulation known as Mobiliti. Mobiliti uses high-

performance computing resources at the National Energy Research Scientific Computing Center (NERSC) to 

simulate the movement of vehicles throughout the San Francisco Bay Area road network and provides 

estimates of the associated congestion, energy usage, and productivity loss [5]. The framework developed by 

this research project was used to produce link-level congestion and usage metrics across hundreds of days of 

data to improve the foundational models that drive the simulation — such as the travel demand model that 

estimates the typical trips that occur during an average day in the region — and validate the simulated network 

dynamics. The regional simulation results can also be aggregated to generate a wide variety of metrics that can 

provide insights for city planners.  
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Table 1 shows the percentage difference between the percentage shares of simulation-estimated vehicle miles 

traveled (VMT) across each roadway class by county and those calculated based on GPS-derived VMT. The 

distribution of VMT across various roadway classes and counties throughout the Bay Area provides insight into 

how well the GPS data matches the simulation data. In this case, we see a good alignment between simulation 

results and raw data for most of the road classes and counties, with all discrepancies under 8 percent. This is an 

important validation for the accuracy of the network loads produced by the Mobiliti simulation. 

Table 1. Normalized Percentage Difference Between Simulation and Mobile Device Data: Single Day 
Share of Total Regional VMT by Roadway Type and County in the Bay Area 

Roadway 

Class 

VMT by County  

Alameda 

Contra 

Costa Marin Napa 

San 

Francisco 

San 

Mateo 

Santa 

Clara Solano Sonoma Total 

Freeway -7.6 -1.2 0 0 0.7 0.5 -0.5 -6.8 -0.9 -15.9 

Arterial  1.4 0.5 0.4 -0.1 1.6 1.2 5.4 0.2 0.2 10.7 

Local  1 0.7 0.2 0.1 0.6 0.5 1.5 0.3 0.3 5.2 

Total  -5.3 -0.1 0.5 0 3 2 6.4 -6.3 -0.4 0 

Applying the Framework to Disaster and Emergency Planning 

On February 7, 2019, the Richmond-San Rafael Bridge, a major East-West roadway link across the San 

Francisco Bay, typically carrying 80,000 vehicles a day, was unexpectedly closed between 10:30 am and 8:15 

pm due to a structural failure on the upper bridge deck. As a result of this incident, typical traffic flows across 

the northern San Francisco Bay region were interrupted and shifted, as travelers were forced to use alternate 

routes [6].  

The GPS data collected from this incident by HERE Technologies offered a unique opportunity to understand 

how drivers’ behaviors changed due to a significant disruption in the network. Given that this was an isolated 

and relatively minor incident (minor in terms of the number of hours the bridge was closed), which only 

affected a single major roadway link, the impacts were primarily from the route changes and late arrivals 

caused by this closure, rather than more widespread impacts that might occur from a major natural disaster. 

However, it does provide some insights into the potential effects of a larger scale event. 

By comparing the data-based travel patterns of February 7 to a baseline — the average of four other Thursdays 

before and after the event (January 24, January 31, February 14, and February 21) — changes in travel patterns 

and the roadway network can be identified.  
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Visualizing the changes in average link speeds for the approximate duration of the closure (11am-8pm) shows 

the impacts of the bridge closure. Figure 13 shows the speeds on links across the region on the day of the 

closure and the day prior to the closure versus the speeds on those links during the baseline. Each point, 

representing a single link, is colored based on proximity to the Richmond-San Rafael Bridge, with the darkest 

reds representing the links closest to the bridge. Points lying along the diagonal line represent road segments 

that experienced no change in speed; those above the line saw an increase in average speed while those below 

the line saw slower speeds. Immediately, it is clear that several dozen links close to the bridge (dark red dots) 

experienced dramatic reductions in speed on the day of the closure. However, it is equally important to note 

that many links experienced increases in speed, with general variability far greater on the day of the closure 

than the day before. 

 

Figure 13. Speeds on links around the Richmond-San Rafael Bridge from 11am-8pm between February 7th 

& Baseline (Left) and February 14th and Baseline (Right). Darkest reds indicate links closer to the Bridge 
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Figure 14. Speed changes between February 7 & Baseline during the PM peak (3PM-7PM). Red indicates 

slower speeds on February 7, blue indicates higher speeds, line thickness indicates vehicle volume. 

Looking at the larger region, Figure 14 maps the speed changes across the Bay Area during the PM peak (3 pm-

7 pm). There are two East-West routes across the Bay that could provide substitute capacity for the Richmond-

San Rafael Bridge: State Route (SR) 37, across the top of San Pablo Bay, and the San Francisco-Oakland Bay 

Bridge. State Route 37 experienced significant reductions in average speed during the closure, while the Bay 

Bridge saw a minor increase in average speed. This likely indicates that SR 37 experienced a significant increase 

in traffic volumes due to the bridge closure, while the Bay Bridge was relatively unaffected suggesting that the 

structure had sufficient capacity to absorb the added traffic. We also expect that a selection of drivers changed 
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their normal behavior, e.g., waiting out the congestion and leaving much later to go to their destination. This is 

being modeled in a subsequent analysis.  

Many roads to the east of the Bay Bridge through Oakland experienced significant increases in speed during 

the bridge closure, despite many of them being part of potential reroutes for traffic that had previously 

planned to take the bridge — suggesting that the bridge closure may have caused reductions in travel demand. 

Examining vehicle movements on SR 37 on the day of the bridge closure, we identified a 10 percent shift for 

both mean cumulative heading changes per kilometer (a measure of how often a vehicle turns in a given 

distance) and total functional class changes (such as switching from a freeway to a local road). Future research 

could focus on developing these indicators, and additional metrics, to quantify detailed changes in drivers’ 

routing choices and shifts in travel patterns. 

The capacity to analyze detailed changes in traffic flows in response to disasters will help evacuation planning 

efforts by identifying roadways experiencing the greatest increases in traffic, and which destinations individual 

vehicles move toward. As climate change continues to exacerbate wildfires in California, and the state’s aging 

infrastructure makes network disruptions more likely, this information could prove critically important to 

evacuation and network design strategies.  
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Conclusion 

As the availability of location data generated by mobile devices increases, the capacity for transportation 

agencies to effectively use this data to better understand transportation networks becomes critically 

important. The methodology established in this report enables the large-scale, rapid transformation of widely 

available GPS data into a useful format that contains information about traffic dynamics, roadway network 

usage, and the behavior of drivers across a region. This methodology has significant potential to better inform 

traffic simulations, travel demand models, and emergency and disaster management. 

This work represents the initial step towards building a robust but flexible approach to the processing of large 

mobility datasets. Future work will focus on computational efficiency improvements to scripts involved in the 

processing architecture, which could enable use of even larger datasets and simplifications in the toolset, to 

reduce the challenges associated with implementing new datasets. Additionally, the link-matching script could 

be improved to deal with a greater number of edge cases found in the travel paths, which would improve the 

integrity of the link-path data and increase the information content of the raw GPS data. 
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Appendix A 

Advance - A Data Transformation Processing Framework 

Advance is a framework It allows for concise scripting of a data transformation process that can be 

incrementally built and easily debugged [1]. The design of Advance partitions the processing infrastructure 

from the data transformation code itself. It encourages simple small data transformations that can be reused in 

the same pipeline or integrated into other pipelines. Fundamental to Advance is the notion of multithreading in 

order to make the best use of the host machine and process the data as quickly as possible to support creative 

data exploration. 

The framework forms a data transformation pipeline as a series of steps. The core mechanism is to process a 

step and make the results of each step available as input to the next step. The artifacts of each step are 

preserved in directories that are numbered according to their position in the pipeline. When the output of a 

step generates incorrect results or the code for the step does not complete due to an error, the artifacts can 

simply be deleted, the code for the particular step can be modified and the pipeline can be restarted. Previously 

successful steps are skipped, and the computation quickly picks up at the step that was last successfully 

completed. When a step fails the results are preserved in directories prefixed with "tmp_". This isolates 

incomplete step data and ensures that the step is re-processed when the problem is resolved. As such, 

reprocessing of data that has already proven robust is avoided. 

A data pipeline can use the Advance framework by establishing a primary Ruby script that imports Advance and 

includes the data transformation steps. While Advance is written in Ruby and is implemented as a Ruby script, 

the data transformations are not required to be written in Ruby. Each step describes a command to be run on a 

folder of files or a single file. These commands can be one of a collection of prepackaged Advance scripts, unix 

commands (like split, cut, etc.), or scripts/commands written in other languages. Advance invokes these scripts 

one by one as would a person typing at the command line. Advance logs the exact command that is invoked so 

that it can be run separately to check the output manually and to debug failures. 

Advance steps are composed of three components: 

● a step processing type, 

● a descriptive slug describing the step (as a Ruby symbol), and  

● the command that transforms the data. 

For example: 

single :unzip_7z_raw_data_file, "7z x {previous_file}" 

single :split_files, "split -l 10000 -a 3 {previous_file} gps_data_" 
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multi :add_local_time, "cat {file_path} | add_local_time.rb timestamp local_time US/Pacific > {file}" 

The current step processing functions in Advance are single and multi. Single applies the command to the last 

output, which should be a single file. Multi speeds processing of multiple files by doing work in parallel using 

another Ruby gem called TeamEffort [7]. 

Creating an Advance pipeline script is expected to be an incremental process. This approach encourages a 

methodical, single step at-a-time approach to data processing. The user starts with a single step, runs the script 

and checks the results. When the output is validated, the user adds the next step. Once the next step is added, 

the user simply restarts the script. Previously successful steps are skipped and the script moves on to the first 

incomplete step. 

Specifying script input and output is accomplished by identifying the files that are to be transformed -> the 

input files, and the output of the data transformation -> the output files. Advance provides a few tokens that 

can be inserted in the command string for this purpose: 

● {input_file} indicates the output file from the previous step. It is also used to indicate the first file to be 

used and it finds that file in the current working directory. 

● {file_name} indicates an output file name, which is the basename from {input_file}. Commands often 

process multiple files from previous steps, generating multiple output files. Those output files are 

placed in the step directory. 

● {file_name_without_extension\} is simply {file_name} with the extension removed. This is useful when 

one is transforming a file from one type — with an extension — to another type, with a new extension. 

● {input_dir} indicates the directory of the previous step. 

Example Script 

#!/usr/bin/env ruby 

require "advance" 

include Advance 

ensure_bin_on_path # ensures the directory for this script is on the path so that related scripts can be 

# referenced without paths 

single :unzip_7z_raw_data_file, "7z x {previous_file}" # uses 7z to inflate a file in the current directory 

single :split_files, "split -l 10000 -a 3 {previous_file} gps_data_" # split the file into smaller files that are 10K 

lines 

multi :add_local_time, "cat {file_path} | add_local_time.rb timestamp local_time US/Pacific > {file}"  
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# adds a local_time column to a csv 

Running a pipeline then becomes as simple as creating a directory that contains the single initial file, and 

invoking the script from that directory. 

Advance makes a transformation on the data and stores the result in a new directory. It zips the directory 

before it advances to the next step to limit storage requirements resulting from the transformations. The key 

word “advance” is associated with the gem and using the defined script creates the new directory for the 

transformation. If the step does not have “advance” as a key word it just runs the identified script.  

Also included in Advance is a static statement. Static means there is no transformation on the data — it 

provides a capability to generate a new set of files that are modifications of the existing files in that step. This 

was included primarily for making visualization files, namely GeoJSON files. 

Mobility Data  

The data used for this study consisted of location data from the San Francisco Bay Area and Los Angeles Basin, 

and was provided by HERE Technologies under proprietary license. In the Bay Area, the data spans 279 days 

from November 25, 2018 to August 28, 2019. In the Los Angeles Basin, the data spans 455 days from May 31, 

2018 to August 29, 2019. Each day is represented in a CSV file with the format presented in Table 2. The 

sources of the location data are a mix of private and commercial navigation devices, including mobile phones 

and fleet telematics devices, with each trip tagged either as private or commercial. The data in these CSVs are 

not limited to vehicles but could include data from pedestrians and bicyclists using navigation applications. As 

such, we must define what kind of analytics is necessary to filter the data appropriately for this project. In a 

typical data file from the Los Angeles Basin, from June 5, 2018, two dozen different providers reported data 

from over 100,000 unique devices. The geospatial extent of the data for both the Bay Area and Los Angeles 

Basin is shown in Figure 1 and Figure 2, respectively. 

Table 2. Raw Data Format 

Variable Description 

PROBE_ID Device ID 

SAMPLE_DATE Date and time in Coordinated Universal Time (UTC) of the data point 

LAT Latitude 

LON Longitude 

HEADING Heading in degrees 

SPEED Speed in kilometers per hour 

PROBE_DATA_PROVIDER Source of the data, distinguishing between commercial/fleet and consumer 

devices 
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Figure 15. Cleaned vehicle trajectory outputs from pipeline, 12am-1am on February 6, 2019 

Reconstructability 

Reconstructability addresses the problem of recovering traveled geospatial paths on a transportation network 

from time sampled location traces. As described in Macfarlane and Xu [8] the geospatial road density sets a 

fundamental constraint on the sampling frequency. If the constraint is violated, then the path cannot be 

reconstructed without  an inference about the path of the device. For example, a GPS device moving along a 

limited access freeway has a sampling interval of 30 seconds; it will generally have a highly reconstructable 

path, since there will usually be at least one GPS sample between each exit, making the path clear from GPS 

data alone. However, if the same device travels through closely spaced city streets, the device may often travel 

several blocks within the 30 second sampling interval, resulting in multiple paths being possible to connect the 

GPS points, which means the path would have poor reconstructability. The analyst must determine what kinds 

of inference should be made based on the context of the analytics being pursued. 
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Reconstructability carries significant implications for the usefulness of point-location data: if all links along a 

pathway are associated with a GPS point (and reported speed), road conditions can be estimated for every 

single link. Conversely, if very few links along a pathway have associated GPS points, the estimated congestion 

of the transportation network involves far more guesswork. The dependency of reconstruction on the density 

of the road network means that there will be multiple paths between the time ordered GPS points and as a 

consequence the inference that chooses the path becomes significantly less robust. SCLM uses Dijkstra’s 

travel-time shortest path with quality metrics for its inferencing. With this approach, trajectories of all 

sampling rates can be ingested into the link-matcher, simplifying the problem and the processing workflow.  

While this approach is reasonable, it will likely result in paths that did not happen in the real world. The metrics 

that compare the path with the original GPS trajectory are intended to provide some level of confidence in the 

link matched path. For example, a delivery truck may take a very circuitous route that is not necessarily 

represented in the reported location data. For this situation, a temporal metric can be used to infer alternate 

paths. As such, reconstructability can reflect a measure of “trustworthiness” of the path. A reconstructability 

ratio is defined that is equal to the ratio of links in the link-matched path that are tagged as reconstructable. In 

this context, a link is reconstructable if at least one of two conditions are met: first, that the link has at least 

one associated point, which means that there is at least one GPS point which is closer to the given link than to 

any other link, and second, that there is no other link that the vehicle could have used. For example, if a section 

of a freeway between two exits is made up of three links, and the first and third links have associated points, 

the second link is automatically reconstructable even if it does not have any associated points. A trajectory 

with a higher reconstructability has fewer places where the link matcher had to infer the correct path, and as 

such is more likely to be accurate. 

Reconstructability ratios were calculated for a full day of Bay Area trajectories and grouped by mean GPS 

sampling interval. Predictably, trajectories that had faster sampling rates had far higher reconstructability 

ratios, which are shown in Figure 16. Trajectories with a 1 second sampling interval had a reconstructability 

ratio of 0.95, which dropped to 0.77 for a 10 second sampling interval, 0.47 for a 30 second sampling interval, 

and 0.34 for a 90 second sampling interval. As was defined in [8], these results are dependent on the network 

graph density. The dataset used for this study had varying degrees of graph density. Future work can consider 

the impact of the designated region on the reconstructability, for example less dense cities could have much 

higher reconstructability with the same variability of sampling rates. These types of considerations can support 

raw data provider selections and data purchase decisions. 
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Figure 16. Reconstructability ratio versus sampling interval of trajectories 

Scaled Implementation in the Cloud 

The volume of data involved with this project necessitated the use of tools that enabled rapid data entry and 

processing. Though several high-performance computing frameworks were tested, in its final form, the 

processing architecture of this project involves the pipeline written in Ruby using the Advance Gem, cleaning 

and analysis scripts, including link-matching, written in Python, and several Amazon Web Services tools, 

including the Relational Database Service (RDS), the Simple Storage Service (S3), and the Elastic Container 

Service (ECS) as shown in Figure 17. The Advance Ruby Gem enables a high degree of flexibility for testing and 

exploratory work, by simplifying the addition and removal of specific analysis scripts. In this way, researchers, 

students, and professionals can easily add their own analysis or transformation steps to the existing 

architecture. 
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Figure 17. Data transformation and enrichment pipeline implemented with AWS 
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